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Abstract
We consider Euler flows on two-dimensional (2D) periodic domain and are interested

in the stability, both linear and nonlinear, of a simple equilibrium given by the 2D Taylor-
Green vortex. As the first main result, numerical evidence is provided for the fact that such
flows possess unstable eigenvalues embedded in the band of the essential spectrum of the
linearized operator. However, the unstable eigenfunction is discontinuous at the hyperbolic
stagnation points of the base flow and its regularity is consistent with the prediction of Lin
(2004). This eigenfunction gives rise to an exponential transient growth with the rate given
by the real part of the eigenvalue followed by passage to a nonlinear instability. As the
second main result, we illustrate a fundamentally different, non-modal, growth mechanism
involving a continuous family of uncorrelated functions, instead of an eigenfunction of
the linearized operator. Constructed by solving a suitable PDE optimization problem, the
resulting flows saturate the known estimates on the growth of the semigroup related to the
essential spectrum of the linearized Euler operator as the numerical resolution is refined.
These findings are contrasted with the results of earlier studies of a similar problem
conducted in a slightly viscous setting where only the modal growth of instabilities was
observed. This highlights the special stability properties of equilibria in inviscid flows.
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1 Introduction
We study the stability of a two-dimensional (2D) flow of an incompressible ideal fluid described
by the classical Euler system subject to periodic boundary conditions

𝜕𝑡𝒖 + (𝒖 · ∇)𝒖 = −∇𝑝, (𝒙, 𝑡) ∈ T2 × (0, +∞), (1.1a)
∇ · 𝒖 = 0, (𝒙, 𝑡) ∈ T2 × (0, +∞), (1.1b)

𝒖(𝒙, 0) = 𝒖0(𝒙), 𝒙 ∈ T2, (1.1c)

where T2 := R2/(2𝜋Z)2 (“:=” means “equal to by definition”), whereas 𝒙 = (𝑥1, 𝑥2)𝑇 and
𝑡 ≥ 0 are, respectively, the spatial coordinate and time. In (1.1), 𝒖 = 𝒖(𝑡, 𝒙) = (𝑢1, 𝑢2)𝑇 is
the velocity field, 𝑝 = 𝑝(𝑡, 𝒙) the scalar pressure, whereas 𝒖0 is the initial condition for the
velocity field, assumed divergence-free, ∇ · 𝒖0 = 0.

Computing the curl of both sides of (1.1a), the equation for the scalar vorticity 𝜔 := ∇⊥ · 𝒖,
where ∇⊥ :=

(
−𝜕𝑥2 , 𝜕𝑥1

)
, is

𝜕𝑡𝜔 + (𝒖 · ∇)𝜔 = 0, (𝒙, 𝑡) ∈ T2 × (0, +∞), (1.2a)
𝒖 = ∇⊥Δ−1𝜔, (𝒙, 𝑡) ∈ T2 × (0, +∞), (1.2b)

𝜔(𝒙, 0) = 𝜔0(𝒙), 𝒙 ∈ T2, (1.2c)

in which 𝜔0 := ∇⊥ · 𝒖0 and it will be assumed that
∫
T2 𝜔0(𝒙) 𝑑𝒙 = 0, such that

∫
T2 𝜔(𝑡, 𝒙) 𝑑𝒙 =

0 for all 𝑡 > 0. Hereafter our focus will be on the vorticity formulation (1.2). We will refer to
Sobolev spaces𝐻𝑚 (T2),𝑚 ∈ R, with the inner product defined as ⟨ 𝑓 , 𝑔⟩𝐻𝑚 :=

∫
T2 (1 − Δ)𝑚 𝑓 𝑔 𝑑𝒙,

where ·̄ denotes complex conjugation, such that the norm is given by ∥ 𝑓 ∥𝐻𝑚 =
√︁
⟨ 𝑓 , 𝑔⟩𝐻𝑚

(Adams & Fournier, 2005). Without loss of generality, we will focus our discussion on a
subspace of 𝐻𝑚 (T2) consisting of zero-mean functions

𝐻𝑚
0 (T2) :=

{
𝑓 ∈ 𝐻𝑚 (T2),

∫
T2

𝑓 𝑑𝒙 = 0
}
. (1.3)

We will also use the space 𝐿2(T2) := 𝐻0(T2). In addition, we will consider Lebesgue
and Sobolev non-inner-product spaces 𝐿𝑝 (T2) and 𝑊1,𝑝 (T2) with the norms ∥ 𝑓 ∥𝐿𝑝 :=(∫
T2 | 𝑓 |𝑝 𝑑𝒙

)1/𝑝
and ∥ 𝑓 ∥𝑊1, 𝑝 := ∥ 𝑓 ∥𝐿𝑝 + ∥∇ 𝑓 ∥𝐿𝑝 with 1 ≤ 𝑝 < ∞.

Analysis of the stability of equilibrium solutions 𝜔𝑠 = 𝜔𝑠 (𝒙) of system (1.2) is a classical
subject in mathematical fluid mechanics with general results describing conditions under which
flows become unstable. The metric chosen to measure the deviation from the equilibrium
captures different scales of instability — higher regularity spaces 𝐻𝑚 (T2) with 𝑚 > 0 register
finer structures, such as filamentation, while the energy space 𝐻−1(T2) captures large-scale
instabilities. Koch’s theorem (Koch, 2002) states that in the finer sense, i.e., if the evolution
of the vorticity 𝜔(𝑡) is measured in the Hölder space 𝐶𝑘,𝛼, for any 𝑘 ∈ N and 𝛼 > 0, any
non-isochronous equilibrium in 2D is nonlinearly Lyapunov unstable. Here “non-isochronous”
means that all Lagrangian trajectories in the equilibrium flow do not have the same period (a
typical example of an isochronous flow is solid-body rotation).
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Most large scale instabilities are classically attributed to laminar oscillatory structures as
was established by the pioneering Rayleigh-Fjortoft-Tollmien inflection point theory and its
contemporary operator theoretical formulations (Chandrasekhar, 1961; Drazin & Reid, 1981;
Friedlander et al., 2000; Schmid & Henningson, 2001; Lin, 2005). In this case instability
arises from a smooth unstable mode of the linearized equation, which in turn gives rise to
nonlinear instability in the energy space by the full analogue of the Lyapunov Theorem, see
Friedlander et al. (1997); Lin (2004) and references therein. However, one of the simplest
equilibrium solutions of (1.1)–(1.2) to which this theory does not apply is the 2D Taylor-Green
vortex which is defined as

𝒖𝑠 (𝒙) = (− cos(𝑥1) sin(𝑥2), sin(𝑥1) cos(𝑥2))𝑇 , 𝜔𝑠 (𝒙) = 2 cos(𝑥1) cos(𝑥2) (1.4)

and features a doubly-periodic array of cellular vortices. Some nontrivial generalizations of
this equilibrium were recently considered by Zhigunov & Grigoriev (2023).

On the other hand, short-wavelength instabilities have been studied using an asymptotic
Wentzel-Kramers-Brillouin (WKB) approach borrowed from geometric optics in which the so-
lution of the linearization of (1.1) is represented as 𝒖(𝑡, 𝒙) = 𝒂(𝑡, 𝒙, 𝝃0) exp

[
𝑖𝑆(𝑡, 𝒙, 𝝃0)/𝛿

]
+

O(𝛿) for some 𝛿 > 0, where 𝝃 := ∇𝑆 is the wavenumber of the perturbation and an anal-
ogous representation is used for the pressure 𝑝(𝑡, 𝒙) (Friedlander & Vishik, 1991; Lifschitz
& Hameiri, 1991). Considering the leading-order expressions obtained by plugging these
ansätze into the linearization of (1.1) and then taking the asymptotic limit 𝛿 → 0 followed
by switching to the Lagrangian representation, one obtains a system of ordinary-differential
equations (ODEs) describing the evolution of the Lagrangian coordinate 𝒙(𝑡; 𝒙0), the per-
turbation wavenumber 𝝃 (𝑡; 𝒙0, 𝝃0) and the amplitude of the perturbation 𝒂(𝑡; 𝒙0, 𝝃0, 𝒂0) in
function of the corresponding initial conditions 𝒙0, 𝝃0 and 𝒂0 (chosen such that 𝝃0 · 𝒂0 = 0 to
ensure incompressibility). This system of ODEs, referred to as the bicharacteristic problem,
describes the time evolution of oscillatory perturbations in the short-wavelength limit. An
instability of an equilibrium can then be detected if one can find a solution of this system such
that |𝒂(𝑡; 𝒙0, 𝝃0, 𝒂0) | grows in time. While this approach makes it possible to conclude about
an instability of the equilibrium, given its local Lagrangian nature, it does not provide any
information about the global structure of the instability in space.

The 2D Taylor-Green vortex (1.4) is one of a number of exact solutions of the Euler equations
known in a closed form. In the presence of viscosity 𝜈, the velocity field (1.4) gives rise to a
closed-form solution of the Navier-Stokes system which decays in time as O

(
𝑒−𝜈𝑡

)
. Therefore,

the Taylor-Green vortex often serves as a benchmark in computational fluid dynamics. Most
of the investigations of the stability of the 2D Taylor-Green vortex have been carried out
in the viscous setting where (1.4) is not an exact equilibrium solution of the Navier-Stokes
system. However, the main underlying assumption in these studies was that the time scale on
which the instabilities develop is much shorter than O

(
𝑒−𝜈𝑡

)
, the rate of the viscous decay

of (1.4). These investigations typically involved WKB analysis, solution of the eigenvalue
problem for the linearized operator and/or time-integration of the governing equations, all
of which were performed numerically. They included analysis of elliptic instabilities under
3D perturbations (Sipp & Jacquin, 1998; Kerswell, 2002; Aspden & Vanneste, 2009) and
hyperbolic instabilities (Leblanc & Godeferd, 1999; Friedlander & Vishik, 1991; Suzuki et al.,
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2018). A thorough discussion of different instability mechanisms possible in the Taylor-Green
vortex under rotation and/or stratification can be found in Hattori & Hirota (2023). The elliptic
instability is closely related to elliptic stagnation points in the base flow and only occurs
when the perturbation is three-dimensional, crucially depending on the wavenumber of the
perturbation along the direction orthogonal to the plane of motion. On the other hand, the
hyperbolic instability is connected to hyperbolic stagnation points and appears even under
two-dimensional perturbations (Gau & Hattori, 2014), which is more relevant to the current
study where we focus on analyzing the stability of 2D flows. In particular, in this latter study
the authors considered a problem similar to the one investigated here. However, as will be
evident below, our findings are in fact quite different, underlining the difference between the
viscous and inviscid formulations.

