Check for
Updates

TailClipper: Reducing Tail Response Time of
Distributed Services Through System-Wide Scheduling

Nathan Ng Abel Souza Ahmed Ali-Eldin
University of Massachusetts University of California Santa Chalmers University of
Amberst Cruz Technology
kwanhong@cs.umass.edu absouza@ucsc.edu ahmed.hassan@chalmers.se
David Irwin Don Towsley Prashant Shenoy
University of Massachusetts University of Massachusetts University of Massachusetts
Ambherst Ambherst Ambherst
irwin@ecs.umass.edu towsley@cs.umass.edu shenoy@cs.umass.edu
ABSTRACT CCS CONCEPTS
Reducing tail latency has become a crucial issue for opti- « Software and its engineering — Scheduling; - Com-
mizing the performance of online cloud services and dis- puter systems organization — Cloud computing.

tributed applications. In distributed applications, there are
many causes of high end-to-end tail latency, including oper- KEYWORDS
ating system delays, request re-ordering due to fan-out/fan-
in, and network congestion. Although recent research has
focused on reducing tail latency for individual application
components, such as by replicating requests and scheduling,

Cloud computing, scheduling, tail latency reduction

ACM Reference Format:
Nathan Ng, Abel Souza, Ahmed Ali-Eldin, David Irwin, Don

in this paper. we areue for a holistic approach for reducin Towsley, and Prashant Shenoy. 2024. TailClipper: Reducing Tail Re-
papet, & PP 8 sponse Time of Distributed Services Through System-Wide Schedul-

the end-to-end .tall 'latency across application components. ing. In ACM Symposium on Cloud Computing (SoCC *24), November
We propose TailClipper, a distributed scheduler that tags 20-22, 2024, Redmond, WA, USA. ACM, New York, NY, USA, 17 pages.
each arriving request with an arrival timestamp, and propa- https://doi.org/10.1145/3698038.3698554

gates it across the microservices’ call chain. TailClipper then
uses arrival timestamps to implement an oldest request first
scheduler that combines global first-come first serve with a

1 INTRODUCTION

limited form of processor sharing to reduce end-to-end tail Today’s cloud platforms run on a plethora of distributed web
latency. In doing so, TailClipper can counter the performance services in domains such as finance, news, and entertainment.
degradation caused by request reordering in multi-tiered and Many modern distributed services employ a containerized
microservices-based applications. We implement TailClipper microservices architecture, where application functionality
as a userspace Linux scheduler and evaluate it using cloud is partitioned into independent containerized services that
workload traces and a real-world microservices application. interact with each other via well-defined interfaces (e.g.,
Compared to state-of-the-art schedulers, our experiments REST or gRPC). In contrast to traditional multi-tiered web
reveal that TailClipper improves the 99" percentile response applications that consist of a few tiers, microservices-based
time by up to 81%, while also improving the mean response applications can consist of tens or hundreds of modular com-
time and the system throughput by up to 54% and 29% re- ponents [52], and requests need to undergo processing at
spectively under high loads. numerous stages to complete execution. This modular de-

sign enables the independent development and deployment
of each microservice component, allowing them to scale
individually based on workload demands.
BY Optimizing the tail latency of requests is one of the key
This work is licensed under a Creative Commons Attribution International issues in enhancing the performance of distributed web ser-
4.0 License. i vices. Studies have highlighted that high tail latency can sig-
SoCC °24, November 20-22, 2024, Redmond, WA, USA . .
© 2024 Copyright held by the owner/author(s). nificantly increase customer abandonment rate [2, 11, 29, 33].
ACM ISBN 979-8-4007-1286-9/24/11. For example, one study found that even small increases
https://doi.org/10.1145/3698038.3698554 in response times can cause a one percent reduction in e-
commerce sales [2]. One of the major causes of high tail

398

SoCC 24, November 20-22, 2024, Redmond, WA, USA

latency is the complexity of modern software and hardware
stacks in distributed applications. Scheduling delays [31],
garbage collection [47], energy optimizations [45], and the
execution of background tasks [11] can all cause significant
and random delays in the execution of a request, leading to
requests being served orders of magnitude slower than the
average [31]. Distributed applications exacerbate the prob-
lem since requests need to go through multiple microservices
(or tiers) to complete execution, increasing the likelihood of
encountering the above delays. Additionally, straggler prob-
lems can occur because request processing times can vary
across different microservices.

Various approaches have been proposed to minimize the
high tail latencies seen during request processing. One ap-
proach involves dedicating a CPU core to handle network
interrupts or core re-allocations [31, 36]. Another approach
is a modern version of the Borrowed Virtual Time (BVT)
scheduler, which reduces tail latency by incorporating real-
time priorities to prioritize requests that have been in the
system for an extended period of time [30]. Furthermore,
hardware virtualization techniques have been introduced to
minimize context switch overhead, enabling efficient round-
robin scheduling to prevent starvation of short requests [25].
In addition, prior work has proposed replicating requests to
mitigate the high tail latency caused by stragglers [19, 46].

Notably, the extensive prior work on this topic has largely
focused on optimizing the tail latency of individual appli-
cation components and has not addressed the end-to-end
tail latency problem seen in distributed applications, where
requests require processing by multiple components. How-
ever, techniques that independently optimize tail latency for
each application component do not fully address distributed
request processing effects across components that can re-
sult in high end-to-end tail latencies. Specifically, local tail
latency reduction techniques at a component do not have
visibility into how much time each request has spent in the
system since its arrival. Consequently, schedulers at later
components are unable to compensate for longer delays or
greater processing overheads incurred at earlier components
and thus are likely to incur long end-to-end tail latencies.
Moreover, requests may be reordered during end-to-end pro-
cessing, with recent requests arriving at a particular compo-
nent before older requests—an effect caused by variability
in request processing times at early components and non-
determinism in OS schedulers. Such request reordering can
cause old requests that incur long processing times to fall
behind in their overall progress, potentially increasing their
overall tail latencies. Addressing both of these factors re-
quires knowledge of the system-level arrival time of each
request and techniques to prioritize the scheduling of older
requests over more recent ones at each component. While
such end-to-end system-wide scheduling has been studied

399

Nathan Ng, Abel Souza, Ahmed Ali-Eldin, David Irwin, Don Towsley, and Prashant Shenoy

for batch processing of DAG computations [4, 48], it remains
relatively unexplored for latency-sensitive online services.
Motivated by these observations, this paper presents Tail-
Clipper, a distributed scheduler that implements an end-to-
end approach for minimizing the tail latency of distributed
cloud applications. In designing, implementing, and evaluat-
ing TailClipper, our paper makes the following contributions.

¢ TailClipper provides visibility into the total time spent
by each request since its arrival by timestamping each
incoming request with its system arrival time. This
timestamp, which we refer to as the global arrival time
(GAT), is then propagated horizontally—along the mi-
croservices call chain—and vertically—from microser-
vice requests to the thread serving the request and to
the OS scheduler.

e TailClipper employs a new OS scheduling approach to
minimize the end-to-end tail latency that is inspired
by queueing theory. Specifically, TailClipper employs
Oldest Request First (ORF) scheduling that schedules
requests based on their GAT tags and prioritizes older
requests in the scheduler run queue over more recent
ones. Since ORF is a type of global FCFS policy (gFCFS)
and FCFS policies cause starvation of short requests,
especially when the requests have heavy-tailed distri-
butions, we combine ORF’s global FCFS with a limited
processor sharing (LPS) policy that uses fine-grain
time slices to avoid starvation. TailClipper’s hybrid
gFCFS-LPS ORF scheduler is inspired by queueing the-
ory results that show that global FCFS is optimal for
light-tailed workloads, while processor sharing is pre-
ferred for heavy-tailed workloads.

e We implement a prototype of TailClipper using ghOSt,
a userspace Linux scheduling framework that en-
ables delegation of kernel scheduling policies to
userspace [23]. We open source our implementation
and evaluate it against the ghOSt implementation
of Shinjuku (Shinjuku-gh) [25] and Linux CFS (CFS-
gh) [37], two commonly deployed scheduling policies
that only consider local information. Our experiments
use a mix of synthetic workloads, cluster workload
traces [32], and a real-world image classification ap-
plication. Our results show that TailClipper improves
upon Shinjuku-gh by up to 81% in tail latency, 54%
in mean latency, and 29% in throughput under high
loads.

2 BACKGROUND

This section presents background on distributed web ap-
plications, tail latency reduction techniques, and request
reordering problems that arise during distributed request
processing.

TailClipper: Reducing Tail Response Time Through System-Wide Scheduling

2.1 Distributed Web Applications

Modern web services that run on cloud platforms employ
a distributed architecture comprising multiple tiers or com-
ponents. A traditional multi-tiered application consists of
a front-end HTTP tier, a middle tier comprising the busi-
ness logic, and a back-end database tier [44, 52]. To further
improve flexibility and scalability, web applications now in-
creasingly adopt a microservices approach, where the busi-
ness logic and data tiers are split into a number of smaller,
interacting components. In both cases, incoming requests
undergo processing by some subset of the application compo-
nents — requests are partially processed by each component
in the processing path and forwarded to the next tier. Re-
quest processing may also involve fan-outs and fork-joins
across application components [2, 15]. The total end-to-end
response time seen by a request is the sum of all processing
and queuing delays across all components along a call chain
path.

2.2 Tail Latency Reduction

There has been a wealth of research on optimizing the av-
erage response time of web requests using methods such
as horizontal and vertical scaling, request scheduling, and
the use of caches such as memcached [17, 31]. More recent
work has emphasized tail latency reduction since it has been
shown to strongly correlate with user satisfaction [11, 29].
For this reason, typical service level objectives (SLO) for web
applications are often specified in terms of a bound on the
tail of the response time distribution, e.g., a threshold bound
on the 99" percentile (P99) of response times. In the case of
microservices or multi-tiered web applications, the chance
of a request incurring a high latency increases due to the
presence of multiple components—a performance bottleneck
at any component can cause high end-to-end tail latencies.
Typical performance pitfalls in microservices [11] include
transient workload spikes, network bottlenecks caused by
workload spikes, queuing delays in the OS, and application-
level delays due to, e.g., garbage collection [47].

