
The Sunk Carbon Fallacy:
Rethinking Carbon Footprint Metrics for E�ective

Carbon-Aware Scheduling

Noman Bashir
MIT

Varun Gohil
MIT

Anagha Belavadi
MIT

Mohammad Shahrad
University of British Columbia

David Irwin
University of Massachusetts

Amherst

Elsa Olivetti
MIT

Christina Delimitrou
MIT

ABSTRACT

The rapid increase in computing demand and corresponding

energy consumption have focused attention on computing’s

impact on the climate and sustainability. Prior work proposes

metrics that quantify computing’s carbon footprint across

several lifecycle phases, including its supply chain, operation,

and end-of-life. Industry uses these metrics to optimize the

carbon footprint of manufacturing hardware and running

computing applications. Unfortunately, prior work on opti-

mizing datacenters’ carbon footprint often succumbs to the

sunk cost fallacy by considering embodied carbon emissions

(a sunk cost) when making operational decisions (i.e., job

scheduling and placement), which leads to operational deci-

sions that do not always reduce the total carbon footprint.

In this paper, we evaluate carbon-aware job scheduling

and placement on a given set of servers for several carbon

accounting metrics. Our analysis reveals state-of-the-art car-

bon accounting metrics that include embodied carbon emis-

sions when making operational decisions can increase the

total carbon footprint of executing a set of jobs. We study the

factors that a�ect the added carbon cost of such suboptimal

decision-making. We then use a real-world case study from

a datacenter to demonstrate how the sunk carbon fallacy

manifests itself in practice. Finally, we discuss the implica-

tions of our �ndings in better guiding e�ective carbon-aware

scheduling in on-premise and cloud datacenters.
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1 INTRODUCTION

Computing demand has skyrocketed over recent decades,

with no signs of slowing [18]. This demand is likely acceler-

ating due to the rise of computationally intensive generative

AI tools, such as ChatGPT [13] and GitHub Copilot [45],

which promise to unlock a wide range of innovative applica-

tions. However, as marginal improvements in computing’s

energy e�ciency shrink due to the slowdown in process

scaling [27, 54], the growing demand for computing power

is expected to drive a proportional increase in energy con-

sumption. This rising energy footprint has sparked signif-

icant concerns about computing’s impact on climate and

sustainability. Fortunately, awareness of the need to improve

computing’s sustainability is increasing [8, 46, 60], with coor-

dinated e�orts from both industry and academia to mitigate

its environmental impact [9, 41, 55, 56, 60].

Recent e�orts to improve computing’s sustainability have

focused on quantifying and optimizing its carbon footprint

across all lifecycle stages, from chip design and manufac-

turing [1, 24] to system operations [25, 28, 43] and e-waste
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management [49]. The Greenhouse Gas (GHG) Protocol [59]

highlights two key emission types: Scope 2 covers emissions

from electricity use in datacenters (operational emissions);

Scope 3 includes emissions from chip manufacturing, supply

chains, and e-waste management (embodied emissions).

Previous work on computing’s carbon footprint has used

various metrics, typically based on operational emissions

alone or a weighted combination of operational and em-

bodied emissions. A common approach aggregates a job’s

operational emissions with a portion of the server’s embod-

ied emissions, distributing the server’s embodied emissions

across jobs based on their resource usage and duration. No-

table examples include the Software Carbon Intensity (SCI)

introduced by the Green Software Foundation [20], Com-

putational Carbon Intensity [49], and Sustainability Cost

Rate [21]. Though these metrics use di�erent terms, they

follow the same core principle: a job’s carbon footprint is the

sum of its share of the hardware’s embodied emissions and

the operational emissions generated during its execution.

In this paper, we focus on carbon-aware workload sched-

uling and job placement on datacenter servers. While em-

bodied carbon-based metrics like SCI are often proposed to

guide operational decisions, such as scheduling and job place-

ment, we argue that scheduling and procurement operate

on di�erent timescales and should be optimized indepen-

dently. Scheduling determines which servers handle speci�c

jobs and should focus on minimizing the operational car-

bon footprint of active servers. In contrast, procurement

decisions–such as which servers to purchase and when to re-

place them–a�ect the embodied carbon footprint from hard-

ware manufacturing, which cannot be in�uenced once a job

is being scheduled. These processes are distinct: scheduling

occurs continuously as jobs are assigned, while procurement

decisions are made periodically based on hardware lifecycles.

Importantly, metrics like SCI, which incorporate lifecycle

emissions, typically account only for the emissions of servers

running jobs, ignoring the embodied carbon of idle servers.

This oversight can lead to unintended consequences when

optimizing for SCI-like metrics in job scheduling, paradoxi-

cally increasing a datacenter’s overall carbon footprint by

neglecting the broader carbon impact of idle hardware. We

show that focusing solely on SCI-like metrics in schedul-

ing may undermine the goal of minimizing a datacenter’s

total carbon footprint, underscoring the need for separate,

independent optimization of scheduling and procurement.