In contrast to these earlier studies, our focus here is on the instability of the Taylor-Green
vortex (1.4) in 2D inviscid Euler flows governed by (1.1)–(1.2). Even though at a formal level
the Euler equations under periodic boundary conditions can be viewed as the vanishing viscosity
limit of the Navier-Stokes equations, the spectra of the corresponding linearized operators are
fundamentally different. Unlike the linearized Navier-Stokes operator, the linearized Euler
operator is not elliptic, thus the existent theory about elliptic operators cannot be applied.
Moreover, it is also degenerate and non-self-adjoint, which further complicates the analysis.
Most importantly, the spectrum of the linearized Navier-Stokes operator defined on a bounded
domain subject to Dirichlet boundary conditions or periodic boundary conditions can only
consist of the discrete spectrum and the corresponding eigenfunctions are smooth. Shvydkoy
& Friedlander (2008) proved that the eigenvalues of the linearized Navier-Stokes operator
converge to unstable eigenvalues of the linearized Euler operator which are outside the essential
spectrum as viscosity goes to zero, if such eigenvalues exist. However, despite the simple
structure of the 2D Taylor-Green vortex (1.4), the existence of unstable eigenvalues of the
corresponding linearized Euler operator is still an open question. If such unstable eigenvalues
exist, the regularity of the corresponding eigenfunctions is not a priori known and may be
determined by the location of these eigenvalues relative to the essential spectrum (Lin, 2005).
Thus, due to these nuances, the inviscid problem is distinct from its viscous counterpart.

Since the spectra of the linearized Euler operators obtained by linearizing the velocity
formulation (1.1) and the vorticity formulation (1.2) are equivalent (Shvydkoy & Latushkin,
2005), in this study, we use the latter formulation and provide numerical evidence that the
linearized operator has unstable eigenvalues approximately equal to 0.1424± 0.5875𝑖 with the
corresponding eigenfunctions given by distributions in 𝐻0.28

0 (T2), where the level of regularity
𝑠 = 0.28 is determined approximately based on Lin’s theorem (Lin, 2004), as will be discussed
in § 2. This eigenfunction exhibits a more regular profile in the laminar cells loosing its
smoothness in the vicinity of the heteroclinic orbits of the equilibrium (1.4). We also illustrate
another distinct instability mechanism associated with a continuous family of uncorrelated
functions corresponding to points in the essential spectrum, which is quite different from the
modal growth observed in the former case. Since the essential spectrum does not arise in a
finite-dimensional setting, investigation of these questions requires the use of computational
tools which are more refined as compared to the techniques typically employed in the studies
of hydrodynamic stability (Schmid & Henningson, 2001). Obtaining these results is enabled
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by the solution of a suitably defined PDE optimization problem. Such optimization-based
formulations have had a long history in the study of flow stability problems, both linear and
nonlinear (Schmid & Henningson, 2001; Kerswell et al., 2014; Kerswell, 2018). However,
given the subtle infinite-dimensional nature of the optimization problem considered here, we
solve it using a specialized variant of the adjoint-based approach which allows us to impose
different levels of regularity on the obtained optimal initial conditions (Zhao & Protas, 2023).
By solving this optimization problem using increasing spatial resolutions, we obtain a sequence
of functions that are localized near the hyperbolic stagnation points of the equilibrium solution
(1.4) and reveal high-frequency oscillations restricted by the spatial resolution. Importantly,
using these functions as initial conditions, the corresponding solutions of the linearized Euler
system reveal growth rates saturating rigorous a priori bounds on the growth of the semigroup
induced by the essential spectrum of the generator. While these results are consistent with the
findings of the WKB analysis, they also provide information about the global spatial structure
of the perturbations realizing this maximum possible growth.

The structure of the paper is as follows: in § 2 we introduce the problems of linear and
nonlinear instability, and discuss the spectrum of the linearized Euler operator; in § 3 we
discuss the numerical discretization of the linearized operator to compute its eigenvalues as
well as the formulation of a PDE optimization problem to obtain initial conditions such that the
corresponding flows realize the largest growth rate of perturbations predicted by the form of the
essential spectrum, which is solved using a Riemannian conjugate gradient method described
in Appendix A; in § 4, we illustrate two distinct mechanisms that lead to a linear instability
— a modal growth and a nonmodal growth of the solution, where the former corresponds
to the point spectrum while the latter corresponds to the essential spectrum of the linearized
operator and is highly dependent on the function space in which the perturbation is defined; in
that section we also discuss some computational results concerning the nonlinear instability;
discussion and final conclusions are deferred to § 5.

2 Linear and nonlinear stability
Linearizing system (1.2) around a steady solution {𝒖𝑠, 𝜔𝑠}, we obtain the following system

𝜕𝑡𝑤 = L𝑤, (𝒙, 𝑡) ∈ T2 × (0, +∞), (2.1a)
𝑤(𝒙, 0) = 𝑤0(𝒙), 𝒙 ∈ T2, (2.1b)

where the linearized Euler operator L is given by

L𝑤 := −(𝒖𝑠 · ∇)𝑤 − (𝒖 · ∇)𝜔𝑠 =
[
−𝒖𝑠 · ∇ − ∇𝜔𝑠 · (∇⊥Δ−1)

]
𝑤. (2.2)

Solution of system (2.1) can be written as 𝑤(𝑡) = 𝑒𝑡L𝑤0, where 𝑤(𝑡) := 𝑤(𝑡, ·) and 𝑒𝑡L is
the semigroup induced by the operator L (Engel & Nagel, 2000). The question of stability
of the equilibrium 𝜔𝑠 is thus linked to the asymptotic, as 𝑡 → ∞, behavior of ∥𝑒𝑡L ∥𝐻𝑚

quantified by the growth abscissa 𝛾(L) := lim𝑡→∞ 𝑡−1 ln ∥𝑒𝑡L ∥𝐻𝑚 , which is in turn determined
by the spectrum 𝜎(L) of the operator L. While in finite dimensions it is determined by the
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eigenvalue with the largest real part, in infinite dimensions the situation is more nuanced since
there exist operators A such that sup𝑧∈𝜎(A) ℜ(𝑧) < 𝛾(A), e.g., Zabczyk’s problem (Zabczyk,
1975; Trefethen, 1997); some problems in hydrodynamic stability where such behavior was
identified are analyzed by Renardy (1994).

Following Browder (1961), we decompose the spectrum of L into two disjoint sets: the
discrete spectrum and the essential spectrum, as follows,

𝜎(L) = 𝜎disc(L) ∪ 𝜎ess(L). (2.3)

We then say that 𝑧 ∈ 𝜎disc(L) if it satisfies the following conditions:

(i) 𝑧 is an isolated point in 𝜎(L);

(ii) 𝑧 has finite multiplicity, i.e.,
⋃∞

𝑟=1 Ker(𝑧 − L)𝑟 is finite dimensional;

(iii) the range of 𝑧 − L is closed.

Otherwise, 𝑧 is called a point of the essential spectrum 𝜎ess(L). To illustrate this concept, we
consider the linear operator 𝑇 that maps all functions in 𝐿2

0(T) to the zero function. It has only
the essential spectrum 𝜎ess(𝑇) = {0} as its kernel Ker(𝑇) = 𝐿2

0(T) is infinite-dimensional. As
a more complicated example, we consider the linear operator 𝑇 : 𝐿2

0(T) → 𝐿2
0(T) defined by

𝑇 [ 𝑓 ] (𝑥) :=
∞∑︁
𝑛=1

1
𝑛
(𝑎𝑛 cos(𝑛𝑥) + 𝑏𝑛 sin(𝑛𝑥)) , where 𝑓 (𝑥) =

∞∑︁
𝑛=1

(𝑎𝑛 cos(𝑛𝑥) + 𝑏𝑛 sin(𝑛𝑥))

(2.4)
For any positive integer 𝑝, 1/𝑝 is an eigenvalue of 𝑇 , and cos(𝑝𝑥) and sin(𝑝𝑥) are the
corresponding eigenfunctions. Since𝑇 is not surjective, 0 ∈ 𝜎(𝑇) and since lim𝑝→∞(1/𝑝) = 0,
0 is not an isolated point in the spectrum of 𝑇 . Therefore, we have 𝜎disc(𝑇) = {1/𝑝, 𝑝 ∈ N+}
and 𝜎ess(𝑇) = {0}.

While in finite dimensions linear operators can be represented as matrices which can only
have a discrete spectrum, in infinite dimensions the situation is complicated by the presence of
the essential spectrum. We refer to the set of eigenvalues of L as the point spectrum

𝜎p(L) :=
{
𝜆 ∈ C : ∃𝜙(𝒙) ≠ 0, L𝜙(𝒙) = 𝜆𝜙(𝒙), 𝒙 ∈ T2}, (2.5)

where 𝜙 is the eigenfunction corresponding to the eigenvalue 𝜆. It follows from the discrete
translation symmetry of the 2D Taylor-Green vortex (1.4) and the continuous translation
invariance of the Euler system (1.1), that if 𝜙(𝑥1, 𝑥2) is an eigenfunction corresponding to 𝜆,
then so is 𝜙(−𝑥1,−𝑥2), whereas 𝜙(𝑥1 + 𝜋, 𝑥2), 𝜙(𝑥1, 𝑥2 + 𝜋), 𝜙(−𝑥1, 𝑥2), and 𝜙(𝑥1,−𝑥2) are
eigenfunctions corresponding to −𝜆.

As regards the discrete spectrum 𝜎disc(L) of the linearized Euler operator (2.1), some
results are available only for certain flows such as parallel and rotating shear flows (Drazin &
Reid, 1981; Chandrasekhar, 1961; Friedlander et al., 1997) and the cellular “cat’s-eye” flow
(Friedlander et al., 2000). In the absence of general results, one of the goals of the present
study is to consider this question in the context of the Taylor-Green vortex (1.4). Unlike the
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aforementioned two cases where the instability is closely related to the shear flow structure of
the equilibria, equilibrium (1.4) possesses a cellular structure only.

