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Abstract

We study Schubert polynomials using geometry of infinite-dimensional flag varieties and degeneracy loci. Ap-
plications include Graham-positivity of coefficients appearing in equivariant coproduct formulas and expansions
of back-stable and enriched Schubert polynomials. We also construct an embedding of the type C flag variety and
study the corresponding pullback map on (equivariant) cohomology rings.
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2 D. Anderson

1. Introduction

Schubert polynomials represent the classes of Schubert varieties in the cohomology ring of a flag
variety. For FI(C™), Schubert varieties Q,, are indexed by permutations w € S, and their classes
form an additive basis of the cohomology ring. The ring H;. FI(C") has a Borel presentation as
Zx1,... X0, Y15---,Ynl/I, so some choices are involved in lifting a class to a polynomial. Among
these choices, the polynomials &,, (x; —y), introduced by Lascoux and Schiitzenberger in 1982, are
widely accepted as the nicest representatives for [Q,, | because of their many wonderful combinatorial,
algebraic and geometric properties [22].

One of these properties is stability with respect to embeddings of flag varieties: the same polynomial
represents Q,,,, whether one considers the permutation w in S,,, or in S;,41, or in any S,,, for m > n. As
part of a search for analogous Schubert polynomials for flag varieties of other types, Fomin and Kirillov
enumerated a list of desirable properties possessed by S,,, including a version of stability among them
[12]. Around the same time, Billey and Haiman used stability (of a subtly different sense from that of
[12]) as a defining property for Schubert polynomials in classical types [8].

The operative fact used by Billey and Haiman is this: in the limit, the relations defining cohomology
rings disappear, and one obtains canonical polynomials representing Schubert classes. In type C, one
builds an infinite isotropic flag variety starting with a union of Lagrangian Grassmannians. The Billey-
Haiman polynomials are, by definition, stable Schubert classes in the limiting cohomology ring, which
is a polynomial ring over a nontrivial base ring I'. The analogous construction in type A leads not to
the Lascoux-Schiitzenberger polynomials, but rather to the enriched Schubert polynomials to be studied
here. (A more precise description of the analogy is at the end of this introduction.) These polynomials,
denoted S,, (c;x;y), have coefficients in a nontrivial base ring A, and they specialize to S,, (x; —y)
under a canonical quotient A — Z. The same holds also for the (essentially equivalent) back-stable
Schubert polynomials recently studied by Lam, Lee and Shimozono, building on ideas of Buch and
Knutson, although there the perspective is reversed, the correspondence with Schubert classes being a
theorem rather than a definition [21, §6].

The subject of this article is a variation on [21] and [5]. Using the geometry of certain infinite-
dimensional flag varieties, we provide an alternative construction of the back-stable Schubert polynomi-
als —in the guise of enriched Schubert polynomials [5]. These constructions lead naturally to alternative
proofs of basic properties of these polynomials, and we include some of these arguments.

When discussing infinite-dimensional flag varieties, some care must be taken to distinguish among
several constructions. The main players in our story will be the Sato flag variety and Sato Grassmannian.
All the other flag varieties embed in these, including varieties parametrizing finite-dimensional (or finite-
codimensional) subspaces and infinite isotropic (type C) flag varieties. The affine flag varieties and
Grassmannians also embed, as described in [2], where they are used to compute the integral equivariant
cohomology of the affine flag variety and Grassmannian.

All our infinite-dimensional flag varieties are limits of finite-dimensional ones, so they may be
regarded as devices for keeping track of stability: one can always translate statements about infinite-
dimensional varieties into statements about compatible sequences of finite-dimensional varieties. This
is sometimes worked out explicitly, and sometimes left implicit; given the statements, there is generally
little trouble in supplying proofs.

Some new features are more salient in the infinite setting, though. Here we focus on morphisms
among various Grassmannians and flag varieties, and their effect on Schubert polynomials. The direct
sum morphisms are particularly interesting: we use them to study a coproduct on equivariant cohomology
(§8). For instance, the coproduct of a Schubert class [€,] in the Sato Grassmannian is

[Qi] - DT, Q] ® [,
7%

for some polynomials El’i’v(y), called dual Littlewood-Richardson polynomials [24]. Computing the
coproduct via the direct sum morphism, we give a direct proof that these polynomials (and variations
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of them) satisfy Graham-positivity (Theorems 8.5, 8.7 and 9.3). The first of these positivity results was
proved in [21] by passing through the quantum-affine correspondence. The second involves two sets of
equivariant parameters y and y’, and was suggested in [21], but not proved. The third is an analogue in
type C and appears to be new.

The direct sum morphism also leads to a way of computing the equivariant coproduct coeflicients
Eﬁ,v( y), by expanding a product of one double Schur polynomial by a double Schur with permuted
y-variables; a similar method computes the flag variety variants (Proposition 8.11). While the idea of
using direct sum in relation to coproduct has many antecedents (e.g., [7, 9, 20, 21, 27]), I do not know
of instances where it has been used in the equivariant setting.

Much of this article has close parallels in [21]. Two technical points of contrast are worth highlighting.
First, as will be made clear in the constructions of §3, the Sato flag variety FI considered here is larger
than that of [21]; this has the effect of making the equality H;.Fl = A[x;y] a calculation rather than
a convention, and it also allows the affine flag variety to embed in Fl. Second, and perhaps more
substantially, we do not insist on a ‘GKM’-type description of equivariant cohomology, although we do
include a discussion of fixed points. Instead, cohomology rings are presented in terms of Chern class
generators. This allows us to use smaller torus actions, with larger fixed loci, which are needed in the
construction of the direct sum morphisms.

The re-interpretation of back-stable Schubert polynomials was not the original motivation for this
work; the connection became apparent (to me) only after the fact. The constructions were forced by
requiring that the stability one sees in the type C polynomials of Billey-Haiman should be compatible
with natural embeddings of the symplectic Grassmannians and flag varieties inside the usual (type A)
ones. This basic notion guides much of what we do here. As a preview, let us index a basis for C>" as
€_ntls--->€0,€1,-..,epn, and define a symplectic form so that

(e1-i,e;) = —(es,e1-) = 1
for i > 0, and all other pairings are 0. The inclusions
C" "™ =Ce, ®8C"®Cepa

lead to embeddings of Lagrangian Grassmannians LG (n, C*") < LG(n + 1,C*"*?), defined by
E +— C-e_, ® E. The same maps define embeddings of ordinary Grassmannians, so that the diagram

LG(n, C*) —— LG(n+1,C**?)

[ )

Gr(n,C*") — Gr(n+1,C**?)

commutes. Taking appropriate limits of cohomology rings, for the type A Grassmannian, one sees the
ring of symmetric functions A, and for the Lagrangian Grassmannian, the ring I' of Q-functions. In the
limit, pullback by the embedding LG (C*") c Gr(n, C*") corresponds to a canonical surjection A —» I
(In symmetric function theory, one often sees an inclusion I' < A; this also arises from a morphism
between infinite Grassmannians, but a less natural one from our perspective. See Remark 9.2.)

Similar maps define embeddings of flag varieties. The system of embeddings for symplectic (type C)
varieties is what Billey and Haiman use to define type C Schubert polynomials. The limit of the
compatible embeddings in type A leads directly to the Sato flag variety, and to enriched Schubert
polynomials S,, (¢;x;y) corresponding to Schubert classes. When one evaluates the ¢ variables as
certain symmetric functions (in an infinite variable set), these polynomials become the back-stable
Schubert polynomials of [21].

Many basic properties of these polynomials were enumerated in [5], inspired by similar properties
of the back-stable polynomials. In summary, the overall aim of this article is to examine those aspects
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of Schubert polynomials for which the geometry of infinite flag varieties provides a new or useful
perspective — particularly, what happens to Schubert classes under various morphisms of flag varieties.

2. Preliminaries
2.1. Permutations

With some modifications, we follow [21] for permutations.

We write Bij(X) for the group of all bijections of a set X to itself. We will only consider subsets
X C Z, and we focus on the subgroup Sz C Bij(Z) consisting of all w such that {i € Z |w(i) # i} is
finite — that is, w fixes all but finitely many integers. Some variations will be discussed in §6.

The subgroup Sy is Sy X S, where S, = Sz N Bij(Zg) and S- = Sz N Bij(Z<). That is, Sz is
the subgroup of Sz preserving the subsets of positive and non-positive integers.

For finite intervals [m, n], we usually write S|, ,| = Bij([m,n]), and S, = S|y | forn > 0. We have

S+ = U 'S[l,n], S_= U S[_n,o], and SZ = U S[—n,n]-

n>0 n>0 n>0

Elements w € Sz are written in one-line notation: choose an interval [m, n] so that w(i) = i for all {
outside [m, n], and write w = [w(m),...,w(n)].
Bruhat order on Sy is defined as follows. For each p, g € Z and w € Sz, we set

kw(p,q) =#{a < plw(a) > q}.

Thenv < w in Sz if k,, (p,q) < kyw(p,q) forall p,q € Z.

