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Abstract. Let E/Q be an elliptic curve and let p be an odd prime of good
reduction for E. Let K be an imaginary quadratic field satisfying the clas-
sical Heegner hypothesis and in which p splits. The goal of this paper is
two-fold: (1) we formulate a p-adic BSD conjecture for the p-adic L-function
LBDP

p introduced by Bertolini–Darmon–Prasanna [Duke Math. J. 162 (2013),

pp. 1033–1148]; and (2) for an algebraic analogue FBDP
p

of LBDP
p , we show

that the “leading coe!cient” part of our conjecture holds, and that the “order
of vanishing” part follows from the expected “maximal non-degeneracy” of
an anticyclotomic p-adic height. In particular, when the Iwasawa–Greenberg
Main Conjecture (FBDP

p
) = (LBDP

p ) is known, our results determine the lead-

ing coe!cient of LBDP
p at T = 0 up to a p-adic unit. Moreover, by adapting

the approach of Burungale–Castella–Kim [Algebra Number Theory 15 (2021),
pp. 1627–1653], we prove the main conjecture for supersingular primes p under
mild hypotheses.

In the p-ordinary case, and under some additional hypotheses, similar re-
sults were obtained by Agboola–Castella [J. Théor. Nombres Bordeaux 33
(2021), pp 629–658], but our method is new and completely independent from
theirs, and apply to all good primes.
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1. Introduction

1.1. The BDP p-adic L-function. Let E/Q be an elliptic curve of conductor N
and let p be an odd prime of good reduction for E. Set f ∈ S2(!0(N)) to denote the
newform associated with E. Let K be an imaginary quadratic field of discriminant
prime to Np, and assume the classical Heegner hypothesis, i.e., that

(Heeg) every prime factor of N splits in K.

Fix an embedding ιp : Q ↪→ Qp, and assume also that

(spl) p = pp splits in K,

with p the prime of K above p induced by ιp. Let K∞/K be the anticyclotomic
Zp-extension, and put

! = Gal(K∞/K), Λ = Zp!!", ΛÔ = Λ⊗̂ZpÔ,

where Ô is the completion of the ring of integers of the maximal unramified exten-
sion of Qp.

In a seminal paper [BDP13], Bertolini–Darmon–Prasanna introduced a p-adic
L-function

L BDP
p ∈ ΛÔ

whose square LBDP
p = (L BDP

p )2 interpolates central critical values of the complex
L-function of f/K twisted by infinite order characters of !. The main result in op.
cit. asserts that the value of LBDP

p at the trivial character 1 of ! (which lies outside
the range of interpolation) is given by

(BDP) LBDP
p (1) =

1

u2
Kc2

E

·
(

1 − ap(E) + p

p

)2

· logωE
(zK)2.

Here, ap(E) := p + 1 − #E(Fp), uK := 1
2#O×

K , zK ∈ E(K) is a Heegner point
arising from a modular parametrisation

ϕE : X0(N) → E

with associated Manin constant1 cE ∈ Z>0 ∩ Z(p) (so zK ⊗ c−1
E ∈ E(K) ⊗ Zp is

independent of the choice of ϕE), and

logωE
: E(Kp) ⊗ Zp → Zp

is the formal group logarithm associated with a Néron di#erential ωE ∈ Ω1(E/Z(p)).
The above formula (BDP) has been a key ingredient in recent progress over the

past decade towards the Birch–Swinnerton-Dyer conjecture when the analytic rank
of E is ≤ 1: [JSW17], [Ski20], etc. (see [Bur22] and the references therein).

The goal of this paper is to formulate and study a p-adic analogue of the Birch–
Swinnerton-Dyer conjecture for LBDP

p for all good primes p > 2, predicting:

(i) the “order of vanishing” of LBDP
p at the trivial character 1;

(ii) a formula for the “leading coefficient” of LBDP
p at 1.

1Using [Maz78] for the inclusion cE ∈ Z(p).
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In the p-ordinary case, this task was first carried out by Agboola–Castella [AC21]
drawing from the methods of Bertolini–Darmon [BD95]. The formulation of the
conjecture in [AC21] imposed some technical hypotheses required for the existence
of a “perfect control theorem”: p ! c" for the Tamagawa numbers c" of E/Q" for
all primes % | N , and p ! #E(Fp). Such control theorem is well-known to fail in the
supersingular case. Moreover, it was also assumed that #X(E/K)[p∞] < ∞.

The new approach in this paper allows us to give a formulation of a p-adic
BSD conjecture for LBDP

p without any of those additional hypotheses and for all
good primes p > 2. Moreover, modulo the expected “maximal non-degeneracy” of
an anticyclotomic p-adic height pairing, we prove our conjecture for an algebraic
analogue of LBDP

p .

1.2. p-adic analogue of BSD for LBDP
p . For the formulation of our conjecture,

we assume that the triple (E, K, p) satisfies the following additional hypotheses:

(h0) E(K)[p] = 0,

and that for every q ∈ {p, p} the restriction map

(h1) resq : Šp(E/K) → E(Kq) ⊗ Zp

has non-torsion image, where Šp(E/K) = lim←−k
Selpk(E/K) is the usual compact

Selmer group. (Note that (h1) is implied by the finiteness of X(E/K)[p∞], since by
the p-parity conjecture [Nek01,Kim07], hypothesis (Heeg) implies that the Selmer
group Šp(E/K) has odd Zp-rank.)

Denote by E(Kq)/tor the quotient of E(Kq) by its torsion submodule, and let
resq/tor be the composition of resq with the projection E(Kq)⊗Zp → E(Kq)/tor ⊗
Zp. Let

T = lim←−
k

E[pk]

be the p-adic Tate module of E, and set Selq(K, T ) = ker(resq/tor).
In Section 3, building on Howard’s theory of derived p-adic heights [How04], we

construct a filtration

Selq(K, T ) ⊃ S←−
(1)
q ⊃ S←−

(2)
q ⊃ · · · ⊃ S←−

(i)
q ⊃ · · · ,

with S←−
(i)
p = {0} for i * 0, equipped with a sequence of “derived” p-adic height

pairings

(1.1) h(i)
p : S←−

(i)
p × S←−

(i)
p → J i/J i+1,

where J ⊂ Λ is the augmentation ideal. Using these pairings, we define a p-adic
regulator

Regp,der ∈
(
(Jσ/Jσ+1) ⊗Zp Qp

)
/Z×

p ,

where σ =
∑

i≥1 i · rankZp(S←−
(i)
p /S←−

(i+1)
p ). By construction, Regp,der is always non-

zero.
Set

r := rankZp Šp(E/K).

Under hypotheses (h0)–(h1), the Selmer groups Selq(K, T ) ⊂ Šp(E/K) are free
Zp-modules of rank r − 1 and r, respectively. Let (s1, . . . , sr−1) be a Zp-basis for
Selp(K, T ), and extend it to a Zp-basis (s1, . . . , sr−1, sp) for Šp(E/K). In particular,
resp/tor(sp) -= 0.



LEADING COEFFICIENT OF THE BDP p-ADIC L-FUNCTION 751

The following is our p-adic BSD conjecture for LBDP
p .

Conjecture 1.1 (p-adic BSD conjecture for LBDP
p ). Assume (h0)–(h1).

(i) (Leading Coefficient Formula) Let

'an = ordJLBDP
p := max{i ≥ 0 : LBDP

p ∈ J i},

and denote by LBDP
p the natural image of LBDP

p in J$an/J$an+1. Then, up
to a p-adic unit

LBDP
p =

(
1 − ap(E) + p

p

)2

· logp(sp)
2 · Regp,der · #XBK(K, W ) ·

∏

"|N

c2
" .

(ii) (Order of Vanishing) Let r± denote the Zp-rank of the ±-eigenspace of
Šp(E/K) under the action of complex conjugation. Then,

'an = 2(max{r+, r−} − 1).

Here c" is the Tamagawa number of E/Q", W = E[p∞], and XBK(K, W ) =
Selp∞(E/K)/div is the Bloch–Kato Tate–Shafarevich group, i.e., the quotient of
the p∞-Selmer group Selp∞(E/K) by its maximal divisible submodule. Also,

logp : Šp(E/K) → Zp

denotes the composition logωE
◦ resp/tor.

Remark 1.2. In the p-ordinary case, a variant of Conjecture 1.1 was formulated
in [AC21], with a regulator defined using the theory of derived p-adic heights by
Bertolini–Darmon [BD95]. An important advantage of the present formulation in
comparison with the formulation of [AC21, Conj. 4.2] is that the latter requires a

hypothesis on the derived p-adic heights amounting to the requirement that S←−
(i)
q =

0 for i ≥ p for the definition of their derived p-adic regulator in [op. cit., Def. 4.1],
whereas our formulation of Conjecture 1.1 is completely unconditional.

Remark 1.3. Assuming #X(E/K)[p∞] < ∞ for the usual Tate–Shafarevich group
X(E/K), it is possible to remove the ambiguity by a p-adic unit in the formulation
of Conjecture 1.1(i). Indeed, following an observation from [BD95, Rem. 2.21], this
can be achieved as follows: in this case

Šp(E/K) 0 E(K) ⊗ Zp = (E(K)/E(K)tor) ⊗ Zp 0 Zr
p,

using (h0) for the middle equality. Let M be an endomorphism of Šp(E/K) sending
a Z-basis (P1, . . . , Pr) of E(K)/E(K)tor 0 Zr to (s1, . . . , sr−1, sp). Then it suffices
to replace Regp,der in the right-hand side of Conjecture 1.1(i) by the modification

det(M)−2 · Regp,der,

which is a well-defined element in (Jσ/Jσ+1) ⊗Zp Qp and is independent of the
choice of M .

Remark 1.4. When ords=1L(E/K, s) = 1, Conjecture 1.1(ii) follows immediately
from (BDP) and the work of Gross–Zagier and Kolyvagin. In this case, 'an = 0,
and the Leading Coefficient Formula in Conjecture 1.1(i) is equivalent to the p-part
of the Birch–Swinnerton-Dyer formula for L′(E/K, 1) (see Proposition 4.4).
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1.3. Main results. By the Iwasawa–Greenberg Main Conjecture (see Con-
jecture 2.4), LBDP

p should generate the characteristic ideal of a Λ-adic Selmer group
denoted Xp = Selp(K∞, W )∨ in the body of the paper. This module is known to
be Λ-torsion under hypothesis (h0) (see Proposition 2.5).

The main result of this paper is the following.

Theorem 1.5. Let FBDP
p ∈ Λ be a generator of charΛ(Xp), and put

'alg = ordJFBDP
p := max{i ≥ 0 : FBDP

p ∈ J i}.

(i) Let FBDP
p be the natural image of FBDP

p in J$alg/J$alg+1. Then, up to a
p-adic unit

FBDP
p =

(
1 − ap(E) + p

p

)2

· logp(sp)
2 · Regp,der · #XBK(K, W ) ·

∏

"|N

c2
" .

(ii) Furthermore,

'alg ≥ 2(max{r+, r−} − 1),

with equality if and only if rankZp S←−
(2)
p = |r+ − r−| − 1 and S←−

(i)
p = 0 for

i ≥ 3.

Set hp := h(1)
p . We say that hp is maximally non-degenerate when the condition

for equality in the last part of Theorem 1.5 holds. In the p-ordinary case, conjectures
due to Mazur and Bertolini–Darmon ([BD95, §3]) imply that hp is maximally non-
degenerate (see Remark 6.14), and we expect this condition to hold for all good
primes p > 2. (For the second assertion in Theorem 1.5(ii), note that hypothesis
(Heeg) and the p-parity conjecture imply that r+ and r− have di#erent parities,
and so |r+ − r−| − 1 ≥ 0.)

As a consequence, when the Iwasawa–Greenberg Main Conjecture

(1.2)
(
FBDP

p

) ?
=

(
LBDP

p

)

is known, Theorem 1.5 implies Conjecture 1.1(i) (up to a p-adic unit). For ordinary
primes, a proof of the Main Conjecture (1.2) was obtained in [BCK21]. In Section 7
we extend their methods to the supersingular case, leading to the following result.

Theorem 1.6. Let p > 2 be a prime of good supersingular reduction for E, and let
K be an imaginary quadratic field satisfying (Heeg) and (spl). Assume in addition
that:

(i) N is square-free.
(ii) E[p] is ramified at every prime % | N+.
(iii) E[p] is ramified at every prime % | N− with % ≡ ±1 (mod p).
(iv) Every prime above p is totally ramified in K∞/K.

Then Xp is Λ-torsion, with

charΛ
(
Xp

)
=

(
LBDP

p

)
.

In other words, the Iwasawa–Greenberg Main Conjecture (1.2) holds. In particular,
Conjecture 1.1(i) holds up to a p-adic unit; and Conjecture 1.1(ii) holds if and only
if hp is maximally non-degenerate.
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Hence (together with the proof of (1.2) in [BCK21] in the p-ordinary case, since
Theorem 1.5 also applies to this case), our results in this paper determine (up to
a p-adic unit) the leading coefficient of LBDP

p at T = 0 for all primes p > 2 of
good reduction, and reduce a full proof of Conjecture 1.1 to the expected maximal
non-degeneracy of hp.

1.4. Relation to prior work. In the p-ordinary case, a version of Theorem 1.5
was obtained in [AC21, Thm. 6.12] under some additional hypotheses, including:

(i) ap(E) -≡ 1 (mod p),
(ii) p ! c" for all primes % | N ,
(iii) #X(E/K)[p∞] < ∞.

As noted in [op. cit., §6.2], their proof is largely based on an adaptation of the
arguments from [BD95], and hypotheses (i) and (ii) are essential to their method.
Our proof, building on the approach to derived p-adic heights later developed by
Howard [How04], is completely di#erent from and independent of [AC21], and we
are able to dispense with hypotheses (i)–(iii) (and obtain a result also in the p-
supersingular case).

Back to the p-ordinary case, Sano [San23] has also given a new proof of [AC21,
Thm. 6.12] removing hypotheses (i) and (ii) by building on an extension of Nekovář’s
descent formalism [Nek06, §11.6] using “derived” Bockstein maps; his methods are
also di#erent from ours.