On the other hand, the essential spectrum 𝜎ess(L) of the linear operator L is fully under-
stood (Shvydkoy & Latushkin, 2003): in 𝐻𝑚

0 (T2), 𝑚 ∈ R, it is given by the strip

𝜎ess(L;𝐻𝑚
0 ) = {𝑧 ∈ C : |ℜ(𝑧) | ≤ |𝑚 | 𝜇max}, (2.6)

where 𝜇max is the maximal Lyapunov exponent corresponding to the Lagrangian flow 𝜑𝑡 : 𝝃 →
𝒙(𝑡; 𝝃) generated by the steady state via 𝜕𝑡𝒙(𝑡) = 𝒖𝑠 (𝒙(𝑡)),

𝜇max = lim
𝑡→∞

1
𝑡

log sup
𝒙∈T2

| |∇𝜑𝑡 (𝒙) | |. (2.7)

In 2D, 𝜇max can only be attained at a hyperbolic stagnation point 𝒙𝑠 of the flow {𝜑𝑡} in-
duced by the steady state 𝒖𝑠 and is determined by the largest real part of the eigenval-
ues of the velocity gradient ∇𝒖𝑠 (𝒙𝑠) evaluated over all stagnation points 𝒙𝑠 (Shvydkoy
& Friedlander, 2005). The equilibrium state (1.4) has four hyperbolic stagnation points
𝒙𝑠 = {(𝜋/2, 𝜋/2), (𝜋/2, 3𝜋/2), (3𝜋/2, 𝜋/2), (3𝜋/2, 3𝜋/2)}. By computing the eigenvalues of
∇𝒖𝑠 at these four points, we deduce that 𝜇max = 1. Another interesting property of the stagna-
tion points is that the action of the linearized operator on any sufficiently smooth function 𝑤

vanishes at these points, i.e.,
L𝑤 = 0 at 𝒙 = 𝒙𝑠 . (2.8)

At the same time, we also have

𝜎(𝑒𝑡L;𝐻𝑚) = {𝑧 ∈ C : 𝑒−𝑡 |𝑚 | ≤ |𝑧 | ≤ 𝑒𝑡 |𝑚 |}, (2.9)

such that the full analogue of the Spectral Mapping Theorem holds (Shvydkoy & Latushkin,
2003). All points in the band and the annulus, respectively, are points of the essential spec-
trum in the Browder sense (Browder, 1961), which is the broadest definition of the essential
spectrum also coinciding with the Fredholm spectrum. In the proof, for any point 𝑧 ∈ 𝜎ess(L),
Shvydkoy & Latushkin (2003) constructed approximate eigenfunctions as a sequence of unit
vectors { 𝑓𝑛} ∈ 𝐻𝑚

0 (T2) such that ∥(L − 𝑧) 𝑓𝑛∥𝐻𝑚 → 0 as 𝑛 → ∞, and { 𝑓𝑛} does not contain
any convergent subsequence. These approximate eigenfunctions are characterized by highly
oscillatory behavior and are stretched along the heteroclinic orbits of 𝒖𝑠 while concentrating
towards the hyperbolic points. These results are consistent with the asymptotic WKB anal-
ysis conducted in the neighbourhood of the hyperbolic stagnation points which suggests the
presence of highly oscillatory perturbations growing as O(𝑒𝜇max𝑡), though they need not be
eigenfunctions of L (Friedlander & Vishik, 1991; Lifschitz & Hameiri, 1991). In general, it
is unknown whether the operator L has any unstable eigenvalues. However, when it does, the
regularity of the corresponding eigenfunctions is characterized by a theorem of Lin (2004)
which we state here in a slightly less general version adapted to the case when the equilibrium
is given by the Taylor-Green vortex (1.4).

Theorem 2.1 (Lin (2004)) Suppose there exists an exponentially growing solution 𝑒𝜆𝑡𝑤0 of
the linearized system 𝜕𝑡𝑤 = L𝑤 with ℜ(𝜆) > 0 and let 𝑤0 ∈ 𝐿2(T2). Then we have the
following
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(i) [regularity of growing modes] 𝑤0 ∈ 𝑊1,𝑝 (T2) ∩ 𝐿𝑞 (T2) for all 1 ≤ 𝑝 < 𝑝∗ and
1 ≤ 𝑞 < ∞, where

𝑝∗ =

{
𝜇max

𝜇max−ℜ(𝜆) =
1

1−ℜ(𝜆) , 𝜇max > ℜ(𝜆),
∞, 𝜇max ≤ ℜ(𝜆),

(2.10)

(ii) [nonlinear instability] For any 𝑝 ∈ [1, 𝑝∗), 𝑞 ∈ [1,∞), 𝑚 ∈ [−1,∞), there exists
𝜖 > 0, such that for any 𝛿 > 0, there is a solution 𝜔𝛿 (𝑡) of the 2D Euler system (1.2)
corresponding to the initial condition 𝜔𝛿

0, satisfying

𝜔𝛿
0 − 𝜔𝑠




𝐿𝑞 +




∇ (
𝜔𝛿

0 − 𝜔𝑠

)



𝐿𝑝

≤ 𝛿,

and
sup

0<𝑡<𝑇𝛿



𝜔𝛿 (𝑡) − 𝜔𝑠




𝐻𝑚 ≥ 𝜖 .

While for general infinite-dimensional nonlinear systems linear instability need not imply a
nonlinear instability, the second part of the theorem above asserts that this is in fact the case
for the 2D Euler problem, provided the unstable eigenfunction of the linearized operator L is
sufficiently regular.

As a key result of the present study, we provide numerical evidence that the operator L
does possess unstable eigenvalues and we also characterize the regularity of the corresponding
eigenfunctions concluding that it is consistent with Theorem 2.1, part (i), cf. § 4.1.1. The
nonlinear instability predicted in part (ii) of the theorem is illustrated in § 4.2. Another
contribution of the present study is to illustrate the nontrivial instability mechanism associated
with the unstable essential spectrum, cf. § 4.1.2.

3 Numerical approaches
In this section we introduce the numerical approaches that will allow us to characterize the
growth of solutions of the linear and nonlinear problems (2.1) and (1.2). First, in § 3.1, we
describe a numerical solution of the eigenvalue problem (2.5) such that the eigenfunctions
𝜙 corresponding to the eigenvalues 𝜆 ∈ 𝜎𝑝 (L) can be used as the initial condition in the
linear and nonlinear problems (2.1) and (1.2) (in the latter case the eigenfunctions serve as
perturbations of the equilibrium (1.4)). Then, in § 3.2, we introduce an optimization-based
approach allowing us to construct solutions of the linear problem (2.1) saturating the spectral
bounds (2.6) and (2.9). Finally, in § 3.3, we describe the approach to the numerical solution of
the evolutionary systems (1.2), (2.1) and its adjoint.
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3.1 The point spectrum of the linear operator L
To characterize the point spectrum 𝜎p(L), we adopt a Galerkin approach where the operator
L is discretized using the following orthonormal basis in 𝐻𝑚

0 (T2)

𝜑 𝑗1, 𝑗2 (𝒙) :=
1

√
2𝜋

(1 + 𝑗21 + 𝑗22 )
−𝑚/2 cos( 𝑗1𝑥1 + 𝑗2𝑥2), 𝑗1, 𝑗2 ∈ N, (3.1a)

𝜓 𝑗1, 𝑗2 (𝒙) := − 1
√

2𝜋
(1 + 𝑗21 + 𝑗22 )

−𝑚/2 sin( 𝑗1𝑥1 + 𝑗2𝑥2), (3.1b)

and we have

L𝜑 𝑗1, 𝑗2 = 𝛼(𝜑 𝑗1+1, 𝑗2+1 − 𝜑 𝑗1−1, 𝑗2−1) + 𝛽(−𝜑 𝑗1+1, 𝑗2−1 + 𝜑 𝑗1−1, 𝑗2+1),
L𝜓 𝑗1, 𝑗2 = 𝛼(𝜓 𝑗1+1, 𝑗2+1 − 𝜓 𝑗1−1, 𝑗2−1) + 𝛽(−𝜓 𝑗1+1, 𝑗2−1 + 𝜓 𝑗1−1, 𝑗2+1),

where 𝛼 =
( 𝑗1 − 𝑗2) ( 𝑗21 + 𝑗22 − 2)

4( 𝑗21 + 𝑗22 )
, 𝛽 =

( 𝑗1 + 𝑗2) ( 𝑗21 + 𝑗22 − 2)
4( 𝑗21 + 𝑗22 )

.

(3.2)

In the computations, we approximate functions in 𝐻𝑚
0 (T2) using a finite subset of the basis

(3.1)

W𝑁 =
{
𝜑0, 𝑗2 , 𝜓0, 𝑗2 : 1 ≤ 𝑗2 ≤ 𝑁

}⋃ {
𝜑 𝑗1, 𝑗2 , 𝜓 𝑗1, 𝑗2 : 1 ≤ 𝑗1 ≤ 𝑁,−𝑁 ≤ 𝑗2 ≤ 𝑁

}
, (3.3)

which contains |W𝑁 | = 2
∑𝑁

𝑠=1 4𝑠 = 4𝑁 (𝑁 +1) elements. We label the basis functions in W𝑁

using the “spiral” ordering, i.e.,

𝑝𝑛+2 𝑗 = 𝜑 𝑗 ,𝑠, 𝑝𝑛+2 𝑗+1 = 𝜓 𝑗 ,𝑠,

𝑝𝑛+2𝑠+2 𝑗 = 𝜑𝑠,𝑠− 𝑗 , 𝑝𝑛+2𝑠+2 𝑗+1 = 𝜓𝑠,𝑠− 𝑗 ,

𝑝𝑛+4𝑠+2 𝑗 = 𝜑𝑠,− 𝑗 , 𝑝𝑛+4𝑠+2 𝑗+1 = 𝜓𝑠,− 𝑗 ,

𝑝𝑛+6𝑠+2 𝑗 = 𝜑𝑠− 𝑗 ,1−𝑠, 𝑝𝑛+6𝑠+2 𝑗+1 = 𝜓𝑠− 𝑗 ,1−𝑠,

𝑛 = 1 + 4𝑠(𝑠 − 1),
0 ≤ 𝑗 ≤ 𝑠 − 1, 1 ≤ 𝑠 ≤ 𝑁.

