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Abstract

In this paper, we construct and analyze divergence-free finite element methods for the Stokes
problem on smooth domains. The discrete spaces are based on the Scott-Vogelius finite
element pair of arbitrary polynomial degree greater than 2. By combining the Piola transform
with the classical isoparametric framework, and with a judicious choice of degrees of freedom,
we prove that the method converges with optimal order in the energy norm. We also show
that the discrete velocity error converges with optimal order in the L2-norm. Numerical
experiments are presented, which support the theoretical results.
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1 Introduction

Divergence-free methods for the Stokes problem have grown in popularity due to the various
advantages they present. This includes pressure-robustness, which allows the errors of the
pressure and velocity to be decoupled so that the scheme is well-suited to systems in which
the pressure term in the Stokes problem is dominant (i.e. systems with a large pressure
gradient or small viscosity). Other advantages include mass-conservation and parameter
robustness. Consequently, these methods have become an active area of research (see, e.g., [1—
51). However, most work on these methods is focused on polyhedral domains. The extension
to smooth domains (with optimal-order convergence) is non-trivial and only recently have
various approaches been proposed [6—8].

In this paper, we propose an arbitrary degree, divergence-free, isoparametric finite ele-
ment scheme for the 2D Stokes problem based on the Scott-Vogelius pair [1]. On polygonal
domains, this approach approximates the velocity with continuous, piecewise polynomials of
degree k, and approximates the pressure with discontinuous polynomials of degree (k — 1).
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It is well known that the stability of this pair depends on both the triangulation and the poly-
nomial degree k. We will work on Clough-Tocher splits which yield a stable element pair
provided k > 2. This is a commonly used method allowing greater flexibility with respect to
polynomial degree.

In our approach, we combine this Scott-Vogelius pair with an isoparametric paradigm. To
do so, we apply k-degree polynomial diffeomorphisms to define the curvilinear triangulation
and the finite element spaces. While this approach is classical for isoparametric elements (see
[9, 10]), its extension to divergence-free methods is non-standard and a direct application of
this approach fails to lead to divergence-free and pressure-robust schemes. In particular, using
classical isoparametric Lagrange finite element spaces for velocity approximations disrupts
the divergence-free and pressure-robust properties of the scheme. Instead, we employ the
divergence-preserving Piola transform in the definition of the discrete velocity space. This
transform is defined on the macro (unrefined) triangulation, and we treat the resulting finite
element spaces as macro elements defined on the unrefined triangulation.

The primary challenge in this approach lies in the fact that the Piola transform pollutes
the continuity of functions in the Lagrange finite element space. More specifically, when
the functions in the discrete velocity space are defined by the Piola transform, only normal
continuity across interior edges is guaranteed. Thus, the resulting space is only H (div)-
conforming. Nonetheless, the spaces are designed to have weak continuity properties that are
leveraged to ensure consistency and stability so that no additional terms in the bilinear form
(e.g., penalty terms) are required in the method.

Consequently, one of the main contributions of this paper is to design a finite element
space that combines the Lagrange finite element space with the Piola transform and possesses
sufficient weak continuity properties across interior edges. We achieve such a space via a
judicious choice of edge degrees of freedom; specifically, these are taken as the Gauss-Lobatto
points of interior edges. This construction allows us to derive a general estimate of the jumps
of discrete velocity functions across interior edges (cf. Lemma 4.7).

This work is an extension of [6] where the lowest-order case k = 2 was considered. As
expected, some of the results in [6] extend to the general case, such as scaling arguments and
inf-sup stability. However, the weak continuity properties of the discrete velocity space is
subtle, and a naive extension of [6] to arbitrary polynomial degree does not necessarily lead
to an optimal-order convergent method. Another contribution is L? error estimates. Again,
this requires new estimates of the discrete velocity functions across interior edges.

The organization of the paper is as follows. In the next section, we introduce notation,
state the properties of the polynomial diffeomorphism, describe the domain discretization,
and introduce the Piola transform. We also establish some necessary preliminary results that
are later used in the convergence analysis. In Sect. 3, we define the local finite element spaces
and the degrees of freedom and introduce the global spaces in Sect.4. Also in Sect.4, we
discuss the weak continuity properties of the function spaces and show that the method is
inf-sup stable. In Sect.5, we introduce the finite element method and derive optimal-order
H' and L? error estimates for the velocity and pressure solutions, respectively. Then, in
Sect. 6, we prove optimal-order convergence in L? for the discrete velocity solution, and in
Sect. 7, we provide numerical experiments to verify our theoretical results. Finally, we state
conclusions in Sect. 8 and prove some auxiliary results in Appendices A-B.
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2 Preliminaries

Let © C R? be an open, bounded, and sufficiently smooth domain with boundary 9€2. We
then construct a mesh following the divergence-free isoparametric method outlined in [6].

2.1 Isoparametric Framework

We begin with a shape regular, affine (simplicial) triangulation Ty, with sufficiently small

mesh size h = maxg g, diam( f). Furthermore, we assume that the boundary vertices lie on

<, that Qj, := int( Ured, T) is an O(h?) polygonal approximation of €2, and each T € T,
has at most 2 boundary vertices.

Next, we let G : €, — Q be a bijective map between the domain and the mesh with
Gy @) = C. Here and throughout the paper, C denotes a generic positive constant that
is independent of any mesh parameter and may take on different values at each occurrence.
We define G such that G|;(x) = x at all vertices of T. Furthermore, we assume that G is
the identity map on interior edges, i.e., edges containing at most one vertex on the boundary.

From here, we define a mesh with curved boundaries following a standard isoparametric
framework (see e.g. [9, 11-13]). In particular, we define G, to be the piecewise polynomial
nodal interpolant of G of degree < k (k > 2), with |Gy, ”WI-OO(T) < C and ||G;1 ”WLOO(T) <

C forall T € T). Then, the isoparametric triangulation and computational domain are given
by
Ty = {Gh('f) cTe ih}’ Qp = int( UreT, T)

In particular, 2 is an O (h*+h approximation to 2. We denote by || - || H" () the piecewise
norm with respect to T, i.e.,

2 2
gl = D Nalmr).
TeTy

We also denote by V}, the piecewise gradient operator with respect to Jp,, so that V,g|r =
V(g|r) forall T € Tj,.

2.2 The Mappings F; and Fr

To define the finite element spaces, we must first construct mappings to and from the affine
and curved triangulations, T and J7,. To do so, we define T to be the reference triangle with
vertices (1, 0), (0, 1), and (0, 0). Then for each T ¢ ‘j'h, we let Fj - T — T be an affine
bijection with |FT|W1100(T) < Chr and |Ff_] |W'v°0(f) < Ch;] for hy = diam(f). Subse-
quently, we may define Fr : T — T by Fr = G 0 Fj. Foreach T € T}, the polynomial
diffeomorphism F7 and its inverse and assumed to satisfy the following estimates:

Filynosry < CHF O =m <k IFllyms < CHF" @ <m =+ 1),
c1h} < det(DFy) < coh. '

Here, we have hy = dialm(G,;1 (T)), and ¢y, ¢y are generic constants independent of hr.
Furthermore, we note that, due to the assumptions on G, the mappings Fr and F; are oriented
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so that they match at the vertices of T. Consequently, the mappings are the same on triangles
with 3 interior edges, so that for all such triangles T € T, wehave T = G, (T) =T.

