

1 **Empirical Investigation of the Effect of Anti-Price-Gouging Law on Post-Disaster**
2 **Reconstruction Wages**

3 Sooin Kim, M.ASCE¹, Mohsen Shahandashti, M.ASCE², and Mahmut Yasar³

4

5 ¹Assistant Professor, Division of Engineering Technology, Wayne State University, 4885 Fourth
6 Street, Detroit, MI 48201 (corresponding author). email: sooin.kim@wayne.edu

7 ²Associate Professor, Department of Civil Engineering, The University of Texas at Arlington, 416
8 S. Yates St., Arlington, TX 76010. email: mohsen@uta.edu

9 ³Professor, Department of Economics, The University of Texas at Arlington, 701 S. West Street,
10 Arlington, TX, 76019, Email: myasar@uta.edu

11

12 **ABSTRACT**

13 Anti-price-gouging laws are enforced by a disaster declaration to control reconstruction labor and
14 material costs in the wake of disasters. Reconstruction costs provide an important signal in the
15 post-disaster reconstruction resource market, enabling consumers, suppliers, and policymakers to
16 understand the post-disaster situations and prepare reconstruction strategies. However, the impact
17 of anti-price-gouging law on post-disaster reconstruction costs has not been examined in the
18 literature. The objective of this study is to investigate the effect of the anti-price-gouging law on
19 post-disaster reconstruction wages at the U.S. County level following major disasters declared by
20 the Federal Emergency Management Agency (FEMA). Panel data models with a difference-in-
21 differences (DID) specification were implemented to quantify the effect of the anti-price-gouging
22 law on post-disaster reconstruction wages. The DID specification was used to compare the pre and
23 post-changes in reconstruction wages in the U.S. counties subject to the state-level anti-price-
24 gouging law relative to the wages in the U.S. counties not subject to the law, controlling for
25 endogenous county-specific heterogeneities. It is found that the anti-price-gouging laws reduced
26 quarterly reconstruction wages by 2.5 percent in disaster-stricken counties. This finding indicates

27 the effectiveness of anti-price-gouging laws as a price control to mitigate post-disaster
28 reconstruction cost inflation. The U.S. counties subject to the anti-price-gouging law enforcement
29 have experienced less expensive reconstruction labor costs compared to the U.S. counties not
30 subject to the anti-price-gouging law enforcement. The findings of this research provide empirical
31 evidence about the function of anti-price-gouging laws as a reconstruction cost control and present
32 policy implications about the wage effect of anti-price-gouging laws in the post-disaster
33 reconstruction market.

34

35 **INTRODUCTION**

36 Price gouging occurs when retailers or other suppliers exploit surges in demand by
37 imposing excessively high prices on essential goods and services, typically following a disaster or
38 a state of emergency (Lee 2015). Thirty-seven states, along with Guam, Puerto Rico, the U.S.
39 Virgin Islands, and the District of Columbia, have established statutes or regulations against price
40 gouging during times of disaster or emergency as illustrated by Figure 1 (NCSL 2023; Warkentin
41 2021). Anti-price-gouging laws impose civil or criminal penalties for price gouging classified as
42 unfair or deceptive trade practices (Beatty et al. 2021).

43 Reconstruction resources often experience significant cost inflation due to a demand surge
44 following a disaster (Arneson et al. 2020; Kim and Shahandashti 2022b). Construction material
45 costs increased by as much as 30 percent in Louisiana after Hurricane Katrina struck
46 (Khodahemmati and Shahandashti 2020). Roofer wages in Miami inflated by 20 percent after the
47 2004 hurricane season in Florida (Hallegatte 2015). After Hurricanes Irma, Maria, and Harvey, the
48 residential roofing service costs increased by 41 percent more than the estimated cost in Puerto
49 Rico due to post-disaster roofer wage inflation (Arneson 2019). Construction labor costs have

50 inflated by approximately 10 percent due to a demand surge following weather-related disasters
51 (Ahmadi and Shahandashti 2020).

52 Reconstruction labor, which is one of the major resources for reconstruction, often
53 experiences drastic increase in cost because its supply is less flexible than the reconstruction
54 material supply in the wake of disasters (Felsenstein and Grinberger 2020; Kim et al. 2022a). Thus,
55 it is difficult to quickly adjust the amount of labor available to meet demand, resulting in higher
56 cost. Labor costs can account for around 50 percent of the total reconstruction costs in the
57 aftermath of disasters because commercial and residential construction is a highly labor-intensive
58 industry (Barbosa et al. 2017). Construction wages are frequently used as proxies for post-disaster
59 reconstruction costs (Farooghi et al. 2021). Therefore, examining and quantifying construction
60 wage fluctuations is crucial to better understand post-disaster reconstruction market situations and
61 prepare effective reconstruction strategies (Kim et al. 2022b).