An element w € Sz is Grassmannian if it has no descents except possibly at 0, so w(i) < w(i + 1)
for all i # 0. Grassmannian elements are in correspondence with partitions A: given a Grassmannian
permutation w, the partition A = (17 > Ay > --- > 0) is defined by Ax = w(l —k) — 1 +k, for k > 0.
Conversely, given A, one defines w = w, by setting w, (k) = A;-x + k for k < 0, and then filling in the
positive values with the unused integers in increasing order.

The length £(w) of w € Sy is the cardinality of the (finite) set {i < j |w(i) > w())}.

The element we® € Bij(Z) defined by w’ (i) = 1 —i does not lie in Sz, but conjugation by w3 defines
a length-preserving outer automorphism w of Sz:

ww)(@) = (wSww)(i) =1 -w(l -1i).

2.2. Vector spaces

Let V be a countable-dimensional vector space with basis e; for i € Z. For any interval [m, n], there is
a subspace V|, | with basis ¢; for i € [m, n]. For semi-infinite intervals we usually write V<, or Vs,,.
The standard flag V<o in V has components V< with basis e; for i < k, for each k € Z. The opposite
flag V.. is comprised of spaces V. spanned by e; fori > k. Clearly, V = V@ V.o (andV =V V.
for any k).

When the context is clear, we use the same notation for standard and opposite flags in V/,, ,,) — for
instance, writing V<x € V(;,,5] instead of V(,,, k] € V(in,n]-

A torus T acts on V, so that e; is scaled by the character y;, fori € Z. So T also acts on each subspace
Vim,n)- We generally take T to be the countable product T = [];cz C*, so that its classifying space is
[1;ez IP”. This is an inverse limit of finite products of P®, so the T-equivariant cohomology of a point
is a polynomial ring in the y variables:

Hy (pt) = Z[y] = Z[....y-1.y0, y1.- - .].

(For those who prefer finite dimensional groups, one may also take 7 to be any torus, with weights y;, for
i € Z. By taking T sufficiently large, any given finite set of y’s can be made algebraically independent.)
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2.3. Flag varieties

For any vector space W, the flag variety Fil,(W) is the space of all complete flags of finite-dimensional
subspaces of W. That is, a point of FI,(W)is E, = (0 Cc E; C E; C --- C W), where dimE; = i.
When W is finite-dimensional, this is the usual complete flag variety. In general, it is a limit of finite-
dimensional flag varieties: to construct F[, (W), for each d > 0, one forms Gr(d, W) as the union
of Gr(d, U) over finite-dimensional subspaces U c W; then Fl,(W) embeds naturally in the product
[T4s0 Gr(d,W). So Fl,.(W) inherits its topology from the product topology on the Grassmannians.
This is the same as the inverse limit topology with respect to projections onto partial flag varieties.

There is also a variety FI_(W) parametrizing flags of finite-codimensional subspaces of W, but here
an extra requirement is imposed: one fixes a flag W* of finite-codimensional subspaces of W. Then
a point of FI_(W) is E®* = (--- ¢ E*> ¢ E' ¢ W), where E’ has codimension i in W, and each
E' contains some W/. (Often we negate indices and write E_; = E' for such flags.) Equivalently, let
K; = W/W!, and consider the restricted dual space W* = | J; K. (This is finite-dimensional when W
is, and countable-dimensional if dim W is infinite.) Then FI_(W) = FI.(W*).

In our setting, an equivalent construction of these varieties is as follows. The flag variety
FI(1,...,n;V5p) is a union of finite-dimensional partial flag varieties FI(1,...,n; V|1 ,]) overm > n,
with respect to standard embeddings coming from V[ ;] C V|1 n+1]-

The finite-dimensional flag varieties have tautological bundles S;, and T acts, restricting its action
on V. Taking the graded inverse limit of cohomology rings, one has

HpFI(1,...,n;Vs0) = Z]y][x1, . ... Xa],

where x; restricts to —c]T (S;/Si-1) on each finite-dimensional variety.

Next we take the inverse limit of FI(1,...,n; Vo) over n, using natural projections. (So it is a ‘pro-
ind-variety’: the inverse limit of a direct limit of algebraic varieties.) Its equivariant cohomology is the
direct limit of rings Z[y][x{,...,X,] asn — oo, so

Hy Fl1(Vso) = Z[y][x1,x2, .. .].

Similarly, the construction of FI_(V<y) (with respect to the standard flag V., ) realizes it as a limit
of the flag varieties FI(m —n, ..., m;V_ 0]), which have tautological bundles S; of codimension —i,
for i < 0. Its equivariant cohomology is

Hy}Fl_(V<o) = Z[y][x0,x-1,...],

where again x; restricts to —c{ (S;/S;+1) on each finite-dimensional variety, for i < 0.

Remark 2.1. One sometimes sees yet another limit, taking a union  J,,~.o FI(V[1 ,]) over the standard
embeddings V[1 ] C V[1,n4+1]. This leads to what might be called a restricted flag variety F I (Vs9),
parametrizing flags E, of finite-dimensional subspaces which are eventually standard: E; = V< for all
k > 0. As a direct limit, its cohomology is

H;‘Fl-,i-(v>0) =Zly] [[x]]gr,

the ring of graded power series in x with coefficients in y. (For example, the infinite sum };.( x; is
an element of this ring.) The embedding F1’,(V-o) < Fl.(Vs¢) corresponds to the inclusion of the
polynomial ring Z[y][x] < Z[y][[x]lgr.

We will not make use of these restricted varieties, except to mention their appearance in the literature.
One of several advantages of working with FI, (V) rather than FI} (Vo) is that elements of its
cohomology are automatically polynomials.
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2.4. A technical note on limits

For a rising union of spaces X = | Xj,, the direct limit topology is defined so that a subset U C X is open
exactly when each intersection UN X, is open. For an inverse system of spaces - -+ — X;, — X;,-1 — -+ -,
the inverse limit topology on X = l&n X, is the coarsest topology so that the projections X — X,, are
continuous; in our context, this is a subspace of the product topology on [] X,.

From the contravariance of cohomology, one may naively expect that

H*(UX,,):l(iLnH*(Xn) and H*(liLan)zli_r)nH*(Xn).

Using Cech-Alexander-Spanier cohomology, and for the relatively nice topological spaces we encounter,
these naive expectations hold. For finite-dimensional algebraic varieties, this cohomology theory agrees
with the more familiar singular cohomology. These facts may be gleaned from standard algebraic
topology texts; see also [6, Appendix Al].

3. Sato Grassmannians and flag varieties

The primary focus of this article is on a different type of infinite-dimensional flag variety. The Sato
Grassmannian parametrizes subspaces of V which are infinite in both dimension and codimension (but
satisfy some other requirements). It can also be described as a certain union of finite-dimensional Grass-
mannians. The Sato flag variety similarly parametrizes flags of spaces belonging to Sato Grassmannians.
The constructions presented in this section are variations on ones found in [21], which in turn are based
on Kashiwara’s construction of thick flag manifolds [17], as well as certain Hilbert manifolds used as
models for loop groups [25].

Fixing our base flag V<, as before, and an integer &, the Sato Grassmannian Gr* is the set of all
subspaces E C V such that

(1) Vo, € E C Vg, for some m > 0 (and hence, all m > 0), and
2) dimE/(ENV<y) —dimV<y/(E NV<) = k.

The first condition implies that both E/(E N V<) and V<o/(E N V<o) are finite-dimensional, so the
second condition makes sense.

This space depends on the base flag, and occasionally it is useful to indicate this dependence in the
notation, writing Gr* (V; V.,). We use the case k = 0 frequently, so we sometimes drop the superscript
and write Gr = Gr°.

Condition 3 means that E C V comes from a point in Gr(m + k,V(_, u]) for some m and k, by
mapping Eynikx S Vicmm) 0 Vain ® Eyk S Vo ® VCinm) = V<m. Condition 3 specifies k.

Using this observation, for k = 0, one constructs (and topologizes) the Sato Grassmannian Gr = Gr”
as the union

Gr = U Gr(m,Vimm)

m>0

of finite-dimensional Grassmannians, using the embeddings Gr(m, V(_p im]) — Gr(m+1,V(_u_1 m+1])
which map an m-dimensional subspace E,;, of V(_,, ] to the (m + 1)-dimensional subspace C-e_,, ® E
of V(—m—l,m+l] .

Similarly, for any k € Z, one has

Grf = U Gr(m+k,V _mm))-

m=|k|

(Without changing the result, these limits could be refined to run over Gr(m+k; V(_ ), form,m’ > 0,
since these are co-final with Gr(m + k, V(_p m)).)
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These unions are compatible with actions of 7, so T acts on Gr. Since Gr is a direct limit of finite-
dimensional Grassmannians, the cohomology ring H7.Gr is the (graded) inverse limit:

H;Gr = @H;Gr(m,V(—m,m]) =Z[y]llc1,c2,...] = Aly].

m

Here A = Z[cy,c3,...] is a polynomial ring; the variable c; restricts to cl.T (V<o — Sp) on each
Gr(m,V(m,m]), where So C V(_;u m] is the tautological bundle of rank m. From now on, we sim-
ply write ¢; = CIT(VS() — Sp), with the notation Sy standing for a tautological bundle on some large
enough Grassmannian.