2.3 The Boundary Regions of Q and Q,
With the isoparametric triangulation established, we define QAQ, = (Q\2,) U (2,\2)
and note it may be shown that (see e.g. [14, Equation 3.9] for proof)

1QAQy,| < CRF. (2.2)

Next, by the construction of Q2A€2j,, we have abound of the H 1 semi-norm in this boundary
region.

Lemma2.1 Letv € H2(§2) be extended into R? in a way such that ||v|| g2 2y < Cllv|l g2(q)-
Then for h sufficiently small,

kL
IVVl2onag,y < Ch 2 Ivlig2g)-

Proof Let d be the signed distance function of Q with the convention d(x) < 0 for x € Q.
For § > 0, define

Us:={x e R?: d(x) < 8},

and note that, because 92 is C2, there holds dUs € C 2fors >0 sufficiently small. We then
set

Ns :={xeU:|dx)| <8}
to be the tubular region around dUs. By [15, Lemma 4.10], there holds for all w € HY\(Us):
lwll 20, < C82 Wl g1 (-

Now set 8, = 2dist{dQy, dQ} = OhFH!), so that QAQ, C Ns,, and assume £ is
sufficiently small such that dUs, € C2. We then have

1/2 k+1
IVull2aq,) < C||VU||L2(N5h) =< C(Sh/ ”V"”H‘(U,;h) <Ch?> ol g2(q)-

2.4 Clough-Tocher Split

To guarantee inf-sup stability of the proposed divergence-free method, we introduce on
each element a local triangulation given by the Clough-Tocher split. This is also known as
the Alfeld split [16—18] or barycenter refinement [19]. Let T = {Iei}?: | be the Clough-
Tocher triangulation of the reference triangle, obtained by connecting the vertices of T to its
barycenter. We define analogous splits on our affine and curved triangulations via F; and
Fr (cf. Figs. 1, 2):

T ={Fz(K): K eT), T ={Fr(K): K €T}
From (2.1) and the shape-regularity of Ty, it follows that |IT| < C|K|forall K € T“.

Remark 2.2 'We note that for the macroelement T € Ty, only edges containing both vertices
on 92, may be curved. However, it may be that interior edges of the local triangulations
K € T may indeed be curved as well.

@ Springer



Journal of Scientific Computing (2024) 101:33 Page50f26 33

Fig.1 Clough-Tocher split and

degrees of freedom for the

quadratic Lagrange finite element

space (k = 2). The local split is Fr
mapping to the curved element T’

via the polynomial

diffeomorphism Fr

Fig.2 Clough-Tocher split and
degrees of freedom for the
quartic Lagrange finite element
space (k = 4). Edge degrees of
freedom on T are placed at
Gauss-Lobatto points

2.5 The Piola Transform

The final piece we need to construct the divergence-free method is the Piola transform. Given
T € Ty, we define the matrix A7 : T — R2*2 (o be the matrix arising in this transform
Ar(®) = —2FT&) 2.3)
det(D Fr (X))
In what follows, the local function spaces on each T € TJj will be constructed through
Ar. Specifically, given a function v : T — R2, its Piola transform yields the function
v:T - R2withv = (A7) o FT_] (cf. Sect.3). It is well-known that this transform is
divergence-preserving and normal-continuity preserving, and its use in the definition of the
spaces given below allows us to maintain these properties of the Scott-Vogelius pair on curved
triangulations. We emphasize that this transform is defined with respect to T € T}, not with
respect to the triangles in the Clough-Tocher split.

2.6 Bounds and Scaling Results

The following results give bounds on the matrix A7 and its inverse. We refer to the appendix
of [6] for a proof for the case k = 2. The arguments given there generalize trivially for k > 2,
and therefore the proof of the following lemma is omitted.

Lemma 2.3 For each T € Ty, there holds

Chit™ 0 <m <k —

L,
0 k <m. 24)

AT lymoo iy < Ch ™ 0m = 0, 1AT ey = {
Additionally, we will make use of the following scaling results from [11].
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Lemma24 LetT € ‘J'hAcmd we W"P(T)withm > 0and p € [1, oo]. Let we Wm’p(f")
be the image of w on T with w(x) = w(x), x = Fr(x) and set K = F;I(K) for each
K € T'. Then for any K € T*,

m
2/p— 2(m—r) | A
|w|W’”'p(K) =< ChT/p " ZhT(m r)|w|Wr.p([€)7
=0 2.5)

m

R -2

@l ymp gy < Chy /p2|wlwr~p(1()-
r=0

In the results that follow, we let n denote the outward unit normal of a given domain
(understood from context), and set ¢ to be the unit tangent vector obtained by rotating n 90
degrees counterclockwise.

3 Local Spaces

The full derivation of the local spaces for the divergence-free isoparametric framework can
be found in [6] for the case kK = 2. Below, we have the analogous results for general k.

To begin, we define the local function space on the reference triangle T C R2, with
Clough-Tocher triangulation Te = {1% 1 122, K 3}. Without including boundary conditions,
the polynomial spaces on the reference triangle are

Vi={d e H'(I): |z € Pu(K) VK € T},
Ok—1=(G € L*(T) : 4l € Pr—1(K) VK € T},
where P (S) is the space of scalar polynomials of degree < k on domain S, and P (S) =
[PL(S)I. - -
Withx = F (X), we define the local spaces on the affine triangle T € T}, via composition:
Vi) ={v € H(T) : 9(X) = d(&), 3b € Vi,
Ok-1(D) ={g € L*(1) : (M) = §(R), 3G € Ox-1).
To incorporate boundary conditions, we further define
Vio=ViN H(l)(f), Ok-10=00 L%(f),
Vio(T) = Vi(T) N Hy(D), Oxk-10(T) = O(T) N L(D),
where L%(f) is the space of Lz(f)—functions with vanishing mean.

We then define the function spaces on the triangles 7 € T} (which may have a curved
edge), using the notation x = Fr(X) and the Piola transform:

Vi(T) ={v € H\(T) : v(x) = Ar(®)d(X), b € Vi), Vio(T) = Vi(T) N HY(T),
Qk—1(T) ={g € LX(T) : q(x) = §(®), 3§ € Ox—1},
Qi—1,0(T) =lg € LX(T) : q(x) = §(%), 3G € Qi—1,0},

where the matrix A7 is given by (2.3). Note that if Fy is affine, then V(') = V(T) and
o(T) = Q(1).