As noted in §1, prior work has proposed many techniques
for reducing the tail latency of web services. OS-level tech-
niques include the use of a dedicated core to handle net-
work interrupts [36], core reallocations [31], and the use of
real-time priorities to implement fair scheduling [30]. Ad-
ditionally, cluster scheduling techniques such as the use of
redundant requests for straggler mitigation [19, 46] have
been proposed. Recent work has also incorporated higher-
level application context into scheduling decisions for tail
latency [3, 18, 36]. One recent example is Shinjuku [3], which
is designed to reduce tail latencies through a custom schedul-
ing policy. Shinjuku achieves up to 6.6X higher throughput
and 88% lower tail latency, leading to significant performance

400

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Arrival order Core 1 Arrival order Core 1

Component | Component 2

(a) Service time variability introduces reordering.

OS Interrupts

U0C)~

Arrival order Core 1 Arrival order Core 1
i e = ot =

Core 2

Component 1 Component 2

(b) OS interrupts create non-determinism.

Figure 1: Two reasons that can cause request reordering
in distributed services.

improvements. Shenango [36] and Caladan [18] both take a
systems approach and allocate a set of cores to applications,
and as workload changes, core reallocations are triggered
across applications. As noted earlier, these approaches fo-
cus on tail latency reduction at a single node or at a single
application component.

2.3 Request Reordering

Consider a distributed application that consists of multiple
components such as tiers or microservices. Request process-
ing in such applications involves a sequence of k components
that execute each request, with each component performing
some partial processing before handing the request to the
next component in the path. Different requests may incur dif-
ferent processing times at each component or take different
processing paths.

As such, the nature of distributed processing makes re-
quests more susceptible to tail latency issues. One key source
of increased tail latency is request reordering—a phenome-
non where later arriving requests jump ahead of requests
that arrived before them at some stage in the request pro-
cessing path, which increases the queuing delay and the
overall latency incurred by such requests [31]. Request re-
ordering across components occurs for two reasons. First,
when the request processing demand varies across requests,
requests with shorter processing times will rapidly complete

SoCC 24, November 20-22, 2024, Redmond, WA, USA

execution at one component and proceed to the next one,
while those with longer processing times will spend more
time at that component and fall behind. A natural conse-
quence of requests with greater processing demands is that
they take longer to complete; if they also incur longer queu-
ing delays during their execution, this can also impact their
tail latencies. This is depicted in Figure 1a, which shows a
two-component application serving a mix of long and short
requests. The example shows an arrival order at the first
component consisting of a long request with a 10 ms service
time, followed by ten short requests each with a 1 ms service
time. In a two-core system with FCFS scheduling, the ten
short requests will finish before the long request, resulting in
a different arrival order at the second component as shown.
The reordering can potentially increase the queuing time
seen by the long request at the second component, impacting
its end-to-end response time. Importantly, such reordering
occurs even when the scheduler uses time slicing, as is the
case in modern operating systems. For example, if the sys-
tem in Figure la uses round-robin time slicing with 1 ms
time slices, the arrival order at the second component will
be similar to the FCFS case.

Second, OS scheduler non-determinism can also introduce
reordering effects. As another example, if requests have equal
processing demands and arrive in a deterministic fashion,
OS scheduler non-determinism can introduce small reorder-
ing effects at a downstream component. This is depicted in
Figure 1b where two requests with identical 10 ms service
times arrive at the same instant and are serviced using the
two cores using 1 ms time slices. However, scheduler non-
determinism, due to factors such as the need to process OS
interrupts caused by I/O, network and memory operations,
cache misses, and system calls can cause the requests to
arrive out of order at the next component. Our empirical
results discussed next reveal that request reordering arises
even with simple deterministic workloads, and is exacer-
bated in more complex distributions prevalent in real-world
applications.

To demonstrate request reordering in practice, we con-
ducted an experiment with three microservices arranged in
a sequential chain. In this experiment, all requests arrive at
the first microservice and are processed by each of the three
components before departing from the third microservice.
We assume that each service runs on a separate 3-core server
and that requests are processed in First-Come First-Served
(FCFS) order by executing each request on the next available
core on each machine. Figure 2 then shows the percentage
of requests that are reordered, i.e., requests with completion
orders that deviate from the ideal completion order where
requests can execute upon arrival without queueing delay,
as well as the 99" percentile of request slowdown, defined

401

Nathan Ng, Abel Souza, Ahmed Ali-Eldin, David Irwin, Don Towsley, and Prashant Shenoy

--- Fixed =4F- Exp =-V- Bimodal
X 100 500
on %;&B-E H
£ 80 M oo £ 400
5 H e
2 60 o o 2 300
5 g o [
2 40 % 200
7])| [*N
2 20 E’,e"a 2 100
jon E’
(0} n-g—
x 0 T T T T T T
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Request rate (RPS) Request rate (RPS)
() (b)

Figure 2: (a) Request reordering percentage and (b) P99
slowdown with local-FCFS scheduling. All service time
distributions have a mean of 5 ms.

as the ratio of a request’s end-to-end latency, including the
processing delay on each microservice and network delay
between microservices, to its total service time among all
tiers.

In Figure 2, requests are processed following three dif-
ferent service time distributions: fixed, exponential, and bi-
modal, all with a mean of 5 ms. Even when all requests
impose identical processing demands of 5 ms at each tier,
FCFS processing results in 40% reordering at a rate of 300
requests per second. This is primarily due to scheduler non-
determinism from processing background kernel tasks (e.g.,
network and memory operations) on each machine. Request
reordering worsens when requests at each tier are of unequal
lengths, as shown by the exponential and bimodal distribu-
tions, where the exponential distribution has a mean of 5 ms,
and the bimodal distribution has 99% of requests with expo-
nential service times of 4 ms and the remaining 1% have a
mean of 100 ms. As shown, the percentage of request reorder-
ing increases compared to fixed-length requests, and so does
the P99 slowdown for all requests due to request reordering.
Although not shown here, similar reordering effects were
seen in processor sharing (i.e., time-sliced) systems.

2.4 Queuing Theory Foundations

The design of TailClipper is inspired by theoretical results
from queueing theory. Queueing theory research has math-
ematically analyzed systems where requests undergo pro-
cessing by multiple components using a network of queues
approach [5]. While many closed-form results exist for mean
response times seen in these systems under different work-
load distributions, tail response times remain more challeng-
ing to analyze. An early result from the early 1990s [43]
showed that a global FCFS policy, where each component
schedules requests in FCFS order based on their system-wide
arrival time (rather than arrivals at the current component),
minimizes variance in response time over all other policies.

TailClipper: Reducing Tail Response Time Through System-Wide Scheduling

Since minimizing variance in response time also reduces tail
latency, this result inspires the use of global arrival times-
tamps and the oldest request first scheduler presented in
Section 3. We note, however, that this classical querying
theory result only holds for the case that non-preemptive
schedulers are used at each component. When workloads are
heavy-tailed, further improvements can be obtained through
time slicing, a class of preemptive policy. Intuitively, FCFS-
based schedulers can increase waiting times in the presence
of heavy-tailed requests, since executing long requests causes
short requests to wait, increasing their wait times. For long,
OS schedulers have used time slicing, also known as proces-
sor sharing, to avoid such issues. Recent queueing theory
results confirm this practice and show that processor shar-
ing is an optimal approach for heavy-tailed workloads [41],
with the caveat that the theoretical result was shown for a
single queue (a single component) and has not been gener-
alized to a network of queues scenario. Nevertheless, our
empirical results in Section 5.1 show the benefits of proces-
sor sharing for handling heavy-tailed requests in distributed
applications with multiple components. Since real-world sys-
tems can experience a range of workloads—light, medium,
and heavy-tailed—these theory results inspire our overall
systems approach of combining global FCFS with a form
of processor sharing to achieve good tail latency behavior
under a range of workload scenarios.

3 TAILCLIPPER DESIGN

This section presents the design of our TailClipper system.
TailClipper’s design consists of two key components. First, it
provides visibility into how much time requests have spent
in the system since their arrival. This is done by attaching
an arrival timestamp to each request and propagating this
timestamp across components traversed by the request. Sec-
ond, TailClipper employs a queueing theory-inspired Oldest
Request First (ORF) scheduler that combines arrival-based
FCFS with limited processor sharing to reduce end-to-end
tail latencies. We describe our design of these TailClipper
components below.

3.1 Global Arrival Time Timestamping

To provide visibility into request arrival times, TailClipper
timestamps each incoming request with a global arrival time
(GAT) tag. These timestamps are propagated horizontally
and vertically as follows. First, distributed applications in
TailClipper are assumed to consist of numerous microser-
vices, and overall request processing involves each compo-
nent along the call chain making (one or more) independent
requests to the next downstream component [29]. Hence, the
arrival timestamp is propagated to all downstream compo-
nents during request processing. Second, each microservice

402

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

is assumed to dispatch requests to threads in its own thread
pool, which are then scheduled by the OS CPU scheduler.
The arrival timestamp information should also be propagated
down to the OS thread servicing each request in order to
enforce the ORF policy.

Suppose that g denotes the time at which a request enters
the system (global time, GAT). The local arrival time (LAT) at
component i, denoted by I, is the time at which the request
arrives at that component. The age of the request — the
total time spent by the request since its arrival - is (¢t — g),
where ¢ is the current time. Thus, when the request arrives at
component i, its age is (/; — g). Older requests are those with
greater age values of (¢ — g) and need to be prioritized over
newer ones. Finally, if d is the departure time of the request
— the time when it completes execution — the end-to-end
response time is (d — g).

