
Journal of Scientific Computing (2024) 101:33
https://doi.org/10.1007/s10915-024-02674-3

A General Degree Divergence-Free Finite Element Method for
the Two-Dimensional Stokes Problem on Smooth Domains

Rebecca Durst1,2 ·Michael Neilan1

Received: 23 April 2024 / Revised: 22 August 2024 / Accepted: 29 August 2024 /
Published online: 23 September 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
In this paper, we construct and analyze divergence-free finite element methods for the Stokes
problem on smooth domains. The discrete spaces are based on the Scott-Vogelius finite
element pair of arbitrary polynomial degree greater than 2. By combining the Piola transform
with the classical isoparametric framework, andwith a judicious choice of degrees of freedom,
we prove that the method converges with optimal order in the energy norm. We also show
that the discrete velocity error converges with optimal order in the L2-norm. Numerical
experiments are presented, which support the theoretical results.

Keywords Divergence-free · Stokes · Isoparametric · Finite element

1 Introduction

Divergence-free methods for the Stokes problem have grown in popularity due to the various
advantages they present. This includes pressure-robustness, which allows the errors of the
pressure and velocity to be decoupled so that the scheme is well-suited to systems in which
the pressure term in the Stokes problem is dominant (i.e. systems with a large pressure
gradient or small viscosity). Other advantages include mass-conservation and parameter
robustness. Consequently, thesemethods have become an active area of research (see, e.g., [1–
5]). However, most work on these methods is focused on polyhedral domains. The extension
to smooth domains (with optimal-order convergence) is non-trivial and only recently have
various approaches been proposed [6–8].

In this paper, we propose an arbitrary degree, divergence-free, isoparametric finite ele-
ment scheme for the 2D Stokes problem based on the Scott-Vogelius pair [1]. On polygonal
domains, this approach approximates the velocity with continuous, piecewise polynomials of
degree k, and approximates the pressure with discontinuous polynomials of degree (k − 1).
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It is well known that the stability of this pair depends on both the triangulation and the poly-
nomial degree k. We will work on Clough-Tocher splits which yield a stable element pair
provided k ≥ 2. This is a commonly used method allowing greater flexibility with respect to
polynomial degree.

In our approach, we combine this Scott-Vogelius pair with an isoparametric paradigm. To
do so, we apply k-degree polynomial diffeomorphisms to define the curvilinear triangulation
and the finite element spaces.While this approach is classical for isoparametric elements (see
[9, 10]), its extension to divergence-free methods is non-standard and a direct application of
this approach fails to lead to divergence-free and pressure-robust schemes. In particular, using
classical isoparametric Lagrange finite element spaces for velocity approximations disrupts
the divergence-free and pressure-robust properties of the scheme. Instead, we employ the
divergence-preserving Piola transform in the definition of the discrete velocity space. This
transform is defined on the macro (unrefined) triangulation, and we treat the resulting finite
element spaces as macro elements defined on the unrefined triangulation.

The primary challenge in this approach lies in the fact that the Piola transform pollutes
the continuity of functions in the Lagrange finite element space. More specifically, when
the functions in the discrete velocity space are defined by the Piola transform, only normal
continuity across interior edges is guaranteed. Thus, the resulting space is only H(div)-
conforming. Nonetheless, the spaces are designed to have weak continuity properties that are
leveraged to ensure consistency and stability so that no additional terms in the bilinear form
(e.g., penalty terms) are required in the method.

Consequently, one of the main contributions of this paper is to design a finite element
space that combines the Lagrange finite element space with the Piola transform and possesses
sufficient weak continuity properties across interior edges. We achieve such a space via a
judicious choice of edge degrees of freedom; specifically, these are taken as theGauss-Lobatto
points of interior edges. This construction allows us to derive a general estimate of the jumps
of discrete velocity functions across interior edges (cf. Lemma 4.7).

This work is an extension of [6] where the lowest-order case k = 2 was considered. As
expected, some of the results in [6] extend to the general case, such as scaling arguments and
inf-sup stability. However, the weak continuity properties of the discrete velocity space is
subtle, and a naive extension of [6] to arbitrary polynomial degree does not necessarily lead
to an optimal-order convergent method. Another contribution is L2 error estimates. Again,
this requires new estimates of the discrete velocity functions across interior edges.

The organization of the paper is as follows. In the next section, we introduce notation,
state the properties of the polynomial diffeomorphism, describe the domain discretization,
and introduce the Piola transform. We also establish some necessary preliminary results that
are later used in the convergence analysis. In Sect. 3, we define the local finite element spaces
and the degrees of freedom and introduce the global spaces in Sect. 4. Also in Sect. 4, we
discuss the weak continuity properties of the function spaces and show that the method is
inf-sup stable. In Sect. 5, we introduce the finite element method and derive optimal-order
H1 and L2 error estimates for the velocity and pressure solutions, respectively. Then, in
Sect. 6, we prove optimal-order convergence in L2 for the discrete velocity solution, and in
Sect. 7, we provide numerical experiments to verify our theoretical results. Finally, we state
conclusions in Sect. 8 and prove some auxiliary results in Appendices A–B.
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2 Preliminaries

Let ! ⊂ R2 be an open, bounded, and sufficiently smooth domain with boundary ∂!. We
then construct a mesh following the divergence-free isoparametric method outlined in [6].

2.1 Isoparametric Framework

We begin with a shape regular, affine (simplicial) triangulation T̃h , with sufficiently small
mesh size h = maxT̃∈T̃h

diam(T̃ ). Furthermore, we assume that the boundary vertices lie on

∂!, that !̃h := int
(
∪T̃∈T̃h

¯̃T
)
is an O(h2) polygonal approximation of !, and each T̃ ∈ T̃h

has at most 2 boundary vertices.
Next, we let G : !̃h → ! be a bijective map between the domain and the mesh with

‖G‖W 1,∞(!̃h)
≤ C . Here and throughout the paper,C denotes a generic positive constant that

is independent of any mesh parameter and may take on different values at each occurrence.
We define G such that G|T̃ (x) = x at all vertices of T̃ . Furthermore, we assume that G is
the identity map on interior edges, i.e., edges containing at most one vertex on the boundary.

From here, we define a mesh with curved boundaries following a standard isoparametric
framework (see e.g. [9, 11–13]). In particular, we define Gh to be the piecewise polynomial
nodal interpolant of G of degree ≤ k (k ≥ 2), with ‖Gh‖W 1,∞(T̃ ) ≤ C and ‖G−1

h ‖W 1,∞(T̃ ) ≤
C for all T̃ ∈ T̃h . Then, the isoparametric triangulation and computational domain are given
by

Th := {Gh(T̃ ) : T̃ ∈ T̃h}, !h := int
(
∪T∈Th T̄

)
.

In particular, !h is an O(hk+1) approximation to !. We denote by ‖ · ‖Hm
h (!h) the piecewise

norm with respect to Th , i.e.,

‖q‖2Hm
h (!h)

=
∑

T∈Th

‖q‖2Hm (T ).

We also denote by ∇h the piecewise gradient operator with respect to Th , so that ∇hq|T =
∇(q|T ) for all T ∈ Th .

2.2 TheMappings FT̃ and FT

To define the finite element spaces, we must first construct mappings to and from the affine
and curved triangulations, T̃h and Th . To do so, we define T̂ to be the reference triangle with
vertices (1, 0), (0, 1), and (0, 0). Then for each T̃ ∈ T̃h , we let FT̃ : T̂ → T̃ be an affine
bijection with |FT̃ |W 1,∞(T̂ ) ≤ ChT and |F−1

T̃
|W 1,∞(T̃ ) ≤ Ch−1

T̃
for hT̃ = diam(T̃ ). Subse-

quently, we may define FT : T̂ → T by FT = Gh + FT̃ . For each T ∈ Th , the polynomial
diffeomorphism FT and its inverse and assumed to satisfy the following estimates:

|FT |Wm,∞(T̂ ) ≤ ChmT (0 ≤ m ≤ k), |F−1
T |Wm,∞ ≤ Ch−m

T (0 ≤ m ≤ (k + 1)),

c1h2T ≤ det(DFT ) ≤ c2h2T .
(2.1)

Here, we have hT = diam(G−1
h (T )), and c1, c2 are generic constants independent of hT .

Furthermore, we note that, due to the assumptions onG, themappings FT and FT̃ are oriented
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so that they match at the vertices of T̂ . Consequently, the mappings are the same on triangles
with 3 interior edges, so that for all such triangles T ∈ Th we have T = Gh(T̃ ) = T̃ .