Finally we note that for supersingular primes p > 2, the results of Theorem 1.5
is new for all cases 'alg > 0; on the other hand, the case 'alg = 0 of Theorem 1.5 (in
which case Selq(K, T ) = 0 and p-adic heights make no appearance) can be deduced
from the “anticyclotomic control theorem” of Jetchev–Skinner–Wan [JSW17], but
our results also give a new proof in this case.

1.5. Method of proof. In a series of papers culminating in [PR92] (see also
[Col00]), Perrin-Riou developed a method for computing the leading coefficient
of algebraic p-adic L-functions in terms of arithmetic invariants. In the setting of
this paper, her methods allow one to determine a formula for 'alg and the image

FBDP
p ∈ J$alg/J$alg+1 (up to a p-adic unit) precisely when the sequence

0 → S←−
(∞)
p ⊗ Qp → Selp(K, V )

hp−−→ Hom(Selp(K, V ),Qp) → Hom
(
S←−

(∞)
p

⊗ Qp,Qp
)
→ 0(1.3)

is exact, where V = T ⊗ Qp is the rational p-adic Tate module, S←−
(∞)
q ⊗ Qp =

∩i≥1S←−
(i)
q ⊗Qp is the space of universal norms in Selq(K, V ), and the middle arrow

is defined by the p-adic height pairing hp (see [PR92, Thm. 3.3.4]). However, in
the setting of this paper one can show that

S←−
(∞)
q = 0

(see Proposition 2.5 and Corollary 3.11(ii)), and therefore exactness of (1.3)
amounts to the non-degeneracy of hp, which in the anticyclotomic setting fails
as long as |r+ − r−| > 1 (see Proposition 6.11).

The key technical innovation of this paper is the development of an extension
of the results of [PR92] applicable to Xp, building on Howard’s theory of derived
p-adic heights [How04] to account for the systematic degeneracies of hp in the
anticyclotomic setting.
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1.6. Outline of the paper. In Section 2 we introduce some of our Selmer groups of
interest, and state the Iwasawa–Greenberg Main Conjecture (1.2). In Section 3, we
extend the results we need from [How04] to our setting, yielding the groundwork for
the definition of the derived regulator Regp,der in the formulation of our conjectures
in Section 4. In Section 5, we state our main results toward the p-adic Birch–
Swinnerton-Dyer conjectures for LBDP

p , and Sections 6–7 are devoted to the proofs.
In particular, we refer the reader to the start of Section 6 for an outline of the proof
of our main Theorem 1.5.

2. Selmer groups

We keep the notation from the Introduction, and assume that the triple (E, K, p)
satisfies hypotheses (Heeg) and (spl). For every n > 0, we write Kn for the subex-
tension of the anticyclotomic Zp-extension K∞/K with Gal(Kn/K) 0 Z/pnZ.

Let Σ be a finite set of places of K containing the archimedean place ∞ and
the primes dividing Np. Denote by Σf the set of finite places in Σ, and assume
that all primes in Σf split in K. For every number field F containing K, let
GF,Σ = Gal(FΣ/F ) be the Galois group of the maximal algebraic extension of
F unramified outside the places above Σ. Recall that T denotes the p-adic Tate
module of E, and put

V = T ⊗Zp Qp, W = V/T 0 E[p∞].

Definition 2.1. Suppose F ⊃ K is a field extension, and let q ∈ {p, p} be any of
the primes of K above p. We define the q-strict Selmer group of V by

(2.1) Selq(F, V ) := ker

{
H1(GF,Σ, V ) →

∏

w∈Σf

H1(Fw, V )

H1
q(Fw, V )

}
,

where

H1
q(Fw, V ) =

{
H1(Fw, V ) if w | q,

0 else.

Similarly, letting H1
str(Fw, V ) and H1

rel(Fw, V ) be defined by

H1
str(Fw, V ) = 0 for all w ∈ Σf ,

and

H1
rel(Fw, V ) =

{
H1(Fw, V ) if w | p,

0 else,

we define the Selmer groups Selstr(F, V ) and Selrel(F, V ) by replacing H1
q(Fw, V )

by H1
str(Fw, V ) and H1

rel(Fw, V ), respectively, in (2.1).

For ? ∈ {q, str, rel}, let H1
?(Fw, T ) and H1

?(Fw, W ) be the pre-image and image,
respectively, of H1

?(Fw, V ) under the natural exact sequence

H1(Fw, T ) → H1(Fw, V ) → H1(Fw, W ),

and define the Selmer groups Sel?(F, T ) and Sel?(F, W ) by the same recipe as in
Definition 2.1.
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Let Selpk(E/F ) ⊂ H1(GF,Σ, E[pk]) be the Selmer group fitting into the pk-
descent exact sequence

0 → E(F )/pkE(F ) → Selpk(E/F ) → X(E/F )[pk] → 0,

where X(E/F )[pk] denotes the pk-torsion in the Tate–Shafarevich group of E/F .
Set

Selp∞(E/F ) = lim−→
k

Selpk(E/F ), Šp(E/F ) = lim←−
k

Selpk(E/F ),

where the limits are with respect to the inclusion E[pk] → E[pk+1] and the
multiplication-by-p map E[pk+1] → E[pk], respectively. Finally, set Kp := K ⊗
Qp 0 Kp ⊕ Kp.

Lemma 2.2. Assume (h0)–(h1). Then for every q ∈ {p, p}

Selq(K, T ) = ker(resq/tor),

where resq/tor is the composition

Šp(E/K)
resq−−→ E(Kq) ⊗ Zp → E(Kq)/tor ⊗ Zp.

In particular,

rankZpSelq(K, T ) = rankZp Šp(E/K) − 1.

Proof. It follows from global duality and Tate’s global Euler characteristic formula
that the image of the restriction map

Selrel(K, T ) → H1(Kp, T ) := H1(Kp, T ) ⊕ H1(Kp, T )

has Zp-rank 2 (see [Ski20, Lem. 2.3.1]). By global duality we also have the exact
sequence

(2.2) 0 → Selstr(K, T ) → Šp(E/K)
resp/tor−−−−−→ (E(Kp)/tor ⊗ Zp) ⊕ (E(Kp)/tor ⊗ Zp)

→ Selrel(K, W )∨ → Selp∞(E/K)∨ → 0.

Note that by assumption, the Zp-rank of the image of the map resp/tor = resp/tor ⊕
resp/tor is either 1 or 2. In the former case, it follows from [Ski20, Lem. 2.3.2] that

(2.3) Selp(K, T ) = Selstr(K, T ) = Selp(K, T )

and this yields the conclusion of the lemma. If the image of resp/tor has Zp-rank 2,
we see from (2.2) that Selp∞(E/K) is contained in Selrel(K, W ) with finite index,
and the conclusion again follows. !

Remark 2.3. A discussion of the case where im(resp/tor) has Zp-rank 2 is missing
in the proof of [AC21, Lem. 2.2]. Hence the statement of that lemma needs to be
corrected as in Lemma 2.2.

For q ∈ {p, p} set

Selq(K∞, W ) = lim−→
n

Selq(Kn, W ).

As is well-known, Selq(K∞, W ) is a cofinitely generated Λ-module, i.e., its Pontrya-
gin dual Selq(K∞, W )∨ is finitely generated over Λ.
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Conjecture 2.4 (Iwasawa–Greenberg Main Conjecture). Selp(K∞, W ) is Λ-
cotorsion and

charΛ(Selp(K∞, W )∨)ΛÔ = (LBDP
p ).

Here, as in the Introduction, LBDP
p = (L BDP

p )2 denotes the square of the p-adic
L-function

L BDP
p ∈ ΛÔ

introduced in [BDP13] and further studied in [Bra11] (where it was shown to be
an element in the Iwasawa algebra) and [CH18a] (where it was also shown to be
non-zero).

The first claim in Conjecture 2.4 is now known under a mild hypothesis.

Proposition 2.5. Assume (h0). Then Selq(K∞, W ) is Λ-cotorsion.

Proof. In the p-ordinary case, this follows from [CGLS22, Thm. 4.2.2] and [CGS23,
Thm. 5.53]. Note that the proof of these results is based on Kolyvagin’s methods
applied to the anticyclotomic Euler system of Heegner points on E/K and a Λ-
adic extension of the formula (BDP) of Bertolini–Darmon–Prasanna obtained in
[CH18a, Thm. 5.1]. For supersingular primes p (and assuming ap = 0 when p =
3), the result similarly follows from an adaptation of the argument in [CGLS22,
Thm. 3.4.1] applied to (signed) Heegner point Kolyvagin system constructed in
[CW24, Thm. A.4] (which is non-trivial by [CW24, Cor. 6.4] and in a similar relation
to LBDP

q as in the p-ordinary case by virtue of [CW24, Thm. 6.2]). Finally, when
p = 3 is supersingular for E but a3 is not necessarily zero, the result follows from
the analogues of the aforementioned results from [CW24] developed in [CÇSS18,
§4]. !

We conclude this section by recalling the following basic result which will be
useful in some of our arguments.

Proposition 2.6. Assume (h0). Then Selq(K∞, W ) has no proper finite index
Λ-submodules.

Proof. As shown in [HL19, Prop. 3.12], this can be deduced from Greenberg’s gen-
eral results [Gre16]. !

3. Howard’s derived p-adic heights and the derived regulator

We keep the setting from Section 2, and assume in addition that (h0) holds.
In this section, we recall Howard’s general construction of derived p-adic heights
[How04], and extend some of his results in op. cit. to our setting to obtain derived
p-adic heights on Selq(K, T ). Then we define the regulator Regp,der,γ appearing in
the formulation of our conjectures.

3.1. Λk-adic Selmer groups. Fix a topological generator γ ∈ !. Adopting the
notations in [How04], for any k we set

Ok = Zp/pkZp, Λk = Ok!!".

Let Kk be the localisation of Λk at all elements of the form gn = γpn
−1

γ−1 for some
n, and define Pk by the exactness of the sequence

(3.1) 0 → Λk → Kk → Pk → 0.
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Let S(k) = E[pk], and put

S(k)
Iw := lim←−

n

IndKn/KS(k), S(k)
∞ := lim−→

n

IndKn/KS(k),

where the limits are with respect to the natural corestriction and restriction maps,
respectively.

By Shapiro’s lemma, we have a canonical Λk[GK,Σ]-module isomorphism S(k)
Iw 0

S(k)⊗Ok Λk, where the GK,Σ-action on Λk is given by the inverse of the tautological
character GK,Σ " ! ↪→ Λ×

k (see [How04, Lem. 1.4]). There is also an isomorphism

S(k) ⊗Ok Pk 0 S(k)
∞ ([How04, Lem. 1.5]) depending on the choice of γ. Tensoring

(3.1) over Ok with S(k), we then obtain

(3.2) 0 → S(k)
Iw → S(k)

K → S(k)
∞ → 0,

dropping the subscripts in Kk for the ease of notation.

For q ∈ {p, p}, let Fq be the Selmer structure on S(k)
K given by

(3.3) H1
Fq

(Kw, S(k)
K ) =






H1
unr(Kw, S(k)

K ) if w ! p∞,

H1(Kq, S
(k)
K ) if w = q,

0 if w = q.

Let Selq(K, S(k)
K ) be the associated Selmer group:

Selq(K, S(k)
K ) := ker

{
H1(GK,Σ, S(k)

K ) →
∏

w∈Σf

H1(Kw, S(k)
K )

H1
Fq

(Kw, S(k)
K )

}
.

The short exact sequence (3.2) induces the natural exact sequence

H1(Kw, S(k)
Iw ) → H1(Kw, S(k)

K ) → H1(Kw, S(k)
∞ ).

Taking the image (resp. inverse image) of H1
Fq

(Kw, S(k)
K ), we obtain the local

condition H1
Fq

(Kw, S(k)
∞ ) (resp. H1

Fq
(Kw, S(k)

Iw )). Following [MR04], we refer to

these local conditions as being propagated from H1
Fq

(Kw, S(k)
K ) (or S(k)

K ) via (3.2).

The Selmer groups they define will be denoted Selq(K, S(k)
∞ ) and Selq(K, S(k)

Iw ),
respectively. (Similar definitions of local conditions “by propagation” will be made
below.)

Definition 3.1. For every q ∈ {p, p}, denote by H1
Fq

(Kw, S(k)) the local conditions

obtained from H1
Fq

(Kw, S(k)
∞ ) by propagation via S(k) → S(k)

∞ , and let

Selq(K, S(k)) := ker

{
H1(GK,Σ, S(k)) →

∏

w∈Σf

H1(Kw, S(k))

H1
Fq

(Kw, S(k))

}

be the resulting Selmer group.

Note that by condition (h0), the natural surjective map H1(GK,Σ, S(k)) "
H1(GK,Σ, S(k)

∞ )[J ] is an isomorphism; since the local conditions on Selq(K, S(k))

are propagated from S(k)
∞ , this restricts to an isomorphism

(3.4) Selq(K, S(k)) 0 Selq(K, S(k)
∞ )[J ].
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3.2. Howard’s derived p-adic heights. For every i ≥ 1, let S(i)
q,k ⊂ Selq(K, S(k))

be the submodule mapping to J i−1Selq(K, S(k)
∞ )[J ] under the isomorphism (3.4).

We have a filtration

Selq(K, S(k)) = S(1)
q,k ⊃ S(2)

q,k ⊃ · · · ⊃ S(i)
q,k ⊃ · · · .

Theorem 3.2 (Howard). For i ≥ 1, there is a sequence of canonical symmetric
i-th “derived” height pairings

h(i)
q,k : S(i)

q,k × S(i)
q,k → Ok

such that the kernel on the left (resp. right) is S(i+1)
q,k (resp. S(i+1)

q,k ).

