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Rare Event Detection by
Acquisition-Guided Sampling

Huiling Liao™, Xiaoning Qian", Senior Member, IEEE, Jianhua Z. Huang, and Peng Li"™, Fellow, IEEE

Abstract— Motivated by the challenges in detecting extremely
rare failures for sophisticated specifications in circuit design,
we consider the problem of detecting regions of interest (ROIs)
that consist of specifications with the value of a complex target
function for the system performance being below or above a
certain pre-specified threshold. Though Bayesian optimization
(BO) has been applied to this problem, it is not effective in
identifying multiple ROIs as it was originally designed for
global optimization and tends to focus on searching the area
where the global optimum is most likely to be. In this work,
we propose a sampling strategy for fast ROI detection within
a limited number of target function evaluations. The sampling
distribution is designed so that the probability of a specification
being sampled is proportional to the corresponding value of
the acquisition function. Such an acquisition-guided sampling
algorithm promotes a wider search of the sample space and
a simpler incorporation of different criteria to determine the
specifications to be evaluated next. To further improve the
performance, we propose a new design of the acquisition function
and two modifications of existing acquisition functions. Numerical
studies on synthetic functions and a real-world circuit design
application demonstrate that the proposed method can enjoy a
stronger exploration ability provided by sampling and achieve
faster ROI detection with higher coverage.

Note to Practitioners—This study considers the extremely
rare failure detection in automated circuit design, fabrication,
packaging, and verification. Obtaining enough observations of
interest within a given budget of evaluations is challenging
due to the scarcity of extremely rare failures. Bayesian opti-
mization (BO) has been adopted to tackle this problem, but
it may not achieve satisfactory coverage of multiple failure
regions, since its goal is to find the global optimum of the
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target function. In this paper, we propose a sampling-based rare
event detection strategy tailored to efficiently detect regions of
interest (ROIs) with high coverage, along with newly designed
acquisition functions incorporating the pre-specified threshold
and ideas of experimental design. This sampling strategy has
greater robustness to the choice of acquisition function. Also,
since multiple queries can be easily obtained through sampling,
various criteria can be easily incorporated for determining the
next batch of evaluation specifications without much increase in
computational complexity.

Index Terms— Sequential design of experiment, Bayesian opti-
mization, sampling, region detection.

I. INTRODUCTION

ARE event detection in complex systems, natural or

human-engineered, is challenging due to the immense
search space and complex behavior. For example, automated
fabrication and packaging of electronics require delicate spec-
ifications and protocol designs with high reliability. Another
example is circuit verification, an essential part of the process
to ensure the quality of circuit design, where the techniques of
rare event detection are needed to make sure that the design
meets all the requirements of interest while having stable high
performance and extremely low failure rate.

One research area that is related to the rare event detection
problem is failure rate estimation, for which several statis-
tical methods have been proposed (e.g. MixIS [1], SSS [2],
Statistical Blockade [3]). Although they are useful in certain
industry practice, assumptions imposed in these methods for
an accurate estimation of the failure rate can be unrealistic,
especially when the failure rate is extremely low, since a large
number of evaluations are required while the evaluation is
usually expensive.

Another related area is structural reliability analysis of
complex engineering systems, where the failure probability of
a system is estimated to assess the effects of various uncer-
tainties which may arise from natural variability, operating
conditions, or simply because of an incomplete or lack of
knowledge [4]. To improve the performance of the analytical
approach (e.g. FORM and SORM [5], [6]), active learning
has been adopted and active learning reliability (ALR) has
surged to solve complicated structure reliability problems at
affordable cost with the help of a surrogate model for a limit
state function (e.g. [7], [8], [9], [10]).

The other related research area is boundary detection given
a threshold or accurate set estimation. One of such approaches,
known as excursion set, considers the exceedance probability

1558-3783 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Brookhaven National Laboratory. Downloaded on May 19,2025 at 15:53:25 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-2862-9508
https://orcid.org/0000-0002-4347-2476
https://orcid.org/0000-0003-3548-4589

7980

defined as P(sup,.of(x) > T) for a given threshold 7' of
the target function f(x) with the corresponding excursion
sets defined as I'r(f,2) = {x € Q : f(x) > T}. For a
more detailed introduction to the excursion set, readers can
refer to [11]. However, most existing studies aim for the
accurate estimation of excursion sets (e.g. [12], [13], [14])
and uncertainty quantification (e.g. [15]), both necessarily
requiring a large sample size and with goals diverge from ours.

Different from these works with goals of accurate failure
probability estimation, prediction model estimation, or the
most probable point of failure localization, the current study
deals with the situation of extremely rare events when an
accurate estimation of failure rate or set recovery is impossible
given a realistic number of observations. We focus on methods
that are capable of achieving fast detection and high coverage
of ROIs within a limited budget, in response to the urgent
demand from circuit verification.

Bayesian optimization (BO), a sequential design strategy for
global optimization of black-box functions that are expensive
to evaluate, has been adopted for the failure detection problem
in the context of analog and mixed-signal (AMS) design
verification in [16] and [17]. The authors tackled the failure
detection problem by comparing the global optimum found by
BO with a pre-specified threshold value for inference. They
also developed a new acquisition function named pBOHC
designed for better exploration and exploitation trade-offs
to leverage distance between specifications to encourage the
widespread of locations to be evaluated.

It is reasonable to expect that, after detecting a specification
of interest (SOI), the algorithm should shift to exploring
alternative potential regions to detect as many ROIs as possible
rather than persistently evaluating its neighbor to find the
optimum. As BO tends to search the area where the global
optimum is most likely to be, it usually has a lower coverage
rate and slower detection of multiple ROIs for multi-modal
scenarios. Consequently, direct application of BO is not the
most suitable approach for our formulated ROI detection
problem.

In this work, we develop a sampling strategy tailored for fast
detection and high coverage of ROIs within a given budget
of target function evaluations, with the help of customized
acquisition functions. The main contributions of this work can
be summarized as follows:

1) We propose the acquisition-guided sampling (AcqS)
algorithm to naturally achieve the exploration and
exploitation trade-off for the ROI detection problem,
where the sampling distribution is suitably designed
based on customized acquisition functions.

2) We develop and evaluate new acquisition functions tai-
lored for fast detection and maximal coverage of ROIs.

3) Hamiltonian Monte Carlo (HMC) sampling strategy is
adopted for efficient acquisition-guided sampling.

4) Add-on modules including pre-screening and subset
selection are designed to encourage the diversity of
selected suggestions over the whole feasible space while
avoiding redundant exploration.

