
General Adversary Structures
in Byzantine Agreement and Multi-party
Computation with Active and Omission

Corruption

Konstantinos Brazitikos1(B) and Vassilis Zikas2

1 University of Edinburgh, Edinburgh, U.K.
K.Brazitikos@sms.ed.ac.uk

2 Purdue University, West Lafayette, USA

vzikas@cs.purdue.edu

Abstract. Typical results in multi-party computation (in short, MPC)
capture faulty parties by assuming a threshold adversary corrupting par-
ties actively and/or fail-corrupting. These corruption types are, however,
inadequate for capturing correct parties that might suffer temporary
network failures and/or localized faults—these are particularly relevant
for MPC over large, global scale networks. Omission faults and general
adversary structures have been proposed as more suitable alternatives.
However, to date, there is no characterization of the feasibility landscape
combining the above ramifications of fault types and patterns.

In this work we provide a tight characterization of feasibility of MPC
in the presence of general adversaries—characterized by an adversary
structure—that combine omission and active corruption. To this front we
first provide a tight characterization of feasibility for Byzantine agreement
(BA),akeytool inMPCprotocols—thisBAresult canbeof itsownseparate
significance. Subsequently, we demonstrate that the common techniques
employed in the thresholdMPCliterature todealwithomissioncorruptions
do not work in the general adversary setting, not even for proving bounds
that would appear straightforward, e.g., sufficiency of the well known Q3

condition on omission-only general adversaries. Nevertheless we provide a
new protocol that implements general adversary MPC under a surprisingly
complex, yet tight as we prove, bound. All our results are for the classical
synchronous model of computation.

As a contribution of independent interest, our work puts forth, for
the first time, a formal treatment of general-adversary MPC with (active
and) omission corruptions in Canetti’s universal composition framework.

1 Introduction

Multi-party computation (MPC) enables n parties to securely compute a func-
tion on their joint input. To capture parties’ misbehavior one typically considers

The full version of this paper can be found at the IACR Cryptology ePrint Archive,
report 2024/209.

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 200–233, 2025.
https://doi.org/10.1007/978-3-031-78023-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_7&domain=pdf
http://orcid.org/0009-0004-1261-4277
http://orcid.org/0000-0002-5422-7572
https://doi.org/10.1007/978-3-031-78023-3_7

General Adversary BA and MPC with Active and Omission Corruption 201

a central adversary corrupting parties and using them to attack the protocol.
The most common corruption type for such an adversary is active corruption—
the adversary takes full control of a corrupted party. Security against such an
active adversary offers strong guarantees, but allowing the adversary to take
full control of corrupted parties is an overkill to capture more benign types of
misbehavior or just faults. In fact, this typically yields restrictions both in the
feasibility—e.g., tolerable number of corruptions—and in terms of efficiency. As
a result, different types of corruption have been investigated to capture such
benign faults scenarios.

In the opposite extreme of active corruption, fail-corruption (aka fail-crash
corruption or fail-stop corruption) allows the adversary to make a party crash
(irrevocably) at any point of the protocol he chooses—without having knowledge
of the party’s internal state.1 Naturally, adversaries with fail-corruption allow
for better feasibility and efficiency bounds than active adversaries, but this cor-
ruption type is often criticized as too benign. As an example, fail-corruption
is too weak for capturing faults caused by temporary issues on the network of
otherwise correct—i.e., protocol abiding—parties. This gave raise to the study
of the so called omission-corruption, which allows the adversary to selectively
drop incoming and/or outgoing messages of the corrupted party, but obliviously
of the message contents or the party’s internal state.

On a different dimension, the two standard ways to capture the adversary’s
corruption patterns are via threshold and general adversaries. A threshold adver-
sary is specified by the maximum number (threshold) of possible corruptions.
This model can, again, be considered overly pessimistic, and therefore restrictive,
when one considers situations in which certain combinations of faulty parties are
unlikely. The concept of a general adversary (structure) is the alternative, fine-
grained way which better captures such a situation: Rather than the maximum
number of corruptions, a general adversary structure Z enumerates all possible
combinations of corrupted parties, therefore giving more flexibility in describing
the adversary’s capabilities.

Tight feasibility bounds have been established for both threshold and gen-
eral adversaries in the context of active corruptions and fail-corruptions, and
even their combination (see Sect. 1.1 below for an overview). However, to our
knowledge, omission corruption has not been considered for general adversaries,
neither in isolation nor in conjunction with active corruption. Furthermore, all
work on omission corruptions or general adversaries uses the property-based
security definition of MPC, as opposed to simulation based security which is
not only more general but, as we discuss is needed for completing the proofs of
these works that rely on composing smartly designed sub-protocols. In a nut-
shell, our work provides the first characterization of the feasibility landscape

1 In the distributed computing literature, omission-corrupted parties are often consid-
ered also semi-honest. This is suitable for classical distributed computing tasks, e.g.,
Byzantine agreement (see below), where input privacy is a lesser issue. However,
since here we are interested in MPC, we will follow the cryptographic convention of
considering it separate.

202 K. Brazitikos and V. Zikas

of Byzantine agreement (BA)—the core primitive in fault-tolerant distributed
computation and standard building block of MPC—and of secure multi-party
computation (MPC) for general adversaries that might corrupt some parties
actively (i.e., force byzantine faults) and, simultaneously, omission corrupt other
parties. Concretely, we prove a tight feasibility bound for both synchronous con-
sensus and broadcast in the perfect (security) setting, i.e., information theoretic
security with zero error probability. We then turn to the study of MPC in this
model. As we show (see discussion of MPC results in Sect. 2), translating thresh-
old bounds to this setting is far from trivial—this reaffirms what the complex
bounds of Beerliova et al. [5] demonstrate for the active/passive/fail case. Fur-
thermore, existing arguments and techniques from the cryptographic literature
are inadequate for proving even what one would consider a simple and intuitive
feasibility result. Notwithstanding, we provide a tight feasibility bound for MPC
in this setting by developing a new protocol for (publicly) detectable point-to-
point secure communication and proving a tight bound for this task. In fact, a
look at the complexity in the associated (tight) bound (see Eq. 11) serves as a
perfect demonstration of the technical challenges associated with devising such
a bound, protocol, and associated tightness proof.

Finally, our results are proven secure in a simulation-based composable frame-
work. Although we do not consider this to be our key technical contribution, it is,
to our knowledge, a first both for general (mixed) adversary MPC and for MPC
with omission corruptions. Our treatment demonstrates the challenges of a com-
posable treatment of omission-faults. Therefore we believe it to be a milestone
in the literature which can be of independent interest.

1.1 Related Literature

In this section we discuss the related literature, where we focus on synchronous2

protocols with perfect security, i.e., with zero error probability, which is also the
type of protocols we develop here.

Byzantine Agreement (BA). BA comes in two flavors: consensus and broad-
cast. In consensus, n parties, each with its own input, wish to agree on a joint
output, so that pre-agreement is preserved. In broadcast, only one party, the
sender, has input, and the goal is to distribute it in a consistent manner to all
parties, so that consistency is achieved even if some of the parties are actively
corrupted (cf. Sects.3.6, 3.7). The seminal results by Lamport, Shostak, and
Pease [27,32], showed that Consensus and Broadcast are feasible if and only if
at most t parties are byzantine, where t < n/3. Follow up work has extended the
above results to various models capturing different types of synchrony, alterna-
tive networks, and setup assumptions such as a public key infrastructure.

Multi-party computation (MPC). In MPC we have n parties from a set
P = {p1, . . . , pn}, each with a private input xi who wish to securely compute

2 We note that the feasibility questions discussed here have not been considered in
any other model, e.g., asynchronous or partially synchronous; we consider this an
interesting future direction.

General Adversary BA and MPC with Active and Omission Corruption 203

a function on their joint input, even in the presence of faulty parties. Faulty
parties are captured by assuming a central adversary that corrupts parties and
uses them to orchestrate a coordinated attack to break the protocol’s security,
where the two main security goals are privacy—corrupted parties should learn
nothing beyond their prescribed inputs and output, and correctness—the adver-
sary should not be able to affect the output of the computation in any other
way than choosing his own inputs independently of that of uncorrupted parties.
The typical type of corruption is active. Actively corrupted parties are often
referred to as malicious or byzantine and the set containing them is denoted
as A. MPC was introduced by Yao [35] where feasibility of two-party computa-
tion was shown. The seminal works of Ben-Or, Goldwasser, and Wigderson [7]
gave the first feasibility results for perfect security (that is, information-theoretic
with zero error probability) for a threshold adversary. In particular it was shown
that t < n/3 is both necessary and sufficient for perfectly secure MPC in the
synchronous malicious adversary model.

General Adversary Structures. General adversaries have also been studied for
both BA and MPC. Here, for the case of perfect security, Hirt and Maurer [21,22]
proved that a necessary and sufficient condition, if no setup3 is assumed, for a
general adversary structure—with active corruptions—to be tolerable is that the
union of no three sets in the adversary structure Z covers the whole player set,
a condition which is often referred to as the Q3 condition:4

CP
(A)
CONS(P,Z) ⇐⇒ Q3

A(P,Z) ⇐⇒ ∀Ai, Aj , Ak ∈ Z : Ai ∪ Aj ∪ Ak �= P. (1)

The above tight condition holds for perfectly secure BA (both consensus and
broadcast) and MPC. This was later extended to the mixed setting adding fail-
corruption faults in [2] and a combination of fail-corruption and passive corrup-
tion by Beerliova et al. [5] (We refer to [36] for a comprehensive survey of the
relevant literature).

The results from [5] offer a first demonstration of the unstranslatability of
threshold feasibility results to the general adversary setting. Indeed, in the
threshold setting, the active/passive/fail (tight) bound, i.e., 3ta + 2tp + tf <
n [18], is a simple combination of the corresponding active-only (3ta < n),
passive-only (2tp < n), and fail-crash-only (tf < n) bounds. On the other hand,
in the general adversary setting, the tight (necessary and sufficient) bound is
the combination of the following two conditions (each of them is necessary) [5,
Theorem 1]:

∀(Ai, Ei, Fi), (Aj , Ej , Fj), (Ak, Ek, Fk) ∈ Z : Ei∪Ej∪Ak∪(Fi∩Fj∩Fk) �= P (2)

and

∀(Ai, Ei, Fi), (Aj , Ej , Fj), (Ak, Ek, Fk) ∈ Z : Ei ∪ Aj ∪ Ak ∪ (Fj ∩ Fk) �= P. (3)
3 Note that “no setup” implies that we cannot use cryptographic tools such as digital

signatures.
4 Here we denote the classical Q3 condition as Q3

A to explicitly state that it only
applies to active corruptions.

204 K. Brazitikos and V. Zikas

Each of the above triples (A,E, F), so-called adversary classes, describes the
choice of the adversary specified by this class—namely the parties in A, E, and
F , are actively, passively, and fail-corrupted, respectively.

In fact, the inability to translate threshold bounds to general adversaries is
further demonstrated by the fact that if one is interested in non-reactive (one-
shot) computation of a function, a problem often referred to as Secure Function
Evaluation (SFE), then the following strictly weaker (and substantially more
complex) bound is necessary and sufficient [5, Theorem 2]: The bound from
Eq. 2 together with the following condition

∃ an ordering (A1, E1, F1), ..., (Am, Em, Fm) of the maximal classes in Z s.t.
∀i, j, k ∈ {1, ...,m}, i ≤ k : Ek ∪ Ai ∪ Aj ∪ (Fi ∩ Fj) �= P. (4)

The above results demonstrate the untranslatability of threshold to general
adversary results in the active/passive/fail setting. As we show in this work,
a similar untranslatability—with even more counter-intuitive phenomena (see
Sect. 2 for a discussion)—is evident also in our active/omission corruptions set-
ting.