(3.4)

Given a function 𝑓 ∈ 𝐻𝑚
0 (T2), we thus define its Galerkin approximation 𝑓 𝑁 by

𝑓 ≈ 𝑓 𝑁 :=
|W𝑁 |∑︁
𝑗=1

𝑓̂ 𝑗 𝑝 𝑗 , 𝑓̂ 𝑗 = ⟨ 𝑓 , 𝑝 𝑗 ⟩𝐻𝑚 . (3.5)

Approximating the eigenfunctions 𝜙 in (2.5) in terms of the truncated Fourier series (3.5), we
arrive at the discrete algebraic eigenvalue problem

L 𝜙 = 𝜆𝜙, (3.6)

where L is a |W𝑁 | × |W𝑁 | matrix whose entries are determined by relations (3.2) as

L 𝑗 ,𝑘 =
〈
L𝑝𝑘 , 𝑝 𝑗

〉
𝐻𝑚 , 1 ≤ 𝑗 , 𝑘 ≤ |W𝑁 |. (3.7)
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As a result of relations (3.2), matrix L is sparse, with at most four nonzero entries in each row
and column. Moreover, since〈

L𝑝𝑘 , 𝑝 𝑗

〉
𝐻𝑚 =

〈
(1 − Δ−1)𝑚/2L𝑝𝑘 , (1 − Δ−1)𝑚/2𝑝 𝑗

〉
𝐿2

=

〈[
(1 − Δ−1)𝑚/2L(1 − Δ−1)−𝑚/2

]
(1 − Δ−1)𝑚/2𝑝𝑘 , (1 − Δ−1)𝑚/2𝑝 𝑗

〉
𝐿2
,

(3.8)
the matrices L computed in different Sobolev spaces 𝐻𝑚

0 (T2) are similar. Therefore, without
loss of generality, we can focus our discussion on the matrix constructed with 𝑚 = 0, i.e., in
𝐿2

0(T
2).

We adopt two different methods to numerically solve the algebraic eigenvalue problem
(3.6). As the first method, we use the eigenvalue solver dgeev from the LAPACK library to
compute all eigenvalues of L. This approach provides a complete picture of the spectrum of the
matrix L, but is computationally expensive, limiting the resolution to 𝑁2 = 2002. The second
method takes advantage of the sparse structure of the matrix L and uses a Krylov subspace
method (Hattori & Hirota, 2023) to only compute the eigenvalue with the largest real part
and the corresponding eigenvector. Specifically, we use the Matlab function eigs, setting the
dimension of the Krylov subspace to 20, the tolerance to 10−10, and the maximum number of
iterations to 1000. To validate these results, at 𝑁2 = 2002, we use a random vector to generate
the Krylov subspace, and the obtained eigenvalues with the largest real part are found to be
essentially the same as the ones obtained using the LAPACK subroutine dgeev. To speed
up the computation, at the resolution (2𝑁)2, we use 𝜆𝑁+ as the shift and the corresponding
eigenfunction 𝜙𝑁

+ as the generator of the Krylov subspace. This allows us to increase the
numerical resolution from 𝑁2 = 2002 to 30002. A combination of these two approaches makes
it possible to obtain a global picture of the spectrum of the matrix L while also refining the
approximations of the most interesting eigenvalues.

As is shown in § 4.1, employing the procedure described above, we obtain unstable eigen-
values whose real part is around 0.1424 and the corresponding eigenfunctions belong to
𝐻0.28

0 (T2) ⊂ 𝐿2
0(T

2). Using the real part of this eigenfunction as the initial condition in the
linearized Euler equations (2.1), we observe an exponential growth of the 𝐿2 norm of the
solution 𝑤(𝑡) with the rate predicted by the real part of the unstable eigenvalue. However,
as is evident from (2.6), in the Sobolev spaces 𝐻1 and 𝐻−1, 𝜎ess(L) forms a vertical band
|ℜ(𝑧) | ≤ 1. It is thus a natural question what initial condition can realize the growth abscissa
𝛾(L) = 1 predicted by 𝜎ess(L), which is larger than the growth rate realized by the unstable
eigenfunction. Tools needed to address this question are discussed next.

3.2 The essential spectrum of the linear operator L
As will be evident in § 4.1, the real part of the unstable eigenvalues of problem (2.5) found
as described in § 3.1 is near 0.1424, and therefore, for 𝑚 ≠ 0, does not saturate the bounds
on the growth of the abscissa implied by (2.9). It is therefore natural to ask the question
whether there exists an initial condition 𝑤0 such that the growth rate of | |𝑒𝑡L𝑤0 | |𝐻𝑚 , i.e.,
(𝑑/𝑑𝑡) ln(∥𝑒𝑡L𝑤0∥𝐻𝑚), saturates this bound. Since the essential spectrum is an inherently
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infinite-dimensional object, information about it is lost in a finite-dimensional truncation such
as (3.5). We thus need an approach different from the method described in § 3.1 to study
properties related to the essential spectrum. Instead of maximizing the growth rate of the
solutions of (2.1) directly, we aim to maximize the norm of the solution | |𝑒𝑡L𝑤0 | |𝐻𝑚 at some
finite time 𝑡 = 𝑇 > 0 over all 𝑤0 ∈ 𝐻𝑚

0 (T2). Since 𝑒𝑡L𝑤0 is linear with respect to 𝑤0, we
can fix ∥𝑤0∥𝐻𝑚 = 1 without loss of generality. Therefore, we define the following objective
functional 𝐽 : 𝐻𝑚

0 (T2) → R
𝐽 (𝑤0) =

����𝑒𝑇L𝑤0
����2
𝐻𝑚 , (3.9)

and the corresponding optimization problem:

Problem 3.1 For 𝑇 > 0, find

𝑤0 = argmax
𝑤0∈M

𝐽 (𝑤0), M := {𝑤0 ∈ 𝐻𝑚
0 (T2) : ∥𝑤0∥𝐻𝑚 = 1}. (3.10)

To observe a significant exponential growth of | |𝑒𝑇L𝑤0 | |𝐻𝑚 , one normally chooses 𝑇 >

𝑂 (ln(∥𝑤0∥𝐻𝑚)), and in our study we use 𝑇 = 1. Problem 3.1 has the form of a quadratically-
constrained quadratic program defined in terms of positive-semidefinite operators and is there-
fore convex.

While discretized versions of Problem 3.1 can in principle be solved by performing a
singular-value decomposition of the corresponding matrix exponential (Schmid & Henningson,
2001), this is problematic when one has to ensure the required regularity of the optimal initial
condition𝑤0, which is encoded here in the choice of𝑚. We therefore solve this problem using a
Riemannian conjugate gradient method (Absil et al., 2008; Danaila & Protas, 2017; Sato, 2021;
Zhao & Protas, 2023) which requires the computation the Sobolev gradient of 𝐽 (𝑤0), denoted
∇𝐽 (𝑤0). Evaluating the Gâteaux (directional) differential 𝐽′(𝑤0;𝑤′

0) : 𝐻𝑚
0 × 𝐻𝑚

0 → R, which
represents the variation of the objective function 𝐽 (𝑤0) in the direction of 𝑤′

0 at the point 𝑤0,
we obtain

𝐽′(𝑤0;𝑤′
0) = lim

𝜖→0

1
𝜖

[
𝐽 (𝑤0 + 𝜖𝑤′

0) − 𝐽 (𝑤0)
]

= 2
〈
𝑒𝑇L𝑤0, 𝑒

𝑇L𝑤′
0
〉
𝐻𝑚

= 2
〈
(1 − Δ−1)𝑚𝑒𝑇L𝑤0, 𝑒

𝑇L𝑤′
0
〉
𝐿2

= 2
〈
𝑒𝑇L

∗ (1 − Δ−1)𝑚𝑒𝑇L𝑤0, 𝑤
′
0

〉
𝐿2

= 2
〈
(1 − Δ−1)−𝑚𝑒𝑇L∗ (1 − Δ−1)𝑚𝑒𝑇L𝑤0, 𝑤

′
0

〉
𝐻𝑚

,

(3.11)

where L∗ is the adjoint of the linear operator L defined with respect to the 𝐿2 inner product
as ⟨L 𝑓 , 𝑔⟩𝐿2 = ⟨ 𝑓 ,L∗𝑔⟩𝐿2 and having the form

L∗ = 𝒖𝑠 · ∇ + Δ−1(∇𝑤𝑠 · ∇⊥). (3.12)

Finally, using relation (3.11) and the Riesz representation theorem, the Sobolev gradient of
𝐽 (𝑤0) with respect to the 𝐻𝑚 inner product is obtained as

∇𝐽 (𝑤0) = 2(1 − Δ−1)−𝑚𝑒𝑇L∗ (1 − Δ−1)𝑚𝑒𝑇L𝑤0. (3.13)
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Details of the Riemannian conjugate gradient method we use to solve Problem 3.1 are described
in Appendix A.

3.3 Numerical Solution of the Evolution Problems
Here we describe the numerical approach we use to solve the evolution problems (1.2), (2.1) and
the adjoint problem defined in (3.12). We employ a standard Fourier-Galerkin pseudospectral
method (Canuto et al., 1988) where the solution is approximated in terms of a truncated
Fourier series with the nonlinear term and the terms with nonconstant coefficients evaluated
in the physical space. In lieu of dealiasing we use the Gaussian filter proposed by Hou & Li
(2007). The resulting system of ordinary differential equations is integrated in time using the
RK4 technique and a massively parallel implementation based on MPI. Since the considered
initial conditions are distributions, rather than smooth functions, cf. figure 2, the numerical
solutions of problems (1.2) and (2.1) are not well resolved regardless of the resolution 𝑁2.
However, the Galerkin projection implied by the truncation of the series as in (3.5) together
with the resolution-dependent filter can be regarded as a regularization of the problem whose
effect vanishes as the resolution is refined, i.e., as 𝑁 → ∞.

4 Results
Here we describe the mechanisms of the linear growth of perturbations in the modal regime,
associated with eigenvalues in the point spectrum 𝜎p(L), and in the nonmodal regime, associ-
ated with points in the essential spectrum 𝜎ess(L) that do not coincide with the point spectrum
𝜎p(L). This is followed by a discussion of the growth of perturbations in the nonlinear regime.
Hereafter, we will use the convention that the superscript 𝑁 will represent the resolution with
which a given quantity, such as an eigenvalue, eigenfunction or a solution of the linear problem
(2.1), is approximated.

