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Abstract. A private information retrieval (PIR) protocol allows a client
to fetch any entry from single or multiple servers who hold a public
database (of size n) while ensuring no server learns any information
about the client’s query. Initial works on PIR were focused on reduc-
ing the communication complexity of PIR schemes. However, standard
PIR protocols are often impractical to use in applications involving large
databases, due to its inherent large server-side computation complexity,
that’s at least linear in the database size. Hence, a line of research has
focused on considering alternative PIR models that can achieve improved
server complexity.

The model of private information retrieval with client prepossessing
has received a lot of interest beginning with the work due to Corrigan-
Gibbs and Kogan (Eurocrypt 2020). In this model, the client interacts
with two servers in an offline phase and it stores a local state, which it
uses in the online phase to perform PIR queries. Constructions in this
model achieve online client/server computation and bandwidth that’s
sublinear in the database size, at the cost of a one-time expensive offline
phase. Till date all known constructions in this model are based on sym-
metric key primitives or on stronger public key assumptions like Deci-
sional Diffie-Hellman (DDH) and Learning with Error (LWE). This work
initiates the study of unconditional PIR with client prepossessing - where
we avoid using any cryptographic assumptions. We present a new PIR
protocol for 2t servers (where t ∈ [2, log2 n/2]) with threshold 1, where

client and server online computation is ˜O(
√

n)1 - matching the compu-
tation costs of other works based on cryptographic assumptions. The
client storage and online communication complexity are ˜O(n0.5+1/2t)

and ˜O(n1/2) respectively. Compared to previous works our PIR with
client preprocessing protocol also has a very concretely efficient clien-
t/server online computation phase - which is dominated by xor oper-
ations, compared to cryptographic operations that are orders of mag-
nitude slower. As a building block for our construction, we introduce
a new information-theoretic primitive called privately multi-puncturable

Work done while the authors were at Purdue University.

c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15367, pp. 423–450, 2025.
https://doi.org/10.1007/978-3-031-78023-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78023-3_14&domain=pdf
https://doi.org/10.1007/978-3-031-78023-3_14


424 J. Singh et al.

random set (PMPRS), which might be of independent interest. This new
primitive can be viewed as a generalization of privately puncturable
pseudo-random set, which is the key cryptographic building block used
in previous works on PIR with client preprocessing.(1 the ˜O(.) notation
hides poly log factors)

1 Introduction

First introduced by Chor et al. [9], a private information retrieval (PIR) protocol
allows a client to fetch any entry of a public database held by a single or multiple
non-colluding servers. A line of works beginning with Chor et al. [9] have focused
on reducing the communication complexity of PIR in the single and multiple
server cases under various cryptographic assumptions [3,5,8,14,15,33]. PIR has
been employed as a useful building block for many cryptographic applications,
including private contact discovery [12,21], anonymous communication [29], and
safe browsing [24].

Standard PIR protocols however are generally inefficient when they are used
for applications involving very large databases. One major factor contributing
to the inefficiency of all known PIR schemes is the linear server computation
complexity per query. This inefficiency is inherent in the standard PIR model
in both the single and multi-server case and both the statistical and computa-
tional setting [6]. Hence, a line of research has focused on considering alternative
PIR models, that allow for sublinear server complexity per query, either in the
worst case or in an amortized sense. These includes models focused on batch
PIR queries [1,2,6,19,22,27,32] and PIR with pre-processing [6,10,20,26,31,34].
Specifically, the PIR with client pre-processing model has garnered a lot of atten-
tion beginning with a work by Corrigan-Gibbs and Kogan [11].

PIR with Client Preprocessing. In this 2-server PIR model introduced by
Corrigan-Gibbs and Kogan [11], the client interacts with two non-colluding
servers during an offline phase where the servers receive as input a database
of size n. At the end of this phase the client maintains some sublinear sized
state and there’s no state stored on the server side. This offline phase is often
computationally expensive - with each server doing linear computation in the
database size. In the online phase, the client can make an unbounded number
of PIR queries using its stored state - such that both online communication and
online client/server computation are sublinear in the database size! In [11] the
authors were able to construct a PIR protocol in this model with ˜O(n1/2) online
client/server computation and ˜O (n1/2) client state size. Furthermore, in the
online phase, the client query size is ˜O (n1/2) and the server response is O(1) -
leading to online communication complexity of ˜O(n1/2). Their original 2-server
construction is based on one-way functions (OWF), but since then its also been
extended to the single server model and its been improved using other cryp-
tographic primitives [10,16,17,20,26,30,31,34]. The key building cryptographic
building block used in [11] and follow-up works is some variant of privately punc-
turable pseudo-random set, which we describe in greater detail next. We refer to
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all PIR preprocessing protocols that are based on this primitive to be designed
in the Corrigan-Gibbs and Kogan (CGK) paradigm.

Corrigan-Gibbs and Kogan (CGK) Paradigm (Based on Privately
Puncturable Pseudo-Random Sets.) A privately puncturable pseudo-
random set consists of four algorithms (Gen, Set,Test,Punc). Gen is a random-
ized function that outputs a short key k corresponding to a pseudo-random
set. Function Set(k) outputs the corresponding pseudo-random set, which has
distribution computationally indistinguishable from a random set of size

√
n

from domain [n] = {0, 1, . . . , n − 1}. Function Test(k, x) outputs a bit check-

ing whether x
?∈ Set(k). Punc(k, x) outputs a punctured key k′, such that

Set(k′) = Set(k) \ {x} and the key k′ hides x. The first construction for this
primitive in [11] was based on pseudo-random permutations - where the key and
punctured key have sizes κ and ˜O(

√
n) respectively, where κ is the private key

security parameter. The computation complexity of Test and Set algorithms are
˜O(1) and ˜O(

√
n) respectively.

A very rough sketch of the PIR with client preprocesisng scheme of [11] is as
follows: the client generates T = ˜O(

√
n) privately puncturable pseudo-random

set keys (k1, k2, . . . , kT ) and it sends them to the first server in the offline phase.
This server responds back with hint bits hi = ⊕j∈Set(ki)DB[j] where DB is a
database of size n held by both parties. The client stores these T keys and the
corresponding hint bits as its client state. In the online phase, the client receives
as input some queries x ∈ [n] and it finds a key ki from its state such that,
Test(ki, x) = true. It then sends the punctured key k′ ← Punc(ki, x) to the
second server - which responds with r ← ⊕j∈Set(k′)DB[j], which we refer to as
the ‘database xor bit’ with respect to the key k′. The client can now compute
DB[x] = r ⊕ hi, which is the expected output of the PIR online phase.

This is a simplified version of the original protocol in [11], and the original
construction has a few more features. Firstly, in the online phase, the client also
interacts with the first server to replenish the key and hint bit that it used to
compute DB[x], and this ensure that the client state always contains T privately
puncturable pseudo-random keys before each online PIR query. Secondly, note
that the right server in the above simplified protocol always views a key of a
set of size (

√
n − 1) punctured at x - and hence its view is not independent of

x. The author further use privacy amplification techniques to avoid this kind of
leakage.

All follow up PIR with preprocessing works in this CGK paradigm use cryp-
tographic assumptions and they focus on designing a more efficient privately
puncturable pseudo-random set - where the keys has short description size, while
they allow for efficient set membership testing, set enumeration and puncturing
[17,26,31]. In all these works, the client and server online computation is domi-
nated with ˜O(

√
n) cryptographic operations (either based on OWF or public-key

primitives) and their bandwidth and client storage complexity have a multiplica-
tive factor of cryptographic key length as well.
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Information-Theoretic Setting. In this work we focus our attention on the
feasibility of designing PIR with client preprocessing schemes with sublinear
client state, online computation and communication in the information theoretic
setting i.e. with no cryptographic assumption. In particular, in the Corrigan-
Gibbs and Kogan paradigm we investigate the feasibility of designing an infor-
mation theoretic analog of privately puncturable pseudo-random sets. A major
challenge here is to represent a pseudo-random set of size

√
n with a key of

size o(
√

n), while still allowing for efficient set membership, set enumeration and
private puncturing.