Omission Faults. The first variant of omissions was introduced to the dis-
tributed literature by Hadzilacos [20], where the notion of send-only omissions
was introduced. There, and it was proven that t < n (send-)omission faults are
necessary and sufficient for BA. Full (send and receive) omission faults were
proposed by Perry and Toueg [33], who affirmed the t < n bound for that more
general model. A long line of follow-ups investigated the problem. As it can be
seen in [1], the recovery of crashed components is often considered a built-in
feature of the distributed replication systems, meaning that crash failures are
treated in essence as omissions, making omissions appear frequently in the liter-
ature.

Importantly, in [20,33], a weaker variant of BA with omissions was con-
sidered, where the consistency guarantee was limited to the output of the non-
faulty (i.e., uncorrupted/honest) players—meaning that omission-corrupted play-
ers were treated as malicious, and were not given any output guarantees. The
case where the output of both honest and omission-corrupted players should
be guaranteed (whenever possible) was treated by Raynal and Parvedy [31,34]
where it was proved that the tight bound on omissions with this requirement
becomes t < n/2. We note in passing that this latter, more natural and chal-
lenging way is also how we treat omissions in this work.

In the cryptographic literature omission faults (also referred to as omission
corruption and denoted by Ω) were first studied by Koo [26] who proved that for
a (mixed-corruption) adversary who can corrupt up to ta parties actively and
omission corrupt up to tω parties, 3ta + 2tω < n is sufficient for Consensus and
4ta + 3tω < n is sufficient for MPC. Follow-up work by Hauser, Maurer, and
Zikas [37] provided the first tight bounds proving that 3ta + 2tω < n is both
necessary and sufficient for BA and MPC in the perfect security (synchronous)
setting. The results were extended in [36] by adding fail corruption.

General Adversary BA and MPC with Active and Omission Corruption 205

More recently, Eldefrawy, Loss, and Terner [16] investigated computational
security for the case where send and receive omission faults have different thresh-
olds ts and tr respectively. This case was also treated in [37] but for perfect
security only. As demonstrated in [16] the shift to computational security car-
ries unexpected complications, which is yet another indication of the challenges
associated with omission-corruption. More concretely, [16] proved that in this
setting ts + tr + 2tb < n is sufficient for MPC—where tb is the threshold on
byzantine parties. They also proved this bound tight, albeit for a weaker adver-
sary that performs what they termed “spotty” send-corruptions: messages from
a send-(omission-)corrupted player in any round are either all delivered or none
of them is.

This lower bound was recently improved by Loss and Stern [29] to cover
a worst-case adversary, i.e., without spotty send-omission corruptions. In fact,
this seemingly simple generalization required developing novel techniques to deal
with omissions, an additional indication of the challenges related to feasibility
in the presence of active and omission corruptions.

We note in passing that, although in the threshold setting separating (full)
omissions to send-omissions and receive-omissions helps to find tight feasibility
bounds [16,29,37], this does not appear to be the case in the general adversary
setting. Indeed, splitting omissions this way would complicate the description
of the adversary structure—one would need two sets in each class to describe
just omissions—and we conjecture this would also yield more complex and less
intuitive bounds.

1.2 The Model

We consider n parties from a party set P = {p1, . . . , pn}. The parties can com-
municate via a complete network of bilateral point-to-point secure (i.e., authen-
ticated and private) channels [7]. (We note in passing that our BA protocol does
not need privacy and can just rely on standard authenticated channels; however,
privacy is necessary for perfectly secure MPC results). We assume synchronous
communication as in [7,12,27], i.e., all our protocols advance in rounds; every
party is aware of the current round and can send messages to all other parties,
where messages sent in any round are delivered to their intended recipients by
the beginning of the following round.

For simplicity in the exposition, for protocols that build on top of broadcast
we assume that each of their round is a broadcast round (i.e., a round where all
parties can broadcast a message). This does not affect composition of the total
counting of rounds as our broadcast protocol is deterministic and therefore we do
not run into the known issues of probabilistic termination [13]. Furthermore, to
make the protocols description simpler we will assume that each sub-protocol has
a dedicated output round where the parties do not send any messages to each
other, but use messages they have received to compute their (sub-)protocol’s
output(s). This does add a constant overhead on sequentially composing proto-
cols, but makes for a much cleaner abstraction and does not affect the nature of
our results which is targeted to feasibility. In fact, one can easily get rid of this

206 K. Brazitikos and V. Zikas

overhead by starting a next sub-protocol already during that output round of
the previous one.

Simulation-Based (composable) Security. We prove our protocols secure using
the synchronous adaption of Canetti’s UC framework [10] put forth by Katz et
al. [25]. We assume the reader has some familiarity with UC, but we make
our best effort to keep the technicalities of the framework insulated from the
protocol design and functionality description. In the following we discuss the
above synchrony framework and how it is utilized here.

In a nutshell, [25] proposed a methodology for the design/embedding of syn-
chronous protocols within the (by-default asynchronous) UC framework. In this
adaptation, protocols can be designed in a synchronous manner, and [25] defines
how they can be executed assuming access to a clock functionality, which ensures
that (1) all parties get a chance to speak in each round, (2) parties can become
aware when the clock round switches. Proving security in such a framework
means that the functionalities need to also become round aware; this is taken
care of in [25] by adding to the functionality dummy rounds which advance once
every party has had a chance to ping the functionality in that round. This allows
the environment to advance the ideal experiment if it wishes to, similar to what
it can do in the real world. To keep the description cleaner, we abstract away
this pinging of functionalities as dummy (“do-nothing”) rounds in the function-
alities we define, and explicitly make the functionality aware of the underlying
(broadcast) round.

To make the two-fold contribution of our work (protocol/proofs level vs.
model/UC-treatment level) clearer and isolate the techniques used in each of
the two contribution types, we use the following methodology in proving our
feasibility results: First we state and prove in separate claims key properties
that our (sub-)protocols achieve; this is useful for understanding the protocol
ideas that go into the construction and how these are used in the security proof.
Then, we use these properties in the simulation proof to obtain our end result.
Due to the page constraint, we refer the reader to the full version [9] for proofs
and other details.

Adversary. We consider a mix of active corruption and omission-corruption
characterized by general adversary structures. Concretely, the possible combina-
tions of corruptions are described by a mixed (active/omission) general adversary
structure. Such a structure is a collection Z of tuples of the type (Ai, Ωi) ∈ P2,
often referred to as classes. Intuitively, Z is intended to capture all possible sce-
narios of corrupted parties. In particular, a tuple/class (Ai, Ωi) ∈ Z, displays
the scenario where all parties in Ai are actively corrupted and all parties in Ωi

are omission-corrupted. We will be using the terminology: “the adversary cor-
rupts (class) Zi = (Ai, Ωi) ∈ Z” to refer to the above scenario and we denote
it by using a � symbol at the exponent. This means for example that the sets
A� and Ω� denote the sets of actively corrupted and omission-corrupted play-
ers, respectively. Similarly, we refer to an adversary who might corrupt any of
the sets in Z as a (general) Z-adversary. The set of uncorrupted/honest play-
ers will be denoted by H. Note that the class Z� is not known to the players

General Adversary BA and MPC with Active and Omission Corruption 207

and appears only in our security analysis. Furthermore an omission or actively
corrupted party might be allowed to send or receive all its messages, in which
case he is indistinguishable from an uncorrupted party. We refer to such a party
as correct at a certain point in time if it was allowed to behave this way (cor-
rectly) up until this certain point in time. Essentially, an omission-corrupted
party stops being correct the moment its first message is blocked. Finally, some
of our protocol executions allow omission-corrupted parties to realize that they
are corrupted; when this detection occurs, the party understands that it is in
the discretion of the adversary whether or not it will be allowed to contributed
inputs or receive outputs in the protocol. Therefore, in such cases the parties step
out of the computation and inform all their peers about this decision; borrowing
the terminology of [37] we will then say that this party becomes a zombie, in
contrast to the rest of non-actively-corrupted parties that are considered alive.

We will make the following standard conventions on the adversary structure
Z: (1) For any Zi = (Ai, Ωi) ∈ Z, for every A′ ⊆ Ai and Ω′ ⊆ Ωi: Z ′ =
(A′, Ω′) ∈ Z. This captures the intuitive fact that if a set of parties might
jointly fail in a certain way, then any subset of them failing is also a possible
corruption scenario. This convention allows us to describe Z by enumerating
only its maximal elements. (2) For any Zi = (Ai, Ωi) ∈ Z we will assume that
Ai ⊆ Ωi; this is simply capturing the fact that active corruption is strictly more
severe (as a misbehavior strategy) than omission and can, behave as such.

Finally, we prove our statements here with respect to static adversaries, i.e.,
the set of corrupted parties (and hence the set of possible corruptions) is decided
at the beginning of the protocol and cannot depend on the exchanged messages.
We note that all properties we prove here will directly hold to the adaptive
security setting without changing the respective bounds [3,11]. However, the
simulation-based treatment of adaptive security under parallel composition of,
e.g., BA primitives is known to have several thorny issues which are beyond the
scope of this submission [14,23].

1.3 Organization of the Paper

The remainder of the paper is organized as follows: Sect. 2 includes an exposition
of our results and an overview of the techniques and related challenges. Section 3
includes the details on our tight feasibility results for BA and Sect. 4 our tight
feasibility for MPC.

2 Technical Overview

Before diving into the technical part, it is useful to give an overview of our results
and the associated techniques and challenges.

Byzantine Agreement. As our first contribution towards our MPC feasibility
we prove that the following condition on the adversary structure is necessary
and sufficient for perfect synchronous BA, both broadcast and consensus:

208 K. Brazitikos and V. Zikas

C
(A,Ω)
BA (P,Z) ⇐⇒ ∀Zi, Zj , Zk ∈ Z : Ai ∪ Aj ∪ Ak ∪ (Ωi ∩ Ωj) �= P. (5)

Without loss of generality we provide protocols for binary consensus and broad-
cast, i.e., the inputs and outputs of the protocol are from the field F = {0, 1}.
This is sufficient for arbitrary valued BA, as we can represent the inputs as bit-
strings of appropriate (fixed) length and then we can invoke the bit-Consensus
protocol for each of those bits.

Our feasibility result is proven in two stages. First, in Sect. 3.2 we show how
to tackle one of the core challenges of omission-corruption, namely detection
of dropped messages. In particular, the biggest thorn with omissions is that a
party pj who does not receive a message it expects does not know whether this
happened because the sender or itself (pj) is omission-corrupted. To tackle the
above issue, we devise a simple protocol, called FixReceive, which allows the
receiver to take this decision. We prove (see Lemma 1) that the decision will
always be correct as long as the following condition5 is satisfied

C
(A,Ω)
FIXR(P,Z) ⇐⇒ ∀Zi, Zj ∈ Z : Ωi ∪ Ωj �= P, (6)

which is also proven necessary for the above task in Lemma 3.2. One can view
FixReceive as a way to lift the underlying communication network from a plain
one to one with detection. When this detection is successful and a player discovers
that he suffers from omissions, he steps down—becomes a zombie—for the rest
of the protocol and sends a special message to let others know.