2.3 The Boundary Regions ofÄ andÄh

With the isoparametric triangulation established, we define !#!h = (!\!h) ∪ (!h\!)

and note it may be shown that (see e.g. [14, Equation 3.9] for proof)

|!#!h | ≤ Chk+1. (2.2)

Next, by the construction of!#!h , we have a boundof the H1 semi-norm in this boundary
region.

Lemma 2.1 Let v ∈ H2(!) be extended intoR2 in a way such that ‖v‖H2(R2) ≤ C‖v‖H2(!).
Then for h sufficiently small,

‖∇v‖L2(!,!h)
≤ Ch

k+1
2 ‖v‖H2(!).

Proof Let d be the signed distance function of ! with the convention d(x) < 0 for x ∈ !.
For δ > 0, define

Uδ := {x ∈ R2 : d(x) < δ},
and note that, because ∂! is C2, there holds ∂Uδ ∈ C2 for δ > 0 sufficiently small. We then
set

Nδ := {x ∈ U : |d(x)| < δ}
to be the tubular region around ∂Uδ . By [15, Lemma 4.10], there holds for all w ∈ H1(Uδ):

‖w‖L2(Nδ)
≤ Cδ1/2‖w‖H1(Uδ)

.

Now set δh = 2dist{∂!h, ∂!} = O(hk+1), so that !,!h ⊂ Nδh , and assume h is
sufficiently small such that ∂Uδh ∈ C2. We then have

‖∇v‖L2(!,!h)
≤ C‖∇v‖L2(Nδh )

≤ Cδ
1/2
h ‖∇v‖H1(Uδh )

≤ Ch
k+1
2 ‖v‖H2(!).

-.

2.4 Clough-Tocher Split

To guarantee inf-sup stability of the proposed divergence-free method, we introduce on
each element a local triangulation given by the Clough-Tocher split. This is also known as
the Alfeld split [16–18] or barycenter refinement [19]. Let T̂ ct = {K̂i }3i=1 be the Clough-
Tocher triangulation of the reference triangle, obtained by connecting the vertices of T̂ to its
barycenter. We define analogous splits on our affine and curved triangulations via FT̃ and
FT (cf. Figs. 1, 2):

T̃ ct = {FT̃ (K̂ ) : K̂ ∈ T̂ ct }, T ct = {FT (K̂ ) : K̂ ∈ T̂ ct }.
From (2.1) and the shape-regularity of T̃h , it follows that |T | ≤ C |K | for all K ∈ T ct .

Remark 2.2 We note that for the macroelement T ∈ Th , only edges containing both vertices
on ∂!h may be curved. However, it may be that interior edges of the local triangulations
K ∈ T ct may indeed be curved as well.
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Fig. 1 Clough-Tocher split and
degrees of freedom for the
quadratic Lagrange finite element
space (k = 2). The local split is
mapping to the curved element T
via the polynomial
diffeomorphism FT

Fig. 2 Clough-Tocher split and
degrees of freedom for the
quartic Lagrange finite element
space (k = 4). Edge degrees of
freedom on T̂ are placed at
Gauss-Lobatto points

2.5 The Piola Transform

The final piece we need to construct the divergence-free method is the Piola transform. Given
T ∈ Th , we define the matrix AT : T̂ → R2×2 to be the matrix arising in this transform

AT (x̂) :=
DFT (x̂)

det(DFT (x̂))
. (2.3)

In what follows, the local function spaces on each T ∈ Th will be constructed through
AT . Specifically, given a function v̂ : T̂ → R2, its Piola transform yields the function
v : T → R2 with v = (AT v̂) + F−1

T (cf. Sect. 3). It is well-known that this transform is
divergence-preserving and normal-continuity preserving, and its use in the definition of the
spaces given below allows us tomaintain these properties of the Scott-Vogelius pair on curved
triangulations. We emphasize that this transform is defined with respect to T ∈ Th , not with
respect to the triangles in the Clough-Tocher split.

2.6 Bounds and Scaling Results

The following results give bounds on the matrix AT and its inverse. We refer to the appendix
of [6] for a proof for the case k = 2. The arguments given there generalize trivially for k ≥ 2,
and therefore the proof of the following lemma is omitted.

Lemma 2.3 For each T ∈ Th, there holds

|AT |Wm,∞(T̂ ) ≤ Chm−1
T (m ≥ 0), |A−1

T |Wm,∞(T̂ ) ≤
{
Ch1+m

T 0 ≤ m ≤ k − 1,
0 k ≤ m.

(2.4)

Additionally, we will make use of the following scaling results from [11].
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Lemma 2.4 Let T ∈ Th and w ∈ Wm,p(T ) with m ≥ 0 and p ∈ [1,∞]. Let ŵ ∈ Wm,p(T̂ )
be the image of w on T̂ with ŵ(x̂) = w(x), x = FT (x̂) and set K̂ = F−1

T (K ) for each
K ∈ T ct . Then for any K ∈ T ct ,

|w|Wm,p(K ) ≤ Ch2/p−m
T

m∑

r=0

h2(m−r)
T |ŵ|Wr,p(K̂ ),

|ŵ|Wm,p(K̂ ) ≤ Chm−2/p
T

m∑

r=0

|w|Wr,p(K ).

(2.5)

In the results that follow, we let n denote the outward unit normal of a given domain
(understood from context), and set t to be the unit tangent vector obtained by rotating n 90
degrees counterclockwise.

3 Local Spaces

The full derivation of the local spaces for the divergence-free isoparametric framework can
be found in [6] for the case k = 2. Below, we have the analogous results for general k.

To begin, we define the local function space on the reference triangle T̂ ⊂ R2, with
Clough-Tocher triangulation T̂ ct = {K̂1, K̂2, K̂3}. Without including boundary conditions,
the polynomial spaces on the reference triangle are

V̂ k ={v̂ ∈ H1(T̂ ) : v̂|K̂ ∈ Pk(K̂ ) ∀K̂ ∈ T̂ ct },
Q̂k−1 ={q̂ ∈ L2(T̂ ) : q̂|K̂ ∈ Pk−1(K̂ ) ∀K̂ ∈ T̂ ct },

where Pk(S) is the space of scalar polynomials of degree ≤ k on domain S, and Pk(S) =
[Pk(S)]2.

With x̃ = FT̃ (x̂), we define the local spaces on the affine triangle T̃ ∈ T̃h via composition:

Ṽ k(T̃ ) ={ṽ ∈ H1(T̃ ) : ṽ(x̃) = v̂(x̂), ∃v̂ ∈ V̂ k},
Q̃k−1(T̃ ) ={q̃ ∈ L2(T̃ ) : q̃(x̃) = q̂(x̂), ∃q̂ ∈ Q̂k−1}.

To incorporate boundary conditions, we further define

V̂ k,0 = V̂ k ∩ H1
0(T̂ ), Q̂k−1,0 = Q̂ ∩ L2

0(T̂ ),

Ṽ k,0(T̃ ) = Ṽ k(T̃ ) ∩ H1
0(T̃ ), Q̃k−1,0(T̃ ) = Q̃(T̃ ) ∩ L2

0(T̃ ),

where L2
0(T̃ ) is the space of L

2(T̃ )-functions with vanishing mean.
We then define the function spaces on the triangles T ∈ Th (which may have a curved

edge), using the notation x = FT (x̂) and the Piola transform:

V k(T ) ={v ∈ H1(T ) : v(x) = AT (x̂)v̂(x̂), ∃v̂ ∈ V̂ k}, V k,0(T ) = V k(T ) ∩ H1
0(T ),

Qk−1(T ) ={q ∈ L2(T ) : q(x) = q̂(x̂), ∃q̂ ∈ Q̂k−1},
Qk−1,0(T ) ={q ∈ L2(T ) : q(x) = q̂(x̂), ∃q̂ ∈ Q̂k−1,0},

where the matrix AT is given by (2.3). Note that if FT is affine, then V (T ) = Ṽ (T̃ ) and
Q(T ) = Q̃(T̃ ).

It is important to note that functions in V k−1(T ) and Qk−1(T ) are not necessarily
piecewise-polynomial spaces if T is not affine. In addition, on curved triangles the matrix
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AT is not necessarily constant on straight edges, and therefore functions in V k−1(T ) are not
necessarily polynomials on such edges. However, the following lemma shows that the the
normal component of v will be a polynomial when restricted to a straight edge.

Lemma 3.1 Let v ∈ V k(T ), and suppose that e is a straight edge of ∂T with unit normal n.
Then v · n|e ∈ Pk(e).