The key observation that helps in the design of this primitive is that the cor-
rectness of the PIR scheme only requires that for any x ∈ [n], Pr(x ∈ Set(k)) =
1/

√
n, where k ← Gen(), and its not required that Set(k) has the same distribu-

tion as a random set of size
√

n (which is a stricter requirement). We exploit this
observation in our design of a privately puncturable random set, where the keys
simultaneously have sufficient randomness and structure to ensure sublinear size,
while allowing for puncturing that hide the punctured element.

Outside theoretical interest, PIR protocols in the information-theoretic set-
ting would be of attractive from a practical viewpoint as well. The computation
complexity in information-theoretic protocols is dominated by simpler algorith-
mic operations (like bit shift, xor, etc.), which are generally faster than crypto-
graphic operations in both private-key and public-key regime.

1.1 Our Contribution

Information-Theoretic PIR with Client Preprocesing. We initiate the
study of the PIR with client preprocessing model in the information theoretic
setting based on the CGK paradigm [11]. We propose a 2t server PIR with
preprocessing protocol with corruption threshold 11, where the client maintains
a state of size ˜O(n1/2+1/2t), with online client computation ˜O(

√
n), online per

server computation ˜O(
√

n) and online communication ˜O(
√

n).
In particular, setting t = 2, we get a 4-server PIR with preprocessing pro-

tocols with client storage ˜O(n3/4), client/server online computation/bandwidth
˜O(n1/2). Setting t = log(n)/2, we get a log(n)-server PIR with preprocessing pro-
tocols with ˜O(n1/2) client storage, client/server online computation and online
bandwidth ˜O(n1/2) - where these cost match the original 2-server PIR with
preprocessing construction of Corrigan-Gibbs and Kogan [11] based on OWFs.

All the client/server computation costs reported here are in number of bit
operations, and unlike other PIR protocols it does not have a multiplicative
O(poly log(κ)) factor, where κ is the security parameter. The online communica-
tion of our scheme has no security parameter multiplicative factor either, which
is the case for all previous PIR with preprocessing constructions in the CGK
model.

1 i.e. all but one server are honest.
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Improving PIR Communication Complexity. In Sect. 4.1 we slightly mod-
ify the above construction to reduce the online bandwidth, and the online server
response bandwidth at the cost of doubling the number of servers. We achieve
a 4t server PIR with preprocessing protocol with threshold 1 with online band-
width n1/2t+o(1), where the online computation asymptotic complexities of the
client/server stay sublinear in the database size.

New Information-Theoretic Primitive. The key building block in our PIR
construction is a (t, n)-privately multi-puncturable random set (PMPRS), which
has five algorithms (Gen, Set, Test, Punc, DotProdEval). Similar to the analo-
gous cryptographic primitive, Gen() outputs a key k, where Set(k) outputs a
set of size

√
n with domain [n] and each element from the domain is contained

in the set with probability 1/
√

n. Function Test(k, x) checks if x
?∈ Set(k). The

multi-puncturing function Punc(k, x) outputs t tuples of the form (ki, Si, indi)
for i ∈ [t], where each punctured key ki corresponds to set Si, and correct-
ness requires that sets S0, . . . , St−1 are pairwise disjoint, and their union equals
Set(k) \ {x}. We call this primitive a ‘multi-puncturable’ random set, since the
partitioned set S \ {x} is divided into t disjoint sets. Privacy of this scheme
requires that each of these punctured keys are simulatable given just the param-
eters t, n, which implies that they hide the punctured element x. This is a general-
ization of the traditional privately puncturable set primitive in [11], where Punc
function outputs a single punctured key. The function DotProdEval(ki, i,DB)
exactly captures the server computation - which involves generating the partial
punctured set and compute database xor bit wrt the input punctured key. How-
ever, instead of outputting a single bit, this algorithm outputs a vector �vi, such
that the idxth

i bit has the expected result i.e. �vi[idx] = ⊕j∈Si
DB[j]. This kind of

correctness requirement in the CGK model was also first considered in TreePIR
[26] - which is a 2-server PIR with preprocessing construction based on DDH
assumption.

We propose an information theoretic construction for (t, n)-PMPRS (for when
n1/2t is an integer) where the key and each punctured key have sizes ˜O(tn1/2t).
The running time of Gen,Test,Set,DotProdEval are ˜O(tn1/2t), ˜O(1), ˜O(

√
n) and

˜O(
√

n) respectively.

1.2 Technical Overview

We divide our technical overview in two parts, first we highlight the key ideas
behind our PMPRS construction, and next we show how this primitive can be
used to construct a multi-server PIR with client preprocessing.

((log2 n)/2, n)-PMPRS Construction. To illustrate some of the key ideas in our
construction, in this subsection we depict a ((log2 n)/2, n)-PMPRS construction
where n is an even power of 2. The general (t, n) construction and its formal
proof of security are presented in Sect. 3.

Our scheme generates PMPRS keys that correspond to well-partitioned sets,
which are sets that contains a single element from each chunk of the domain [n],
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Fig. 1. An example of (t, n) − PMPRS with n = 64, t = 3. The leaf nodes contain the
offset values within the specific chunks, which can be computed using the vector �R. The
sets S0, S1, S2 represent the multi-puncturing obtained if the PMPRS set is punctured
at x = 38 that’s contained in the set. The leaf nodes corresponding to each set Si and
the path to the punctured element x are highlighted using the red boxes and the green
filled boxes respectively

where the ith chunk is defined as {i
√

n, i
√

n + 1, . . . , i
√

n + (
√

n − 1)}. Hence,
any well-partitioned set contains

√
n elements - one for each chunk. We use

the bijective map (cx, δx) ← ChunkCoord(x) to map any element x ∈ [n] to its
corresponding chunk cx = (�x/

√
n�) ∈ [

√
n] and the offset within the chunk

δx = bit decomposition of (x mod
√

n). We sometimes use the integer modulo√
n representation of δx as well, but it’ll always be clear from the context. Sets

with this structure were first used in a single server PIR with preprocessing
construction PIANO [34], where the privately puncturable pseudo-random key
is constructed using a pseudo-random function (PRF). The description of each
algorithm in our PMPRS scheme is as follows:

– Gen(): outputs a matrix �R of dimension t × 2, where t = (log2 n)/2 and
each element is sampled randomly from the domain {0, 1}t. We use t as a
shorthand for log2(n)/2 throughout the description of this construction.

– Set(k = �R): outputs a well-partitioned set, where the offset of the element in
the ith chunk is given by ⊕t−1

j=0
�R[j][ij ], where (i0, . . . , it−1) ← bit-decomp2(i)

is the bit decomposition of i. Since, i ∈ [
√

n], the bit decomposition of i has
log2(

√
n) = t bits.

– Test(�R, x): first compute (cx, δx) ← ChunkCoord(x), and then check if the
offset of the element in Set(�R) in the cth

x chunk is δx as follows: ⊕t−1
j=0

�R[j][cj
x] ?=

δx, where (c0x, . . . , ct−1
x ) ← bit-decomp2(cx).

We can visualize this well-partitioned set using a full binary tree T2,n with
depth t = log2(n)/2 (and hence it has

√
n leaves) as shows in Figure 1. We

associate random values (R[i][0], R[i][1]) with depth i and we associate the ith

leaf in the tree with the ith chunk. For any path from root to a leaf, we can
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xor one of the random strings at each depth, corresponding to whether the path
travels along the left or the right child at that depth. Hence, the value computed
at the ith leaf equals exactly the offset of the element in the ith chunk, as was
computed in Set(�R). We will use this tree based interpretation in the description
of the following two algorithms of our PMPRS scheme:

– ((S0, k0, ind0), . . . , (St−1, kt−1, indt−1) ← Punc(k, x): To puncture the set
Set(k) at element x, we can partition the tree T2,n after removing the path
from root to the chunk containing x into t disjoint trees, where the ith tree Ti