A similar calculation produces the same result for H;. Gr¥, with variables c}k) = cl.T (V<r — Sk), so
oneach Gr(m +k,V(_pm m]), Sk € V(—m,m) is the tautological bundle of rank m + k.

The Sato flag variety is

Fl={E.=(---CE_.iCEyCE C--)|Ex € Gr'},

so it is a subvariety of [[;c7 Gr*. Using the natural projections to [Tixi<n Gr*, it can be written as an
inverse limit of a union of finite-dimensional partial flag varieties:

Fl:iiLnUFl(m—n,...,m,...,m+n;V(_m,m]).

n m

Each such partial flag variety has a tautological flag of subbundles,
SpC--CSC--CSy CSViimm

with S; of rank m + i. (As with the Grassmannians, the limit can be taken over partial flag varieties
Fim—n,...,m"+n";V_mm1).)
The cohomology ring of the limit is computed as

H;Fl= h_r)nliLnH*TFl(m =Ny m, . 1V )

n m

=Aly][. .. xo1x0.x1, .. ] = Alxs y],

where x; = —c{ (S;/Si-1) and ¢; = cL.T (V<o — So).

Like the Sato Grassmannian, the Sato flag variety depends on the choice of base flag V<., and we
sometimes write FI(V; V.,) for Fl. The precise dependence is this: given two Z-indexed flags E, and
E of subspaces of V, one has FI(V; E,) = FI(V; E}) if and only if E, € FI(V;E,) and E] € FI(V; E,).
(This is just the condition that E, and E are cofinal in both their ascending and descending sequences.)
The same condition describes when Gr* (V; E,) = Gr*(V; E.).

A bit more generally, for any increasing sequence of integers p, indexed so that p; < 0 fori < 0 and
p; > 0if i > 0, there is a partial Sato flag variety

Fl(p):{E':('”CEP—l CEp CEp, C"')|Epk€Grpk},

a subspace of [, GrP*. Its cohomology ring is naturally identified with a subring of H}.Fl = A[x; y],
by taking polynomials that are symmetric in groups of x-variables {xp, +1,...,Xp,,, }. (The elementary
symmetric polynomials in these variables correspond to Chern classes of (Sp,,,/Sp.)*.)

Remark 3.1. Our definition of Gr is the same as that of [21, §6], but our Fl is larger than theirs, which
may be considered a restricted Sato flag variety, F1’ ¢ Fl. This Fl” is a union of finite-dimensional flag
varieties, so its cohomology ring is an inverse limit: it is H7.Fl" = A[y][[x]]g, the ring of formal series
in x, of bounded degree, with coeflicients in A[y]. Pullback by the embedding F1’ < FI corresponds to
the inclusion A[x; y] = A[y][[x]lg:- We prefer to work with polynomials, and hence with F1.
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4. Schubert varieties and Schubert polynomials

Schubert varieties in Fl are defined with respect to the opposite flag V~,.. Foreachw € Sz, and p, g € Z,
recall that

kw(p.q) =#a < plw(a) > q}.
An example is shown in Figure 1. The Schubert variety is
Q,, ={E,| dim(E, NV5,) > ky, (p,q) forall p,q}.

The conventions are set up so that Q,, is a compatible limit of similarly defined loci in the finite-
dimensional varieties FI(m —n,...,m+n;V(_p m])-

The Rothe diagram and essential set of a permutation w € Sz are determined just as in [14]: the
diagram is what remains when one strikes out boxes below and right of each dot, and the essential set
is the set of (k, p, q) where (p, q) is a southeast corner of the diagram and k = k,, (p, ¢). An example
is shown in Figure 1. The conditions dim(E, N Vs4) > k, for (k, p, q) in the essential set of w, suffice
to define Q,, ; this follows from the analogous statement for finite-dimensional Schubert varieties.

Schubert varieties in Gr are defined similarly, by

Qy ={F| dim(ENVsy,x) > k forall k},

for a partition 4 = (1] > --- = Ay = 0). As usual, it suffices to impose such conditions for 1 < k < s,
or even for those k such that 1 > Ax4; (since corners of the Young diagram determine the essential
conditions). These conditions also define the Schubert variety €2,,, C FI, where w, is the Grassmannian
permutation associated to A.

By taking limits of finite-dimensional varieties, there is a well-defined class [Q,, ] in H}.Fl.

Definition 4.1. The enriched Schubert polynomial S,, (¢; x; y) is the (unique) polynomial representing
the class of the Schubert variety Q,, C FL That is,

Sw (C;X; y) = [Qw]

in Alx;y] = H}Fl, by definition.

The enriched Schubert polynomials, by definition, are polynomials in ¢, x and y. Also by defini-
tion, if m and m’ are large enough so that w fixes all integers outside of (—m,m’], the polynomial
Sy (c;x;y) restricts to a Schubert class in the finite-dimensional flag variety FI(V(_p 7). So for

° e

-4 ° -4 °

-3 [ ) -3 510

-2 ° -2 °

-1 51@ -1 4 510

0 ° 0 3@

1 [ ] 1 1 2 1@

2 ° 2 °

3 ° 3 °

4 ° 4 °

5 ° 5 °

° : °

-4 -3 -2-10 1 2 3 4 5 - T 4 -3-2-10 1 2 3 4 5 -

Figure 1. The permutation w in Sy, given in one-line notation as [2,-2,3,1,0,-3,4, —1]. The value
of the rank function k., (3, —1) = 5 is illustrated as the number of dots enclosed by the dashed line, at
left. The diagram and essential set are shown at right.
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4

w € S m,m], the polynomial S,, (¢;x;y) depends only on x; and y; for -m < i < m’, and the
(Lascoux-Schiitzenberger) Schubert polynomials &, (x; —y) give formulas for these Schubert classes.
Under this restriction, ¢ = ¢ (V<o — So) maps to ¢(™ = ¢T (Vicm,o] = So) = H?:—mu }3’1 and taken
together, this proves the following:

Proposition 4.2. Suppose w € S,,y. Then
Sw (C(m);x;y) = 6l"‘><w (x—m+17 e Xm s TY-mAls e _ym’),
where ¢(™ = H?}mH t_i'l
(The fact that the right-hand side is supersymmetric in the non-positive x and y variables, and

therefore may be written in terms of ¢ variables, can be found in [11, Corollary 2.5].)
For example, if £ > 0, we have

SSk(C(m)QX;Y) =Xomtl T X+ Yo o+ Vi

= 6sm+k(-x—m+1’ cees Xks T Yom+ls - - "_yk)'

For general w € Sz, one can use translation operators to relate S,, to S,, for some v € S;, as in
§7.3. (See also [5, 21].)
The inverse formula

Swic;x;y) =8,-1(w(c); y;x), (1)

where w(c) = 1/(1 — ¢y + ¢y — - +), follows by transposing the flags in the definition of Q,,; see [5,
Proposition 1.2].

Finite-dimensional Schubert classes form Z[y]-module bases for each cohomology ring
HLFl(m—n,...,m+n;V_y mn). Soin the limit, the classes of Q,, € Fl form a Z[y]-basis for H7.Fl.
(As usual, one may think about compatible sequences of finite-dimensional Schubert varieties instead.)
It follows that the polynomials S,, form a basis for A[x;y] over Z[y], as w ranges over Sz. In fact,
these considerations prove a more refined statement:

Proposition 4.3. Fix positive integers n,n’.

@ If w(i) < wi+1) foralli < nand all i > n’, then S,,(c;x;y) lies in the subalgebra
Zc,yl[X=n+1s- .-, Xw]. As w varies over such permutations, the enriched Schubert polynomials
Sy (c; x;y) form a basis for this subalgebra, considered as a module over Z.[y].

) Ifw i) < wl(i+1) foralli < nand all i > n’, then S,,(c;x;y) lies in the subalgebra
Zlc,x][y-n+1>--->Yn]. As w varies over such permutations, the enriched Schubert polynomials
S\ (¢;x3y) form a basis for this subalgebra, considered as a module over Z.[x].

(The first statement is proved by considering the Schubert basis for the partial flag variety FI/(p), where
p = (-n+1,...,n"). The second statement is equivalent to the first by applying the inverse formula (1).)
For Chern series ¢, ¢’ and ¢ with ¢ = ¢ - ¢/, there is a Cauchy formula

Sw(cxsy) = Z Su(c;x;1) S, (¢'s =15 y), 2

vu=w

where vu=w means v = w and £(u) + £(v) = £(w) [5, 21].
Following [21, §4.6], by specializing x; = —y; for all i, one obtains the double Stanley polynomials

Fu(c;y) =Sy (c;=y:y). 3)

More generally, there are polynomials F,, (c; y) = S,, (c; —y"; y) obtained by specialization x; = —y, ;.
Further specializing the y variables to zero recovers the ‘stable Schubert’ formulation of the Stanley
symmetric functions, F,, (c) = S,, (c;0;0).
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For Grassmannian permutations, the Schubert polynomials have a determinantal (Kempf-Laksov)
formula [18, Theorem 5]:

Sw, (e5x5y) = det(c(i)g;—isj<i,j<s» 4)
where
i) =c- [Tj<a—i(1+y:)
[Tj<o(1+y:)

=c-c" (Vey—i = Veo).