The suboptimal outcomes of carbon-aware scheduling

based on SCI-like metrics stem from a cognitive bias known

as the sunk cost fallacy. According to the principle of by-

gones, rooted in economic theory’s principle of separability,

decisions should focus solely on future possibilities with-

out being in�uenced by past expenditures or irreversible

events [17]. Applied to datacenter operations, scheduling

and job placement decisions should prioritize the current

operational context, disregarding embodied emissions that

have already occurred. The embodied emissions are �xed at

procurement and cannot be changed through operational

decisions; operators should prioritize operational carbon.

Ignoring sunk costs is intuitive and supported by prior

research [22, 39, 48, 57]. However, recent e�orts to develop

metrics that optimize computing’s lifecycle carbon footprint

have unintentionally introduced a sunk carbon fallacy, a vari-

ant of the sunk cost fallacy applied to carbon. These metrics

con�ate procurement and operation by incorporating em-

bodied emissions into real-time scheduling decisions. As our

example in Section 3.2 shows, using SCI as a scheduling met-

ric can paradoxically increase a datacenter’s overall carbon

footprint, highlighting the need to optimize scheduling and

procurement independently for true carbon e�ciency.

The extent to which minimizing a datacenter’s total car-

bon footprint diverges from minimizing the sum of job-level

lifecycle carbon using metrics like SCI depends on several

infrastructure characteristics. One key factor is the hetero-

geneity in server performance relative to their operational

and embodied carbon footprints. In a datacenter with ho-

mogeneous servers—where performance is similar across

all servers—incorporating embodied carbon into a schedul-

ing metric like SCI would not signi�cantly a�ect the overall

system-level carbon footprint. However, real-world datacen-

ters are often heterogeneous, di�ering in hardware age (e.g.,

new vs. old) and type (e.g., CPU vs. GPU). For example, older

servers generally have lower embodied carbon due to earlier

manufacturing but have higher operational carbon emissions

than newer, energy-e�cient servers, as shown in Figure 1.

Moreover, GPUs are ideal for compute-intensive tasks; CPUs

may perform better per unit of carbon for speci�c tasks [2].

Our work focuses on CPU heterogeneity, which is signi�-

cant enough to show that applying a one-size-�ts-all metric

like SCI, which includes embodied carbon, can distort sched-

uling decisions and increase the overall carbon footprint.

Another critical factor is datacenter utilization. When utiliza-

tion is either very high or very low —where all servers are in

use or none are — the choice of scheduling metric has little

impact on the total carbon footprint. However, at intermedi-

ate utilization levels, common in many datacenters, metrics

like SCI can lead to ine�cient scheduling, thereby increasing

the total carbon footprint. In Section 3.2, we examine this

discrepancy and evaluate the impact of infrastructure factors

on a datacenter’s carbon footprint using concrete examples.

In showing how the sunk cost fallacy manifests in carbon-

aware scheduling, we make the following contributions:

1 – We show that metrics incorporating both embodied and

operational carbon emissions, while seemingly comprehen-

sive, can lead to suboptimal scheduling decisions. These met-

rics may paradoxically increase a datacenter’s overall carbon
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footprint, contradicting their intended goal. We explore key

factors such as datacenter utilization, operational carbon in-

tensity, and embodied carbon amortization approaches that

exacerbate these suboptimal outcomes.

2 –We evaluate three metrics, including those that prioritize

operational emissions or account for infrastructure-wide em-

bodied carbon better than SCI. Through a real-world case

study of an on-premise datacenter, we demonstrate that un-

der realistic workload conditions, focusing on operational

carbon emissions results in more carbon-e�cient scheduling

and a reduced total carbon footprint.

3 – We provide practical guidelines for datacenter operators

and users to avoid the sunk carbon fallacy. Our recommen-

dations emphasize selecting metrics that accurately re�ect

carbon costs relevant to operational decisions, enabling opti-

mization for a lower overall carbon footprint.

2 BACKGROUND AND MOTIVATION
Prior work on sustainable computing. There has been

extensive research on the environmental impact of com-

puting [46] and on de�ning what sustainable computing

entails [11, 60]. Prior work has also analyzed various car-

bon accounting frameworks within computing, highlight-

ing the challenges of accurately assessing its carbon foot-

print [10, 30], particularly regarding the error-prone nature

of embodied carbon values [10] and operational carbon in-

tensity estimates [30]. Recent studies have focused on quanti-

fying both operational and embodied carbon and their trade-

o�s to inform architectural design aimed at reducing servers’

overall lifecycle carbon footprint. Prior work has explored

the potential bene�ts and limitations of spatiotemporal work-

load scheduling for reducing carbon emissions [47]. In paral-

lel, researchers have developed algorithms for carbon-aware

workload shifting and built system support for such algo-

rithms [23, 25, 43, 52]. Despite the advances, the real-world

adoption of carbon-aware optimizations remains limited,

with only one notable example of carbon-aware workload

shifting implemented by hyperscalers [41].