It is important to note that functions in V;_{(T) and Qy_;(T) are not necessarily
piecewise-polynomial spaces if 7 is not affine. In addition, on curved triangles the matrix
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A7 is not necessarily constant on straight edges, and therefore functions in V;_(T') are not
necessarily polynomials on such edges. However, the following lemma shows that the the
normal component of v will be a polynomial when restricted to a straight edge.

Lemma 3.1 Let v € V(T), and suppose that e is a straight edge of 0T with unit normal n.
Then v - n|. € Pr(e).

The proof of this result is found in [6, Lemma 3.1] for the case k = 2 and essentially uses the
well-known normal-preserving properties of the Piola transform. However, the result extends
trivially to - 72 a polynomial of arbitrary degree k.

With the local spaces now defined, we may state the following lemma showing that
functions in the finite element space V(T) enjoy inverse estimates similar to those for
piecewise polynomials. In addition, similar to isoparametric (polynomial) elements defined
via composition, high-order Sobolev norms of functions in V(T') are controlled by kth-order
Sobolev norms. Its proof is based on scaling arguments and is found in Appendix A.

Lemma3.2 Let p,q € [1,00] and 0 < m < £ be integers. Then for any T € Tj and
v e Vi(T),

_ 1_1
o]l <cn T VK e T¢ 3.1)
wer(K) = T w4 (K) . .

Moreover,

||v||W/z,,;(K) < C”U”Wk.p(K) \44 > k, VK € TCt. (32)

3.1 Degrees of Freedom on V (T)

To describe the degrees of freedom of the local velocity space V(T'), we first summarize
the canonical degrees of freedom for the reference space Vi, ie., the kth-degree Lagrange
finite element space defined on the Clough-Tocher split. It is well known that a function in
this space is uniquely determined by (i) its values at the 4 vertices in Tt (4 nodes); (ii) its
values at (k — 1) distinct points for each of the six (open) edges in Tet (6(k — 1) nodes);
and (iii) its values at %(k — 1)(k — 2) distinct points for each of the 3 (open) subtriangles in
Tet (%(k — 1)(k — 2) nodes). In (iii), the %(k — 1)(k — 2) points for each subtriangle must
be chosen such that they uniquely determine a polynomial of degree (k — 3). We see that
the total number of nodes is My := 4 + 6(k — 1) + 3 (k — 1)(k —2) = 3k(k+ 1) + 1, and
therefore the dimension of f’k is 3k(k + 1) + 2. By setting f\fk = {a; },M=k1 to be the set of these

points, then a function # € V is uniquely determined by the values (d;) for all a; € Ne.

To ensure sufficient weak continuity properties of the global finite element spaces defined
below, we specify that the location of the points on the 3 boundary edges of T correspond
to the nodes of the Gauss-Lobatto quadrature scheme. In particular, for a boundary edge
e C Bf“, the nodes on the closure of the edge, denoted by {r?li}f:ll C e, satisfy

k+1

D @igon) = ﬁé Vg € Pa-1(0),
i=1 ¢

and 2 of the nodes in this set correspond to the vertices of ¢. The other nodes (i.e., nodes
on interior edges and the interior of subtriangles) can be chosen such that they satisfy the
above properties to form a unisolvent set of degrees of freedom on V. However, to simplify
the implementation of the resulting finite element spaces, we also take nodes on the interior
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edges to be the Gauss-Lobttto points, and let the nodes in the interior of subtriangles to be
the canonical Lagrange nodes (cf. Figs. 1,2).
We map these nodes to T € T, and T € T}, via the mappings Fz and FT, respectively:

Ne(T) = (Fp@@) 4 € N}y Ne(T) = (Fr(@) : i € Ne).

Due to the invariance of spaces of polynomials under affine transformations, we see that the
nodes in Ny (7') that lie on an edge e C T correspond to the Gauss-Lobatto quadrature rule
on that edge. Likewise, if e C 9T is a straight edge of T, then the nodes in Ny (7') that lie on
e are the nodes of the Gauss-Lobatto quadrature rule on e.

Finally, we note that, since functions in v x are uniquely determined by their values at the
nodes Ny, and since the matrix A7 is invertible, it follows that any v € V(T) is uniquely
determined by the values v(a;), a; € Ni(T).

4 Global Spaces
On the affine triangulation frh, we define the Scott-Vogelius pair
Vi =(b € H)S) : |7 € Vi(T) VT € Ty},
0}y =3 € L§(Qn) : Gl € Ok 1(T) VT € Ty).

We see that f’: is the kth degree Lagrange finite element space with respect to the Clough-
Tocher refinement of ‘j'h, and QZ—I is the space of discontinuous polynomials of degree
(k — 1), again with respect to the Clough-Tocher refinement. The finite elements Vj, x Q,
represents a stable and divergence—free Stokes pair [20], however its use formally leads to a
suboptimal scheme on smooth domains due to geometric error.
To define the isoparametric spaces, we define the operators W and Yj_1 such that Wlr :

V(T) — V(T) and Yy_ 17 Q(T) — Q(T) and are uniquely determined on each T e ‘J'h
and T € T), with T = G(T) as follows:

1. (Wi|rv)(a) =v(a)Va € Nk(T), with a = Gp(a) € Ni(T), and
2. (Yk-1lr§) =G o G,

Thus, ¥; maps functions in ‘72 to the isoparametric domain €2, via the Piola transform and
interpolation, and Yj_1 maps functions in QLl to Q5 via composition.

In the following proposition, we state some properties of the mapping ¥ without proof, as
the result is proven for k = 2 in [6, Theorem 3.7]. To extend the results to arbitrary degree k,
one only needs to recognize that a k-th degree polynomial along an edge e C 97 is uniquely
determined by its values at the k + 1 nodal points that lie on this edge.

Proposition 4.1 The following properties are satisfied:

1. If Fr is dffine, then W |7 is the identity operator. y
2. Ife C dT is a straight edge (so e C 0T with T = G;(T)), then

- - - oh
(Ylrd) -nle=v-n|, YoeV,.

- - - =~h
3. There holds |k |70l g1y < CIIvIIHI(f)forall veV,.
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Consequently, global function spaces defined on the isoparametric mesh T are given by
- o~ h Y L. =
VZ ={v:v=¥v, dJv eV}, QZ ={q:q="r1q, 3q € Qi’}.
.. . ~h o
Remark 4.2 From the boundary conditions applied to the space V', and the definition of Wy,
we see that functions in Vz are continuous at the degrees of freedom, and vanish on 9<2y,.

With these spaces defined, we have the following results.

Lemma4.3 There holds V' C Ho(div; ) = (v € L2X(Q) : divv € LX(Qp), v-nlag, =
0}.

This result follows immediately from the construction of V,i‘ and the continuity of the
normal component on interior edges imposed by part 2 of Proposition 4.1. See [6, Theorem
4.2] for details.