These evaluate to double Schur functions® s,(c|y), with (4) becoming a variation of the Jacobi-Trudi

formula.
More generally, any vexillary permutation w = w(t) in Sz has a similarly explicit determinantal
formula (see [5]); for example, for any m < n, the permutation wff"”” =[n,n—1,...,m] is vexillary.

Any w € Sz lies in S|, ) for some m < n, sow < wc(,m’"). Any enriched Schubert polynomial may

therefore be computed from the explicit formula for S (n.») using the divided difference recursion
Sws, ifws; <w;
g8y =4 "
0 if ws; > w.

Here, fori # 0, 9; is the usual divided difference operator acting on x variables, so for any f € Z[c,x, y],

f(...,xi,xi+1,...) —f(...,xi+1,xl-,...)

Xi — Xi+l

o f =

For i = 0, the operator dy acts in the same way on x variables, but it also acts on ¢ variables by

O)Ck = Ck—1 +X1Ck_2 +x%ck_3 +-- +x/1‘_1.
. . . 1+y;
(To understand and remember this formula, consider the evaluation ¢ — []; ;_yxl

The enriched Schubert polynomials S,, (c;x; y) specialize to the back stable Schubert polynomials

— .
Sy (x;—y) of [21]. To do this, one evaluates ¢ = [];<q t—i‘ There are several ways to see that this

evaluation sends S,, (c;x;y) to gw (x;—y). One can argue directly from the definition given in [21,
4.9)]:

H
Gy (xs=y) = Hm  Symuy (Xomals - s Xy —Yomtls - - -5 — Vi)
m,m’ —oo

(The limit over m’ stabilizes as soon as w fixes all integers greater than m’.) The polynomials appearing
on the RHS are precisely the specializations of S,, (c; x; y) at ¢, by Proposition 4.2.

Another argument uses [21, Theorem 4.7] to see that gw (x; —y) is the unique series specializing to
the Schubert class [, ] in H}. FI(V(_,,,,»]) when variables with index outside (—m, m] are set to 0, for
every m; this is a defining property of S,, (¢; x; y). For other reasons, and further context, see [5].

However, this series interpretation is not logically necessary for us, and except when making the
connection with the back stable polynomials of [21], we generally avoid this notation, since it assigns a
double role to non-positive x and y variables.

In what follows, we study further algebraic properties of the polynomials S,,, using the geometry of F1.

nder the evaluation ¢ = []; <y 2, some authors write these as s (x/y||—y), notation we avoid in the present context.
1Under the evaluat 1<0 T th te th yl-y), notat d in the present context
- 1
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5. Degeneracy loci

The enriched Schubert polynomials represent classes of degeneracy loci. By taking a sufficiently general
base variety X, they may be characterized uniquely by this property. Precedents for the setup we consider
can be traced to [14], and especially [10].

On a nonsingular variety X, consider a vector bundle V of rank m + n, with flags

Ee:- --CE_|CEyCcE|CEyC---CV
and
Fo:---cFicFycF CF,c---CV,

indexed so thatrk Eg = rk Fo = m. (Sork E, =m+p andtk Fy, =m —q.)
For w € §(_yn,n], there is a degeneracy locus

D, (E.NF,)={x€X|dim(E, NFy) > ky(p,q) forall p,q}

in X. As usual, it suffices to impose conditions dim(E, N F,;) > k for (k, p, g) in the essential set.

Theorem 5.1. Assume D, (E. N F,) C X has codimension €(w). Under the evaluations
coc(V-E-F), xi— —ci(E/Ei-1), yir ci(Fimi/F),

the enriched Schubert polynomial S,, (c; x;y) maps to the class [D,(Ee N F,)] in H*X.

This is proved in [5]. It can also be deduced directly from the formula for [Q,, ], as follows. Choose
an approximation of the classifying space B for T so that the vector bundle V and flag F, are pulled
back from tautological bundles on IB, and F}; is the pullback of V. Take the flag bundle F1 — B over
that classifying space, constructing f: X — Fl so that E, is pulled back from the tautological S,. Then
D,,(E.NF,) = f~'Q,,. More details appear in [6, Chapters 11-12].

6. Fixed points

Recall that T = [];7 C* acts on V by scaling coordinates. To describe the T-fixed points of the various
infinite flag varieties, we need to say more about permutations of Z.

First, for any sets X and Y, let Inj(X, Y) be the set of all injections from X into Y, and let Inj(X) be
the monoid of injections from X into itself. So Bij(X) c Inj(X) is a subgroup.

As usual, we are concerned with subsets of Z. The submonoid Inj®(Z) c Inj(Z) consists of all w
such that

#{i <0|w(@) >0} =#{i > 0|w(i) <0},

and both these sets are finite. (That is, w has finitely many sign changes, and they are balanced.) Any
w € Inj®(Z) also has #{i < k |w(i) > 0} — #{i > k |w(i) < 0} = k for any integer k.

The set Inj(Z~o) may be constructed as the inverse limit of Inj([1,n],Zs¢) over n > 0. This
mirrors the construction of Fl,(Vg), and shows that the T-fixed points of Fl,(V-() are indexed by
w € Inj(Z<o): they are precisely the flags determined by the ordered bases e, (1), €y (2), - - ., SO the
k-dimensional component is the span of e,, (; for 1 <i < k.

Similarly, the 7-fixed points of FI_(V<) are indexed by w € Inj(Z<p), so the codimension k
component is defined by etv(l.) = 0 for —k < i < 0. Equivalently, it is the span of e,, ;) fori < k,
together with all e; for i < 0 not in the image of w. So the flag varieties F/, and FI/_ have uncountably
many fixed points.
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The fixed points of the Sato Grassmannian are (countably) indexed by partitions A, or equivalently
by Grassmannian elements w, € Sz. The fixed subspace corresponding to A is spanned by e, (;) for
i <0. (See also [25, §7].)

The fixed points of the Sato flag variety Fl are indexed by w € Inj®(Z). A fixed flag is determined
by the ordered basis ..., ey, (—1), €w(0)> €w(1); - - -» S0 its kth component is the span of e,, ;) fori < k,
together with all e; for i < 0 not in the image of w.

The formula defining k., (p, ¢) works verbatim for any w € Inj’(Z), because the set it enumerates is
finite for such w. Using this, one can extend the definition of Bruhat order from Sz to Inj’(Z).

Generally, we write p,, for the point corresponding to a fixed flag, also using p, = p,, for points
in Gr.

From the definitions of Schubert varieties and Bruhat order, one sees that

py €Q,, iff v>=w.

Here, as usual, we assume w € Sy, but v varies over InjO(Z).
Formulas for restricting a Schubert class to a fixed point follow from the finite-dimensional case. We

have
[l =[] OGwe =) )
i<j
w(D)>w(j)
and, for any v € InjO(Z),
[Qu]lp, =0 ifvZw. 6)

For v € Inj’(Z), let

L+y,)
=[] T and v =y
i<0v(i)>0 + IV

7>0,v(j)<0
(Note that ¢” is a finite product.)
Proposition 6.1. The enriched Schubert polynomial S, (c; x; y) satisfies the specialization formulas
Sw(es =i =[] Owo—ywi)

i<j
w(i)>w(j)

and, forv € InjO(Z),
Sw(c’;=y"sy)=0 ifv #w.
These properties, as v ranges over Sz, determine S, (c;x;y) uniquely.

The fact that these properties are satisfied follows from the corresponding properties of Schubert
classes. The proof that they uniquely determine a Schubert class also follows from the finite-dimensional
case, by taking a sufficiently large approximation. One only needs to let v vary over Sz (rather than
all fixed points), because specializations of S,, (c;x;y), involving only finitely many variables, are
insensitive to the difference between Sz, and Inj®(Z).

Remark 6.2. Using the identification with T-fixed points of Fl, the topology induced on Inj’(Z) is not
discrete, but rather a limit of discrete sets. The subgroup Sz, c Inj®(Z) is dense, and this is another
reason that fixed points indexed by Sz suffice to determine Schubert polynomials.
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Remark 6.3. Later we will need to consider smaller torus actions. Just as for finite-dimensional flag
varieties, such actions may have larger fixed loci. In particular, we will use T acting diagonally on
V =V @V, so each weight space is 2-dimensional. The fixed loci for the corresponding actions on
Gr(V) and F1(V) have infinite-dimensional components.

7. Duality, projection and shift morphisms

A major advantage of working with Gr and Fl is that new morphisms become evident. As usual, these
can also be described using only finite-dimensional varieties, but it is often clearer to think about the
infinite flag varieties.

7.1. Duality

Fix a linear isomorphism f: V = V¥, where as before, V¥ c V* is the restricted dual defined with
respect to our chosen flag V.. For any subspace E C V, one has the associated orthogonal complement

Et={veV|f(u)(v)=0forallu € E}.

This operation reverses inclusion, so the image of the standard flag is given by the spaces VSL_ e
There is a duality morphism

Grf(V;Vey) — Gr(v; VL),

by E — E*.

The same formula defines an automorphism of FI(V), sending a flag with components Ej to one
with components E*, .