62 Significant cost inflation following disasters can slow down the reconstruction process in
63 economically disadvantaged communities (Kim and Shahandashti 2022a; Peacock et al. 2022).
64 The construction cost inflation is often identified as a major cause of project delays (Gebrehiwet
65 and Luo 2017). When cumulative price increases surpass the limits set by insurance policies after
66 catastrophes, policyholders face delays in post-disaster repairs as they need to cover the additional
67 costs themselves (Döhrmann et al. 2017). The National Association of Home Builders has urged
68 the federal government to protect consumers from lumber price gouging, as affordable
69 construction materials are crucial for disaster recovery (Wallisch 2017). Rapp (2005) examined
70 anti-price-gouging laws and suggested that these laws could enhance economic efficiency by
71 tackling pricing failures. Oladosu (2022) pointed out that these laws could mitigate unwarranted
72 spikes in gasoline prices following hurricanes, which are not rooted in genuine market factors.

73 Warkentin (2021) emphasized the need for anti-price-gouging laws to protect consumers against
74 inflated and predatory prices during crises and emergencies. Chang et al. (2011) noted that price
75 controls following disasters can stabilize building material prices and streamline reconstruction
76 efforts in regions hit by earthquakes. Tarrant (2015) examined the deleterious impact of anti-price-
77 gouging laws on economic growth in hurricane-stricken coastal counties of the United States.

78 Anti-price-gouging laws have come into effect during a declared disaster or emergency to
79 address the price spikes of reconstruction resources and protect consumers from exorbitant pricing
80 (Tabe 2019). Although the effect and implications of anti-price-gouging laws have been discussed,
81 the effect of anti-price-gouging laws on post-disaster reconstruction costs as a price control have
82 yet to be elucidated. This study aims to examine whether state-level anti-price-gouging laws
83 function as a price control in the reconstruction labor market of the U.S. counties in the aftermath
84 of disasters.

85

86 **RESEARCH METHODOLOGY**

87 **Data Collection**

88 Construction wages are published quarterly at the U.S. county level by the U.S. Bureau of
89 Labor Statistics. Quarterly construction wages were collected for 3,579 counties in fifty U.S. states
90 and the District of Columbia for ten (10) years from 2013 to 2022. Table 1 summarizes the data
91 used in this study. All the major disasters declared by FEMA were collected to estimate and control
92 for the wage effect of disasters for 10 years, from 2013 to 2022. The number of employment and
93 establishment counts in the U.S. construction industry were included to monitor the changes in
94 construction wages and control confounding effects (Ahmadi and Shahandashti 2018; Barth and
95 Dale-Olsen 2011; Blanchflower and Oswald 1995; Green et al. 2021). The positive relationship

96 between employment and wages was found in the U.S. construction industry (Farooghi et al. 2020).
97 Also, a negative relationship between wages and establishment counts was examined in the
98 literature (Benmelech et al. 2022; Kim et al. 2022; Rinz 2022).

99

100 **Panel Data Models with a Difference-in-Differences (DID) Specification**

101 Panel data models with a DID specification were used to evaluate the impact of an anti-
102 price-gouging law on post-disaster county-level reconstruction wages in the U.S., as represented
103 by Eq. 1.

$$104 \ln WAGE_{it} = \beta_0 + \beta_1 APG_{it} DIS_{it} + \beta_2 APG_{it} + \beta_3 DIS_{it} + \beta_4 \log EMP_{it} + \beta_4 \log EST_{it} + \alpha_i + \\ 105 TREND + \varepsilon_{it} \quad \text{Eq. 1}$$

106 where $WAGE_{it}$ denotes the average weekly wages in the construction industry in county i and time
107 t ; APG_{it} is a dummy variable that is equal to one if county i at time t had an anti-price-gouging
108 state-level statute and zero otherwise; DIS_{it} is a dummy variable that is equal to one if county i at
109 time t experienced a major disaster declared by FEMA and zero otherwise; EMP_{it} is the number
110 of employees in the construction industry in county i and time t ; EST_{it} is the number of
111 establishments in the construction industry in county i and time t ; α_i is the unobservable time-
112 invariant county fixed effects; $TREND$ is a time trend variable, which starts at one in the first year
113 and hereafter increases by one each year, controlling for the time-specific common shocks or
114 institutional changes; ε_{it} is the time-varying idiosyncratic error; β_1 is the coefficient of interest,
115 which is an estimate of the effect of an anti-price-gouging law triggered by a major disaster
116 declaration on county-level construction wages in the counties subject to the law.