The underlying idea of FixReceive is simple, and similar to the corresponding
protocol from [37]: the sender sends to all parties, who relay to the receiver;
then the receiver tries to “fit” the received messages into the corruption pattern.
However, in the threshold case, this “fitting” is rather straightforward. This is
in contrast to the general-adversary case, where the right condition (and proof)
is more involved. Yet, the above simplicity of FixReceive stems from the fact
that it makes the transmitted message public to the adversary. This makes it
suitable for BA but insufficient for MPC (see below) where we need detection on
top of private communication. Looking ahead, this combination turns out to be
particularly challenging and the private version of FixReceive (which we will call
detectable secure message transmission) will be one of the core contributions of
our paper.

Let us return to our overview of our BA feasibility result: Having added
FixReceive to our arsenal, we can now use this to improve the communication
properties that are disrupted by omission corruptions. (This can be seen as
“lifting” the underlying communication network by adding (partial) corruption
awareness/detection.) In particular, having improved the detection ability of
communicating parties as above, we proceed to our BA construction. For this,
we use the phase-king approach of Berman, Garay, and Perry [8]–which was
previously adapted to general adversary structures (with fail-corruption instead

5 Due to our assumption from earlier, the condition can also be written as Ai∪Ωj �= P.

General Adversary BA and MPC with Active and Omission Corruption 209

of omissions) by Altmann, Fitzi, and Maurer [2]. Concretely, we gradually build
protocols with stronger guarantees, from Weak Consensus (Sect. 3.3), to Graded
Consensus (Sect. 3.4), to King Consensus (Sect. 3.5), and then iterate through
different parties as kings to achieve the consistency and validity conditions of
consensus (see Theorem 2).

The above similarity in the structure of our protocol to that from [2] might
mislead the reader to believe that the search for the tight BA bound is straight-
forward given the above result. This is, however, far from true. To demonstrate
this, it is useful to discuss the main challenge in shifting from a combination of
active corruptions and fail-corruptions (for which we know tight bound both for
BA [2] and for MPC [5]) to active and omission corruptions for which nothing is
known in the general-adversary setting: The main issue lies in the ability of an
omission-corrupting adversary to create confusion by selectively dropping mes-
sages to some and not other parties and in some specific rounds. For instance, a
standard method in the fail-corruption literature to limit the effect of fail-crashes
is to embed a heartbeat after each step (or in selective protocol rounds) that
allows parties to detect whether or not some party has already crashed. This app-
roach does not work with omission corruptions, as a party might drop messages
during the protocol round, but send all messages in the heartbeat procedure as if
nothing happened. Thus one needs to come up with ways to counter the ability
of the adversary to create such confusions. The challenge of our above protocol
design is to come up with protocols that either allow for public detection of an
omission-corrupted party not sending messages, or make the party aware that it
is omission-corrupted—in the latter case, this party can put itself in a crashed
position (a possibility which the adversary would anyway have by blocking all
communication to/from that party) to allow the other parties to complete the
protocol.

Having derived a consensus protocol as above, we then turn to broadcast.
Interestingly, the standard reduction of broadcast to consensus—i.e., have the
sender send his input to everyone and run consensus on the received values—does
not work here. The reason is that a send-omission corrupted sender ps might fail
to send his input to some but not all non-actively corrupted parties, in which
case consensus might end up flipping his input, which violates our requirement
on the output with a non-actively corrupted sender.

We fix this by using an additional round of consensus: To guarantee that an
omission-corrupted ps never broadcasts a wrong value (but he may broadcast
⊥ in case he is incorrect) we extend the above generic protocol as follows: after
running consensus on the received bit, we have ps send a confirmation bit to
every player, i.e., a bit b = 1 with the meaning that ps agrees with his output
of the consensus or b = 0 otherwise. The players then invoke consensus on the
received bit to make sure that they have a consistent view on the confirmation-
bit and based on that they accept the output of the generic broadcast protocol
only if b = 1. In the opposite case, they output ⊥. This ensures that if they
output anything, it will be the correct bit.

Finally, we prove the tightness of C
(A,Ω)
BA (P,Z) for BA by means of a delicate

player simulation argument (see Lemma 5).

210 K. Brazitikos and V. Zikas

Multi-party Computation. Having proven a tight characterization of BA in
our model, we turn to multi-party computation (MPC). Here we first observe
that translating bounds from the threshold literature, or even the existing general
adversary literature (i.e., without omission-corruptions) simply does not work. In
fact, there is a number of ways that we demonstrate such a translation fails. For
example, it is known that in the case of active-only general adversary structures,
MPC is feasible if and only if the Q3

A(P,Z) condition (Eq. 1) holds [21]. Hence,
in search of a feasibility result, one might be tempted to assume that since active
corruption is more severe than omission-corruption, the natural adaptation of
the above condition to the omission-only setting, i.e., the condition Q3

Ω

CP
(Ω)
CONS(P,Z) ⇐⇒ ∀Ωi, Ωj , Ωk ∈ Z : Ωi ∪ Ωj ∪ Ωk �= P, (7)

would be sufficient for MPC. This however is not necessarily the case, as MPC
protocols for active corruptions entirely give up the inputs and outputs of actively
corrupted parties, something which we cannot do for omission corruption.

Similarly, drawing intuition from existing impossibility results can derail the
search for lower bounds. Indeed, the general rule is that general-adversary impos-
sibility results translate to threshold (though, not always in a trivial manner)
but not the other way. Intuitively, the underlying reason is that the asymme-
try of general adversary structures allows solutions which could never exist in
a threshold setting. This untranslatability becomes ever more prominent when
considering omission-corruptions (combined with active), and makes finding the
tight condition on general structures for this case a far more challenging task
than in the threshold case (in fact, it is challenging even given a tight threshold
condition).

As an example, for active/passive adversaries the tight condition 3ta +2tp <
n [18] was “translated” in [19] to the general adversary setting as:

∀(A1, E1), (A2, E2), (A3, E3) ∈ Z : E1 ∪ E2 ∪ A1 ∪ A2 ∪ A3 �= P, (8)

(where sets A and E in the above bound correspond to actively and passively cor-
rupted parties, respectively). But an analogous translation for active/omission
adversaries of the tight threshold 3ta + 2tω < n [37] as

∀(A1, Ω1), (A2, Ω2), (A3, Ω3) ∈ Z : Ω1 ∪ Ω2 ∪ A1 ∪ A2 ∪ A3 �= P, (9)

does not yield a bound necessary for MPC. In fact, in the appendix of the full
version of the paper [9] we describe a structure that violates (an even more
restrictive version of) the above condition but still allows for an MPC protocol.

In the same spirit, as we show in Sect. 4.1 of the full paper, common tech-
niques used in the threshold MPC literature to recover from corruptions, such
as player elimination [6], cannot be applied here either. A standard example of
player elimination is used in the case of MPC with (threshold) byzantine cor-
ruptions with t < n/3. The idea is that if some pi blames another pj , then, as
long as both pi and pj have had the chance to share their inputs, we can sim-
ply eliminate both of them and continue the computation with the remaining

General Adversary BA and MPC with Active and Omission Corruption 211

parties—and send pi and pj their outputs at the end; the t < n/3 condition
will then ensure that in the n′ = n − 2 remaining parties set, the number t′ of
maximum active corruptions will still satisfy t′ < n′/3. In fact, this technique
was used in [37] to prove the first, and only to date, tight condition on MPC
with active and omission corruption. However, as we show, player elimination is
inapplicable in our general-adversary active/omission setting. In particular, we
show that natural candidates for feasibility bounds conditions are not preserved
by player elimination. This situation calls for new protocols/techniques beyond
what is used in the threshold or previous general adversary literature.

To overcome this, we devise a novel protocol that aims at facilitating
detectable (i.e., which might abort with the identity of a corrupted party) per-
fectly secure (private and authenticated) message transmission introduced in [15]
(in short, DetSMT) between any two parties. Looking ahead, this will allow to
neutralize the effect of omissions in MPC. The challenge in devising and proving
security of the new detectable SMT primitive is evident by the new associated
condition C

(A,Ω)
SMT (P,Z, ps, pr), which in combination with C

(A,Ω)
BA (P,Z) gives us

the condition that is proven to be tight for DetSMT with sender ps and receiver
pr. The C

(A,Ω)
SMT (P,Z, ps, pr) states that for any three Zi, Zj , Zk ∈ Z :

if (ps ∈ Ωi ∩ Ωj ∧ pr ∈ Ωk) OR (pr ∈ Ωi ∩ Ωj ∧ ps ∈ Ωk)
then Ai ∪ Aj ∪ Ωk ∪ (Ωi ∩ Ωj) �= P.

(10)

The sufficiency of the above condition for detectable SMT and its necessity for
(detectable) SMT (hence also for MPC) are proven in Sect. 4.1 (Lemmas 6 and
7, respectively).

Finally, we put everything together to prove our last main theorem (The-
orem 4) of MPC feasibility under the same combination of conditions (where
the C

(A,Ω)
SMT (P,Z, ps, pr) needs to hold true for all pairs ps, pr ∈ P). More con-

cretely, we prove that perfectly secure MPC against a general adversary with
mixed active and omission corruptions is feasible if and only if the condition
C

(A,Ω)
MPC (P,Z) holds, where

C
(A,Ω)
MPC (P,Z) ⇔ C

(A,Ω)
BA (P,Z) ∧ ∀ps, pr ∈ P : C

(A,Ω)
SMT (P,Z, ps, pr). (11)

The necessity of the above condition follows from the fact that both SMT and
broadcast are special cases of MPC. In fact, since both the above are non-reactive
functionalities, our impossibilities (along with the feasibility discussed below)
imply that C

(A,Ω)
MPC (P,Z) is tight for both (reactive) MPC and for SFE (i.e.,

non-reactive MPC.) Thus our results prove that unlike the active/passive/fail
general adversary model where [5] proved a separation between the (tight fea-
sibility bounds) for MPC and SFE, such a separation does not exist in the
active/omission setting.

For the sufficiency we use the following idea: We modify the general adversary
protocol from [5] by first projecting it to the active-corruption-only case (recall
that [5] works for a mixed active/passive/fail adversary) and then doing the
following:

212 K. Brazitikos and V. Zikas

– All point-to-point communication between any two parties pi and pj is done
by the above detectable SMT.

– All broadcasts are implemented by our detectable broadcast.
– All sub-protocols in [5] for computing individual circuit gates (input, addition,

multiplication, and output gates) are turned to detectable counterparts, i.e.,
they might abort and make the identity of a corrupted party public.

– Importantly, instead of computing the actual circuit, our MPC computes a
verifiable secret sharing of the circuit’s output—we prove that such a robustly
reconstructible sharing is feasible under our conditions. The reason for this
is that before its last reconstruction round, the MPC from [5] leaks no infor-
mation to the adversary. By switching the computation’s output to a secret
sharing instead of actual circuit value, we ensure that no matter if or when
the protocol aborts, it will leak no information on any of the non-actively
corrupted player’s inputs.

The above construction gives a detectable MPC protocol which either com-
putes a verifiable secret sharing of the output of the intended circuit, or it aborts
without leaking any information to the adversary while exposing a corrupted
party. Such a protocol can be bootstrapped to a fully secure MPC (with guar-
anteed output delivery) by standard techniques: Whenever it aborts, remove the
detected (corrupted) party from the player set and re-start the computation—
this can be repeated at most n times as each abort exposes a new corruption.
Once the protocol succeeds, use the reconstruction protocol of the verifiable
secret sharing to publicly reconstruct the outputs. We note in passing that the
above only computes MPC with a public output, but it can be tuned to allow
for private outputs using standard techniques: every party inputs in addition
to its actual output a random key which is used to blind—by one-time-pad
encryption—the announced public output so that only this party can recover
the plaintext [28].