Proof. By definition (3.3), the local conditions cutting out Selq(K, S(k)
K ) and

Selq(K, S(k)
K ), are everywhere exact orthogonal complements under the pairing

H1(Kw, S(k)
K ) × H1(Kw, S(k)

K ) → H2(Kw, K(1)) 0 K

induced by the Weil pairing S(k)×S(k) → Ok(1). Therefore, by [How04, Thm. 1.11]
there is a canonical symmetric height pairing

h̃q,k : Selq(K, S(k)
∞ ) × Selq(K, S(k)

∞ ) → Ok.

(As written here, the pairing h̃q,k depends on the choice of a topological generator
γ ∈ !, but the J/J2-valued pairing (γ − 1) · h̃q,k is independent of γ, as one checks

immediately from [How04, Lem. 1.10(b)].) Note that J i−1Selq(K, S(k)
∞ )[J ] is the

image of the injection

(3.5) φi,γ :
Selq(K, S(k)

∞ )[J i]

Selq(K, S(k)
∞ )[J i−1]

↪→ Selq(K, S(k)
∞ )[J ]

given by multiplication by (γ − 1)i−1. Thus we may define

h̃(i)
q,k : J i−1Selq(K, S(k)

∞ )[J ] × J i−1Selq(K, S(k)
∞ )[J ] → Ok

by h̃(i)
q,k(s, t) := h̃q,k(φ−1

i,γ (s), t). In particular, h̃(1)
q,k is the restriction of h̃q,k to

Selq(K, S(k)
∞ )[J ] × Selq(K, S(k)

∞ )[J ]. By [How04, Lem. 2.3], the left kernel (resp.

right kernel) of h̃(i)
q,k is exactly J iSelq(K, S(k)

∞ )[J ] (resp. J iSelq(K, S(k)
∞ )[J ]). Since

(3.4) restricts to an isomorphism

S(i)
q,k 0 J i−1Selq(K, S(k)

∞ )[J ],

we can transfer h̃(i)
q,k to S(i)

q,k ×S(i)
q,k via this isomorphism. Thus, we get a sequence

of pairings h(i)
q,k with the stated properties. !
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3.3. Control theorems. We now compare the Selmer groups Selq(K, S(k)
∞ ) (and

limits thereof) of the preceding section with the Selmer groups Selq(K, T ) and
Selq(K∞, W ) (see Corollary 3.6 and Corollary 3.9). This will allow us to deduce
from Theorem 3.2 a construction of p-adic height pairings for Selq(K, T ), and to
relate their degeneracies to the Λ-module structure of Selq(K∞, W ).

Let Selq(K, S(k)
∞ ) be the Selmer group cut out by the local conditions

H1
q(Kw, S(k)

∞ ) =






H1
unr(Kw, S(k)

∞ ) if w ! p∞,

H1(Kq, S
(k)
∞ ) if w = q,

0 if w = q.

Putting S∞ = lim−→k
S(k)
∞ , we also consider the Λ = Zp!!"-module

Selq(K, S∞) := lim−→
k

Selq(K, S(k)
∞ ),

where the limit is with respect to the maps induced by the inclusion S(k) → S(k+1).

Lemma 3.3. For every q ∈ {p, p} there is a canonical Λ-module isomorphism

Selq(K, S∞) 0 Selq(K∞, W ).

Proof. By Shapiro’s lemma, we have H1(GK,Σ, S∞) 0 H1(GK∞,Σ, W ). We check
that under the above isomorphism, the Selmer groups in the statement are cut out
by the same local conditions. For the primes w above p, this is clear. For the primes

w ∈ Σf \ {p, p}, we need to check that lim−→k
H1

unr(Kw, S(k)
∞ ) = 0, but this follows

from [How04, Lem. 1.7], since by our assumption on Σ these primes are split in K,
so they are finitely decomposed in K∞/K. !

Remark 3.4. In light of Lemma 3.3, we shall henceforth write Selq(K, S∞) and
Selq(K∞, W ) interchangeably.

Directly from the definitions we have the inclusion Selq(K, S(k)
∞ ) ⊂ Selq(K, S(k)

∞ ).
On the other hand, the natural surjection

(3.6) H1(GK,Σ, S(k)
∞ ) → H1(GK,Σ, S∞)[pk]

induces a map αq : Selq(K, S(k)
∞ ) → Selq(K, S∞)[pk].

Proposition 3.5. For every q ∈ {p, p}, the composition

Selq(K, S(k)
∞ )

⊂−→ Selq(K, S(k)
∞ )

αq−−→ Selq(K, S∞)[pk]

is injective with finite cokernel of bounded order as k → ∞.

Proof. By (h0), the map (3.6) is an injection, and therefore so is αq. To bound the
cokernel of the map in the statement, we bound the cokernel of each of the two
maps in the composition.

From the definitions, we see that the quotient Selq(K, S(k)
∞ )/Selq(K, S(k)

∞ ) injects
into

(3.7)
H1(Kq, S

(k)
∞ )

im
{
H1(Kq, S

(k)
K ) → H1(Kq, S

(k)
∞ )

} 0 ker
{
H2(Kq, S

(k)
Iw ) → H2(Kq, S

(k)
K )

}
.
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By local duality, this is bounded by the size of
⊕

η|q E(K∞,η)[pk]. Since⊕
η|q E(K∞,η)[p∞] is finite by [KO20, Lem. 2.7], the above quotient has the desired

bound.
On the other hand, for the primes w ∈ Σf \ {p, p}, [How04, Lem. 1.7] gives

H1
unr(Kw, S(k)

∞ ) = H1
unr(Kw, S∞) = 0.

Therefore, by the snake lemma we see that the cokernel of αq is bounded by the
kernel of the restriction map

(3.8) (rw)w :
⊕

w∈Σf \{q}

H1(Kw, S(k)
∞ ) →

⊕

w∈Σf \{q}

H1(Kw, S∞)[pk].

From the cohomology long exact sequence associated with multiplication by pk we
see that ker(rw) = H0(Kw, S∞)/pk H0(Kw, S∞), and this is bounded by

(3.9)
∏

w∈Σf \{q}

#((Bw)/div), where Bw :=
⊕

η|w

E(K∞,η)[p
∞],

which is clearly finite and independent of k. Thus #coker(αq) has bounded order
as k → ∞, whence the result. !

Corollary 3.6. With notation as above, the following equality of Λ-modules holds

lim−→
k

Selq(K, S(k)
∞ ) = Selq(K, S∞).

Proof. By Proposition 3.5, lim−→k
Selq(K, S(k)

∞ ) is contained in Selq(K, S∞) with fi-
nite index, so the result follows from Proposition 2.6. !

The next result is a variant of Mazur’s control theorem for our q-strict Selmer
groups.

Proposition 3.7. The map W → S∞ induces an injection

βq : Selq(K, W ) → Selq(K, S∞)[J ]

with finite cokernel.

Proof. The map βq is the restriction of the natural map H1(GK,Σ, W ) →
H1(GK,Σ, S∞) induced by W → S∞. This natural map is part of the cohomol-
ogy long exact sequence induced by

0 → W → S∞
γ−1−−−→ S∞ → 0,

and by (h0), it induces an isomorphism H1(GK,Σ, W ) 0 H1(GK,Σ, S∞)[J ]. The
injectivity of βq follows from this. On the other hand, from the definitions and a
direct application of the snake lemma, we see that the cokernel of βq is bounded
by the kernel of the restriction map

(rq, (rw)w) :
H1(Kq, W )

H1(Kq, W )div
×

∏

w∈Σf \{q}
H1(Kw, W ) → {0} ×

∏

w∈Σf \{q}

∏

η|w
H1(K∞,η , W ).(3.10)
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For w = q, we compute

ker(rq) = H1(Kq, T )tors by local Tate duality(3.11)

= ker{H1(Kq, T ) → H1(Kq, V )}
= coker{H0(Kq, V ) → H0(Kq, W )},

where the last equality follows from the cohomology long exact sequence associated
to T ↪→ V " W . Since H0(Kq, V ) = 0, this shows that

(3.12) #ker(rq) = # H0(Kq, W ) = #E(Qp)[p
∞].

For w = q, we have

ker(rq) = Bq/(γ − 1)Bq,

where Bq is as in (3.9), and therefore finite by [KO20, Lem. 2.7]. Finally, for
w ∈ Σf \ {p, p} we have ker(rw) = Bw/(γ − 1)Bw. From the exact sequence

0 → E(Kw)[p∞] → Bw
γ−1−−−→ Bw → Bw/(γ − 1)Bw → 0

and the finiteness of E(Kw)[p∞], we see that

(Bw)div ⊂ (γ − 1)Bw,

and so #ker(rw) is bounded by [Bw : (Bw)div]. Since all primes w ∈ Σf are finitely
decomposed in K∞/K by our assumption on Σ, this concludes the proof. !

Remark 3.8. When #Selq(K, W ) < ∞, adapting the arguments in [Gre99, §4], one
can determine the exact size of the cokernel of the restriction map βq in Proposi-
tion 3.7, resulting in the formula

#coker(βq) = (#E(Qp)[p
∞])2 ·

∏

w|N

c(p)
w ,

where c(p)
w is the p-part of the Tamagawa number of E/Kw (see [JSW17,Thm. 3.3.1]).

However, Greenberg’s arguments rely crucially on the surjectivity of the global-to-
local map

H1(GK,Σ, W ) →
∏

w∈Σf

H1(Kw, W )

H1
q(Kw, W )

,

which fails when Selq(K, W ) is infinite. In our approach, when Selq(K, W ) is not
necessarily finite, a result playing the role of an exact control on #coker(βq) will
be obtained in Section 6.3 (see Corollary 6.8).

Corollary 3.9. The generalised Selmer group lim←−k
Selq(K, S(k)

∞ )[J ] is contained in
Selq(K, T ) with finite index.

Proof. By (h0), the natural surjection H1(GK,Σ, S(k)) → H1(GK,Σ, W )[pk] is an
isomorphism. Since the local conditions defining Selq(K, T ) and Selq(K, W ) are
propagated from H1

q(Kw, V ), we have

(3.13) Selq(K, T ) 0 lim←−
k

Selq(K, W )[pk].
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On the other hand, it follows from the proof of Proposition 3.7 that for every k
there is a natural injection

Selq(K, W )[pk] → Selq(K, S∞)[J + pkΛ]

with cokernel bounded by the size of
(

E(Qp)[p
∞] ×

∏

w∈Σf \{q}

Bw/(γ − 1)Bw

)
[pk].

Since this is finite (even before taking pk-torsion) and the transition maps are given
by multiplication by p, its inverse limit with respect to k vanishes. Therefore,

(3.14) lim←−
k

Selq(K, W )[pk] 0 lim←−
k

Selq(K, S∞)[J + pkΛ].

Since Proposition 3.5 implies that lim←−k
Selq(K, S(k)

∞ )[J ] is contained in

lim←−k
Selq(K, S∞)[J + pkΛ] with finite index, the result follows from (3.13) and

(3.14). !
Definition 3.10. For every i ≥ 1, put

S←−
(i)
q = lim←−

k

S(i)
q,k,

where the limit is with respect to the multiplication-by-p maps S(k+1) → S(k).

Thus we obtain a filtration

(3.15) lim←−
k

Selq(K, S(k)) = S←−
(1)
q ⊃ S←−

(2)
q ⊃ · · · ⊃ S←−

(i)
q ⊃ · · · ⊃ S←−

(∞)
q ,

where S←−
(∞)
q := ∩i≥1S←−

(i)
q . The pairings h(i)

q,k of Theorem 3.2 are compatible as
k varies, and in the limit they give rise to a sequence of “derived” p-adic height
pairings

(3.16) h(i)
q : S←−

(i)
q × S←−

(i)
q → Zp

such that the kernel on the left (resp. right) is S←−
(i+1)
q (resp. S←−

(i+1)
q ).

Corollary 3.11. Let q ∈ {p, p}. Using ∼ to denote Λ-module pseudo-isomorphism,
write

Selq(K, S∞)∨ ∼ Λe∞ ⊕ (Λ/J)e1 ⊕ (Λ/J2)e2 ⊕ · · · ⊕ (Λ/J i)ei ⊕ · · · ⊕ M

with M a torsion Λ-module with characteristic ideal prime to J . Then

(i) ei = rankZp(S←−
(i)
q /S←−

(i+1)
q ).

(ii) e∞ = rankZp(S←−
(∞)
q ) = rankZp(Selq(K, T )u), where

Selq(K, T )u :=
⋂

n

corKn/K(Selq(Kn, T ))

is the space of universal norms in Selq(K, T ).

Remark 3.12. Proposition 2.5 says that Selq(K, S∞)∨ is Λ-torsion, so e∞ = 0.

Proof. The argument leading to the proof of [How04, Cor. 4.3] (for the usual Selmer
group) applies verbatim to our setting, replacing the use of Proposition 3.5 and
Lemma 4.1 in op. cit. by Proposition 3.5 and (the proof of) Proposition 3.7, re-
spectively. !
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3.4. The derived regulator. Note that by Corollary 3.9 and (3.4), the Selmer
group

lim←−
k

Selq(K, S(k)) = S←−
(1)
q

is contained in Selq(K, T ) with finite index.

Definition 3.13. For i ≥ 1, define

S←−
(i)
q :=

(
S←−

(i)
q ⊗Zp Qp

)
∩ Selq(K, T )

to be the p-adic saturation of S←−
(i)
q in Selq(K, T ). In particular, S←−

(1)
q = Selq(K, T ).

By linearity, the pairings (3.16) extend to Qp-valued pairings

(3.17) h(i)
q : S←−

(i)
q × S←−

(i)
q → Qp,

whose kernel on the left (resp. right) is S←−
(i+1)
q (resp. S←−

(i+1)
q ) by virtue of Theo-

rem 3.2.
By definition, for every i ≥ 1 the quotients S←−

(i)
p /S←−

(i+1)
p and S←−

(i)
p /S←−

(i+1)
p are free

Zp-modules, and since the action of complex conjugation defines an isomorphism
Selp(K, S∞) 0 Selp(K, S∞), by Corollary 3.11(i) the Zp-ranks of these quotients
are equal. Hence for every q ∈ {p, p} we have

(3.18) S←−
(i)
q /S←−

(i+1)
q 0 Zei

p

for some integers ei ≥ 0 (the same for both p and p). By Corollary 3.11(ii) and
Proposition 2.5 we know that ei = 0 for i * 0.