The proof of this result is found in [6, Lemma 3.1] for the case k = 2 and essentially uses the
well-known normal-preserving properties of the Piola transform. However, the result extends
trivially to v̂ · n̂ a polynomial of arbitrary degree k.

With the local spaces now defined, we may state the following lemma showing that
functions in the finite element space V k(T ) enjoy inverse estimates similar to those for
piecewise polynomials. In addition, similar to isoparametric (polynomial) elements defined
via composition, high-order Sobolev norms of functions in V k(T ) are controlled by kth-order
Sobolev norms. Its proof is based on scaling arguments and is found in Appendix A.

Lemma 3.2 Let p, q ∈ [1,∞] and 0 ≤ m ≤ % be integers. Then for any T ∈ Th and
v ∈ V k(T ),

‖v‖W %,p(K ) ≤ Ch
m−%+2( 1p − 1

q )

T ‖v‖Wm,q (K ) ∀K ∈ T ct . (3.1)

Moreover,

‖v‖W %,p(K ) ≤ C‖v‖Wk,p(K ) ∀% ≥ k, ∀K ∈ T ct . (3.2)

3.1 Degrees of Freedom on V (T)

To describe the degrees of freedom of the local velocity space V (T ), we first summarize
the canonical degrees of freedom for the reference space V̂ k , i.e., the kth-degree Lagrange
finite element space defined on the Clough-Tocher split. It is well known that a function in
this space is uniquely determined by (i) its values at the 4 vertices in T̂ ct (4 nodes); (ii) its
values at (k − 1) distinct points for each of the six (open) edges in T̂ ct (6(k − 1) nodes);
and (iii) its values at 1

2 (k − 1)(k − 2) distinct points for each of the 3 (open) subtriangles in
T̂ ct ( 32 (k − 1)(k − 2) nodes). In (iii), the 1

2 (k − 1)(k − 2) points for each subtriangle must
be chosen such that they uniquely determine a polynomial of degree (k − 3). We see that
the total number of nodes is Mk := 4+ 6(k − 1)+ 3

2 (k − 1)(k − 2) = 3
2k(k + 1)+ 1, and

therefore the dimension of V̂ k is 3k(k+1)+2. By setting N̂k = {âi }Mk
i=1 to be the set of these

points, then a function v̂ ∈ V̂ k is uniquely determined by the values v̂(âi ) for all ai ∈ N̂k .
To ensure sufficient weak continuity properties of the global finite element spaces defined

below, we specify that the location of the points on the 3 boundary edges of T̂ correspond
to the nodes of the Gauss-Lobatto quadrature scheme. In particular, for a boundary edge
ê ⊂ ∂ T̂ , the nodes on the closure of the edge, denoted by {m̂i }k+1

i=1 ⊂ ¯̂e, satisfy
k+1∑

i=1

ω̂i q̂(m̂i ) =
∫

ê
q̂ ∀q̂ ∈ P2k−1(ê),

and 2 of the nodes in this set correspond to the vertices of ê. The other nodes (i.e., nodes
on interior edges and the interior of subtriangles) can be chosen such that they satisfy the
above properties to form a unisolvent set of degrees of freedom on V̂ k . However, to simplify
the implementation of the resulting finite element spaces, we also take nodes on the interior
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edges to be the Gauss-Lobttto points, and let the nodes in the interior of subtriangles to be
the canonical Lagrange nodes (cf. Figs. 1,2).

We map these nodes to T̃ ∈ T̃h and T ∈ Th via the mappings FT̃ and FT , respectively:

Nk(T̃ ) = {FT̃ (âi ) : âi ∈ N̂k}, Nk(T ) = {FT (âi ) : âi ∈ N̂k}.

Due to the invariance of spaces of polynomials under affine transformations, we see that the
nodes in Nk(T̃ ) that lie on an edge ẽ ⊂ ¯̃T correspond to the Gauss-Lobatto quadrature rule
on that edge. Likewise, if e ⊂ ∂T is a straight edge of T , then the nodes inNk(T ) that lie on
ē are the nodes of the Gauss-Lobatto quadrature rule on e.

Finally, we note that, since functions in V̂ k are uniquely determined by their values at the
nodes N̂k , and since the matrix AT is invertible, it follows that any v ∈ V k(T ) is uniquely
determined by the values v(ai ), ai ∈ Nk(T ).

4 Global Spaces

On the affine triangulation T̃h , we define the Scott-Vogelius pair

Ṽ
h
k ={ṽ ∈ H1

0(!̃h) : ṽ|T̃ ∈ Ṽ k(T̃ ) ∀T̃ ∈ T̃h},
Q̃h

k−1 ={q̃ ∈ L2
0(!̃h) : q̃|T̃ ∈ Q̃k−1(T̃ ) ∀T̃ ∈ T̃h}.

We see that Ṽ
h
k is the kth degree Lagrange finite element space with respect to the Clough-

Tocher refinement of T̃h , and Q̃h
k−1 is the space of discontinuous polynomials of degree

(k − 1), again with respect to the Clough-Tocher refinement. The finite elements Ṽ h × Q̃h
represents a stable and divergence–free Stokes pair [20], however its use formally leads to a
suboptimal scheme on smooth domains due to geometric error.

To define the isoparametric spaces, we define the operators!k andϒk−1 such that!k |T :
Ṽ (T̃ ) → V (T ) and ϒk−1|T : Q̃(T̃ ) → Q(T ) and are uniquely determined on each T̃ ∈ T̃h
and T ∈ Th with T = Gh(T̃ ) as follows:

1. (!k |T ṽ)(a) = ṽ(ã) ∀ã ∈ Nk(T̃ ), with a = Gh(ã) ∈ Nk(T ), and
2. (ϒk−1|T q̃) = q̃ + G−1

h

Thus, !k maps functions in Ṽ
h
k to the isoparametric domain !h via the Piola transform and

interpolation, and ϒk−1 maps functions in Q̃h
k−1 to !h via composition.

In the following proposition, we state some properties of themapping!k without proof, as
the result is proven for k = 2 in [6, Theorem 3.7]. To extend the results to arbitrary degree k,
one only needs to recognize that a k-th degree polynomial along an edge e ⊂ ∂T is uniquely
determined by its values at the k + 1 nodal points that lie on this edge.

Proposition 4.1 The following properties are satisfied:

1. If FT is affine, then !k |T is the identity operator.
2. If e ⊂ ∂T is a straight edge (so e ⊂ ∂ T̃ with T = Gh(T̃ )), then

(!k |T ṽ) · n|e = ṽ · n|e ∀ṽ ∈ Ṽ
h
k .

3. There holds ‖!k |T ṽ‖H1(T ) ≤ C‖ṽ‖H1(T̃ ) for all ṽ ∈ Ṽ
h
k .
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Consequently, global function spaces defined on the isoparametric mesh Th are given by

V h
k := {v : v = !k ṽ, ∃ṽ ∈ Ṽ

h
k }, Qh

k := {q : q = ϒk−1q̃, ∃q̃ ∈ Q̃h
k }.

Remark 4.2 From the boundary conditions applied to the space Ṽ
h
k and the definition of !k ,

we see that functions in V h
k are continuous at the degrees of freedom, and vanish on ∂!h .

With these spaces defined, we have the following results.

Lemma 4.3 There holds V h
k ⊂ H0(div;!h) = {v ∈ L2(!h) : div v ∈ L2(!h), v ·n|∂!h =

0}.
This result follows immediately from the construction of V h

k and the continuity of the
normal component on interior edges imposed by part 2 of Proposition 4.1. See [6, Theorem
4.2] for details.

Lemma 4.4 There exists an operator Ihk : H2(!) ∩ H1
0(!h) → V h

k such that for u ∈
Hs(!h) ∩ H1

0(!h) (s ≥ 2) and for each T ∈ Th, there holds

‖u − Ihku‖Hm (T ) ≤ Ch%−m
T ‖u‖H%(T ) 0 ≤ m ≤ % := min{k + 1, s}. (4.1)

Proof Recall Nk(T ) and N̂k are the sets of nodes on T and T̂ , respectively. We uniquely
define the operator Ihk such that on each T ∈ Th ,

(Ihku)|T (a) = u(a) ∀a ∈ Nk(T ).

Set v = Ihku|T ∈ V k(T ), for T ∈ Th . Then set v̂ ∈ V̂ k and û ∈ Hs(T̂ ) such that

v(x) = (AT v̂)(x̂), u(x) = (AT û)(x̂).