Lemma 4.4 There exists an operator IZ : HX Q) N H(l)(Qh) — V’IZ such that for u €
H* () N H(Q) (s > 2) and for each T € Ty, there holds

lw — Iullgmery < CRS ™ ull gery 0 <m < £:=minf{k + 1, ). 4.1)

Proof Recall Ny (T) and Nk are the sets of nodes on T and T, respectively. We uniquely
define the operator I f such that on each T € Ty,

(I'w)|7r(a) = u(a) Va € Ny(T).
Setv = Ilu|r € Vi(T),for T € Ty. Thenset 9 € Vi and & € H*(T) such that
v(x) = (ATD)(X), u(x) = (Ar@)(X).
Consequently,
(Ard)@) = (Ari)(@) = @) =a@) YaelN,

because the matrix A7 is invertible. Thus, v is the kth degree nodal interpolant of & with
respect to T, so, by standard interpolation theory, we have

I = o)l yu 7y < Clitl ey 0 <m < €=minfk + 1, 5}. 4.2)

Thus it follows from (4.2), Lemmas 2.3 and 2.4, and an application of the product rule
that

1— ~ A —miA
|ll - v|H'"(T) SChT m”AT”Wm,oo(f) ”u - v”Hm(f) =< ChTm|u|H[(f‘)7
and so, by using Lemmas 2.3 and 2.4 once again,

lu — vl gmr) 5Ch;’"|A;1ATﬁ|Hz(f)

J4
_ -1 ~
EChTm Z IAT |Wj,00(f')|ATu|H£—j(f)
J=0

L
_ 14j N
§ChT’"ZhT NAT@ e s )
j=0

{—
<Chy " leell e ry-

[}

@ Springer



33 Page100f26 Journal of Scientific Computing (2024) 101:33

4.1 Weak Continuity Properties

The next result shows that, while functions in V,i‘ are only H(div; 2j,)-conforming, they
do have weak continuity properties across interior edges of the mesh. In particular, they are
“close” to an H (l)(Qh)—conforming relative. The lemma is a generalization of [6, Lemma
4.5] to general polynomial degree and to higher-order Sobolev norms; its proof is given in
Appendix B.

Lemma 4.5 There exists an operator Ej, : VZ — H[l)(Qh) such that for all v € VZ
o — Envll 2y + hr IV — Ego)ll 2y < CRA T ollgmery YT € Thy (43)
form =0,1,..., k. Moreover, Eyv|t = v if T is affine.

Corollary 4.6 Forv € V" it holds

lvllz2e,) < ClIVavI2(Q,)

where V, denotes the piecewise gradient operator with respect to Ty, and C > 0 is a constant
depending only on the size of 2, and the shape regularity of Tj,.

Proof Recall that v = Ejv on affine triangles, so ||[v — Ej|| 12(r) may only be nonzero on
curved T € Ty, all of which will have at least 2 vertices on the boundary. We denote the set
of triangles with 2 boundary vertices as Tz so that v|y = Epv|r for T € Ty, \Tg. Because
v]aq, = 0, we have ||v]| 27y < Chr||VV| 2y for T € ‘J'g.

Thus, recalling that Eyv € H (1)(52;,), we may apply the triangle inequality, Lemma 4.5
(twice with m = 0), and the Poincaré inequality (twice) to determine

2 2 2
oI, <2 [ 1ERIT2 g, + D 0= EnvliZs
TeT)

<C [ IVEwl}sq,, + Y WVl
TeT}?

<C [ 1Vivll}aq, + D IV = Exd)l}a0p,
TeT?

2
Scllvhv”LZ(Qh)-

[m]
Using the H!-conforming relative in Lemma 4.5 and the fact that the Lagrange DOFs are
Gauss-Lobatto nodes, we show that functions in VZ possess weak continuity properties across

interior edges. To describe the result, we set 8{1 to denote the set of interior edges of 77, and

define the jump of a vector-valued function across an edge e = 97+ N37T_ € & }Il (Ty € Tp)
as

[v]|e =0V ®n+|e +v_ ®n7|€7

where v4 = v|7, and n4 is the outward unit normal of 974 restricted to e.
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Lemma4.7 Letw € H*(Q) withs > 2, and setr = min{s—1, k—1}. We extend w to R? such

that |w|l gr+1 w2y < Cllwll gr+1(q). Then there holds for all v € Vz, andm =0,1,...,k,
‘ > / Vw : [v]| < CH™" [wl e g 0]l e ) - (4.4)
1 e
ecé)

Proof Fore € £/ letT;, T_ € Ty suchthate = 9T, NAT_. Welet G, € [H! (T UT_)]>*?
such that G,|7, o Fr, € [Pr_a(T)]**% and

/ G.: 0= Vw: Q
T UT- T UT_

forall Q € [H' (T UT_)1**2 with Q|7, oFr, € [Px_2(T)]**2. Thatis G, isthe L2(T UT_)
projection of Vw with respect to the local (k — 2)-degree Lagrange (isoparametric) finite
element space. Note that because Fr, is affine on the interior edge e, there holds G.|, €
[Pr_2 (e)]QXZ. We also have by standard approximation theory,

IVw — Gellum(ry) < Chy " IIVwll ar(rour ) < Ch ™ wllgrovoury m=0,1,...,r,
4.5)

where ht = max{hr,, hy_}. Thus, by a trace inequality,
—1/2
IVw — Gellp2¢) < ChrT / ||W||H)'+1(T+UT_). (4.6)

We then write

Z/Vw:[v] 5’2/(%—@):@—&,:}] +’ Z/Gg:[v]
EEE,{I ¢ CEEL ¢ 6681{, ¢ (4~7)
=11 + D.
To estimate /1, we use (4.6), Lemma 4.5, and a trace inequality:
1/2 12
L= ) helVw—=Geljay, Y b= Epvliy,

ecé! ect!

1/2 1/2 4.8)
<c| Y ilIwlin g, >
TeTy TeTy

< CH ™ [wll g @ 10l () -

To estimate I, we first observe that, by construction, for v € V,il and e € 8,’1, we have
[v]le(a) = O for all a € N (T) with a € e. Recalling that these edge degrees of freedom are
placed at Gauss-Lobatto nodes, it follows from the error of the (k + 1)-point Gauss-Lobatto
rule and the fact that G, is a polynomial of degree (k — 2) on e that

/[v] : G,

< Clel* 1 |[v] : Gelpyaroe(e)

(4.9)
< ChyFt! <||v||W2k,m(K+) + ||v||W2k,oo(K7)> IGellywi2000) Ye € Ef,

where K+ € T share edge e.
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Note that a standard inverse/trace estimate yields
-1
[Gellwr-200¢y < Chy |Gell gr-2(1y)- (4.10)

From here, we consider 2 cases:
Case 1: k —2 < r.For this case, we recall that7 = min{s — 1,k —1},andsor —k < —1.
It therefore holds that we have h}l < h’T_k. With this, (4.5), and (k — 1) < (r + 1), we have

—1
||Ge||Wk—2,o<:(e) fChT (”Ge — VWHHI(—Z(Ti) + ”wnHk—l(Ti))
—k
SC]’Z}% ||w||Hr+1(T+UT_)'