Metrics for sustainable computing. Recent work has ex-

plored various metrics to quantify and optimize computing’s

carbon footprint. Gandhi et al. [21] propose sustainability

metrics for datacenters, including the amortized sustainabil-

ity cost metric, which attributes both operational and em-

bodied carbon to a job. Switzer et al. [49] address the end-

of-life problem for computing hardware and propose the

computational carbon intensity (CCI) metric, which aids in

making decisions about component replacement and end-

of-life management. The software industry has also focused

on promoting green software development, with initiatives

from the Green Software Foundation (GSF) [20], which in-

troduced the Software Carbon Intensity (SCI) metric to help

developers quantify and reduce software’s carbon footprint.

Limitations and research gaps. Previous work on car-

bon accounting has introduced various metrics to reduce

computing’s carbon footprint, sparking debate about their

usefulness and e�ectiveness [14, 15, 19, 42]. Despite the crit-

ical nature of the problem, little research has focused on

analyzing the incentives each metric provides and the out-

comes they produce. Recent studies suggest that creating a

single metric that is simple, accurate, precise, and o�ers the

right incentives for optimizing decision-making across com-

puting’s entire lifecycle may not be feasible [50]. Moreover,

evaluating all possible metric combinations presents a signif-

icant challenge. The total lifecycle carbon footprint includes

the embodied carbon of all servers, operational carbon from

idle servers, and emissions from active servers running work-

loads. Procurement decisions and job scheduling a�ect this

footprint, but they operate on di�erent timescales: seconds

to days for scheduling and months to years for procurement.

This work focuses on carbon-aware workload scheduling in

public cloud and enterprise datacenters, targeting reductions

in the carbon footprint added during this lifecycle stage.

3 THE SUNK CARBON FALLACY

This section shows how state-of-the-art carbon accounting

metrics fall prey to the sunk carbon fallacy, outlines factors

contributing to suboptimal decision-making, and examines

metrics that yield better carbon-aware scheduling outcomes.

Setup. Carbon-aware scheduling assigns jobs to available

servers to minimize the total carbon footprint of executing

those jobs. In our example, we assume the following setup:

– The scheduler aims to place jobs on servers to minimize

the total carbon footprint without knowledge of future job

arrivals or characteristics, making instantaneous placement

decisions—similar to production schedulers like Borg [7, 53].

– Jobs performance characteristics and energy usage on given

servers are known through pro�ling or public databases like

MLPerf [32] and OpenBenchmarking Suite [38].

– Servers are not power-proportional, consuming signi�-

cant power even at 0% utilization [6, 29], often exceeding

30% of peak usage. However, the idle power for processing

components is much lower. While individual servers may

be fully utilized, datacenter-level utilization typically ranges

between 30% to 60%, even in state-of-the-art facilities [53].

– Energy and carbon footprint estimates for servers

depend on components like power supplies, hard drives,

memory, and chassis. We use data from MIT’s Bates Re-

search and Engineering Center [33] and the hydro-powered

Massachusetts Green High Performance Computing Center

(MGHPCC) [34] that provides processor information.

Embodied carbon for processors is estimated using the

PAIA integrated circuit module [37], based on factors like

technology node (e.g., 7nm, 28nm), CPU package area,

die size, and fabrication location. Technology node and
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CPU package area data are sourced from o�cial Intel and

AMD websites, while die sizes are gathered from Tech-

PowerUp [51], CPU-World [16], X86 CPU’s Guide [35], and

WikiChip [58], with cross-veri�cation for consistency. We

use a carbon intensity of 495g.CO2/kWh for AMD proces-

sors fabricated in Taiwan [36] and 357g.CO2/kWh for Intel

processors fabricated in Hillsboro, Oregon [31].

For operational carbon estimates, we assume servers con-

sume their rated Thermal Design Power (TDP) at 100% utiliza-

tion, with a linear power increase between idle and full load.

We assume datacenter is in Sweden, with a carbon intensity

of 20g.CO2/kWh [31], and vary this intensity for analysis in

both embodied- and operational-dominant regions.

– Performance Benchmarks. Processor performance

scores are based on three benchmarks: Multithread Ratings

by PassMark [40], HEPScore [26], and SPEC CPU2017 Float-

ing Point Speed [44]. Not all benchmarks pro�le every pro-

cessor, which narrows the set of processors in our analysis.

3.1 Carbon-Aware Scheduling Metrics

This section de�nes three di�erent metrics that can be used

to evaluate carbon-aware scheduling and job placement.