TailClipper attaches the GAT tag g to the request at the
system entry point (e.g., the load balancer or the frontend
microservice). This is done by including g in the request
headers and is transparent to the application. TailClipper
is designed to support many request types such as HTTP
and RPCs. The GAT tag is propagated along the call chain
sequence by copying it from the current local request to the
next one as it completes processing at a component. Impor-
tantly, TailClipper makes the GAT tag visible to the thread
servicing a request, which enables the underlying CPU sched-
uler to employ these tags when making scheduling decisions.
Once a request completes execution through the call chain,
a response is sent to the client after removing the GAT tag
from the reply.

Conceptually, TailClipper divides the end-to-end system
into two domains — a GAT domain and a non-GAT domain.
Horizontally, the non-GAT domain consists of all nodes
(clients, switches) that handle the request until it reaches
the server running the load balancer or the first component
where the GAT is generated. Nodes beyond this point are part
of the GAT domain. On each server node, only threads that
have access to GAT tags are part of the GAT domain. Other
applications, background processes, and kernel threads are
part of the non-GAT domains and are handled by the default
OS scheduler as usual. We next describe TailClipper’s ORF
scheduler designed for scheduling threads using GAT tags.

3.2 Oldest Request First (ORF) Scheduling

TailClipper’s Oldest Request First (ORF) scheduler is de-
signed to reduce tail latencies experienced by requests in the
system across its entire call chain. The novelty of its ORF
scheduler lies in three aspects. First, ORF is designed to min-
imize end-to-end tail latency rather than latency at the local
component level. Second, ORF combines global FCFS with a

SoCC 24, November 20-22, 2024, Redmond, WA, USA

(2]
l’ /\
i 0 () @)1 u s

O

Figure 3: TailClipper Design — Despite arriving later
than all other requests €, TailClipper prioritizes t; by
placing it at the head of the queue due to its oldest GAT
@, resulting in the rearrangement of the previously
c-th oldest requests t; @ and in the limited proces-
sor sharing (c = 4). Younger requests are subsequently
sorted at the end of the queue @.

SrmT

Waiting Requests
Sorted by GAT

Limited Processor Sharing
Queue with size ¢

limited processor sharing (LPS) policy to provide robust la-
tency performance across a wide range of workloads. Third,
ORF uses a tunable parameter that enables performance fine-
tuning in different settings.

At its core, ORF is a global FCFS scheduler (gFCFS) that
prioritizes requests based on their age (i.e., lower GATs). Tail-
Clipper requires two input parameters: 1. the GAT of each
request, and 2. a configurable parameter ¢, which controls
the concurrency degree. TailClipper propagates a request’s
GAT tag to the thread servicing that request, ensuring that
threads are added to the scheduler run queue in GAT order.
This approach allows the OS scheduler of each component
to service requests in their arrival order to the system, effec-
tively implementing global FCFS. This is depicted in Figure
3, showing threads in the run queue ordered by their age
(i.e., GAT tags). However, as is well known, any FCFS sched-
uler is vulnerable to starvation issues since a thread serving
long requests can delay or starve other queued threads [13].
Consequently, ORF combines global FCFS with time slicing,
where the first ¢ threads in the queue are serviced using
round-robin processor sharing. We refer to this approach as
limited processor sharing (LPS) and, as noted in §2.4, such
a policy works well for heavy-tailed workloads with a mix
of long and short requests [34]. In TailClipper’s LPS, ¢ is
a configurable system parameter that provides a balance
between gFCFS and processor sharing. If ¢ is set to 1, ORF
degenerates to pure gFCFS which is optimal for light-tailed
workloads, while ¢ = oo turns ORF into a pure PS (round-
robin) scheduler. Typically, TailClipper uses small values of
¢ (e.g., ¢ = 5) to prevent starvation while ensuring priority
for older requests at the head of the run queue. In Section
5.5, we will evaluate how different settings of ¢ affect the
system performance. This hybrid gFCFS-LPS policy provides
a good balance between reducing tail latencies and avoiding
starvation [13, 34, 43].

403

Nathan Ng, Abel Souza, Ahmed Ali-Eldin, David Irwin, Don Towsley, and Prashant Shenoy

4 TAILCLIPPER IMPLEMENTATION

We now discuss the implementation of TailClipper and its
scheduling logic, which combines gFCFS and LPS to enforce
the ORF policy (§3.2). We have implemented a prototype of
TailClipper in C++ using 1200 SLOC, and the source code is
publicly available!.

Scheduling Framework TailClipper’s implementation is
tightly integrated with the Operating System (OS) scheduler,
using thread-level information to make decisions according
to the ORF policy. Our TailClipper prototype is implemented
using ghOSt, a Linux framework from Google that enables
the delegation of kernel scheduling decisions to userspace
applications [23]. We utilize ghOSt due to its comprehensive
and lightweight API that provides efficient mechanisms to
directly adjust and control the kernel’s scheduling policy. In
addition, ghOSt ensures a fair comparison of different poli-
cies, including baselines, since all strategies are subject to
the same environmental overheads, e.g., context switch, ker-
nel optimizations, etc. Applications process requests using
ghOSt threads, a wrapper around native Linux threads. The
scheduling of ghOSt threads is controlled by a user-defined
scheduler, i.e., TailClipper.

TailClipper Applications To implement ORF scheduling,
TailClipper requires visibility into the system arrival times
of requests. The system entry point (e.g., load balancer) en-
codes the request arrival time into the request header (e.g.,
HTTP header), and this information is propagated along the
microservice call chain. If multiple entry points exist, they
need to be time-synchronized to maintain a consistent global
arrival order. Another option is to use a logical clock to main-
tain the request arrival order across multiple entry points.
Importantly, other than the entry points, servers hosting
microservices do not need to be time-synchronized, as the
system arrival times in the request headers are sufficient to
locally order requests in system arrival order.

GAT Tags When a request arrives at a microservice, TailClip-
per extracts the GAT from its header and processes it using
a ghOSt thread selected from a pool (thread pool model) or
created on the fly (thread-per-request model). TailClipper
utilizes ghOSt APIs to propagate its GAT to the ORF sched-
uler through a small memory buffer. After completing local
processing, the request may still need to undergo processing
at several other tiers to complete execution. To propagate
the GAT along the call chain sequence, all child requests
to downstream components inherit the GAT of the parent
request. The same GAT is encoded in the request header of
child requests so that the following tiers can adhere to the
OREF policy.

Thttps://github.com/umassos/TailClipper

TailClipper: Reducing Tail Response Time Through System-Wide Scheduling

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

~
(¢}
S
i OPOPU einsert()
w Phdial N
! ‘ ~ .
: 0 GAT () Round-Robin pop () R
. tyg Queue of size 3 o)/ Vot . Round-Robin
o000 Q o Lo) Quene ofsize
oinsert (O VI 17183 hle
t)ttt
System Y- __ .’ .
entry point einsert () \ ‘a"r‘e'move 0
Min-heap Min-heap
sorted by GAT sorted by GAT
(a) Tier-1 (b) Tier-2

Figure 4: Example of the scheduling logic of a two-tier distributed application using TailClipper. For simplicity,
each tier is deployed on a one-core server. TailClipper employs a min-heap and a round-robin queue to collectively

implement the ORF policy.

Algorithm 1 TailClipper’s ORF Scheduling Logic

Require: Q;r,Qpeqp // Round-robin queue and min-heap
1: procedure SCHEDULEROUND()
2: for p € {CPU;q41.} do

3: pi — Qpr.p0p () // Assign threads to idle CPUs
4: for Thread t,p € {CPUy;s;} do // Thread per CPU
5: if time (t;) > CPUygjice then
6: // t; exceeds time slice, reset its time and swap
with a new thread from the round-robin
queue
7: t; « reset(t;)
8: er — er Ut
9: L PiHer'pop()
10: if length(Q,,) < c then
11: // Insert oldest thread from heap into round-robin
queue
12: [Qheap .pop ()
13: Qrr — Qrr UL
14: else if length(Q,;) > c then
15: // Insert (¢ + 1)-th oldest thread from the round-
robin queue back into the heap
16: t «— Qr.pop ()
17: Qheap — Qheap Ut

TailClipper ORF Scheduling To implement the Oldest
Request First scheduler using ghOSt, TailClipper employs
two primary data structures that collectively implement LPS
while also minimizing request reordering with global FCFS.
These structures consist of a binary min-heap and a round-
robin queue for efficient request scheduling. The round-robin
queue holds a subset of the c-th oldest requests that share
processing time, while the min-heap sorts all other requests

404

based on their GAT. TailClipper dynamically determines
which requests from the min-heap enter or exit the round-
robin queue, prioritizing older requests to prevent prolonged
queuing time while enforcing that only ¢ requests multiplex
the processor. Additionally, ¢ can be dynamically adjusted
by modifying the size of the round-robin queue, allowing
for flexible control over the degree of concurrency. In the
following, we outline the corresponding actions performed
by the scheduler when the kernel notifies it with a thread
update message. Here, references to threads denote ghOSt
threads, which are managed by TailClipper or other ghOSt
schedulers.

When TailClipper is notified of the creation of a new
thread, it decides whether to insert it into the round-robin
queue or the min-heap. TailClipper first compares the new
thread’s GAT with the youngest thread’s GAT in the round-
robin queue. If the new thread has a younger GAT, TailClip-
per inserts it into the min-heap since the new thread has a
lower priority. Otherwise, TailClipper inserts the new thread
into the round-robin queue to prioritize it, as it has one of
the ¢ youngest GATs. After adding the new thread to the
round-robin queue, the scheduler may need to remove one
thread from the CPU-sharing pool to ensure only ¢ threads
are allocated CPU time. If the pool size is larger than c, Tail-
Clipper checks whether the youngest thread in the pool is
in the round-robin queue or currently running. If it is in the
queue, the scheduler removes it from the queue and inserts
it back into the min-heap. On the other hand, if the thread is
running, the scheduler temporarily allows a violation of the
¢ constraint. It waits for the youngest thread to be preempted
in the next scheduling round and then inserts it back into
the min-heap.