(for i ∈ [t]) has root at depth i+1, and it has 2t−i−1 leaves - which corresponds
to the ith partitioned set Si. Hence, we have ∪t−1

i=0Si = S \{x}. An example of
these t sets forming a disjoint union of the punctured set is also highlighted in
Fig. 1. However, note that each set Si cannot be part of the key ki since it leaks
some information about x - particularly it leaks that this set doesn’t contain
the element of puncturing. To ensure privacy, while satisfying a correctness
definition, we define the ith key ki such that it contains sufficient information
to compute offsets of all elements in Si, but it contains no information about
the chunks that correspond to those offsets in Si. This decoupling of the off-
sets and the chunks is critical for making the scheme secure. Concretely, the
key ki has three components: a matrix �Ri = �R[i + 1 :][:] i.e. Ri contains all
rows ≥ i + 1 of R, it also contains a correction corr = ⊕i−1

j=0
�R[j][cj

x] where
(cx, δx) ← ChunkCoord(x) and (c0x, . . . , ct−1

x ) ← bit-decomp2(cx), and finally
it contains R[i][1 − ci

x]. The first component of the key contains information
from R from depth i + 1 and higher, the second component contains partial
information of R from depth 0 to i−1, and in particular it contains the xor of
bits in R from these lower depths corresponding to the bit decomposition of
cx, and the third and final component contains one of the two random strings
of R associated with depth i that is not used in computing δx (the offset
of the punctured element). In the next function description we elaborate on
how the indexes idxi are computed and how the key ki is used to construct
Si to satify the correctness definition. Its easy to see that key ki hides the
element x since it contains no information about R[i][ci

x] - masking the value
of δx defined as ⊕t−1

j=0R[j][cj
x], and it contains no information about the chunk

containing the punctured element.
– �vi ←DotProdEval(ki, i,DB): Given ki = (�Ri, corr, r), we first compute an

offset vector �δ of length 2t−i−1 - such that this vector contains the offsets
in the leaf nodes of tree Ti in increasing order of chunk indexes. This vector
can be computed using �Ri in a similar fashion to how the offset vector is
computed in Set algorithm, and further each element of this is xored with
corr ⊕ r. By construction, vector �δ contains offsets of all elements in Si in
order. However, note that ki hides the exact chunk indexes (which depend on
the item being punctured) that these offsets correspond to. Here, we make
the key observation that there are exactly 2i+1 possible trees which could
be Ti - one for each tree rooted at depth (i + 1) in T2,n. Hence, for each of
those 2i+1 trees in order we compute the following: consider the sequence of
chunks (represented by a vector �c) corresponding to its leaf nodes in the tree,
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and compute a set S′ = {ChunkCoord−1(�c[j], �δ[j])|j ∈ [2t−j−1]}. Append to
the vector vi (which is initialized as null vector) with the bit ⊕j∈S′DB[j].
Exactly one of these 2i+1 trees would be Ti, and let it be the idxth tree in the
sequence. Then by construction we have �vi[idxi] = ⊕j∈Si

DB[j] - satisfying
the correctness definition of PMPRS. It takes O(2t−i−1) time to compute
each bit of �vi and hence the running time of DotProdEval is 2i+1.O(2t−i−1) =
O(2t) = O(

√
n).

This construction gives us an information theoretic PMPRS construction with
key size O(log2(n)) for a

√
n sized random set - such that it supports efficient

set membership, set enumeration and t-puncturing! We extend the above con-
struction in Sect. 3 in a couple ways. Firstly, we ensure that Gen can generate a
set containing a specific element Δ (which is needed in the PIR construction),
and secondly we give non-trivial PMPRS constructions for smaller t values. In
the general construction we define d = n1/2t (which must be an integer) and we
consider d-ary full tree Tn,d (of depth t = logd n) over the domain [n] instead of a
binary tree. Here to puncture at a leaf node, we can partition the remaining tree
into disjoint union of t “punctured trees” - which is defined as a tree with one
of the root’s children subtrees being removed. A major challenge in the general
construction was to ensure that the DotProdEval has O(

√
n) complexity, as the

trivial approach of considering all possible punctured subtrees at depth i lead to
computation complexity O(d

√
n), which can be ω(

√
n) for very small t or large

d. We discuss this issue and the proposed solution in detail in Sect. 3.

2t-Server PIR with Client Preprocessing. Our PIR protocol follows the
CGK paradigm. In the offline phase the client generates T = ˜O(

√
n) (t, n)-

PMPRS keys and sends them to server 0. The server responds back with the
hint bits for each of these keys, which is computed as follows for a given key k:
⊕j∈Set(k)DB[j]. The client stores the keys and the hint bits as its state.

In the online phase, the client inputs an index x ∈ [n] and it finds a PMPRS
key such that Test(k, x) = true. It computes ((k0, idx0), . . . , (kt−1, idxt−1)) ←
Punc(k, x)2, and sends ki to server (t + i). The server responds back with the
vector �vi ← DotProdEval(ki, i,DB). By the correctness of the PMPRS primitive,
we have ⊕t−1

i=0 �vi[idxi] = ⊕j∈Set(S)\{x}DB[j]. And hence if h is the hint bit corre-
sponding to the key k, then the client can compute h ⊕ (⊕t−1

i=0 �vi[idxi]) = DB[x]
- which is the desired output.

The above construction ends up using the pair (k, h) - and hence we replenish
the state with a new key-hint pair to maintain the same client state. For this,
the client samples a new key k′ such that x ∈ Set(k′). It punctures this key k′

at x and it sends its t components to servers 0, 1, . . . , (t− 1) in the online phase.
Each server responds back with vector output of DotProdEval algorithm. Using
these vectors and the database bit DB[x] the client can compute the hint bit
h′ = ⊕j∈Set(k′)DB[j].

2 Here we ignore the sets Si output by Punc algorithm since they are not used in the
PIR construction.
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The privacy of the scheme is ensured by the fact that in each online query
each server only views a single punctured PMPRS key - which is simulatable by
definition. And the correctness of this scheme follows from the definition of the
PMPRS construction as described above. We defer the details of the security
proof and the complexity analysis to Sect. 4.

1.3 Related Work

A trivial approach to solve the PIR problem would be for the client to down-
load the entire database from the server, and store just the element of interest.
However, this leads to linear bandwidth cost. Hence, a line of work starting with
Chor et al. [9] have focused on reducing the bandwidth cost in the single server
[8,13,20,25,28] and multi-server setting [3,5,7,14,15,18,33]. However, all these
works have linear computation complexity for each server - which is inherent in
the standard PIR model as proven by Beimel et al. [6]. To overcome this barrier,
broadly speaking two models were introduced - PIR with batch queries and PIR
with preprocessing.

In a PIR scheme with batch queries a client takes as input a sequence of k
indexes, for which it privately queries the server(s). Here the goal is to amortize
the server computation cost across the k queries. A number of works study this
model of batch queries [1,2,6,19,22,27,32], and in particular the work due to
Ishai, Kushilevitz, Ostrovsky and Sahai [22] achieve the optimal amortized per
query server complexity of ˜O(n/k).

PIR with pre-processing was first proposed by Beimel, Ishai and Malkin [6].
In their scheme, in the offline phase the two non-colluding servers do a one-time
computation to store a new encoding of the database with super-linear size. In
the online phase the server can support an unbounded number of client queries,
where the client stores no state from the preprocessing phase. They introduce
two information theoretic protocols, one where each server stores a state of size
O(n2) with online computation O(n/ log2 n), and bandwidth O(n1/3). Their sec-
ond scheme achieves online computation and bandwidth O(n0.5+ε) for any ε,
where the server storage is ω(n) and it exponentially increases with decrease in
ε. Compared to this information theoretic preprocessing scheme, our construc-
tion has no super linear server state after preprocessing and it enjoys a lower
client/server computation and bandwidth complexity at the price of a higher
number of servers with corruption threshold 1.

PIR with client-side preprocessing was first introduced by Kogan and
Corrigan-Gibbs [24] in the 2-server model, which achieve client state, online clien-
t/server computation and bandwidth ˜O(

√
n). This scheme was later improved

in future works, where the focus is either to improve the asymptotic or concrete
online bandwidth [17,26,31]. Recently a number of single server PIR with pre-
processing protocols were also proposed in the CGK paradigm [10,16,20,30,34] -
where a single server can perform both the offline and online phase while satisfy-
ing the privacy requirement. All these previous works on PIR with client prepro-
cessing are either in the OWF regime or they used some public key assumption
like φ-hiding, DDH and LWE.
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Concurrent Work. A recent work due to Ishai et al. [23] also study the prob-
lem of PIR with client preprocessing in the information-theoretic setting, but in
the single and two server case. They provide a set of protocols with various per-
formance tradeoffs between server computation, client space and bandwidth. In
particular, all the proposed constructions with sublinear online server time in [23]
have client space, server computation and online bandwidth Ω(n2/3), Ω(n2/3)
and Ω(n1/3) respectively. We improve on all these three performance metric in
the case of 4 or more servers in the information theoretic and client preprocessing
PIR setting.