Consequently,

(AT v̂)(â) = (AT û)(â) 3⇒ v̂(â) = û(â) ∀â ∈ N̂k

because the matrix AT is invertible. Thus, v̂ is the kth degree nodal interpolant of û with
respect to T̂ ct , so, by standard interpolation theory, we have

‖û − v̂‖Hm (T̂ ) ≤ C |û|H%(T̂ ) 0 ≤ m ≤ % = min{k + 1, s}. (4.2)

Thus it follows from (4.2), Lemmas 2.3 and 2.4, and an application of the product rule
that

|u − v|Hm (T ) ≤Ch1−m
T ‖AT ‖Wm,∞(T̂ )‖û − v̂‖Hm (T̂ ) ≤ Ch−m

T |û|H%(T̂ ),

and so, by using Lemmas 2.3 and 2.4 once again,

|u − v|Hm (T ) ≤Ch−m
T |A−1

T AT û|H%(T̂ )

≤Ch−m
T

%∑

j=0

|A−1
T |W j,∞(T̂ )|AT û|H%− j (T̂ )

≤Ch−m
T

%∑

j=0

h1+ j
T |AT û|H%− j (T̂ )

≤Ch%−m
T ‖u‖H%(T ).

-.
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4.1 Weak Continuity Properties

The next result shows that, while functions in V h
k are only H0(div;!h)-conforming, they

do have weak continuity properties across interior edges of the mesh. In particular, they are
“close” to an H1

0(!h)-conforming relative. The lemma is a generalization of [6, Lemma
4.5] to general polynomial degree and to higher-order Sobolev norms; its proof is given in
Appendix B.

Lemma 4.5 There exists an operator Eh : V h
k → H1

0(!h) such that for all v ∈ V h
k

‖v − Ehv‖L2(T ) + hT ‖∇(v − Ehv)‖L2(T ) ≤ Chm+1
T ‖v‖Hm (T ) ∀T ∈ Th, (4.3)

for m = 0, 1, . . . , k. Moreover, Ehv|T = v if T is affine.

Corollary 4.6 For v ∈ V h, it holds

‖v‖L2(!h)
≤ C‖∇hv‖L2(!h)

,

where∇h denotes the piecewise gradient operator with respect toTh, andC > 0 is a constant
depending only on the size of !h and the shape regularity of Th.

Proof Recall that v = Ehv on affine triangles, so ‖v − Eh‖L2(T ) may only be nonzero on
curved T ∈ Th , all of which will have at least 2 vertices on the boundary. We denote the set
of triangles with 2 boundary vertices as T∂

h so that v|T = Ehv|T for T ∈ Th\T∂
h . Because

v|∂!h = 0, we have ‖v‖L2(T ) ≤ ChT ‖∇v‖L2(T ) for T ∈ T∂
h .

Thus, recalling that Ehv ∈ H1
0(!h), we may apply the triangle inequality, Lemma 4.5

(twice with m = 0), and the Poincaré inequality (twice) to determine

‖v‖2L2(!h)
≤2



‖Ehv‖2L2(!h)
+

∑

T∈T∂
h

‖v − Ehv‖2L2(T )





≤C



‖∇Ehv‖2L2(!h)
+

∑

T∈T∂
h

h2T ‖∇v‖2L2(T )





≤C



‖∇hv‖2L2(!h)
+

∑

T∈T∂
h

‖∇(v − Ehv)‖2L2(T )





≤C‖∇hv‖2L2(!h)
.

-.

Using the H1-conforming relative in Lemma 4.5 and the fact that the Lagrange DOFs are
Gauss-Lobatto nodes,we show that functions inV h

k possessweak continuity properties across
interior edges. To describe the result, we set EI

h to denote the set of interior edges of Th , and
define the jump of a vector-valued function across an edge e = ∂T+ ∩ ∂T− ∈ EI

h (T± ∈ Th)
as

[v]|e = v+ ⊗ n+|e + v− ⊗ n−|e,
where v± = v|T± and n± is the outward unit normal of ∂T± restricted to e.

123



Journal of Scientific Computing (2024) 101 :33 Page 11 of 26 33

Lemma 4.7 Letw ∈ Hs(!)with s ≥ 2, and set r = min{s−1, k−1}.We extendw toR2 such
that ‖w‖Hr+1(R2) ≤ C‖w‖Hr+1(!). Then there holds for all v ∈ V h

k , and m = 0, 1, . . . , k,
∣∣∣∣
∑

e∈EI
h

∫

e
∇w : [v]

∣∣∣∣ ≤ Chr+m‖w‖Hr+1(!)‖v‖Hm
h (!h). (4.4)

Proof For e ∈ EI
h , let T+, T− ∈ Th such that e = ∂T+∩∂T−. We letGe ∈ [H1(T+∪T−)]2×2

such that Ge|T± + FT± ∈ [Pk−2(T̂ )]2×2 and
∫

T+∪T−
Ge : Q =

∫

T+∪T−
∇w : Q

for all Q ∈ [H1(T+∪T−)]2×2 with Q|T±+FT± ∈ [Pk−2(T̂ )]2×2. That isGe is the L2(T+∪T−)
projection of ∇w with respect to the local (k − 2)-degree Lagrange (isoparametric) finite
element space. Note that because FT± is affine on the interior edge e, there holds Ge|e ∈
[Pk−2(e)]2×2. We also have by standard approximation theory,

‖∇w − Ge‖Hm (T±) ≤ Chr−m
T ‖∇w‖Hr (T+∪T−) ≤ Chr−m

T ‖w‖Hr+1(T+∪T−) m = 0, 1, . . . , r ,
(4.5)

where hT = max{hT+ , hT−}. Thus, by a trace inequality,

‖∇w − Ge‖L2(e) ≤ Chr−1/2
T ‖w‖Hr+1(T+∪T−). (4.6)

We then write
∣∣∣∣
∑

e∈EI
h

∫

e
∇w : [v]

∣∣∣∣ ≤
∣∣∣∣
∑

e∈EI
h

∫

e
(∇w − Ge) : [v − Ehv]

∣∣∣∣+
∣∣∣∣
∑

e∈EI
h

∫

e
Ge : [v]

∣∣∣∣

=: I1 + I2.

(4.7)

To estimate I1, we use (4.6), Lemma 4.5, and a trace inequality:

I1 ≤




∑

e∈EI
h

he‖∇w − Ge‖2L2(e)





1/2 


∑

e∈EI
h

h−1
e ‖v − Ehv‖2L2(e)





1/2

≤ C




∑

T∈Th

h2rT ‖w‖2Hr+1(T )




1/2 


∑

T∈Th

h2mT ‖v‖2Hm (T )




1/2

≤ Chr+m‖w‖Hr+1(!)‖v‖Hm
h (!h).

(4.8)

To estimate I2, we first observe that, by construction, for v ∈ V h
k and e ∈ EI

h , we have
[v]|e(a) = 0 for all a ∈ Nk(T ) with a ∈ ē. Recalling that these edge degrees of freedom are
placed at Gauss-Lobatto nodes, it follows from the error of the (k + 1)-point Gauss-Lobatto
rule and the fact that Ge is a polynomial of degree (k − 2) on e that

∣∣∣∣

∫

e
[v] : Ge

∣∣∣∣ ≤ C |e|2k+1 |[v] : Ge|W 2k,∞(e)

≤ Ch2k+1
T

(
‖v‖W 2k,∞(K+) + ‖v‖W 2k,∞(K−)

)
‖Ge‖Wk−2,∞(e) ∀e ∈ EI

h,

(4.9)

where K± ∈ T ct
± share edge e.
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Note that a standard inverse/trace estimate yields

‖Ge‖Wk−2,∞(e) ≤ Ch−1
T ‖Ge‖Hk−2(T±). (4.10)

From here, we consider 2 cases:
Case 1: k−2 ≤ r . For this case, we recall that r = min{s−1, k−1}, and so r − k ≤ −1.

It therefore holds that we have h−1
T ≤ hr−k

T . With this, (4.5), and (k − 1) ≤ (r + 1), we have

‖Ge‖Wk−2,∞(e) ≤Ch−1
T

(
‖Ge − ∇w‖Hk−2(T±) + ‖w‖Hk−1(T±)

)

≤Chr−k
T ‖w‖Hr+1(T+∪T−).