117 **Breusch-Pagan and Hausman Tests for Model Selection**

118 The Breusch-Pagan (1980) and Hausman tests (1978) were used to identify the appropriate
119 panel data model for the analysis. The Breusch-Pagan test was conducted to investigate whether
120 the unobservable time-invariant county-specific effects (α_i) exist. The null hypothesis of the
121 Breusch-Pagan test is that there are no time-invariant unobservable factors (i.e., $\text{var}(\alpha_i) = 0$). A
122 failure to reject the null hypothesis would support using the ordinary least squares (OLS)
123 regression.

124 However, if the null hypothesis of the Breusch-Pagan test is rejected, the Hausman test
125 should be implemented to determine whether the unobservable time-invariant county-specific
126 effects (α_i) are correlated with the independent variables. The null hypothesis of the Hausman test
127 is that the unobservable effects (α_i) are not correlated with the independent variables. If the null
128 hypothesis is rejected, it is recommended to use the fixed effects model instead of the random
129 effects model because the fixed effects model will yield unbiased and consistent estimates.
130 Otherwise, it is suggested to use the random effects model. When there is no correlation between
131 the unobservable effects (α_i) and independent variables, the random effects will produce both
132 consistent and efficient estimates.

133

134 **EMPIRICAL RESULTS**

135 Table 2 shows the descriptive statistics of the data. Over three thousand counties in fifty
136 U.S. states and the District of Columbia were covered in this study. Average weekly construction
137 wages decreased in the quarter when a disaster occurred. This statistic aligns with the finding in
138 previous studies that reconstruction wages would increase a quarter after a disaster occurred due
139 to an increase in reconstruction demand. This increase in wages was not seen in the quarter when

140 the disaster occurs. (Kim et al. 2022b). Also, the U.S. counties with anti-price-gouging laws
141 (APGL) have higher weekly construction wages on average than the counties without APGL.

142 Table 3 shows the results from the estimation of Eq. 1 using panel data models.

143 The results from all panel data models (i.e., pooled OLS, fixed effects, and random effects models)
144 show that the anti-price-gouging laws have a significantly negative impact on post-disaster
145 construction wages. According to the results from the fixed effects (FE) model, the anti-price-
146 gouging law triggered by FEMA's major disaster declaration has decreased county-level average
147 weekly construction wages by 2.5 percent. This indicates that the average weekly wages declined
148 by 2.5 percent in the U.S. counties where the anti-price-gouging law was triggered by a major
149 disaster declaration compared to the U.S. counties without the anti-price-gouging law in the post-
150 disaster recovery process. According to the pooled OLS model results, the negative effect of anti-
151 price-gouging laws on construction wages was 7.2 percent. According to the random effects (RE)
152 model results, anti-price-gouging laws have resulted in a decrease of 2.3 percent in construction
153 wages in the U.S. counties where major disasters were declared. The difference in estimates of the
154 effect of anti-price-gouging laws is likely attributed to unobservable county-specific factors that
155 are correlated with both wages and treatment variables. Since the pooled OLS model does not
156 control for county-specific heterogeneities, it can lead to biased treatment effects (Papke 1994;
157 Tesfaye and Tirivayi 2020). Although the RE model can control for county-specific time-invariant
158 unobservable factors, it assumes the unobservable factors do not correlate with the treatment
159 variable. Thus, the RE model can lead to biased and inconsistent estimates if the treatment
160 assignment is endogenous due to these unobservable factors. The FE model can control for the
161 endogeneity of the treatment variable due to time invariant unobservable factors and thus yields
162 unbiased estimates.

163 The results also show that disaster has a statistically significant positive effect on the
164 average weekly construction wages regardless of the existence of the anti-price-gouging law. The
165 disaster occurrence increased average weekly wages in the construction industry by 2.4 percent.
166 This result seems plausible because of the increasing reconstruction demand in the aftermath of a
167 disaster (Dikmen and Elias-Ozkan 2016). The positive relationship between employment and
168 wages in construction industry is statistically significant. This positive relationship between
169 employment and construction wages is consistent with the findings in the previous studies (Barth
170 and Dale-Olsen 2011; Blanchflower and Oswald 1995; Green et al. 2021). Establishment counts
171 in the U.S. construction industry show a statistically significant negative relationship with average
172 weekly construction wages. The findings in the previous studies explain that the increase in the
173 number of establishments representing the market supply can reduce wages (Barth and Dale-Olsen
174 2011; Benmelech et al. 2022).

175

176 **Results of the Breusch-Pagan Tests**

177 The null hypothesis of no individual effects was rejected according to the results of the
178 Breusch-Pagan tests in Table 4. In other words, statistically significant individual heterogeneities
179 exist among the county-level construction wage data. The null hypothesis of no individual fixed
180 effects was rejected at the one percent significance level. Therefore, the OLS estimator may not

181 provide a consistent estimate for the wage effect of anti-price-gouging laws under a cross-sectional
182 correlation between wages (Halunga et al. 2017).

