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1 | INTRODUCTION

Abstract

We prove the existence and uniqueness of global smooth
solutions of the critical dissipative SQG equation in
bounded domains in R?. We introduce a new methodology
of transforming the single nonlocal nonlinear evolution
equation in a bounded domain into an interacting system
of extended nonlocal nonlinear evolution equations in the
whole space. The proof then uses the method of the non-
linear maximum principle for nonlocal operators in the
extended system.

Mathematics Subject Classification (MSC) 2020
35Q35, 35Q86

The Surface Quasigeostrophic equation (SQG) of geophysical origin [17] was proposed as a two-
dimensional model for the study of inviscid incompressible formation of singularities [4, 9]. The
equation has been studied extensively. Blow up from smooth initial data is still an open problem,
although the original blow-up scenario of [9] has been ruled out analytically [15] and numeri-
cally [8]. The addition of fractional dissipation yields globally regular solutions if the power of
the Laplacian is larger or equal than one half. When the linear dissipative operator is precisely
the square root of the Laplacian, the equation is commonly referred to as the “critical dissipative
SQG,” or “critical SQG.” The global regularity of solutions for critical SQG in the whole space
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4 | CONSTANTIN ET AL.

or on the torus was obtained independently in [1] and [20] by very different methods. Several
subsequent proofs were obtained (see [12, 13] and references therein).

The basic ingredients used in [12] are specific nonlinear maximum principle lower bounds for
A = y/—A, the square root of the Laplacian in the whole space R%. A typical example is

D(f) = FAS = 3A(f) 2 cClel=) "' f° 0

pointwise, for f = 0,6 a component of the gradient of a bounded function 6. This is a useful cubic
lower bound for a quadratic expression, when ||0]|;~ < [|6]lz~ is known to be bounded above.
The critical SQG equation in R? is

9,06 +u-Vo+ A6 =0, ()
where
u= ViAo = RLo, 3)

and V! = (=0,,9,). The equation has a weak maximum principle, the L® norm of & does not
grow in time. In [12] and [13], instead of estimating directly gradients, the proof of global regu-
larity proceeds by estimating finite difference quotients, with the aim of first obtaining bounds
for C% norms. A basic feature of the critical SQG equation in the whole space is the fact that
once the solution is bounded in C%, for some a > 0, then it follows that the solution is in
fact C* smooth. More generally, if a generalized SQG equation has a dissipation of order s,
that is, A is replaced by A’ with 0 < s <1, then if 6 is bounded in C* with o > 1 — s, then
the solution is smooth [14]. This condition is sharp in the class of general linear advection
diffusion equations, [21]. In [13], the smallness of « is crucially used to show that the non-
linear term appearing in the evolution of the finite difference quotient g = D;6 of solutions
of (2) is entirely dominated by the term corresponding to D(q). This is no longer the case in
bounded domains.
The critical SQG equation in bounded domains is given by

3,6 +u-VO+Apb=0 4)
with
u = V+AZ'e. )

Here Q ¢ R? is a bounded open set with smooth oriented boundary, Ap is the square root of
the Laplacian with vanishing Dirichlet boundary conditions, and V* = JV with J an invertible
antisymmetric matrix.

The problem of global regularity of critical SQG in bounded domains was open until the present
work. Interior regularity was investigated in [6]. The approach, initiated in [5], was based on
bounds on the heat kernel. One of the main obstacles to implementing a proof of regularity in
bounded domains is the lack of translation invariance. It has as consequence the fact that the
Riesz transforms Rp = VAB1 are not spectral operators, that is, they do not commute with func-
tions of the Dirichlet Laplacian. In [6], the method of the nonlinear maximum principle was used
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GLOBAL REGULARITY FOR CRITICAL SQG IN BOUNDED DOMAINS | 5

in conjunction with estimates for the commutator between difference quotient operators and Ap.
These estimates degenerate at the boundary but they can be used to obtain a priori global in time
interior Lipschitz bounds of solutions. A construction of solutions with this degree of regularity
was done in [18]. Global weak solutions in bounded domains were studied in [10, 11]. In [7], nec-
essary and sufficient conditions for global C* bounds up to the boundary with o < 1 — > were

given in terms of quantitative information on supercritical (p > d) L? norms of —, where w;

is the first eigenfunction of the Dirichlet Laplacian. Because w; vanishes linearly at the bound-
ary, this implies that global C* bounds are available if and only if solutions have a Holder rate of
vanishing of 6 at 9Q.

The work [22] presented C* bounds of weak solutions, using an approach based on the method
of De Giorgi, employed first in the whole space in [1]. However, unlike the case of the whole space,
going from C“ to higher regularity up to the boundary in bounded domains was not known until
the present work. Global Holder continuous solutions were not known to be unique, nor smooth.
In this work, we prove the existence and uniqueness of global smooth solutions. In order to obtain
this result, we introduce a new methodology consisting of the extension of the single equation in
the bounded domain to an interacting system of equations in the whole space. We then employ the
method of the nonlinear maximum principle in the analysis of the extended nonlinear nonlocal
system.

1.1 | Main results and description of ideas of proofs
In this paper, we prove the global regularity of solutions of critical SQG in bounded domains.

Theorem 1. Let Q C R? be a bounded domain with smooth boundary. Let 6, € H(l)(Q) N H™(Q),
m > 2, and let T > 0. Then there exists a unique solution of (4), (5) with initial data 6, and which
belongs to L*(0,T; Hy(Q) N H™(Q)).