This article is organized as follows. In Section II, we pro-
vide the formulation of the problem and a brief overview
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of Bayesian optimization. The methodology development is
discussed in Section IV, followed by numerical studies of
synthetic test functions and a real-world circuit design appli-
cation in Section V and VI, respectively. Finally, a discussion
of the proposed method and future research is given in
Section VII.

II. PROBLEM FORMULATION

Let x denote a D-dimensional vector representing the
specification in the input space @ C RP, and y(x) be
the corresponding (possibly noisy) response. Denote the set
of initial observations of size ny as Dy = {(x;,y;);i =
1,...,no}and T € R is the pre-specified threshold. We further
define the specification of interest (SOI) x* as a specification
satisfying:

y(x*) < T, with x* € Q, (1)

if the lower range of the performance value is of interest (a
straightforward modification to y(x*) > T is needed if the
higher range is of interest, and a corresponding modification
of our methodology should follow). We can then define the
complete set of SOIs of a response y(-) as

MNr=xeQ:yx) <T} 2)

With the continuity assumption on the black-box function, this
is an open set as a union of disjointed non-empty open subsets,
namely the regions of interest (ROIs) denoted as r k=
1,...,n, with n, being the total number of ROIs, which can
be written as follows:

Lyr = UZ’:lr(Tk)’
where TV NTY =@, Vi#je{l,....n}. 3

However, due to the complex structure of the objective func-
tion, the explicit form for F(Tk ' might not be available and it
will get harder with the growth of dimension. As our goal is
to detect as many rare event regions as possible, we propose
to detect representative SOIs in disjoint regions over the input
space, which can provide more information for analysis of
the design or relationship between different attributes and
further modifications. In other words, in this study, rather than
recovering the open set I'y r or the corresponding boundary
detection, we focus on ROI identification via detecting repre-
sentative SOIs in disconnected subsets F(Tk), k=1,...,n,.

III. BAYESIAN OPTIMIZATION FOR ROI DETECTION

Bayesian optimization (BO) was introduced to analog and
mixed-signal (AMS) design verification and failure detection
for the first time in [16] and they further developed an
acquisition function for rare event detection in [17] that
includes the distance to existing points to encourage search
in the unexplored area. Consider that when the objective
function is too complex to analyze or develop a comprehen-
sive understanding with limited observations. If we are only
interested in verification, we can easily determine the existence
of the rare failure event by comparing the global optimum of
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Algorithm 1 BO for ROI Detection

Input : Initial data Dy, budget n,, number of queries ny,
surrogate model f(-), acquisition «(-).

Build the initial surrogate model: f(x|Dy);

Initialize the counter: t = 1;

while ¢ < n, do
Determine queries via optimization:

X, = argmax, o (X|D;_1, f);
Add D, with the newly evaluated data:

Ve = y(X:), Dy =D U{x;, v}

Update model and counter: f(x|D;), t =1+ 1;
end

Compare ymin = min;e(1,....,} ¥» With T to conclude.

the black-box function with the pre-specified threshold, thus
solving the verification problem. In other words, if

inf y(x) <T, 4
xe2

it is straightforward to conclude that the failure event exists
if we can pinpoint the most extreme case with a performance
value smaller than the threshold. This observation suggests a
solution for this problem by formulating it as a global opti-
mization problem given a limited evaluation budget. BO has
been carefully designed for sample-efficient global optimiza-
tion for objective functions that are either expensive or difficult
to evaluate, which gains popularity after its application in
hyperparameter tuning in machine learning [18]. Its properties
meet some requirements of our ROI detection problem, and the
workflow of BO for ROI detection is provided in Algorithm 1.
There are two essential elements in classical BO: a statistical
surrogate model f(-) and an acquisition function «(-).

First of all, since the original objective function is either
too complex to directly work with or unavailable, a surrogate
model f(-) is proposed to approximate the behavior of the
objective function. The typical assumptions on smoothness and
continuity allow the utilization of more information. To take
into account the model uncertainty, we often resort to a
probabilistic model, among which the Gaussian process (GP)
stands out as the most common choice. Without the loss
of generality, we illustrate the idea by considering a single
objective Bayesian Optimization. Given a set of observations
after the ¢-th round of evaluations denoted by D;, GP is a
generative model characterized by a mean function p and a
covariance function X, as follows,

flx ~ GP(uo, o),
yIx, fiog  ~ N(f,03), (5)

with o being the intrinsic noise variance. The collection
of training and testing evaluations are assumed to be jointly
Gaussian distributed. We can derive their joint distribution and
further compute the predictive posterior distribution through
Bayes’ rule. In the above equations, the mean function ((-)
is usually chosen to be a constant function for simplicity; and
the covariance function is generally determined by a kernel
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function K(x, x"), the common choices of which include the
squared exponential and the Matérn kernel function utilized
in this study. There are two hyperparameters involved, namely
one for smoothness v and one for length scale £. The first one
is usually chosen to be v = 2.5 for a twice differential kernel
and we decide ¢ through maximal likelihood estimation after
adopting a gamma prior to the length scale parameter. Also,
the noise term for the Gaussian process regression is inferred
based on observations.

Given a GP surrogate model, various acquisition functions
«(-) have been developed to address the exploration and
exploitation trade-off. By utilizing the posterior predictive
distribution under the surrogate model, acquisition functions
are usually designed to balance the two objectives for selecting
the next point to evaluate, namely either considering the
points with the best performance given the current knowledge
(exploitation) or trying new options that can give better perfor-
mance in the future at the cost of an exploitation opportunity
(exploration). Commonly used acquisition functions include
Expected Improvement (EI, [19]), Probability of Improvement
(Pol, [20], [21]), Upper Confidence Bound (GP-UCB or GP-
LCB, [22]), Entropy Search (ES, [23]) and their variants (e.g.
[24]1, [25], [26], [27], [28]). Tree-Structured Parzen Estimator
(TPE, [29], [30]) is a variant of the BO methods, model-
ing p(y|x) through p(y) and p(x|y) and maximizing the
acquisition function via optimization over the ratio of the
conditional distributions of x given y > y and y < y for
some y as a threshold. However, depending on the design
of acquisition functions and the shape of input space, the
optimization over acquisition can be tough and get stuck
in the local regions when it is non-convex or multi-modal.
To enhance the algorithm efficiency, there is often a preference
for batch suggestion, which requires multiple optimizations
with different starting points. Although parallelization can
be implemented, it still requires substantial computational
resources. In addition, in our ROI detection problem, efficient
BO only focuses on detecting one ROI where the global opti-
mum falls and does not guarantee the effective identification of
all the desired ROIs due to the inherent focus of BO on global
optimization. As it has been studied in [31], [32], sampling can
be more efficient under certain conditions, and it can naturally
provide a batch of suggesting points as well as encouraging
exploration beyond certain local regions. Thus, in this study,
we propose an acquisition-guided sampling algorithm for our
ROI detection.