183

184 **Results of the Hausman Test**

185 The results of the Hausman test rejected the null hypothesis that the independent variables
186 and fixed effects (α_i) are not correlated at the one percent significance level in Table 5. Therefore,
187 it is preferred to use the FE model to control for endogeneity due to county-specific heterogeneities.

188

189 **DISCUSSIONS OF RESULTS**

190 The negative wage effect of anti-price-gouging laws was found in this study. The economic
191 theory can explain the negative impact of anti-price-gouging laws on post-disaster reconstruction
192 wages, as illustrated in Figure 2. The anti-price-gouging law places a price ceiling on
193 reconstruction costs to regulate sudden cost inflation in the aftermath of disasters, as represented
194 by a red line in Figure 2. Construction market equilibrium before a disaster occurs is described by
195 Point 1. Disaster increases construction demand, moving the downward construction demand
196 curve to the right. Therefore, post-disaster construction market equilibrium is determined at Point
197 2 when no anti-price-gouging law enforcement exists. In the aftermath of disasters, the U.S.
198 counties without anti-price-gouging law (control group) at Point 2 are expected to experience an
199 increase in reconstruction costs compared to the pre-disaster construction market equilibrium (i.e.,
200 Point 1).

201 However, the anti-price-gouging law controls reconstruction costs by setting the maximum
202 reconstruction cost as described by the red line in Figure 2. Therefore, the U.S. counties under
203 anti-price-gouging law enforcement (treatment group) have a post-disaster market equilibrium at

204 Point 3. Post-disaster reconstruction wages are lower in the U.S. counties with the anti-price-
205 gouging laws compared to the U.S. counties without the anti-price-gouging law enforcement.
206 Shortly, point 1 in Figure 2 represents the pre-disaster construction market equilibrium. Point 2
207 illustrates the post-disaster construction market equilibrium for the control group (i.e., counties
208 without anti-price-gouging law), and Point 3 represents the post-disaster construction market
209 equilibrium for the treatment group (i.e., counties with anti-price-gouging law). Anti-price-
210 gouging law enforcement can mitigate reconstruction cost inflation by regulating the free market
211 prices in the post-disaster reconstruction market.

212 This study first investigated the effect of anti-price-gouging law triggered by emergencies
213 or disaster declarations on reconstruction wages in the disaster recovery process. The anti-price-
214 gouging laws were legislated in a majority of the states to protect consumers from exploitative
215 pricing practices in the wake of disasters, considering fairness or handling consumer anger (Jiang
216 et al. 2022). While the intent behind anti-price-gouging laws may be laudable, their impacts on the
217 reconstruction market require careful consideration. The findings of this study provide the policy
218 implications associated with these laws.

219 Anti-price-gouging laws are intended to shield consumers from exorbitant pricing during
220 times of emergency. By capping prices or setting limits on permissible price increases, these laws
221 aim to ensure that essential goods and services remain affordable and accessible to affected
222 communities. According to the results of this study, anti-price-gouging law successfully decreased
223 quarterly county-level construction wages following disasters in the United States, presenting its
224 effectiveness to control market prices in the construction industry.

225 Although the anti-price-gouging laws can address concerns about exploitative practices,
226 these laws do not necessarily ensure a smooth recovery process. One potential consequence of

227 anti-price-gouging laws is the risk of supply shortages. When businesses are unable to charge
228 higher prices to reflect increased costs, they may be discouraged from entering the reconstruction
229 market or may choose to allocate their limited supplies to other regions with more favorable pricing
230 conditions (Kim et al. 2023). This can exacerbate the scarcity of essential reconstruction resources
231 in disaster-affected areas, hindering the recovery process (Culpepper and Block 2008; Richards
232 2022; Wilson 2014).

233 Also, price controls imposed by anti-price-gouging laws can create distortions in the
234 market. By interfering with the market price signals of supply and demand, these laws can disrupt
235 the efficient allocation of resources. The consensus among economists highlights that anti-price-
236 gouging laws may result in misallocation, inefficiencies, and unintended consequences such as
237 black markets or the emergence of unregulated alternative markets with higher prices, disrupting
238 a post-disaster supply chain (Jiang et al. 2022).