4.1 Linear instability
As discussed in § 3.1, since in the discrete eigenvalue problem (3.6) the matrices corresponding
to different values of 𝑚 are similar, it suffices to solve the eigenvalue problem using 𝑚 = 0 only.
Figure 1a shows the eigenvalues of the discrete eigenvalue problem (3.6) with 𝑚 = 0 obtained
using the resolution 𝑁2 = 2002. We see that there are two pairs of conjugate eigenvalues
±𝜆200

+ ,±𝜆200
+ , where 𝜆200

+ denotes the eigenvalue whose real and imaginary parts are both
positive. In order to better resolve these eigenvalues and the corresponding eigenvectors,
the discrete eigenvalue problem (3.6) is then solved with the Krylov method described in
§ 3.1 which leverages the sparsity of the matrix L. This allows us to refine the resolution as
𝑁2 = 2002, 4002, . . . 30002 and the obtained eigenvalues 𝜆𝑁+ are shown in figure 1b. We see
that, as the resolution 𝑁2 increases, these eigenvalues converge to a well-defined limit; this limit
is interpreted as the “true” eigenvalue in the point spectrum 𝜎p(L) (Boyd, 2001). We denote
lim𝑁→∞ 𝜆𝑁+ =: 𝜆+ and at the largest resolution 𝑁2 = 30002 have 𝜆3000

+ = 0.1424 + 0.5875𝑖
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which is a numerical approximation of the “true” unstable eigenvalue 𝜆+. We note that 0 is also
an eigenvalue. On the other hand, all remaining eigenvalues of the discretized problem (3.6)
fall on the imaginary axis and, as is evident from figures 1b and 1c, they do not converge to
well-defined limits. Instead, as the resolution 𝑁2 is refined, the purely imaginary eigenvalues
fill an expanding subinterval of the imaginary axis and they do so ever more densely. We thus
interpret them as representing points in the essential spectrum 𝜎ess(L), cf. (2.6), that do not
belong to the point spectrum 𝜎𝑝 (L).

4.1.1 Modal growth

We now analyze the eigenfunction 𝜙3000
+ corresponding to the eigenvalue 𝜆3000

+ , and its real
part is shown as a surface plot in figure 2a and as a contour plot in figure 2b. We observe that
ℜ

[
𝜙3000
+ (𝑥1, 𝑥2)

]
is an odd function and is also symmetric with respect to the lines 𝑥1 = 𝜋/2,

𝑥1 = 3𝜋/2, 𝑥2 = 𝜋/2, and 𝑥2 = 3𝜋/2; this is also true for ℑ
[
𝜙3000
+ (𝑥1, 𝑥2)

]
and holds for

the eigenfunctions obtained using lower resolutions as well. Therefore, these eigenfunctions
satisfy the relations

𝜙𝑁
+ (−𝑥1,−𝑥2) = −𝜙𝑁

+ (𝑥1, 𝑥2),

𝜙𝑁
+ (𝜁 − 𝑥1, 𝑥2) = 𝜙𝑁

+ (𝜁 + 𝑥1, 𝑥2), 𝜙𝑁
+ (𝑥1, 𝜁 − 𝑥2) = 𝜙𝑁

+ (𝑥1, 𝜁 + 𝑥2), 𝜁 =
𝜋

2
,
3𝜋
2
.

(4.1)

We observe that ℜ
[
𝜙𝑁
+
]

is localized near the hyperbolic stagnation points of the equilib-
rium (1.4) and to better understand the behaviour of the eigenfunction, in figure 2c we show
ℜ

[
𝜙𝑁
+ (𝑥1, 𝜋/2)

]
as a function of 𝑥1 for different resolutions 𝑁2. In other words, this figure

shows the cross-sections of the eigenfunction along the heteroclinic orbit connecting the hyper-
bolic stagnation points (𝜋/2, 𝜋/2) and (𝜋/2, 3𝜋/2), with a magnification of the neighbourhood
of the former shown in figure 2d.

We now proceed to characterize the regularity of the eigenfunction 𝜙+ more precisely. It
is evident from figures 2a,c,d that 𝜙+ is 𝐿2-integrable and therefore we can refer to part (i)
of Theorem 2.1, cf. (2.10), from which we conclude that 𝜙+ ∈ 𝑊1,𝑝∗ (T2) with 𝑝∗ = 1/(1 −
ℜ(𝜆+)) ≈ 1.16. So that we can compare this prediction with the regularity of the numerical
approximations 𝜙𝑁

+ of the eigenfunction, we invoke the Sobolev embedding 𝑊1,𝑝∗ ↩→ 𝐻𝑚

with 1/𝑝∗ − 1/𝑛 = 1/2 − 𝑚/𝑛 (Adams & Fournier, 2005) for the spatial dimension 𝑛 = 2,
which allows us to conclude that 𝑠 ≈ 0.28, such that 𝜙+ ∈ 𝐻0.28

0 (T2). Since the regularity of
a function, understood as the number of well-behaved derivatives, is encoded in the rate of
decay of its Fourier coefficients as 𝑘 → ∞ (Trefethen, 2013), we consider the energy spectra
of the numerically computed eigenfunctions

𝑒(𝑘) :=
1
2

∑︁
𝑘≤| 𝒋 |<𝑘+1

���𝜙𝑁
𝒋

���2 , 𝑘 ∈ N, (4.2)

where 𝜙𝑁
𝒋 are the Fourier coefficients of the approximations 𝜙𝑁

+ obtained with different resolu-
tions 𝑁2. This is an approach which has had a long tradition in fluid mechanics (Brachet et al.,
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Figure 1: (a) Eigenvalues of the discrete eigenvalue problem (3.6) obtained with 𝑚 = 0 and the
resolution 𝑁2 = 2002 (the inset represents a magnification of the neighbourhood of the unstable
eigenvalues 𝜆200

+ and 𝜆200
+ ). (b) The eigenvalue 𝜆𝑁

+ computed using the Krylov subspace method with
resolutions 𝑁2 = 2002, 4002, . . . , 30002. (c) Imaginary parts of the remaining eigenvalues ℑ

(
𝜆𝑁

)
obtained for different resolutions 𝑁2 with panel (d) showing a magnification of a region near the origin.
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Figure 2: (a) The surface plot and (b) the contour plot of the real part ℜ
(
𝜙3000
+

)
of the eigenfunction

corresponding to the eigenvalue 𝜆3000
+ as a function of 𝑥1 and 𝑥2. (c) The cross-section

ℜ
[
𝜙𝑁
+ (𝑥1, 𝜋/2)

]
as a function of 𝑥1 for different resolutions 𝑁2 with (d) showing a magnification of

the neighbourhood of the stagnation point (𝜋/2, 𝜋/2); the dashed line represents the function
𝐶1

|𝑥1−𝜋/2 |0.22 + 𝐶2 with some 𝐶1, 𝐶2 > 0, cf. (4.3). (e) The energy spectra (4.2) of the eigenfunctions 𝜙𝑁
+

for different resolutions with the straight lines representing the power-law relations with indicated
exponents.
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Figure 3: The time-dependence of (a) the norm ∥𝑤(𝑡)∥𝐿2 , (b) the growth rate (𝑑/𝑑𝑡) ln(∥𝑤(𝑡)∥𝐿2) and
(c) the autocorrelation C0

0 (𝑡) corresponding to the solution of the linear problem (2.1) with the initial
condition given by the eigenfunction ℜ

(
𝜙3000
+

)
. The dashed horizontal line in panel (b) corresponds to

ℜ
(
𝜆3000
+

)
, cf. figure 1b.
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1983; Brachet, 1991). For a function to be 𝐿2-integrable, its energy spectrum (4.2) needs to
vanish no slower than O(𝑘−1). The energy spectra of the eigenfunctions 𝜙𝑁

+ approximated
with different resolutions 𝑁2 are shown in figure 2e. We see that, as the resolution is refined,
the energy spectrum decays approximately as 𝑒(𝑘) = O(𝑘−1.56), which is consistent with
𝜙+ ∈ 𝐻0.28

0 (T2) predicted by Theorem 2.1, demonstrating the sharpness of this result. As a
result of the symmetry of the eigenfunction stated in (4.1), we have 𝜙 𝑗1, 𝑗2 = 0 when 𝑗1 + 𝑗2 is
even. We also observe that for each resolution, the energy spectrum splits into two branches,
an effect that becomes more evident when the energy spectrum (4.2) is redefined to depend on
the 1-norm of the wavevector 𝒋, i.e., on | | 𝒋 | |1 := | 𝑗1 | + | 𝑗2 |, rather than on | 𝒋 |. In such case
𝑒(𝑘) is at the level of round-off errors when 𝑘 is even.

To better understand the structure of the eigenfunction 𝜙+ in the neighbourhood of the
hyperbolic stagnation point 𝒙𝑠 = (𝜋/2, 𝜋/2), we will represent it locally in terms of the
following asymptotic ansatz

𝜙+ ∼ 1
|𝜉1 |𝛼 |𝜉2 |𝛽

, where 𝜉𝑖 = 𝑥𝑖 −
𝜋

2
, 𝑖 = 1, 2, (4.3)

reflecting the fact that the singularity in 𝜙+ occurs along the heteroclinic orbits of (1.4). We
then have 𝜕𝑚

𝜉1
𝜙+ ∼ 1/

(
|𝜉1 |𝛼+𝑚 |𝜉2 |𝛽

)
and 𝜕𝑚

𝜉2
𝜙+ ∼ 1/

(
|𝜉1 |𝛼 |𝜉2 |𝛽+𝑚

)
, where 𝜕𝑚

𝜉𝑖
is a partial

derivative of fractional order 𝑚. So that 𝜙+ ∈ 𝐻0.28
0 (T2), these expressions need to be

square-integrable which necessitates 2(𝛼 + 𝑚) < 1 and 2(𝛽 + 𝑚) < 1. Therefore, we arrive
at 𝛼, 𝛽 < 1/2 − 𝑚 ≈ 0.22. In figure 2d, we also show the function 𝐶1

|𝑥1−𝜋/2|0.22 + 𝐶2 for
some 𝐶1, 𝐶2 > 0 and conclude that it accurately represents the behavior of the eigenfunction
ℜ

[
𝜙𝑁
+ (𝑥1, 𝜋/2)

]
near the point 𝑥1 = 𝜋/2 as the resolution is refined. This further confirms

that 𝜙+ is not continuous at the hyperbolic stagnation points.
We now comment on the rate of convergence of our numerical approximations 𝜙𝑁

+ as the
resolution is refined. Since the eigenfunction is not smooth, we cannot expect the spectral
approach (3.1)–(3.6) to converge exponentially fast. In fact, based on the standard convergence
theory of spectral methods (Canuto et al., 1988; Shen et al., 2011), we have����𝜙𝑁

+ − 𝜙+
����
𝐿2 ∼ O (𝑁−𝑠) with 𝑠 ≈ 0.28. (4.4)

To verify this prediction when the exact solution 𝜙+ is not available, we consider the quantity����𝜙𝑁+Δ𝑁
+ − 𝜙𝑁

+
����
𝐿2

Δ𝑁
∼ O

(
𝑁−1−𝑠

)
(4.5)

which can be viewed as an approximation of the “derivative” of (4.4) with respect to 𝑁 . The
left-hand side can be evaluated using the approximations 𝜙𝑁

+ obtained at different resolutions.
Doing this for 𝑁 = 600, 800, . . . , 3000 andΔ𝑁 = 200, and performing a least-squares fit for the
expression on the right-hand side, we obtain 𝑠 = 0.29 which confirms that our approximations
converge at an algebraic rate close to the theoretical prediction in (4.4).