UC Treatment. Last but not least, as discussed above, all our proofs are in
the (synchronous) UC framework, which we view as a contribution in its own
sense. Although we do not consider this to be our core technical contribution, to
our knowledge, this is the first time that a general adversary protocol is proven
secure in such a composable manner. In particular, existing MPC protocols for
general adversaries [5,21,37] also follow a modular design approach—i.e., they
design sub-protocols for each type of MPC gate (input/sharing, addition, mul-
tiplication, output/reconstruction)—and prove the security of each underlying
sub-protocols separately in a property-based manner, i.e., prove the correctness
and privacy of each of these sub-protocols. They then argue that these sub-
protocols can be combined in the main MPC protocol. Although we believe this
last statement to be true, an actual proof would require a composition proof
(which is generally problematic with property-based definitions), or, alterna-
tively a composable treatment of the whole construction, an approach which
we take for the first time in this work. In fact, to our knowledge even without
considering general adversaries, no work has considered (active and) omission

General Adversary BA and MPC with Active and Omission Corruption 213

corruptions in UC. As it is evident by our functionalities, embedding omission
corruptions in UC requires new design choices for the relevant functionalities.

Because the core novelty of our results is in the protocol constructions and
proofs, to eliminate the technical burden put upon the reader in extracting the
ideas from the simulation, we have employed a special proof structure: First we
prove properties that our protocols have, akin to the traditional property-based
approach used in the general adversary literature; subsequently, we describe
our simulator and use the above properties, along with additional arguments
wherever necessary, to argue perfect indistinguishability of real and ideal world.

3 Byzantine Agreement with Active and Omission
Corruption

3.1 Security Conditions

In this section we present our first major result, a tight BA condition. Our results
cover the case of mixed active and omission-corruption under perfect security
(i.e., zero error probability).

Theorem 1. In the model with both active and omission-corruption if no setup
is assumed a set P of players can perfectly Z-securely realize Consensus or
Broadcast if and only if the condition C

(A,Ω)
BA (P,Z) holds where,

C
(A,Ω)
BA (P,Z) ⇐⇒ ∀Zi, Zj , Zk ∈ Z : Ai ∪ Aj ∪ Ak ∪ (Ωi ∩ Ωj) �= P. (12)

The proof of the theorem is in 3.7 and the condition is proven to be both suf-
ficient and necessary for both flavors of BA, i.e., Consensus and Broadcast. The
theorem follows after all the necessary tools are created (namely the primitives
FixReceive, Weak, Graded and King Consensus).

3.2 Detection of Omission-Failures on Public Point-to-Point
Communication

We begin by investigating the main problem of omission-corruption, namely the
fact that detecting such a corruption is not trivial. Indeed, when a player pj does
not receive a message she was expecting (because the channels are synchronous),
and receives the default value ⊥ she cannot be certain if the sender pi is actively
corrupted and did not send a message, if the sender is omission-corrupted and
his message was blocked or if pj herself is omission-corrupted and was not able
to receive the message (or a combination of the above).
Our first goal is to implement a functionality FFR in order to reinforce our com-
munication network and render it able to detect omission-failures. Effectively,
this functionality guarantees that either the adversary lets the message of the
sender pi reach its recipient pj or it becomes known to everyone (first to pj her-
self and then she will make it public) that pj is omission-corrupted, forcing her
to become a zombie.

214 K. Brazitikos and V. Zikas

If pj becomes a zombie via the FixReceive protocol, she stops participating
in any upcoming computations. Also, she notifies all other players about that
by sending a special message (she can send it at every round to make sure that
everyone receives it) saying that she “is out”. Those properties are captured by
the functionality FFR fully described in the full version of the paper [9].

For our functionalities we follow the template of [13] for canonical syn-
chronous functionalities. The functionality proceeds in this way. Initially FFR

sets the output value equal to ⊥ and then waits for input from pi. This input
is made known to the adversary through the leakage function l(x). On the sec-
ond round the adversary has the following choices. i) If pi ∈ Ω� (the sender is
omission-corrupted), the adversary can drop the input message and turn it to ⊥
or let it be recorded as normal. ii) If pj ∈ Ω� the adversary can either inform pj

of his omission status or let her receive the recorded message mout.
As such, we can see that if pj remained alive then she outputs a value mout,
which will be either pi’s input or ⊥. Additionally, if pi is correct we are granted
that it is the former case.

Our protocol which realizes this functionality does the following in more
detail. When pi wants to send a message x to pj , he sends x to all pk ∈ P to
leverage all parties. Then, every pk who received the message forwards it to pj .
If pk did not receive a message (he denotes that by the symbol ⊥) he sends a
special message “n/v” /∈ F to pj , to let her know that no value was received.
After that, pj should have received a message from all pk ∈ P. If from some
player she did not, she denotes that by the default character ⊥. At that point,
if there is no way according to the adversary structure Z that the ⊥ symbols
she received were sent by players that could be omission-corrupted or actively
corrupted she becomes a zombie. In other words, if there is some player who sent
⊥ but could never be corrupted, then it is clear for pj that she has a problem in
receiving messages.
In the opposite case, if there exists a value x′ which was sent to pj by people
that could not be actively corrupted, it would mean that this value cannot be
an erroneous one being pushed by the adversary. As such, pj can be certain that
this is the message that pi sent, and she outputs this value x′.
Otherwise, in the case where no such value exists, meaning that pi was not
consistent with the messages he sent or he was blocked, pj outputs ⊥ to indicate
that pi is not correct. The protocol FixReceive can be found in the full version
of the paper [9].

Lemma 1. If the condition C
(A,Ω)
FIXR(P,Z) (see Eq. 6) holds, the protocol FixRe-

ceive perfectly Z-securely realizes the functionality FFR.

To prove the above lemma, we will use the following properties of our proto-
col. i) If pj is alive at the end of the protocol then pj outputs a value x′, where
x′ ∈ {x,⊥}, unless pi ∈ A�, and x′ = x if pi is correct until the end of the pro-
tocol. ii) Moreover, pj might become a zombie only if pj is omission-corrupted.
From there, since we prove static security and these are public state protocols
where all inputs are revealed by the functionality, the simulator needs to simply

General Adversary BA and MPC with Active and Omission Corruption 215

run a simulated copy of the protocol with these input. A formal simulation proof
and proof of the properties can be found in the full version.

Proof. (sketch) According to the protocol, pj becomes a zombie only if there
exists no adversary class Z that could explain the ⊥ messages pj received. This
guarantees that pj is omission-corrupted because the ⊥ messages he received
cannot be explained in another way. Now, if pj is alive and pi is correct until the
end of the protocol, pj will output the correct value x′ = x because all the correct
players will have received the x value from pi and additionally the condition
C

(A,Ω)
FIXR(P,Z) ensures that there are enough of them to carry the correct value

to pj . On the opposite case where pi was not correct, pj is not guaranteed to
reach a correct result. If there are conflicting values due to the malicious behavior
of pi, pj will output ⊥. ��

We also prove in the full paper that this bound is actually tight, meaning
that the C

(A,Ω)
FIXR(P,Z) condition is also necessary for FixReceive.

Claim. If the condition C
(A,Ω)
FIXR(P,Z) (see Eq. 6) does not hold, then no protocol

can satisfy the properties of the FixReceive protocol stated above.

3.3 Weak Consensus

By use of Fix Receive, we will now establish an initial, basic form of consensus,
called Weak Consensus. For this, we require the following properties. Persis-
tency: If all alive, not actively-corrupted parties start with the same input x
then all of them should output y = x. Consistency: Additionally, there cannot
be disagreement between them. To do this, we allow them to output a special
character “n/v” (no value) if they are unsure. So, all of them can output either
the common value y or “n/v”. However, no two correct players should have con-
tradicting values. Our functionality FWC in the full paper [9] captures those
requirements.

Initially, it sets everything to ⊥ and then receives input from the players.
Again, the adversary learns those values, as in FixReceive. Afterwards, once
FixReceive is concluded, the adversary is allowed to affect the output. However,
he is bound by the consistency and persistency properties we mentioned. As such,
he can only set the outputs to either v or “n/v”, if there is no pre-agreement
on the inputs. The only other action he can perform is to make players in Ω�

become zombies, by informing them of their omission status.
Now, our WeakConsensus is realized as follows, using (as do all follow-up

protocols) FixReceive for party-to-party communication. First, we have every
player send his input xi to all players (using FixReceive). Then, each player
looks at all the possible classes of the adversary structure for the following:
1) If there exists one Z = (A,Ω) which gives him a value x ∈ F such that
this value was sent to pj by some players who are not corrupted and 2) the
values he received which are different from both x and ⊥ can be justified by
the set of actively corrupted players, meaning that a malicious player sent the
disagreeing value. Additionally, all ⊥ values should be coming from pk ∈ Ω,

216 K. Brazitikos and V. Zikas

because FixReceive gives us the guarantee that an alive player only outputs ⊥
if the sender is not correct. If that is the case, the player adopts this value x as
his output. Otherwise, he cannot be certain and outputs the message “n/v”.

Lemma 2. If the condition C
(A,Ω)
BA (P,Z) (see Eq. 12) holds, the protocol Weak-

Consensus perfectly Z-securely realizes the functionality FWC .

To prove this lemma we will make use of the following properties of our
protocol. (weak consistency) There exists some y ∈ F such that every (alive)
pj ∈ P \ A� outputs yj ∈ {y, “n/v”}. (persistency) If every pi ∈ P \ A� who is
alive at the beginning of WeakConsensus has the same input x, then all alive
players at the end of the protocol output y = x. The full proof can be found in
the full version of the paper [9].

Proof. (sketch) First of, we can prove that the selection of the output value yj

is unique, assuming that there can be two that satisfy the conditions and reach-
ing a contradiction. After that, we can prove the weak consistency and persistency
properties, by using the sets P

(⊥,0,1)
j which split the whole player set according to

the values that where received. After that, we can use the condition C
(A,Ω)
BA (P,Z)

together with the requirements of the protocol for choosing yj in order to show that
the desired properties hold true. This is done after a lengthy separation of the sets
of players and a case study of what values they can send. ��

3.4 Graded Consensus

The next step towards our goal is GradedConsensus. Leveraging Weak Consensus
to get a stronger type of agreement, the players here also output a bit grade
gi reflecting their certainty in their output. This is similar to the Gradecast
primitive in [17]. This is a graded version of persistence—i.e., if the players who
are not actively corrupted have pre-agreed on a value x, then we get that they
all output x with grade g = 1 (graded persistency). Additionally, it ensures
that if any non-actively corrupt party outputs yi = y with gi = 1, then every
non-actively corrupt alive party pj outputs yj = y (graded consistency). In the
opposite case, where the player is not certain about his output value, his grade
of confidence is gi = 0.

Our functionality FGC presented in detail in the full paper [9] captures those
properties. At its core it works in a similar manner to FWC . The difference here
is that if there exists pre-agreement then all grades are set to 1 and outputs to
the same value and the adversary is not allowed to change them. Else, if some
grade is gi = 1, then all outputs have to be the same, but the adversary can
select the other grades. Otherwise, with all grades 0, the outputs are allowed to
be selected by the adversary.

In more detail, the protocol first calls the WeakConsensus protocol in order
to reach an initial step of agreement. Then all the players exchange the outputs
they received, by invocation of FixReceive. After that, each player collects that
information and decides whether to output yj = 0 or yj = 1. If it can be seen

General Adversary BA and MPC with Active and Omission Corruption 217

from the adversary structure that non-actively corrupted players have sent the
value 1, then yj = 1 (as in this case every non-actively corrupted player would
have output x′

i ∈ {yj , “n/v”}). Otherwise, if she only received 0 and “n/v” from
non-actively corrupted, she sets her output (by default) to yj = 0.