1 – Software Carbon Intensity (SCI)was introduced by the

Green Software Foundation [20] to quantify the rate of total

carbon emissions per functional unit R, which could be an

API call, machine learning (ML) training, or AI inference. The

carbon emissions for a given job consist of both operational

carbon emissions (denoted O) from running the job on the

server, and embodied carbon emissions (denoted M) for the

functional unit. SCI is de�ned as:

SCI = (O + M) per R = ((E * I) + M) per R,

where E is the job’s energy consumption (in kilowatt-hours)

over a given time window, including a portion of the server’s

idle and dynamic power usage. I is the carbon intensity

of electricity, measured in grams of CO2 equivalent per

kilowatt-hour (g.CO2/kWh), for the region where the server

operates. SCI accounts only for the embodied carbon (M) of

the active server running the job, computed as:

M = TE × T × RR/EL × TR. (1)

Here, TE is the total embodied emissions, EL is the server’s ex-

pected lifespan, and TR represents the server’s total resources.

T denotes the time duration, and RR is the resource reserved

for the job (see SCI speci�cations for further details [20]).

2 – Total Software Carbon Intensity (tSCI) extends SCI

by incorporating the embodied carbon emissions of the entire

infrastructure, aiming for a more accurate representation of

total emissions. Instead of accounting only for the server run-

ning the job, tSCI distributes a portion of the total embodied

emissions across all jobs, including idle infrastructure.

To extend SCI, we add a fraction of the infrastructure-

level embodied carbon based on the resources reserved and

Table 1: Speci�cations of servers in our example.

ďý ďþ

Processor Xeon E-2286G Xeon Gold 6538N

Release Date 05/29/2019 12/14/2023

PassMark Score 14020 44895

TDP (W) 90 205

Technology Node 14nm 10nm

Embodied Carbon (Kg.CO2) 8.04 101.89

the job’s allotted time, with a total embodied carbon (tM) of

tM = M + Midle-infra, where Midle-infra is the embodied carbon of

idle servers, calculated using the same method as M in Equa-

tion 1. Each idle server’s embodied carbon is proportionally

assigned to the job. Similarly, to account for the operational

carbon from idle servers, tO is computed as tO = O+Oidle-infra .

The total software carbon intensity is then:

tSCI = (tO + tM) per R.

To illustrate this, consider a datacenter with two servers,

A and B, with embodied carbon values of 400g.CO2 and

50g.CO2, and expected lifetimes of 10 and 5 years, respec-

tively. Server A has 40 cores, and server B has 10 cores. Sup-

pose job J1, which runs for one year using 10 cores, is sched-

uled on server B, while job J2, also using 10 cores, runs on

server A. The embodied carbon attributed to J1 is:

tM = 10g.CO2 +
400g.CO2 × 1~A

10~AB
︸              ︷︷              ︸

time fraction

×
302>A4B

402>A4B
︸   ︷︷   ︸

idle fraction

×
102>A4B

202>A4B
︸   ︷︷   ︸

usage fraction

,

= 25g.CO2.

The time, idle, and usage fractions amortize the embodied

carbon of the idle infrastructure over time (1 out of 10 years),

idle resources (30 out of 40 cores are idle), and usage (10 of the

20 total used cores). The operational carbon emission rate, tO,

can be computed similarly, except for the time component.

3 – Operational Software Carbon Intensity (oSCI)metric

ignores the embodied carbon emissions for all the servers. It

makes scheduling decisions based on the operational carbon

emissions of running a given job. oSCI is expressed as,

oSCI = (E * I) per R.

This metric can include a portion of the base power from

the idle servers to incentivize turning o� servers when they

are idle. However, for the current purpose, we keep it simple

and only account for the energy used by the job’s server.

Computing SCI, tSCI, and oSCI in Practice presents vary-

ing levels of complexity. oSCI, a subset of the other metrics,

is the simplest to calculate as job operating power can be

estimated through o�ine pro�ling. SCI, however, requires

embodied carbon estimates for all servers in a datacenter,

which can be di�cult to obtain and often have signi�cant

uncertainty [3, 12, 37]. This uncertainty can propagate un-

predictably, a�ecting scheduling outcomes. Calculating tSCI
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Figure 1: The normalized embodied and operational

carbon footprint (g.CO2) per Score-Yr for a datacen-

ter in Sweden with electricity’s carbon intensity of

14g.CO2/kWh [31]. The servers have a lifetime of 5 years.

and tracking it over time is even more complex, requiring

comprehensive datacenter-level information, including all

hardware, active jobs, resource reservations, and runtime ex-

pectations. The idle fraction of infrastructure varies as jobs

arrive and leave, resulting in a time-varying tSCI. While

cloud operators have access to this data, calculating tSCI

requires sophisticated infrastructure and precise attribution,

both costly and carbon-intensive. Public cloud users gener-

ally lack access to such data, making it impractical for them

to compute their carbon footprint. Thus, we do not expect

tSCI to be widely used in practice, and instead, we show

that oSCI can achieve similar scheduling outcomes with less

complexity. Finally, integrating operational and embodied

carbon estimates into scheduling decisions depends on the

scheduler. For example, in Slurm, nodes can be assigned

weights re�ecting the chosen metric, such as oSCI. Slurm’s

energy monitoring tools can be easily modi�ed to report

operational emissions with minimal overhead.