2 Preliminaries

2.1 Algorithmic Notation

A function f : N → R is called negligible it shrinks faster than any inverse
polynomial i.e. for any polynomial p(), there exist an N ∈ N, such that f(n) <
1/p(n) for every n ≥ N . We use the notation negl.(n) to represent any arbitrary

negligible function in n. We use shorthand notation S = ˙⋃m−1

i=0 Si to represent
that the m sets S0, . . . , Sm−1 are pairwise disjoint and their union equals set S.

Notation with an overset arrow (e.g. �v, �M) is used to represent vectors and
matrices, where capitalized letters are used specifically for matrices. Notation
←$ R signifies sampling a random element from set R. For domain [n] =
{0, 1, . . . , n−1}, we define the ith chunk as the set {√ni,

√
ni+1, . . . ,

√
ni+(

√
n−

1)}. Hence, we can view the domain [n] as a disjoint union of
√

n chunks. Define
bijection ChunkCoord(x) = (cx, δx) ∈ [

√
n] × {0, 1}log n/2, where cx = �x/

√
n�

is the chunk that contains x and δx = bit decomposition of (x mod
√

n) is the
offset signifying which specific element in the chunk corresponds to x. We refer
to cx as the chunk coordinate of x. Sometimes in the paper we refer to the
mod

√
n representation of δx interchangeably with its bit decomposition - but it

will always be clear from the context. A set S from domain [n] = {0, 1, . . . , n−1}
is called well partitioned if it contains exactly one element from each chunk. Par-
ticularly, note that the description of a well partitioned set can be given by just
a vector of offsets of size [

√
n], which corresponds to offsets of the elements in

each chunk.
Function �v ← trim(�u, i) takes as input a vector u (let say of size n) and an

index i ∈ [n], then it outputs a trimmed version of the input vector with the
ith element removed. Hence, �v[j] = �u[j] for 0 ≤ j < i and �v[j] = �u[j + 1] for
j ∈ [i, n − 1].

For any n, t where d = n1/2t is an integer, we use notation Td,n to represent
a full d-ary tree of depth t (= 1/2 logd n) - where the ith leaf node correspond
to the ith chunk of the domain [n]. Note Td,n has exactly

√
n leaf nodes. We

use the notation chunksd,n(v) to represent increasing sequence of chunk indexes
contained in subtree rooted at node v in tree Td,n. Additionally, chunksd,n(v, u)
outputs the vector of increasing chunk indexes in sub-tree rooted at v in Td,n

excluding the chunks/leaf nodes in the subtree rooted at the uth child of v,
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where u ∈ [d]. Hence, vector chunksd,n(v, u) doesn’t contain any chunk indexes
contained in the subtree rooted at the uth child node of v.

2.2 Multi-server PIR with Client Preprocessing (with Threshold 1)

We adapt 2-server PIR with client preprocessing syntax and adaptive security
definitions from Corrigan-Gibbs and Kogan [11] and Shi et al. [31] to the multi-
server and the information theoretic setting here.

An l server protocol contains (l+1) parties: a single Client and l non-colluding
servers Server0, Server1, . . . ,Serverl−1. All parties receive as input the statistical
security parameter λ and the database size n. The protocol proceeds as follows:

– Offline phase: All the servers receive as input a database DB ∈ {0, 1}n.
The client sends a single message to each server, which responds back with
a single message to the client. The client uses these l responses to compute
some state that it stores as output of this offline phase.

– Online phase: The servers can serve an unbounded queries of the following
form: client receives as input an index x ∈ [n], following which the client
sends a single message to each of the servers as a function of its state and
index x. Each server responds back to the client with a single message, which
allows the client to compute an output bit y ∈ {0, 1}.

Correctness. For any database DB ∈ {0, 1}n and an arbitrary sequence of
queries (x1, x2, . . .), the client outputs DB[xi] at the end of the ith online query
phase with probability at least 1 − negl.(λ).

Privacy. The PIR scheme is said to be private with threshold 1, if there exists
a probabilistic polynomial time simulator Sim(1λ, 1n) such that for an adversary
acting as the jth server (for any j ∈ [l]), polynomially bounded (in λ) parameters
n and q and DB ∈ {0, 1}n, the view of the adversary A in the following two
experiments is statistically indistinguishable:

– Real: An honest Client interacts with A(1λ, 1n,DB) who acts as Serverj and
it may actively deviate from the prescribed PIR protocol. At the start of each
online phase i ∈ [q], A adaptively picks a query xi ∈ [n] which is the input of
the Client in the same phase.

– Ideal: The simulator Sim acts as a Client and it interacts with A(1λ, 1n,DB)
who acts as Serverj and which may actively deviate from the prescribed PIR
protocol. At the start of each online phase i ∈ [q], A adaptively picks a query
xi ∈ [n] for the client, which is not input to Sim.

3 Privately Multi-puncturable Random Set (PMPRS)

In this section we present formal syntax and security definition of our newly
introduced PMPRS primitive. Following which we present our PMPRS construc-
tion, which is based on random sets with some structure imposed by d-ary trees
(for d = n1/2t) using a minimal amount of randomness.
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Definition 1 (PMPRS syntax). A (t, n)-PMPRS scheme with input domain
[n] = {0, . . . , n−1} consists of five algorithms (Gen, Set, Test,Punc,DotProdEval)
with the following syntax:

– k ← Gen(Δ, 1t, 1n): outputs a short key k ∈ {0, 1}∗ corresponding to a random
set containing element Δ ∈ [n]. The parameter Δ is an optional input to this
algorithm

– S ← Set(k): takes as input a key k, and it outputs a random well partitioned
set from domain [n]

– b ← Test(k, x): takes as input a key k, an element x ∈ [n], and it outputs a
boolean value true or false- corresponding to whether element x is contained
in the set represented by k

– ((S0, k0, ind0), (S1, k1, ind1), . . . , (St−1, kt−1, indt−1)) ← Punc(k, x): out-
puts t punctured keys k0, . . . , kt−1, with corresponding integer indexes
idx0, . . . , idxt−1 and sets S0, . . . , St−1, such that the t sets form a disjoint
union of punctured set Set(k) \ {x}.

– �vi ← DotProdEval(i, ki,DB): is a deterministic function that takes in a punc-
tured key ki, a vector DB ∈ {0, 1}n and it outputs a vector �vi, such that its
indth

i bit corresponds to ⊕j∈Si
DB[j] - the database xor bit for one of the

partitioned sets

Definition 2 (PMPRS security). A (t, n)-PMPRS scheme (Gen, Set, Test,
Punc, DotProdEval) for domain [n] is λ-secure if is satisfies the following con-
ditions:

– Correctness: For any Δ,x ∈ [n] and DB ∈ {0, 1}n, let

k ← Gen(Δ, 1t, 1n), S ← Set(k)
((S0, k0, ind0), . . . , (St−1, kt−1, indt−1)) ← Punc(k, x)

then the following holds:
• Δ ∈ Set(k)
• S \ {x} = ˙⋃Si

• for i ∈ [t], �vi[indi] = ⊕j∈Si
DB[j]

The second and third correctness requirements mentioned above also hold
when the optional Δ parameter is not input to Gen algorithm

– Privacy: There exists a simulator Sim such that for all x ∈ [n], i ∈ [t], the
following distributions are statistically indistinguishable in λ:

k ← Gen(x)
((S0, k0, ind0), . . . , (St−1, kt−1, indt−1)) ← Punc(k, x)
return ki

∼∼∼λ Sim(1t, 1n, i)

Each punctured key ki can be simulated using just the parameters t, n, i, or
in other words, it hides the punctured element x. It should also be noted
that the vectors �vi can be deterministically computed using the DotProdEval
algorithm with input key ki (which is simulatable) and vector DB. Hence,
�vi hides element x as well, even if one of its bits correspond to the correct
database xor bit on one of the punctured sets.
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– Randomness: The set output by Set(Gen(1t, 1n)) contains any element x ∈
[n] with probability 1/

√
n, where the probability is taken over the randomness

of Gen algorithm. Additionally, Set(Gen(Δ, 1t, 1n)) contains any element x
not in the same chunk as Δ with probability 1/

√
n

Our PMPRS construction satisfies a stronger security guarantee which we
define next.