From now on, we assume the isomorphism f: V — V* is given by the skew-symmetric form sending
e; e’l‘_i fori > 0, and ¢; — —e‘;_i for i < 0. In this case, the duality morphism is an involution,
equivariant with respect to the automorphism of 7' defined on characters by y; +— —y;_;, and the standard
flag is preserved, with (V<x)* = V<_. (All of this holds as well for a symmetric form.)

The induced automorphism w of H} Fl = A[x;y] is given by
wie)=1/0-cr+ca—-), w(x)=-x1i,  0(yi) ==Y

The same notation is used for the automorphism of Sz, defined by w(w) (i) = 1 —w(1 —i). One checks
that k., (w) (P, q) = kv (=p, —q), so the duality morphism sends Q,, to Q). It follows that

w(Sw(c;x3Y)) =Sw(w) (€3 x3).
Following [21], one defines &,,, (x; y) for any w € Sy using the duality involution: for w = w_ - wy,

with w_ € S_and w, € S, one defines S,, = W(Sy(w)) - Cu,.

7.2. Projections

For each £, there is a projection ny. : Fl — Grk, sending E, to E. This is a fiber bundle, and the fiber
over Vo € Gr¥is FI_ (V<) x Fl, (V). In particular, the inclusion A[y] < A[x;y] corresponds to
n7, and the homomorphism

07
Alx;y] = Z[x; y], c— 1

corresponds to restriction to the fiber over V<o € Gr.
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Proposition 7.1. If w € Sy is not in Sz, then S,, (1;x;y) = 0. If w = wy - w_ € Sy, then S,, (1;x;y) =
Sy (x;—y).

Proof. For the first statement, we show that Q,, N 7 1(V<) is empty. It suffices to show the fixed-
point sets of Q,, and nal(Vso) are disjoint. Since w ¢ Sy, at least one i < 0 has w(i) > 0. That is,
ky (0,0) > 0. The fixed points in nal (V<o) = FI_(V<) X Fl+ (V) are p,, for Inj(Z <) X Inj(Zo).
Each such v has k,,(0,0) = 0. So v # w, and therefore, p, ¢ Q,,.

The second statement follows from the fact that Q,, N L(Veo) = Q,. x Q,, inside T, (Ve =
Fl_(V<y) X Fl(Vg), together with the definition of S,,,. O

7.3. Shift

Let sh: V. — V be the linear automorphism given by e; — e;_1. This induces shift morphisms, also
written sh: Gr* — Gr¥~!, sending E c V to sh(E) c V, and an automorphism sh: F1 — Fl, defined
by sh(E.)r = sh(Ey+1). The shift morphisms are equivariant with respect to a similar automorphism of
T =[l;ez €, sending z; +— z;_1.

To construct the shift morphism from finite-dimensional varieties, one uses the system of maps

Gr(m+k,Vi_mm)) = Gr(m+k,Vi_m_i ms1])
(E - V(—m,m]) = (Sh(E) - V(—m—l,m+l])'

Taking the union over m on each side determines a morphism Gr* — Gr*~!.
Pullback by the shift morphism gives the translation operator y: A[x;y] — A[x; y] on cohomology.
Explicitly, y = sh™ is given by

y(xi) = Xit1,
y(y:i) = yi+1, and
k k-1
— k-p k-1-p
y(ck)—Z:cpx1 +y12cpx1 .
p=0 p=0
(The action on ¢ variables can be written concisely as y(c) = ¢ - t—i‘].) The action on x variables comes

from sh*(S;) = S;+1, and the y variables are determined by the automorphism of 7. For the ¢ variables,
one observes sh* (V<) = V<1, so

sh* e (Vo = So) = T (Va1 = S1) =" (Vo = So) - " (T - e = S1/S0).

The homomorphism 7 is invertible. For any m € Z, one has y™ (x;) = X;4;,; and y"™(y;) = Yi+m, With
the action on c variables determined by

0 l—x,' .
i=m+1 Toy, 11m <0.

m 1+y,j . .
c- 17", —= ifm > 0;
,ym(c) — { i=l 1-x;
For any w € Inj(Z.), the injection y" (w) is defined by y"™(w) (i) = m + w(i — m).
Proposition 7.2. We have y™(S,, (c;x;y)) = Symw)(c;x; ), forany m € Z and w € Sz.

Proof. The diagram of y(w) is obtained from that of w by shifting one unit in the southeast direction;
in particular, ky () (p + 1,9 + 1) = k. (p, ). Since sh*(S,) = Sp41 and sh* V5, = V.4, it follows
that sh™' Q,, = Q, (), and therefore, sh*[Q,,] = [Qy(w)]. m|
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8. Direct sum morphism and coproduct

We will define and study a direct sum morphism
@: Grf (V) x Gt (V) - Gr**{(V),

as well as a similar one for flag varieties, giving an algebraic version of an H-space structure on Gr. We
pay special attention to the action of these morphisms on Schubert classes.

Here V is our usual vector space, with basis e¢; fori € Z, and V = V @ V. Some care is required in
the specification of base flags for Gr and Fl. We fix an ordered basis for V = V & V by vectors e;, for
i€ %Z. These are

3 (e;,0) fori € Z;
e (0.e;,1) fori € Z + 3.

So e1 = (0, e9p), ey = (eg,0), e = (0, e1), etc. The torus T acts diagonally on V, so both e; and €_1
are scaled by the character y;.

Standard subspaces, indexed by subsets of %Z, are defined in the evident way. In particular, we have
a standard flag V <,. Furthermore, V (5, 1u] = V(im,m] © Viim,m) and V< = Vi ® V<1, when m and k are
integers.

8.1. Grassmannians

We will describe the setup and state some results for the Grassmannian first, and prove the more general
analogues for the flag variety in the following subsection.

As before, there is an isomorphism H;.Gr(V) = A[y]. Here we use the notation A = Z[c] =
Z[cy, ¢y, .. .], and the map identifies ¢x = ¢' (V<o —93), where S is the tautological bundle on Gr(V).
Similarly, one has H7FI(V) = Alx; y], with x; = —clT (%5:/5:-1).

The direct sum morphism

m: Gr¥(V;Ve,) x Gr'(V; Vo) — Gr**(V; V.,)

given by 8(E, F) = E & F is readily checked to be well-defined and T-equivariant.

Proposition 8.1. The morphism
f:Gr(V) - Gr(V), E—V, o0E
induces the standard isomorphism A[y] — A[y] on cohomology rings, sending ¢; — cy.
Proposition 8.2. The homomorphism
H:Gr(V) 25 H (Gr(V) x Gr(V))

is identified with the homomorphism of Z.| y]-algebras

Aly] = Z[e,y] 2 Aly] ®z1y) Aly] = Z[c. ¢', v,

given by ¢x +— cp + cp-1c) + - cicp_ + . (Here c = c!' (V<o — So) comes from the first factor of
Gr(V), and ¢’ = T (Vo — () comes from the second factor, soc =c - c’.)

The first of these propositions follows from the second, after replacing ¢ by ¢’, since f(E) =
@(E, V<o). And the second proposition is simply the equation @*c” (V<o - So) = ¢ (V<o + V<o — So —
S;) =" (Vo = So) - ¢ (V<o = S7).
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Using the isomorphism H}.Gr(V) = H;.Gr(V), the homomorphism &* = A determines a commuta-
tive coproduct structure on Hy.Gr(V). This coproduct has been studied by many authors. It is induced
by the coproduct on A, and it is well known that this can be written in the Schur basis by

A(sa(0)) = Y eh su(e) @ 5,(c),

7Y

where Cﬁ,v is the Littlewood-Richardson coefficient. So it can be computed from an expression in terms
of the Schur basis. (Using (4), the Schur function s, (c) is defined as the determinant

sa(c) = s2(c|0) = det(ca,—irk ) <i,j<s

for any partition 4} > --- > A5 > 0.)
We are more interested in the Schubert basis. Schubert varieties in Gr(V) are defined with respect
to a flag V_, where for g € Z,

V; = V>0 2] V>q- (7)

Then Q, = {E| dim(IEN V} ;) > iforalli}. Under the embedding f: Gr(V) — Gr(V), we have

19, =Q,, 50 f*[Q4] = [Q,] and
[2.] =Sy, (e5x3y) = salely). )

(To see f~'Q) = Qq, note that (Voo @ E) NV ;= (Vao @ E) N (Voo © Vop,i) = 0@ (E N Vsp, i),
so the equations defining €, pull back to those defining Q. The formula f*[Q,] = [Q,], and implies
(8), although the latter can also be proved directly.)

Molev gives formulas for the structure constants here [24]. In our geometric context, we have

B[ Q] = )3, (0) [Qu] x (],

uv

for dual Littlewood-Richardson polynomials Eﬁ,v()’) € Z[y]. In terms of Schubert polynomials, this is
equivalent to the Cauchy formula:

Swi(exiy) = D Fulesy) - Sy(c'sx:)

uv=w,

= Z Th () Sw, (€353 3) - S, (€513 y).
Hu,vyCca

(See [5, §5] and [21, §4.8].2) That is, for u = w,lw;l, the Stanley function expands as F,(c;y) =
u 'c\ﬁ’v(y) Sw, (¢;x;y). The polynomial S,,, (c;x;y) = sa(cly) is always independent of x since it
represents a class coming from H}. Gr = A[y].
The coefficients Efm,(y) are Graham-positive; this is a special case of [21, Theorem 4.22]. We
will give an argument which establishes the general case (and also applies to this case) when proving
Theorem 8.5 below.