SoCC 24, November 20-22, 2024, Redmond, WA, USA

As discussed in previous sections, a running thread may be
preempted by threads in a higher-priority scheduling class
or during I/O operations. When TailClipper is notified by the
kernel about a thread preemption, it resets the time slice of
the thread and adds the preempted thread back to the round-
robin queue since the request has the c-th oldest GAT. In the
case that a thread completes processing, TailClipper pops
the next thread in the round-robin queue and assigns it to
the available CPU. Subsequently, the scheduler retrieves the
request with the oldest GAT from the min-heap and inserts
it into the round-robin queue to maintain the ¢ constraint.
Scheduling round Algorithm 1 outlines TailClipper’s
scheduling logic. In each scheduling round, TailClipper first
assigns threads from the round-robin queue to idle CPUs
(Lines 2-3). Then, it implements limited processor sharing
by checking whether the running threads’ time slices exceed
the preemption interval (Line 4). If a thread’s slice expires,
TailClipper preempts it, resets the slice, and moves it to the
back of the queue (Lines 5-8). Subsequently, it schedules a
thread from the queue to that CPU (Line 9). After evaluating
the time slices of all running threads, TailClipper ensures
the size of the round-robin queue remains within c. If the
pool size exceeds c, it removes the youngest thread from the
queue and inserts it into the min-heap (Lines 10-13). Con-
versely, if the pool size is below ¢, TailClipper inserts the
thread with the smallest GAT from the min-heap into the
round-robin queue (Lines 14-17).

Workflow Figure 4 provides a walk-through example of re-
quest scheduling in a two-tier application, with the workflow
stages denoted by numbered bullet points. For simplicity, sup-
pose each tier has one worker CPU. In tier-1 (Figure 4a), the
application first decodes the GAT from the request header,
creates a ghOSt thread to process the request, and propa-
gates the GAT of the thread down to TailClipper . Upon
receiving the notification of a new thread creation from the
kernel, TailClipper compares the new thread’s GAT to the
largest GAT in the round-robin queue to check if it was re-
ordered. If it has a larger GAT, indicating that it’s younger
than all threads in the round-robin queue, TailClipper inserts
it into the min-heap @. Meanwhile, TailClipper performs
limited processor sharing by sharing the CPU time slice
among threads in the round-robin queue. When a thread’s
time slice ends, TailClipper preempts it, resets the slice, and
moves it to the back of the queue @). Then, it assigns the
next thread in the queue to the CPU for processing @. Once
a thread (e.g., t3) completes its processing at tier-1, the appli-
cation sends the subsequent request together with its GAT
is passed to tier-2. Concurrently, TailClipper removes the
thread with the smallest GAT from the min-heap and adds
it to the round-robin queue @ to maintain a queue size of
c. Once the request arrives at tier-2, the scheduler performs
a similar procedure to check the new thread’s GAT. If the

405

Nathan Ng, Abel Souza, Ahmed Ali-Eldin, David Irwin, Don Towsley, and Prashant Shenoy

thread has been reordered, TailClipper directly inserts the
new thread into the round-robin queue @. It then removes
the youngest thread from the queue and inserts it into the
min-heap if the updated queue size exceeds c @.

5 EXPERIMENTAL EVALUATION

This section presents the results of our experimental evalua-
tion. We compare TailClipper to two state-of-the-art sched-
uling policies — Shinjuku and Linux’s Completely Fair Sched-
uler — using a real application, a production cluster workload,
and a parameterized synthetic workload. In all workloads,
we use P99 latency as one of the primary metrics to evaluate
the performance of these scheduling policies.

5.1 Experimental Setup

Scheduling policies In addition to TailClipper, we em-
ploy two scheduling policies provided by ghOSt [20] for our
experiments. Specifically, we use ghOSt-provided implemen-
tations of Shinjuku and CFS to ensure all scheduling policies
share the same system and hardware optimization features
provided by the framework (§4). We denote these policies as
Shinjuku-gh and CFS-gh to distinguish them from their native
kernel implementations. Shinjuku-gh [25] employs a round-
robin scheduler with a centralized queue for all worker cores.
Both TailClipper and Shinjuku-gh use a centralized model
where a dedicated CPU is responsible for communicating
with the kernel and making scheduling decisions. CFS-gh is
based on Linux’s default scheduler [37]. It guarantees a mini-
mum CPU time for each request before potential preemption
within a predefined interval. Different from TailClipper and
Shinjuku-gh, CFS-gh uses a decentralized model in which
each CPU is responsible for the scheduling decisions of its
own thread pool. For TailClipper and Shinjuku-gh, the sched-
uler’s preemption interval is set to 30 pusec, consistent with
previous work [23, 25]. For CFS-gh, we use the default 1 ms
minimum run time and 10 ms guarantee interval provided
in the original ghOSt implementation. We configure Tail-
Clipper to allow 6 requests to share the CPUs (i.e., ¢ = 6) by
default.

Infrastructure Our setup comprises five machines: one
client machine that hosts the workload generator, one server
that hosts the distributed system entry point, and three
servers each hosting one microservice tier. Each machine has
two 16-core Intel Xeon 2.1GHz processors, 64GB of DRAM,
and runs Linux kernel version 5.11 with ghOSt kernel (v70)
patches applied [20]. We use an open loop workload gen-
erator that supports both trace replay as well as synthetic
request generation. The entry point maintains an “infinite”
admission queue and limits the number of requests within
the distributed application to 200 to prevent system satura-
tion [9]. Upon receiving a request, the entry point uses the

TailClipper: Reducing Tail Response Time Through System-Wide Scheduling

current timestamp as the request’s GAT and encodes this
arrival information into the request header. Subsequently,
the entry point forwards the request to the first microser-
vice tier. Each microservice tier decodes the GAT from the
request header and processes the request using one thread,
which is managed by the userspace scheduler designated at
runtime. After that, a component of TailClipper on behalf of
the application sets the GAT for the corresponding thread in
a shared memory region accessible to the kernel to propagate
this information down to the scheduler. Upon completion,
the microservice forwards the request together with its GAT
in the request header to the subsequent microservice tier
over TCP. Finally, the request is returned along the original
path to the workload generator (client), where its latency is
measured. Each microservice is allocated three worker cores
by default.

Workloads We use a parameterized synthetic workload, a
production cluster workload, and a real application to com-
pare TailClipper against state-of-the-art scheduling policies.

The synthetic workload generates requests that require
processing by three microservices sequentially, a typical
depth in real-world applications [32]. At the time of request
generation, the workload generator sets the request’s pro-
cessing demand (service time) for each tier by sampling from
a target distribution. Specifically?, we use a light-tailed ex-
ponential distribution with a mean service time of 10 ms, a
heavy-tailed log-normal distribution with a mean of 10 ms
and a standard deviation of 100 ms, and a trimodal distri-
bution with three modes (5 ms, 50 ms, and 100 ms) with an
overall mean of 10 ms. Each request executes an idle loop to
emulate the service time specified in the request.

The production cluster workload consists of the publicly
available Alibaba microservices workload trace collected
from their production clusters in 2021 [32]. The trace pro-
vides detailed runtime metrics of microservice requests, such
as the series of microservice calls of a request (i.e., call chain
sequence) and the response time of each microservice call.
We replay two common call chains by setting the reported
response times as request processing demands at the work-
load generator. Each call chain exhibits distinct service time
distributions across the tiers as shown in Figures 7(a) and 7(c).
This workload trace allows us to study how each scheduling
policy performs under real-world scenarios.

5.2 Real-world Application Performance

To assess the performance of the schedulers in a real-world
application, we build an image processing application using

2Light-tailed distributions exhibit probabilities with tails that decay at an
exponential rate, while heavy-tailed distributions are not bound by expo-
nential decay.

406

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

304 BN Tier 1: = 18.3,0=208
~~ Tier 2: U =246.6, 0 = 65.6
S
220
=
£
e 101
A
0 — ,‘.‘”‘,‘H,H‘,“H,“‘,‘ . — —
0 100 200 300 400 500

Service time (ms)

Figure 5: Service time distributions of the image pre-
processing microservice and the image classification
microservice.

the opencv_dnn module in OpenCV 4.9 [7]. This applica-
tion comprises two microservices: (i) an image preprocessing
microservice and (ii) an image classification microservice.
The image preprocessing microservice invokes the OpenCV
median blur () [8] to reduce the noise in a given im-
age, using its output as the input of the subsequent tier.
Subsequently, the image classification microservice predicts
the image class using the pre-trained GoogLeNet network
from the Caffe model zoo [24]. Here, tail latencies arise from
varying input complexities. For example, the content of the
images can affect the processing demand during the median
blur operation, leading to variations in preprocessing time.
We sequentially processed inputs through the application to
measure latency at each stage and show the magnitude of
their tail latencies in Figure 5.

Each client transmits a randomly selected image of 1 MB
from a Flicker dataset [35] to the application entry point via
TCP. The entry point timestamps the request with the local
time to generate the GAT, encodes it into the request header,
and forwards the request to the first tier. Upon receiving
a request, the first tier decodes the request’s GAT, spawns
a thread to preprocess the image, and assigns the thread’s
GAT accordingly. The scheduler of the microservice then
schedules the threads based on its scheduling logic (e.g., Tail-
Clipper, CFS-gh, etc.). Once processing is completed at the
first tier, the intermediate result, along with the request’s
GAT, is transmitted to the second tier, where image classifica-
tion takes place in a similar workflow. Finally, the predicted
image class is returned to the client along the original path.