IV. PROPOSED: ACQUISITION-GUIDED SAMPLING
A. Overview

The complete workflow of our proposed AcqS method
is given in the pseudo-code Algorithm 2, which can be
compared with Algorithm 1 that uses BO directly for ROI
detection. After selecting certain specifications for evaluation,
both algorithms fit a surrogate model. The two algorithms
diverge in subsequent steps. While Algorithm 1 determines
the next specification for evaluation by maximizing an acqui-
sition function, our new Algorithm 2 draws a sample of
specifications from a suitably designed sampling distribution.
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Algorithm 2 AcqS Algorithm for ROI Detection

Input : Initial data Dy, budget n,, surrogate model f(.),

acquisition «(-), number of candidates J,
number of queries n; at each iteration

Build the initial surrogate model: f(x|Dy);

Initialize the counters: t = 0, ng = 0;

while n;, < n; do

Determine queries via acquisition-guided sampling:

X, e R7P ~ p(x) o gla(x, 6,)).
Pre-Screening / Combination with other criterion:
ny = min(ng, np — n,),
X, € R%*P « Pre-Screening(X,).
Update D, and M, with new observations:
yi < y(Xo),
D, < D,_1 U{X,,y;}, M, < SubsetSelect(D,).

Update model and counters:
fIMe, ny=n_y+nf, t=t+1;

end

Return the set of SOIs: F ={xe D, : y(x) < T}.

Our sampling distribution is specified using an acquisition
function so that specifications with high acquisition values
have higher probabilities of being sampled (Section IV-B).
Tailor-made acquisition functions are designed to better serve
our goal of high ROI coverage (Section IV-C). After a set
of specifications are sampled, we further introduce some
optional add-on modules that can be seamlessly integrated for
performance improvement in Section IV-D. A pre-screening
step is introduced to select the most promising point to
evaluate (Section IV-D1). This gives the additional flexibility
of using different criteria for selecting next point to evaluate.
Moreover, reweighting or subset selection can be adopted to
fit the surrogate model and adjust the attention assigned to the
potential ROIs (Section IV-D2).

B. Design of the Sampling Distribution

A critical element of our AcqS algorithm is the specification
of the sampling distribution p(x). Without loss of generality,
we focus on the rare failure detection scenario where the
regions of x’s with objective function values smaller than a
predetermined threshold are of interest.

For simplicity, we take the expected improvement (EI)
as an example, which is defined as the expectation of the
performance improvement described by an increment function

I(x; u) = max{0, u — f(x)} (6)

with u to be specified. Let x* denote the observed specification
with the lowest performance value achieved given n, obser-
vations and denote f(x*) = f*. A common choice for u is
f or f —n, where n > 0 is introduced as a small positive
value to enlarge the difference for performance improvement.
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With u = f(x*) and a GP surrogate model for f, we have the
classic EI defined as

@ ®) = B(I (0; £(x) = E[max(0, £;" = ()]
o fi = n®) f =)
= (7 = nen@(F S )t s (5.

)

There are hyperparameters for the surrogate model f(-) such
as v and ¢ mentioned earlier for the kernel function, which
can be estimated through the maximum likelihood estimation,
and we do not include them in f(-) for notational simplicity
and to distinguish them from other hyperparameters required
in the specification of the acquisition function.

The rationale of using the EI as an acquisition function
in BO is that one prefers a specification with a higher EI
value when selecting the next point for evaluation as it
has higher improvement in expectation of the customized
increment function. To extend this idea in our sampling-based
approach, we define the probability density of the sampling
distribution to be proportional to the EI value. More precisely,
our acquisition-guided sampling scheme is defined as

X~ p(X) = i (X)/ Z; X e (X), ®)

where Z; is a normalization constant such that p(x) integrates
to one for ensuring a valid probability density.

For other acquisition functions that can take negative values
such as GP-LCB defined as o, (X, 6;) = u(x) — 6,0 (x) with
6; € R, a monotonic function g(-) will be introduced to ensure
a non-negative density value over the sampling space. Thus,
for any given acquisition «(-), our acquisition-guided sampling
scheme can be expressed in the general form as follows,

X~ p(x) = g(a(x,0:))/Z; o g(a(x,0,)). (©))

Here 0, represents a vector of hyperparameters for the acqui-
sition function, and it is allowed to be adaptively chosen
and dependent on the observations, allowing incorporation of
desired information and adjustable properties such as anneal-
ing and tempering. Although there is flexibility in choosing
an appropriate monotonic function for g(-), we use the expo-
nential function in our study.

Furthermore, we can introduce additional pre-screening cri-
teria to restrict the sampling space (see Section IV-D1 below).
To this end, the sampling density can be specified as

p(x) o« g(a(x,0,)) x 1(x satisfies other criteria). (10)

Acquisition-guided Pre-screening

Various techniques are available for sampling from a distri-
bution with an unknown normalizing constant, such as slice
sampling [33], Metropolis-Hasting Monte Carlo (MC) sam-
pling [34], [35], and Hamiltonian MC (HMC) sampling [36].
We opt for HMC, because preserving the value of Hamiltonian
is one of its well-known features, and its intrinsic searching
pattern enables the sampling distribution to be fixed at a
certain energy level specified by the maximal acquisition
value, aligning with our objective of identifying ROIs with
the maximal coverage.

Authorized licensed use limited to: Brookhaven National Laboratory. Downloaded on May 19,2025 at 15:53:25 UTC from IEEE Xplore. Restrictions apply.