239 It is crucial to balance protecting consumers and ensuring the smooth functioning of the
240 reconstruction market in the disaster recovery process. Policymakers need to recognize the
241 effectiveness and effect of anti-price-gouging laws in the post-disaster reconstruction process.
242 Rather than controlling a price which is a crucial signal about market situations, policymakers may
243 consider policies facilitating market supply, quickly rebuilding disrupted supply chains, and
244 promoting partnerships or collaborations to improve long-term supply chain resilience. For
245 example, governments can provide subsidies or incentives to increase the market supply in the
246 reconstruction resource market. The increased market supply can mitigate the reconstruction cost
247 inflation. Also, policymakers can encourage disaster insurance as a preemptive measure for
248 managing disaster risks and mitigating financial losses resulting from unexpected disasters. Last
249 but not least, partnership and collaboration with market players can discover more efficient and

250 faster disaster recovery strategies. For instance, public-private partnerships can expedite supply
251 chain restoration and secure long-term supply chain resilience by leveraging expertise, resources,
252 and funding from government entities and private sector stakeholders (Diehlmann et al. 2021).

253

254 CONCLUSIONS

255 Suppliers subject to anti-price-gouging laws or regulations cannot freely determine prices.
256 They can rather be penalized by the increasing litigation risks in the disaster recovery process.
257 Price increases after a disaster receive huge attention from the public and law enforcement. The
258 motivation for anti-price-gouging enforcement is to protect consumers from exorbitant pricing to
259 secure fairness and equity and address consumer anger and concerns (Jiang et al. 2022). However,
260 the effectiveness of anti-price-gouging laws regulating post-disaster reconstruction cost inflation
261 has not been thoroughly investigated. This paper examines the wage effect of anti-price-gouging
262 laws and presents empirical evidence at the U.S. national level. The study found that the anti-price-
263 gouging laws triggered by a major disaster declaration decreased county-level reconstruction
264 wages by 2.5 percent, achieving its purpose as a price cap.

265 Panel data models with a difference-in-differences (DID) specification were implemented
266 to quantify the wage effect of anti-price-gouging laws, comparing the wage differences between
267 the U.S. counties with anti-price-gouging laws triggered and those without the laws. The result
268 from all the estimators, including the pooled OLS, fixed effects, and random effects, consistently
269 showed that the anti-price-gouging laws reduced quarterly reconstruction wages in disaster-
270 stricken U.S. counties. In other words, anti-price-gouging laws accomplished their purpose,
271 placing a price ceiling in the post-disaster reconstruction labor market.

272 Most states (38 out of 51) regulate price gouging in the wake of disasters. Therefore, in
273 practice, it is possible that suppliers do not price-gouge against their self-interest because they
274 assume that price-gouging is illegal in the locations where the anti-price-gouging law is not
275 legislated. The study also identified time-invariant county-specific heterogeneities through
276 Breusch-Pagan tests, suggesting the use of fixed effects or random effects estimators to control for
277 such heterogeneities. The Hausman test favored the FE model, which provides unbiased and
278 consistent estimates while controlling for endogenous county-specific heterogeneities. **Future**
279 ~~research in this line of study can explore additional explanatory variables, such as the scale of a~~
280 ~~disaster or spatial proximity to affected communities. Moreover, further investigation into different~~
281 ~~disaster policies and legal interventions can add valuable insights for policymakers and decision-~~
282 ~~makers, enhancing strategies and processes for post-disaster reconstruction.~~

283

284 **DATA AVAILABILITY STATEMENT**

285 All data, models, or codes supporting this study's findings are available from the corresponding
286 author upon reasonable request.

287

288 **ACKNOWLEDGMENT**

289 This research is based upon work supported by the National Science Foundation under Grant No.
290 2155201.

291

292 **REFERENCES**

293 **List of Acts and Statutes**

294 NCSL, (National Conference of State Legislatures). 2023. “Price Gouging State Statutes.”
295 Retrieved July 10, 2023 (<https://www.ncsl.org/financial-services/price-gouging-state-statutes>).
296

297 **Works Cited**

298 Ahmadi Esfahani, Navid, and Mohsen Shahandashti. 2020. “Post-Hazard Labor Wage
299 Fluctuations: A Comparative Empirical Analysis among Different Sub-Sectors of the
300 U.S. Construction Sector.” *Journal of Financial Management of Property and
301 Construction* 25(3):313–30. doi: 10.1108/JFMPC-07-2019-0063.

302 Ahmadi, Navid, and Seyed Mohsen Shahandashti. 2018. “Role of Predisaster Construction
303 Market Conditions in Influencing Postdisaster Demand Surge.” *Natural Hazards Review*
304 19(3):04018010. doi: 10.1061/(ASCE)NH.1527-6996.0000296.