Figure 6 compares Shinjuku-gh, CFS-gh, and TailClipper
under varying image processing request loads. Figure 6a
shows the P99 latency using the three scheduling policies
as a function of requests per second (RPS). Due to the high
variance in processing demand at the first stage, requests

SoCC 24, November 20-22, 2024, Redmond, WA, USA

<oEd-+-- CFS-gh -++<€}+-+ Shinjuku-gh -=--©-- TailClipper]
. X
7)3000 wlOO EOe8
g & 0° = 75 R
22000 i s
5 é 5 50 g i
g L g o S0
— 1000 &6 <] o
=N .@;@'0"] 25] o
g 8‘ g] DA @8
0 T T T T T M 0
2 4 6 8 10 0 2 4 6 8 10
Request rate (RPS) Request rate (RPS)
() (b)

Figure 6: Comparing scheduling policies with (a) P99
latency and (b) request reordering % using image pro-
cessing pipeline workload.

may arrive out of order at the second stage, leading to pro-
longed queueing delays. By effectively minimizing request
reordering across all RPS values as shown in Figure 6b, Tail-
Clipper consistently outperforms CFS-gh and Shinjuku-gh
under moderate and high loads. Specifically, under moderate
load (RPS = 4), TailClipper reduces the P99 latency by up to
29% compared to Shinjuku-gh and CFS-gh. When the system
is near saturation (RPS = 7), TailClipper also outperforms
Shinjuku-gh and CFS-gh, achieving up to 24% lower P99
latency.

Key Takeaway When subject to real workloads, TailClip-
per outperforms state-of-the-art schedulers under moderate
and high loads by effectively accounting for request reorder-

ing effects.

5.3 Comparing TailClipper with Baselines

We then study the performance of the three scheduling poli-
cies under an existing cluster workload by replaying the
Alibaba microservice traces. Figure 7 shows the service time
distributions of the call chains and compares the P99 latency
of all policies.

Figure 7a presents the service time distribution of each
tier in the first call chain, where the first tier (Tier-1) approx-
imately follows a normal distribution with a mean of 9 ms,
the second tier (Tier-2) has a mean of 5 ms and a standard
deviation of 4 ms, and the third tier’s (Tier-3) service times
lie within 0.5 to 1 ms. For this call chain sequence, request
reordering occurs in both Tier-1 and Tier-2 as the process-
ing demands in both tiers vary among requests, potentially
resulting in prolonged queueing delays for older requests
in Tier-2 and Tier-3. Figure 7b shows that as TailClipper
prioritizes older requests by employing the ORF policy, it

407

Nathan Ng, Abel Souza, Ahmed Ali-Eldin, David Irwin, Don Towsley, and Prashant Shenoy

[----Ei---- CFS-gh +-+<)---+ Shinjuku-gh ----©---+ TailClipper
1000
;\;60 BN Tier-1: 4=93,0=56 E
= Tier-2: 4= 5.0,0=4.0 g 750 H H
E40 BN Tier-3:u=07,0=05 E 0 é
= 5 500 PP
2 3 Pid
S 20 >~ 250 $6 o :
=z N g 00
0 - 0 ?@$? T T T
0 10 20 30 40 100 200 300 400 500 600
Service time (ms) Request rate (RPS)
() (b)
1000
$ 60 . Tierlp=210=19 g _
‘; Tier-2: =105, 0=2238 ;
g 40 B Tier-3:u=09,0=04 % 500 P
520 > 2504 &8 4
= 2 8eedo
0 10 20 30 40 100 200 300 400 500 600
Service time (ms) Request rate (RPS)
(0 (d)

Figure 7: Comparing scheduling policies with P99 la-
tency (right) using traces of Alibaba microservice call
chains with different service time distributions (left):
(a)-(b): Call chain 1; (c)-(d): Call chain 2;

yields a 52% reduction in the P99 latency when compared to
Shinjuku-gh under a moderate load of 300 RPS.

Figures 7c and 7d present the second call chain, charac-
terized by low processing demands for Tier-1 and Tier-3,
while Tier-2 follows a bimodal distribution with the two
modes peaking at 4 ms and 35 ms. Although request reorder-
ing may occur in Tier-2, TailClipper demonstrates a smaller
performance improvement over Shinjuku-gh compared to
the previous call chain. This is due to the small variability
in processing demands at Tier-1, resulting in unnoticeable
delays observed by reordered requests at Tier-2. In addition,
processing demands in Tier-3 are low, which prevents any
queue buildup. While older requests may undergo reordering
after being processed by Tier-2, the impact on queuing delay
in Tier-3 remains minimal. Consequently, latency reduction
due to prioritizing old requests has little impact on overall
latency, and TailClipper only brings a 9% improvement under
low load (RPS = 200) compared to Shinjuku-gh.

Key Takeaway The higher the amount of reordering, the
more pronounced the effects on the tail latency. Under a
cluster workload, TailClipper demonstrates superior perfor-
mance compared to Shinjuku-gh and CFS-gh by minimizing
request reorderings across application components.

TailClipper: Reducing Tail Response Time Through System-Wide Scheduling

5.4 Impact of Light and Heavy-tailed
Workloads

Next, we study the performance of schedulers using syn-
thetic workloads with a more diverse and controlled set of
scenarios. Figure 8 compares TailClipper against Shinjuku-
gh and CFS-gh using four service time distributions - fixed,
light-tailed, heavy-tailed, and trimodal workloads. To as-
sess how effectively each scheduling policy prioritizes older

requests to mitigate tail latency, we report the request re-
ordering percentage observed in these experiments. This

metric represents the fraction of requests whose completion

order deviates from an “ideal” completion order, which as-
sumes unlimited resources across all tiers such that requests

would immediately execute upon arrival without any queu-
ing delay. Figure 8 presents the P99 latency across different

request rates for each workload in the left column and their

corresponding request reordering percentages in the right

column.

Fixed workload Figure 8a shows latency results obtained

for the fixed distribution when requests execute for 10 ms

at each tier. Importantly, Figure 8b illustrates that, although

service times remain constant and theoretically should not
cause request reordering, non-deterministic factors in the

operating system, such as background tasks, preempt threads

executing requests, can lead to request reordering. As aresult,
both Shinjuku-gh and CFS-gh exhibit high request reorder-
ing percentages, and the P99 latency exceeds 1s when the

request rate exceeds 450 RPS. On the other hand, despite such
non-determinism, TailClipper demonstrates a more stable

control of the tail compared to Shinjuku-gh and CFS-gh even
when the system is nearing saturation, surpassing the one-
second mark only when the RPS exceeds 600. The improved
performance is attributed to TailClipper’s effective mitiga-
tion of request reordering percentage, which only reaches
up to 25% across all request rates.

Light- and Heavy-tailed workloads Figures 8c and 8d
report results for a light-tailed exponential distribution work-
load, which incurs additional request reordering compared
to the fixed service time workload. At moderate load (RPS =
400), TailClipper improves upon Shinjuku-gh by up to 81% in
P99 latency. By suppressing request reordering (Figure 8d),
TailClipper can also achieve the lowest P99 latency under
high loads (RPS > 400). Figure 8e shows the tail latencies
for a heavy-tailed log-normal distribution workload, where
requests with greater processing demands are more com-
mon. Consequently, when older requests are reordered, their
queuing delays might be prolonged because preceding re-
quests could be longer. In such scenarios, the performance
improvements from using TailClipper intensify as it prior-
itizes older requests. As a result, TailClipper surpasses the

408

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

[----Ei---- CFS-gh - Shinjuku-gh -~ Tailcupper]
1000 : A : S 100 &= B-E-8-0
Z ¢ & g
Ko B : =
~ 70 : : 57 G 2000
8 500 i 8 504 & 2
s : ® o 2 &
_1 - o ; .
2 250 g 2578 & coo
= o 5580@006 8 o] ag800 0
0 200 400 600 0 200 400 600
Request rate (RPS) Request rate (RPS)

(a) Fixed latency.

(b) Fixed reordering.

X

~ 1000 o : <, 100 ERCACAZa=RELE
2 g g 009@
= 750 ; o o 5 75 R
g P k= 2! & g
3 500 — @ g 504 o ©
3 poi 7 o -0
> 250 — g 25 o
2 3858008009 g, 68°

0 200 400 600 < 0 200 400 600

Request rate (RPS) Request rate (RPS)
(c) Exp latency. (d) Exp reordering.
X

~ 1000 : <, 100 BEE
: By ? S0
= 750 : § 5 751 o ¢ 0
? :E| : H -g 0 ..,D
85004 5 &0 g g 509 ; ©e
5 . 180go®e T d8 49
o 250 g 25 Go
g g 0 o

T T T 1 T T T 1

0 200 400 600 ~ 0 200 400 600

Request rate (RPS)

(e) Log—normal latency.

Request rate (RPS)

(f) Log—-normal reordering.

1000 ; 2,100 e EEeD
g P £ A 000
= 750 :¢ é 575 oo
5::’ : g 5 N Q]
8 500 ; <> o 3 504 5 o
= 250 . 7 254% ¢.°
o b]
g 55000@ ¢ % 0‘6:@"0
0
200 400 600 = 0 200 400 600
Request rate (RPS) Request rate (RPS)

(g) Trimodal latency.

(h) Trimodal reordering.

Figure 8: Comparing scheduling policies with P99 la-
tency (left) and request reordering % (right) using syn-
thetic workloads with different service time distribu-
tions: (a)-(b), Fixed(10); (c)-(d): Exp(10); (e)-(f): Log-
normal(10,100); (g)-(h): Trimodal(90-5,9-50,1-100).

SoCC 24, November 20-22, 2024, Redmond, WA, USA

-:-H-++ CFS-gh ---<---+ Shinjuku-gh -*-*©---- TailClipper
= 1000 = 1000
E E
> 750 > 750
Q Q
g g
< 500 < 500
2 2
£ 250 £ 250
3 3
= 3 & S0 =R B o
0 200 400 600 0 200 400 600
Request rate (RPS) Request rate (RPS)
(a) Fixed (b) Exp
2 1000 : : 2 1000
g P g
= 750 = 750
g Poo g
O = H H D =
&§ 500 £ 500
2 & 2
g 250 i g 250
5] F9 5]
= loss. =) 3 8.0 00
0 200 400 600 0 200 400 600

Request rate (RPS)

Request rate (RPS)

(¢) Log—-normal (d) Trimodal

Figure 9: Mean latencies under different service time
distributions: (a) Fixed(10), (b) Exp(10), (c) Log-
normal(10,100), and (d) Trimodal(90-5,9-50,1-100).