Note that the i-th derived p-adic heights h(i)
q depend on the choice of a topological

generator γ, but the (J i/J i+1)⊗Zp Qp-valued pairings (γ−1)i ·h(i)
q are independent

of this choice. We record the dependence on γ in Definition 3.14.

Definition 3.14. Let (x1,1, . . . , x1,e1 ; · · · ; xi,1, . . . , xi,ei ; · · · ) be a Zp-basis for
Selp(K, T ) adapted to the filtration

Selp(K, T ) = S←−
(1)
p ⊃ S←−

(2)
p ⊃ · · · ⊃ S←−

(i)
p ⊃ · · · ,

so that for every i ≥ 1 the elements xi,1, . . . , xi,ei project to a Zp-basis for

S←−
(i)
p /S←−

(i+1)
p . Let (y1,1, . . . , y1,e1 ; · · · ; yi,1, . . . , yi,ei ; · · · ) be a Zp-basis for Selp(K, T )

defined in the same manner. Define the i-th partial regulator by

R(i)
p,γ := det

(
h(i)

p (xi,j , yi,j′)
)
1≤j,j′≤ei

,

and the derived regulator by Regp,der,γ :=
∏

i≥1 R(i)
p,γ .

Remark 3.15. By definition, the partial regulators R(i)
p,γ are non-zero, and they are

well-defined up to a p-adic unit. So, we have

Regp,der,γ ∈ Q×
p /Z×

p .

Replacing h(i)
p by (γ− 1)i ·h(i)

p and writing σ =
∑

i≥1 iei, the above definition gives
a non-zero derived regulator

Regp,der ∈
(
(Jσ/Jσ+1) ⊗Zp Qp

)
/Z×

p

which is independent of γ.
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4. BSD conjecture for LBDP
p

In this section, we formulate our p-adic analogue of the Birch–Swinnerton-Dyer
conjecture for LBDP

p , extending the formulation given in [AC21] in the p-ordinary
case.

We keep the setting from Section 2, and assume in addition that (h0) and (h1)
hold.

By Lemma 2.2, we have

Selp(K, T ) = ker(resp/tor) 0 Zr−1
p ,

where r = rankZp Šp(E/K). Let (s1, . . . , sr−1) be a Zp-basis for Selp(K, T ), and

extend it to a Zp-basis (s1, . . . , sr−1, sp) for Šp(E/K). In particular, resp(sp) ∈
E(Kp) ⊗ Zp is non-torsion. Henceforth, we let

logp : Šp(E/K) → Zp

be the composition of the map resp/tor with the formal group logarithm E(Kp)/tor⊗
Zp → Zp associated with a Néron di#erential ωE ∈ Ω1(E/Z(p)). Also, let
XBK(K, W ) = Selp∞(E/K)/div be the Bloch–Kato Tate–Shafarevich group, and
for every prime % | N write c" to denote the Tamagawa number of E/Q".

In the following, we shall interchangeably view LBDP
p as an element in Ô!T "

via the identification ΛÔ 0 Ô!T " defined by T = γ − 1 for our fixed topological
generator γ ∈ !. Thus T corresponds to a generator of the augmentation ideal
J ⊂ ΛÔ.

Conjecture 4.1 (p-adic BSD conjecture for LBDP
p ). The following assertions hold:

(i) (Leading Coefficient Formula) Let 'an := ordJLBDP
p . Then, up to a p-adic

unit,

1

'an!

d$an

dT $an
LBDP

p

∣∣∣
T=0

=

(
1 − ap(E) + p

p

)2

· logp(sp)
2

× Regp,der,γ · #XBK(K, W ) ·
∏

"|N

c2
" .

(ii) (Order of Vanishing) Set r± to denote the Zp-corank of the ±-eigenspace
of Šp(E/K) under the action of complex conjugation. Then

'an = 2(max{r+, r−} − 1).

Remark 4.2. We observe that Conjecture 4.1 is a reformulation (depending on γ)
of Conjecture 1.1 in the Introduction.

Remark 4.3. As noted in the Introduction (see Remark 1.2), Conjecture 4.1 extends
to all good primes p > 2 and with an unconditional definition of Regp,der the
p-adic Birch–Swinnerton-Dyer conjecture formulated in [AC21, Conj. 4.2]. That
their p-adic heights (deduced from the construction in [BD95]) agree with ours
(deduced from the construction in [How04]) when both apply, follows from the
height comparisons in [Nek95, §11] and [BMC24, §10].

By the works of Kolyvagin, Gross–Zagier, and Bertolini–Darmon–Prasanna,
Conjecture 4.1 enjoys the following compatibility with the classical Birch–
Swinnerton-Dyer for L(E/K, s).
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Proposition 4.4. Assume ords=1L(E/K, s) = 1. Then:

(i) Conjecture 4.1(i) is equivalent to the p-part of the Birch–Swinnerton-Dyler
formula for L′(E/K, 1).

(ii) 'an = 0, and Conjecture 4.1(ii) holds.

Proof. By the Gross–Zagier formula [GZ86], the Heegner point zK ∈ E(K) in
formula (BDP) is non-torsion. Therefore, rankZE(K) = 1 and #X(E/K) <
∞ by Kolyvagin’s work [Kol88], and 'an = 0 by formula (BDP). In particular,
Conjecture 4.1(ii) holds.

The above also shows that XBK(K, W ) = X(E/K)[p∞] and rankZp Šp(E/K) =
1. Together with Lemma 2.2, it follows that Selp(K, T ) = 0, and so Regp,der,γ = 1.

Therefore, if sp is any element of Šp(E/K) 0 E(K)⊗Zp satisfying resp/tor(sp) -= 0,
Conjecture 4.1(i) now reads

(4.1) LBDP
p (0) ∼p

(
1 − ap(E) + p

p

)2

· logp(sp)
2 · #X(E/K)[p∞] ·

∏

"|N

c2
" .

We can write zK ⊗ 1 = m · sp, with m ∈ Zp satisfying

ordp(m) = ordp

(
[E(K) : ZzK ]

)
,

and formula (BDP) can then be rewritten as

(4.2) LBDP
p (0) ∼p

m2

u2
Kc2

E

·
(

1 − ap(E) + p

p

)2

· logp(sp)
2.

Combining (4.1) and (4.2), we thus see that Conjecture 4.1(i) is equivalent to

(4.3) [E(K) : ZzK ]2 ∼p u2
Kc2

E · #X(E/K) ·
∏

"|N

c2
" .

By the Gross–Zagier formula, (4.3) is equivalent to the p-part of the Birch–
Swinnerton-Dyer formula for L′(E/K, 1) (see, e.g., [Zha14, Lem. 10.1]), so this
concludes the proof. !

5. Main result

We shall say that the p-adic height pairing hp := h(1)
p is maximally non-degenerate

if, letting ei be as in (3.18), we have

ei =

{
|r+ − r−| − 1 if i = 2,

0 if i ≥ 3,

where r± = rankZp(Šp(E/K)±) for the ±-eigenspace Šp(E/K)± of Šp(E/K) under
the action of complex conjugation.
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The main result of this paper is the following.

Theorem 5.1. In the setting of Section 4, let FBDP
p ∈ Λ be a generator of

charΛ(Selp(K∞, W )∨). Put 'alg := ordJFBDP
p .

(i) Up to a p-adic unit,

1

'alg!

d$alg

dT $alg
FBDP

p

∣∣∣
T=0

=

(
1 − ap(E) + p

p

)2

· logp(sp)
2

× Regp,der,γ · #XBK(K, W ) ·
∏

"|N

c2
" .

(ii) The following inequality holds

'alg ≥ 2(max{r+, r−} − 1).

Furthermore, equality is attained if and only if hp is maximally non-
degenerate.

Combined with progress towards the Iwasawa–Greenberg Main Conjecture (Con-
jecture 2.4), we deduce the following result towards the p-adic Birch–Swinnerton-
Dyer conjecture for LBDP

p .

Corollary 5.2. Let , : GQ → AutFp(E[p]) be the mod p representation associated
with E. If p is ordinary, assume that:

(1a) Either N is square-free or there are at least two primes %‖N .
(1b) , is ramified at every prime %‖N .
(1c) , is surjective.
(1d) ap(E) -≡ 1 (mod p).
(1e) p > 3.

If p is supersingular, assume that:

(2a) N is square-free.
(2b) , is ramified at every prime % | N .
(2c) Every prime above p is totally ramified in K∞/K.
(2d) p > 3, which implies ap(E) = 0.

Then,

(i) The Leading Coefficient Formula of Conjecture 4.1(i) holds.
(ii) The following inequality holds

ordJLBDP
p ≥ 2(max{r+, r−} − 1).

Equality is attained, and hence Conjecture 4.1(ii) holds, if and only if hp is
maximally non-degenerate.

Proof. In the p-ordinary case, the Iwasawa–Greenberg Main Conjecture (Conjec-
ture 2.4) was proved in [BCK21, Thm. B] under hypotheses (1a)–(1e); in the p-
supersingular case, a proof of the same conjecture under hypotheses (2a)–(2d) is
given in Corollary 7.2. The result thus follows from Theorem 5.1. !
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6. Proof of Theorem 5.1

Before delving into the details, we give a brief outline of the proof of the Leading
Coefficient Formula in part (i) of Theorem 5.1. The much shorter proof of part (ii)
is given in Section 6.6.

The proof is divided into four steps. Our starting point is Lemma 6.1, giving an
expression for the leading coefficient at T = 0 of the characteristic power series FX

of a torsion Λ-module X, where Λ = Zp!T ". The formula is in terms of the orders
of the flanking terms in the exact sequence

0 → T rX[T ] → T rX
T−→ T rX → T rX/T r+1X → 0

for any r ≥ ordT FX . Together with the results from Section 3, this lemma applied
to Xp = Selp(K∞, W )∨ leads to a proof of the equality up to a p-adic unit

(Step 1)
1

'alg!

d$alg

dT $alg
FBDP

p

∣∣∣
T=0

∼p #
(
S−→

(r+1)
p

)

for any r ≥ 'alg. Passing to the limit in k, the Ok-valued derived height pairings

h(i)
p,k give rise to a collection of exact sequences

0 → S←−
(i+1)
p → S←−

(i)
p

h
(i)
p−−→ HomZp

(
S−→

(i)
p ,Qp/Zp

)
→ HomZp

(
S−→

(i+1)
p ,Qp/Zp

)
→ 0(6.1)

for i ≥ 1, where S←−
(i)
q = lim←−k

S(i)
q,k and S−→

(i)
q = lim−→k

S(i)
q,k.

We find the derived regulator Regp,der,γ appearing naturally from an iterative
computation using (6.1) for i = 1, . . . , r, leading to a proof of the equality

(Step 2) #
(
S−→

(r+1)
p

)
∼p Regp,der,γ ·

[
Selp(K, T ) : S←−

(1)
p

]
· #

(
(S−→

(1)
p )/div

)

for any r ≥ 'alg.

Next we study the local conditions cutting out the Selmer groups S←−
(1)
p and S−→

(1)
p ,

arriving at a five-term exact sequence from which we can deduce the relation

[
Selp(K, T ) : S←−

(1)
p

]
· #

(
(S−→

(1)
p )/div

)
(Step 3)

= #(E(Qp)[p
∞])2 ·

∏

w|N

c(p)
w · #(Selp(K, W )/div).

Finally, using global duality and a computation using logp we obtain

#(Selp(K, W )/div)(Step 4)

∼p

(
1−ap(E) + p

p

)2

· logp(sp)
2 · #XBK(K, W ) · 1

(#E(Kp)[p∞])2
,

which in combination with the previous steps yields the Leading Coefficient Formula
in part (i) of Theorem 5.1.
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6.1. Step 1: Non-semisimple torsion Λ-modules and augmentation filtra-
tion. Let X be a Λ-module, where Λ = Zp!T ". For every r ≥ 0, denote by

β(r)
X : T rX → T rX

the map given by multiplication by T , and put h(β(r)
X ) = #coker(β(r)

X )/#ker(β(r)
X )

whenever both terms in the right-hand side are finite.

Lemma 6.1. Let X be a finitely generated torsion Λ-module, and let FX ∈ Λ be a
generator of charΛ(X). Put

'X := ordT FX .

For any r ≥ 'X , the sub-quotients T rX/T r+1X and T rX[T ] are both finite. In
addition,

1

'X !

d$X

dT $X
FX

∣∣∣
T=0

∼p h(β(r)
X ) =

#
(
T rX/T r+1X

)

#(T rX[T ])
,

where ∼p denotes equality up to a p-adic unit.

Proof. Suppose first that X is an elementary module, in the sense that

X = Λ/(f),

where f = anTn + an+1Tn+1 + · · · ∈ Λ with an -= 0 (so n = 'X). Then for any
r ≥ n we find

X[T r] = (T−nf)/(f),

T rX = (T r, f)/(f) 0 (T r)/(T r) ∩ (f) = (T r)/(T r−nf).

Therefore, for any r ≥ 'X we have that T rX[T ] 0 X[T r+1]/X[T r] is trivial and

T rX/T r+1X 0 (T r)/(T r+1, T r−nf) 0 Zp/(an)

so the result is true in this case.
In general, by the structure theorem there exists a Λ-module homomorphism

φ : X → Y

with finite kernel and cokernel, where Y is a direct sum of elementary modules
as above. Since X and Y have the same characteristic ideal and by the above

argument the result is true for Y , it remains to show that h(β(r)
X ) = h(β(r)

Y ) for any
r ≥ 'X = 'Y .