Definition 3. A λ-secure PMPRS scheme with λ = 0 is called perfectly secure.

Efficiency Requirements. We measure the efficiency of any PMPRS scheme in
terms of the size of the keys and the punctured keys - which would contribute to
the communication potocol of our PIR scheme. We also measure the computation
complexity of the Gen, Test, Set, Punc and DotProdEval algorithms, which would
contribute to the computation complexity of the client and the servers in our
PIR scheme.

3.1 Proposed PMPRS Construction

We follow the blueprints of the PMPRS construction described in Sect. 1.2, but
extend it to random sets generated using a d-ary tree structure instead of a
binary tree. The formal description of our generic (t, n)−PMPRS construction,
where d = n1/2t is an integer is given in Fig. 3. We give a high level description
of all the algorithms in this construction next.

The Gen function takes as input an additional Δ parameter, which should be
contained in the random set corresponding to the output key k. The PMPRS key
output of Gen consists of a matrix �R of dimension t×d and an additional element
corr. The value of corr is picked such that the well-partitioned set generated by
k contains x.

The algorithm Set on input (�R, corr) outputs a well partitioned set of size√
n, where the element in chunk c with base d bit decomposition (c0, . . . , ct−1)

is given by corr ⊕
(

⊕t−1
i=0

�R[i][ci]
)

. Intuitively, this refers to the xor of corr with

the random strings in �R corresponding to the path in tree Td,n from root to
leaf c.

Hence, the algorithm Test on input x such that (cx, δx) ← ChunkCoord(x),
just checks if Set(k) has offset δx in chunk cx. Note, that this doesn’t require
enumerating the entire well partitioned set, and it can be performed in time
linear in the depth of the tree Td,n.

Function Punc takes as input a PMPRS key k and the index of puncturing
x, such that x ∈ Set(k). At a high level, this function outputs t punctured
keys k0, . . . , kt−1 and corresponding sets S0, . . . , St−1 such that the t sets form
a disjoint union of punctured set S \ {x}. Removing the path from root to the
leaf/chunk containing x in Td,n partitions the remaining tree intro t “punctured
trees”, where the ith punctured tree (lets call it T ′

i for i ∈ [t]) contains a subtree
with root at depth i after removing the subtree rooted at exactly one of its
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children nodes. This structure is also depicted in Fig. 2. The set Si contains
elements of S with chunk indexes in exactly in the leaf nodes of sub-tree T ′

i .
Each key ki is constructed such that it contains exactly the information needed
to compute the offset (in order) of all elements corresponding to the leaf nodes
in T ′

i .

Fig. 2. Example tree Td,n associated with (t, n)−PMPRS for parameters n = 272, t = 3,
implying d = 3. The green path corresponds to the punctured element. Then punctured
trees corresponding to sets S0, S1, S2 output of Punc are colored red, blue and yellow
respectively except for their roots, which are on the green path. Particularly note each
of these “punctured trees” has root at a unique depth, and exactly one of their children
subtrees missing

The function DotProdEval captures the computation performed by each
server in our PIR scheme based on PMPRS. On input i, ki,DB the goal of this
algorithm is to compute the database xor bit of set Si (i.e. ⊕j∈Si

DB[j]). We can
view this expected output as the dot product between two vectors: the database
DB and the indicator vector �ISi

of set Si ⊂ [n]3. However, our PMPRS scheme
allows for a correctness notion - where DotProdEval outputs a vector �vi such
that its idxth bit (which was output of Punc) is the correct expected output. At
a high level, this algorithm works in two stages:

– Given the punctured key ki we can first compute an offset vector �δ - which
contains the offsets of all elements in Si in order from left to right chunk.

– Secondly, the algorithm computes the chunk vector �c for every possible “punc-
tured subtree” at depth i in Td,n - where exactly one of them is T ′

i . For each of
these possible punctured subtrees, we can compute the punctured set (given
offsets �δ and corresponding chunk indexes �c). We use notation Suw to repre-
sent corresponding to a tree rooted at node u with subtree at child node w
punctured. The algorithm computes database xor bit for Suw and it appends it
to the output vector vi. If idxi refers to the index of chunk sequence for T ′

i , then
by construction �vi[idxi] = ⊕j∈Si

DB[j] - proving the PMPRS scheme is cor-
rect. The privacy follows from the observation that the offset of the punctured
element x = ChunkCoord−1(cx, δx) is given by δx = corr ⊕ (

(

⊕t−1
i=0

�R[i][ci
x]

)

)
where (cx

0 , . . . , cx
t−1) is the base-d bit decomposition of cx, and the fact that

key ki contains no information about R[i][ci
x] - which is one of the randomly

sampled elements in Gen corresponding to depth i in tree Td,n.

3 The indicator vector �IS of a set S from domain [n] is a bit vector of size n such that
�IS [i] = 1 ⇐⇒ i ∈ S.
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The trickiest part is to prove that DotProdEval has run time ˜O(
√

n) on arbi-
trary input i, di,DB. Note that there are di+1 punctured subtrees at depth i or
sets Suw that might correspond to the set Si, since there are di nodes at depth i,
where any of its d children subtrees could be punctured. Each of these sets Suw

has size dt−i − dt−i−1. Hence, trivially computing the database xor bit for each
of these sets would lead to complexity ˜O(dt−i−1(d − 1)di+1) = ˜O((d − 1).dt) =
O(d

√
n), which can be ω(

√
n) when d = ω(1). To reduce the computation com-

plexity, we make the key observation that for any node u in Td,n at depth i
and two adjacent children nodes w,w′ of u, the sets Suw and Suw′ only dif-
fer in 2.dt−i−1 elements, and otherwise they overlap. Hence, given the database
xor bit for set Suw, we can compute the database xor bit for set Suw′ in time
˜O(dt−i−1) instead of ˜O(dt−i) time that it takes to compute it trivially. This gives
us the needed factor O(d) improvement in the runtime - making the complexity
of DotProdEval ˜O(

√
n).

Theorem 1. Let F be a (t, n)-PMPRS construction shown in Fig. 3. Then F is
perfectly secure.

Proof. By Lemma 1, we know that F satisfies the correctness property defined
in Definition 2. By Lemma 2, we know that F satisfies the randomness property
defined in Definition 2. By Lemma 3, we can construct the simulator Sim that
satisfies the following condition for λ = 0:

k ← Gen(x)
((S0, k0, ind0), . . . , (St−1, kt−1, indt−1)) ← Punc(Gen(Δ, 1t, 1n), x)
return ki

∼∼∼λ Sim(1t, 1n, i)

Our simulator Construction Works as Follows: (on input t, n, i)

– Initialize (d− 1)-length vector �ri where each element is uniformly distributed
over [

√
n].

– Initialize (t − i − 1) × d random matrix �Ri where each element is uniformly
distributed over [

√
n].

– Initialize corr sampled from uniform distribution over [
√

n].
– Return ki ← (corri, �ri, �Ri).

Lemma 1 (Correctness). The (t, n)-PMPRS construction shown in Fig. 3
satisfies the correctness definition given in Definition 2.

Proof. We first consider the case that the parameter Δ is given as input. First
we check Δ ∈ Set(Gen(Δ, 1t, 1n)). This is by construction and we could show it
passes the membership test F.Test(k,Δ). Let (cΔ, δΔ) ← ChunkCoord(Δ) and
(c0Δ, c1Δ, . . . , ct−1

Δ ) ← bit-decompd(cΔ). We can verify that

corr ⊕
(

⊕t−1
j=0R[j][cj

Δ]
)

= δΔ ⊕
(

⊕t−1
j=0R[j][cj

Δ]
)

⊕
(

⊕t−1
j=0R[j][cj

Δ]
)

= δΔ.