1s tail latency target only when the request rate exceeds 400
RPS, sustaining 1.6X more load than that of Shinjuku-gh.

Trimodal workload In a more complex setting, Figures
8g and 8h show results for a trimodal distribution workload
consisting of requests with three possible processing demand
distributions at each tier. Such a workload mimics scenarios
in which the microservice threads have to perform different
functionalities, such as local cache lookup, data transforma-
tion, and I/O operations. With a more distinct set of request
lengths, where 10% of the requests have medium (50 ms) and
high (100 ms) processing demands, reordered requests are
more likely to experience long queueing delays (Figure 8h).
By prioritizing older requests while preventing starvation
through LPS, Figure 8g shows TailClipper reduces the P99
latency by 76% compared to Shinjuku-gh under a 1s target.
Mean latency and throughput Figure 9 reports the mean
latency of the three scheduling policies under a workload
with exponentially distributed service time. Overall, we ob-
serve that TailClipper exhibits the lowest mean latency under
high loads (RPS > 350), whereas CFS-gh exhibits the high-
est mean latency. Specifically, for the Exp workload shown
in Figure 9b, at RPS = 250, TailClipper can achieve up to
11% lower mean latency than Shinjuku-gh. At RPS = 350,

409

Nathan Ng, Abel Souza, Ahmed Ali-Eldin, David Irwin, Don Towsley, and Prashant Shenoy

[- CFS-gh® Shinjuku-ghB®& TailClipper

Throughput

100

. sxed wxp et " modal

1,09 T
Service time distribution

_not

Figure 10: Systems throughputs under the correspond-
ing distributions.

TailClipper reduces mean latency by up to 54% compared to
Shinjuku-gh. Figure 10 compares the throughput achieved
under each service time distribution with a request rate of
600 RPS. We observe that TailClipper exhibits the highest
throughput for all workloads tested, 29% more compared to
Shinjuku-gh and up to 2.2X more compared to CFS-gh.

The improvements in mean latency and throughput under
high loads can be attributed to TailClipper’s limited CPU
sharing strategy, which contrasts with the unlimited shar-
ing strategy in Shinjuku-gh. In TailClipper, only a limited
number of the oldest requests share CPU time at any given
moment, while in Shinjuku-gh, all requests share CPU time
uniformly. As a result, Shinjuku-gh is more susceptible to
performance degradation, as a higher number of threads shar-
ing the CPU can lead to more context switches, particularly
under high job loads. Conversely, TailClipper’s approach
of limiting the number of requests sharing the CPUs helps
mitigate this overhead, resulting in lower mean latency and
higher throughput under high loads.

Long request-dominated workload Figure 11 exam-
ines how scheduling policies perform under a long request-
dominated workload. We use a bimodal workload where
99% of requests have a service time of 100 ms, while the
remaining 1% have a service time of 10 ms. Figure 11a shows
that TailClipper can achieve up to a 17% decrease in tail
latency compared to Shinjuku-gh under a moderate load
(RPS = 20). One potential drawback of employing TailClip-
per is that when TailClipper prioritizes a subset of the long
requests, short requests can be temporarily delayed behind
long-running requests, which results in starvation. Figure
11b focuses on requests with the least 1% of total service
time (i.e., short requests) to study this effect. We find that
although TailClipper increases P99 latency for short requests
under moderate loads (RPS < 36), this does not affect overall
P99 latency, which is predominantly influenced by the long

TailClipper: Reducing Tail Response Time Through System-Wide Scheduling

[E CFS-gh -+<)- Shinjuku-gh O TailClipper|

N
=)
g
o

2 A 2 lfﬂ
16T % Z 16 ?
512 e
g5l P X ; ;
33084 $ 0 2308 £ s o
=y 3 : RN A
2 0.4-p.0:9:9:8-2C 5804 Bro-ogied
0.0 T T T T 7 0.0 RAIAOI T T
16 32 48 64 16 32 48 64
Request rate (RPS) Request rate (RPS)
(a) (b)

Figure 11: Comparing scheduling policies with (a) over-
all P99 latency and (b) the P99 latency of requests with
the smallest 1% total service time under a long requests-
dominated workload- Bimodal(99-100,1-10).

[..g.. €=3 @ =6 Qs C=8 Qe C=12]
1000+ (op 600
E B -~
5 0 P 2 400
Q - s =
§ 5004+ o 2
E * "g 2004
o 2504 F g6 =
2 “Vigggoooot
0 T T T 0-
200 400 600 3 6 8 12
Request rate (RPS) c
(a) (b)

Figure 12: Comparing variations of TailClipper with
(a) P99 latency and (b) throughput under a multimodal
workload- Trimodal(90-5,10-50,1-100).

requests dominating the workload. Under high loads (RPS
> 44), TailClipper outperforms Shinjuku-gh for both overall
and short request-only P99 latency.

Key Takeaway Request reordering occurs even under sim-
ple scenarios with constant loads. TailClipper consistently
reduces the P99 latency over state-of-the-art scheduling poli-
cies across a wide range of workloads.

5.5 Performance and Sensitivity Analysis

Effect of limited processing sharing Figure 12 varies
the limited processing sharing size ¢ for a Trimodal(90-
5,10-50,1-100) workload. In Figure 12a, we observe that with
three different request lengths, setting ¢ to a value between
the number of cores and twice that number (4 to 8) can be
a rough rule of thumb, where ¢ = 8 results in the largest
throughput (Figure 12b). With a small value of ¢, TailClipper

410

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

essentially operates as a global-FCFS scheduler, which can
potentially lead to request starvation and increase the tail
latency. Conversely, a large value of ¢ shifts TailClipper to-
ward a PS scheduler, where more requests share CPU time,
leading to prolonged queuing delays as older requests are
less prioritized. Exploring the optimal selection of ¢ for dif-
ferent workloads and hardware configurations is the subject
of future work.

Effect of min-heap size Figure 13a evaluates the schedul-
ing overhead associated with TailClipper. Specifically, we
analyze two key operations in TailClipper’s ORF schedul-
ing: Push () and Pop () of its min-heap. We initialize the
min-heap with varying sizes and study how its size impacts
the mean latency of each operation. For Push (), a random
item is inserted into the min-heap. Our measurements indi-
cate that for both operations, the overhead of Push () and
Pop () range from 0.4 to 0.6 microseconds and are minimal
compared to the workload service time. Furthermore, the
overheads only increase marginally with the min-heap size
even for large heaps of up to 1000 requests. It is also im-
portant to note that a native kernel implementation could
further minimize the overhead of the scheduling operations,
as will be discussed in Section 6.

Effect of number of tiers Figure 13b shows the perfor-
mance of the scheduling policies as the number of tiers varies
using an Exp(10) workload with low load (RPS = 100). The
result indicates that for all scheduling policies, the tail la-
tency of requests scales linearly with the increasing number
of tiers as the total service times of requests increase. Note
that the performance margin between TailClipper and the
other two scheduling policies increases with an increasing
number of tiers. This phenomenon can be attributed to the
higher probability of request reordering due to the presence
of more tiers and the variability in service times at each tier.
As a result, TailClipper outperforms the other policies by
leveraging global arrival times, leading to improved perfor-
mance.

Effect of number of cores Figure 13c assesses the scala-
bility of the scheduling policies in relation to the number
of worker CPUs. We observe that TailClipper and Shinjuku-
gh achieve linear scalability up to 3 cores, while CFS-gh
scales linearly. This is because for centralized schedulers,
the performance on additional cores is limited by the mes-
sage communication bottleneck between the dispatcher CPU
and the worker CPUs. We note that this messaging bottle-
neck largely stems from our choice of the userspace ghOSt
scheduling framework to implement TailClipper and can be
alleviated in two ways. First, the issue can be resolved by
incorporating additional dispatcher CPUs as shown in Figure
13c and also demonstrated in [25]. Second, any userspace
scheduler generally incurs greater scheduling overhead than
kernel schedulers, and a native in-kernel implementation

SoCC 24, November 20-22, 2024, Redmond, WA, USA

=-¢- Push() --G-- Pop()
~1.0
1
;0.8 p ° °
% DO OO0
E) 0.6 0"'0‘0--0--0"0"0"0'0 ')
5] R
0.4
=
S0.2
200 400 600 800 1000
Heap size
()
---H---+ CFS-gh -+<€)-++ Shinjuku-gh
+=*@Q--++ TailClipper -++-V¥++-+ 2 Dispatchers
350 e 1200
£300 T B gV
<250 v -
2200 = @,.6"')
9] o =
= 150 E|.' ‘66 2
21004 me® =
2 508"
0 T T T T T T T T T T 0 T T T T
12345678910 2 4 6 8
Components # Worker cores
(b) (©

Figure 13: (a) Overhead measurements of TailClipper’s
two key scheduling operations. (b) Comparing sched-
uling policies with varying microservices tiers under
arequest rate of 100 RPS using Exp(10) workload. (c)
Scheduling policies’ throughput as we scale the num-
ber of worker cores.

of TailClipper can improve scalability by using kernel data
structures and avoiding explicit message passing.

Key Takeaway Applications using TailClipper can scale
seamlessly with additional microservice tiers, higher loads,
and increased worker cores. In addition, TailClipper’s con-
figurable parameter enables performance fine-tuning in
different workloads.