3.2 An Illustrative Example

We �rst use a simple example to demonstrate the sunk car-

bon fallacy. Consider a small datacenter with two servers

powered by two processors from Intel: Xeon E-2286G and

Xeon Gold 6538N, referred to as SA and SB, respectively. Ta-

ble 1 provides the detailed speci�cations for the two servers,

including processor model, their release dates, PassMark

scores, embodied carbon estimates, and TDP values.

Figure 1 shows the operational and embodied carbon emis-

sions normalized to the PassMark score and expected lifetime

of two servers in our dummy datacenter. An operational car-

bon value of 0.56 means that achieving a performance score

of 1 for one year using SA results in 0.56g.CO2 of operational

emissions. This example re�ects a common scenario: a newer

server (SB), manufactured with 10nm technology, has 4.09×

the embodied carbon footprint of an older server (SA) us-

ing 14nm technology. However, energy e�ciency gains over

recent years mean SB consumes 32.5% less energy than SA.

1 – Analyzing Scheduling Outcomes. Table 2 presents

the carbon footprint values used to choose a server for job

placement. It includes the total lifecycle emissions of the

Table 2: Values of SCI, tSCI, oSCI for (ý and (þ for job

placement in g.CO2 per Score-Yr. We also report the

total cluster carbon footprint for each metric.

Metric Scheduling/Placement Accounting

ďý ďþ Cluster Carbon Footprint

SCI 0.11 + 0.83 = 0.94 0.45 + 0.56 = 1.01 (0.11 + 0.45) + 0.83 = 1.39

tSCI 0.94 + 0.45 = 1.39 1.01 + 0.11 = 1.12 (0.11 + 0.45) + 0.56 = 1.12

oSCI 0.83 0.56 (0.11 + 0.45) + 0.56 = 1.12

datacenter during the job’s execution, encompassing both

the embodied carbon for all servers and the operational car-

bon of active servers. The server with the lowest metric is

highlighted in bold and chosen to run the job. The datacenter-

level carbon footprint is the sum of the embodied carbon

(the sunk cost) for all servers and the operational carbon for

the server running the job (the marginal or additional cost).

As shown, when prioritizing the sum of embodied and

operational emissions, the SCImetric selects a highly energy-

ine�cient server due to its low embodied carbon. While this

decision minimizes SCI, it results in a 24.10% higher car-

bon footprint for the datacenter. In contrast, the placement

choices of tSCI and oSCI align, leading to the minimum

cluster-level emissions, as both prioritize minimizing addi-

tional emissions while achieving the desired performance.

This example illustrates the classic scenario of a new,

energy-e�cient server with high embodied carbon versus

an old, energy-ine�cient server with low embodied carbon,

mainly due to the technology node di�erence. However, this

mismatch can occur where an energy-ine�cient server has

a lower SCI value than a more e�cient server. For instance,

as shown in Table 3, the newer Xeon E-2486 server, built on

a 10nm node, has a smaller embodied carbon footprint than

the EPYC 9334 server. Despite energy e�ciency gains and

performance improvements, the EPYC 9334 server’s higher

embodied carbon results in a larger SCI value.

A similar situation arises between Ryzen Threadripper

5965WX and Xeon W9-3495. The Ryzen processor, built on a

5nm node, has a lower embodied carbon footprint than the

Xeon processor, which uses a 10nm node, despite the latter’s

advanced manufacturing process. These examples demon-

strate that the sunk carbon fallacy extends beyond the old

vs. new server comparison, as even servers not intended as

direct replacements can still coexist in a datacenter or cloud

platform, leading to the selection of an ine�cient server.

2 – E�ect of Datacenter Utilization. Our example shows

how variations in server characteristics lead to suboptimal

scheduling. We now explore the e�ect of datacenter utiliza-

tion on system-level carbon footprint increases when us-

ing SCI. Server SA has 12 logical cores (6 physical cores, 2

threads per core); each logical core has an 1168 PassMark

score. Server SB has 64 logical cores (32 physical cores, 2

threads per core); each logical core has a 701 PassMark score.
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Figure 2: Utilization Impact
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Figure 3: Carbon Impact
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Figure 5: Benchmark Impact

Each job uses one logical core on SA and two logical cores

on SB to achieve a performance score of 1402 (closer to the

1168 for SA), giving us 44 cores of similar performance.

Figure 2 illustrates the increase in system-level carbon

footprint when jobs are scheduled using SCI, compared to

scheduling based on tSCI or oSCI. When datacenter uti-

lization is either 0% or 100%, all metrics yield the same re-

sult. However, at intermediate utilization levels, the choice

of server becomes important. The peak discrepancy occurs

when only 12 cores are needed to run the jobs (at 27.3% uti-

lization). The exact peak and the utilization level at which

it occurs will vary depending on the server set, their base

power values, and the scheduling granularity. In Section 4,

we present similar results for our case study.