305 Arneson, Erin. 2019. “Construction Capacity and Residential Roofing Reconstruction after
306 Hurricanes in Texas and Puerto Rico.” in *55th ASC Annu. Int. Conf. Proceedings. Assoc.
307 Sch. Constr.*

308 Arneson, Erin, Amy Javernick-Will, Matthew Hallowell, and Ross Corotis. 2020. “Predicting
309 Postdisaster Residential Housing Reconstruction Based on Market Resources.” *Natural
310 Hazards Review* 21(1):04019010. doi: 10.1061/(ASCE)NH.1527-6996.0000339.

311 Barbosa, Filipe, Jonathan Woetzel, and Jan Mischke. 2017. *Reinventing Construction: A Route
312 of Higher Productivity*. McKinsey Global Institute.

313 Barth, Erling, and Harald Dale-Olsen. 2011. “Employer Size or Skill Group Size Effect on
314 Wages?” *ILR Review* 64(2):341–55.

315 Beatty, Timothy KM, Gabriel E. Lade, and Jay Shimshack. 2021. “Hurricanes and Gasoline
316 Price Gouging.” *Journal of the Association of Environmental and Resource Economists*
317 8(2):347–74.

318 Benmelech, Efraim, Nittai K. Bergman, and Hyunseob Kim. 2022. “Strong Employers and Weak
319 Employees How Does Employer Concentration Affect Wages?” *Journal of Human*
320 *Resources* 57(S):S200–250.

321 Blanchflower, David G., and Andrew J. Oswald. 1995. “An Introduction to the Wage Curve.”
322 *Journal of Economic Perspectives* 9(3):153–67. doi: 10.1257/jep.9.3.153.

323 Breusch, Trevor S., and Adrian R. Pagan. 1980. “The Lagrange Multiplier Test and Its
324 Applications to Model Specification in Econometrics.” *The Review of Economic Studies*
325 47(1):239–53.

326 Chang, Yan, Suzanne Wilkinson, David Brunsdon, Erica Seville, and Regan Potangaroa. 2011.
327 “An Integrated Approach: Managing Resources for Post-Disaster Reconstruction.”
328 *Disasters* 35(4):739–65. doi: 10.1111/j.1467-7717.2011.01240.x.

329 Culpepper, Dreda, and Walter Block. 2008. “Price Gouging in the Katrina Aftermath: Free
330 Markets at Work” edited by W. Block. *International Journal of Social Economics*
331 35(7):512–20. doi: 10.1108/03068290810886911.

332 Diehlmann, Florian, Markus Lüttenberg, Lotte Verdonck, Marcus Wiens, Alexander Zienau, and
333 Frank Schultmann. 2021. “Public-Private Collaborations in Emergency Logistics: A
334 Framework Based on Logistical and Game-Theoretical Concepts.” *Safety Science*
335 141:105301. doi: 10.1016/j.ssci.2021.105301.

336 Dikmen, Nese, and Soofia Tahira Elias-Ozkan. 2016. "Housing after Disaster: A Post Occupancy
337 Evaluation of a Reconstruction Project." *International Journal of Disaster Risk
338 Reduction* 19:167–78. doi: 10.1016/j.ijdrr.2016.08.020.

339 Döhrmann, David, Marc Görtler, and Martin Hibbeln. 2017. "Insured Loss Inflation: How
340 Natural Catastrophes Affect Reconstruction Costs: Insured Loss Inflation." *Journal of
341 Risk and Insurance* 84(3):851–79. doi: 10.1111/jori.12134.

342 Farooghi, Ferika, Navid Ahmadi, and Mohsen Shahandashti. 2020. "Quantifying Relationship
343 between Pre-Disaster Construction Market Conditions and Post-Disaster Construction
344 Labor Wage Fluctuations in the Gulf Coast Construction Industry." Pp. 812–22 in
345 *Construction Research Congress 2020*. American Society of Civil Engineers Reston, VA.

346 Farooghi, Ferika, Sirwan Shahooei, and Mohsen Shahandashti. 2021. "Examining the Effect of
347 Weather-Related Natural Disasters on Labor Wage Fluctuations in Transportation
348 Construction." Pp. 167–77 in *International Conference on Transportation and
349 Development 2021*.

350 Felsenstein, Daniel, and A. Yair Grinberger. 2020. "Cascading Effects of a Disaster on the Labor
351 Market over the Medium to Long Term." *International Journal of Disaster Risk
352 Reduction* 47:101524. doi: 10.1016/j.ijdrr.2020.101524.

353 Gebrehiwet, Tsegay, and Hanbin Luo. 2017. "Analysis of Delay Impact on Construction Project
354 Based on RII and Correlation Coefficient: Empirical Study." *Procedia Engineering*
355 196:366–74. doi: 10.1016/j.proeng.2017.07.212.

356 Green, Colin P., John S. Heywood, and Nikolaos Theodoropoulos. 2021. "Hierarchy and the
357 Employer Size Effect on Wages: Evidence from Britain." *Economica* 88(351):671–96.
358 doi: 10.1111/ecca.12364.