For any Λ-module homomorphism β : M → M with finite kernel and cokernel,
put h(β) = #coker(β)/#ker(β). Note that if 0 → A → B → C → 0 is a Λ-
module exact sequence, and any two of the multiplication-by-T maps TA : A → A,
TB : B → B, TC : C → C have finite kernel and cokernel, then from an easy
application of the snake lemma we see that h(TA), h(TB), h(TC) are all defined,
with

(6.2) h(TB) = h(TA) · h(TC).
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For any r > 0, φ induces maps φr : T rX → T rY with finite kernel and cok-
ernel. Applying (6.2) to the tautological exact sequence 0 → im(φr) → T rY →
coker(φr) → 0, we obtain

(6.3) h(β(r)
Y ) = h(Tim(φr)) · h(Tcoker(φr)) = h(Tim(φr))

for any r ≥ 'X , using that h(Tcoker(φr)) = 1 (since #coker(φr) < ∞) for the last
equality. On the other hand, applied to 0 → ker(φr) → T rX → im(φr) → 0, (6.2)
similarly gives

(6.4) h(β(r)
X ) = h(Tker(φr)) · h(Tim(φr)) = h(Tim(φr))

for any r ≥ 'X . Combining (6.3) and (6.4), the result follows. !

Remark 6.2. When the action of T on X is “semi-simple” (i.e., when up to pseudo-
isomorphism X is of the form ⊕iΛ/(fi) with fi ∈ Λ satisfying ordT (fi) ≤ 1 for all
i), Lemma 6.1 recovers a well-known result (see, e.g., [PR93, §1.4, Lemme]).

For the rest of this section, we let Λ = Zp!!" be the anticyclotomic Iwasawa
algebra and J ⊂ Λ the augmentation ideal. We shall often identify Λ (resp. J)
with the one variable power series ring Zp!T " (resp. (T )) setting T = γ − 1 for a
fixed choice of topological generator γ ∈ !.

Proposition 6.3. Let q ∈ {p, p}. Let FBDP
q ∈ Λ be a generator of the characteristic

ideal of Xq = Selq(K, S∞)∨, and put 'alg = ordJFBDP
q . Then

1

'alg!

d$alg

dT $alg
FBDP

q

∣∣∣
T=0

∼p #
(
S−→

(r+1)
q

)

for any r ≥ 'alg.

Proof. After Lemma 6.1, it suffices to show that we have

#(JrXq/Jr+1Xq) = #
(
S−→

(r+1)
q

)
, JrXq[J ] = 0,(6.5)

for any r ≥ 'alg. Consider the exact sequence

0 → Selq(K, S∞)[Jr+1]

Selq(K, S∞)[Jr]
→ Selq(K, S∞)

Selq(K, S∞)[Jr]
→ Selq(K, S∞)

Selq(K, S∞)[Jr+1]
→ 0.

Taking Pontryagin duals and noting that

(
Selq(K, S∞)/Selq(K, S∞)[Jr]

)∨
=

(
JrSelq(K, S∞)

)∨
= JrXq,

using Corollary 3.6 for the last equality, we obtain the exact sequence

(6.6) 0 → Jr+1Xq → JrXq → HomZp

(
Selq(K, S∞)[Jr+1]

Selq(K, S∞)[Jr]
,Qp/Zp

)
→ 0.

Via the maps φr+1,γ in (3.5) given by multiplication by (γ − 1)r, the last term in

this sequence is identified with the Pontryagin dual of JrSelq(K, S∞)[J ] 0 S−→
(r+1)
q ,

and so the first equality in (6.5) (for any r ≥ 0) follows from (6.6).
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On the other hand, since by Proposition 2.5 we know that Xq is Λ-torsion,
Corollary 3.11(ii) and our running hypothesis (h0) imply that the filtration (3.15)

satisfies S←−
(i)
q = 0 for i * 0. Let

i0 = max{i ≥ 1 : S←−
(i)
q -= 0}.

Then by Corollary 3.11 we may fix a Λ-module pseudo-isomorphism

(6.7) Xq ∼ (Λ/J)e1 ⊕ (Λ/J2)e2 ⊕ · · · ⊕ (Λ/J i0)ei0 ⊕ M

with M a torsion Λ-module with characteristic ideal prime to J , and therefore
#(M [J ]) < ∞. In particular

(6.8) 'alg = e1 + 2e2 + · · · + i0ei0 ,

which shows that r ≥ i0 for any r ≥ 'alg. From (6.7), we thus see that for any
r ≥ 'alg (in fact, r ≥ i0 suffices), the Λ-submodule JrXq[J ] of Xq is finite, and so
by Proposition 2.6 the second equality in (6.5) follows, whence the result. !

6.2. Step 2: Derived p-adic regulator. We begin with a basic algebraic lemma.

Lemma 6.4. Let 0 → A
h−→ B → C → 0 be an exact sequence of finitely generated

modules over Zp. Then

#(Ator) · #(Ctor) ∼p det∗h · #(Btor),

where det∗h is the product of the non-zero entries in the Smith normal form of

A/tor
h−→ B/tor.

Proof. This follows upon noting the relations #(Ctor) = #
(
B/tor/h(A/tor)

)
tor

·
#(Btor/h(Ator)) and #

(
B/tor/h(A/tor)

)
tor

∼p det∗h. !

For q ∈ {p, p}, put

Selq(K, T ) := S←−
(1)
q = lim←−

k

Selq(K, S(k)
∞ )[J ], Selq(K, W ) := S−→

(1)
q .

In particular, we have seen in Corollary 3.9 that Selq(K, T ) is contained in the
q-strict Selmer groups Selq(K, T ) with finite index.

Proposition 6.5. For any r ≥ 'alg := ordJFBDP
p , we have

#
(
S−→

(r+1)
p

)
∼p Regp,der,γ ·

[
Selp(K, T ) : Selp(K, T )

]
· #

(
Selp(K, W )/div

)
.

Proof. Passing to the limit in k, the Ok-valued i-th derived height pairings h(i)
p,k of

Theorem 3.2 induce a pairing

S←−
(i)
p × S−→

(i)
p → Qp/Zp.

By the descriptions of the kernels of h(i)
p,k in Theorem 3.2, this gives rise to the exact

sequence

0 → S←−
(i)
p /S←−

(i+1)
p

α(i)

−−→ HomZp

(
S−→

(i)
p ,Qp/Zp

)
→ HomZp

(
S−→

(i+1)
p ,Qp/Zp

)
→ 0.

We also have the tautological exact sequence

0 → S←−
(i)
p /S←−

(i+1)
p

β(i)

−−→ Selp(K, T )/S←−
(i+1)
p → Selp(K, T )/S←−

(i)
p → 0.
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Applying Lemma 6.4 to the above two exact sequences gives

#
(
(S−→

(i+1)
p )/div

)

#
(
(S−→

(i)
p )/div

) ∼p
det∗ α(i)

#
(
(S←−

(i)
p /S←−

(i+1)
p )tor

) ,

#
(
(S←−

(i)
p /S←−

(i+1)
p )tor

)
∼p

det∗ β(i) · #
(
Selp(K, T )/S←−

(i+1)
p

)
tor

#
(
Selp(K, T )/S←−

(i)
p

)
tor

,

from which we get

(6.9)
#
(
(S−→

(i+1)
p )/div

)

#
(
(S−→

(i)
p )/div

) ∼p
det∗ α(i)

det∗ β(i)
·

#
(
Selp(K, T )/S←−

(i)
p

)
tor

#
(
Selp(K, T )/S←−

(i+1)
p

)
tor

.

For any r ≥ 'alg, using that #(S−→
(r+1)
p ) < ∞ (and so S←−

(r+1)
p = 0) and taking the

product of (6.9) for i = 1, . . . , r, we arrive at

(6.10)

#
(
S−→

(r+1)
p

)
= #

(
(S−→

(r+1)
p )/div

)

∼p

$alg∏

i=1

det∗ α(i)

det∗ β(i)
·

#
(
Selp(K, T )/S←−

(1)
p

)
tor

#
(
Selp(K, T )/S←−

(r+1)
p

)
tor

· #
(
(S−→

(1)
p )/div

)

∼p

$alg∏

i=1

det∗ α(i)

det∗ β(i)
·
[
Selp(K, T ) : Selp(K, T )

]
· #

(
(S−→

(1)
p )/div

)
.

Thus we are reduced to showing that

(6.11)
det∗ α(i)

det∗ β(i)
= R(i)

p,γ ,

where R(i)
p,γ is the partial regulator in Definition 3.14.

By Corollary 3.6, we note that Proposition 3.7 amounts to the statement that

Selp(K, W ) is contained in S−→
(1)
p 0 Selp(K, S∞)[J ] with finite index. There-

fore, (S−→
(1)
p )div = Selp(K, W )div. It follows from the definition of Selp(K, T ) and

Selp(K, W ) by propagating the local conditions H1
p(Kw, V ) that

(6.12) Selp(K, T ) ⊗Zp Qp/Zp = Selp(K, W )div.

From this, it follows that for every i ≥ 1 we have

(6.13) S←−
(i)
p ⊗ Qp/Zp 0 (S−→

(i)
p )div.

(Indeed, because S←−
(i)
p is defined as the saturation of S←−

(i)
p inside Selp(K, T ), the

composite map

S←−
(i)
p ⊗ Qp/Zp → Selp(K, T ) ⊗ Qp/Zp 0 (S−→

(1)
p )div

is injective with image S−→
(i)
p )div.) From (6.13) we deduce

(6.14) HomZp

(
(S−→

(i)
p )div,Qp/Zp

)
0 HomZp(S←−

(i)
p ,Zp),
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for all i ≥ 1. Note that the composition

S←−
(i)
p /S←−

(i+1)
p

α(i)

−−→ HomZp

(
S−→

(i)
p ,Qp/Zp

)

→ HomZp

(
(S−→

(i)
p )div,Qp/Zp

)
0 HomZp(S←−

(i)
p ,Zp)

is induced by the pairing h(i)
p . Hence,

det∗ α(i) = disc
(
h(i)

p |(
S←−

(i)
p /S←−

(i+1)
p

)
/tor

×S←−
(i)
p

/S←−
(i+1)
p

)

= R(i)
p,γ ·

[
S←−

(i)
p /S←−

(i+1)
p :

(
S←−

(i)
p /S←−

(i+1)
p

)
/tor

]

= R(i)
p,γ · det∗ β(i).

This shows (6.11), which together with (6.10) yields the result. !

6.3. Step 3: Local universal norms. Note that by definition, we have

Selq(K, T ) = lim←−
k

Selq(K, S(k)), Selq(K, W ) = lim−→
k

Selq(K, S(k)),

where Selq(K, S(k)) is as in Definition 3.1.

Proposition 6.6. For every w ∈ Σf , the local conditions H1
Fq

(Kw, S(k)) and

H1
Fq

(Kw, S(k)) are exact orthogonal complements under the local Tate pairing

(6.15) H1(Kw, S(k)) × H1(Kw, S(k)) → Ok

induced by the Weil pairing e : S(k) × S(k) → Ok(1).

Proof. We begin by considering the case w = q. From the definitions, we have

(6.16)
H1

Fq
(Kq, S

(k)) = im
{
H0(Kq, S

(k)
∞ )Γ ↪→ H1(Kq, S

(k))
}
,

H1
Fq

(Kq, S
(k)) = im

{
H1(Kq, S

(k)
Iw )Γ ↪→ H1(Kq, S

(k))
}
.

To see the second equality, we note that the propagation to S(k) of

H1
Fq

(Kq, S
(k)
∞ ) := im

{
H1(Kq, S

(k)
K ) → H1(Kq, S

(k)
∞ )

}

= ker{H1(Kq, S
(k)
∞ ) → H2(Kq, S

(k
Iw)}

equals the kernel of the composition H1(Kq, S(k)) → H1(Kq, S
(k)
∞ ) → H2(Kq, S

(k)
Iw ),

which is the same as the connecting homomorphism for the exact sequence

(6.17) 0 → S(k)
Iw

γ−1−−−→ S(k)
Iw → S(k) → 0.

Hence,

H1
Fq

(Kq, S
(k)
∞ ) = ker{H1(Kq, S

(k)) → H2(Kq, S
(k)
Iw )}

= im
{
H1(Kq, S

(k)
Iw )Γ ↪→ H1(Kq, S

(k))
}
.

Now, since we have

(6.18)
H1(Kq, S(k))

H1(Kq, S
(k)
Iw )Γ

0 H2(Kq, S
(k)
Iw )[J ] 0

(
H0(Kq, S

(k)
∞ )Γ

)∨
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from the cohomology long exact sequence associated with (6.17) and Tate’s local
duality, the orthogonality assertion for w = q follows. The argument for w = q is
the same.

Next we consider the case w ∈ Σf \ {p, p}. In this case, H1
Fq

(Kw, S(k)
∞ ) =

H1
Fq

(Kw, S(k)
∞ ) = 0, and therefore

H1
Fq

(Kw, S(k)) = H1
Fq

(Kw, S(k)) = ker
{
H1(Kw, S(k)) → H1(Kw, S(k)

∞ )
}

= im
{
H0(Kw, S(k)

∞ )Γ ↪→ H1(Kw, S(k))
}
.

From the short exact sequence
(6.19)

0 → H1(Kw, S(k)
Iw )Γ → H1(Kw, S(k)) → H2(Kw, S(k)

Iw )[J ] 0
(
H0(Kw, S(k)

∞ )Γ
)∨ → 0

induced by (6.17) and local Tate duality, we see that

H1
Fq

(Kw, S(k)) =
(
im{H1(Kw, S(k)

Iw )Γ ↪→ H1(Kw, S(k))}
)⊥

,

where the superscript ⊥ denotes the orthogonal complement under (6.15). Thus it
suffices to establish the equality

(6.20) H0(Kw, S(k)
∞ )Γ = H1(Kw, S(k)

Iw )Γ

inside H1(Kw, S(k)). Consider the commutative diagram with exact rows

0 !! H0(Kw, S(k)
∞ )/K !!

γ−1

""

H1(Kw, S(k)
Iw ) !!

γ−1

""

im{H1(Kw, S(k)
Iw ) → H1(Kw, S(k)

K )} !!