LIAO et al.: RARE EVENT DETECTION BY ACQUISITION-GUIDED SAMPLING

C. Acquisition Functions for ROI Detection

To better serve our purpose of achieving the maximal
coverage of ROIs, we propose two modifications of the
existing acquisition functions in BO and a new acquisition
function. They are specifically designed to use the performance
target to guide the searching process, encouraging the wider
spread of candidate specifications, and eventually improving
the performance of ROI detection.

a) Threshold-Guided Search: In the definition of ROI
(see (1) — (3)), there is a predetermined threshold 7. We would
like to make use of this knowledge to help achieve the desired
maximal coverage of ROIs. To this end, we take u = T in the
increment function (6) so that it becomes

I1(x; T) =max{0, T — f(x)}, (11D

and use it to define the EI. While the classic EI given in (7) is
designed for solving a minimization problem, this modification
of the EI is more suitable to the detection of ROIs.

b) Distance-Adaptive Acquisition: To encourage maxi-
mal coverage of ROIs in our sampling process, we would like
to give more weights to points that are away from the points
that we have already evaluated. We propose the following
adjustment to the sampling density

p(x) ocexp{a(x, ;) x Ti(x)}. 12)

Motivated by the minimax and maximin design in sequen-
tial design for experiments and output-weighted acquisi-
tion [37], we propose the following distance adjustment

term,
ny 1/p
T,(x) = (Hd(x - xi)) :
i=1

where d(x — x;) is the (non-negative) distance between a
candidate specification x and the observed specification Xx;,

13)

ieM,={l1,...,n}, and d(-) is a metric that can be chosen
according to different problem settings. We use the Euclidean
distance and p = 2 in this study. This idea is similar to

the additional high-coverage term in the pPBOHC acquisition
function proposed in [16] where p = n, and a specifically
designed distance metric is used. The distance adjustment
term prefers specifications in unexplored areas by them given
higher weights, therefore helping to reach high coverage of
ROIs.

¢) Proposed Acquisition Design - Probability Ratio (PR):
We observed that, for commonly used acquisition functions
such as EI, the function values at different locations can be
very close, and as a consequence, our acquisition function
motivated sampling distribution (i.e., (8)) may get close to a
uniform distribution when the number of observations used
for training the surrogate model is small, making its use less
effective. Here we design a new acquisition function to deal
with this issue. Consider the failure detection problem, and
suppose that a failure occurs if the objective function is below
certain threshold. Let ¢ be a value chosen for probability
improvement, which can be but not limited to f* the the
smallest objective function value given n, evaluations as in
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Algorithm 2 and the threshold 7. We define a new acquisition
function named the probability ratio (PR),

Prob(f(x) < ¢)
Prob(f(x) > ¢)
It is an application of the transformation g(x) = x/(1 —x) to
the probability of improvement, Prob(f(x) < f*). We found

empirically that this acquisition function can usually lead to a
sampling distribution that is less uniformly distributed.

apr(X,§) = (14)

D. Add-On Modules

In our proposed sampling workflow for rare event detection,
multiple add-on modules can be integrated to further improve
sampling efficiency and algorithm performance.

1) Pre-Screening: At each application of the
acquisition-guided sampling in Algorithm 2, multiple
candidates can be obtained. A pre-screening step is introduced
to select the most promising candidates for performing the
actual, expensive evaluation. Various selection criteria that
can be considered are listed below.

« Distance-related criteria: The distances between sugges-
tions and their distances to existing points along with
the principle of minimax, maximin, can be considered
to encourage the coverage of the variatidon space for
diversity (e.g. [38], [39], [40], [41]). Moreover, various
divergence or distance measures between distributions can
also be used as a criterion when the information gain or
divergence is of greater interest (e.g. [42], [43], [44]).

o Acquisition functions: Acquisition functions different
from the one used to define the sampling distribution can
provide new measurements for the performance of points
from various perspectives.

« Objectives for multi-modal optimization: As the
multi-modal optimization problem targets finding as
many local optima as possible and the corresponding
derivatives can be adopted as additional criteria to
guide the local search (e.g. [45], [46]), the target
function combining multiple objectives can be utilized
to encourage exploration.

2) Subset Selection: The quality of observations can dra-
matically affect the performance of the model, as noise
and redundant information can lead to biased estimation or
computational difficulty. Thus, we resort to subset selection,
a common technique in machine learning which usually
contains the process of learning the necessary patterns or
target-related information from a dataset. The main purpose of
subset selection in our acquisition-guided sampling strategy is
to help remove redundant information and reweight SOIs for
surrogate model fitting. Additionally, it can reduce computa-
tional complexity due to the growth of sample size in GP
modeling. Various strategies can be used to address this issue,
including both supervised and unsupervised subset selection.
Motivated by [31] and [47], we adopt a response-based sam-
pling scheme to generate a representative subset as follows:

(1) Divide the range of responses {y;}i_, to K disjoint

intervals Sy, ..., Sg (referred to as the response inter-
vals). Let |S¢|,k = 1,..., K denote the number of
observations in each interval.
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TABLE I
EVALUATION METRICS OF ROI DETECTION PERFORMANCE

Notation | Definition (in one replicate) | Description
t; ‘ Z?zl H{f(xk) <T,xi € F%i} =i or Eszl H{f(xg) <T}=1 ‘ Average 1-st time hitting the i-th ROI or SOI
Ty ‘ 1{finding F;f)} ‘ Average rate of detecting the i-th ROI
NI, Np ‘ ke H{f(xe) < T, x € Fgf)} or Y op_; H{f(xx) <T} ‘ Average number of ROIs/SOIs until the n-th evaluation
A, ‘ ZN"TL Con: ‘ Average length (D = 1)/area (D > 1) of the convex hull
i=1 g generated by the SOIs in disjointed ROIs in the n-th iteration
| |

Ymin, Ymaz | MiNief1, n,}Yi, MaXie{1, . ny} Yi

The optimal performance value achieved in n; evaluations

(2) Sample an equal number of samples n* from each S
uniformly to obtain the new representative set X* =
(X7, ..., X%) with X} € R"*D for model fitting.
In this study, this subsampling method is used to keep the
implementation relatively simple and ensure the diversity of
points in the subset. Moreover, by sampling an equal number
of points from each response interval, we achieve a reweighing
of available points and a reassignment of attention.

V. SIMULATION RESULTS

We evaluate our AcqS approach for ROI detection and
compare it with existing methods, including uniform random
sampling, the classical GP-based BO, and TPE. For BO,
different acquisition functions including EI, Pol, UCB, and
Thompson sampling (TS) are considered. The initial dataset
is composed of specifications with responses far away from
threshold-defining ROIs. We report the performance statistics
based on M = 30 simulation runs for each setting.