Case 2: r ≤ k − 2. For the second case, we may apply another inverse estimate to (4.10)
before applying (4.5). This yields

‖Ge‖Wk−2,∞(e) ≤Ch−1
T hr−(k−2)

T± ‖Ge‖Hr (T±)

≤Chr−k+1
T

(
‖Ge − ∇w‖Hr (T±) + ‖w‖Hr+1(T±)

)

≤Chr−k+1
T ‖w‖Hr+1(T+∪T−).

Consequently, we take the less sharp estimate in these cases in (4.9) and apply the inverse
estimates (3.1)–(3.2) to ‖v‖W 2k,∞(K±) to obtain

∣∣∣∣

∫

e
[v] : Ge

∣∣∣∣ ≤ Chk+r
T

(
‖v‖H2k (K+) + ‖v‖H2k (K−)

)
‖w‖Hr+1(T+∪T−)

≤ Chk+r
T

(
‖v‖Hk (K+) + ‖v‖Hk (K−)

)
‖w‖Hr+1(T+∪T−)

≤ Chr+m
T

(
‖v‖Hm (K+) + ‖v‖Hm (K−)

)
‖w‖Hr+1(T+∪T−).

Summing this expression over EI
h we obtain an upper bound for I2:

I2 ≤ Chr+m‖w‖Hr+1(!)‖v‖Hm
h (!h). (4.11)

Applying the estimates (4.8) and (4.11) towards (4.7) yields the result. -.

Remark 4.8 We note that the result above is not as sharp if Newton-Cotes (uniformly spaced)
nodes are used instead of Gauss-Lobatto nodes. Indeed, Newton-Cotes integration on m
points is exact on polynomials in Pm , if m is odd, and Pm−1 if m is even, so the bound on
the right-hand side of (4.9) becomes

Chk+2
T

(
‖v‖Wk+1,∞(K+) + ‖v‖Wk+1,∞(K−)

)
‖Ge‖Wk−2,∞(e) ∀e ∈ EI

h,

if k is odd, and

Chk+3
T

(
‖v‖Wk+2,∞(K+) + ‖v‖Wk+2,∞(K−)

)
‖Ge‖Wk−2,∞(e) ∀e ∈ EI

h,

if k is even. Thus, if we use equidistant points, the bound loses k − 1 powers of h if k is odd,
and k − 2 if k is even.
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4.2 Inf-sup Stability

An inf-sup stability result for the finite element pair V h
k × Qh

k was proven in [6, Theorem
4.4] in the case k = 2. The arguments given there easily generalize for all k ≥ 2, as the
only adjustment needed is to change the polynomial degrees appropriately. Consequently,
we only provide a sketch of the proof in the general case.

Theorem 4.9 There holds

sup
v∈V h

k \{0}

∫
!h

(div v)q

‖∇hv‖L2(!h)

≥ C‖q‖L2(!h)
∀q ∈ Qh

k−1. (4.12)

Sketch of Proof for Theorem 4.9

Fix q ∈ Qh
k−1, and set q̄ ∈ Qh

k−1 to be piecewise constant with respect to Th satisfying∫
T (q − q̄)/ det(DFT + F−1

T ) = 0 for all T ∈ Th . By a change of variables, we see that
(q − q̄) + FT ∈ Q̂k−1,0.

Next, the results in, e.g., [2] show that d̂iv : V̂ k,0 → Q̂k−1,0 is surjective with bounded
right inverse. Consequently, for each T ∈ Th , there exists v̂1,T ∈ V̂ k,0 such that d̂iv v̂1,T =
h2T (q − q̄)|T + FT . and ‖v̂1,T ‖H1(T̂ ) ≤ Ch2T ‖(q − q̄)|T + FT ‖L2(T̂ ) ≤ ChT ‖q − q̄‖L2(T ).

Setting v1,T = (AT v̂)+F−1
T ∈ V k,0, we have div v1,T = h2T (q−q̄)/(det(DFT +F−1

T )) by the
divergence-preserving properties of the Piola transform, and ‖∇v1,T ‖L2(T ) ≤ C‖q−q̄‖L2(T )
by a scaling argument.

We then define v1 ∈ V h
k such that v1|T = v1,T for all T ∈ Th . Thus ‖v1‖L2(!h)

≤
C‖q − q̄‖L2(!h)

, and

sup
v∈V h

k \{0}

∫
!h

(div v)q

‖∇v‖L2(!h)

≥
∫
!h

(div v1)q

‖∇v1‖L2(!h)

=
∫
!h

(div v1)(q − q̄)

‖∇v1‖L2(!h)

=
∑

T∈Th
h2T

∫
T |q − q̄|2/(det(DFT + F−1

T ))

‖∇v1‖L2(!h)

≥ (0‖q − q̄‖L2(!h)
.

Next, Theorem 4.4 in [6] shows that

sup
v∈V h

k \{0}

∫
!h

(div v)q̄

‖∇hv‖L2(!h)

≥ (1‖q̄‖L2(!h)
. (4.13)

Consequently, it follows that

‖q‖L2(!h)
≤‖q − q̄‖L2(!h)

+ ‖q̄‖L2(!h)

≤(( −1
0 + ( −1

1 (1+ ( −1
0 )) sup

v∈V k
h\{0}

∫
!h

(div v)q

‖∇v‖L2(!h)

.
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5 The Stokes System and Finite Element Method

We let (u, p) ∈ H1
0(!) × L2

0(!) be the solution to the Stokes problem





−)#u + ∇ p = f in !,

div u = 0 in !,

u = 0 on ∂!,

(5.1)

where ) > 0 is the viscosity. We assume the domain! and source function f are sufficiently
smooth such that (u, p) ∈ Hs(!) × Hs−1(!) with s ≥ 2. We then extend the velocity
solution to R2 such that the extension (still denoted by u) is divergence-free and satisfies
[21]

‖u‖Hs (R2) ≤ C‖u‖Hs (!). (5.2)

Likewise, we extend the pressure solution p to R2 with ‖p‖Hs−1(R2) ≤ C‖p‖Hs−1(!) and
extend the source function by setting f = −)#u + ∇ p in R2.

We define the continuous bilinear forms

a(u, v) :=
∫

!
)∇u : ∇v, b(v, p) := −

∫

!
(div v)p,

and the discrete bilinear forms

ah(uh, v) :=
∫

!h

)∇huh : ∇hv, bh(v, ph) := −
∫

!h

(div v)ph .

Clearly, the solution to (5.1) solves the variational problem

a(u, v) =
∫

!
f · v ∀v ∈ X := {v ∈ H1

0(!) : div v = 0}. (5.3)

We define the finite element method as finding (uh, ph) ∈ V h
k × Qh

k−1 such that

ah(uh, v)+ bh(v, ph) =
∫

!h

f h · v ∀v ∈ V h
k , (5.4a)

−bh(uh, q) =0 ∀q ∈ Qh
k , (5.4b)

where f h ∈ L2(!h) is a suitable (and computable) approximation to f |!. It follows from
the inf-sup condition in Theorem 4.9 and the Poincare inequality in Corollary 4.6 that there
exists a unique solution to (5.4). Moreover, by a simple generalization of [6, Lemma 5.2],
the method (5.4) yields divergence-free velocity approximations.

Lemma 5.1 Let uh ∈ V h
k satisfy (5.4b). Then div uh = 0 in !h.

5.1 Energy Estimates

In this section,we derive error estimates for the approximation velocity and pressure solutions
in the H1 and L2 norms, respectively. To this end, we define the discrete space of divergence-
free functions

Xh
k := {v ∈ V h

k : div v = 0} ! X := {v ∈ H1
0(!) : div v = 0},
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and note that functions in this space are not necessarily in H1
0. Lemma 5.1 shows that

uh ∈ Xk
h , and thus the velocity solution uh is uniquely characterized as the solution of the

Poisson-type problem

ah(uh, v) =
∫

!h

f h · v ∀v ∈ V h
k . (5.5)

Theorem 5.2 Let (u, p) ∈ Hs(!) × Hs−1(!) satisfy (5.1) with s ≥ 2. Then there holds

‖∇h(u − uh)‖L2(!h)
≤ C

(
h%−1‖u‖H%(!) + )−1| f − f h |X∗

k

)
, (5.6)

where % = min{k + 1, s}, and

| f − f h |X∗
k
= sup

v∈Xh
k \{0}

∫
!h

( f − f h) · v
‖∇hv‖L2(!h)

.