γ−1

""

0

0 !! H0(Kw, S(k)
∞ )/K !! H1(Kw, S(k)

Iw ) !! im{H1(Kw, S(k)
Iw ) → H1(Kw, S(k)

K )} !! 0,

where the rows are induced by (3.2) and the subscript /K denotes the quotient by

the natural image of H0(Kw, S(k)
K ) in H0(Kw, S(k)

∞ ). Using the fact that multiplica-

tion by γ − 1 is invertible in S(k)
K , the snake lemma applied to this diagram yields

an injection

(6.21) H0(Kw, S(k)
∞ )Γ ↪→ H1(Kw, S(k)

Iw )Γ.

On the other hand, we can compute

(6.22)

# H0(Kw, S(k)
∞ )Γ = #

(⊕

η|w

E(K∞,η)[p
k]
)

Γ

= #
(⊕

η|w

E(K∞,η)[p
k]
)
[J ] = #E(Kw)[pk],

using the finiteness of E(K∞,η)[pk] and the fact that w is finitely decomposed in
K∞/K (since it splits in K) for the second equality. From (6.19), we similarly find

(6.23)
[
H1(Kw, S(k)) : H1(Kw, S(k)

Iw )Γ
]

= # H2(Kw, S(k)
Iw )[J ] = #E(Kw)[pk].

Since # H1(Kw, S(k)) = (#E(Kw)[pk])2 by Tate’s local Euler characteristic for-
mula and Tate’s local duality, the desired equality (6.20) now follows from the
combination of (6.21), (6.22), and (6.23), thereby concluding the proof. !
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From the analysis in the proof of Proposition 6.6, we deduce the following two
key results.

Corollary 6.7. We have

Selq(K, T ) 0 ker

{
H1(GK,Σ, T ) → H1(Kq, T ) ×

∏

w∈Σf \{q}

H1(Kw, T )

H1(Kw, T )u

}
,

where H1(Kw, T )u := lim←−k
im

{
H1(Kw, S(k)

Iw )Γ → H1(Kw, S(k))
}
.

Proof. By (6.16) and the equality (6.20) established in the proof of Proposition 6.6,
the local conditions cutting out Selq(K, T ) are given by H1(Kw, T )u for w ∈ Σf \
{q}. Restricted to q, the classes in Selq(K, T ) land in the image of

lim←−k
H0(Kq, S

(k)
∞ )Γ in H1(Kq, T ), and so their restriction to q vanishes by the finite-

ness of
⊕

η|q E(K∞,η)[p∞]. !

Corollary 6.8. We have a five-term exact sequence

0 → Selq(K, T ) → Selq(K, T ) → L → Selq(K, W )∨ → Selq(K, W )∨ → 0

with

#L = (#E(Qp)[p
∞])2 ·

∏

w|N

c(p)
w ,

where c(p)
w is the p-part of the Tamagawa number of E/Kw.

Proof. In light of Proposition 6.6 and Corollary 6.7, Poitou–Tate duality gives rise
to a five-term exact sequence as in the statement with

(6.24) L = H1
q(Kq, T ) ×

∏

w∈Σf \{q}

H1
q(Kw, T )

H1(Kw, T )u
.

It remains to compute the size of each the factors in the right-hand side.
For the first factor, Definition 2.1 gives H1

q(Kq, T ) = H1(Kq, T )tor, and from the
combination of (3.11) and (3.12) we have

(6.25) # H1
q(Kq, T ) = # H1(Kq, T )tor = #E(Qp)[p

∞].

For w = q, the numerator in the second factor is H1
q(Kq, T ) = H1(Kq, T ), and from

(6.18) we have

H1(Kq, T )/ H1(Kq, T )u 0
(

lim−→
k

H0(Kq, S
(k)
∞ )Γ

)∨
.

Since lim−→k
H0(Kq, S

(k)
∞ ) is finite by [KO20, Lem. 2.7], it follows that

(6.26) #
(
H1

q(Kq, T )/ H1(Kq, T )u
)

= #
(
H1(Kq, T )/ H1(Kq, T )u

)
= #E(Qp)[p

∞].

It remains to consider the case w ! p. In this case, we have

H1
q(Kw, T ) = H1(Kw, T )tor = H1(Kw, T ),
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using Tate’s local Euler characteristic formula for the second equality. Therefore,

#
(
H1

q(Kw, T )/ H1(Kw, T )u) = #
(
H1(Kw, T )/ H1(Kw, T )u)(6.27)

= #
(
lim−→

k

H0(Kw, S(k))Γ
)

= #
(
Bw/(γ − 1)Bw

)
,

where the second equality is shown in the proof of Proposition 6.6, and Bw is as in

(3.9). Now recall that c(p)
w = # H1

unr(Kw, W ), where

H1
unr(Kw, W ) := ker

{
H1(Kw, W ) → H1(Kunr

w , W )
}

.

Since for every η | w the restriction map H1(K∞,η, W ) → H1(Kunr
w , W ) is injective

(this follows from the fact that Gal(Kunr
w /K∞,η) has trivial pro-p-part), we deduce

that

H1
unr(Kw, W ) = ker{H1(Kw, W ) →

⊕

η|w

H1(K∞,η, W )}(6.28)

0 Bw/(γ − 1)Bw.

From (6.27) and (6.28), we conclude that #
(
H1

q(Kw, T )/ H1(Kw, T )u
)

= c(p)
w for

w ! p. Together with (6.25) and (6.26), this gives the stated formula for #L. !

6.4. Step 4: p-adic logarithm. The last step is to relate #
(
Selp(K, W )/div

)
to

#XBK(K, W ) and some of the other terms appearing in our Leading Coefficient
Formula.

Proposition 6.9. Assume hypotheses (h0)–(h1). Then

#(Selp(K, W )/div) = #XBK(K, W ) · (#coker(resp/tor))
2,

where resp/tor is the composition Šp(E/K)
resp−−→ E(Kp) ⊗ Zp → E(Kp)/tor ⊗ Zp.

Proof. By Lemma 2.2 we have

Selp(K, T ) = ker(resp) 0 Zr−1
p ,

where r = rankZp Šp(E/K). Let s1, . . . , sr−1 be a Zp-basis for Selp(K, T ) and
extend it to a Zp-basis s1, . . . , sr−1, sp for Šp(E/K), so we have

(6.29) Šp(E/K) 0 Selp(K, T ) ⊕ Zpsp.

The map resp/tor gives an injection Zpsp ↪→ E(Kp)/tor ⊗ Zp, and defining U by
the exactness of the sequence

(6.30) 0 → Zpsp → E(Kp)/tor ⊗ Zp → U → 0,

we see that U is finite, with #U = #coker(resp/tor). Tensoring (6.30) with Qp/Zp

gives

(6.31) 0 → U ′ → (Qp/Zp)sp → E(Kp) ⊗ Qp/Zp → 0

for a certain finite module U ′ with #U ′ = #U .
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Noting that Selp(K, T ) ⊗Zp Qp/Zp = Selp(K, W )div (see (6.12)) and similarly

Šp(E/K) ⊗Zp Qp/Zp = Selp∞(E/K)div, from (6.29) and (6.31) it follows that

(6.32) ker

{
Selp∞(E/K)div

resp−−→ E(Kp) ⊗ Qp/Zp

}
0 Selp(K, W )div ⊕ U ′.

Moreover, we know that

(6.33) #U ′ = #coker(resp/tor).

Denote by Selrel,fin(K, V ) the Selmer group obtained by relaxing the condition at
p in the usual Bloch–Kato Selmer group Sel(K, V ), and let Selrel,fin(K, W ) be the
Selmer group obtained by propagation. Then from Poitou–Tate duality we have
the exact sequence

0 → Selp∞(E/K) → Selrel,fin(K, W )

resp/fin−−−−−→ H1(Kp, W )div

E(Kp) ⊗ Qp/Zp
0 (E(Kp)/tor ⊗ Zp)

∨

(resp/tor)
∨

−−−−−−−→ Šp(E/K)∨,

and it follows from our assumption that the map resp/tor has finite cokernel. Hence
the map resp/fin has finite image, with

(6.34) #im(resp/fin) = #coker(resp/tor).

We thus deduce the following commutative diagram with exact rows

(6.35)

Selp∞(E/K)div
- !!

! "

""

Selrel,fin(K, W )div! "

""
0 !! Selp∞(E/K) !! Selrel,fin(K, W ) !! im(resp/fin) !! 0,

from where, together with (6.34), we conclude that

(6.36) #(Selrel,fin(K, W )/div) = #XBK(K, W ) · #coker(resp/tor).

On the other hand, from (6.32) and the isomorphism in (6.35) we also have the
commutative diagram with exact rows

0 !! Selp(K, W )div ⊕ U ′ !!
! "

""

Selrel,fin(K, W )div! "

""

resp !! E(Kp) ⊗ Qp/Zp
!! 0

0 !! Selp(K, W ) !! Selrel,fin(K, W )
resp !! E(Kp) ⊗ Qp/Zp

!! 0,

from where we conclude that

#(Selp(K, W )/div) = #(Selrel,fin(K, W )/div) · #U ′.

Together with (6.33) and (6.36), this last formula yields the result. !
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Recall that we use logp : Šp(E/K) → Zp to denote the composition of resp/tor :

Šp(E/K) → E(Kp)/tor ⊗ Zp with the formal group logarithm associated with a
fixed Néron di#erential ωE ∈ Ω1(E/Z(p)).

Proposition 6.10. Let the hypotheses be as in Proposition 6.9. Then

#coker(resp/tor) ∼p

(
1 − ap(E) + p

p

)
· logp(sp) · 1

#E(Kp)[p∞]
,

where sp is any generator of Šp(E/K)/ ker(resp/tor) 0 Zp and ap(E) := p + 1 −
#E(Fp).

Proof. As shown in the proof of Proposition 6.9 (see (6.30)), we have

(6.37) #(coker(resp/tor)) = [E(Kp)/tor ⊗ Zp : Zpsp].

Let E1(Kp) be the kernel of the reduction map modulo p, so we have the exact
sequence

0 → E1(Kp) → E(Kp) → E(Fp) → 0.

The formal group logarithm defines an isomorphism

logp : E1(Kp) ⊗ Zp
-−→ pZp,

and this extends to an injection E(Kp)/tor ⊗ Zp ↪→ Zp. Hence from (6.37) we find

#(coker(resp/tor)) =
[Zp : logp(sp)Zp]

[Zp : logp(E(Kp)/tor ⊗ Zp)]

=
[Zp : logp(sp)Zp]

[Zp : pZp]
· [E(Kp)/tor ⊗ Zp : E1(Kp) ⊗ Zp]

∼p
logp(sp)

p
· [E(Kp) ⊗ Zp : E1(Kp) ⊗ Zp]

#E(Kp)[p∞]
.

Since by definition #(E(Fp) ⊗ Zp) 0 #Zp/(1 − ap(E) + p)Zp, this yields the
result. !

6.5. Leading Coefficient Formula.

Proof of Theorem 5.1(i). Let r ≥ 'alg = ordJFBDP
p . From Proposition 6.3 and

Proposition 6.5 we have the equalities up to a p-adic unit:

1

!alg!

d"alg

dT "alg
FBDP

p

∣∣∣
T=0

∼p #
(
S−→

(r+1)
p

)
(6.38)

∼p Regp,der,γ ·
[
Selp(K, T ) : Selp(K, T )

]
· #

(
Selp(K, W )/div

)
.

Since from Corollary 6.8 we have the relation

[
Selp(K, T ) : Selp(K, T )

]
· #

(
Selp(K, W )/div

)
= #(E(Qp)[p∞])2 ·

∏

w|N
c
(p)
w · #(Selp(K, W )/div),
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continuing from (6.38) we deduce that

1

'alg!

d$alg

dT $alg
FBDP

p

∣∣∣
T=0

∼p Regp,der,γ · (#E(Qp)[p
∞])2 ·

∏

w|N

c(p)
w · #(Selp(K, W )/div)

∼p Regp,der,γ · (#E(Qp)[p
∞])2 ·

∏

w|N

c(p)
w · #XBK(K, W ) · (#coker(resp/tor))

2

∼p Regp,der,γ ·
(

1 − ap(E) + p

p

)2

· logp(sp)
2 ·

∏

w|N

c(p)
w · #XBK(K, W ),

using Proposition 6.9 and Proposition 6.10 for the middle and the last equality,
respectively. Noting that

∏
w|N cw =

∏
"|N c2

" as a consequence of (Heeg), this
finishes the proof. !

6.6. Order of Vanishing. In this section we give the proof of Theorem 5.1(ii).

Since S←−
(1)
q = Selq(K, T ), from (3.17) we have a p-adic height pairing

hp = h(1)
p : Selp(K, T ) × Selp(K, T ) → Qp

whose kernel on the left is given by S←−
(2)
p (and whose Zp-rank is the same as that

of S←−
(2)
p ).

Proposition 6.11. Set r± = rankZp Šp(E/K)±. Then

rankZp S←−
(2)
p ≥

∣∣r+ − r−
∣∣− 1.

Proof. Note that complex conjugation acts on Selstr(K, T ) = Selp(K, T ) ∩
Selp(K, T ). Let

(6.39) hstr : Selstr(K, T ) × Selstr(K, T ) → Qp

be the pairing obtained from hp by restriction. By [How04, Rem. 1.12], we have

hstr(x
τ , yτ ) = −ȟp(x, y),

for all x, y ∈ Selstr(K, T ), where . is complex conjugation. Writing r±
str to denote

the Zp-rank of the . -eigenspace Selstr(K, T )±, it follows that

(6.40) rankZpker(hstr) ≥
∣∣r+

str − r−str
∣∣ .

We distinguish two cases according to the Zp-rank of the image of the restriction
map resp in the proof of Lemma 2.2.

Case (i) (rankZp im(resp) = 1). By (2.3), we have hstr = hp and

(r+
str, r

−
str) ∈ {(r+ − 1, r−), (r+, r− − 1)}.