Then we check S \{x} = ˙⋃Si. We first show that for distinct i, j ∈ [t], Si and
Sj are disjoint. Let Ci and Cj be the corresponding set of chunk coordinates of
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Fig. 3. Proposed (t, n)-PMPRS construction (where n1/2t is an integer)
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Si and Sj . We show Si and Sj are disjoint by showing Ci and Cj are disjoint,
this is simply because if two elements are in different chunks, they cannot be
the same. WLOG, we consider the case i < j. Let (cx, δx) ← ChunkCoord(x)
and let p be the internal node in Td,n at depth i on path from root to cx-th leaf
node. By definition Ci = chunksd,n(p, ci

x), which is the set of chunks excluding
the chunks/leaf nodes in the sub-tree rooted at ci

x-th child of p and Cj is the
subset of chunks in this excluded sub-tree, so Ci and Cj are disjoint. Then we
show S \{x} =

⋃

Si. This is because, by construction,
⋃

Ci = [
√

n]\ cx includes
all the leaf nodes of the tree Td,n except the cx-th leaf, which represents the set
S \ {x}.

We next show that for all i ∈ [t], vi[indi] = ⊕j∈Si
DB[j]. WLOG, we fixed an

arbitrary i ∈ [t]. By indi’s definition, we find the set Suw where w is the ci
x-th

children node of u and u be the internal node in Td,n at depth i on the path
from root to cx-th leaf node. By checking the definition of Suw, we can see it
exactly equals to Si. So we have

�vi[indi] = ⊕j∈Suw
DB[j] = ⊕j∈Si

DB[j].

Lastly, We consider the case that the optional parameter Δ is not given as
input. We no longer have the requirement that Δ ∈ Set(Gen(Δ, 1t, 1n)). For
the statement S \ {x} = ˙⋃Si and vi[indi] = ⊕j∈Si

DB[j], since our above proof
doesn’t rely on Δ, it still holds when Δ is not input.

Lemma 2 (Randomness). Let F be a (t, n)-PMPRS construction shown in
Fig. 3. Then, for any x ∈ [n],

Pr
[

x ∈ F.Set(Gen(1t, 1n))
]

=
1√
n

.

Additionally, for any Δ ∈ [n], and any x ∈ [n] not in the same chunk as Δ,

Pr
[

x ∈ F.Set(Gen(Δ, 1t, 1n))
]

=
1√
n

.

Proof. Let (cx, δx) ← ChunkCoord(x) and (c0x, c1x, . . . , ct−1
x ) ← bit-decompd(cx).

Let X be the cx-th element being added into the set F.Set(Gen(1t, 1n). Then,
we have

Pr
[

x ∈ F.Set(Gen(1t, 1n))
]

= Pr [X = δx]

= Pr
[

corr ⊕
(

⊕t−1
j=0

�R[j][cj
x]

)

= δx

]

=
1√
n

.

The second last step is by definition of Fig. 3. The last step is because �R[j][cj
x]

and corr are mutually independent and uniformly distributed over [
√

n], so does
the sum of them corr ⊕

(

⊕t−1
j=0

�R[j][cj
x]

)

.
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Similarly, for any Δ ∈ [n], and any x ∈ [n] not in the same chunk as Δ,
let (cx, δx) ← ChunkCoord(x) and (c0x, c1x, . . . , ct−1

x ) ← bit-decompd(cx). Let X
be the cx-th element being added into the set F.Set(Gen(1t, 1n). let (cΔ, δΔ) ←
ChunkCoord(Δ) and (c0Δ, c1Δ, . . . , ct−1

Δ ) ← bit-decompd(cΔ). We have

Pr
[

x ∈ F.Set(Gen(Δ, 1t, 1n))
]

= Pr [X = δx]

= Pr
[

corr ⊕
(

⊕t−1
j=0

�R[j][cj
x]

)

= δx

]

= Pr
[

δΔ ⊕
(

⊕t−1
j=0

�R[j][cj
Δ]

)

⊕
(

⊕t−1
j=0

�R[j][cj
x]

)

= δx

]

= Pr
[(

⊕t−1
j=0

�R[j][cj
Δ]

)

⊕
(

⊕t−1
j=0

�R[j][cj
x]

)

= δx ⊕ δΔ

]

=
1√
n

.

The last step is because every �R[j][cj
Δ] and �R[j][cj

x] are mutually independent
and uniformly distributed over [

√
n] since cx �= cΔ by definition. Therefore,

the sum of them
(

⊕t−1
j=0

�R[j][cj
Δ]

)

⊕
(

⊕t−1
j=0

�R[j][cj
x]

)

is uniformly distributed over

[
√

n].

Lemma 3 (Privacy). Let F be a (t, n)-PMPRS construction shown in Fig. 3,
x ∈ [n], and ((S0, k0, ind0), . . . , (St−1, kt−1, indt−1)) ← F.Punc(F.Gen(x), x). For
any x ∈ [n], i ∈ [t], ki = (corri, �ri, �Ri) follows a joint distribution with size
(t− i)×d where each component is independently and uniformly distributed over
[
√

n].

Proof. We first show that every element in corri, �ri, �Ri follows a uniform distri-
bution over [m], and then we will show that elements in corri, �ri, �Ri are mutually
independent.

Recall that �R is a t × d random matrix where each element is uniformly
distributed over [

√
n]. Let (cx, δx) ← ChunkCoord(x) and (c0x, c1x, . . . , ct−1

x ) ←
bit-decompd(cx). By corr’s definition, corr = δx ⊕ (⊕t−1

j=0
�R[j][cj

x]) is uniformly
distributed over [

√
n]. So corri ← (⊕i−1

j=0
�R[j][cj

x]) ⊕ corr is uniformly distributed
over [

√
n]. Since all elements in �ri are defined as xor of elements in �R, so they

are uniformly distributed over [
√

n]. Lastly, by �Ri’s definition, every element in
�Ri is a copy of an element in �R, so all elements in �Ri are uniformly distributed
over [

√
n].

We now show elements in corri, �ri, �Ri are mutual independent.

– We initialize an empty set S and add all elements in �Ri and �ri into S. We know
that elements in S are mutual independent since, by definition, every element
in �Ri or �ri is a copy of an distinct element in �R and so is independently
sampled.

– By corri’s definition, we know corri is independent of S, since (⊕i−1
j=0

�R[j][cj
x])

is independent of S.
– Update S ← S ∪ {corri}, we know all elements in S are mutual independent.
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Since S equals the union of elements in corri, �ri, �Ri, we conclude that elements
in corri, �ri, �Ri are mutual independent.

Theorem 2. Let F be a (t, n)-PMPRS construction shown in Fig. 3. Then

– The time complexity of F.Test(k, x) for any valid k, x is O(poly. log(n)).
– The time complexity of F.Set(k) for any valid k is ˜O(

√
n).

– The time complexity of F.Punc(k, x) for any valid k, x is ˜O(
√

n + t2n1/2t).
Additionally, for t ∈ [2, 1

2 log(n)], F.Punc(k, x) runs in ˜O(
√

n).
– The time complexity of F.DotProdEval(i, ki,DB) for any valid i, ki,DB is

˜O(
√

n).
– The key k and punctured key ki have size ˜O(tn1/2t) for every i ∈ [t].

Proof. We first note that for any input from [n], all the ChunkCoord(·),
ChunkCoord−1(·, ·), bit-decomp(·) and ⊕ operations can be done in
O(poly. log(n)).

By F.Test(k, x)’s definition, we can verify that it runs in O(poly. log(n)) for
any valid k, x.

By F.Set(k)’s definition, it runs a for loop O(
√

n) times and each loop can be
done in O(poly. log(n)). Therefore, F.Set(k) runs in O(poly. log(n)·√n) = ˜O(

√
n)

for any valid k.
By F.Punc(k, x)’s definition, it computes (Si, ki, indi) for each server i ∈

[t]. ki can be computed in O(id · poly. log(n)), indi can be computed in
O(poly. log(n)) and Si can be computed in O(dt−ipoly. log(n)). Summing up
together, F.Punc(k, x) runs in O(poly. log(n) · (

√
n + t2n1/2t)). Additionally, if

we choose t ∈ [2, 1
2 log(n)], F.Punc(k, x) runs in O(poly. log(n) · √n) = ˜O(

√
n).