The pressure approximation ph satisfies

‖p − ph‖L2(!h)
≤C

(
h%−1()‖u‖H%(!) + ‖p‖H%−1(!))+ ‖ f − f h‖L2(!h)

)
. (5.7)

Proof From standard theory of non-conforming finite elements (see, for example, [9]) and
the inf-sup condition (4.12),

)‖∇h(u − uh)‖L2(!h)
≤ inf

w∈Xh
k

)‖∇h(u − w)‖L2(!h)
+ sup

v∈Xh
k \{0}

ah(uh − u, v)
‖∇hv‖L2(!h)

≤C inf
w∈V h

k

)‖∇h(u − w)‖L2(!h)
+ sup

v∈Xh
k \{0}

ah(uh − u, v)
‖∇hv‖L2(!h)

≤Ch%−1)‖u‖H%(!) + sup
v∈Xh

k \{0}

ah(uh − u, v)
‖∇hv‖L2(!h)

,

(5.8)

where the final step follows from Lemma 4.4.
To address the consistency term, we note that we have ∀v ∈ Xh

k

ah(uh − u, v) =
∫

!h

f · v − ah(u, v)+
∫

!h

( f h − f ) · v

= − )

∫

!h

#u · v − ah(u, v)+
∫

!h

( f h − f ) · v.
(5.9)

Note that the last step uses the fact that v ∈ Xh
k , therefore div v = 0 and v = 0 on ∂!h .

We then apply a standard integration-by-parts formula in (5.9), Lemma 4.7 (with m = 1,
and noting r = min{s − 1, k − 1} ≤ % − 1) and Corollary 4.6 to obtain

ah(uh − u, v) = − )
∑

e∈EI
h

∫

e
∇u : [v] +

∫

!h

( f h − f ) · v

≤C)h%−1‖u‖H%(!)‖∇hv‖L2(!h)
+ ‖ f h − f ‖X∗

k
‖∇hv‖L2(!h)

.

(5.10)

Finally, to complete the velocity bound (5.6), we apply this estimate to (5.8).
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To prove the pressure bound (5.7), we fix q ∈ Qh
k−1. For any v ∈ V h

k , we then have the
following identity, using integration by parts and (5.1):

∫

!h

(div v)(ph − q) =ah(uh, v) −
∫

!h

(div v)q −
∫

!h

( f h − f ) · v −
∫

!h

f · v

=ah(uh, v)+ )

∫

!h

#u · v −
∫

!h

∇ p · v

−
∫

!h

(div v)q −
∫

!h

( f h − f ) · v

=ah(uh − u, v) −
∫

!h

(div v)(q − p)

−
∫

!h

( f h − f ) · v + )
∑

e∈EI
h

∫

e
∇u : [v].

(5.11)

Then, applying (4.4) to (5.11) and Corollary 4.6, we have
∫

!h

(div v)(ph − q) ≤C
(

)‖∇h(uh − u)‖L2(!h)
+ ‖q − p‖L2(!h)

+ )h%−1‖u‖H%(!h)
+ ‖ f − f h‖L2(!h)

)
‖∇hv‖L2(!h)

.

(5.12)

Finally, by triangle inequality and Theorem 4.9, we have

‖p − ph‖L2(!h)
≤‖p − q‖L2(!h)

+ ‖ph − q‖L2(!h)

≤‖p − q‖L2(!h)
+ sup

v∈V h\{0}

∫
!h

(div v)(ph − q)

‖∇v‖L2(!h)

.

Applying (5.12) to this result, taking the infimum over q ∈ Qh
k−1, and using (5.6) completes

the proof. -.

Corollary 5.3 Assume the conditions in Theorem 5.2 are satisfied, and in addition, assume
the mesh Th is quasi-uniform. Then the solution uh ∈ V h

k to (5.4) satisfies

‖uh‖H%
h (!h)

≤ C
(

‖u‖H%(!) + h1−%)−1| f − f h |X∗
k

)
.

Proof Define Ihku ∈ V h
k to be the approximation to u given in Lemma 4.4. Then, applying

the inverse inequality (3.1), Lemma 4.4, and Theorem 5.2, we have

‖uh‖H%
h (!h)

≤C
(
‖u − Ihku‖H%

h (!h)
+ h1−%‖Ihku − uh‖H1

h (!h)
+ ‖u‖H%(!)

)

≤C
(
‖u − Ihku‖H%

h (!h)
+ h1−%‖Ihku − u‖H1

h (!h)

+ h1−%‖u − uh‖H1
h (!h)

+ ‖u‖H%(!)

)

≤C
(
‖u‖H%(!) + h1−%)−1| f − f h |X∗

k

)
.

-.

Remark 5.4 If f is sufficiently smooth, and f h is, for example, the kth degree nodal (isopara-
metric) interpolant, then | f − f h |X∗

k
≤ ‖ f − f h‖L2(!h)

≤ Chk+1‖ f ‖Hk+1(!h)
. Thus,
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Corollary 5.3 yields

‖uh‖H%
h (!h)

≤ C
(
‖u‖H%(!) + hk−%+2)−1‖ f ‖Hk+1(!h)

)
. (5.13)

6 Convergence Analysis in L2

In this section, we prove the following optimal-order L2 error estimate.

Theorem 6.1 Assume the conditions in Theorem 5.2 are satisfied, and in addition, assume
the mesh Th is quasi-uniform. We have

‖u − uh‖L2(!h)
≤ C

(
h%‖u‖H%(!) + ()−1h + 1)| f − f h |X∗

h

)
, (6.1)

where C is a constant that does not depend on the mesh parameter h, and we recall % =
min{s, k + 1}.

Proof To derive (6.1), we first write

‖u − uh‖L2(!h)
≤ ‖u − uh‖L2(!h\!) + ‖u − uh‖L2(!h∩!) =: J1 + J2. (6.2)

To bound J1, we introduce Eh : V h
k → H1

0(!h) as defined in Lemma 4.5. Consequently,
we may write

J1 ≤ ‖u − Ehuh‖L2(!h\!) + ‖Ehuh − uh‖L2(!h\!).

A bound of the second term in this sum follows from Lemma 4.5 and Corollary 5.3:

J1 ≤‖u − Ehuh‖L2(!h\!) + ‖Ehuh − uh‖L2(!h)

≤‖u − Ehuh‖L2(!h\!) + Ch%‖uh‖H%−1
h (!h)

≤‖u − Ehuh‖L2(!h\!) + C
(
h%‖u‖H%(!h)

+ h)−1| f − f h |X∗
h

)
.

To bound the remaining term, begin with Hölder’s inequality and recall that H1 embeds
in L6 and k ≥ 2. Thus we have

‖u − Ehuh‖L2(!h\!) ≤|!h \ !|1/3‖u − Ehuh‖L6(!h)

≤Ch(k+1)/3‖u − Ehuh‖L6(!h)

≤Ch‖u − Ehuh‖H1(!h)
.

It follows from Theorem 5.2, Lemma 4.5, and Corollary 5.3 that

‖u − Ehuh‖L2(!h\!) ≤Ch
(

‖u − uh‖H1
h (!h)

+ ‖uh − Ehuh‖H1
h (!h)

)

≤C
(
h%‖u‖H%(!) + h)−1| f − f h |X∗

k

)
.

Combining this with the result above, we have

J1 ≤ C
(
h%‖u‖H%(!) + h)−1| f − f h |X∗

k

)
. (6.3)
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To bound J2, we let φ ∈ L2(! ∪ !h) such that φ|!∩!h = (u − uh)|!∩!h and
φ|!∪!h\(!∩!h) = 0. We then define (ψ, r) ∈ H1

0(!) × L2
0(!) to be the solution to the

auxiliary problem
{

−)#ψ + ∇r = φ in !,

divψ = 0 in !.
(6.4)

Because ∂! is smooth and φ|! ∈ L2(!), there holds ψ ∈ H2(!) with ‖ψ‖H2(!) ≤
C‖φ‖L2(!) = C‖φ‖L2(!∩!h)

by elliptic regularity theory. Similar to the solution u in (5.2),
we extend ψ to R2 in such a way that preserves the divergence–free condition (cf. [21]) and

‖ψ‖H2(R2) ≤ C‖ψ‖H2(!) ≤ C‖φ‖L2(!∩!h)
. (6.5)

Finally, we define ψh ∈ Xh
k to be the approximation of ψ on !h satisfying

ah(ψh, v) =
∫

!h

φ · v ∀v ∈ V h
k . (6.6)

We note that ψ and ψh are analogous to u and uh , respectively, in Theorem 5.2 when s = 2
(so that % = 2), with φ replacing both f and f h . Therefore, the following estimate holds:

‖ψ − ψh‖H1
h (!h)

≤ Ch‖ψ‖H2(!) ≤ C‖φ‖L2(!∩!h)
. (6.7)

Additionally, applying Corollary 5.3 yields

‖ψh‖H2
h (!h)

≤C‖ψ‖H2(!) ≤ C‖φ‖L2(!∩!h)
. (6.8)

Next, we write

(J2)2 = ‖u − uh‖2L2(!∩!h)
=

∫

!∩!h

φ · (u − uh)

=
∫

!
φ · u −

∫

!h

φ · uh

=a(u,ψ) − ah(uh,ψh)

=[a(u,ψ) − ah(u,ψ)] + ah(u,ψ − ψh)+ ah(u − uh,ψh).