Case 2: r < k — 2. For the second case, we may apply another inverse estimate to (4.10)
before applying (4.5). This yields

—1r—(k=2
1Gellwi-zoeoy <Chz' i 2 IGellar )
SCh"T—k+1 (||Ge —Vw| gy + ||w||H,+](Ti))

—k+1
SCh; ||w||H’+'(T+uT,)~

Consequently, we take the less sharp estimate in these cases in (4.9) and apply the inverse
estimates (3.1)—(3.2) to ||v || y2k.c0 g,y to Obtain

/[v] : G,

k
= Chr+r<||v||1-12k(1<+) + ||”||1-12k(1<_)> lwll gr+1 (7, uT_)
< Chi (o] + [lv]] lwl
= Chy HY(K.) HK(K-) H'+(T, UT-)
< Ch’f'"(llvlle(Kg + IIvIIHM(K,))||w||Hr+1(T+UT,)-

Summing this expression over E{l we obtain an upper bound for I5:
I < CH™H" [l e gy 10l - (@.11)

Applying the estimates (4.8) and (4.11) towards (4.7) yields the result. ]

Remark 4.8 We note that the result above is not as sharp if Newton-Cotes (uniformly spaced)
nodes are used instead of Gauss-Lobatto nodes. Indeed, Newton-Cotes integration on m
points is exact on polynomials in P, if m is odd, and P! if m is even, so the bound on
the right-hand side of (4.9) becomes

k+2 1
ChT+ <||v||Wk+l.oo(K+) + ||v||wk+l,oo(K_)>”Geuwk—z,oo(e) Ve € E’h’

if k is odd, and
Ch§+3 (||v||wk+2.oo(](+) + ||v||wk+2,oc(K_)> ”Genwk—z,oo(e) Ve € 8{1,

if k is even. Thus, if we use equidistant points, the bound loses k — 1 powers of 4 if & is odd,
and k — 2 if k is even.
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4.2 Inf-sup Stability

An inf-sup stability result for the finite element pair Vf X Q,i‘ was proven in [6, Theorem
4.4] in the case k = 2. The arguments given there easily generalize for all k > 2, as the
only adjustment needed is to change the polynomial degrees appropriately. Consequently,
we only provide a sketch of the proof in the general case.

Theorem 4.9 There holds

fﬂh (divv)g
sup —r

= > Cligllz2, Y4 € QFy- (4.12)
vevinioy IVavllzza,)

Sketch of Proof for Theorem 4.9

Fix g € QZ_ > and set g € QZ_I to be piecewise constant with respect to T}, satisfying
fT(q —q)/ det(?FT o F;l) = 0 for all T € T3. By a change of variables, we see that
(g —q)o Fr € Qk-1,0-

Next, the results in, e.g., [2] show that div : Vk 0 — Qk 1,0 is surjective with bounded
right inverse. Consequently, for each 7' € Th, there exists ¥; 7 € Vk o such that divd LT =
h2 (q - Q)|T o Fr.and ”vl,T“Hl(T) = Ch ”(q - Q)|T o FT”LZ(T) =< ChT”q - anz(T)'
Setting v1,7 = (A79)oFy ' € Vi, wehavedivvy 7 = h2.(g—§)/(det(DFroFy ")) by the
divergence-preserving properties of the Piola transform, and |Vvi 7127y < Cllg—qliz2(r)
by a scaling argument.

We then define v; € Vi’ such that vi|y = vy,7 forall T € Tj. Thus lvillz2q,) <
Cllg — qllz2(q,)> and

Jo, (divo)g fQ (divvy)g fQ/l(diV v1)(g —q)

veVIn (0} ||Vv||L2(Qh) ||Vvl||L2(Qh) IVvillz2e,)
p —1
_ Yreg, b7 [y la —d1?/deuDFr o F 1))
”Vvl”Lz(Qh)

= yllg — gllr2q,)-

Next, Theorem 4.4 in [6] shows that

f (divv)g _
sup Vi = villgllr2q,)- (4.13)
veVi\(0) IVivl 2,
Consequently, it follows that

lglz2ey <lg —qlli2@,) + 1gl2@y)

3 3 B Jo, divv)g

<oy A+ sup S
Vol

veVi\(0) L2(Qp)
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5 The Stokes System and Finite Element Method

We let (u, p) € H(l)(Q) X Lé(Q) be the solution to the Stokes problem

—VvAu+Vp=f inQ,
divu =0 in €2, 5.1
u=0 on 0%2,

where v > 0 is the viscosity. We assume the domain €2 and source function f are sufficiently
smooth such that (u, p) € H*(Q2) x H*1(Q) with s > 2. We then extend the velocity
solution to R? such that the extension (still denoted by u) is divergence-free and satisfies
(21]

lell s 2y < Cllull s @) (52

Likewise, we extend the pressure solution p to R? with Pl gs-1 w2y < Clipllgs—1(q) and
extend the source function by setting f = —vAu + Vp in R2.
We define the continuous bilinear forms

a(u,v) :=/ vVu : Vo, b(v, p) = —f (divv)p,
Q Q
and the discrete bilinear forms

ap(up, v) :2/ vVpuy : Vpv,  by(v, pp) = —/ (divv) pj,.
Qh

Qp

Clearly, the solution to (5.1) solves the variational problem
a(u,v):/ f-v YveX = {veH(l)(Q): divv = 0}. (5.3)
Q
We define the finite element method as finding (uy, py) € ij X Qi’_l such that

an(up, v) + by (v, py) = / frov Ve Vi (5.4a)
Qh
—bp(up, q) =0 Vg € QF, (5.4b)

where f € L%(2,) is a suitable (and computable) approximation to f|gq. It follows from
the inf-sup condition in Theorem 4.9 and the Poincare inequality in Corollary 4.6 that there
exists a unique solution to (5.4). Moreover, by a simple generalization of [6, Lemma 5.2],
the method (5.4) yields divergence-free velocity approximations.