Proposition 8.3. Each Eﬁ,v(Y) is a nonnegative combination of terms which are products of linear
factors y; — y;, fori > j, ordered so that the nonpositive indices are all greater than the positive ones.
(Thatis, 1 <2 <---<-2<-1<0.,)

2In the notation of [21], evaluating y = —a and ¢ = [];<9 }:—2 sends Sy, (¢; x;y) to sp(x|la). In particular, our E;}’V(y) is
their Eﬁ,v(—a). The translation to Molev’s notation is explained in [21, §A.4].
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Example 8.4. The nonzero coefficients for 1 = (3, 1) are

~30) =30 =30 _ =30 _ 30 _
0.0 = €. = 0.3 = C@.0n = Cane = b

~(3.,1) _

C(l),(Z) =Yo— Y1,
~(3,1) —
C(])’(]’l) =Y2=JY1
~(3,1)

C(l),(l) = (yZ - yl)()’O - yl)
One can have repeated factors — for example, 5%28)1) = (yo — y1)?. In fact, we will see that only linear
forms and squares of linear forms occur as factors (Theorem 8.5).

As usual, the morphism B comes from compatible morphisms of finite-dimensional vari-
eties, B: Gr(m, Vicmm)) X Gr(m,V_um)) — Gr(2m,V _,, ). The subvariety (X, x X,) C
Gr(2m, V (_py mm)) is a Richardson variety, X,0,,» N, Where u @y, v is the partition (vi+m, ..., v, +
m, {1y, - -5 Mm), and p,, is the m X m rectangle. (In Young diagrams, one forms u @, v by placing v to
the right of the m x m rectangle and placing u below the rectangle; we are assuming m is at least equal
to the number of parts of v and to the largest part of u. This is [27, Proposition 2.1].) The coefficients
=~

¢,y arise in the expansion of the class of this Richardson variety in a Schubert basis with respect to a

third T-invariant flag: the one corresponding to the ordered basis

(67m+], 0)7 R (EO’O)’ (O’ e,m_,_]), cees (0’ 90),
(0,e1),...,(0,em), (e1,0),...,(em,0).

This interpretation leads to another way of computing. Fix a sufficiently large m, consider variable sets

X = (X_2m+1s- .- »X2m) and t = (t_2m+1, - - -, t2m), and let s, (c|t) be the specialization of S,,, (c; x; ) by
c= H?:_2m+1 llf—tx'L Then Eﬁ,v()’) is the coefficient of s,,4,,(c|y) in the expansion of s (c[y) - 5,,, (c|y),
where
Y= (Vomttse s Vi Yomtls - s Ym) )
and
’y: ()’—m+1, LR 9y0ay—m+l’ LR ,yO,YI, L ,)’m,yl, LR 9ym) (10)
~2,2,1)

For example, ¢ (v) = (yo — y1)? is the coefficient of 53,3,1)(cly) in the product

(D), (1,1
522,10 (Cly=1,Y0, Y1, Y0, Y1, Y2, Y1, ¥2) - $(2,2) (€|Y-1, Y0, Y1, Y2, Y1, Y05 Y1, ¥2).-

(In comparison with [21], our s, (c|t) is their s, (x|-a).)

8.2. Flag varieties

The direct sum morphism extends to an action on the flag variety: one defines
@|: Gr(V) x FI(V) — FI(V)

in the same way, so that (F, E,) is sent to the flag I, with [Ex = F & E}. The pullback &*: H}Fl —
H}. (GrxFl) is identified with a co-module operation A : A[x; y] — A[y] ®z[y] Alx;y]. As before, this
homomorphism is determined by its values on Schur polynomials, and one can compute using classical
Littlewood-Richardson numbers; but also as before, we are more interested in the behavior of Schubert
polynomials.
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The morphism B induces an embedding f: FI(V) — FI(V), by E, — V<o & E., and as in
Proposition 8.1, the pullback is an isomorphism on cohomology rings, A[x,y] — Al[x,y], sending
c—ec.

Schubert varieties in F1(V) are again defined with respect to the flag V, described in (7), so

Q,, = {E.| dim(E, N V) > ky,(p.q) forall p,q}.

As before, f1Q,, = Q,,, and we have [Q,,] =S,, (¢;x;y) in HFI(V).
The action on Schubert classes is by

& (@] = > G, (1)1Qu] X (2]
u,v

Using ¢ = ¢ - ¢/, this is expressed via the Cauchy formula as

Sw(exiy) = D Fulesy) - Sy(c'sx:)

uv=w

= Z Cv(M) S, (c3x3y) - Sy ('3 x3y).
v

Comparing coefficients of S,, it follows that E“lf’v(y) = 0 unless £(wv™!) = £(w) — £(v). When this
length-additivity condition holds, the coefficients arise in the expansion

Fry-1(e53) = D80, () S, (6333 7).
M

In the terminology of [21, §4], these are the double Edelman-Greene coefficients, the precise translation
being

-1 -
v =Ce =47 (-a)

when £(wv™!) = €(w) — £(v) (and Cjiv(y) = 0 otherwise).

Theorem 8.5. The coefficient ELV’V (y) liesinZi»o[yi—yj |i > jl. It is a nonnegative sum of terms which
are squarefree in the linear forms y; — y;, if both indices have the same sign (positive or nonpositive),
and have degree at most 2 in the forms y; — y, for i nonpositive and j positive.

The total order < on Z is the one defined in Proposition 8.3, s0 1 < 2 < :-- < —1 < 0. The
theorem refines [21, Theorem 4.22], which asserts positivity without bounds on the powers of y; — y;.
The proof given in [21] relates the coeflicient EL‘”V (y) to one appearing in the equivariant homology of
the affine Grassmannian, and then invokes the quantum-affine (Peterson) isomorphism and positivity in
equivariant quantum cohomology.

Our argument is based on a direct application of Graham’s positivity theorem [15], which says
the following. Suppose By is a connected solvable group, with unipotent radical Uy and maximal
torus 7, and By C By is a closed subgroup whose unipotent radical Uy C Uy is normalized by T.
Let x1,..., xn be the characters of T on the quotient variety Uy /Uy (considered as an affine space),
counted with multiplicity. If By acts on a variety X, and Y C X is a Bp-invariant subvariety, then there
are By -invariant cycles Z; so that

[T

iel

[Z1]

Ic{l,...N}

as T-equivariant Chow (or homology) classes. (See also [6, Ch. 19].)
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Figure 2. Weights (o) on U* x U* and (o) on U* /(U* x U").

Proof. We may compute a given coeflicient ¢;;,, on a sufficiently large but finite dimensional flag

variety, so for now, we choose m > 0 and set V = V(_,, ], etc., writing FI(V) for the complete
flag variety, and FI(V) = Fl(m,m + 1,...,3m; V) for the partial flag variety, so the direct sum map

is@: Gr(m,V) x FI(V) — FI(V). We use the ordered basis ¢_,,,41, ..., e, for V, as usual, and let
B* C GL(V) be the subgroup stabilizing the corresponding flag V<,. For V = V&V, we use the ordered
basis

(e-m+1,0),...,(e0,0),(0,e_p41),...,(0,e0),
(09 el)’ R (07 em), (81,0)’ L] (em’ 0)

The flag V, obtained by reading this basis backwards is the one used to define the (opposite) Schubert
variety Q,,. Let B~ € GL(V) be the subgroup stabilizing this flag, and let B* be the subgroup
stabilizing the flag V obtained by reading the basis forwards.

So in our chosen bases for V and V, the subgroups B* ¢ GL(V) and B* c GL(V) are upper-
triangular, and B~ and B~ are lower-triangular. Let Ut < B* and U* c B* be the corresponding
unipotent radicals.

In FI(V), the B~ invariant Schubert varieties Q,, (of codimension £(v)) are transverse to B*-invariant
Schubert varieties X, (of dimension £(v)); likewise one has Q,, and X, in Gr(m, V). The B -invariant
Q,, and B*-invariant X,, in FI(V) are defined with respect to the flags V, and V7, respectively. As
we have seen, Q,, has class S,, (c; x; y).

By Poincaré duality, we have

B ([X, x Xu]) = > a0, (3) - [Xu]

in H;. FI(V). The left-hand side is the class of the (B* X B*)-invariant subvariety @(X,, x X,) € FI(V).
Applying Graham’s theorem expresses this as a sum of B*-invariant cycles, with coefficients coming
from the characters of T acting on U*/(U* x U*). Since the only B*-invariant cycles are Schubert
varieties X,,, this is the desired decomposition.

The characters on U*/(U* x U*) are y; — y; fori < 0 and j > 0 (each with multiplicity 2), and
vi —yjfori,j <0ori,j > 0 (each with multiplicity 1). See Figure 2 for an illustration.