Thus
∣∣r+

str − r−str
∣∣ ≥ |r+ − r−| − 1, and the result follows from (6.40).
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Case (ii) (rankZp im(resp) = 2). Consider a non-zero element z ∈ Šp(E/K) satisfy-
ing resp(z) = resp(z

τ ) = 0 and resp/tor(z) -= 0. Then

(6.41) Šp(E/K) = Selstr(K, T ) ⊕ Zpz
+ ⊕ Zpz

−,

where z± = 1
2 (z ± zτ ). With this notation, we can write

Selp(K, T ) = Selstr(K, T ) ⊕ Zpz, Selp(K, T ) = Selstr(K, T ) ⊕ Zpz
τ .

Now, we immediately see that

(left kernel of hp) ⊃
⋂

s

ker(hstr(−, s)) ∩ ker(hp(−, zτ )),

where s runs over all the elements in Selstr(K, T ). Thus we conclude that

rankZp S←−
(2)
p ≥ rankZpker(hstr) − 1

≥
∣∣r+

str − r−str
∣∣− 1

=
∣∣r+ − r−

∣∣− 1,

using (6.40) and (6.41) for the second inequality and the last equality, respectively.
!

Remark 6.12. Conjecturally, Case (i) in the proof of Proposition 6.11 only occurs
when either r+ or r− is 0. Indeed, let EK/Q be the twist of E by the quadratic
character corresponding to K/Q. If both r+ and r− are positive, then the finiteness
of X(E/K)[p∞] = X(E/Q)[p∞]⊕X(EK/Q)[p∞] implies that the restriction map

resp = (res+p , res−p ) : Šp(E/K) → E(Kp) ⊗ Zp = (E(Qp) ⊗ Zp) ⊕ (EK(Qp) ⊗ Zp)

satisfies rankZp im(res±
p ) = 1, so the Zp-rank of im(resp) is 2.

The following is Theorem 5.1(ii):

Corollary 6.13. Let 'alg = ordJFBDP
p . Then

'alg ≥ 2(max{r+, r−} − 1),

where r± = rankZp Šp(E/K)±, with equality if and only if hp is maximally non-
degenerate.

Proof. With the notation from (6.8), we have

'alg = e1 + 2e2 + · · · + i0ei0

≥ (e1 + e2 + · · · + ei0) + (e2 + · · · + ei0)

≥ (r − 1) + (
∣∣r+ − r−

∣∣− 1)

= 2(max{r+, r−} − 1),

using Proposition 6.11 for the second inequality. These inequalities are equalities
if and only if ei = 0 for i ≥ 3 and e2 = |r+ − r−| − 1, as was to be shown. !
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Remark 6.14. Assume that p is ordinary for E. Applied to the usual (compact)
Selmer group Šp(E/K), Howard’s work produces a filtration

Šp(E/K) ⊗ Qp = S(1)
p ⊃ S(2)

p ⊃ · · · ⊃ S(i)
p ⊃ · · ·

and a sequence of pairings ȟ(i)
p : S(i)

p × S(i)
p → Qp such that S(i+1)

p is the kernel of

S(i)
p ([How04, Thm. 4.2]). In this setting, a conjecture due to Mazur and Bertolini–

Darmon predicts that

(6.42) dimQpS(i)
p

?
=

{
|r+ − r−| if i = 2,

1 if i = 3,

and S(i)
p = 0 for i ≥ 4, and that S(3)

p spanned by the space of universal norms

Šp(E/K)u =
⋂

n

corKn/K(Šp(E/Kn))

(see [How04, Conj. 4.4] and [BD95, Conj. 3.8]). Using Proposition 2.5 and Corol-
lary 3.11, one easily checks (arguing similarly as in the proof of Proposition 6.11)
that Šp(E/K)u ∩ Selp(K, T ) = 0 . As a result, conjecture (6.42) implies that hp is
maximally non-degenerate.

In the p-supersingular case the same conclusion should hold, building on the
work of Benois [Ben21] to obtain (derived) anticyclotomic p-adic height pairings on
Šp(E/K) ⊗ Qp compatible with our hp.

7. Proof of anticyclotomic main conjectures: Supersingular case

The purpose of this section is to give a proof of the signed Heegner point main
conjecture formulated in [CW24] for supersingular primes p under mild hypotheses.
By the equivalence between this conjecture and Conjecture 2.4 when p = pp splits
in K, we deduce a proof of the latter conjecture under the same hypotheses.

The formulation of the signed main conjecture in [CW24] is under a generalised
Heegner hypothesis,2 and many cases were proved in op. cit. by building on the main
result of [CLW22]. Unfortunately, due to the technical hypotheses from [CLW22],
the classical Heegner hypothesis (Heeg), i.e., the case N− = 1, was excluded from
those results. To obtain a result under (Heeg), here we adapt the approach of
[BCK21] to the supersingular setting.3

7.1. Statement of the main results. We begin by introducing the setting, which
is slightly more general than what is needed for the application in Corollary 5.2.

Let E/Q be an elliptic curve of conductor N , and let p > 2 be a prime of good
supersingular reduction for E. We assume that

(non-ord) ap(E) = 0

(which by the Hasse bounds is automatic for p > 3). Let K be an imaginary
quadratic field of discriminant prime to N such that

(spl) p = pp splits in K.

2Allowing N to be divisible by any square-free product N− of an even number of primes inert
in K.

3After a first draft of this Appendix was written, similar results were announced in [BLV23].
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Writing N = N+N− with N+ (resp. N−) divisible only by primes that split (resp.
remain inert) in K, assume the following generalised Heegner hypothesis :

(gen-Heeg) N− is the square-free product of an even number of primes.

As in the main text, we let ! be the Galois group of the anticyclotomic Zp-extension
K∞/K, and let Λ = Zp!!" be the anticyclotomic Iwasawa algebra.

For any triple (E, K, p) satisfying (non-ord), (spl), and (gen-Heeg) as above, an
analogue of Perrin-Riou’s Heegner point main conjecture [PR87] was formulated in
[CW24, Conj. 4.8]. Letting S± and X ± be the compact Selmer groups over K∞/K
denoted by Sel±(K,Tac) and Sel±(K,Aac)∨ in [CW24, §4.2], respectively, the con-
jecture predicts that both S± and X ± have Λ-rank one, with the characteristic
ideal of the Λ-torsion submodule X ±

tors ⊂ X ± being the same as charΛ(S±/(/±
∞))2

for the Λ-adic ±-Heegner class

(7.1) /±
∞ ∈ S±

constructed in [CW24, §4.1] (where it is denoted z±
∞ = corK[1]/K(z∞[1]±).

In this section we prove the following.

Theorem 7.1. Let (E, K, p) be a triple as above, and assume in addition that:

(i) N is square-free.
(ii) E[p] is ramified at every prime % | N+.
(iii) E[p] is ramified at every prime % | N− with % ≡ ±1 (mod p).
(iv) Every prime above p is totally ramified in K∞/K.

Then S± and X ± have Λ-rank one, and

charΛ(X ±
tors) = charΛ(S±/(/±

∞))2.

In other words, the ±-Heegner point main conjecture in [CW24, Conj. 4.8] holds.

Corollary 7.2. Let the hypotheses be as in Theorem 7.1. Then [CW24, Conj. 5.2]
holds. In particular, in the case N− = 1, Conjecture 2.4 in the body of the paper
holds.

Proof. This follows from Theorem 7.1 and the equivalence in [CW24, Thm. 6.8],
noting that Conjecture 2.4 is the same as [CW24, Conj. 5.2] when N− = 1. !

The remainder of this section is devoted to the proof of Theorem 7.1.

7.2. Bipartite Euler system for non-ordinary primes. Let f =
∑∞

n=1 anqn ∈
S2(!0(N)) be the newform corresponding to E, and denote by

, : GQ → AutFp(E[p]) 0 GL2(Fp)

the associated residual representation. Following [PW11], we say that the pair
(,, N−) satisfies Condition CR if:

• , is ramified at every prime % | N− with % ≡ ±1 (mod p), and
• , is surjective.4

4It follows from [Edi97, Prop. 2.1] that if E is semistable and p is supersingular for E, then ρ
is surjective.
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We refer the reader to [BD05, p. 18] for the definition of j-admissible primes (for
any j > 0) relative to f . Denote by Lj the set of j-admissible primes, and by Nj

the set of square-free products of primes q ∈ Lj . When j = 1, we suppress it from
the notations. We decompose

Nj = N ind
j 6 N def

j

with N ind
j consisting of the square-free products of an even number of primes q ∈ Lj .

Remark 7.3. By definition, admissible primes q ∈ L satisfy in particular q -≡ ±1
(mod p). So, Condition CR allows for the existence, for any m ∈ N , of m-new
forms g ∈ S2(!0(Nm)) level-raising f (and whose existence follows from results of
Ribet [Rib84] and Diamond–Taylor [DT94a,DT94b]; see [Zha14, Thm. 2.1]).

Let T = lim←−j
E[pj ] be the p-adic Tate module of E, and put

Tj := lim←−
n

IndKn/K(T/pjT ), Aj := lim−→
n

IndKn/K(E[pj ]).

For every m ∈ Nj the “N−m-ordinary” signed Selmer groups Sel±N−m(K,Tj),
Sel±N−m(K,Aj) are defined as in [BCK21, p. 1634], with the local conditions at
primes v | p in loc. cit. replaced by the above local conditions H1

±(Kv,Tj) and
H1

±(Kv,Aj) in [CW24, Def. 4.6].
In particular, at the primes q ! N−mp, the classes c ∈ Sel±N−m(K,Tj) are unram-

ified, i.e., resq(c) ∈ H1
unr(Kq,Tj), while at the primes q | N−m they are required

to land in the “ordinary” submodule H1
ord(Kq,Tj). It is easy to see that for q ∈ L,

both H1
unr(Kq,Tj) and H1

ord(Kq,Tj) are free of rank one over Λ/pjΛ (see, e.g.,
[BCK21, Lem. 2.1]).

Theorem 7.4 (Darmon–Iovita, Pollack–Weston). Suppose that

(i) ap(E) = 0.
(ii) p splits in K.
(iii) Each prime above p is totally ramified in K∞/K.
(iv) (,, N−) satisfies Condition CR.

Then for every choice of sign ± and every j > 0 there is a pair of systems

κ±
j = {/±

j (m) ∈ Sel±N−m(K,Tj) : m ∈ N ind
j },

λ±
j = {λ±

j (m) ∈ Λ/℘jΛ : m ∈ N def
j },

related by a system of “explicit reciprocity laws”:

• If mq1q2 ∈ N ind
j with q1, q2 ∈ Lj distinct primes, then

locq2(/
±
j (mq1q2)) = λ±

j (mq1)

under a fixed isomorphism H1
ord(Kq1 ,Tj) 0 Λ/pjΛ.

• If mq ∈ N def
j with q ∈ Lj prime, then

locq(/
±
j (m)) = λ±

j (mq)

under a fixed isomorphism H1
unr(Kq,Tj) 0 Λ/pjΛ.

Proof. This is shown in [DI08] (in particular, see [op. cit., Prop. 4.4, Prop. 4.6]
for the two explicit reciprocity laws) under hypotheses (i)–(iii) and an additional
hypothesis that f is “p-isolated” in the sense of [BD05]. This last hypothesis was
replaced by the weaker hypothesis (iv) above in [PW11] (see [op. cit., §4.3]). !
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For m = 1, the classes /±
j := /±

j (1) exist for all j > 0 and are compatible under

the natural maps Sel±N−(K,Tj+1) → Sel±N−(K,Tj), thereby defining the class

(7.2) lim←−
j

/±
j ∈ Sel±N−(K,T) := lim←−

j

Sel±N−(K,Tj).

As in [BCK21, Lem. 2.2], we have natural isomorphisms

S± 0 lim←−
j

Sel±N−(K,Tj), X ± 0
(

lim−→
j

Sel±N−(K,Aj)

)∨

(note that the almost divisibility result of [HL19, Prop. 3.12] used in the proof
can be shown in the same manner in the supersingular case, replacing the appeal
to results from [Cas17] by their counterparts in [CW24], and using the equality
Sel±(K,Tac) = Sel±,rel(K,Tac) shown in the proof of [CW24, Thm. 6.8]). More-
over, comparing the construction of the classes /±

j (m) in [DI08, §4]5 and the con-

struction of the classes z∞[S]± in [CW24, §4.1],6 we see that (7.2) is the same as
the class /±

∞ in (7.1).
Denote by m ⊂ Λ the maximal ideal.

Theorem 7.5 (Howard). Let the notations and hypotheses be as in Theorem 7.4.
Then both S± and X ± have Λ-rank one, and the following divisibility holds in Λ:

CharΛ(X ±
tors) ⊃ CharΛ(S±/(/±

∞))2.

Moreover, if for some j > 0 there exists m ∈ N def
j such that λ±

j (m) has non-zero
image under the map

Λ/pjΛ → Λ/mΛ 0 Fp,

then the above divisibility is an equality.

Proof. The element /±
∞ is non-torsion by Cornut–Vatsal [CV07] (alternatively, it

follows from the explicit reciprocity law of [CW24, Thm. 6.2] and the non-vanishing
of L BDP

p ). Suppose j = j0 > 0 is such that the condition in the last part of the
theorem holds. Then by [BCK21, Lem. 3.6]7 it follows that for all j ≥ j0 the system
λ±

j satisfies the following condition: for all height one primes P ⊂ Λ, the system λ±
j

contains an element with non-zero image in Λ/(P, p). The result thus follows from
[How06, Thm. 3.2.3] with k = k(P) = 1 and the ordinary Selmer condition at the
primes above p replaced by the ±-condition, noting that the self-duality of the latter
is given by [Kim07, Prop. 4.11], and as shown in [CW24, Lem. 6.5] the analogue of
the control theorem of [How06, Prop. 3.3.1] follows from [Kim07, Prop. 4.18]. !

For the proof of Theorem 7.1, we shall verify the non-vanishing condition in the
last statement of Theorem 7.5 building on progress towards the cyclotomic Iwasawa
main conjecture.