3 – E�ect of Operational Carbon Intensity. In our setup,

embodied carbon accounts for 11.7% and 44.5% of the lifecy-

cle emissions for SA and SB, respectively, with an average of

28.1% across servers. To analyze the impact of operational

carbon intensity, we scale the normalized operational carbon

to make embodied carbon account for 10% to 90% of lifecy-

cle emissions. Figure 3 shows the maximum added carbon

footprint due to the sunk carbon fallacy as embodied carbon

accounts for a higher share of lifecycle emissions. At 0%,

where only operational e�ciency matters, using SA results

in a 48% increase in system-level carbon. Conversely, at 100%,

operational carbon is zero, and server choice is irrelevant.

Despite placing the datacenter in Sweden – a region with

one of the world’s lowest carbon intensities – operational

emissions still dominate because our embodied carbon esti-

mates focus only on the processor, which is a small portion of

the server-level carbon footprint. In contrast, the processor’s

TDP accounts for most of the server’s power and operational

carbon footprint. If server-level embodied carbon values

were used, the carbon intensity at which embodied carbon

makes a given %age of lifecycle emissions would be higher.

4 – E�ect of Server’s Expected Lifetime. The expected

lifespan of servers has a similar impact on the added carbon

footprint at the system level. Figure 4 shows the maximum

added carbon footprint at the system-level as the server’s

embodied carbon is amortized over a longer period. As the

expected lifespan increases, the amortized embodied carbon

per year decreases, and its fraction of the lifecycle carbon

footprint decreases. As shown in Figure 3, lower embodied

Table 3: Additional scenarios of sunk carbon fallacy.

Values of carbon emissions are in g.CO2 per Score-Yr.

Server Pairs Additional Details

Xeon E-2486 EPYC 9334 New Xeon server (12/14/2023, 10nm)

0.08 + 0.47 = 0.55 0.23 + 0.39 = 0.62 vs. old EPYC server (11/10/2022, 5nm).

Ryzen 5965WX Xeon W9-3495 Older Ryzen server (03/08/2022, 5nm)

0.15 + 0.51 = 0.66 0.25 + 0.46 = 0.71 vs. New Xeon server (02/15/2023, 10nm).

values result in a higher system-level carbon footprint under

SCI, magnifying the impact of the sunk carbon fallacy.

5 – E�ect of PerformanceMetric.Our results thus far have

used PassMark scores. However, our observation is agnostic

to any particular benchmarking method. Figure 5 shows that

the conditions required for the sunk carbon fallacy, i.e., a

server with low SCI is ine�cient, manifest across di�erent

benchmarks. The servers we use in our examples changed,

as we did not have SPEC and HS26 scores for the servers in

the illustrative example. While the combination of servers

that manifest the sunk carbon fallacy may change, the e�ect

should be present in all performance benchmarks.

Generalization of OutcomesWe now explore whether our

observations hold across di�erent hardware con�gurations,

considering their embodied and operational carbon ratios.

Assume there are N servers in a datacenter, and k servers are

needed at any time. Let"ğ and $ğ represent the embodied

and operational carbon costs of server 8 , and let /ğ = "ğ +$ğ

denote the total carbon emissions over the server’s lifetime.

The SCI and oSCI strategies are formalized as:

SCI = {8 | /ğ are the : smallest values of / },

oSCI = {8 | $ğ are the : smallest values of $}.

If k = 0 or k = N, both strategies select the same servers.

However, oSCI minimizes
∑

ğ∈oSCI$ğ , the operational car-

bon, which can be reduced post-purchase. In contrast, SCI

might pick servers with lower lifecycle costs /ğ but higher

$ğ , resulting in suboptimal choices. Therefore:
∑

ğ∈oSCI

$ğ ≤
∑

ğ∈SCI

$ğ .

Since total carbon emissions include both embodied and op-

erational phases, oSCI ensures the lowest footprint across

purchase and operation. While extending this example to

dynamic job arrivals shows similar results, a detailed explo-

ration of that scenario is beyond this paper’s scope and will

be addressed in future work.
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Table 4: List of servers and their speci�cations for the case study. The server life is 5 years; for older than 5 years

old servers embodied carbon is amortized over years since purchase. The operational carbon is for 5 years at a

carbon intensity of 10 g.CO2/kWh (chosen such that embodied carbon accounts for 20% of the lifecycle emissions).