Next, we have to determine the grade. If at least all non-actively corrupted
players have sent to pj either the same message as her output yj or ⊥ (from the
players in Ω) and at least all uncorrupted players have definitely sent yj , then
pj sets her grade of confidence in the fact that all uncorrupted players have the
same output as gj = 1. Otherwise, she sets gj = 0, showing that there is no
agreement from her point of view, yet.

Lemma 3. If the condition C
(A,Ω)
BA (P,Z) (see Eq. 12) holds, the protocol Grad-

edConsensus perfectly Z-securely realizes the functionality FGC .

To prove this lemma we will make use of the following properties of our protocol.
(graded consistency) If some pi ∈ P \A� outputs (yi, gi) = (y, 1) for some y ∈ F,
then every (alive) pj ∈ P \ A� outputs yj = y with some gj ∈ {0, 1}. (graded
persistency) If every pi ∈ P\A� who is alive at the beginning of GradedConsensus
has input xi = x, then every (alive) pj ∈ P \ A� outputs (yj , gj) = (x, 1).

Proof. (sketch) First of all we can prove that for any player pj ∈ P \ A�, yj = 1
only when a condition respective to the case of yj = 0 holds. After that, in
a similar manner as in Weak Consensus we can prove the properties of graded
consistency and graded persistency, leveraging the properties of Weak Consensus.
All details can be found in the formal proof in the full paper [9]. ��

3.5 King Consensus

The last step towards Consensus is KingConsensus. Here, we select one player
and give him the special role of (phase) king. As before, if the players had pre-
agreement on their inputs x, they all must output the same value x (persistency).
On top of that, if the king is correct, the players will reach agreement, no matter
what (king consistency).

The functionality FKC that captures this is described in detail in the full
paper [9]. The functionality guarantees that persistency is kept if it is already
established. Otherwise, it could allow the adversary to change the output to a
specific value v for all, subject to the king being correct. Else, the adversary is
allowed to select the outputs for all players.

The protocol realizing it first uses GradedConsensus and then has the king
send his output to all players. All players that are certain for their output keep
their value, whereas all those who are uncertain adopt the value of the king. This
way, using graded consistency for the grades and persistency we make sure that
if the king is correct until the end of the protocol then all non-actively corrupted
players will agree on the same output.

Lemma 4. If the condition C
(A,Ω)
BA (P,Z) (see Eq. 12) holds, the protocol King-

Consensus perfectly Z-securely realizes the functionality FKC .

218 K. Brazitikos and V. Zikas

To prove this lemma we make use of the following properties of our protocol.
(king consistency) If the king pk is correct, then every pj ∈ P\A� outputs yj = y.
(persistency) If every pi ∈ P \A� who is alive at the beginning of KingConsensus
has input xi = x then every (alive) pj outputs yj = x. The formal proof can be
found in the full paper [9].

3.6 Consensus

Finally, we are now ready to present our Consensus primitive. The end goal of the
parties is to terminate with the same output y. On top of that, if there was pre-
agreement on input x, the common output should be y = x. Our functionality
FCS , described in detail in the full paper, allows the adversary to change the
common output value only if there was no pre-agreement. Also, he is able to
make a player in Ω� zombie. All other messages are ignored.

The way that the FCS is realized by the protocol Consensus is by repeatedly
calling the KingConsensus protocol. We use as inputs the outputs of the previous
iteration and each time the king is a different player, in turn for all players until
we reach an honest one. Since every player becomes a king, we can be certain,
as long as not all players are corrupted (which is not allowed by our security
condition) that at least one king will be correct and, hence, we will achieve
consistency on the output value. This point will be reached even sooner if the
non-actively corrupted players have pre-agreed on a value x. What is more, once
this agreement is achieved, by the persistency property of KingConsensus, we
can be certain that it will not change, no matter what the king sends (in case
he is not correct) thus the agreement will be maintained.

To be more formal, below is the property-based definition of Consensus for
our relevant corruption types. A protocol perfectly Z-securely realizes Consensus
among the players in P if it satisfies the following properties in the presence of
a Z-adversary:

– (consistency) Every non-actively corrupted pi ∈ P who is alive at the end of
the protocol outputs the same value y.

– (persistency) Assuming that every non-actively corrupted pi ∈ P who is alive
at the beginning of the protocol has input x, the output is y = x.

– (termination) For every non-actively corrupted pi ∈ P the protocol termi-
nates after a finite number of rounds.

Theorem 2. If the condition C
(A,Ω)
BA (P,Z) (see Eq. 12) holds, the protocol Con-

sensus perfectly Z-securely realizes the Consensus functionality FCS.

Proof. The proof of this theorem follows from the established protocols above. If
C

(A,Ω)
BA (P,Z) holds true we are granted that there exists an uncorrupted player

in P, as P\(Ai∪Aj ∪Ak∪(Ωj ∩Ωk)) �= ∅, for all i, j, k selections of the three sets.
Then, applying both properties of KingConsensus in succession creates and then
maintains the agreement on the output for all iterations. This post-agreement
can be achieved earlier still, if there is pre-agreement between the non-actively

General Adversary BA and MPC with Active and Omission Corruption 219

corrupted players on their values. Finally, for the termination property, we are
certain that the protocol repeats a finite number of times a terminating protocol,
so it is guaranteed to terminate. ��

3.7 Broadcast

In this section we describe our Broadcast functionality FBC above. The idea is
similar to the Consensus functionality, with the difference that only the sender
p has an input x. Additionally, if he remains alive, all alive players will get the
same output value y = x. The adversary can only make players pj ∈ Ω� become
zombie and nothing more to alter the outputs. An honest p always broadcasts
the correct value and the output of broadcast is ⊥ only if p ∈ Ω�.

The formal property-based definition of Broadcast is as follows. A protocol
perfectly Z-securely realizes Broadcast with sender a player p whose input is x
among the players in P if it satisfies the following properties in the presence of
a Z-adversary:

– (consistency) Every non-actively corrupted pi ∈ P who is alive at the end of
the protocol outputs the same value y.

– (validity) Assuming that the sender p is not actively corrupted, the common
output y satisfies y ∈ {x,⊥}. Specifically, y = x if p is alive and correct until
the end of the protocol and y =⊥ if p has become a zombie.

– (termination) For every non-actively corrupted pi ∈ P the protocol termi-
nates after a finite number of rounds.

Note that, as Broadcast invokes Consensus, the condition C
(A,Ω)
BA (P,Z) is

needed for this protocol, as well. We describe below our protocol for broadcast
that realizes the functionality FBC . The proof can be found in the full paper
and is mainly derived from the properties of Consensus.

1. In round ρ = 1: The sender p sends x to every pj ∈ P using FixReceive,
who denotes the received value by xj . (If pj received ⊥ he sets xj = 0).

2. In round ρ = 4: The players invoke Consensus(P,Z, (x1, . . . , xn)) on the
received values. We denote pj ’s output as yj .

3. In round ρ = 12n + 4: The sender p sends a confirmation bit b to every
pi ∈ P using FixReceive, where b = 1 if the output of p after Consensus
equals x and b = 0 otherwise; pi denotes the received bit by bi. (If pi

received ⊥ he sets bi = 0).
4. In round ρ = 12n + 7: Invoke Consensus(P,Z, (b1, . . . , bn)).
5. In round ρ = 24n + 7: For each pi ∈ P, if pi’s output after Consensus is

1, he outputs yi, otherwise he outputs ⊥.
If some pz ∈ Ω� became zombie he outputs (omission, pz).

Protocol Broadcast(P,Z, p, x)

Theorem 3. If the condition C
(A,Ω)
BA (P,Z) (see Eq. 12) holds, the protocol

Broadcast perfectly Z-securely realizes the functionality FBC .

220 K. Brazitikos and V. Zikas

Table 1. The classes Z1, Z2, Z3 with A1 ∪ A2 ∪ A3 ∪ (Ω2 ∩ Ω3) = P.

p1 p2 p3 p4

Z1 α

Z2 α ω

Z3 α ω

Necessity of Conditions for Byzantine Agreement. Next, we show that
the C

(A,Ω)
BA (P,Z) condition is also necessary for Broadcast.

The following lemma shows the impossibility that arises when C
(A,Ω)
BA (P,Z)

is violated. The proof exploits adversarial strategies which create an ambiguity
in the view of the players, which prevents them from deciding which corruptible
class the adversary has actually chosen, contradicting correctness. For a more
detailed proof with further discussion about why older techniques wouldn’t work
see the full version [9].

Lemma 5. If the condition C
(A,Ω)
BA (P,Z) does not hold, then the properties of

the Broadcast protocol stated in Theorem 3 cannot hold, as well.

Proof. (sketch) Assuming that the condition C
(A,Ω)
BA (P,Z)(12) does not hold

and that we have secure broadcast we will reach a contradiction. This means
that ∃ Z1, Z2, Z3 such that A1 ∪ A2 ∪ A3 ∪ (Ω2 ∩ Ω3) = P. Using a player-
simulation argument, we get three scenarios that are indistinguishable for the
players, using the adversary structure shown in Table 1. We assume that p1 is
the designated sender and we want all other players to output the same value,
according to the broadcast property. We consider the following scenarios. In all
cases, communication from p1 to p4 is cut entirely.

In the first scenario (see Fig. 1), p1 is actively corrupted and all other players
are honest. He sends different values to p2 and p3 and nothing to p4. This makes
p2 believe that the sender has input 0, p3 believes that the sender has input 1
and p4 does not have any direct information from the sender.

In the second scenario (see Fig. 2), p2 is actively corrupted and p4 is omission-
corrupted. The sender sends his input 1 to p3 but is blocked from reaching p4.
At the same time the adversary is using p2 to claim that the sender sent him
the value 0. This makes p2 believe that the sender has input 0, p3 believes that
the sender has input 1 and p4 does not have any direct information from the
sender. Because the sender is not actively corrupted and is correct until the end
of the protocol, due to validity, all players should output 1 with overwhelming
probability.

In the third scenario (see Fig. 3), p3 is actively corrupted and p4 is omission-
corrupted. The sender sends his input 0 to p2 but is blocked from reaching p4.
At the same time the adversary is using p3 to claim that the sender sent him
the value 1. This makes p2 believe that the sender has input 0, p3 believes that
the sender has input 1 and p4 does not have any direct information from the

General Adversary BA and MPC with Active and Omission Corruption 221

Fig. 1. p1 is actively
corrupted.

Fig. 2. p2 is actively, p4

is omission-corrupted.
Fig. 3. p3 is actively, p4 is
omission-corrupted.

sender. Because the sender is not actively corrupted and is correct until the end
of the protocol, due to validity, all players should output 0 with overwhelming
probability.

For p4 the three scenarios are indistinguishable. Hence, the output should
be the same value in all cases, since all scenarios have the same set up, mean-
ing that the distribution of the outputs should be identical. As the result is
overwhelmingly different in all cases, this leads us to a contradiction.

This proves that the condition C
(A,Ω)
BA (P,Z) consists a tight feasibility bound

for Broadcast, meaning that the desired properties hold true if and only if our
condition holds. In the full paper [9] we show that this condition is tight for
Consensus as well. ��

4 Multi-party Computation

In this section we extend our study to multi-party computation. A discussion
about the challenges of such an extension, and a showcase that existing tech-
niques from the threshold literature either do not work, or yield counter-intuitive
results can be found in the full version of the paper [9]. There we discuss and
prove the ineffectiveness of player elimination, a technique frequently used in the
general adversary literature.