Lemma5.1 Let uy € V} satisfy (5.4b). Then divuy, = 0 in Q.
5.1 Energy Estimates
In this section, we derive error estimates for the approximation velocity and pressure solutions

in the H! and L? norms, respectively. To this end, we define the discrete space of divergence-
free functions

X! =(weVIidivi=0}¢ X := (v e H\(Q) : divo =0},
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and note that functions in this space are not necessarily in H (1). Lemma 5.1 shows that
up € X ];l, and thus the velocity solution u, is uniquely characterized as the solution of the
Poisson-type problem

ap(up,v)= | fr-v Yoe VI (5.5)
Qh

Theorem 5.2 Let (u, p) € H* () x H*~V(Q) satisfy (5.1) with s > 2. Then there holds

19— )l 20, = € (h ey +v7'1f = falx;) (5.6)
where £ = min{k + 1, s}, and
fgh(f_fh) -V

veX\{0} IVhvll 2,

If = Fulx; =
The pressure approximation py, satisfies

1P = Pl <€ (K7 Gllull gy + 1plmer@) + 1 = Falliagy) . 6D

Proof From standard theory of non-conforming finite elements (see, for example, [9]) and
the inf-sup condition (4.12),

. ap(up —u, v)
VIV —un)li2, = inf vIVi@ —w)ll2q,) +  sup Vool
weXy UEXZ\{O} ” /1v||L2(Qh)
. ap(up —u,v)
<C 1nfh V[Va(@ —w)llp2q,) + sup TViola . (58
weV! vexingoy 1VivllL2(ey)
ap(up —u, v
SC[’ZZ_IUHMHHI(Q) + Sup M’
I)GXZ\{O} ”th”Lz(Qh)

where the final step follows from Lemma 4.4.
To address the consistency term, we note that we have Vv € X 2’

ap(up, —u,v) = f~v—ah(u,v)+/(fh—f)-v

g R (5.9)

:—v/ Au-v—apnm,v)+ | (f,—f)-v.
Qh

Qp

Note that the last step uses the fact that v € X h, therefore divv = 0 and v = 0 on 082,.
We then apply a standard integration-by-parts formula in (5.9), Lemma 4.7 (with m = 1,
and noting » = min{s — 1,k — 1} < £ — 1) and Corollary 4.6 to obtain

ah(uh—u,v):—vZ/Vu:[v]—i-/Q(fh—f)-v
h

ecel "¢ (5.10)
<Cvh* Ml ey IVavllzzge,) + I1f 4 = Fllx: 1Vaoll2g,)-

Finally, to complete the velocity bound (5.6), we apply this estimate to (5.8).
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To prove the pressure bound (5.7), we fix ¢ € Q,i‘il. For any v € Vi’, we then have the
following identity, using integration by parts and (5.1):

(divv)(pr — q) =ah(uh,v)—/ (divv)q—/ (fh—f)-v—/ [
Qn Q) 2 Qp

:all(ulzsv)+V/ Au-v—/ Vp-v

Qp Q2
—/Qh(divv)q—/gh(fh—f)'v (5.11)

=ap(up —u,v) - / (divv)(g — p)
Qp
—/ fn=f) -v+v Z /Vu:[v].
Qn /e
e€g
Then, applying (4.4) to (5.11) and Corollary 4.6, we have

/ (divv)(pn — q) SC<V||Vh(uh — Wl + g —plizg,
Q (5.12)

+vh "l gy + 1F — fhan(Q,,)) Vvl 2(y)-
Finally, by triangle inequality and Theorem 4.9, we have

lp — prlli2q,) <P —qlli2@, + I1pr — gllr2@,
Jo, [@ivo)(pn — q)
=llp —qlii2@, + sup v
veVi\(0) IVoll 2,

Applying (5.12) to this result, taking the infimum over g € Q§§71 , and using (5.6) completes
the proof. O

Corollary 5.3 Assume the conditions in Theorem 5.2 are satisfied, and in addition, assume
the mesh Ty, is quasi-uniform. Then the solution uy € V]/Z to (5.4) satisfies

”uh”[-]}f(Qh) =< C(”””HZ(Q) + hl_elx’_] |f — fh|X;:)
Proof Define 1 Zu € VZ to be the approximation to u given in Lemma 4.4. Then, applying
the inverse inequality (3.1), Lemma 4.4, and Theorem 5.2, we have
leenll e (2, =C(llu - If””H,‘f(Qh) +h e — uy, ey + 12l o)
h 1—-£ yh
<C(llu - Lullye g, +h I —ul g,
1-¢
+h = il gy gy + 10 e )
<C(lullgeqy +h' = v7"f - Fulxy)-
O

Remark 5.4 1f f is sufficiently smooth, and f, is, for example, the kth degree nodal (isopara-
metric) interpolant, then | f — fh|X,’§ < Wf = Fullig,) < Chk+1||f||Hk+1(Qh). Thus,
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Corollary 5.3 yields

lunll geco,y < € (el ey +H 27N fll g, ) - (5.13)
h( )

6 Convergence Analysis in L2

In this section, we prove the following optimal-order L? error estimate.

Theorem 6.1 Assume the conditions in Theorem 5.2 are satisfied, and in addition, assume
the mesh Ty, is quasi-uniform. We have

le —unllp2q, = C(h[||u||H“(Q) + TR+ DIf - fh|X;;>a (6.1)

where C is a constant that does not depend on the mesh parameter h, and we recall { =
min{s, k + 1}.

Proof To derive (6.1), we first write
lu —unll2,) < lu—unll2@ae + 1t —unll2gne = J1 + 2. (6.2)

To bound Ji, we introduce E}, : V,i‘ — H (1)(52;,) as defined in Lemma 4.5. Consequently,
we may write

Ji = llu — Epuplizzne + 1Ertn — unllp2@\0)-
A bound of the second term in this sum follows from Lemma 4.5 and Corollary 5.3:

Ji =llu — Epunlp2,\@ + 1 Enten — unlli2,)

E”u - Ehuh“Lz(Qh\Q) + Ch[”llh”Hf—l(Qh)
<llu — Epupll 29,0 + C(héuunm(g,l) + T f - fh|x;>.

To bound the remaining term, begin with Holder’s inequality and recall that H'! embeds
in L% and k > 2. Thus we have

e — Enunllz2g,e) <190\ 21"

<Ch* DB u — Epupll o,

lu — Epupllpsq,)
<Chllu — Epupllgi (g,
It follows from Theorem 5.2, Lemma 4.5, and Corollary 5.3 that
[l — Ehuh”LZ(Qh\Q) §Ch<||u - uh”th(Qh) + llup — Ehuh”H]:(Qh))

§C<h[||u||Hz(Q) + hU71|f - fth;:)

Combining this with the result above, we have

Ji < C<h£||u||yl(sz) +h N f - fh|XZ>~ (6.3)
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To bound J;, we let ¢ € L2(§2 U ;) such that ¢long, = @ — up)leng, and
dloua,\(@ng,) = 0. We then define (¢, r) € H(l)(Q) X L%(Q) to be the solution to the
auxiliary problem

{—vA¢+Vr:¢ in Q, 64

divg =0 in Q.

Because 9% is smooth and ¢|q € L%(S), there holds ¥ € HZ(S) with ¥l g2 <

CligliL2@) = CldllL2ang,) by elliptic regularity theory. Similar to the solution # in (5.2),
we extend ¥ to R? in such a way that preserves the divergence—free condition (cf. [21]) and

1Vl 2@e) = ClIY I m2@) < Cloll2@nay)- (6.5)

Finally, we define ¢, € X 2 to be the approximation of ¥ on 2 satisfying

ay(¥pv)=[ ¢-v YveV]. (6.6)
Q2

We note that ¥ and ¥, are analogous to u and uy, respectively, in Theorem 5.2 when s = 2
(so that £ = 2), with ¢ replacing both f and f,. Therefore, the following estimate holds:

¥ — ¥, ||[.1hl @ = Chll¥ gz < CldllLzne,)- 6.7)
Additionally, applying Corollary 5.3 yields
Wl a2, =Cl¥ln2g) < Cldll2@ng,)- (6.3)

Next, we write

()7 =l — up =/ - (u—up)
Lenen = Joo

[ o 9

:a(us !0) - ah(uha "/fh)
=la(u,¥) —ap(w, V)] +anw, ¥ —¥,) +anw —up, ¥p).