Processor Purchase Server Technology Embodied Carbon Performance & Power Operational Carbon Carbon (g.CO2 /Score-Yr)

Year Count Node (KgCO2) PassMark TDP (W) Cores Threads (KgCO2) M O SCI

Xeon-Silver-4216 2020 59 14 24.15 20613 100 16 32 43.80 0.234 0.425 0.659

Xeon-Silver-4116 2019 109 14 21.18 14660 85 12 24 37.23 0.289 0.508 0.797

Xeon-E5-2640v4 2016 54 14 19.08 12472 90 10 20 39.42 0.194 0.632 0.826

Xeon-E5-2640v3 2015 65 22 19.36 11118 90 8 16 39.42 0.183 0.709 0.892

Xeon-E5-2650v2 2014 36 22 09.44 9866 95 8 16 41.61 0.096 0.844 0.939

Xeon-E5-2620-v4 2017 30 14 13.47 9193 85 8 16 37.23 0.209 0.810 1.019

Xeon-Gold-6326 2021 68 10 101.0 35270 185 16 32 81.03 0.573 0.459 1.032

Xeon-E5640 2012 47 32 11.39 3782 80 4 8 35.04 0.251 1.853 2.104

Xeon-E5620 2010 52 32 12.71 3590 80 4 8 35.04 0.253 1.952 2.205

Xeon-E5-2609-v2 2014 22 22 10.49 3369 80 4 4 35.04 0.312 2.080 2.392

Xeon-X5647 2012 82 32 13.45 4441 130 4 8 56.94 0.253 2.564 2.818

Xeon-E5520 2010 25 45 12.12 2524 80 4 8 35.04 0.343 2.777 3.120

Xeon-E5410 2008 43 65 11.75 2007 80 4 4 35.04 0.365 3.492 3.857

Xeon-E5335 2007 28 65 13.45 1549 80 4 4 35.04 0.542 4.524 5.066

Xeon-E5310 2007 20 65 14.19 1306 80 4 4 35.04 0.639 5.366 6.005

Total – 740 – 17632.71 8261198 74045 6204 11956 – – – –

4 AN ACADEMIC DATACENTER STUDY

In the previous section, we used a simple example of two

servers to illustrate how di�erent metrics, server speci�ca-

tions, datacenter characteristics, and accounting practices

in�uence the sunk carbon fallacy. In this case study, we an-

alyze a real-world MIT academic datacenter that supports

scienti�c computing workloads [33, 34]. This study shows

that the sunk carbon fallacy is not limited to simple exam-

ples but also occurs in real-world datacenters with diverse

servers. Our analysis assumes that carbon-aware scheduling

minimizes the total cluster-level carbon footprint—embodied

and operational—when running jobs on available servers.

1 – Case Study Setup.We follow the setup from Section 3.2,

with some modi�cations. Table 4 details the servers’ speci-

�cations, which include 15 di�erent processor types across

740 servers, with an average server age of 9.5 years. The old-

est servers (E5310, E5335) are 17 years old, while the newest

(Gold-6326) are 3 years old. Only 31.9% of servers are less

than �ve years old. All processors are from Intel, using 64nm

to 10nm technology nodes. The processors’ embodied carbon

ranges from 9.44 KgCO2 to 101.0 KgCO2, with a total of 17,633

KgCO2. PassMark scores (multi-threaded) vary from 1306 for

the oldest (E5310) to 35,270 for the newest (Gold-6326), and

TDP values range from 80W (E5310) to 185W (Gold-6326).

We assume a server lifespan of 5 years. However, academic

clusters often keep servers operational beyond this due to fac-

tors beyond performance and cost. We use two approaches

to account for embodied carbon: 1) setting the embodied

carbon of servers older than �ve years to 0, and 2) amortiz-

ing embodied carbon over the server’s lifespan. We use the

second approach in Table 4, as setting it to 0 for older servers

would arti�cially in�ate the sunk carbon fallacy. We use a

dataset of 14 million jobs collected in 2016, from MGHPCC

cluster [4, 5], including information on job submission times,

end times, requested core, and memory. For comparable per-

formance across the heterogeneous machines, we normalize

the machines by thread count and create three virtual core

categories shown in Figure 6: VC1 includes 13.1% of threads

with a performance score of 250–500, VC2 includes 68.9%

of threads with a score of 550–700 (2×), and VC3 includes

18.2% of threads with a score of 750–1000 (3×). Since the

largest server in our case study datacenter has 32 threads,

we �lter out all jobs requiring more than 32 cores.

(

(

Figure 6: Normalized logical cores.

2 – Case Study Findings. 2 – Case Study Findings.

Table 4 presents the SCI values for servers sorted by as-

cending SCI, re�ecting their energy-e�cient ordering. For

instance, according to the SCI metric, Xeon-E5-2620-v4

would be selected over Xeon-Gold-6326, even though

the former has a 1.37× higher carbon footprint. While

Xeon-Gold-6326 is the second most energy-e�cient server,

it ranks 7th in SCI. Similar ine�ciencies occur, such as choos-

ing Xeon-E5-2620-v4 over Xeon-E5-2650-v2 due to lower

embodied carbon. If the embodied carbon of servers older

than �ve years is set to 0, the rankings shift even more, with

the three most e�cient servers—Silver-4216, Gold-6326,

and Silver-4116—ranked 2nd, 7th, and 4th, respectively.