This motivates us to introduce a new condition C
(A,Ω)
SMT (P,Z), which together

with C
(A,Ω)
BA (P,Z) enables us to create a Secure Message Transmission primitive

in Sect. 4.1. This allows any two given parties to exchange securely a message s
and, specifically, the protocol either aborts while detecting a corrupted party or
it provides an alive receiver with the correct message of a sender, effectively cre-
ating a publicly detectable private message functionality. In other words, either
the message is delivered (keeping its privacy) or it can be publicly detected which
player failed/is corrupted.

With that idea we practically overcome the problem of omission corrup-
tions and, thus, we could use any MPC protocol for active corruption in general

222 K. Brazitikos and V. Zikas

adversaries to accomplish the rest of our task. We present the necessary tools
and building blocks to do that in Sect. 4.2.

Next, we tackle one of the final problems, namely securely computing the
gates in Sect. 4.3, with multiplication being the main difficulty while addition is
pretty straight forward. There we present their functionalities and how we can
implement them in our setting.

Finally, after establishing that, we will be able to provide a tight character-
ization of the perfectly secure MPC landscape (in terms of both feasibility and
impossibility) in the remainder of the section. We compose all of our blocks and
tools together in Sect. 4.4 to present our full MPC protocol and in Sect. 4.4 we
prove that our conditions are also necessary, i.e., tight.

As a side note, we remind here that our MPC assumes that the parties can
broadcast messages (elements from an appropriate arithmetic field F). As we can
easily see, our MPC condition C

(A,Ω)
MPC (P,Z) implies C

(A,Ω)
BA (P,Z) which means

that we can use Broadcast for this purpose6.

4.1 Detectable Secure Message Transmission

The first step towards our MPC protocol is to enable any pair of parties with a
sender Ps and a receiver Pr to exchange a message s securely, i.e., with the pri-
vacy and correctness of the message preserved. Furthermore, we want to accom-
plish that in a publicly detectable way, meaning that the protocol either succeeds
or it aborts having detected a corrupted party.

To achieve this, the condition C
(A,Ω)
BA (P,Z) of broadcast is no longer suffi-

cient. On top of it, we need the condition C
(A,Ω)
SMT (P,Z, Ps, Pr) for this pair of

parties, as explained in 2.
In more detail, we have the sender Ps who wants to send a message s ∈ F

to the receiver Pr. The functionality dictates that this is accomplished without
leaking any information to the adversary. If no input is received by the func-
tionality from Ps due to his fault (i.e., Ps ∈ Ω� or A�) then FDetSMT sends a
default message “n/v” to Pr. If Pr is omission-corrupted and is unable to receive
the intended value from FDetSMT , he outputs a special symbol ⊥ to denote this.

The functionality that captures our goal is presented in detail in the full
version of the paper [9]. It starts by taking some input s from the designated
sender. The adversary can input any value his chooses if the sender is actively
corrupted. Then this value is forwarded to Pr. Meanwhile, it allows the adversary
to affect the output if the sender or receiver are corrupted by in a detectable
way. Also, he could cause an abort, but at the cost of making publicly known
the identity of a corrupted party.

Our protocol that realizes this functionality works in a way that resembles
FixReceive, as discussed in Sect. 3.2; The sender sends to all players and at the
end all players forward the message to the receiver. However, the difference is that
now we have a reliable broadcast primitive and the players can use it complain if
6 As discussed in the introduction, we can trivially turn binary Broadcast to a string
Broadcast by invoking it for each bit of the string.

General Adversary BA and MPC with Active and Omission Corruption 223

they do not receive a message they were expecting. Also, we also ensure that the
privacy of the message is maintained, in contrast to FixReceive, which was done
in public communication. This is done by the use of a secret sharing scheme. The
sharing is characterized by the sharing specification S, according to which the
shares of the message to be kept secret are distributed to the players, effectively
stopping the adversary from holding all shares. In our case we will be using a sum
sharing, i.e., the secret value s is split in summands s1, . . . , sm with

∑m
i=1 si = s,

where m is the size of the sharing specification |S|.
For each player pj we call the vector of summands in his possession 〈s〉j =
(sj1 , . . . , sjk) as pj ’s share of s. The complete vector of all shares is denoted as
〈s〉 = (〈s〉1, . . . , 〈s〉n) and is called a sharing of s. The vector of summands of s
is denoted as [s] = (s1, . . . , sm) and their sum is equal to s. We, also, say that
such a sharing 〈s〉 is a consistent sharing of s according to (P,S), if for each
Sk ∈ S all (correct) players in Sk have the same view on sk and s =

∑m
k=1 sk.

Our selection for S will be the natural sharing specification SZ associated with
Z, i.e., (S1, . . . , Sm) = (P \ A1, . . . ,P \ Am), where m = |Z|, so that for each
corruptible class Zi all the players not included in Ai for that class will receive
the share si. This way the adversary never obtains all summands.

Using that secret sharing scheme, Ps creates a sharing of his message s and
sends each part sq to the complement Sq of Aq. This process is done for each
q = 1, . . . ,m. Then the players who did not receive it can complain through
broadcast. Additionally, an extra round of cross checking and relay is added,
during which all parties in Sq send to one another the values they received
from Ps. Again, complaints are raised and the players try to see which classes
of the adversary structure fit their view. Finally, once the complaints are over,
all players send their vector of received values to the designated receiver of the
message, Pr.

Lemma 6. If the condition C
(A,Ω)
MPC (P,Z) (see Eq. 11) holds, the protocol

DetSMT perfectly Z-securely realizes the functionality FdetSMT .

To prove this lemma we will make use of the following properties of our
protocol. Either the protocol aborts with some set B of corrupted parties or it
terminates and we have the following properties: If the receiver Pr is alive at the
end of the protocol then he outputs a value sp ∈ F where sp = s unless Ps ∈ A�.
Also, Pr might become a zombie only if he is omission-corrupted. Furthermore,
no information on s is leaked to the adversary. The complete proof can be found
in the full paper [9]. One thing that we need to point out is the following caveat.
Extra care needs to be taken in order to properly describe the simulation for the
functionality, because the simulator has to act differently based on whether the
adversary has access to some summand of the secret value or not. This subtlety
is expanded upon in the full proof.

Necessity of SMT Condition. Additionally, we prove that the condition
C

(A,Ω)
SMT (P,Z, p1, p2) is actually necessary for the (plain, not detectable) FSMT

224 K. Brazitikos and V. Zikas

functionality that enables p1 to securely send a message to a receiver p2, making
our result tight (both sufficient and necessary).

Lemma 7. If the condition C
(A,Ω)
SMT (P,Z, p1, p2) does not hold, then the func-

tionality FSMT (P,Z, p1, p2,m) cannot be securely realized.

As before, further details and the complete proof can be found in the full
version of the paper [9].

4.2 Building Blocks and Tools for MPC

Having established the DetSMT primitive to replace the network of point-to-
point channels for the communication, we will now carry on with the construction
of an MPC protocol by following the classic idea of creating a secure MPC proto-
col in the presence of a general adversary using only active corruption. Given any
arithmetic circuit C—recall that this is a complete model of computation—the
protocol evaluates the circuit in a gate-by-gate fashion, where the invariant is
that the inputs and outputs of each gate of C are kept secret shared, see below,
so that no information leaks to the adversary. Importantly, the protocols that
process each gate, which we construct, might abort; however, when this happens:
(1) no information leaks to the adversary, and (2) a corrupted party p is identi-
fied. This means that we can exclude p, and reset the computation without it.
As we prove, the relevant sufficient condition, C

(A,Ω)
MPC (P,Z), is preserved when

eliminating such a corrupted party, which will ensure security in the reduced
setting. As soon as an iteration of the above processing of the gates of C ter-
minates without an abort–which is bound to happen after at most n resets—we
invoke a reconstruction protocol to have every party (still alive) receive the out-
put. We note that without loss of generality, we assume that the function which
is computed by C has one public output. Using standard techniques, we can
use a protocol for any such function to compute functions with multiple and/or
private outputs [28].

In the following, we start by describing and proving the security of sub-
protocols that are used as building blocks and then describe how these can be
stitched together in an MPC protocol.

Heartbeat. A very important part of our results is based on the fact that if
the adversary blocks enough messages addressed to a player to make him reach
a wrong conclusion, the player could be able to perceive this loss of messages.
Then, he could step down from the calculation by becoming a zombie, as he is
(omission) corrupted. The functionality FHb is taking as input by the player a
bit b = 1 indicating that he is alive. The adversary is able make a player in
Ω� aware of his omission status, effectively setting b = 0. Then this value is
communicated to all parties. The functionality is provided in detail in the full
version of the paper [9]. We can implement this through the broadcast of the
bit b by the player in question. If b = 1 then all agree that the player is alive.

General Adversary BA and MPC with Active and Omission Corruption 225

Otherwise, if a player fails to broadcast this bit to other players or broadcasts
b = 0 it becomes apparent to all that he is a zombie, as he is corrupted. According
to the properties of broadcast everyone agrees whether p is alive or not.

It should be noted that omission-corrupted players who have not yet detected
their problem can learn that they are zombies from the output of the broadcast
protocol.

Lemma 8. If the condition C
(A,Ω)
BA (P,Z) (see Eq. 12) holds, the protocol Heart-

beat perfectly Z-securely realizes the functionality FHb.

The proof is derived from the Broadcast properties. The complete version
can be found in the full paper [9].

Verifiable Secret Sharing. A very important primitive that is essential in
keeping the privacy of the players’ input is called Verifiable Secret Sharing (VSS).
On top of guaranteeing that the input of the player is kept secret, we also get
that all players agree on the way that the initial value is shared among them.
By splitting the message s in random summands sk using a sum share and then
giving each one of those to the corresponding set Sk we achieve the privacy
property Furthermore, by having the players in each Sk cross check their values
we get the verifiability property. This idea was first developed in [24] and has
since been used in many MPC protocols.

The functionality that we want to instantiate is presented in detail in the
full version of the paper [9]. To give a brief description, it takes as input a value
s that needs to be secret shared. Then, uniformly random shares s1, s2, . . . , sm

where m = |S|, are created such that s =
∑m

k=1 sk. Each one of those sk is
given to the respective set Sk (which is the complement of Ak). This way, no
matter which class A� the adversary corrupts, there exists a share s� of the
set S� = P \ A� that the adversary does not obtain. Hence the privacy of s is
preserved.

In the case where the dealer is actively corrupted, the adversary is allowed
to select the shares of s. However, all players in each Sk still get the same value
sk. If the dealer pd is omission-corrupted, the adversary selects if the Sharing
will succeed as normal or if it will abort and pd will be identified as omission-
corrupted.

What makes our implementation simple at this point is the existence of the
SMT channel. Instead of sending the messages using the existing network of
point-to-point channels, our protocol sends them by invocation of the Protocol
DetSMT we built earlier. This grants us the detectability and privacy properties
directly. Next, the players cross check their shares to detect inconsistencies. If
that is the case for some sk, a special message (CONTRAST, k) is broadcast and
the dealer pd broadcasts the correct summand in the open. Finally, the players
invoke a Heartbeat to communicate to all if someone became a zombie.

Lemma 9. If the condition C
(A,Ω)
MPC (P,Z) (see Eq. 11) holds and additionally we

have that for all Zi, Zj ∈ Z and for all Sk ∈ S : Ai ∪ Aj ∪ (Ωi ∩ Ωj) � Sk, the
protocol VSS perfectly Z-securely realizes the functionality FV SS.