At this point, we have established that ELV’V (y) is a nonnegative sum of monomials in y; —y; fori < 0
and j > 0 (each occurring at most twice) and y; — y; for i, j of the same sign (each occurring at most
once). To conclude, observe that if 7 and j have the same sign and i < j, the linear forms y; — y; cannot
contribute since this would violate [21, Theorem 4.22]. ]

Remark 8.6. The proof given in [21] relates the coefficient ELV,V (y) to one appearing in the equivariant
homology of the affine Grassmannian, and then invokes the quantum-affine (Peterson) isomorphism and
positivity in equivariant quantum cohomology. Until the final sentence, our argument is independent of
[21]. A completely independent proof, based on a direct transversality argument, appears in [1].
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In fact, the direct sum morphism is equivariant for a larger torus. Let T =7 X7’ acton V=V @V
by characters y on the first factor and y’ on the second factor. Then @8: Gr(V) x FI(V) — FI(V) is
equivariant for the induced T-action. One can define coefficients E}f’v (y,y’) € Z[y;y'] by

= > a3, (00 [ x [Q],
M,V

or equivalently,

X x X1 = Y 00y X ],

M,V
The argument for Theorem 8.5 also proves that these coefficients are also Graham-positive:

Theorem 8.7. The coefficient Elvf,v (y,V’) is a nonnegative sum of squarefree monomials in linear forms

Y- =YL y- =¥ Yo —ys, andy -y,
where y. stands for any y; withi > 0, y_ for y; withi < 0, etc.

In other words, the forms appearing are d — ¢ with ¢ < d, where ¢ and d are among the y and y’
variables, ordered so that

el <O <Oy < {y-)

and exactly one of ¢ or d is a primed variable. (To compare with the illustration in Figure 2, label the
rows and columns by —1,0,—-1’,0’,1’,2’, 1, 2, so that they are scaled by the corresponding characters

y; and yi.)
The coeflicients are equal to the triple Edelman-Greene coefficients j); (a,b) of [21, §10], after
setting y; = —b; and y; = —ay; that is, j)/(a,b) = ”’e(—b,—a). Indeed, the definition shows that

i v (y,') are the coefficients appearing in the expansion

Sw(esx:y) = DT (3,3 sulely) Sulcsx5y"),

7Y

which, noting our sign conventions, agrees with the characterization of jl;” v (a, b) from [21, §10]. So
the theorem expresses positivity in the a and b variables, answering a question raised in [21, Remark
10.13].

One recovers the coefficients ?;f,v (y) by setting y’ = y. However, Theorem 8.5 does not follow from
Theorem 8.7 since one can see factors of y; — y; withi < j.

Example 8.8. We have

2,3,-1,0,1
Sy = 01 =y =)

and

~2,3,-1,0,1] _
Ci, [02—11(yy) Y=y

This shows there is no total order < on the variables (y, y’) such that both (1) the coefficients ?,f,v (v,
are nonnegative sums of monomials in d — ¢, with ¢ < d, and (2) the specialization y’ = y respects the
order (i.e., y; < y;. implies y; < y;). (Of course, any coefficient E‘/f,v (y,y’) violating (2) must map to 0
under the specialization y’ = y, as the two shown above do.)
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Remark 8.9. Specializing to the case where v = w,, and w = w,, one has coefficients Eﬁ’v (y,y’) for the
direct sum morphism of Grassmannians; in particular, they are also positive. However, these coefficients
do not define a co-commutative coproduct, for the reasons noted in [20]. The coefficients displayed in

Example 8.8 are Eg:;;’w(y,y’) and Eﬁﬁ;,(z,l) (y,y’), respectively. But one computes Z<03(32)2) (y,y') =
~(3,3) "N

Consider the corresponding direct sum morphism 8: Gr(m, V(_p m]) X FI(V(_pm)) — Fl(m,m +
1,...,3m; V ( s m)) of finite-dimensional varieties, and identify V (_;; m] = V(—2m,2m] Using the ordered
basis which lists (e;, 0), and then (0, e;). As before, the image of X, X X,, under direct sum is a Richardson
variety. Specifically, define a permutation of {-2m + 1, ...,2m} by

HOmv=[wy(-m+1)-m,. .., w,(0) —m, v(-m+1)+m,...

convim)y+m, wy (1) —m,..., wa(m) —m].

For example, for ¢ = (3,1,1), v = [0,-1,2,-2,3,1], and m = 3, we have u @, v =
[-4,-3,0,3,2,5,1,6,4,-5,-2,-1].

Proposition 8.10. Assume m is large enough so that w,, and v lie in S, m]. Let xM = [2m +
L,...,-m, 1,...,2m, —m+1,..., 0]. Then

E(X}l x X,) = Xﬂ@,,,v n Qx(m)s

a Richardson variety in Fl(m,m +1,...,3m;V (_p m])-

The proof is the same as that of [27, Proposition 2.1]. This leads to another way of computing the
Edelman-Greene coefficients.

Corollary 8.11. The polynomial ¢}, ,,(y, ") is equal to the coefficient of Se,,v (€;x;y) in the expansion
of Sy (€ x;Y) - S, om (€5 x3y), where

Y= Vomtts oo Yo Yopits 0 Ymm)
and
Y= (Vomals s Y05 Y pats -2 Vs Vs v o2 Ym)s
and ¢ and ¢ are determined by specializing n?:—Zm l 11_;;" tot =y andt =, respectively.

Proof. The specializations of the y variables ensure that S, (¢;x;y) = [Qw], Suo,.»v(CX}y) =
[Que,v], and S om (e;x5y) = [Q,em] in Hy, Fl(m,m+1,...,3m;V (_y m]). And by Poincaré duality,
the coefficient of [Qe,,] in the expansion of [Q,,] - [Q ] is equal to the (equivariant) integral

/ (901 - (001 - (Ko ].
FI(V)

We have [Q o | - [Xpo,,v] = [Qcom N Xw,0,v] = [B(Xy X X,)], so this integral becomes

/ [Q.] B[ X, X X, ] :/ B[] - [Xu X X, ],
FI(V) Gr(V)XFI(V)
which is the coefficient of [Q,] X [€,] in &"[€,,], as claimed. m]
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9. Type C

Most of the foregoing discussion has analogues in other types — in fact, one motivation was to develop a
type A analogue of constructions from other classical types. Here we will discuss some aspects of type
C, focusing on the relationship with type A.

Changing notation, we write T for the ‘positive’ torus [];.o C*, with standard characters y; fori > 0,
and T = T x C*, where the extra C* has character z. This acts on V so that, for i > 0, e; has weight
vi, and e;_; has weight z — y;. If we let the larger torus ([];c7z C*) X C* act on V in the standard way,
so that e; is scaled by y; for all 7, then T embeds so that the restriction of characters is y; — y; for
i >0andy; — z—y-; fori < 0. The corresponding homomorphism of equivariant cohomology rings,
Z.yllz] = Z[y+][z], is defined the same way.

9.1. Lagrangian Grassmannians and isotropic flag varieties
We fix a standard symplectic form on V, defined by setting
(e1-i,ei) = —(er e1-i) = 1
for i > 0, and setting all other pairings to 0. The form
(,): VeV -,

is preserved by T, where the target C, is scaled by character z. When restricted to each 2m-dimensional
subspace V(_,,, ], this defines a symplectic form and an isomorphism

Vicmm) — V(*—m,m] ®C,.

Using these subspaces to define the restricted dual of V, this also gives an isomorphism V — V* @ C,.
We fix the flag V.. as before. The infinite Lagrangian Grassmannian is the subvariety

LG C Gr

parametrizing subspaces E € V which belong to Gr and are isotropic with respect to the symplectic
form (i.e., those E for which (, ) becomes identically zero when restricted to E). As for Gr, we use the
notation LG(V; V<,) when there is ambiguity in the flag.

The subspace V< is isotropic, so it lies in LG. The subspace V- is also isotropic, but it does not lie
in Gr so does not define a point of LG. (Note, however, that the symplectic form defines isomorphisms
Ve =V, ®C;.)

As noted in the introduction, one has compatible embeddings

LG(m, V(—m,m]) — LG (m +1, V(—m—l,m+1])

! [

Gr(m, V(fm,m]) — Gr(” + ]s V(*l‘)’l*l,m+l])’

making LG = U,,50 LG (m, V(_p,m])-

The cohomology ring of each finite-dimensional Lagrangian is generated by Chern classes of the
tautological bundle S € V(_;,; ], With relations coming from the Whitney sum formula. Using ¢ =
¢! (V<o — S), these relations are determined by c - ¢ = 1, where

c=c"(Viy®C, -5 ®C,).
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(Using the symplectic form, one has V(_, m)/S = §*® C; and V2, ® C, = V>, so the relations follow.)
By standard Chern class identities, one writes

p - . .
Cp = Z (i)_ 11) (=27 (=D ci.