We now move on to analyze the growth of the solution 𝑤(𝑡) of the linear system (2.1) with
the initial condition given in terms of the unstable eigenfunction discussed above, i.e., with
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𝑤(0) = ℜ
(
𝜙3000
+

)
. The linear system is approximated using the spatial resolution 𝑁2 = 32002

and the time step Δ𝑡 = 2−10. The dependence of the norm ∥𝑤(𝑡)∥𝐿2 on time 𝑡 is shown in
figure 3a revealing the expected exponential growth. The corresponding exponential growth
rate (𝑑/𝑑𝑡) ln(∥𝑤(𝑡)∥𝐿2), which is equal to the slope of the curve in figure 3a, is shown in
figure 3b. We observe that after a brief initial transient, the growth rate settles at 0.1425,
which is to within less than 0.08% equal to ℜ

(
𝜆3000
+

)
. Finally, we consider the (normalized)

autocorrelation function

C𝑚
𝜏 (𝑡) :=

⟨𝑤(𝜏), 𝑤(𝑡)⟩𝐻𝑚

∥𝑤(𝜏)∥𝐻𝑚 ∥𝑤(𝑡)∥𝐻𝑚

, 𝑡, 𝜏 ≥ 0, 𝑚 ∈ Z, (4.6)

which in figure 3c is shown for 𝑚 = 0 and 𝜏 = 0. The harmonic behavior of the autocorrelation
function 𝐶0

0 (𝑡) indicates that the solution 𝑤(𝑡) of the linear system (2.1) is at all times 𝑡 ≥ 0
a linear combination of ℜ (𝜙+) and ℑ (𝜙+). The oscillation period Δ𝑇 of the autocorrelation
function is related to the imaginary part of the eigenvalue 𝜆+ and can be approximated by
Δ𝑇 ≈ 2𝜋/ℑ

(
𝜆3000
+

)
= 10.6945, which is consistent with the results presented in figure 3c. The

behavior observed in figures 3a–c is typical for the modal growth of a perturbation in a linear
problem (Schmid & Henningson, 2001) and further confirms that the eigenvalue 𝜆+ and the
corresponding eigenfunction 𝜙+ obtained by solving the discrete eigenvalue problem (3.6) are
indeed good numerical approximations of the “true” eigenvalue and eigenfunction of problem
(2.5).

4.1.2 Nonmodal growth

In order to achieve the growth rate 𝜇max = 1 of the semigroup 𝑒𝑡L predicted by the essential
spectrum when 𝑚 = ±1, cf. (2.9), we solve Problem 3.1 with 𝑚 = ±1 over a relatively short
time window with 𝑇 = 1 and using increasing resolutions 𝑁2 = 1282, 2562, 5122, 10242. At
the lowest resolution 𝑁2 = 1282, the initial guess 𝑤 (0) (𝑥1, 𝑥2) = − cos(𝑥2) is used in algorithm
(A.1), and then, for increasing resolutions, the optimal initial condition 𝑤𝑁

0 obtained with the
resolution 𝑁2 is used as the initial guess in the solution of the problem with the resolution
(2𝑁)2. In figures 4a and 5a we see that as the resolution 𝑁2 is refined, the growth rate
(𝑑/𝑑𝑡) ln(∥𝑤𝑁 (𝑡)∥𝐻𝑚) with, respectively, 𝑚 = 1 and 𝑚 = −1, approaches 𝜇max = 1 and is
sustained over an increasingly longer time. Thus, the optimal flow evolutions found in this way
indicate that the largest possible growth of the semigroup 𝑒𝑡L is associated, via the Spectral
Mapping Theorem (2.9), with the essential spectrum (2.6) of the operator L. In other words,
there are no eigenvalues outside the essential spectrum.

The contour plots of the optimal initial conditions 𝑤128
0 are shown in figures 6a and 7a,

respectively, for 𝑚 = 1 and 𝑚 = −1, where we see that similarly to the “true” eigenfunction
𝜙+, cf. figure 2a–2b, these optimal initial conditions are also localized around the hyperbolic
stagnation points of the equilibrium flow (1.4). How these small-scale features are refined
as the resolution 𝑁2 increases is shown for 𝑚 = 1 and 𝑚 = −1 in figures 6b–e and 7b–
e which present magnifications of the neighbourhoods of the stagnation points (𝜋/2, 𝜋/2)
and (𝜋/2, 3𝜋/2), respectively. We see that, in contrast to the “true” eigenfunction 𝜙+, the
the optimal initial conditions 𝑤𝑁

0 feature small-scale oscillations that become increasingly
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Figure 4: (a) The growth rate (𝑑/𝑑𝑡) ln(∥𝑤𝑁 (𝑡)∥𝐻1) versus 𝑡 for the optimal initial conditions 𝑤𝑁
0

obtained by solving Problem 3.1 with 𝑚 = 1 using increasing spatial resolutions 𝑁2. (b) The
time-dependence of the autocorrelation function C1

𝜏 (𝑡) corresponding to 𝑁 = 1024 and
𝜏 = 0, 0.25, 0.5, 0.75, 1.

concentrated at the stagnation points as the resolution 𝑁2 increases with the length scale of
the oscillations restricted by the spatial resolution used. When 𝑚 = 1, these oscillations are
localized along the stable manifolds and stretched along the unstable ones, cf. figure 6b–e,
and vice versa when 𝑚 = −1, cf. figure 7b–e. Unlike the sequence {𝜙𝑁

+ } which converges to
the true eigenfunction 𝜙+ as 𝑁 increases, cf. (4.4), the sequence {𝑤𝑁

0 } does not converge in
a strong sense and this lack of compactness underpins the infinite-dimensional nature of the
stability problem.

Finally, in figures 4b and 5b we show the autocorrelation function (4.6), respectively, for
𝑚 = 1 and 𝑚 = −1 and 𝜏 = 0, 0.25, 0.5, 0.75, 1. We see that the behavior in these plots is
fundamentally different from what is observed in figure 3c, in that here the autocorrelation
function decays quite rapidly, indicating that the solution𝑤(𝑡) becomes effectively decorrelated
after about half time unit. In other words, there is no single growing mode and instead the
evolution 𝑤(𝑡) moves through a continuous family of essentially uncorrelated functions. For
this reason, we refer to the perturbation growth analyzed here as “nonmodal”. The time
evolution of the nonmodal perturbations realizing the behavior shown in figures 4 and 6 for
𝑚 = 1 and in figures 5 and 7 for 𝑚 = −1 is visualized in movies 1 and 2 (they are also available,
respectively, at https://youtu.be/O8xM 1OvuHI and https://youtu.be/jLgUvRKPZ7o).

4.2 Nonlinear instability
Finally, we consider the question about the nonlinear stability of the equilibrium (1.4). Part (ii)
of Theorem 2.1 asserts that if the eigenfunction 𝜙+ is at least in 𝐿2(T2), then the equilibrium
is also nonlinearly unstable. We emphasize that this is not a trivial statement since for infinite-
dimensional problems such as (1.2) a linear instability need not imply a nonlinear instability.
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Figure 5: (a) The growth rate 𝑑/𝑑𝑡 ln(∥𝑤𝑁 (𝑡)∥𝐻−1) versus 𝑡 for the optimal initial conditions 𝑤𝑁
0

obtained by solving Problem 3.1 with 𝑚 = 1 using increasing spatial resolutions 𝑁2. (b) The
time-dependence of the autocorrelation function C−1

𝜏 (𝑡) corresponding to 𝑁 = 1024 and
𝜏 = 0, 0.25, 0.5, 0.75, 1.

In § 4.1.1 we provided numerical evidence that the eigenfunction 𝜙+ ∈ 𝐻0.28
0 (T2) ⊂ 𝐿2(T2).

Therefore, a nonlinear instability is indeed expected and here we illustrate this behavior. In
figures 8a and 8b we show the time dependence of the kinetic energy of the perturbation given
by the norm



𝜔𝛿 (𝑡) − 𝜔𝑠




𝐻−1 and of the corresponding rate of growth when the evolution is

governed by the nonlinear problem (1.2) with the initial condition 𝜔0 given in terms of the
eigenfunction 𝜙3000

+ as

𝜔0 = 𝜔𝑠 + 𝛿 · ℜ
(
𝜙3000
+

)
/



ℜ (

𝜙3000
+

)



𝐿2

(4.7)

with different indicated magnitudes 𝛿. The time evolution is computed using the spatial
resolution 𝑁2 = 32002 and the time step Δ𝑡 = 2−10. We see that in each case the vorticity
perturbation (𝜔𝛿 (𝑡) −𝜔𝑠) at first grows exponentially, as is the case in the linear problem (2.1),
cf. figures 3a,b, until this growth saturates due to nonlinear effects. Since this behavior occurs
no matter how small the norm of the initial perturbation is, the results presented in figures 8a
and 8b confirm that equilibrium (1.4) is also nonlinearly unstable. We also perform a resolution
refinement study to investigate whether the saturation evident in figures 8a and 8b is a result
of an insufficient numerical resolution. Specifically, we compute the solution of the nonlinear
problem (1.2) using the same initial condition given by (4.7) with 𝛿 = 10−2 and a higher spatial
resolution 𝑁2 = 40962. As is shown in figure 8c, the two solutions computed using different
resolutions (𝑁2 = 32002 and 40962) reach the nonlinear stage at essentially the same time and
the difference in the growth rate of the norm is negligible. This confirms that the saturation
seen in figures 8a and 8b is physical and not due to numerical artifacts. Moreover, since the
kinetic energy is conserved in the Euler system (1.2), we have

𝜔𝛿 (𝑡) − 𝜔𝑠




𝐻−1 ≤



𝜔𝛿 (𝑡)



𝐻−1 + ∥𝜔𝑠∥𝐻−1 =



𝜔𝛿 (0)



𝐻−1 + ∥𝜔𝑠∥𝐻−1 . (4.8)
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(d) (e)

Figure 6: Contour plots of the optimal initial conditions obtained by solving Problem 3.1 with 𝑚 = 1:
(a) 𝑤128

0 is shown in the entire domain T2 and (c–e) 𝑤𝑁
0 are shown for 𝑁 = 128, 256, 512, 1024 near

the hyperbolic stagnation point (𝜋/2, 𝜋/2). The time evolution of the flow corresponding to the initial
condition 𝑤1024

0 , cf. panel (e), is shown in movie 1.
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(a)

(b) (c)

(d) (e)

Figure 7: Contour plots of the optimal initial conditions obtained by solving Problem 3.1 with 𝑚 = −1:
(a) 𝑤128

0 is shown in the entire domain T2 and (c–e) 𝑤𝑁
0 are shown for 𝑁 = 128, 256, 512, 1024 near

the hyperbolic stagnation point (𝜋/2, 3𝜋/2). The time evolution of the flow corresponding to the
initial condition 𝑤1024

0 , cf. panel (e), is shown in movie 2.