A. Evaluation Metrics

To illustrate the performance of ROI detection of all the
methods for comparison, we use the following four metrics for
evaluation in terms of detection time for efficiency, percentage
of detecting the i-th ROI, and the number of ROIs found
for coverage and the area of the convex hull generated by
the identified SOIs within each ROI for illustration of the
exploration ability. First, # is the 1-st time hitting the i-th
ROI when ROIs are known in advance; when no avail-
able information about ROIs is available, #; represents the
i-th time locating the i-th SOI, with a smaller #; indicating
faster detection. Another metric, r;, evaluates the percentage
of finding the i-th ROI. N, represents the number of detected
ROIs until the n-th iteration of evaluations in either sampling
or BO procedures. A, measures the area of the convex hulls
that constructed the points within the ROIs until the n-
th iteration, with a higher value indicating better coverage
and exploration with the ability to get out of certain small
regions. When boundaries for ROIs are not explicitly available,
we check the optimal value achieved y,,;, instead of A,. The
descriptions of these metrics are summarized in Table I.

B. Benchmark Optimization Functions

We first benchmark the performance on standard black-box
optimization test functions, including the 1-D Forrester, 2-D

T T T T T T
00 02 04 06 08 1.0

(a) Forrester Function (b) Branin Function

(c) Cos25 Function

(d) 2-D Ackley Function

Fig. 1. Synthetic Functions: (a) Forrester, (b) Branin, (c) Cos25, and (d) 2-D
Ackley and their ROIs with threshold 7 = —0.5, 5, 0.3, and 5, respectively.
(a) Two ROIs are the intervals bounded by the green dashed lines for the
Forrester function; in (b)(c)(d) ROIs are colored in light yellow.

Branin, 2-D Cos25, and Ackley functions with dimensions
of 6 and 10. Figure 1 includes the contour figures for these
functions with a 2-D Ackley function given as an illustration
for its high-dimensional behavior. The empty entry in the
tables displayed in the following section is for the case where
no detection is available.

a) Forrester Function [48]: It is a 1-D benchmark
synthesis function defined on [0, 1] as f(x) = (6x —
2)?sin (12x — 4), x € [0, 1]. It is multi-modal with a global
optimum and a local optimum. We set the threshold to be
T = —0.5, which gives two ROIs to be detected. This function
is used to illustrate the difference between the ROI detection
problem and global optimization. The behavior of the test
function and the two ROIs is shown in Figure 1(a).

The left panel of Table II summarizes the performance
comparison results for random sampling, TPE, BO and AcqS
with EI, Pol and UCB. When random sampling is adopted,
the relatively large number of ROIs and the wide detected
intervals indicate the exploration ability of sampling without
additional information. TPE provides better performance than
random sampling regarding the first detection time for both
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ROIs as more information is utilized. With EI and Pol as
the acquisition functions, it is clear that our proposed AcqS
method outperforms classical BO as it can find the ROIs
faster with higher coverage. Furthermore, the larger interval
detected for ROIs by our sampling illustrates better exploration
ability.

Compared to all baselines, our proposed approach is able to
identify more specifications more quickly in the target ROIs.
Both BO and our sampling strategy with UCB perform well
in this case with full coverage of ROIs where the sampling
method provides the fastest first hitting time of the 1-st ROI
while BO has the smaller 2-nd ROI detection time. In addition,
it is shown in Figure 2(a) with the number of evaluations on
the x-axis and the average number of detected ROIs on the
y-axis that the proposed acquisition-guided sampling achieves
a similar performance with different choices of acquisition
functions. As is displayed in the right panel for our AcqS
approach, the curves generally climb faster and tend to achieve
higher coverage than those in the left panel using BO. In other
words, it is more robust with respect to the choice of acquisi-
tion functions with EI, Pol and UCB represented by orange,
green, and blue, respectively. More importantly, it converges
faster to ROIs at the beginning and is able to detect all target
ROIs within the limited budget.

b) Branin Function: It is a 2-D benchmark function
defined on x; € [—5, 10], x, € [0, 15] with three global min-
ima with form f(x) = a(xg—bxlz—i—cxl —r)24s(1=1) cos (x1)+
s, with (a,b,c,r,s,1) = (1,5.1/(47?),5/7, 6,10, 1/(87))
We set the threshold 7 = 5, resulting in three ROIs around
(—m, 12.275), (7, 2.275), and (9.42478, 2.475), illustrated as
yellow regions in Figure 1(b).

The numerical results are provided in Table II. With the
same acquisition function, AcqS can generally achieve a
higher coverage of ROIs, according to ri3, Ng,, and Ago,
as well as faster detection based on #;.3. We further inves-
tigate the growth trend of the average number of detected
ROIs using BO on the left panel and AcqS on the right
in Figure 2(b). It is obvious that BO gets stuck at cer-
tain regions and encounters difficulty in detecting SOIs in
disjointed ROIs as the curves barely go up after finding
one ROI while AcqS with various acquisition functions have
a higher average number of ROIs detected. Our sampling
strategy with different acquisition functions provides more
stable performance and rapid detection as trends by AcqS with
different acquisitions in the right panel show consistently faster
and better detection performances than those in the left panel
by BO.

c) Cos25 Function: It is a 2-D benchmark function
with 25 global minima denoted as the light yellow regions
in Figure 1(c). BO-based methods can easily get stuck in
one of these ROIs, which makes it challenging to achieve
the higher rare event detection coverage. We set 7 = 0.3.
As shown in Table III, the number of ROIs detected by our
sampling methods is generally higher than that obtained by
classical BO with the same acquisition function. Figure 3
shows the growth of the number of ROIs detected and the
first hitting time for the i-th ROI. Though BO with EI can
achieve a pretty fast detection for the first ROI, it is challenging
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Fig. 2. Average number of detected ROIs for (a) Forrester and (b) Branin
function using BO and AcqS.
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Fig. 3. The average number of detected ROIs and 1-st time hitting the i-th
ROI for Cos25 function using BO and AcqS.

for it to explore more over the space. The performance of
our sampling methods with different acquisition functions is
relatively consistent, showing that acquisition-guided sampling
is more robust to the choice of acquisition functions and can
contribute to faster detection and more stable growth of the
average number of detected ROIs.

d) Ackley Function: It is another widely studied bench-
mark function for optimization. Cases with two dimensions
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TABLE II
RESULTS FOR RANDOM SAMPLING, TPE, BO AND AcQS WITH EI, PoI, AND UCB FOR THE FORRESTER AND BRANIN FUNCTION

Forrester (' = —0.5) I

Branin (T = 5)