Though seemingly minor, these ranking changes can sig-

ni�cantly increase the datacenter’s carbon footprint when

using SCI. We calculate the added carbon under SCI and

oSCI to evaluate the cluster-level impact. Jobs are placed on
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Figure 7: Embodied amor-

tized across the lifespan.
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Figure 8: Embodied amor-

tized in the �rst 5 years.

servers based on their submission time in a one-time place-

ment, mimicking long-running jobs that never �nish. Each

job requires a speci�c number of virtual cores, and multiple

jobs can share a server to avoid stranding resources. A trace

replay and placement simulation is beyond the scope.

Figure 7 and Figure 8 show the added carbon due to SCI

for two embodied carbon amortization approaches. In both

cases, using SCI increases the datacenter’s carbon footprint

by nearly 30%, driven by the use of energy-ine�cient servers.

Under the �rst amortization approach, added carbon exceeds

5% when datacenter utilization ranges from 27% to 78%, a

typical range for most datacenters. The second approach

leads to even higher added carbon (often above 10%) over a

wider utilization range of 13% to 80%. These results highlight

how small changes in server selection order can signi�cantly

impact the overall carbon footprint. This analysis also reveals

how SCI is susceptible to arbitrary choices in setting server

lifespan expectations. Given that the cluster utilization in our

job trace ranges from 40% to 80%, using SCI would result in

a carbon footprint increase of at least 15%. Notably, the �rst

amortization approach results in double-counting embodied

carbon, which is already accounted for in the initial 5 years.

5 IMPLICATIONS AND CONCLUSION
Next, we discuss the implications of using the three carbon-

based metrics in on-premise and cloud datacenters.

SCI quanti�es the total carbon footprint of a functional

unit by incorporating both operational and embodied emis-

sions. While SCI is intuitive and comprehensive, it is unsuit-

able for all decisions. The metric assumes that any increase

in a server’s embodied carbon must be o�set by an equal or

greater reduction in operational emissions for the server to

be favored over a reference. However, because embodied and

operational carbon occur on di�erent timescales, arbitrary

settings for server lifespan and embodied carbon account-

ing can distort this ratio. As shown in Figs. 4–8, varying

approaches to embodied carbon accounting and expected

lifespans can non-intuitively change operational carbon.

One key aspect of SCI is that it incentivizes using older

hardware, which often has a much lower embodied carbon

per performance score due to being built with older, less

energy-intensive technology.While advancements in smaller

technology nodes have increased performance per unit area,

they haven’t always improved energy e�ciency enough to

o�set the higher embodied carbon of newer servers. As

shown in Table 4, this can make older servers attractive,

especially once their embodied carbon has been amortized

over their expected lifespan. In the worst case, this leads

to older, less e�cient servers being used for base demand,

while newer, more e�cient servers are reserved for infre-

quent peaks. Although SCI encourages using older servers,

it inadvertently promotes a strategy where new servers are

purchased but not fully utilized until they age. While extend-

ing hardware life is important, relying on older servers for

base demand is not. Older hardware should be kept, but it

should only be used during peak demand. Using SCI to justify

increased operational carbon is counterproductive. Our anal-

ysis suggests that job scheduling should be decoupled from

procurement decisions. SCI can be useful for procurement

teams when replacing existing servers, helping them select

new servers with lower SCI values. However, purchasing

for new capabilities—such as supporting emerging work-

loads that require new hardware—should be SCI-agnostic.

Once new servers are procured, their embodied carbon has

occurred, and the focus should shift to operational carbon.

The uni�ed approach of tSCI simpli�es carbon cost alloca-

tion by aligning accounting and scheduling practices. How-

ever, due to variability in manufacturing processes, supply

chains, and data quality, the uncertainty surrounding embod-

ied carbon estimates makes it di�cult to rely on such metrics

for scheduling decisions. Introducing this uncertainty into

an otherwise precise operational carbon calculation can lead

to suboptimal prioritization. Also, as discussed in Section 3.2,

tracking and computing tSCI over time in large-scale infras-

tructures, like public clouds, introduces signi�cant overhead,

limiting its practicality for real-time scheduling.

oSCI is the most e�ective metric for carbon-aware sched-

uling, as operational carbon is the primary factor that can

be optimized, and hardware replacement decisions fall out-

side the scope of scheduling. Focusing on oSCI ensures that

scheduling decisions minimize operational emissions, which

is the only carbon cost that can be directly controlled after

procurement. Hardware replacement, which impacts embod-

ied carbon, should be handled separately from scheduling.

By using oSCI, both on-premise and cloud datacenters can re-

duce operational costs by selecting the most energy-e�cient

servers and avoiding the sunk carbon fallacy.
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