226 K. Brazitikos and V. Zikas

To prove this lemma we will make use of the following properties of our
protocol. (correctness) VSS either outputs a consistent sharing 〈ŝ〉 of some ŝ,
where ŝ = s unless the dealer pd is actively corrupted, or it aborts with a set B
of corrupted parties. (secrecy) No information on s leaks to the adversary.
The complete proof can be found in the full version of the paper [9].

Announce and Reconstruct. The functionalities Fann and Frecn for the
Announce and Reconstruct primitives are given in the full version of the
paper [9]. The protocols Announce and Reconstruct are closely related as the
latter is essentially built on the former. The first one is used to publicly announce
the value of a specific summand (using Broadcast) and the second one to pub-
licly reconstruct a sharing of a value (using PublicAnnounce for all summands),
respectively. Both of those protocols are robust, meaning that if our condition
holds true and the sharing of the values was successful, those protocols cannot
abort and they always succeed.

Lemma 10. If the condition C
(A,Ω)
MPC (P,Z) (see Eq. 11) holds, assuming that sk

is a summand of a consistent sharing of a value s, the protocol PublicAnnounce
perfectly Z-securely realizes the functionality Fann.

Since PublicAnnounce is robust and does not abort, it becomes apparent
that Reconstruct is also robust and if the protocols called up to that point have
succeeded, it correctly reconstructs the desired value s from its summands that
are announced one by one.

Lemma 11. If the condition C
(A,Ω)
MPC (P,Z) (see Eq. 11) holds, assuming that

sk is a summand of the correct sharing of a value s, the protocol Reconstruct
perfectly Z-securely realizes the functionality Frecn.

The complete proofs can be found in the full version of the paper [9].

4.3 Computing the Gates

Addition. The first type of gate that we need to implement is the Addition
gate. At each such gate, given the sharing 〈s〉 and 〈t〉 of s, t the players need to
compute a sharing of their sum s+t. The simplest way to create this new sharing
is to have each party pj locally compute the sum of his shares of the two values
and set 〈s + t〉j = 〈s〉j + 〈t〉j . This way we create a sharing that is random (as
the sum of two random summands), hides the value of s + t as it did for s, t and
is consistent, as long as the initial sharings are consistent. As the parties can
locally compute addition gates without any communication involved, we omit
the rest from the main body and point to the full version of the paper [9] for
more details.

General Adversary BA and MPC with Active and Omission Corruption 227

Multiplication. Our next goal is to to securely compute a sharing of the prod-
uct of two shared values. Its properties are that, as long as our conditions hold,
given two consistent sharings 〈s〉, 〈t〉 it securely creates a consistent sharing of
〈s · t〉, or it aborts after detecting a set B of incorrect/corrupted players. Those
properties are captured by the functionality Fmult provided in the full version
of the paper [9].

Initially, the functionality receives input in the form of sharings, where each
player pi inputs his shares 〈s〉i and 〈t〉i for s and t, respectively. The adversary
can select the shares for the player he controls. After that, the functionality
checks whether the input of all non-actively corrupted parties for every summand
sk is the same, i.e., checks whether the sharing is consistent. If it is, sk is fixed to
this value (similarly for every t�). Otherwise, the values of the first honest player
are adopted. Then, the product xk,� of any two summands sk, t� is calculated.
Next each such product needs to be shared to all parties according to S. This is
performed by all players holding xk,�. Once the sharing of all those products is
completed, all parties can locally add their shares of xk,� over all combinations
of k, � to obtain a share of the final product y = st.

We note that if the adversary controls a party that can compute xk,�, he
is able to select how this product is shared, i.e., how it is split into summands
[xk,�] = (z1, . . . , zm) and importantly, he can impose this choice to the honest
players, subject to the summands adding up to xk,�. This was observed and dealt
with in detail in the work of Asharov, Lindell and Rabin [4]. Alternatively, the
adversary is able to completely deviate from creating a sharing of the correct
value and select summands that do not add up to xk,�, but in this scenario the
functionality detects that and adopts the values for sk and t� from a correct
player with a default sharing.

Finally, we show that there always exists a non-actively corrupted player
having both sk and t�, from the condition C

(A,Ω)
MPC (P,Z). Due to that, the adver-

sary cannot tamper with the value of xk,� and in this case both sk and t� are
publicly announced to all players, so that all adopt the correct values. If at some
point the adversary decides to make a player aware of his omission status, the
player is informed and publicly steps down, while the functionality aborts having
detected a corrupted party.

Our implementation of that functionality is the protocol Mult and it is based
on the respective protocols of [5,30]. The idea of the protocol is the following:
As s and t are shared according to S, we can use the summands s1, . . . , s|S| and
t1, . . . , t|S| to compute the product st as the sum of the products of all those
si, tj , i.e.,

st :=
|S|∑

k=1

|S|∑

�=1

skt� =
|S|∑

k,�=1

skt�. (13)

Each term xk,� = skt� is shared by every player in Sk ∩ S�. After that the
players try to see if they agree on the shared summands, by computing and
reconstructing all the differences of the xk,� shared. If they do not agree, either
the sharing was not consistent (due to the adversary inputting wrong values

228 K. Brazitikos and V. Zikas

earlier on) or the adversary controls some party in Sk ∩ S�. In either case, it is
safe to publicly announce both sk and t� so that everyone agrees on the value of
those summands and adopt a default sharing for their product xk,�.

After doing this for all combinations of k, �, the players compute the sum of
the shared terms xk,�, which results in a sharing of st, as desired.

Lemma 12. If the condition C
(A,Ω)
MPC (P,Z) (see Eq. 11) holds, 〈s〉 and 〈t〉 are

consistent sharings according to S and the following properties hold: for all Zi =
(Ai, Ωi), Zj = (Aj , Ωj) ∈ Z and Sk ∈ S : Ai ∪ Aj ∪ (Ωi ∩ Ωj) � Sk, as well as
for all Sk, S� ∈ S and for all Zi = (Ai, Ωi) ∈ Z : Sk ∩S� �⊆ Ai, the protocol Mult
perfectly Z-securely realizes the functionality Fmult.

To prove this lemma we will make use of the following properties of our
protocol. (correctness) It either outputs a sharing of st according to S or it
aborts with a non-empty set B of incorrect players. (secrecy) No information
leaks to the adversary. The complete proof can be found in the full version of
the paper [9].

4.4 The MPC Protocol

We next proceed to the construction of our MPC protocol, which securely real-
izes the functionality FMPC , detailed in the full version [9]. The function to be
computed will be represented by a circuit C.

Our protocol will compute the desired circuit on the inputs of the players. If
none of the sub-protocols aborts, the protocol will succeed and give the correct
output. In the opposite case, where the adversary has misbehaved and caused
a protocol to abort we will identify a set B of corrupted parties. Then we will
restart the computation of the protocol from the beginning with a smaller struc-
ture, setting P := P \ B, as the players in B are all problematic. Importantly,
this action preserves the monotonicity of the condition, namely that the MPC
condition is also true in the new updated adversary structure. We should also
point out that even in the case of such an abortion no information about the
players’ input is leaked to the adversary. This is because all calculations are done
with sharings of the inputs, hence the actual values are hidden. The only time
where a value is actually revealed is after the Reconstruct protocol. However, our
Reconstruct protocol is robust, meaning that it cannot abort and if the protocol
has reached this point, it is guaranteed to succeed.

Moving on to the description of the protocol, it involves three stages, the
input, the computation and the output stage. For the input stage, we have all
players share their inputs according to the sharing specification S. This is done
to make sure that the inputs remain private, while still being able to perform
computations with them. In the case that a player fails to share her input, e.g.,
if she is corrupted and the adversary blocks her messages, all players adopt a
default pre-agreed sharing for her input value.

For the evaluation stage, the procedure is the following. Depending on the
gate of C that needs to be evaluated, the players do the following. If they need

General Adversary BA and MPC with Active and Omission Corruption 229

to evaluate an addition gate, each player locally computes the sum of his shares
of the two values, so the output is a sharing of the sum. If they need to eval-
uate a multiplication gate for two values s, t, the players invoke the protocol
Mult(P,Z,S, 〈s〉, 〈t〉) for the sharings 〈s〉, 〈t〉 and the output is a sharing 〈st〉 of
the product. If they need to evaluate a random gate, each player sends a random
value as input and the output is a sharing of the sum of those values.

Lastly, for the output stage where the players want to eventually get the
actual value of the output v, they invoke the protocol Reconstruct(P,Z,S, 〈v〉)
in order to publicly robustly reconstruct one by one the summands of v and after
that each one gets the desired value by summing all summands.

Theorem 4. If the condition C
(A,Ω)
MPC (P,Z) (see Eq. 11) holds, the protocol MPC

perfectly Z-securely realizes the functionality FMPC .

Necessity of Condition for MPC. Finally, we can also show that the condi-
tion C

(A,Ω)
MPC (P,Z) is necessary to securely achieve MPC.

Lemma 13. If C
(A,Ω)
MPC (P,Z) is violated, then there exist n-party functions which

cannot be securely evaluated while tolerating (corruptions caused by) a Z-
adversary.

Proof. (sketch) As we have already discussed in 3.7 the condition C
(A,Ω)
BA (P,Z)

is necessary for broadcast. Also, in Sect. 4.1 we stated that the condition
C

(A,Ω)
SMT (P,Z, pi, pj) is necessary to securely exchange a message between a sender

pi and pj . As our condition C
(A,Ω)
MPC (P,Z) considers all such pairs of players, and

due to the fact that MPC implies both Broadcast and SMT, we get that our
condition C

(A,Ω)
MPC (P,Z) is necessary for MPC. ��

5 Conclusion and Open Problems

We put forth the study of Byzantine agreement (BA) and multi-party compu-
tation (MPC) in the presence of a mixed general adversary with active and
omission corruptions. We provided a tight characterization—necessary and suf-
ficient conditions—for feasibility of synchronous BA—both for broadcast and
consensus—tolerating such an adversary. We also provide a tight characteriza-
tion of feasibility of MPC in this model, where we show that existing techniques
fall short in providing feasibility results. Along the way, we also provide the first
tight feasibility result for (detectable) Secure Message Transmission (SMT) in
this model; by repeating upon failure while excluding the detected party, this
yields the first tight feasibility result for SMT in this model. The above results
make an important step forward in understanding the relevant landscape and
open the floor to follow-up questions that have been resolved in the thresh-
old adversary setting, but are wide open in the general adversary setting, e.g.,
allowing setup, error probability, and computationally bounded adversaries.

230 K. Brazitikos and V. Zikas

Acknowledgments. The authors would like to thank the anonymous reviewers for
their helpful comments on the manuscript, as well as Giorgos Panagiotakos for discus-
sions in the early stages of this work. The research was done in part while Konstantinos
Brazitikos was visiting Purdue University and while Vassilis Zikas was at the Univer-
sity of Edinburgh. Konstantinos Brazitikos was supported in part by Input Output
(iohk.io) through their funding of the Edinburgh Blockchain Technology Lab and Sun-
day Group. Vassilis Zikas was supported in part by Sunday Group, IOHK, NSF grants
no. 2055599 & 2001096, and BSF grant no. 41000926.