Type | Acq ||  ti(r1) ta(ra) Nj;  Aszo || Type | Acq || t1(r1) t2(r2) t3(rs)  N§, Aso
Random ‘ ‘ 4.10(1.0) 9.33(.90) 1.90 0.20 ‘ ‘ Random ‘ ‘ 9.93(1.0) 33.43(1.0) 41.50(.67) 2.67 1.28
TPE ‘ ‘ 2.83(1.0) 7.89(.90) 1.90 0.23 ‘ ‘ TPE ‘ ‘ 11.63(1.0)  32.36(.83) 33.44(.30) 2.13 2.63
BO | TS || 343(1.0) 933(20) 120 008 || BO | TS || 967(10) 2453(57) 4512(27) 183 230
BO EI 6.00(1.0) 1.00 0.01 BO EI 20.96(.80) 0.80 0.71
AcqS EI 2.65(1.0) 14.50(.82) 1.82 0.22 AcgS EI 12.27(1.0)  28.79(.93)  47.90(.33) 2.27 1.64
BO Pol BO Pol 6.41(.73) 19.00(.20) 15.00.03) 097 0.54
AcqS Pol 2.13(1.0) 16.50(1.0) 2.00 0.25 AcqS Pol 10.00(1.0)  35.92(.57)  74.00(.04) 1.61 426
BO UCB 2.00(1.0) 8.33(1.0) 2.00 0.13 BO UCB
AcgS | UCB || 1.60(1.0) 16.90(1.0) 2.00 026 || AcgS | UCB || 7.17(1.0) 1587(1.0) 37.20(67) 2.67 3.49
TABLE III

RESULTS FOR RANDOM SAMPLING, TPE, BO AND ACQS
WiITH EI, POl AND UCB FOR C0S25 FUNCTION

Function | Cos25 (T = 0.3)
Type | Acq || t1(r1) to(ro) Niag  Ymin
Random ‘ ‘ 25.00(1.0) 85.5(.07) 5.17 0.05
TPE ‘ ‘ 17.25(1.0)  103.50(.10) 5.90 0.03
BO ‘ TS ‘ ‘ 17.77(1.0) 94.40(.17) 5.97 0.02
BO EI 3.00(1.0) 112.50(.07) 4.30 0.03
AcqS EI 22.77(1.0) 99.67(.10) 5.20 0.04
BO Pol 27.20(1.0) 3.97 0.02
AcqS Pol 15.97(1.0) 97.33(.10) 5.77 0.03
BO UCB 44.44(.90) 2.43 0.12
AcqS UCB 14.23(1.0)  100.00(.13) 5.80 0.04

TABLE IV

RESULTS FOR RANDOM SAMPLING, TPE, BO AND ACQS WITH EI,
PoI AND UCB FOR 6-D AND 10-D ACKLEY FUNCTION

Function | Ackley-6 (T' = 10) | Ackley-10 (T = 15)
Type ‘ Acq ‘ ti(r1) Niz Ymin ‘ ti(r1) Nisg Ymin
Random | 17.70 | 19.50
TPE | 85.00.03) 0.03 1445 | 17.52
BO | TS | 90.69(43) 0.43 9.79 | 74.80(.33) 050  14.95
BO EI 19.33 21.57
AcgS | EI | 35.86(25) 032 1122 | 52.33(.70) 187 13.89
BO Pol 20.18 18.45
AcgS | Pol | 70.64(.37) 0.37  10.57 | 54.68(.73) 177 14.16
BO | UCB 1533 21.57
AcgS | UCB | 65.25(27) 027 1130 | 5333(70) 087 1418

D = 6,10 are considered in our study for comparison in
higher dimensional settings. Similar trends as discussed for
the previous benchmark functions can be easily observed in
these two settings. The performance of our proposed sampling
approach has more potential for successful detection of the
ROIs and achieving better sample efficiency for ROI detection.

C. Proposed Modifications for Acquisition Functions

The numerical results for the 2-D synthetic Branin function
with the number of ROIs being 3 are displayed below for

illustration. Additional results for other benchmark optimiza-
tion functions are given in the supplementary file. We denote
the acquisition with threshold-guided modification using the
subscript a7 and adaptive temperature modification with
adp_a. The first 8 rows of Table V present the results for
BO with EI, Pol, UCB, and their variants with the pro-
posed acquisition modifications as discussed in Section IV-C.
By comparing the performance of methods that use the orig-
inal EI and Pol with those that utilize the threshold-guided
modification Elr, Pol7, the detection rates of the three ROIs
with such a modification are generally higher, indicating a
higher coverage of the detected ROIs, regardless of using BO
or our AcqS. The first time hitting the 1-st ROI given by EI
with the threshold-guided modification is obviously smaller,
indicating faster detection via the introduction of threshold 7.
El; and Poly also outperform EI and Pol in BO, respectively,
in terms of both the number of detected ROIs and the area
of the convex hull given by the points in the detected ROIs,
which indicates a better exploration of the space. El; and Polr
provide a higher Ny, for our sampling strategy. Comparing the
sampling methods with their BO counterparts, the number of
ROIs found by the AcqS is generally higher, and the results
given by different acquisition functions show more robust
performance.

Similar performance improvement can be observed via the
performance comparison as well with the introduction of
adaptive temperature based on the distances. BO with adp_EI
achieves an obvious improvement for the 1-st hitting time for
the 1-st ROI and its coverage, as well as detection of the
remaining two ROIs. The sampling algorithm with adp_EI also
improves from that with EI as the acquisition function in terms
of #,r;,i = 1,2,3 and Ng,. BO and the sampling method
with adp_Pol both obtain significant performance enhance-
ment in all five metrics as well, indicating a wider spread
of the evaluated specifications, higher coverage, and faster
detection.