359 Hallegatte, Stephane. 2015. "The Indirect Cost of Natural Disasters and an Economic Definition
360 of Macroeconomic Resilience." *World Bank Policy Research Working Paper* (7357).

361 Halunga, Andreea G., Chris D. Orme, and Takashi Yamagata. 2017. "A Heteroskedasticity
362 Robust Breusch–Pagan Test for Contemporaneous Correlation in Dynamic Panel Data
363 Models." *Journal of Econometrics* 198(2):209–30.

364 Hausman, Jerry A. 1978. "Specification Tests in Econometrics." *Econometrica: Journal of the
365 Econometric Society* 1251–71.

366 Jiang, Bomin, Daniel Rigobon, and Roberto Rigobon. 2022. "From Just-in-Time, to Just-in-Case,
367 to Just-in-Worst-Case: Simple Models of a Global Supply Chain under Uncertain
368 Aggregate Shocks." *IMF Economic Review* 70(1):141–84. doi: 10.1057/s41308-021-
369 00148-2.

370 Khodahemmati, Niloufar, and Mohsen Shahandashti. 2020. "Diagnosis and Quantification of
371 Postdisaster Construction Material Cost Fluctuations." *Natural Hazards Review*
372 21(3):04020019. doi: 10.1061/(ASCE)NH.1527-6996.0000381.

373 Kim, Sooin, Chi-Young Choi, Mohsen Shahandashti, and Kyeong Rok Ryu. 2022. "Improving
374 Accuracy in Predicting City-Level Construction Cost Indices by Combining Linear
375 ARIMA and Nonlinear ANNs." *Journal of Management in Engineering* 38(2):04021093.
376 doi: 10.1061/(ASCE)ME.1943-5479.0001008.

377 Kim, Sooin, and Mohsen Shahandashti. 2022a. "Characterizing Relationship between Demand
378 Surge and Post-Disaster Reconstruction Capacity Considering Poverty Rates."

379 *International Journal of Disaster Risk Reduction* 76:103014. doi:
380 10.1016/j.ijdrr.2022.103014.

381 Kim, Sooin, and Mohsen Shahandashti. 2022b. "Diagnosing and Quantifying Post-Disaster Pipe
382 Material Cost Fluctuations." Pp. 185–95 in *Pipelines 2022*. Indianapolis, Indiana:
383 American Society of Civil Engineers.

384 Kim, Sooin, Mohsen Shahandashti, and Mahmut Yasar. 2023. "The Effect of Anti-price-gouging
385 Law on Disaster Recovery Speed: Evidence from Reconstruction in Virginia and
386 Maryland after Hurricane Sandy." *Natural Hazards Review*. doi:
387 10.1061/NHREFO/NHENG-1865.

388 Kim, Sooin, Mahmut Yasar, and Mohsen Shahandashti. 2022. "The Spatiotemporal Effect of
389 Disasters on Construction Wages: A Spatial Difference-in-Differences Analysis." *SSRN
390 Electronic Journal*. doi: 10.2139/ssrn.4292736.

391 Lee, Dwight R. 2015. "Making the Case against" Price Gouging" Laws: A Challenge and an
392 Opportunity." *The Independent Review* 19(4):583–98.

393 Oladosu, Gbadebo. 2022. "Bubbles in US Gasoline Prices: Assessing the Role of Hurricanes and
394 Anti–Price Gouging Laws." *Journal of Commodity Markets* 27:100219. doi:
395 10.1016/j.jcomm.2021.100219.

396 Papke, Leslie E. 1994. "Tax Policy and Urban Development." *Journal of Public Economics*
397 54(1):37–49. doi: 10.1016/0047-2727(94)90069-8.

398 Peacock, Walter Gillis, Shannon Van Zandt, Yang Zhang, and Wesley Highfield. 2022.

399 "Inequities in Long-Term Housing Recovery after Disasters: Journal of the American

400 Planning Association, 2014." Pp. 415–33 in *The Affordable Housing Reader*. Routledge.

401 Rapp, Geoffrey C. 2005. "Gouging: Terrorist Attacks, Hurricanes, and the Legal and Economic

402 Aspects of Post-Disaster Price Regulation." *Ky. LJ* 94:535.

403 Richards, Timothy J. 2022. "Agribusiness and Policy Failures." *Applied Economic Perspectives*

404 and Policy 44(1):350–63. doi: 10.1002/aapp.13205.

405 Rinz, Kevin. 2022. "Labor Market Concentration, Earnings, and Inequality." *Journal of Human*

406 *Resources* 57(S):S251–83.