22



0 20 40 60 80 100

10-5

100

1e-1
1e-2
1e-3
1e-4
1e-5

(a)

0 20 40 60 80 100
-0.05

0

0.05

0.1

0.15

1e-1
1e-2
1e-3
1e-4
1e-5

(b)

(c)

Figure 8: The time-dependence of (a) the norm ∥𝜔𝛿 (𝑡) − 𝜔𝑠 ∥𝐻−1 and (b) the growth rate
(𝑑/𝑑𝑡) ln(∥𝜔𝛿 (𝑡) − 𝜔𝑠 ∥𝐻−1) in the solution of the nonlinear problem (1.2) with the initial condition
given in terms of the eigenfunction 𝜙3000

+ as 𝜔0 = 𝜔𝑠 + 𝛿 · ℜ
(
𝜙3000
+

)
/


ℜ (

𝜙3000
+

)


𝐿2 with different

indicated magnitudes 𝛿. The dashed horizontal line in panel (b) corresponds to ℜ
(
𝜆3000
+

)
, cf. figure

1b. In panel (c), we compare the growth rate of the solutions of the nonlinear problem (1.2)
corresponding to the same initial condition 𝜔0 with 𝛿 = 10−2 computed using different indicated
numerical resolutions.
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As the right-hand side of the above equation does not depend on time, we know that

𝜔𝛿 (𝑡) − 𝜔𝑠




𝐻−1 cannot grow exponentially for all times.

5 Summary and Conclusions
In this study we have considered the stability of the Taylor-Green vortex in inviscid planar flows
governed by the 2D Euler system (1.1). The Taylor-Green vortex (1.4) is a simple equilibrium
solution of that system characterized by a cellular structure with hyperbolic stagnation points.
In contrast to most earlier studies (Sipp & Jacquin, 1998; Leblanc & Godeferd, 1999; Gau &
Hattori, 2014; Suzuki et al., 2018; Hattori & Hirota, 2023), we have considered the problem in
the inviscid setting where there are important differences with respect to the viscous problem,
in particular, as regards the structure of the spectrum of the linearized operator. As the
most important result, we have presented numerical evidence for the presence of two distinct
mechanisms of linear instability in this flow.

First, by numerically solving the eigenvalue problem (2.5) and then integrating the lin-
earized Euler system (2.1) in time, we showed the existence of an unstable eigenvalue
𝜆+ ≈ 0.1424 + 0.5875𝑖. Through a careful analysis of the behavior of the numerical ap-
proximations of the corresponding eigenfunction 𝜙+ both in the physical and in the Fourier
space, we provided convincing evidence that this eigenfunction belongs to 𝐻0.28

0 (T2), which is
in close agreement with the assertion in part (i) of Theorem 2.1 (Lin, 2004), thereby demon-
strating the sharpness of this result. Moreover, the eigenfunction is discontinuous at the
hyperbolic stagnation points 𝒙𝑠. We also showed that, in agreement with part (ii) of Theorem
2.1, this eigenfunction also gives rise to a nonlinear instability. In this context we note that,
employing the complementary (with respect to the one used in § 4.1.1) form of the Sobolev
embedding 𝑊1,𝑝∗ ↩→ 𝐿𝑞 (Adams & Fournier, 2005), where 1/𝑝∗ − 1/2 = 1/𝑞, we deduce that
at the same time 𝜙+ ∈ 𝐿𝑞 (T) with 𝑞 = 2.76. Consequently, the initial condition for the 2D
Euler system (1.2) given in (4.7) in terms of this eigenfunction does not belong to the Yudovich
class 𝐿1(T2)⋂ 𝐿∞(T2) (Yudovich, 1963) and therefore uniqueness of the solution cannot in
general be guaranteed. In fact, as argued by Vishik (2018a,b); Bressan & Shen (2021); Bruè
et al. (2024), initial data in 𝐿𝑞 with 𝑞 < ∞ could lead to nonunique solutions; moreover, such
solutions could also exhibit anomalous dissipation. Similar properties resulting from an inter-
play between the point spectrum and the essential spectrum of the linearized Euler operator
were recently revealed in the stability analysis of the Lamb-Chaplygin dipole by Protas (2024).

Second, we illustrated a nonmodal mechanism of instability growth which involves a
continuous family of uncorrelated functions, rather than a single eigenfunction of the linearized
operator L. This nonmodal instability is tied to perturbations characterized by highly localized
oscillatory features, a mechanism that has also been studied by Sengupta & Bhaumik (2011);
Sengupta et al. (2020) who showed that the corresponding component in the energy spectrum
plays an important role in the transition to turbulence in wall-bounded flows. Unlike the
eigenfunction 𝜙+, the optimal initial conditions 𝑤𝑁

0 depend on the function space in which they
are defined and we considered two Sobolev spaces, namely, 𝐻1(T2) and 𝐻−1(T2). Constructed
by solving a suitable PDE optimization problem, Problem 3.1, the resulting flows saturate the
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estimates on the growth of the semigroup 𝑒𝑡L implied by the essential spectrum 𝜎ess(L) via the
Spectral Mapping Theorem (2.9) as the numerical resolution is refined. Using some generic
vorticity field as the initial condition 𝑤0 in the linear problem (2.1) will result, after some
transient, in the corresponding solution growing as O

(
𝑒ℜ(𝜆+)𝑡

)
. This points to the absence of

eigenvalues outside the essential spectrum 𝜎ess(L).
The optimal initial conditions obtained by solving Problem 3.1 exhibit a similar spatial

structure to the initial conditions found by Gau & Hattori (2014) which were obtained by
maximizing a weighted norm | |𝑒𝑡L𝑤0 | |𝐻2 for different 𝑡 in a viscous flow. However, the key
difference is that the largest growth rate found in that study was essentially equal to the real
part of the most unstable eigenvalue, meaning that in that case this growth was effectively
realized by the most unstable eigenmode. In contrast, in the present study the largest growth
rate is in fact larger than ℜ(𝜆+) and this behavior is not realized by an eigenfunction, but
by a continuous family of uncorrelated distributions. We emphasize that this mechanism is
intrinsically linked to the inviscid and infinite-dimensional nature of the operator L and, as
such, is fundamentally different from the transient growth of perturbations arising as a result
of the nonnormality of the eigenvectors of a linear operator (Schmid & Henningson, 2001).
These results are consistent with the predictions of the WKB analysis, which points to linear
instabilities growing as O(𝑒𝜇max𝑡) (Friedlander & Vishik, 1991; Lifschitz & Hameiri, 1991).
However, in our study we are also able to characterize the global spatial structure of this
instability paying attention to the regularity of the perturbations, which is beyond reach of the
WKB analysis.

We remark that the solutions discussed here are not smooth functions of the space variable
𝒙 and exhibit small-scale features localized near the hyperbolic stagnation points 𝒙𝑠. Therefore,
they cannot be fully resolved in numerical computations with any finite resolution 𝑁2, cf. § 3.
However, a Galerkin truncation such as (3.5) used to construct numerical solutions, together
with the resolution-dependent low-pass filter employed in the solution of the time-dependent
problems (1.2) and (2.1), can be viewed as a regularization of the original system with the
effect decreasing as the spatial resolution 𝑁2 is refined. The key quantities characterizing the
instability, namely, the eigenvalues 𝜆𝑁+ and the corresponding eigenfunctions 𝜙𝑁

+ , as well as the
growth rates (𝑑/𝑑𝑡) ln(∥𝑤𝑁 (𝑡)∥𝐿2), (𝑑/𝑑𝑡) ln(∥𝑤𝑁 (𝑡)∥𝐻1), and (𝑑/𝑑𝑡) ln(∥𝑤𝑁 (𝑡)∥𝐻−1), are
shown to converge to well-defined limits as the numerical resolution 𝑁2 is refined, cf. figures
1b, 2c–e, 3a,b, 4a and 5a.

Since it is known that in the viscous case the spectrum of the linearized Navier-Stokes
operator consists of the discrete spectrum only, it is interesting to investigate the effect of
viscous perturbations on the spectrum of the linearized Euler operator L, cf. figure 1. In figure
9a we show solutions of the discrete eigenvalue problem (3.6) modified to include a dissipative
term proportional to the viscosity 𝜈, i.e., for the perturbed operatorL+𝜈Δ for different indicated
values of 𝜈. We see that with the addition of viscosity the essential spectrum in 𝐿2(T2), which
in the inviscid problem coincides with the imaginary axis 𝑖R, disintegrates into a number of
discrete eigenvalues located inside a parabolic region in the left half-plane ℜ(𝜆) < 0. At the
same time, as is evident from figure 9b, the discrete eigenvalue 𝜆+ is perturbed, but remains
on the right half-plane. The unstable eigenvalue obtained with 𝜈 = 10−5 is, after a suitable
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Figure 9: (a) Eigenvalues of the operator L + 𝜈Δ for different indicated values of 𝜈; they are obtained
by solving the discrete eigenvalue problem (3.6) modified to include the dissipative term 𝜈Δ and using
the resolution 𝑁2 = 2002. (b) Magnification of the neighbourhood of the eigenvalue 𝜆3000

+ with the
arrow indicating the trend with the decrease of 𝜈; the eigenvalues shown in this panel are computed
using the Krylov subspace method and the resolution 𝑁2 = 30002.

rescaling, close to the result reported by Hattori & Hirota (2023) with a 0.7% relative error.
As is evident from figure 9b, the unstable eigenvalues of L + 𝜈Δ converge to the unstable
eigenvalues of L in the limit of vanishing viscosity, which is consistent with the theoretical
results by Shvydkoy & Friedlander (2008). This further demonstrates that the linear instabilities
considered here are fundamentally inviscid properties. To close this discussion, in figure 10,
we plot the real part of the eigenfunctions corresponding to the unstable eigenvalues shown in
figure 9b for 𝜈 = 10−2, 10−3, 10−4, and 10−5. Similarly to the unstable eigenfunction obtained
in the inviscid case, cf. figure 2a,b, they all reveal an odd symmetry while the Taylor-Green
vortex possesses an even symmetry. As 𝜈 decreases, these eigenfunctions become concentrated
along the heteroclinic orbits. Sengupta et al. (2018) showed that numerical errors induce a
symmetry-breaking instability in the computation of the viscous evolution of the 2D Taylor-
Green vortices. We think this is because the numerical errors contain components proportional
to the odd unstable eigenfunctions.