Regardless of the choice of acquisition function, the perfor-
mances provided by AcqS approach are close to each other,
meaning it is more robust and flexible to the selection of
acquisition functions in ROI detection compared to their BO
counterparts. The combination of two modifications can also
show their strength as adp_Pol; had the best 1-st hitting
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TABLE V TABLE VI
RESULTS FOR BO AND AcQS WITH EI, Pol, UCB AND ITS COMPARISON OF PR AND ITS VARIANTS IN BO AND ACQS WITH
VARIANTS FOR BRANIN FUNCTION WITH T =5 EI, Pol, AND UCB FOR THE BRANIN WITH T =5
Acq ‘ Type ‘ tl(rl) tQ(’I"Q) t3(’l“3) NgO Aso Acq BO
o 20.96(.80) 080 071 t1(r1) t2(r2) t3(r3) Ny Aso
ACqS 12.27(1.0) 28.79(.93) 47.90(.33) 2.27 1.64 EI 20.96(.80) 0.80 0.71
Pol BO 6.41(73)  19.00(20)  15.00(.03) 097  0.54 Pol 6.41(.73)  19.00(.20)  15.00(.03) 0.97 0.54
© AcgS | 10.00(1.0)  35.92(57) 74.00(04) 161 426 UCB
EI ‘ BO ‘ 8.03(1.0) 11.71(.23) 123 212 PR 7.22(.60)  21.86(.23) 0.83 0.28
T AcqS | 8.48(1.0)  23.32(93) 50.44(59) 252 1.95 PR7 1527(1.0)  32.33(.90) 50.50(.40) 230 1.74
pol BO 9.47(1.0) 2008(.83) 4433(40) 223 170 adp_PR 6.83(1.0) 44.78(.90) 63.62(.27) 2.17 4.24
olr AcgS | 9.56(1.0)  21.78(1.0) 51.86(.58) 258  3.09 adp_PRyp | 12.43(1.0) 36.48(.90) 50.27(37) 227 2.54
) BO 6.23(1.0)  48.17(1.0) 72.67(30) 230  4.68 A AcgS
adp_EI ‘ AcgS ‘ 10.93(1.0)  28.17(97)  46.47(.50) 247 156 “ t1(r1) ta(r2) ts(r3) Ng, Aso
adp Pol BO 8.50(1.0) 49.43(.93)  70.22(.30)  2.23 4.29 EI 12.27(1.0)  28.79(.93) 47.90(.33) 2.27 1.64
P AcgS | 720(1.0)  17.93(1.0) 4631(53) 253 470 Pol 10.00(1.0)  35.92(.57) 74.00(04) 1.61 426
ado EI ‘ BO ‘ 6.30(1.0)  3020(1.0) 5540(50) 250  6.09 UCB 7.17(1.0)  15.87(1.0) 3720(67) 2.67 349
Pt AcqS 10.44(1.0) 23.28(1.0) 43.18(.44) 244 2.01 PR 9.83 (10) 2517(40) 3200(07) 1.47 431
o Pol BO 12.63(1.0)  35.79(97) 4438(43) 240 213 PRy 10.53(1.0)  25.89(.93)  45.28(.60) 2.53  1.66
ApEOIT | AcgS | 6.00(1.0)  10.00(1.0)  27.00(.50) 2.50  5.19 adp_PR 12.80(1.0)  32.61(.95) 57.12(43) 238 1.36
adp_PRp 9.25(1.0)  25.00(1.0)  41.11(.75) 2.75 3.92
UcB BO
AcgS | 7.17(1.0) 1587(1.0) 37.20(67) 267  3.49
adp_UCB ‘ BO ‘
- AcgS | 9.00(1.0)  13.001.0) 30.00(1.0) 3.00 623 .
RESULTS FOR BRANIN FUNCTION WITH DIFFERENT T°S
time for the first two ROIs. For UCB and its corresponding ~_Tpe | Aca [ T [  ta(ra) | ta(r2) | ts(rs) | Nip | Aso
variants for the Branin test function, our sampling method R‘}P}fgm %Z%ﬁg; gz;ggzg; ;2;22?8; %38 ?(ﬁ
generally provides better results for the coverage and area of B0 TS 2A7(1.0) | 294157 | 47752 | 183 | 133
convex hulls generated by points within ROISs, indicating better BO EI 33.81(.70) 070 [ 040
. . AcgS | EI 3 | 17.0701.0) | 34.85(87) | 49.57(23) | 2.10 | 057
exploration over the space and demonstrating the strength 50 Bol 7350067) | 36.00(.13) 080 T 027
of our proposed modifications and acquisition functions in ggqs E()CIB 12.30(1.0) | 40.83(.52) | 75.00¢04) | 157 | 2.06
ROI detection. In this setting, adp_UCB achieves the hlghest AcgS UCB 10.63(1.0) 26.90(.97) 46.50(.53) 2.50 143
coverage to identify all 3 ROIs and the largest area generated e | Aa |11 6t | a0o) | e | Mo | A
. . . . . c Ci T T 3(7:
by the detect specifications. Overall, with the introduction i 4 o 22 A o | 7F0
. . . . Rand 4043(.77) | 51.33(20) | 56.00(.03 1.00 | 0.00
of the adjusted distance term and threshold information, ey 35_265_%; 001 (0311001 999
modified acquisitions can be used to achieve better ROI BO TS 1743(1.0) | 36.00(53) | 55.50(20) | 1.73 [ 0.30
detecti BO EI 4795(.63) 063 | 003
etecuon. AcqS | EI 1| 31.32(83) | 54.82(37) | 32.00003) | 123 | 0.02
BO Pol 28.60(:50) | 48.00(.07) 057 | 002
AcgS | Pol 25.71(.91) | 51.00(.39) 130 | 0.11
D. Proposed Acquisition Function: Probability Ratio BO UCB
AcgS | UCB 28.52(.97) | 53.91(.77) | 58.75(.13) | 1.87 | 0.03

Simulation results for Branin function are provided for
comparison of PR and its variants used in BO and sampling
approaches for illustration. Table VI shows that the incor-
poration of PR with other modifications has achieved faster
detection and higher coverage. The adjusted distance term
can encourage better exploration over the space and jump out
of certain local regions. There is a higher success rate for
finding all ROIs with modified PR acquisition functions. AcqS
generally has better performance in ROI detection. PR can
converge to the ROIs faster with the risk of getting stuck
in the small local region around the first ROI. The combina-
tion of proposed modification designs with PR can integrate
their strengths together, leading to better ROI detection
performance.

E. ROI Detection Under Various Rare Degree

The rare degree can be controlled by the choice of threshold
T. When the threshold is set as a lower bound for the
desired design performance, the smaller it gets, the harder the

problem becomes, as the ROIs are smaller, and the problem
becomes more similar to the global optimization. The fol-
lowing additional experiments for Branin synthetic functions
with different 7’s illustrate the performance difference for
BO and the acquisition-guided sampling strategy. We can
observe similar numerical patterns with different thresholds
T’s, our proposed sampling strategy is consistently better
while the problem becomes more challenging as the rare
degree increases (lower T'). For example, for Branin at 7 =
1 and 3, the evaluation metrics obtained by our sampling
strategy are better than those obtained by BO-based methods in
general, achieving Ng, = 1.87 and 2.50 values based on UCB.
According to the pairwise comparison, our AcqS approach
usually detected a higher number of ROIs and a larger volume
of the convex hulls generated by the SOIs detected, indicating
a stronger exploration ability and less likely to be stuck in local
regions.
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Fig. 4. Average number of detected ROIs for Forrester and Branin using BO
and AcqS with proposed modifications.