Extracting the degree 2p part of ¢ - ¢, one finds relations

Cpp = Z (_1)1(({) + (j : 1))Zi Cp-i+jCp-j =0,

0<i<j<p
for p > 0. Taking the limit, we have
HyLG =Ty, ].
where

I'= A[Z]/(Cpp)p>0-

Pullback by the inclusion LG < Gr induces the canonical surjection A[z][y] - T'[y.].
For k < 0, one defines IG* C Gr in the same way. It is the union

IGF = U IG(m +k, Vi mm))

m> k|

of (possibly non-maximal) isotropic Grassmannians. The (type C) infinite isotropic flag variety is the
variety

FI ={E,:(---CE_, Cc Eg=E CV)|E; € IG'},
a subvariety of []; < IG*. Its cohomology ring is
H3FI€ =T [xy, y4],

using x; = clT(S_,-+1/S_i) fori > 0, where (--- € S_; € Sg =S C V) is the tautological flag. (As usual,
these should be regarded as the stable limits of vector bundles on the finite-dimensional type C flag
varieties.)

Just as for finite-dimensional varieties, an isotropic flag extends canonically to a complete flag,
by E; = E*, for i > 0, and one obtains an embedding FI€ < FI. Using the symplectic form to
identify V = V¥ ® C,, this realizes FI as the fixed locus for the duality involution described in
§7.1 (or rather, a variation of that involution which twists by C,; see [5]). In particular, we have
E;/Ei-; = (Ei-i]E-;))*®C, fori > 1.

The pullback on cohomology is the surjection A[z][x,y] = I'[x4, y+], where x; — x; for i > 0,
and x; — z —x1-; for i < 0. Realizing FI€ c Fl as the fixed locus of a (twisted) duality involution
gives another way of viewing the relations defining this quotient of A[z][x, y]. The corresponding
homomorphism

k
ot =3 ({2 ot isu@. o =z-ri w0 ==y

i=1

must be the identity on H*TFIC, and the relations express this.
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Remark 9.1. The ring I' = I'/(z) is the classical ring of Schur Q-polynomials. This can be written
asI' = A/(Cpp)p>0, Where now Cp,, = Z;.’:O(—l)jcmj ¢p-j. Many statements and formulas become
much simpler in the ‘untwisted’ case where z = 0.

Remark 9.2. In symmetric function theory, one often embeds I' < A, considering both as rings of
symmetric functions in auxiliary variables. The ring I'" also embeds in A[z]. This requires more care,
but it also points the way to a geometric interpretation. It is helpful to realize these inclusions of rings as
pullbacks via a different map between infinite Grassmannians. We will describe it in terms of compatible
maps of finite-dimensional varieties.

To lighten the notation, let V,,, = V(_, ;u) and L = C,, and let V,,, = V,,, ® V;;, ® L, with its canonical
L-valued symplectic form. For any fixed k, there is a map

Gr(m+k,Vy,) — LG(V,,),

sending a point A ¢ V,,, to A & (V,,/A)* ® L c V. One checks that this is an isotropic subspace. The
space I, = Vo ® VZ; ® L C Vy, is also isotropic subspace. Let § C V,, be the tautological bundle.
Pullback sends cT(V,, - $ — E,;,) to

TV =S-0"®L-E,)=c" (Voo -Viy®L+S*®L-S),

where S C V,,, » Q are tautological bundles on Gr(m + k, V).
These maps are all compatible with the natural inclusions V,, C V,,,41. So there is a corresponding
morphism Gr'® (V) — LG(V). The corresponding pullback map on cohomology, I' — A[y.][z] is

given by
1+y; 1+x; +
e ] Y [1 : Tz (11)
o LmYitz o -x
where x_,,,11, . . . , xx are Chern roots of §* on each finite-dimensional Gr(m+k, V,,), and A is regarded

as the ring of supersymmetric functions in the variables x; for i < k and y; for i > 0. The series on
the right-hand side of (11) is stable with respect to setting x; = y; = 0 for |i| > m, so its homogeneous
pieces are well-defined elements of A[y.][z], as they must be. (They are deformations of the classical
polynomials O, (x).)

9.2. Schubert varieties and Schubert polynomials

The group of signed permutations is the subgroup W,, C Sz of permutations w such that w(1 —i) =
1 — w(i) for all i. These are the elements of Sz which are fixed by the involution w. The submonoid
SgnInj(Z) c Inj(Z) is defined similarly, and one also has the submonoid SgnInj®(Z) c SgnInj(Z)
of signed injections with finitely many sign changes. (The balancing condition is automatic here.)
Choosing a large enough m so that w(i) =i for |i| > m, we often write w € W, in one-line notation as
w=[w(l),...,w(m)].

Just as Inj’(Z) indexes fixed points of Fl, the subset SgnInj’(Z) indexes fixed points of FIC: the
point p,, corresponds to the flag £, with £ spanned by e, (;) for i < 0. (With conventions as in §6 for
integers not in the image of w.)

Schubert varieties are indexed by signed permutations. For each w € W, there is a Schubert variety
in FIC, defined by

Q, ={E,|dim(E, NV5,) > k,,(p, q) for p < 0and all g},
where k,, (p, q) = #{a < p|w(a) > g}, as before.

A strict partition 1 = (1; > --- > A5 > 0) determines a Grassmannian signed permutation
w = w, by setting w(i) = 1 — A; for 1 <i < s, and filling in the remaining unused values in increasing
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order. For example, A = (4,2, 1) has Grassmannian signed permutation w, = [-3, -1, 0, 3]. Schubert
varieties ,; C LG are defined by conditions dim(E NV, ) > k.

As before, Schubert varieties in FI€ determine unique Schubert classes. The (twisted) double
Schubert polynomial of type C is the polynomial such that

SS(c;x:y) = [Q0]

under I'[x,, y4] = H*TFIC. For z = y = 0, this is precisely the definition in [8]; for z = 0, these are the
double Schubert polynomials of [16]. Among the many wonderful properties of these polynomials, we
mention the Cauchy formula:

SC(e;x;y) = Z SS(e;x;0) SS (52— 13y), (12)

uv=w

wherec=c - ¢’.
One can compare Schubert polynomials in types A and C via the canonical surjection A[z][x,y] —
I'[x,,y,]: for w € S; C W, this map sends §2 (c;x;y) to S (c;x;y). A geometric proof is in [5].
The twisted double Q-polynomials Q ,(c|y) = S¢ ,(¢;x;y) correspond to Schubert classes in LG,
so they form a basis for I'[ y,] over Z[z][y+]. At z = 0 (and an appropriate evaluation of c), these
specialize to Ivanov’s double Q-functions; at z = y = 0, they specialize to Schur’s Q-polynomials
Q.(c), which form a basis for I'.

9.3. Direct sum and coproduct

The embedding LG c Gr is compatible with the direct sum map, where one takes the symplectic form
on V =V @V to be the difference of symplectic forms on each summand. So one obtains a coproduct
A:T[y.] — I'ly+] ®z[y] T[y+]. Similarly, the direct sum morphism LG(V) x FI€(V) — FIC(V)
determines a co-module homomorphism I'[x,; y.] — T'[y.] ®z(y) L[xs, y+].

In Schubert classes, we can again write

Z A (i 9 [Qu] X (9],

for strict partitions u and signed permutations v, w, where the polynomials f;lwv (y; z) are type C double
Edelman-Greene coefficients.
Using Cauchy formulas, this co-module operation on Schubert polynomials can be written as

SS(exy) = ) Fo(ey) - SS(chxy)

uv=w
= > (332 @, (ely) S (¢33 ),
J7RY
where the (twisted) double type C Stanley polynomial is defined as
Fi(e;y) = SG(esz=y3y).

As before, the coefficients ﬂwv (y; z) arise in the expansion of F gv,l in the Q,, basis.
Also as before, the direct sum morphism is actually equivariant with respect to the larger T X T x (C*)
action on V = V @ V, where the C* factor still acts diagonally (though once again, the extended
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equivariant structure does not define a commutative coproduct). Writing y; for the characters on the first
factor and yl’. for those on the second factor, we can expand

B[ X x Xo] = D0, (3,)52) [Xow]
7Ry

in H,

. c
TXTX(C*)F] (V).

Theorem 9.3. The coefficient f’,(y,y’;z) is a nonnegative sum of squarefree monomials in linear
forms —y! —y;+zandy;-y;.

The proof is the same as for Theorems 8.5 and 8.7, applying Graham’s theorem and keeping track of
weights on the corresponding unipotent groups in symplectic groups. R

Specializing y = y’, one obtains the type C analogue of a weak form of Theorem 8.5: f", (y;2) is a
nonnegative sum of squarefree monomials in —y; — y; + z and y; — y;. This version requires no appeal
to a quantum-affine isomorphism, which was used in the above proof of Theorem 8.5 to show that only
yi —y; withi > j can appear in EE”V (y). It should be interesting to adapt the methods of [1] to establish

a stronger positivity statement for ﬂwv (y; z), analogous to that of Theorem 8.5.

Remark 9.4. In the Lagrangian Grassmannian case where w = w, and v = w,, for strict partitions 1
and v, the polynomial fiv (y) may be regarded as a dual Hall-Littlewood coefficient. It expresses the
coproduct

0 (cly) = > F1, (32 Qu(cly) - 0, ('),

uv

where ¢ = ¢ - ¢’ as usual. Evaluating at y = z = 0, this is the structure constant for multiplication in
the basis of P-Schur functions; that is, fj’V(O) = ljl,y in the notation of [23, §III.5]. Combinatorial
formulas for this case were given by Stembridge [26].
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