References

1. Abdallah, M., Pucheral, P.: A low-cost non-blocking atomic commitment protocol
for asynchronous systems. In: International Conference on Parallel and Distributed
Systems, 1999, Proceedings. IEEE (1999)

2. Altmann, B., Fitzi, M., Maurer, U.M.: Byzantine agreement secure against general
adversaries in the dual failure model. In: Jayanti, P. (ed.) Distributed Comput-
ing, 13th International Symposium, Bratislava, Slovak Republic, September 27-29,
1999, Proceedings. Lecture Notes in Computer Science, vol. 1693, pp. 123–137.
Springer (1999). https://doi.org/10.1007/3-540-48169-9 9

3. Asharov, G., Cohen, R., Shochat, O.: Static vs. adaptive security in perfect MPC:
A separation and the adaptive security of BGW. In: Dachman-Soled, D. (ed.)
3rd Conference on Information-Theoretic Cryptography, ITC 2022, July 5-7, 2022,
Cambridge, MA, USA. LIPIcs, vol. 230, pp. 15:1–15:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ITC.2022.15

4. Asharov, G., Lindell, Y., Rabin, T.: Perfectly-secure multiplication for any t
¡ n/3. In: Rogaway, P. (ed.) Advances in Cryptology - CRYPTO 2011 - 31st
Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6841, pp. 240–258. Springer
(2011).https://doi.org/10.1007/978-3-642-22792-9 14

5. Beerliová-Trub́ıniová, Z., Fitzi, M., Hirt, M., Maurer, U.M., Zikas, V.: MPC vs.
SFE: perfect security in a unified corruption model. In: Canetti, R. (ed.) Theory of
Cryptography, Fifth Theory of Cryptography Conference, TCC 2008, New York,
USA, March 19-21, 2008. Lecture Notes in Computer Science, vol. 4948, pp. 231–
250. Springer (2008).https://doi.org/10.1007/978-3-540-78524-8 14

6. Beerliová-Trub́ıniová, Z., Hirt, M., Riser, M.: Efficient byzantine agreement with
faulty minority. In: Kurosawa, K. (ed.) Advances in Cryptology - ASIACRYPT
2007, 13th International Conference on the Theory and Application of Cryp-
tology and Information Security, Kuching, Malaysia, December 2-6, 2007, Pro-
ceedings. Lecture Notes in Computer Science, vol. 4833, pp. 393–409. Springer
(2007).https://doi.org/10.1007/978-3-540-76900-2 24

7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, May 2-4, 1988, Chicago, Illinois, USA, pp. 1–10. ACM (1988). https://
doi.org/10.1145/62212.62213

8. Berman, P., Garay, J.A., Perry, K.J.: Towards optimal distributed consensus
(extended abstract). In: 30th Annual Symposium on Foundations of Computer
Science, Research Triangle Park, North Carolina, USA, 30 October - 1 November
1989, pp. 410–415. IEEE Computer Society (1989).https://doi.org/10.1109/SFCS.
1989.63511

https://doi.org/10.1007/3-540-48169-9_9
https://doi.org/10.4230/LIPIcs.ITC.2022.15
https://doi.org/10.1007/978-3-642-22792-9_14
https://doi.org/10.1007/978-3-540-78524-8_14
https://doi.org/10.1007/978-3-540-76900-2_24
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1109/SFCS.1989.63511
https://doi.org/10.1109/SFCS.1989.63511

General Adversary BA and MPC with Active and Omission Corruption 231

9. Brazitikos, K., Zikas, V.: General adversary structures in byzantine agreement and
multi-party computation with active and omission corruption. Cryptology ePrint
Archive, Paper 2024/209 (2024). https://eprint.iacr.org/2024/209

10. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pp. 136–145. IEEE
Computer Society (2001). https://doi.org/10.1109/SFCS.2001.959888

11. Canetti, R., Damgaard, I., Dziembowski, S., Ishai, Y., Malkin, T.: On adaptive
vs. non-adaptive security of multiparty protocols. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 262–279. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44987-6 17

12. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pp.
11–19. ACM (1988). https://doi.org/10.1145/62212.62214

13. Cohen, R., Coretti, S., Garay, J., Zikas, V.: Probabilistic termination and com-
posability of cryptographic protocols. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 240–269. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 9

14. Cohen, R., Garay, J.A., Zikas, V.: Completeness theorems for adaptively secure
broadcast. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology -
CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO
2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part I. Lec-
ture Notes in Computer Science, vol. 14081, pp. 3–38. Springer (2023).https://doi.
org/10.1007/978-3-031-38557-5 1

15. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
J. ACM 40(1), 17–47 (1993). https://doi.org/10.1145/138027.138036

16. Eldefrawy, K., Loss, J., Terner, B.: How byzantine is a send corruption? In: Ate-
niese, G., Venturi, D. (eds.) Applied Cryptography and Network Security - 20th
International Conference, ACNS 2022, Rome, Italy, June 20-23, 2022, Proceed-
ings. Lecture Notes in Computer Science, vol. 13269, pp. 684–704. Springer (2022).
https://doi.org/10.1007/978-3-031-09234-3 34

17. Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: Simon, J.
(ed.) Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
May 2-4, 1988, Chicago, Illinois, USA, pp. 148–161. ACM (1988). https://doi.org/
10.1145/62212.62225

18. Fitzi, M., Hirt, M., Maurer, U.: Trading correctness for privacy in unconditional
multi-party computation. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462,
pp. 121–136. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055724

19. Fitzi, M., Hirt, M., Maurer, U.: General adversaries in unconditional multi-party
computation. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999.
LNCS, vol. 1716, pp. 232–246. Springer, Heidelberg (1999). https://doi.org/10.
1007/978-3-540-48000-6 19

20. Hadzilacos, V.: Issues of Fault Tolerance in Concurrent Computations (Databases,
Reliability, Transactions, Agreement Protocols, Distributed Computing). Ph.D.
thesis, Harvard University, USA (1985), aAI8520209

21. Hirt, M., Maurer, U.M.: Complete characterization of adversaries tolerable in
secure multi-party computation (extended abstract). In: Burns, J.E., Attiya, H.
(eds.) Proceedings of the Sixteenth Annual ACM Symposium on Principles of Dis-
tributed Computing, Santa Barbara, California, USA, August 21-24, 1997, pp.
25–34. ACM (1997). https://doi.org/10.1145/259380.259412

https://eprint.iacr.org/2024/209
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/3-540-44987-6_17
https://doi.org/10.1007/3-540-44987-6_17
https://doi.org/10.1145/62212.62214
https://doi.org/10.1007/978-3-662-53015-3_9
https://doi.org/10.1007/978-3-662-53015-3_9
https://doi.org/10.1007/978-3-031-38557-5_1
https://doi.org/10.1007/978-3-031-38557-5_1
https://doi.org/10.1145/138027.138036
https://doi.org/10.1007/978-3-031-09234-3_34
https://doi.org/10.1145/62212.62225
https://doi.org/10.1145/62212.62225
https://doi.org/10.1007/BFb0055724
https://doi.org/10.1007/978-3-540-48000-6_19
https://doi.org/10.1007/978-3-540-48000-6_19
https://doi.org/10.1145/259380.259412

232 K. Brazitikos and V. Zikas

22. Hirt, M., Maurer, U.M.: Player simulation and general adversary structures in
perfect multiparty computation. J. Cryptol. 13(1), 31–60 (2000). https://doi.org/
10.1007/s001459910003

23. Hirt, M., Zikas, V.: Adaptively secure broadcast. In: Gilbert, H. (ed.) Advances in
Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Monaco / French Riviera,
May 30 - June 3, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6110,
pp. 466–485. Springer (2010). https://doi.org/10.1007/978-3-642-13190-5 24

24. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access
structure. Electron. Commun. Japan (Part III: Fundamental Electronic Science)
72(9), 56–64 (1989)

25. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

26. Koo, C.: Secure computation with partial message loss. In: Halevi, S., Rabin, T.
(eds.) Theory of Cryptography, Third Theory of Cryptography Conference, TCC
2006, New York, NY, USA, March 4-7, 2006, Proceedings. Lecture Notes in Com-
puter Science, vol. 3876, pp. 502–521. Springer (2006). https://doi.org/10.1007/
11681878 26

27. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem.
ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982). https://doi.org/10.1145/
357172.357176

28. Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party com-
putation. J. Cryptol. 22(2), 161–188 (2009). https://doi.org/10.1007/s00145-008-
9036-8

29. Loss, J., Stern, G.: Zombies and ghosts: Optimal byzantine agreement in the pres-
ence of omission faults. In: Rothblum, G.N., Wee, H. (eds.) Theory of Cryptography
- 21st International Conference, TCC 2023, Taipei, Taiwan, November 29 - Decem-
ber 2, 2023, Proceedings, Part IV. Lecture Notes in Computer Science, vol. 14372,
pp. 395–421. Springer (2023).https://doi.org/10.1007/978-3-031-48624-1 15

30. Maurer, U.M.: Secure multi-party computation made simple. In: Cimato, S., Galdi,
C., Persiano, G. (eds.) Security in Communication Networks, Third International
Conference, SCN 2002, Amalfi, Italy, September 11-13, 2002. Revised Papers. Lec-
ture Notes in Computer Science, vol. 2576, pp. 14–28. Springer (2002). https://
doi.org/10.1007/3-540-36413-7 2

31. Parvédy, P.R., Raynal, M.: Uniform agreement despite process omission failures.
In: 17th International Parallel and Distributed Processing Symposium (IPDPS
2003), 22-26 April 2003, Nice, France, CD-ROM/Abstracts Proceedings, p. 212.
IEEE Computer Society (2003). https://doi.org/10.1109/IPDPS.2003.1213388

32. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980). https://doi.org/10.1145/322186.322188

33. Perry, K.J., Toueg, S.: Distributed agreement in the presence of processor and
communication faults. IEEE Trans. Software Eng. 12(3), 477–482 (1986). https://
doi.org/10.1109/TSE.1986.6312888

34. Raynal, M.: Consensus in synchronous systems: A concise guided tour. In: 9th
Pacific Rim International Symposium on Dependable Computing (PRDC 2002),
16-18 December 2002, Tsukuba-City, Ibarski, Japan, pp. 221–228. IEEE Computer
Society (2002). https://doi.org/10.1109/PRDC.2002.1185641

https://doi.org/10.1007/s001459910003
https://doi.org/10.1007/s001459910003
https://doi.org/10.1007/978-3-642-13190-5_24
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/11681878_26
https://doi.org/10.1007/11681878_26
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/978-3-031-48624-1_15
https://doi.org/10.1007/3-540-36413-7_2
https://doi.org/10.1007/3-540-36413-7_2
https://doi.org/10.1109/IPDPS.2003.1213388
https://doi.org/10.1145/322186.322188
https://doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1109/PRDC.2002.1185641

General Adversary BA and MPC with Active and Omission Corruption 233

35. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual
Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, pp. 160–164. IEEE Computer Society (1982). https://doi.org/
10.1109/SFCS.1982.38

36. Zikas, V.: Generalized corruption models in secure multi-party computation. Ph.D.
thesis, ETH Zurich (2010). https://d-nb.info/1005005729

37. Zikas, V., Hauser, S., Maurer, U.: Realistic failures in secure multi-party compu-
tation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 274–293. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 17

https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38
https://d-nb.info/1005005729
https://doi.org/10.1007/978-3-642-00457-5_17

	General Adversary Structures in Byzantine Agreement and Multi-party Computation with Active and Omission Corruption
	1 Introduction
	1.1 Related Literature
	1.2 The Model
	1.3 Organization of the Paper

	2 Technical Overview
	3 Byzantine Agreement with Active and Omission Corruption
	3.1 Security Conditions
	3.2 Detection of Omission-Failures on Public Point-to-Point Communication
	3.3 Weak Consensus
	3.4 Graded Consensus
	3.5 King Consensus
	3.6 Consensus
	3.7 Broadcast

	4 Multi-party Computation
	4.1 Detectable Secure Message Transmission
	4.2 Building Blocks and Tools for MPC
	4.3 Computing the Gates
	4.4 The MPC Protocol

	5 Conclusion and Open Problems
	References