We now compute the time complexity of F.DotProdEval(i, ki,DB). To con-
struct the offset vector �δ, DotProdEval runs a for loop O(dt−i) times and each
loop can be done in O(poly. log(n)).

To compute a single element in �vi, since the corresponding set Suw is with size
O(dt−i), so the total computation time is O(dt−ipoly. log(n)). However, we note
that, for adjacent element in �vi, their corresponding set Suw and Suw′ are only
different in 2 · dt−i−1 elements. This is because w and w′ are sibling nodes and
the chunks/leaf nodes in the sub-tree rooted at w and w′ are the only elements
that differentiate Suw and Suw′ . This observation says that we only need to do
a full computation on �vi[0], and all the rest elements of �vi can be computed in
O(dt−i−1poly. log(n)) time. Since �vi has di+1 nodes, the total computation of �vi

is O(dtpoly. log(n)).
Summing up the complexity of computing both vectors �δ and �vi, we conclude

that F.DotProdEval(i, ki,DB) runs in O(poly. log(n)·dt) = O(poly. log(n)·√n) =
˜O(

√
n) for any valid i, ki,DB.

Lastly, to see the size of k = (�R, corr), since �R is a t × d matrix where every
entry has size 1

2 log2 n and corr is a 1
2 log2 n-bits string. Therefore, k has size

O(td · poly. log(n)) = ˜O(tn1/2t). Similarly, by definition, punctured key ki =
(corri, �ri, �Ri) has size O(td · poly. log(n)) = ˜O(tn1/2t).
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4 Proposed Scheme for PIR with Client Preprocessing

As described in the technical overview, our PIR construction is in the CGK
paradigm, where instead of 2 servers, our construction assumes 2t servers for
t ≥ 2. Next we reiterate a high level outline for the PIR protocol, which we
present formally in Fig. 4.

Let n represent the size of the database DB, and 2t is the number of servers.
In the offline phase the client generates PMPRS keys: ki ← Gen() for i ∈ [T ] =
{1, 2, , . . . , T}, where T = λ

√
n and λ is the statistical security parameter. The

client sends these PMPRS keys to Server 0. Let �k be a vector of keys such that
�k[i] = ki.

Server 0 interprets each of these PMPRS keys as a partitioned pseudo-random
set (using Set function) each of size

√
n - allowing it to compute the hint bit

hi = ⊕j∈Set(ki)DB[j]. The Server 0 sends back the vector �h with �h[i] = hi to the
Client. The Client stores state (�k,�h) as output of the offline phase.

In the online phase, the client on input PIR index x ∈ [n] first searches for
a key ki in �k such that Test(ki, x) = true. With probability (1 − negl.(λ)) such
a key would exist. This follows from the randomness property of the PMPRS
primitive:

Pr(x /∈ Set(Gen(1t, 1n))) =
(

1 − 1/
√

n
)

=⇒ Pr (x /∈ Set(k0) ∧ x /∈ Set(k1) . . . ∧ x /∈ Set(kT−1)) = (1 − /
√

n)λ
√

n ≤ e−λ

Next, the Client computes the punctured keys as ((S0, k0, ind0), (S1, k1, ind1),
. . . , (St−1, kt−1, indt−1)) ← Punc(k, x) and sends to Server (t + i) the punc-
tured key ki. Each of these servers respond back with vectors �vi as output by
DotProdEval(ki, i,DB). The client can now compute the PIR output DB[x] as
hi ⊕ (⊕t−1

j=0�vi[idxi]
)

.
The client ends up consuming a PMPRS key and corresponding hint bit

(ki, hi). To replenish the same, the Client generates a new PMPRS key k′ con-
taining x and it computes its hint bit by sharing punctured keys of Punc(k′, x)
with Servers 0, 1, . . . t − 1.

Theorem 3. Suppose that F is ελ-secure (t, n)-PMPRS, then the 2t-server PIR
scheme (shown in Fig. 4) that supports poly(λ) queries is ελ-private.

Proof. The proof is a direct combination of Lemma4 and Lemma 5.

Lemma 4. Suppose that F is ελ-secure (t, n)-PMPRS, then for any polynomial
function p(·), and any adversary A that acts on behalf of Server i ∈ {t, · · · , 2t−1}
and adaptively makes p(λ) queries, there exists a PPT simulator Sim(1λ, 1n),
where the polynomial is in terms of n, λ, such that

viewReal
∼∼∼ελ

viewSim,

where viewReal, viewSim are the distributions of A’s views interacting with a real
client in Fig. 4 and Sim, respectively.
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Fig. 4. Proposed 2t server PIR with pre-processing protocol for database of size n
given a (t, n)-PMPRS

Proof. We first construct the following simulator Sim. Note that viewSim follows
the distribution (k1

i , · · · , k
p(λ)
i ).

Simulator Construction
Upon receiving the q-th query index idx ∈ [n], if q > p(λ) then aborts; otherwise
computes the following:

– Ignores idx and samples a new index y ←$ [n].
– kq ← F.Gen(1t, 1n, y).
– Computes

((S0, k
q
0, ind0), (S1, k

q
1, ind1), . . . , (St−1, k

q
t−1, indt−1)) ← F.Punc(kq, y).

– Sends kq
i to A.

Indistinguishability of viewReal and viewSIM .
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To prove viewReal
∼∼∼ελ

viewSim, we follow a standard hybrid argument. We first
construct Experiment Hyb1 described below. From the privacy property of of the
underlying PMPRS scheme F , we have viewSIM

∼∼∼ελ
viewHyb1. We highlight the

difference between Sim and Experiment Hyb1 with a shaded background.
Experiment Hyb1. Upon receiving the q-th query index idx ∈ [n], if q > p(λ)
then aborts; otherwise proceeds the following:
– kq

i ← SimF (1t, 1n, i), where SimF is a simulator for F defined in Definition 2.

– Sends kq
i to A.

We again follow the Privacy property of the underlying PMPRS scheme F ,
and have viewHyb1

∼∼∼ελ
viewHyb2.

Experiment Hyb2. Upon receiving the q-th query index idx ∈ [n], if q > p(λ)
then aborts; otherwise proceeds the following:
– Computes kq ← F.Gen(1t, 1n, idx).
– Computes ((S0, k

q
0, ind0), (S1, k

q
1, ind1), . . . , (St−1, k

q
t−1, indt−1)) ←

F.Punc(kq, idx).

– Sends kq
i to A.

We highlight the difference between the Realworld Construction and the
Experiment Hyb2 with a shaded background. Note that viewReal follows the
distribution (k1

i , · · · , k
p(λ)
i ) in the Realworld Construction below. The differ-

ence between the Realworld Construction and the Experiment Hyb2 is that the
puncturable random sets in Real is generated offline and there is a negligible
probability of it not being able to find a random set containing idx (by the
guarantee of choosing parameter T ). Since the adversary didn’t participate in
the offline phase, it has no chance to see the puncturable random set generated
in offline phase, so viewHyb2

∼∼∼ελ
viewReal.

Realworld Construction. Upon receiving the q-th query index idx ∈ [n], if
q > p(λ) then aborts; otherwise proceeds the following:
– Find a k ∈ �k such that F.Test(k, x) = true
– Set kq ← k

– Computes
((S0, k

q
0, ind0), (S1, k

q
1, ind1), . . . , (St−1, k

q
t−1, indt−1)) ← F.Punc(kq, idx).

– Sends kq
i to A.

By the standard hybrid argument, we conclude that viewReal
∼∼∼ελ

viewSim.

Lemma 5. Suppose that F is ελ-secure (t, n)-PMPRS, for any polynomial func-
tion p(·), and any adversary A that acts on behalf of Server i ∈ [t] and adaptively
makes p(λ) queries, there exists a PPT simulator Sim(1λ, 1n), where the polyno-
mial is in terms of n, λ, such that

viewReal
∼∼∼ελ

viewSim,

where viewReal, viewSim are the distributions of A’s views interacting with a real
client in Fig. 4 and Sim, respectively.
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Proof. We first construct the following simulator Sim for any adversary A that
acts on behalf of Server i ∈ {1, · · · , t − 1}, and prove viewReal

∼∼∼ελ
viewSim.

Then, we will show how to extend the simulator and the proof to A that acts on
behalf of Server 0, which also participates the offline phase. Note that viewSim

follows the distribution (k1
i , · · · , k

p(λ)
i ).