We now consider the terms of (6.9) separately. O

Bound of [a(u, ) — a,(u, Y)]

To bound the first terms of (6.9), we begin with

|a(u7 10) - Clh(u, 'ﬁ)| =V

/Vu:Vlﬁ— Vu:Vl/f‘
Q Q,

/ Vu:Vy — Vu : V!/I’
Q\Qp Qp\Q

<Cv|IVull2@@aen V¥ Il L2@ag),)-

=V

The result of Lemma 2.1 implies

IVul2@an, < ChYT D2l g2y, V¥ 2a0) < CRATV 2191 2q).
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from which we get

la(u, ¥) — an(@, ¥)| < CH T llul g2 19 120 (6.10)

Bound of ap (u, Y — W) + an(u — up, W)
It now remains to bound the last 2 terms in (6.9). To begin, we write

an(w, ¥ —¥p) +an(w —up, ¥,)
=apnw—up, ¥ —V,) +apnup, ¥ — V) +anw—up, ¥y)
<vlu—upllgropll¥ — ¥ullm g, +ann ¥ —¥,) +an@ —up, ¥p)

< C<Vh€||u||Hf(Q) +hlf - fh|Xz>||¢||L2(QﬂQh)

+apup, ¥ —v¥,) +ap(w—up, ¥y)

6.11)

by Theorem 5.2 and (6.7).
Recalling (5.10), we have by Lemma 4.7 (with m = 2, and noting £ = min{s, k + 1} <
min{s — 1,k—1}+2=r+2)
atw—wdp==v Y [vuitna+ [ - pow,
el e Qn

6.12
<Colull ey 1l ey + 1F = Pl IVl O

=C (vh Il ey + 1f = Falx;) 1912000,

By an analogous argument, but with s = 2 and m = k in Lemma 4.7 (so that r = 1), we
have

apUp, ¥ —V¥,) =—v Z wa/r s up]
ect! ¢ 6.13)
<CV Wl 2oy Il 1
<Cvh" |l L2 cnay 12l geo)-
Combining (6.11)—(6.13) yields
an(, ¥ = ¥) + an — un ) = C (VA Nl ey + 1F = Falx;) 191200,
(6.14)

and so applying this estimate and (6.10) to (6.9) (recalling that ¢ = u — u;, on Q N ), we
obtain

B2 = € (v Nl ey + 1 = Fulx; ) (6.15)

Finally, applying (6.3) and (6.15) to (6.2) completes the proof. O
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Table 1 Errors and rates for the Isoparametric approximations with Gauss-Lobatto nodes compared to the
affine approximation

Isoparametric

h e —uplip2q,) Rate e —unllg1(q,) Rate Ip = prllp2q,) Rate
0.654 3.391- 107! - 3.363 - 7.071 -
0.318 2.392.1072 3.672 4.257-107! 2.862 5.234.107! 3.604
0.158 1.675-1073 3.791 6.232- 1072 2.740 8.845- 1072 2.537
0.079 1.139- 1074 3.866 9.046 - 1073 2.776 1.298 1072 2.761
0.039 7.183-107° 3.985 1.225-1073 2.882 1.695- 1073 2.935
Affine

h llu _uh”Lz(Qh) Rate l|ze _uh”Hl(Qh) Rate lp — ph”Lz(Qh) Rate
0.654 6.411 107! - 3.705 - 8.289 -
0318 1.525-107! 1.989 1.248 1.507 2.288 1.782
0.158 3.667 - 1072 2.032 4.589-107! 1.427 8.526- 107! 1.408
0.079 8.779 - 1073 2.056 1.635- 107! 1.484 3.005 - 107! 1.500
0.039 21331073 2.040 5.741-1072 1.509 1.056 - 10! 1.508

7 Numerical Experiments

We perform a series of numerical experiments to compare with the theoretical results pre-
sented in this paper. We focus on the k = 3 case below. Numerical experiments for the k = 2
case can be found in [6].
We define our domain to be the region bounded by the ellipse
—{xe]R2 xz +x3 < 1},
- 225 72

and assign data according to the exact solution

_ 3
i (225 +x3 - 1)(2.};]5 +ax3 +x—1) 225

15(3% +x2—1)(8*—12y 52— 1) oo ]
225 2 2.25 225 2 p=10(—=+x5 — ). (7.1)

We take f, to be the cubic (nodal) Lagrange interpolant of f and set the viscosity to
v = 1 to compute the finite element method described in (5.4). We subsequently compute
the errors for decreasing mesh parameter /.

7.1 Isoparametric and Affine Comparison

In Table 1, we compare the isoparametric approximation defined through the Piola transform
described in this paper with the corresponding affine approximation. Both tests were run
on P? — P2 Scott-Vogelius elements with all edge degrees of freedom placed at the Gauss-
Lobatto points. For the isoparametric approximation, we observe the optimal convergence
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Table 2 Errors and rates for the Isoparametric approximation with degrees of freedom placed at standard,
equidistant points

Isoparametric with Equidistant Degrees of Freedom

h e —uplip2q,) Rate e —unllg1(q,) Rate Ip = prllp2q,) Rate
0.654  3.393.107! - 3.298 - 6.906 -

0318 23071072 3.723 3.998 107! 2.922 4.813-1071 3.689
0.158 1.657-1073 3.755 5.538 1072 2.819 8.089 - 1072 2.543
0.079 12121074 3.762 7.938 - 1072 2.794 1.246 - 1072 2.691
0.039 1.791-1073 2.756 2.043-1073 1.957 2.946-1073 2.079

rates predicted by the theory:

lu —unl2,) = O, IV@—upl2q, = O0)
Ip = pall 2, = OG).

For the affine approximation, we observe suboptimal convergence.

7.2 Dependence on Degrees of Freedom

In Remark 4.8, we note the error estimate may lose up to k — 1 powers of & if equidistant
nodes are used in places of Gauss-Lobatto nodes. To test this, we compute the errors for the
isoparametric approximation with the standard, equidistant placement of degrees of freedom
in order to test whether Gauss-Lobatto points are necessary or simply a tool for the analysis.
We compare these results, shown in Table 2, with those in Table 1, and we see that the
isoparametric approximation with equidistant points is indeed suboptimal.

7.3 Divergence Errors and Pressure Robustness

We also compare the maximum divergence values computed using isoparametric approxima-
tion presented in this paper with those computed with the standard isoparametric approach.
The degrees of freedom for both approximations are taken at the Gauss-Lobatto points so that
the only difference is the use of the Piola transform in the velocity space. As shown in Fig. 3,
the method described in this paper is divergence free, whereas the standard isoparametric
method (uff“"d‘” 4y is not. We also observe that, as the mesh is refined, the divergence error
of the proposed method grows. We speculate that this behavior is due to the direct solver
used (UMFPACK) and round-off error.