VI. CIRCUIT DESIGN VERIFICATION

Data-driven approaches by integrating machine learning in
traditional circuit design and verification provide new solutions
to sample-efficient automated analog and mixed-signal (AMS)
design. We implement our AcqS approach to AMS design
for a two-stage differential amplifier with 14 distinct design
parameters, the schematic illustration of which is in Figure 5.
The circuit simulator used is Synopsys HSpice, and the circuit
is designed under a commercial 90nm CMOS technology. The
experiments are executed over an Intel(R) Core(TM) 15-6500
CPU with a clock speed of 3.2GHz. A figure of merit (FOM)
is used to obtain the circuit performance measure from the
simulator, which is defined as a combination of four responses
to quantify the performance of design, including unity gain
frequency (UGF), gain, common-mode rejection ratio (CMRR)
and power consumption represented by the quiescent current
(Id): FOM = UGF + gain + CMRR — Id. A higher FOM
is desired and according to [49], FOM > 5.20 can be rare
to find. We, thus, specify T = 5.0. EI, Pol, and UCB are
chosen for comparison. In addition to the previous evaluation
metrics, we also report y,,, and y,, representing the average
of maximal FOM of the value detected and that of the desired
detected specifications, respectively.

As for EI, Pol and their variants, Table VIII shows that
including the threshold information and adjusted distance term
generally can help improve the detection time for both BO and
sampling methods. AcqS method can detect more SOIls, while
the modified Pol-type acquisition for BO can achieve faster
detection. The performance values reached are comparable for
BO and AcqS. The sampling method guided by EI with the
threshold and adjusted distance term has the highest y, =
5.50. EIr-, Pol- and adp_Pol7-guided AcqS can also achieve
rather high FOMs being 5.24, 5.29 and 5.20, which are over
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Fig. 5. A two-stage differential amplifier circuit diagram.

TABLE VIII

RESULTS FOR BO AND AcQS WITH EI, Pol, UCB, PR AND ITS VARIANTS
IN CIRCUIT DESIGN APPLICATION WITH T = 5.0

Acq | Modification | Type | ti(r1)  N3o  Tmaz Yr
BO 16.83(.20) 0.23 487 5.17

AcqS | 20.00.27) 0.27 492 5.18

T BO 11.00(.03) 0.03 476  5.17

EI AcqS 17.50(47)  0.57 5.03 524
adp BO 20.00(.10)  0.10 4.68 5.12

AcqS 13.50(.33) 0.43 493 512

adp + T BO 10.33(.10)  0.10 4.68 5.17

AcqS 18.67(.10)  0.10 489 5.50

BO 14.11(.30)  0.67 496 5.13

AcqS 14.11(.30) 0.67 497 5.29

T BO 15.50(.20)0  0.90 487 5.07

Pol AcqS 12.75(.13)  0.13 488 5.10
adp BO 9.00(.10) 0.13 472 5.17

AcqS 19.40(.17)  0.17 486 5.05

adp + T BO 8.00(.03) 0.03 462 5.04

AcqS 11.00(.13)  0.13 490 5.20

BO 8.67(.10)  0.13 459 5.16

UCB AcqS 18.00(.27)  0.30 492 521
adp BO 13.00(.07)  0.07 429 5.02

AcqS 18.67(.20)  0.20 492 5.18

BO 15.22(.30)  0.77 496 5.21

AcqS 16.67(.30)  0.30 5.04 542

T BO 17.33(.30) 1.53 490 5.10

PR AcqS 19.73(.37)  0.40 498 5.17
adp BO 24.00(.07)  0.07 4771  5.07

AcqS 15.80(.33)  0.37 495 5.23

adp + T BO 24.00(.07)  0.07 4.68 5.18

AcqS 19.00(.27)  0.27 492 5.19

or at our specified threshold 7 = 5.20. As for UCB and its
variant adp_UCB, the corresponding sampling method usually
has a higher probability of SOI detection while the BO-based
counterpart can probably do better in hitting time due to the
feature of optimization. AcqS with UCB did better in y as
y» = 5.21, indicating the searching ability of sampling.

The results by new PR-based acquisition functions are
shown in the last 8 rows in Table VIII. PR-guided AcqS
has the highest average maximal FOM at 5.04. The mean
FOM of those successful specifications y, = 5.42, ranking the
second best. As for detection time, PR and its variants have
rather similar behavior with sampling methods. This type of
acquisition function has relatively good performance in terms
of the average of best FOM values compared to EI, Pol, and
UCB. Overall, we can see that the number of detected SOIs
by AcqS is consistently better than that given by BO with EI,
Pol, and UCB. The newly proposed PR can greatly improve
BO and has the potential to achieve better performance.
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VII. CONCLUSION AND FUTURE WORK

In this paper, we study the rare event detection prob-
lem. Rather than global optimization of a complex, possibly
black-box target function as the original goal of BO, we focus
on fast detection and high coverage of ROIs given a lim-
ited evaluation budget. Thus, we reformulate the problem as
ROI detection via detecting representative SOIs in disjoint
ROIs and propose the acquisition-guided sampling (AcqS)
algorithm.

Despite using different types of acquisition functions,
acquisition-guided sampling can provide more stable ROI
detection results than the original BO methods. Numerical
results for synthetic test functions and a real-world application
of circuit design show a significant improvement of our AcqS
approach over existing methods in terms of the ROI coverage
and interval/area of the convex hull generated by detected
SOIs among disconnected ROIs. This study also provides
a flexible framework for ROI detection which can easily
incorporate various add-on modules for better performance,
such as screening with various criteria for multiple sampled
candidates, and subset selection for fitting the surrogate model.
This study also shows that our AcqS approach is more robust
to the choice of acquisition functions when the number of
observations is small.

Because of the nature of the ROI detection problem, our
AcqS approach deals with the exploration-exploitation trade-
off differently from existing BO methods. Since the sampling
density of AcqS is defined using a given acquisition function,
it inherits its exploration-exploitation trade-off property. How-
ever, sampling naturally enhances the exploration ability of
our AcqS, which is necessary to discover as many as possible
ROIs. Moreover, since the ROI detection problem treats all
specifications with values below the pre-determined threshold
equally, exploitation has a different meaning from what it is for
BO. Several of our proposed acquisition functions are specially
designed to satisfy the needs of ROI detection.

For future research, better acquisition function design and
balanced strategies considering local and global search at
different stages can be investigated to improve the sampling
efficiency in ROI detection. Relaxing the Gaussian assumption
is also under consideration, as a broader set of models can be
included with reasonable computational complexity.
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