In terms of future work, a natural question to consider is an extension of the problems studied
here to the stability of 2D Taylor-Green vortices in 3D Euler flows (Hattori & Hirota, 2023).
However, mathematically rigorous results are much more limited in 3D due to the presence of
the vortex-stretching term (𝒖 · ∇)𝝎 in the 3D Euler equations. In addition, in 3D 𝜇max cannot
be easily computed by evaluating ∇𝒖 at hyperbolic stagnation points and a counterpart of the
Spectral Mapping Theorem (2.9) is not available. Furthermore, the eigenfunction shown in
figure 2 and the optimal initial conditions shown in figures 6 and 7 reveal the absence of a
smallest scale. Therefore, in order to resolve the small-scale features dominating these objects
in a computationally efficient manner, in the future we plan to use discretization techniques
combining nonuniform grids (Sengupta et al., 2018) with adaptive mesh refinement (Ceniceros
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Figure 10: Contour plots of the real part of the eigenfunctions corresponding to the unstable
eigenvalues of L + 𝜈Δ shown in figure 9(b): (a) 𝜈 = 10−2, (b) 𝜈 = 10−3, (c) 𝜈 = 10−4, and (d) 𝜈 = 10−5.

27



& Hou, 2001; Di et al., 2008). Finally, it is an interesting question whether the nonmodal
growth discussed in § 4.1.2 can also reach the nonlinear stage and lead to turbulence. However,
to answer this question, one needs to solve Problem 3.1 over a much longer time interval
and with a much higher numerical resolution, which would necessitate larger computational
resources than currently available. One potential future direction to address this question is to
find ways to reduce the dimension of our search space by using a priori knowledge about the
optimal initial conditions.
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A Riemannian Conjugate Gradient Approach
Problems 3.1 is solved numerically with a Riemannian conjugate gradient method (Danaila &
Protas, 2017). At each (𝑛-th) iteration, the method consists of three steps. First, we project
the gradient ∇𝐽

(
𝑤

(𝑛)
0

)
given in (3.13) onto the space tangent to M at 𝑤 (𝑛)

0 . Then, we use the
previous search direction, denoted 𝑑 (𝑛−1) , to construct a Riemannian conjugate ascent direction
using a suitable vector transport operation, and combine it with the projected gradient obtained
in the first step to construct the current search direction 𝑑 (𝑛) . Finally, we retract the resulting
state back to the constraint manifold M. A local maximizer of Problem 3.1 is obtained as
𝑤0 = lim𝑛→∞ 𝑤0

(𝑛) , where the successive approximations 𝑤 (𝑛)
0 are therefore determined with

the iterative formula

𝑤
(𝑛+1)
0 = R

[
𝑤

(𝑛)
0 + 𝜏𝑛𝑑

(𝑛)
]
, 𝑛 = 0, 1, . . . , (A.1)

where 𝑤
(0)
0 is the initial guess. Here R : 𝐻𝑚

0 (T2) → M is the retraction operator defined by
(Absil et al., 2008)

R(𝑤) :=
𝑤

| |𝑤 | |𝐻𝑚

, 𝑤 ∈ 𝐻𝑚
0 (T2) (A.2)

which normalizes the state 𝑤
(𝑛)
0 + 𝜏𝑛𝑑

(𝑛) to pull it back to the constraint manifold M defined
in Problem (3.1). The optimal step size 𝜏𝑛 is obtained by solving an arc-search problem to
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Figure 11: Schematic illustration of the Riemannian conjugate gradient method (A.1).

find the step size 𝜏 such that the objective functional 𝐽 achieves its maximum along the curve
{𝑅[𝑤 (𝑛)

0 + 𝜏𝑑 (𝑛)], 𝜏 > 0} on the manifold M, i.e.,

𝜏𝑛 = argmax
𝜏>0

{
𝐽

(
R
[
𝑤

(𝑛)
0 + 𝜏𝑑 (𝑛)

] )}
. (A.3)

This problem is solved with a suitable derivative-free approach, such as a variant of Brent’s
algorithm (Press et al., 2007).

We denote the space tangent to the manifold M at 𝑤 (𝑛)
0 by T

𝑤
(𝑛)
0
M. The search direction

𝑑 (𝑛) in (A.1) belongs to T
𝑤

(𝑛)
0
M and is computed as

𝑑 (0) = P0 ∇𝐽
(
𝑤

(0)
0

)
,

𝑑 (𝑛) = P𝑛 ∇𝐽
(
𝑤

(𝑛)
0

)
+ 𝛽𝑛Γ𝜏𝑛−1𝑑 (𝑛−1)

(
𝑑 (𝑛−1)

)
, 𝑛 ≥ 1.

(A.4)

As is illustrated in figure 11, the projection operator P𝑛 : 𝐻𝑚
0 (T2) → T

𝑤
(𝑛)
0
M realizes an

orthogonal projection onto the linear subspace T
𝑤

(𝑛)
0
M. It is defined by the relation

P𝑛 𝑤 := 𝑤 − ⟨𝑤, 𝜈⟩𝐻𝑚𝜈, 𝜈 =
𝑤

(𝑛)
0������𝑤 (𝑛)

0

������
𝐻𝑚

. (A.5)

Since P𝑛 ∇𝐽
(
𝑤

(𝑛)
0

)
∈ T𝑤 (𝑛)M whereas 𝑑 (𝑛−1) ∈ T𝑤 (𝑛−1)M, these two elements belong to dif-

ferent linear spaces and as such cannot be directly added. Therefore, we utilize the vector
transport Γ defined in terms of the differentiated retraction (Absil et al., 2008) to map the
element 𝑑 (𝑛−1) from the subspace T

𝑤
(𝑛−1)
0

M to T
𝑤

(𝑛)
0
M. For any 𝑤 ∈ M and 𝜉𝑤, 𝜑𝑤 ∈ T𝑤M,

we define
Γ𝜑𝑤

(𝜉𝑤) :=
𝑑

𝑑𝑠
R(𝑤 + 𝜑𝑤 + 𝑠𝜉𝑤)

��
𝑠=0

=
1

∥𝑤 + 𝜑𝑤 ∥𝐻𝑚

[
𝜉𝑤 − ⟨𝑤 + 𝜑𝑤, 𝜉𝑤⟩𝐻𝑚

∥𝑤 + 𝜑𝑤 ∥2
𝐻𝑚

(𝑤 + 𝜑𝑤)
]
.

(A.6)
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Setting 𝑤 = 𝑤 (𝑛) , 𝜑𝑤 = 𝜏𝑛−1𝑑
(𝑛−1) , and 𝜉𝑤 = 𝑑 (𝑛−1) , we then obtain

Γ𝜏𝑛−1𝑑 (𝑛−1)

(
𝑑 (𝑛−1)

)
=

1
∥𝑤 (𝑛)

0 ∥𝐻𝑚

P𝑛 𝑑
(𝑛−1) . (A.7)

A schematic illustration of the Riemannian conjugate gradient method (A.1) is shown in figure
11.

The “momentum” term 𝛽𝑛 in (A.4) is chosen to enforce the conjugacy of consecutive search
directions and is computed using the Polak-Ribière approach (Nocedal & Wright, 2002)

𝛽𝑛 =

〈
P𝑛 ∇𝐽

(
𝑤

(𝑛)
0

)
,

(
P𝑛 ∇𝐽

(
𝑤

(𝑛)
0

)
− Γ𝜏𝑛−1𝑑𝑛−1 P𝑛−1 ∇𝐽

(
𝑤

(𝑛−1)
0

) )〉
𝐻𝑚������P𝑛−1 ∇𝐽

(
𝑤

(𝑛−1)
0

) ������2
𝐻𝑚

. (A.8)

In our computation, we restart algorithm (A.1) by setting 𝛽𝑛 = 0 based on the following two
criteria necessary from both the theoretical and practical point of view as they help erase
obsolete information from earlier iterations (Nocedal & Wright, 2002)

(1) 𝑛 = 20𝑘 , 𝑘 ∈ Z+,

(2) The search direction 𝑑 (𝑛) fails to be an ascent direction, i.e.,〈
𝑑 (𝑛) , P𝑛 ∇𝐽

(
𝑤

(𝑛)
0

) 〉
𝐻𝑚������𝑑 (𝑛)

������
𝐻𝑚

������P𝑛 ∇𝐽
(
𝑤

(𝑛)
0

) ������
𝐻𝑚

< tol1, 0 < tol1 ≪ 1. (A.9)

Iterations (A.1) are declared converged when the relative change of the objective functional
(3.9) between two consecutive iterations becomes smaller than a specified tolerance 0 < tol2 ≪
1, i.e., when

0 ≤
𝐽

(
𝑤

(𝑛+1)
0

)
− 𝐽

(
𝑤

(𝑛)
0

)
𝐽

(
𝑤

(𝑛)
0

) < tol2. (A.10)

In practice, we set tol1 = tol2 = 10−10. In order to illustrate the performance of algorithm
(A.1), figure 12 shows the values of the objective functional 𝐽

(
𝑤

(𝑛)
0

)
for 𝑚 = 1 as function

of the iteration index 𝑛. As explained in § 4.1.2, we solve Problem 3.1 using increasing
resolutions 𝑁2 = 1282, 2562, 5122, 10242, and use the optimal initial condition 𝑤𝑁

0 obtained
with the resolution 𝑁2 as the initial guess in the iteration (A.1) with the resolution (2𝑁)2. As
shown in the figure, the method requires more iterations to converge for higher resolutions due
to an increased number of degrees of freedom.
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Figure 12: Dependence of the objective functional 𝐽
(
𝑤
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0

)
on the iteration index 𝑛 for different

numerical resolutions.
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