Finally, we check the behavior of the method for varying values of viscosity. We run the
method on P> — P2 elements for data given by (7.1). In Table 3, we show the behavior of the
error in the velocity as we vary viscosity v. As we can see, the error remains nearly unchanged
as we vary values of v over several orders of magnitude, indicating that the scheme is pressure
robust.
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—o— ||V - gt g | A
—o— ||V - upl =0

1012 F ~_ Y 4

10-14 1
107! 10

h

Fig. 3 Divergence of the isogarametric method with Piola transform compared to the standard isoparametric
method on Scott-Vogelius P> — P2 elements

Table 3 Error tests for 4 = 0.079

with varying values of viscosity v e = unll 2o, e = unll 1 gy
1077 1.139-10~4 9.046 - 103
1076 1.139-107% 9.046 - 1073
1073 1.139-1074 9.046 - 1073
1 1.139-10~4 9.046- 1073

8 Conclusions

In this paper, we proposed and analyzed a divergence-free finite element method for the 2-
dimensional Stokes problem on smooth domains. This is achieved by combining the classical
Scott-Vogelius finite element pair with the isoparametric paradigm, along with the Piola
transform. To reduce the consistency error and to ensure that the resulting scheme converges
with optimal order, the Gauss-Lobatto points on edges are taken to as the degrees of freedom.
Numerical experiments are provided, supporting the theoretical results and indicate the choice
of Gauss-Lobatto degrees of freedom are necessary to achieve optimal rates of convergence.

While this paper considers the 2-dimensional case, many of the arguments extend to the
3-dimensional setting as well. For example, the construction of the finite element spaces
generalize naturally to 3D. Likewise, the inf-sup stability result given in Theorem 4.9 easily
extends to 3 dimensions, but with the polynomial degree condition k > 3 to ensure that
(4.13) holds. However, the presented convergence analysis does not directly carry over to
3 dimensions. Namely, the arguments to derive the consistency estimate in Lemma 4.7 are
no longer valid because the Gauss-Lobatto integration rules used in its proof do not exist on
triangular faces [22]. We plan to address this issue in future work.
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Appendix A. Proof of Lemma 3.2

Proof Write v(x) = Ard(x) for some v € V. We then use Lemma 2.3, (2.5), and
equivalence of norms to obtain

2/p—t ~
Illwer < CHEP 1AL o i)

2/p—t ~
< ChY P NAT s ) 1B e ) (A1)
2/p—t—1 2/p—t—1
=< ChT/p ”v”WZ p(]() = Ch /P~ ” ”Lq(]%)'
Likewise, we have
”i)”L‘l(Ie) = ”AT ”LOO(K)”ATv”Lq(K) = Ch ”v“L‘i(K)- (A2)

Combining (A.1)—-(A.2) yields (3.1) for the case m = 0. The estimate (3.1) for general m
then follows by standard arguments (cf. [9, Lemma 4.5.3]).
To prove (3.2), we first use (2.5):

)4

k
2/p+L -2 2/p+L -2 ~
|v|sz(K)<C[h/p > bz 1Ay T hT’|ATv|W,‘,,(k)].
r=0 r=k+1

=:1 =11
To bound 7, we use (2.5) once again to obtain

k
2/p+L —2, -2 l—k
L<hy "3 0 0P wllwer iy < CRE Illwen k-
r=0

For 11, we use the fact that ¥ is a polynomial of degree < k on K to obtain

k

|ATi)|Wr,p([2) <C Z |AT|Wr—j,00([2)|ﬁ|Wj,p([2)
j=0

k
—j—=1, = ~
<CY R THAT Al iy

Jj=0
J .
r—j— —1 A

ECZZhT |AT |Wj—i.00(1€)|ATv|Wi7p(k)

j=0i=0

ko
= ZZh’ AT Dy iy

j=0i=0

ko

-2

<CY Y b Il

j=0i=0

r=2/p
< Chy ||U||W1< P(K)*

Thus,

¢
2/p+e —r—=2
11 < ChY"* 3 hy" P ooy < Cllollwen i
r=k+1
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Combining the bounds for / and /7 completes the proof of (3.2). O

Appendix B. Proof of Lemma 4.5

Proof Define E, : V" — H}(S2) such that, for v € V",
Epvlr = (o Fz 0 Fr DIy,
where # is the function in V uniquely defined by
v|r(a) =v|;(a) Ya e Ny, VT €Ty,

where T = G,(T). In other words, in a standard isoparametric, kth degree Lagrange finite
element method, E ;v would be the function on the isoparametric element associated with ¥
on T. Thus, Epv € H(Q).

As shown in [6], v = Ejv on affine triangles, and we may conclude

Epv|r(a) = v|7(a) Yae Ny, VT €Ty

Our goal is to estimate v — E, v, and our proof follows closely with the proof of Lemma
4.5 in [6]. However, here we provide a more general result.

As v = Ejv on affine triangles, we only consider 7 € T, with curved boundaries.
Addltlonally, we know v|y7nag, = 0. We may write v|r(x) = AT(x)v(x) for some v €
V where A7 = DFr/det (DFr). Furthermore, there exists w € V such that wx) =
Ejv|7(x). Consequently,

Ar(a)v(a) = w(a) Va e N;,
so W is the piecewise kth degree Lagrange interpolant of A7 v on TCT,
By the Bramble-Hilbert lemma, we have
IATD = Bl i gy < ClATD| yusi gy VK € T, i=0,1,... k. (B.1)

We may then bound the right-hand side using Lemma 2.3 and recognizing that ¥ is a
polynomial of degree k. Thus we have

k+1 k
|AT"A"|Hk+1(1§) =<C Z |AT|Wk+1—j(1€)|f)|Hj([€) =C Z |AT|Wk+l—j([€)|f)|Hi(1€)
j=0 j=0
./k J (B.2)
k—j A
<CY oy Blyi k)
j=0
Using Lemmas 2.3 and 2.4, we have
1 d 1
B i 2y = 1AT AT 5 ) < C D IAT ey | AT D e
=0
/ 1+j—¢
<CY hy A e iy (B.3)

£=0

J
1+j—¢, 0—1 j
<CY hy TR Il ey < CRpI i k-
=0
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Inserting this estimate into (B.2) yields

|AT D] s gy < CHE N0 g iy

and therefore by (B.1) and Lemma 2.4,

1—i A~ A 1—i ~ k+1—i
|1) - Ehv|Hi(K) = ChT l”ATv - w”H’(Ie) =< ChT Z|ATv|Hk+l(1€) = ChT+ l”v”Hk(K)'

B.4)

An applicaiton of the inverse inequality (3.1) then yields the desired estimate (4.3). O
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