6 DISCUSSION

Threading model TailClipper does not make assumptions
about the threading models used by applications. Beyond
the worker thread pool and thread-per-request models pre-
viously mentioned, TailClipper also supports applications
using other threading models, such as coroutines, where a
single thread handles multiple requests. Coroutines share the
same thread asynchronously, aiming to improve concurrency
throughput, especially with blocking I/O code. In such cases,
when context-switching from one coroutine to another, the

411

Nathan Ng, Abel Souza, Ahmed Ali-Eldin, David Irwin, Don Towsley, and Prashant Shenoy

TailClipper application’s scheduler would call the ghOSt
API to update the ghOSt thread’s GAT to match the GAT
of the request currently being processed by the coroutine.
It is important to note that different threading models have
different target objectives. While thread-per-request offers
flexible parallelism and intuitive design patterns, coroutines
target computations with decomposable, pipelined tasks that
depend on each other. Although they may offer a lightweight
mechanism to optimize concurrency, some of these corou-
tine tasks may block and suspend while waiting, for example
due to database or other I/O operations, causing request re-
ordering. Using GAT, TailClipper can mitigate the effects of
request reordering regardless of the threading model used.
Native implementation TailClipper is currently imple-
mented as a userspace scheduler, and our evaluation with
millisecond-scale workloads demonstrates that the overhead
of ghOSt userspace scheduling does not compromise its su-
perior performance. However, in scenarios where the server
experiences a high volume of requests operating at a mi-
crosecond scale, the frequent communication overhead be-
tween the userspace scheduler and the kernel may impact
system performance. In such cases, a native in-kernel imple-
mentation of TailClipper may be preferred over our proof-
of-concept implementation. For example, we can use the
Linux external scheduler extension sched_ext to imple-
ment TailClipper’s ORF scheduler in a BPF program that
runs in kernel space. In this setup, a TailClipper userspace
component extracts the GAT from the request header and
propagates it down to the ORF scheduler using BPF maps.
These maps function as an efficient shared data structure
between TailClipper’s userspace component and the kernel-
space ORF scheduler. The ORF scheduler can then leverage
the GAT information in BPF maps to schedule threads accord-
ingly. This native implementation will eliminate the need
for the kernel to notify the userspace scheduler of thread
updates, significantly reducing message overhead compared
to our proof-of-concept userspace implementation. Further-
more, it decreases the number of system calls required to
enforce scheduling decisions.

Application-level cluster schedulers Cluster computing
frameworks, such as Spark [51] and Apollo [6], are com-
monly deployed to optimize resource management and job
scheduling in distributed environments. TailClipper is de-
signed as a CPU scheduler and, as such, can interoperate with
these higher-level framework schedulers that already work
with the existing Linux scheduler. The current implementa-
tion of TailClipper uses ghOSt, which requires software to
be recompiled to link to the ghOSt library. However, if an
in-kernel implementation is used, recompilation is unneces-
sary. In both cases, TailClipper needs to run at the system
entry point for timestamping requests. When a high-level
framework scheduler enforces a specific job scheduling order,

TailClipper: Reducing Tail Response Time Through System-Wide Scheduling

TailClipper’s ability to address reordering is constrained by
those higher-level policies. Nonetheless, it can still provide
tail latency improvements at the job’s request level.
Microservices with KVS and Databases In web applica-
tions, microservices often utilize key-value stores (KVS) or
database systems for efficient data management. To integrate
TailClipper, these microservices can utilize ghOSt threads
to handle I/O operations, as demonstrated in [23]. However,
reordering may occur if a thread is blocked while waiting for
an I/O operation to complete, which can negatively impact
overall application performance. In such scenarios, TailClip-
per can mitigate the effects of such reordering.

7 RELATED WORK

Kernel-bypass techniques have been commonly employed
to minimize operating system overheads and address tail
latency issues [1, 26, 38—-40, 50]. While these approaches
have demonstrated effectiveness in reducing tail response
times, some studies have highlighted potential negative
impacts on collocated applications [36]. Replication tech-
niques [11, 19, 42, 46, 49], novel system softwares [1, 16, 39],
and new architectures [10, 22] have also been proposed to
reduce tail latencies. In particular, Shinjuku [25] is a single-
address space operating system that implements preemp-
tive scheduling at the microsecond scale to minimize tail
latencies and increase system throughput. Shenango [36] is
a system that reallocates cores across applications at fine
time scales. Arachne [40] implements a user-level scheduler
of threads with applications determining the appropriate
core allocation scheme based on load. RobinHood [3] dy-
namically reallocates cache resources to meet applications’
needs. Brownout [14] aims to minimize the tail by adjusting
the amount of work done by a request. Although these ap-
proaches have demonstrated effectiveness in reducing tail
latency, they are primarily designed for single systems and
do not explore the optimization potential for distributed re-
quest processing. TailClipper differs from the existing work
in that it employs a holistic approach that schedules requests
across application components, leveraging global arrival in-
formation to mitigate the effects of distributed processing.

In the literature, various percentiles have been used to
quantify tail response time reduction, such as P95 [14, 27, 30],
P99 [11, 21, 28] or P99.9 [12] percentiles. In contrast, Tail-
Clipper does not specifically aim at reducing a particular
percentile response time and focuses on optimizing the exe-
cution order of requests to minimize tail latency. TailClipper
can also seamlessly integrate with solutions addressing other
sources of performance variability, such as garbage collec-
tion, wake-up from low-energy states, and interference from
co-located workloads.

412

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

8 CONCLUSIONS

Minimizing tail latency has become a critical priority for en-
hancing the efficiency of online web services and distributed
applications. However, traditional approaches that optimize
latency independently at individual components overlook
distributed processing effects, such as request reordering,
which can lead to increased end-to-end tail latency. To ad-
dress these challenges, this paper introduced TailClipper,
a novel distributed scheduler designed to optimize request
scheduling globally across the system rather than locally
on individual components. TailClipper combines two query-
ing theoretical results to deliver robust latency performance
across various workloads. Our evaluations using cloud work-
load traces and a real-world application revealed that Tail-
Clipper can achieve tail latency reductions of up to 81%,
while also improving mean latency and throughput under
high loads compared to state-of-the-art scheduling policies.

ACKNOWLEDGMENTS

We thank our shepherd Sameh Elnikety and the reviewers for
their valuable comments. This research is supported by NSF
grants 2211302, 2211888, 2213636, 2105494, 23091241, the
Army Research Laboratory under Cooperative Agreement
W911NF-17-2-0196 (IoBT CRA), and VMWare. Ali-Eldin is
supported by SSF future research leaders grant.

REFERENCES

[1] Adam Belay, George Prekas, Mia Primorac, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion. 2017. The IX
Operating System: Combining Low Latency, High Throughput, and
Efficiency in a Protected Dataplane. ACM Transactions on Computer
Systems (TOCS) 34, 4 (2017), 11. https://doi.org/10.1145/2997641
Mike Belshe. 2010. More Bandwidth Doesn’t Matter (Much). https:
//bit.ly/3RUykxs.

Daniel S Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and
Mor Harchol-Balter. 2018. RobinHood: Tail Latency Aware Caching-
Dynamic Reallocation from Cache-Rich to Cache-Poor. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18). 195-212. https://doi.org/10.5555/3291168.3291183

Peter Bodik, Ishai Menache, Joseph (Seffi) Naor, and Jonathan
Yaniv. 2014. Brief Announcement: Deadline-Aware Scheduling of
Big-Data Processing Jobs. In SPAA. https://www.microsoft.com/en-
us/research/publication/brief-announcement-deadline-aware-
scheduling-of-big-data-processing-jobs/

Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi.
1998. Queueing networks and Markov chains: modeling and performance
evaluation with computer science applications. Wiley-Interscience,
USA.

Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zheng-
ping Qian, Ming Wu, and Lidong Zhou. 2014. Apollo: scalable and
coordinated scheduling for cloud-scale computing. In Proceedings of the
11th USENIX Conference on Operating Systems Design and Implementa-
tion (Broomfield, CO) (OSDI’'14). USENIX Association, USA, 285-300.
Gary Bradski, Adrian Kaehler, et al. 2000. OpenCV. Dr. Dobb’s journal
of software tools 3, 2 (2000).

[2

—

[3

—

[4

[laawt

[5

—_

6

—_

[7

—

SoCC 24, November 20-22, 2024, Redmond, WA, USA

(8]

[

—

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

Gary Bradski, Adrian Kaehler, et al. 2024. OpenCV - Smoothing Images.
https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html.
Nathan Bronson, Abutalib Aghayev, Aleksey Charapko, and Timothy
Zhu. 2021. Metastable Failures in Distributed Systems. In Proceedings
of the Workshop on Hot Topics in Operating Systems. 221-227. https:
//doi.org/10.1145/3458336.3465286

Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, et al. 2016. A Cloud-Scale Acceleration
Architecture. In The 49th Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE Press, 7. https://doi.org/10.1109/MICRO.
2016.7783710

Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun.
ACM 56, 2 (Feb. 2013). https://doi.org/10.1145/2408776.2408794
Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s
Highly Available Key-value Store. SIGOPS Oper. Syst. Rev. 41, 6 (Oct.
2007). https://doi.org/10.1145/1323293.1294281

Aldric Degorre and Oded Maler. 2008. On scheduling policies for
streams of structured jobs. In International Conference on Formal Mod-
eling and Analysis of Timed Systems. Springer, 141-154.

David Desmeurs, Cristian Klein, Alessandro Vittorio Papadopoulos,
and Johan Tordsson. 2015. Event-Driven Application Brownout: Recon-
ciling High Utilization and Low Tail Response Times. In Cloud and Au-
tonomic Computing (ICCAC). https://doi.org/10.1109/ICCAC.2015.25
Ahmed Eleliemy and Florina M Ciorba. 2021. A Resourceful Co-
ordination Approach for Multilevel Scheduling. arXiv preprint
arXiv:2103.05809 (2021).

D. R. Engler, M. F. Kaashoek, and J. O’Toole. 1995. Exokernel: an
operating system architecture for application-level resource manage-
ment. In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles (Copper Mountain, Colorado, USA) (SOSP *95). As-
sociation for Computing Machinery, New York, NY, USA, 251-266.
https://doi.org/10.1145/224056.224076

Brad Fitzpatrick. 2004. Distributed Caching with Memcached. Linux
Journal 2004, 124 (2004), 5.

Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay.
2020. Caladan: Mitigating Interference at Microsecond Timescales. In
Proceedings of the 14th USENIX Conference on Operating Systems Design
and Implementation. 281-297. https://doi.org/10.5555/3488766.3488782
Kristen Gardner, Samuel Zbarsky, Sherwin Doroudi, Mor Harchol-
Balter, Esa Hyyti4, and Alan Scheller-Wolf. 2016. Queueing with
Redundant Requests: Exact Analysis. Queueing Systems 83, 3 (2016).
https://doi.org/10.1007/s11134-016-9485-y

Google. [n.d.]. GhOSt: Fast & Flexible User-Space Delegation of Linux
Scheduling. https://github.com/google/ghost-userspace https://
github.com/google/ghost-userspace.

Md E. Haque, Yong hun Eom, Yuxiong He, Sameh Elnikety, Ricardo
Bianchini, and Kathryn S. McKinley. 2015. Few-to-Many: Incremental
Parallelism for Reducing Tail Latency in Interactive Services. In Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS). ACM. https://doi.org/10.1145/2694344.2694384

Md E Haque, Yuxiong He, Sameh Elnikety, Thu D Nguyen, Ricardo
Bianchini, and Kathryn S McKinley. 2017. Exploiting Heterogeneity for
Tail Latency and Energy Efficiency. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture. ACM, 625~
638. https://doi.org/10.1145/3123939.3123956

Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir Weisse,
Barret Rhoden, Josh Don, Luigi Rizzo, Oleg Rombakh, Paul Turner,
and Christos Kozyrakis. 2021. GhOSt: Fast & Flexible User-Space
Delegation of Linux Scheduling. In Proceedings of the ACM SIGOPS 28th

413

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

Nathan Ng, Abel Souza, Ahmed Ali-Eldin, David Irwin, Don Towsley, and Prashant Shenoy

Symposium on Operating Systems Principles (Virtual Event, Germany)
(SOSP ’21). Association for Computing Machinery, New York, NY, USA,
588-604. https://doi.org/10.1145/3477132.3483542
Yangging Jia and Evan Shelhamer. 2024. Caffe Model Zoo.
//caffe.berkeleyvision.org/model_zoo.

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazieres, and Christos Kozyrakis. 2019. Shinjuku: Preemptive
Scheduling for pusecond-scale Tail Latency. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). 345-360.
https://doi.org/10.5555/3323234.3323264

Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M Voelker,
and Amin Vahdat. 2012. Chronos: Predictable Low Latency for Data
Center Applications. In Proceedings of the Third ACM Symposium on
Cloud Computing. ACM, 9. https://doi.org/10.1145/2391229.2391238
Harshad Kasture and Daniel Sanchez. 2014. Ubik: Efficient Cache
Sharing with Strict QoS for Latency-Critical Workloads. In ACM SIG-
PLAN Notices, Vol. 49. ACM, 729-742. https://doi.org/10.1145/2644865.
2541944

Jinhan Kim, Sameh Elnikety, Yuxiong He, Seung-won Hwang, and
Shaolei Ren. 2013. QACO: Exploiting Partial Execution in Web Servers.
In Cloud and Autonomic Computing Conference (CAC). ACM, Article
12. https://doi.org/10.1145/2494621.2494636

Ron Kohavi, Alex Deng, Brian Frasca, Toby Walker, Ya Xu, and Nils
Pohlmann. 2013. Online Controlled Experiments at Large Scale. In
Proceedings of the 19th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. 1168-1176. https://doi.org/10.1145/
2487575.2488217

Jacob Leverich and Christos Kozyrakis. 2014. Reconciling High
Server Utilization and Sub-millisecond Quality-of-service. In Euro-
pean Conference on Computer Systems (EuroSys). ACM, Article 4.
https://doi.org/10.1145/2592798.2592821

Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble.
2014. Tales of the Tail: Hardware, OS, and Application-level Sources of
Tail Latency. In Symposium on Cloud Computing (SoCC). ACM, Article
9. https://doi.org/10.1145/2670979.2670988

Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping
Zhang, Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing
Microservice Dependency and Performance: Alibaba Trace Analysis.
In Proceedings of the ACM Symposium on Cloud Computing. 412-426.
https://doi.org/10.1145/3472883.3487003 https://github.com/alibaba/
clusterdata.

Marissa Mayer. 2006. What Google Knows. Proceedings of the Third
Annual Web 2 (2006).

Jayakrishnan Nair, Adam Wierman, and Bert Zwart. 2010. Tail-Robust
Scheduling via Limited Processor Sharing. Performance Evaluation 67,
11 (2010), 978-995. https://doi.org/10.1016/j.peva.2010.08.012
Samuel S. Ogden, Xiangnan Kong, and Tian Guo. 2021. PieSlicer: Dy-
namically Improving Response Time for Cloud-based CNN Inference.
In 12th ACM/SPEC International Conference on Performance Engineering.
Association for Computing Machinery (ACM).

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency for
Latency-Sensitive Datacenter Workloads. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). 361-378.
https://doi.org/10.5555/3323234.3323265

Chandandeep Pabla. 2009. Completely Fair Scheduler. Linux Magazine
184 (2009).

Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug Woos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. 2016. Arrakis:
The Operating System is the Control Plane. ACM Transactions on
Computer Systems (TOCS) 33, 4 (2016), 11. https://doi.org/doi/10.1145/
2812806

http:

TailClipper: Reducing Tail Response Time Through System-Wide Scheduling

(39]

(40]

[41]

(42]

(43]

[44]

(45]

[46]

(47]

(48]

(49]

(50]

(51]

George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS:
Achieving Low Tail Latency for Microsecond-scale Networked Tasks.
In Proceedings of the 26th Symposium on Operating Systems Principles.
ACM, 325-341. https://doi.org/10.1145/3132747.3132780

Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ouster-
hout. 2018. Arachne: Core-Aware Thread Management. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18). 145-160. https://doi.org/10.5555/3291168.3291180

Ziv Scully, Lucas van Kreveld, Onno Boxma, Jan-Pieter Dorsman, and
Adam Wierman. 2020. Characterizing Policies with Optimal Response
Time Tails under Heavy-Tailed Job Sizes. In Abstracts of the 2020 SIG-
METRICS/Performance Joint International Conference on Measurement
and Modeling of Computer Systems (Boston, MA, USA) (SIGMETRICS
"20). Association for Computing Machinery, New York, NY, USA, 35-36.
https://doi.org/10.1145/3393691.3394179

Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. 2015.
C3: Cutting Tail Latency in Cloud Data Stores via Adaptive Replica
Selection. In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15). 513-527. https://doi.org/10.5555/2789770.
2789806

Don Towsley and Francois Baccelli. 1991. Comparisons of Service
Disciplines in a Tandem Queueing Network with Real Time Con-
straints. Operations Research Letters 10, 1 (1991), 49-55. https:
//doi.org/10.1016/0167-6377(91)90086-5

Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, and Pawan
Goyal. 2005. Dynamic provisioning of multi-tier internet applications.
In Second International Conference on Autonomic Computing (ICAC’05).
IEEE, 217-228.

Balajee Vamanan, Hamza Bin Sohail, Jahangir Hasan, and TN Vi-
jaykumar. 2015. Timetrader: Exploiting Latency Tail to Save Dat-
acenter Energy for Online Search. In Proceedings of the 48th Inter-
national Symposium on Microarchitecture. ACM, 585-597. https:
//doi.org/10.1145/2830772.2830779

Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine
Sherry, Sylvia Ratnasamy, and Scott Shenker. 2013. Low Latency
via Redundancy. In Proceedings of the ninth ACM conference on Emerg-
ing networking experiments and technologies. ACM, 283-294. https:
//doi.org/10.1145/2535372.2535392

Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Chien-An Lai, Chien-
An Cho, Yuji Nomura, and Calton Pu. 2014. Lightning in the Cloud:
A Study of Very Short Bottlenecks on n-Tier Web Application Per-
formance. In Proceedings of USENIX Conference on Timely Results in
Operating Systems. https://doi.org/10.13140/2.1.1479.0402

Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron.
2011. Better never than late: meeting deadlines in datacenter networks.
In Proceedings of the ACM SIGCOMM 2011 Conference (Toronto, Ontario,
Canada) (SIGCOMM ’11). Association for Computing Machinery, New
York, NY, USA, 50-61. https://doi.org/10.1145/2018436.2018443

Zhe Wu, Curtis Yu, and Harsha V Madhyastha. 2015. CosTLO: Cost-
Effective Redundancy for Lower Latency Variance on Cloud Storage
Services. In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15). 543-557. https://doi.org/10.5555/2789770.
2789808

Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert.
2016. StackMap: Low-Latency Networking with the OS Stack and
Dedicated NICs. In 2016 USENIX Annual Technical Conference (USENIX
ATC 16). 43-56.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: cluster computing with working
sets. In Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing (Boston, MA) (HotCloud’10). USENIX Association, USA,
10.

414

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

[52] Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi Raj, Abhishek

Parwal, Timothy Sherwood, and Milind Chabbi. 2022. CRISP: Criti-
cal Path Analysis of Large-Scale Microservice Architectures. In 2022
USENIX Annual Technical Conference (USENIX ATC 22). USENIX
Association, 655-672. https://www.usenix.org/conference/atc22/
presentation/zhang-zhizhou

	Abstract
	1 Introduction
	2 Background
	2.1 Distributed Web Applications
	2.2 Tail Latency Reduction
	2.3 Request Reordering
	2.4 Queuing Theory Foundations

	3 TailClipper Design
	3.1 Global Arrival Time Timestamping
	3.2 Oldest Request First (ORF) Scheduling

	4 TailClipper Implementation
	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Real-world Application Performance
	5.3 Comparing TailClipper with Baselines
	5.4 Impact of Light and Heavy-tailed Workloads
	5.5 Performance and Sensitivity Analysis

	6 Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