5See esp. [DI08, Prop. 4.3].
6See esp. [CW24, Prop. 4.4].
7Where ℘ should denote the maximal ideal m of Λ.
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7.3. A consequence of the GL2-Iwasawa main conjecture. If g ∈ S2(!0(M))
is any cuspidal eigenform, we denote by Ag/Q a GL2-type abelian variety in the
isogeny class associated to g, and by O = Og the ring of integers of the completion
of the Hecke field Q({an(g)}n) at the prime ℘ above p determined by our fixed
embedding ιp : Q ↪→ Qp. We also let

Ωcong
g ∈ Q

×
p

be Hida’s canonical period of g as defined in [SZ14, §9.3]. For any number field F
and a finite prime w of F , let tw(Ag/F ) denote the Tamagawa exponent as defined
in [op. cit.,§9.1].

Theorem 7.6. Let g ∈ S2(!0(M)) be a cuspidal eigenform, and let ℘ be a prime
of Og above p ≥ 3. Suppose that

(i) ℘ is good non-ordinary for g.
(ii) M is square-free.

Then L(g/K, 1) is non-zero if and only if Sel℘∞(Ag/K) is finite, in which case

ord℘

(
L(g/K, 1)

Ωcong
g

)
= lengthO Sel℘∞(Ag/K) +

∑

w|M

tw(Ag/K).

Proof. Let gK be the newform associated to the twist of g by the quadratic character
corresponding to K. As a consequence of the Iwasawa Main Conjecture for GL2/Q
for non-ordinary primes (see [CÇSS18, Thm. C], and also [FW21, Cor. 1.10]) we
have that L(g, 1) is non-zero if and only if Sel℘∞(Ag/Q) is finite, in which case

(7.3) ord℘

(
L(g, 1)

−2πi · Ω+
g

)
= lengthO Sel℘∞(Ag/Q) +

∑

"|M

t"(Ag/Q),

where Ω+
g is the canonical period of g (see [SZ14, §9.2]), and similarly8 with gK in

place of g. By [SZ14, Cor. 9.2] we have

∑

w|M

tw(Ag/K) =
∑

"|M

t"(Ag/Q) +
∑

"|M

t"(AgK /Q),

and since , is irreducible as a consequence of hypothesis (i), by Lemmas 9.5 and
9.6 in op. cit. we have the period relation

Ωcong
g ∼p (2πi)2 · Ω+

g · Ω+
gK .

The result thus follows from the combination of (7.3) for g and gK . !

8Note that [CÇSS18, Thm. C] assumes square-free level as stated, but as explained in [JSW17,
Rmk. 7.2.3] it also applies to quadratic twists such as gK .
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Remark 7.7. Note that the p-th Fourier coefficient of the non-ordinary form g in
Theorem 7.6 is not assumed to be zero. In fact, the result will be applied to a
suitable g satisfying g ≡ f (mod ℘j) for some j > 0, where f is as in Theorem 7.1,
and so a priori we only have

ap(g) ≡ 0 (mod ℘j).

Thus the Iwasawa theory of g underlying the proof of Theorem 7.6 is of 3/4-type
(after Sprung and Lei–Loeffler–Zerbes), rather than ±-type (after Kobayashi and
Pollack).

Suppose now that g ∈ S2(!0(M)) is an eigenform of level M = M+M− with
M− equal to the square-free product of an odd number of primes inert in K and
such that every prime factor of M+ splits in K. Further, suppose that the p-th
Fourier coefficient of g satisfies ap(g) ≡ 0 (mod ℘j) for some j > 0.

As explained in [CÇSS18, §4.3] (see also [BBL24, Thm. 3.5]), building on the
results of [CH18b] one can associate to g a pair of theta elements (±

∞(g/K) ∈ O!!",
and it follows from their construction and the interpolation formula in [CH18b,
Prop. 4.3] that the image of

(7.4) L±
p (g/K) := (±

∞(g/K)2

under the augmentation map O!!" → O is equal to

L(g/K, 1)

Ωcong
g

· 1

ηg,M+,M−
∈ O

up to a p-adic unit, where ηg,M+,M− ∈ O is as in [Zha14, Eq. (6.4)]. Moreover, one
can easily check the implication if g ≡ f (mod ℘j), then

(±
∞(g/K) ≡ (±

∞(f/K) (mod ℘jO!!")
(see [BBL24, Lem. 3.7]). Therefore, from the construction of the elements λ±

j (m),

it follows that if g is level-raising f at m ∈ N def
j , then the image of (±

∞(g/K) under

the map O!!" → O!!"/℘jO!!" is the same as λ±
j (m).

7.4. Proof of Theorem 7.1. By Theorem 7.5 and the construction of λ±
j of

Theorem 7.4, it suffices to show that there exists m ∈ N def and an m-new eigenform
g ∈ S2(!0(Nm)) with f ≡ g (mod℘), for which the p-adic L-function L±

p (g/K) in
(7.4) is invertible. Let

(7.5) r = dimFpSelp(E/K).

The surjectivity of , implies that the natural map Selp(E/K) " Selp∞(E/K)[p] is
an isomorphism. By (gen-Heeg) and the p-parity conjecture we know that r is odd,
say r = 2s + 1. By a repeated application of the argument in the proof [Zha14,
Thm. 9.1] (to drop the Selmer rank (7.5) down to 1 by adding distinct admissible
primes q1, . . . , q2s to the level of f) and the proof of Theorem 7.2 in op. cit., there
exists m = q1 · · · q2sqr ∈ N def and an m-new eigenform g ∈ S2(!0(Nm)) level-
raising f with dimO/℘Sel℘(Ag/K) = 0. In particular,

Sel℘∞(Ag/K) = 0.

From Theorem 7.6, it follows that

ord℘

(
L(g/K, 1)

Ωcong
g

)
=

∑

w|Nm

tw(Ag/K).
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By the hypothesis that E[p] is ramified at the primes % | N+, we have tw(Ag/K) = 0
for all w | N+, and by [PW11, Thm. 6.8] (see also [Zha14, Thm. 6.4]) we have

ord℘(ηg,N+,N−m) =
∑

w|N−m

tw(Ag/K).

Therefore,
L(g/K, 1)

Ωcong
g

1

ηg,N+,N−m
∈ O×,

and this concludes the proof.
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[CÇSS18] Francesc Castella, Mirela Çiperiani, Christopher Skinner, and Florian Sprung,
On the Iwasawa main conjectures for modular forms at non-ordinary primes,
arXiv:1804.10993v2, 2018.

[CGLS22] Francesc Castella, Giada Grossi, Jaehoon Lee, and Christopher Skinner, On the an-
ticyclotomic Iwasawa theory of rational elliptic curves at Eisenstein primes, Invent.
Math. 227 (2022), no. 2, 517–580, DOI 10.1007/s00222-021-01072-y. MR4372220

[CGS23] Francesc Castella, Giada Grossi, and Christopher Skinner, Mazur’s main conjecture at
Eisenstein primes, arXiv:2303.04373, 2023.

[CH18a] Francesc Castella and Ming-Lun Hsieh, Heegner cycles and p-adic L-functions, Math.
Ann. 370 (2018), no. 1-2, 567–628, DOI 10.1007/s00208-017-1517-3. MR3747496

[CH18b] Masataka Chida and Ming-Lun Hsieh, Special values of anticyclotomic L-functions for
modular forms, J. Reine Angew. Math. 741 (2018), 87–131, DOI 10.1515/crelle-2015-
0072. MR3836144

[CLW22] Francesc Castella, Zheng Liu, and Xin Wan, Iwasawa-Greenberg main conjecture for
nonordinary modular forms and Eisenstein congruences on GU(3,1), Forum Math.
Sigma 10 (2022), Paper No. e110, 90, DOI 10.1017/fms.2022.95. MR4522696

[Col00] Pierre Colmez, Fonctions L p-adiques (French, with French summary), Astérisque 266
(2000), Exp. No. 851, 3, 21–58. Séminaire Bourbaki, Vol. 1998/99. MR1772669

[CV07] Christophe Cornut and Vinayak Vatsal, Nontriviality of Rankin-Selberg L-functions
and CM points, L-functions and Galois representations, London Math. Soc. Lecture
Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 121–186, DOI
10.1017/CBO9780511721267.005. MR2392354

[CW24] Francesc Castella and Xin Wan, Perrin-Riou’s main conjecture for elliptic curves at
supersingular primes, Math. Ann. 389 (2024), no. 3, 2595–2636, DOI 10.1007/s00208-
023-02711-w. MR4753072

[DI08] Henri Darmon and Adrian Iovita, The anticyclotomic main conjecture for elliptic
curves at supersingular primes, J. Inst. Math. Jussieu 7 (2008), no. 2, 291–325, DOI
10.1017/S1474748008000042. MR2400724

[DT94a] Fred Diamond and Richard Taylor, Lifting modular mod l representations, Duke Math.
J. 74 (1994), no. 2, 253–269, DOI 10.1215/S0012-7094-94-07413-9. MR1272977

[DT94b] Fred Diamond and Richard Taylor, Nonoptimal levels of mod l modular representations,
Invent. Math. 115 (1994), no. 3, 435–462, DOI 10.1007/BF01231768. MR1262939

[Edi97] Bas Edixhoven, Serre’s conjecture, Modular forms and Fermat’s last theorem (Boston,
MA, 1995), Springer, New York, 1997, pp. 209–242. MR1638480

[FW21] Olivier Fouquet and Xin Wan, On the Iwasawa Main Conjecture for universal families
of modular motives, arXiv:2107.13726v2, 2021.

[Gre99] Ralph Greenberg, Iwasawa theory for elliptic curves, Arithmetic theory of elliptic
curves (Cetraro, 1997), Lecture Notes in Math., vol. 1716, Springer, Berlin, 1999,
pp. 51–144, DOI 10.1007/BFb0093453. MR1754686

[Gre16] Ralph Greenberg, On the structure of Selmer groups, Elliptic curves, modular forms
and Iwasawa theory, Springer Proc. Math. Stat., vol. 188, Springer, Cham, 2016,
pp. 225–252, DOI 10.1007/978-3-319-45032-2 6. MR3629652

[GZ86] Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of L-series,
Invent. Math. 84 (1986), no. 2, 225–320, DOI 10.1007/BF01388809. MR833192

[HL19] Je#rey Hatley and Antonio Lei, Comparing anticyclotomic Selmer groups of positive
coranks for congruent modular forms, Math. Res. Lett. 26 (2019), no. 4, 1115–1144,
DOI 10.4310/MRL.2019.v26.n4.a7. MR4028113

[How04] Benjamin Howard, Derived p-adic heights and p-adic L-functions, Amer. J. Math. 126
(2004), no. 6, 1315–1340. MR2102397

[How06] Benjamin Howard, Bipartite Euler systems, J. Reine Angew. Math. 597 (2006), 1–25,
DOI 10.1515/CRELLE.2006.062. MR2264314

[JSW17] Dimitar Jetchev, Christopher Skinner, and Xin Wan, The Birch and Swinnerton-Dyer
formula for elliptic curves of analytic rank one, Camb. J. Math. 5 (2017), no. 3, 369–
434, DOI 10.4310/CJM.2017.v5.n3.a2. MR3684675

[Kim07] Byoung Du Kim, The parity conjecture for elliptic curves at supersingular reduction
primes, Compos. Math. 143 (2007), no. 1, 47–72, DOI 10.1112/S0010437X06002569.
MR2295194

https://arxiv.org/abs/1804.10993v2
https://mathscinet.ams.org/mathscinet-getitem?mr=4372220
https://arxiv.org/abs/2303.04373
https://mathscinet.ams.org/mathscinet-getitem?mr=3747496
https://mathscinet.ams.org/mathscinet-getitem?mr=3836144
https://mathscinet.ams.org/mathscinet-getitem?mr=4522696
https://mathscinet.ams.org/mathscinet-getitem?mr=1772669
https://mathscinet.ams.org/mathscinet-getitem?mr=2392354
https://mathscinet.ams.org/mathscinet-getitem?mr=4753072
https://mathscinet.ams.org/mathscinet-getitem?mr=2400724
https://mathscinet.ams.org/mathscinet-getitem?mr=1272977
https://mathscinet.ams.org/mathscinet-getitem?mr=1262939
https://mathscinet.ams.org/mathscinet-getitem?mr=1638480
https://arxiv.org/abs/2107.13726v2
https://mathscinet.ams.org/mathscinet-getitem?mr=1754686
https://mathscinet.ams.org/mathscinet-getitem?mr=3629652
https://mathscinet.ams.org/mathscinet-getitem?mr=833192
https://mathscinet.ams.org/mathscinet-getitem?mr=4028113
https://mathscinet.ams.org/mathscinet-getitem?mr=2102397
https://mathscinet.ams.org/mathscinet-getitem?mr=2264314
https://mathscinet.ams.org/mathscinet-getitem?mr=3684675
https://mathscinet.ams.org/mathscinet-getitem?mr=2295194


788 F. CASTELLA, C. HSU, D. KUNDU, Y. LEE, AND Z. LIU

[KO20] Shinichi Kobayashi and Kazuto Ota, Anticyclotomic main conjecture for modular
forms and integral Perrin-Riou twists, Development of Iwasawa theory—the centennial
of K. Iwasawa’s birth, Adv. Stud. Pure Math., vol. 86, Math. Soc. Japan, Tokyo, [2020]
c©2020, pp. 537–594. MR4385091

[Kol88] V. A. Kolyvagin, Finiteness of E(Q) and SH(E,Q) for a subclass of Weil curves
(Russian), Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522–540, 670–671, DOI
10.1070/IM1989v032n03ABEH000779; English transl., Math. USSR-Izv. 32 (1989),
no. 3, 523–541. MR954295

[Maz78] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent.
Math. 44 (1978), no. 2, 129–162, DOI 10.1007/BF01390348. MR482230

[MR04] Barry Mazur and Karl Rubin, Kolyvagin systems, Mem. Amer. Math. Soc. 168 (2004),
no. 799, viii+96, DOI 10.1090/memo/0799. MR2031496
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(French, with English summary), Bull. Soc. Math. France 115 (1987), no. 4, 399–456.
MR928018
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