(6.9)

We now consider the terms of (6.9) separately. -.

Bound of [a(u,Ã) − ah(u,Ã)]

To bound the first terms of (6.9), we begin with

|a(u,ψ) − ah(u,ψ)| =)

∣∣∣∣

∫

!
∇u : ∇ψ −

∫

!h

∇u : ∇ψ

∣∣∣∣

=)

∣∣∣∣

∫

!\!h

∇u : ∇ψ −
∫

!h\!
∇u : ∇ψ

∣∣∣∣

≤C)‖∇u‖L2(!#!h)
‖∇ψ‖L2(!#!h)

.

The result of Lemma 2.1 implies

‖∇u‖L2(!#!h)
≤ Ch(k+1)/2‖u‖H2(!), ‖∇ψ‖L2(!#!) ≤ Ch(k+1)/2‖ψ‖H2(!),
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from which we get

|a(u,ψ) − ah(u,ψ)| ≤ Chk+1)‖u‖H2(!)‖ψ‖H2(!). (6.10)

Bound of ah(u,Ã − Ãh)+ ah(u − uh,Ãh)

It now remains to bound the last 2 terms in (6.9). To begin, we write

ah(u,ψ − ψh)+ ah(u − uh,ψh)

= ah(u − uh,ψ − ψh)+ ah(uh,ψ − ψh)+ ah(u − uh,ψh)

≤ )‖u − uh‖H1(!h)
‖ψ − ψh‖H1(!h)

+ ah(uh,ψ − ψh)+ ah(u − uh,ψh)

≤ C
(

)h%‖u‖H%(!) + h| f − f h |X∗
h

)
‖φ‖L2(!∩!h)

+ ah(uh,ψ − ψh)+ ah(u − uh,ψh)

(6.11)

by Theorem 5.2 and (6.7).
Recalling (5.10), we have by Lemma 4.7 (with m = 2, and noting % = min{s, k + 1} ≤

min{s − 1, k − 1} + 2 = r + 2)

ah(u − uh,ψh) = − )
∑

e∈EI
h

∫

e
∇u : [ψh] +

∫

!h

( f − f h) · ψh

≤C)h%‖u‖H%(!)‖ψh‖H2
h (!h)

+ | f − f h |X∗
h
‖∇ψh‖L2(!h)

≤C
(
)h%‖u‖H%(!) + | f − f h |X∗

h

)
‖φ‖L2(!∩!h)

.

(6.12)

By an analogous argument, but with s = 2 and m = k in Lemma 4.7 (so that r = 1), we
have

ah(uh,ψ − ψh) = − )
∑

e∈EI
h

∫

e
∇ψ : [uh]

≤C)hk+1‖ψ‖H2(!)‖uh‖Hk
h (!h)

≤C)h%‖φ‖L2(!∩!h)
‖u‖H%(!).

(6.13)

Combining (6.11)–(6.13) yields

ah(u,ψ − ψh)+ ah(u − uh,ψh) ≤ C
(
)h%‖u‖H%(!) + | f − f h |X∗

h

)
‖φ‖L2(!∩!h)

,

(6.14)

and so applying this estimate and (6.10) to (6.9) (recalling that φ = u − uh on ! ∩ !h), we
obtain

J2 ≤ C
(
)h%‖u‖H%(!) + | f − f h |X∗

h

)
. (6.15)

Finally, applying (6.3) and (6.15) to (6.2) completes the proof. -.
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Table 1 Errors and rates for the Isoparametric approximations with Gauss-Lobatto nodes compared to the
affine approximation

Isoparametric

h ‖u − uh‖L2(!h )
Rate ‖u − uh‖H1(!h )

Rate ‖p − ph‖L2(!h )
Rate

0.654 3.391 · 10−1 – 3.363 – 7.071 –

0.318 2.392 · 10−2 3.672 4.257 · 10−1 2.862 5.234 · 10−1 3.604

0.158 1.675 · 10−3 3.791 6.232 · 10−2 2.740 8.845 · 10−2 2.537

0.079 1.139 · 10−4 3.866 9.046 · 10−3 2.776 1.298 · 10−2 2.761

0.039 7.183 · 10−6 3.985 1.225 · 10−3 2.882 1.695 · 10−3 2.935

Affine

h ‖u − uh‖L2(!h )
Rate ‖u − uh‖H1(!h )

Rate ‖p − ph‖L2(!h )
Rate

0.654 6.411 · 10−1 – 3.705 – 8.289 –

0.318 1.525 · 10−1 1.989 1.248 1.507 2.288 1.782

0.158 3.667 · 10−2 2.032 4.589 · 10−1 1.427 8.526 · 10−1 1.408

0.079 8.779 · 10−3 2.056 1.635 · 10−1 1.484 3.005 · 10−1 1.500

0.039 2.133 · 10−3 2.040 5.741 · 10−2 1.509 1.056 · 10−1 1.508

7 Numerical Experiments

We perform a series of numerical experiments to compare with the theoretical results pre-
sented in this paper. We focus on the k = 3 case below. Numerical experiments for the k = 2
case can be found in [6].

We define our domain to be the region bounded by the ellipse

! = {x ∈ R2 : x21
2.25

+ x22 < 1},

and assign data according to the exact solution

u =
(
1.5( x21

2.25 + x22 − 1)( 8x
2
1 y

2.25 + x21
2.25 + 5x22 − 1)

−4x1
1.5 (

x21
2.25 + x22 − 1)( 3x

2
1

2.25 + x22 + x2 − 1)

)

, p = 10(
x21
2.25

+ x22 − 1
2
). (7.1)

We take f h to be the cubic (nodal) Lagrange interpolant of f and set the viscosity to
) = 1 to compute the finite element method described in (5.4). We subsequently compute
the errors for decreasing mesh parameter h.

7.1 Isoparametric and Affine Comparison

In Table 1, we compare the isoparametric approximation defined through the Piola transform
described in this paper with the corresponding affine approximation. Both tests were run
on P3 − P2 Scott-Vogelius elements with all edge degrees of freedom placed at the Gauss-
Lobatto points. For the isoparametric approximation, we observe the optimal convergence
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Table 2 Errors and rates for the Isoparametric approximation with degrees of freedom placed at standard,
equidistant points

Isoparametric with Equidistant Degrees of Freedom

h ‖u − uh‖L2(!h )
Rate ‖u − uh‖H1(!h )

Rate ‖p − ph‖L2(!h )
Rate

0.654 3.393 · 10−1 – 3.298 – 6.906 –

0.318 2.307 · 10−2 3.723 3.998 · 10−1 2.922 4.813 · 10−1 3.689

0.158 1.657 · 10−3 3.755 5.538 · 10−2 2.819 8.089 · 10−2 2.543

0.079 1.212 · 10−4 3.762 7.938 · 10−2 2.794 1.246 · 10−2 2.691

0.039 1.791 · 10−5 2.756 2.043 · 10−3 1.957 2.946 · 10−3 2.079

rates predicted by the theory:

‖u − uh‖L2(!h)
= O(h4), ‖∇(u − uh)‖L2(!h)

= O(h3)

‖p − ph‖L2(!h)
= O(h3).

For the affine approximation, we observe suboptimal convergence.

7.2 Dependence on Degrees of Freedom

In Remark 4.8, we note the error estimate may lose up to k − 1 powers of h if equidistant
nodes are used in places of Gauss-Lobatto nodes. To test this, we compute the errors for the
isoparametric approximation with the standard, equidistant placement of degrees of freedom
in order to test whether Gauss-Lobatto points are necessary or simply a tool for the analysis.
We compare these results, shown in Table 2, with those in Table 1, and we see that the
isoparametric approximation with equidistant points is indeed suboptimal.