407 Tabe, Kevin Mbeh. 2019. "Effect of Texas' Anti-price-gouging Law on Retail Gasoline Prices:

408 What Do We Know? What Can We Learn?" Northeastern University.

409 Tarrant, Michael Steven. 2015. "The Effects of Anti-price-gouging Laws in the Wake of a

410 Hurricane." Montana State University-Bozeman, College of Agriculture.

411 Tesfaye, Wondimagegn, and Nyasha Tirivayi. 2020. "Crop Diversity, Household Welfare and

412 Consumption Smoothing under Risk: Evidence from Rural Uganda." *World Development*

413 125:104686.

414 Wallisch, Sean. 2017. "NAHB Urges Feds to Watch for Price-Gouging--Especially for Lumber--

415 in Hurricane's Wake." *ProSales*. Retrieved September 27, 2022

416 (https://www.prosalesmagazine.com/news/nahb-urges-feds-to-watch-for-price-gouging--especially-for-lumber-in-hurricanes-wake_o).

418 Warkentin, Spencer. 2021. "Price Gouging in the Time of COVID-19: How US Anti-price-
419 gouging Laws Fail Consumers." *Md. J. Int'l L.* 36:78.

420 Wilson, Debra. 2014. "Price Gouging, Construction Cartels or Repair Monopolies: Competition
421 Law Issues Following Natural Disasters." *Canterbury L. Rev.* 20:53.

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441 **Table 1. Data Collection**

<i>Data</i>	<i>Frequency</i>	<i>Level</i>	<i>Period</i>	<i>Source</i>
<i>Dependent variable</i>				
Construction Wages	Quarterly	County-level	Q1 2013 – Q4 2022	Bureau of Labor Statistics
<i>Independent variables</i>				
Anti-price-gouging Law	-	County-level	2013 – 2022	National Conference of State Legislatures
Disaster Occurrence	Daily	County-level	Jan 1, 2013 – Dec 31, 2022	FEMA
<i>Control variables</i>				
Employment	Quarterly	County-level	Q1 2013 – Q4 2022	Bureau of Labor Statistics
Establishment Count	Quarterly	County-level	Q1 2013 – Q4 2022	Bureau of Labor Statistics

442

443

444

445

446

447

448

449

450

451

452

453

454 **Table 2. Descriptive Statistics**

<i>Descriptive statistics</i>	<i>All</i>	<i>Counties with APGL</i>	<i>Counties without APGL</i>
Number of states (including the District of Columbia) in the sample data	51	38	13
Number of counties in the sample data	3,579	2,943	636
Number of the pre-disaster sample data	128,144	106,296	21,848
Number of the post-disaster sample data	10,691	8,879	1,812
<i>Mean (Dollars):</i>			
Average weekly construction wages in the quarter that a disaster did not occur	847.59	857.91	797.35
Average weekly construction wages in the quarter that a disaster occurred	810.43	822.76	750.02

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470 **Table 3. Impact of the anti-price-gouging law on construction wages: Difference in**
 471 **Differences Approach with county-level panel data**

<i>Data</i>	<i>Dependent Variable: ln(Average Weekly Construction Wages)</i>		
Variables	Pooled OLS	FE (Fixed effects)	RE (Random effects)
$APG_{it} * DIS_{it}$	-0.072*** (0.019)	-0.025** (0.011)	-0.023** (0.011)
APG_{it}	-0.138*** (0.005)	-0.011 (0.016)	-0.071*** (0.015)
DIS_{it}	0.047** (0.019)	0.024** (0.010)	0.021** (0.010)
$\log(EMP_{it})$	0.982*** (0.001)	0.989*** (0.001)	0.988*** (0.001)
$\log(EST_{it})$	-0.842*** (0.001)	-0.243*** (0.010)	-0.682*** (0.005)
Constant	3.296*** (0.013)	0.454*** (0.046)	2.479** (0.028)
Time Trend Variable	Yes	Yes	Yes
Observations	138,835	138,835	138,835
R-squared	0.88	0.89	0.88
Number of Counties	3,579	3,579	3,579

472 Notes: Robust standard errors in parentheses.

473 *** p<0.01, ** p<0.05, * p<0.1

474

475

476

477

478

479 **Table 4. Results of the Breusch-Pagan Test**

Breusch-Pagan Test	Chi-squared statistics	p-value
Cook–Weisberg test for heteroskedasticity	166,025.41 (1)	0.00

480 Notes: The number in parenthesis represents a degree of freedom.

481

482 **Table 5. Results of the Hausman Test**

Hausman Test	Chi-square statistic	<i>p</i>-value
fixed effects vs. random effects	2817.88 (43)	0.00

483 Notes: The number in parenthesis represents a degree of freedom.

484

485