Simulator Construction
Upon receiving the q-th query index idx ∈ [n], if q > p(λ) then aborts; otherwise
proceeds the following:

– Ignores idx and samples a new index y ←$ [n].
– Computes kq ← F.Gen(1t, 1n, y).
– Computes

((S0, k
q
0, ind0), (S1, k

q
1, ind1), . . . , (St−1, k

q
t−1, indt−1)) ← F.Punc(kq, y).

– Sends kq
i to A.

Indistinguishability of viewReal and viewSIM . To prove viewReal
∼∼∼ελ

viewSim, we follow a standard hybrid argument. We construct Experiment Hyb1
in the below. Directly following the Privacy property of the underlying PMPRS
scheme F , we have viewSIM

∼∼∼ελ
viewHyb1. We highlight the difference between

Sim and Experiment Hyb1 with a shaded background.

Experiment Hyb1. Upon receiving the q-th query index idx ∈ [n], if q > p(λ)
then aborts; otherwise proceeds the following:
– kq

i ← SimF (1t, 1n, i), where SimF is a simulator for F defined in Definition 2.

– Sends kq
i to A.

We again follow the Privacy property of the underlying PMPRS scheme F ,
and have viewHyb1

∼∼∼ελ
viewReal.

Realworld Construction. Upon receiving the q-th query index idx ∈ [n], if
q > p(λ) then aborts; otherwise proceeds the following:
– Computes kq ← F.Gen(1t, 1n, idx).
– Computes ((S0, k

q
0, ind0), (S1, k

q
1, ind1), . . . , (St−1, k

q
t−1, indt−1)) ←

F.Punc(kq, idx).

– Sends kq
i to A.

We then construct the simulator Sim0 for any adversary A that acts on behalf
of Server 0. The proof of viewReal

∼∼∼ελ
viewSim0 follows exactly the same flow in

the above.
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Simulator Construction
In the offline phase,

– For i = 1 to T : computes ki ← F.Gen(1t, 1n).
– Sends k0. . . . , kT−1 to A.

In the online phase, upon receiving the q-th query index idx ∈ [n], if q > p(λ)
then aborts; otherwise proceeds the following:

– Ignores idx and samples a new index y ←$ [n].
– Computes kq ← F.Gen(1t, 1n, y).
– Computes

((S0, k
q
0, ind0), (S1, k

q
1, ind1), . . . , (St−1, k

q
t−1, indt−1)) ← F.Punc(kq, y).

– Sends kq
i to A.

Theorem 4. The 2t-server PIR with client preprocessing protocol (in Fig. 4)
instantiated with the (t, n) − PMPRS F (in Fig. 3) has the following complexity:

– ˜O(λ
√

nt2n
1
2t ) client storage. If t ∈ [2, log2(n)], ˜O(λ

√
n) client storage;

– No additional server storage after offline phase;
– Offline Phase:

• ˜O(λn) server time and ˜O(λ
√

ntn
1
2n ) client time; if t ∈ [2, log2(n)],

˜O(λ
√

n) client time;
• ˜O(λn1/2+1/2t) communication;

– Online Phase:
• ˜O(

√
n) server time and ˜O(

√
n + t2n1/2t) client time; if t ∈ [2, log2(n)],

˜O(
√

n) client time;
• ˜O(

√
nt) communication; if t ∈ [2, log2(n)], ˜O(

√
n) communication.

Therefore, the amortized communication per query is ˜O(
√

n), and the amortized
server computation and client computation per query is ˜O(

√
n) if we choose

t ∈ [2, log2(n)].

Proof. On the client side, it stores the hint vector �h and the key vector �k
and also needs a buffer to store F.Punc’s output. Recall �h and �k both have
size T = O(λ

√
n) and each element requires O(1) and ˜O(tn

1
2t ) storage, sepa-

rately. F.Punc’s output requires O(t log(n)), ˜O(t2n
1
2t ), O(

√
n log(n)) storage for

S, k, ind, separately. Summing up together, client needs storage ˜O(λ
√

nt2n
1
2t ). If

we choose t ∈ [2, log2(n)], client-side storage is ˜O(λ
√

n).
During the offline phase, Server 0 computes F.Set() function T times, so its

computation is bounded by ˜O(λn). Client computes F.Gen() function T times,
so its computation is bounded by ˜O(λ

√
ntn

1
2n ). If we choose t ∈ [2, log2(n)],

client’s computation is ˜O(λ
√

n). For the communication, Server 0 and Client

communicate �h and �k, the size of which are ˜O(λ
√

nt2n
1
2t ). If we choose t ∈

[2, log2(n)], the communication overhead is ˜O(λ
√

n).
During the online phase, each Server i (for i ∈ [2t]) computes F.DotProdEval

per query in ˜O(
√

n). Client computes F.Punc twice per query in ˜O(
√

n+t2n1/2t).
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If we choose t ∈ [2, log2(n)/2], the client-side computation is ˜O(
√

n) per query.
The communication between servers and Client is bounded by ˜O(

√
nt). Since

Client receives �vi from each server i ∈ [2t] and the size of �vi is bounded by
√

n.
If we choose t ∈ [2, log2(n)/2], the communication overhead is ˜O(λ

√
n).

The correctness proof of our PIR scheme is pretty straightforward and it
follows the same blueprints as other PIR correctness proofs in CGK paradigm
[11,26]. At a high level, we prove the client always maintains a state containing
T random PMPRS keys. In each online phase the client finds a key k containing
its query x with probability 1 − negl.(λ). Using the key k and its hint bit the
client retrieves the correct database bit DB[x] and it replenishes the used key
and hint bit, where the correctness of our PMPRS scheme ensures the correctness
of the online phase of our construction.

Remark 1 (Extending our PIR scheme for arbitrary n). The proposed 2t server
PIR scheme with client preprocessing assumes a (t, n)-PMPRS as building block.
However, our PMPRS scheme gives us a construction only for parameters t, n
such that n1/2t is an integer. To get a PIR scheme for arbitrary n ∈ N and 2t
servers, we can find the smallest integer m greater than or equal to n such that
m1/2t is an integer, then we have m = O(tn). Now we can pad the database of size
n with m − n dummy elements and then use our PIR scheme based on (t,m)-
PMPRS to query the modified database. For t ∈ [2, log(n)/2] the asymptotic
complexity of offline phase and online phase of this modified protocol would
remain unchanged up to polylogarithmic factors in n.

4.1 Improving PIR Communication Complexity

In our proposed PIR with client preprocessing scheme, the online phase commu-
nication is dominated by the cost of server responses - which include vectors �vi

output by the DotProdEval algorithm. However, note that the Client is interested
in learning just the idx0, idx1, . . . , idx

th
t−1 bits of the vectors �v0, �v1, . . . , . . . , �vt−1

respectively, since these specific bits allow the client to compute the database xor
bit of the punctured set. In our constructions these vectors �v0, �v1, . . . , . . . , �vt−1

are of length d, d2, . . . , dt =
√

n respectively (where d = n1/2t is an integer).
Hence, a natural approach to reduce communication would be to use a PIR
scheme where the database on the server side are the vectors �v0, �v1, . . . , . . . , �vt−1

with client query indexes idx0, idx1, . . . , idxth
t−1, instead of downloading the entire

vectors on to the client. However, there exist no non-trivial information theoretic
PIR schemes in the single server model [4].

Hence, our next approach would be to consider 4t servers instead of 2t servers
- two servers for each server in the original PIR scheme. For every server and
its copy the client sends the same online query - and hence these pair of servers
compute the same vector �vi as output of DotProdEval in the online phase. And
now the Client can use a 2-server PIR scheme to retrieve just the bit of interest
�vi[idxi] in sublinear communication and linear computation in the database size.
Instantiating the 2-server PIR primitive with the most communication efficient
information-theoretic PIR due to Dvir and Gopi [14] gives us the following result:
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Theorem 5. There exists a 4t-server PIR with client preprocessing protocol
with threshold 1 with ˜O(λ

√
n) client storage; ˜O(λ

√
n) online client complexity;

20.5(log(n)+O(
√
log n)) online server complexity and n1/2d+o(1) online bandwidth

per query.
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