7.3 Divergence Errors and Pressure Robustness

We also compare the maximum divergence values computed using isoparametric approxima-
tion presented in this paper with those computed with the standard isoparametric approach.
The degrees of freedom for both approximations are taken at the Gauss-Lobatto points so that
the only difference is the use of the Piola transform in the velocity space. As shown in Fig. 3,
the method described in this paper is divergence free, whereas the standard isoparametric
method (ustandardh ) is not. We also observe that, as the mesh is refined, the divergence error
of the proposed method grows. We speculate that this behavior is due to the direct solver
used (UMFPACK) and round-off error.

Finally, we check the behavior of the method for varying values of viscosity. We run the
method onP3 −P2 elements for data given by (7.1). In Table 3, we show the behavior of the
error in the velocity as we vary viscosity ). Aswe can see, the error remains nearly unchanged
as we vary values of ) over several orders of magnitude, indicating that the scheme is pressure
robust.
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Fig. 3 Divergence of the isoparametric method with Piola transform compared to the standard isoparametric
method on Scott-Vogelius P3 − P2 elements

Table 3 Error tests for h = 0.079
with varying values of viscosity )

) ‖u − uh‖L2(!h )
‖u − uh‖H1(!h )

10−7 1.139 · 10−4 9.046 · 10−3

10−6 1.139 · 10−4 9.046 · 10−3

10−3 1.139 · 10−4 9.046 · 10−3

1 1.139 · 10−4 9.046 · 10−3

8 Conclusions

In this paper, we proposed and analyzed a divergence-free finite element method for the 2-
dimensional Stokes problem on smooth domains. This is achieved by combining the classical
Scott-Vogelius finite element pair with the isoparametric paradigm, along with the Piola
transform. To reduce the consistency error and to ensure that the resulting scheme converges
with optimal order, the Gauss-Lobatto points on edges are taken to as the degrees of freedom.
Numerical experiments are provided, supporting the theoretical results and indicate the choice
of Gauss-Lobatto degrees of freedom are necessary to achieve optimal rates of convergence.

While this paper considers the 2-dimensional case, many of the arguments extend to the
3-dimensional setting as well. For example, the construction of the finite element spaces
generalize naturally to 3D. Likewise, the inf-sup stability result given in Theorem 4.9 easily
extends to 3 dimensions, but with the polynomial degree condition k ≥ 3 to ensure that
(4.13) holds. However, the presented convergence analysis does not directly carry over to
3 dimensions. Namely, the arguments to derive the consistency estimate in Lemma 4.7 are
no longer valid because the Gauss-Lobatto integration rules used in its proof do not exist on
triangular faces [22]. We plan to address this issue in future work.
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Appendix A. Proof of Lemma 3.2

Proof Write v(x) = AT v̂(x̂) for some v̂ ∈ V̂ k . We then use Lemma 2.3, (2.5), and
equivalence of norms to obtain

‖v‖W %,p(K ) ≤ Ch2/p−%
T ‖AT v̂‖W %,p(K̂ )

≤ Ch2/p−%
T ‖AT ‖W j,∞(K̂ )‖v̂‖W %,p(K̂ )

≤ Ch2/p−%−1
T ‖v̂‖W %,p(K̂ ) ≤ Ch2/p−%−1

T ‖v̂‖Lq (K̂ ).

(A.1)

Likewise, we have

‖v̂‖Lq (K̂ ) ≤ ‖A−1
T ‖L∞(K̂ )‖AT v̂‖Lq (K̂ ) ≤ Ch1−2/q

T ‖v‖Lq (K ). (A.2)

Combining (A.1)–(A.2) yields (3.1) for the case m = 0. The estimate (3.1) for general m
then follows by standard arguments (cf. [9, Lemma 4.5.3]).

To prove (3.2), we first use (2.5):

|v|W %,p(K ) ≤ C
[
h2/p+%
T

k∑

r=0

h−2r
T |AT v̂|Wr,p(K̂ )

︸ ︷︷ ︸
=:I

+ h2/p+%
T

%∑

r=k+1

h−2r
T |AT v̂|Wr,p(K̂ )

︸ ︷︷ ︸
=:I I

]
.

To bound I , we use (2.5) once again to obtain

I ≤ h2/p+%
T

k∑

r=0

h−2r
T · hr−2/p

T ‖v‖Wr,p(K ) ≤ Ch%−k
T ‖v‖Wk,p(K ).

For I I , we use the fact that v̂ is a polynomial of degree ≤ k on K to obtain

|AT v̂|Wr,p(K̂ ) ≤ C
k∑

j=0

|AT |Wr− j,∞(K̂ )|v̂|W j,p(K̂ )

≤ C
k∑

j=0

hr− j−1
T |A−1

T AT v̂|W j,p(K̂ )

≤ C
k∑

j=0

j∑

i=0

hr− j−1
T |A−1

T |W j−i,∞(K̂ )|AT v̂|Wi,p(K̂ )

≤ C
k∑

j=0

j∑

i=0

hr−i
T |AT v̂|Wi,p(K̂ )

≤ C
k∑

j=0

j∑

i=0

hr−i
T · hi−2/p

T ‖v‖Wi,p(K )

≤ Chr−2/p
T ‖v‖Wk,p(K ).

Thus,

I I ≤ Ch2/p+%
T

%∑

r=k+1

h−r−2/p
T ‖v‖Wk,p(K ) ≤ C‖v‖Wk,p(K ).
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Combining the bounds for I and I I completes the proof of (3.2). -.

Appendix B. Proof of Lemma 4.5

Proof Define Eh : V h → H1
0(!h) such that, for v ∈ V h ,

Ehv|T = (ṽ + FT̃ + F−1
T )|T ,

where ṽ is the function in Ṽ uniquely defined by

v|T (a) = ṽ|T̃ (ã) ∀a ∈ NT , ∀T ∈ Th,

where T = Gh(T̃ ). In other words, in a standard isoparametric, kth degree Lagrange finite
element method, Ehv would be the function on the isoparametric element associated with ṽ
on T̃ . Thus, Ehv ∈ H1

0(!h).
As shown in [6], ṽ = Ehv on affine triangles, and we may conclude

Ehv|T (a) = v|T (a) ∀a ∈ NT , ∀T ∈ Th .

Our goal is to estimate v − Ehv, and our proof follows closely with the proof of Lemma
4.5 in [6]. However, here we provide a more general result.

As v = Ehv on affine triangles, we only consider T ∈ Th with curved boundaries.
Additionally, we know v|∂T∩∂!h = 0. We may write v|T (x) = AT (x̂)v̂(x̂), for some v̂ ∈
V̂ , where AT = DFT / det (DFT ). Furthermore, there exists ŵ ∈ V̂ such that ŵ(x̂) =
Ehv|T (x). Consequently,

AT (â)v̂(â) = ŵ(â) ∀â ∈ NT̂ ,

so ŵ is the piecewise kth degree Lagrange interpolant of AT v̂ on T̂ CT .
By the Bramble-Hilbert lemma, we have

‖AT v̂ − ŵ‖Hi (K̂ ) ≤ C |AT v̂|Hk+1(K̂ ) ∀K̂ ∈ T̂ CT , i = 0, 1, . . . , k. (B.1)

We may then bound the right-hand side using Lemma 2.3 and recognizing that v̂ is a
polynomial of degree k. Thus we have

|AT v̂|Hk+1(K̂ ) ≤C
k+1∑

j=0

|AT |Wk+1− j (K̂ )|v̂|H j (K̂ ) = C
k∑

j=0

|AT |Wk+1− j (K̂ )|v̂|H j (K̂ )

≤C
k∑

j=0

hk− j
T |v̂|H j (K̂ ).

(B.2)

Using Lemmas 2.3 and 2.4, we have

|v̂|H j (K̂ ) = |A−1
T AT v̂|H j (K̂ ) ≤ C

j∑

%=0

|A−1
T |W j−%(K̂ )|AT v̂|H%(K̂ )

≤ C
j∑

%=0

h1+ j−%
T |AT v̂|H%(K̂ )

≤ C
j∑

%=0

h1+ j−%
T h%−1

T ‖v‖H%(K ) ≤ Ch j
T ‖v‖H j (K ).

(B.3)
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Inserting this estimate into (B.2) yields

|AT v̂|Hk+1(K̂ ) ≤ ChkT ‖v‖Hk (K ),

and therefore by (B.1) and Lemma 2.4,

|v − Ehv|Hi (K ) ≤ Ch1−i
T ‖AT v̂ − ŵ‖Hi (K̂ ) ≤ Ch1−i

T |AT v̂|Hk+1(K̂ ) ≤ Chk+1−i
T ‖v‖Hk (K ).

(B.4)

An applicaiton of the inverse inequality (3.1) then yields the desired estimate (4.3). -.
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