The solution is in fact smooth for all time and eventually exponentially decays to zero. The
initial data need not be smooth. By parabolic regularization, if the initial data are C3% for some
ap > 0 and vanish at the boundary, then the solution exists locally, is unique, becomes instantly
C'*% (Lemma 7), persists globally, and decays (Theorem 6).

The proof of Theorem 1 is based on the following a priori estimate.

Theorem 2. Let 8 € C'*%([0,T] x Q) be a classical solution of (4), (5) for some a,, € (0,1). There
exists a small constant & depending only on T and the domain Q, such that, for0 < o < ag satisfying

a(ll8ollze() +1) <6, (6)
there exists a constant C, depending (continuously and explicitly) only on ||0¢||ca(q), T, the domain
Q and a, such that

T

a Y a < (Cq,.
sup 16C. Dl + [ 18601, de < C, 9

0<t<T
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6 | CONSTANTIN ET AL.

The detailed result is given in Theorem 5. The factor % is not structural, it is there only to

signify that the gain of regularity is <1, but regularity above L'(dt; C'(Q)) is attained. Once The-
orem 2 is obtained, then the proof of Theorem 1 follows from the local existence and uniqueness
of smooth solutions of (4), (5) given in [6] and a natural continuation result. More precisely, the
local existence theorem is given below.

Theorem 3. Let Q be a bounded open domain with smooth boundary in R?. Let m > 2 and let
6 € Hé(Q) N H™(Q). There exists a time T > 0 and a unique solution 6 of (4) satisfying

1
6 € L(0, To; HL(Q) n H™(Q)) N L*(0, To; H™ 2 (). 8)
The time T,y depends on the initial norm in H*(Q).

This result was proved in [6] for m = 2 using Galerkin approximations

N
Oy = D c;(Dw;(x),
=1

J

Sobolev energy bounds and Sobolev embedding. The fact that the expansion is in terms of eigen-
functions w; of the Dirichlet Laplacian allows integration by parts because powers of the fractional
Laplacian applied to the Galerkin approximation vanish at the boundary, A} 6y 30 = 0. The
general m > 2 case follows in the same manner.

The local existence theorem is combined with the following natural continuation result.

Theorem 4. Let Q be a bounded open domain with smooth boundary in R?. Let 6, € Hé(Q) N
H™(Q), m > 2begivenandlet® € L*([0,T,), H™(Q)) be a solution of (4),(5). Assume that for some
0 < 8 < 1, there exists a constant Cp such that

To
/ 160 Dllesaand < Cg ©
0

holds. Then there exists a constant C,, depending (continuously and explicitly) only on ||0|| gm(q),
the domain Q and Cg, such that

sup [16C, Ollgm@) < Cm- (10)

OS[STO

Combined with the local existence result, this implies that the solution can be uniquely
extended beyond T,. The proof of Theorem 4 is based on energy estimates and well-known facts
about the boundedness of Riesz transforms in C”(Q) [2]. The condition (9) is sufficient for unique-
ness and persistence of smoothness of solutions in inviscid SQG as well. A detailed proof is left
for the interested reader. In this paper, we provide an independent local existence and persistence
proof directly based on C" spaces, without use of Sobolev spaces.

The proof of Theorem 2 requires the introduction of a number of new elements, which we
believe are of general interest. As in [6], we use functional calculus to represent the square root
Ap of the Dirichlet Laplacian in terms of the heat kernel, but unlike in [6], a direct commutator
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between finite difference quotients and Ap is not attempted. We consider instead an appropri-
ate cover of Q with open balls and smooth subordinated localizers y. We associate to the balls
corresponding to the boundary dQ smooth diffeomorphisms Y : BN Q — R?, which flatten the
boundary. For interior balls, the diffeomorphisms are just the identity. We consider then maps
F which take functions yg defined in patches BN Q to functions defined in the whole space
R? by F(xg) = O(xgoY '), where © is odd extension across the boundary of the half space.
While localization and flattening of the boundary is a familiar procedure for proving regularity
of elliptic and parabolic equations in bounded domains, our approach requires to extend also the
localized equation. This is needed because, unlike the case of local PDE, in the nonlocal case, it
is difficult to disentangle tangential directions from the normal direction in the principal sym-
bol of the equation. Thus, after the localization and change of variables, the Dirichlet Laplacian
is conjugated to (or intertwined with) a second-order elliptic operator L with Lipschitz coeffi-
cients, defined in the whole space, plus an error. The change of variables Y is defined carefully
so that the cross terms involving normal and tangential derivatives vanish near the boundary, see
Appendix A. This allows L to have Lipschitz coefficients (57), (58). We take advantage of the fact
that the heat equation is local, and therefore when we commute a smooth cutoff function y with
e!2p we obtain a local error, which we represent in terms of the heat operator using the Duhamel
1

formula. We then apply 7 and the functional representations of A, and of L2 in terms of their
respective semigroups to obtain an expression for the intertwining of the localized Ap with the
1

corresponding L2,

1
F(xAp6) — L2F(x6) = R,(6) (1)
and show (Proposition 5) that
IR, O)llcrr2) S N€llcr(a) (12)

holds for 0 < r < 1. We localize and extend the nonlinear term (V+A;'6) - VO = {A5'6,6}. Tt
is only here that we use the fact that we are in two dimensions. We use properties of the Poisson
bracket, which allow odd extension across the flattened boundary after composition with Y, while
maintaining almost intact the Poisson structure (Proposition 6).

We arrive thus at a representation of the Equation (4), (5) as a coupled system of equations in the
whole space. This constitutes a new methodology to study boundary value problems, which we
expect to be more broadly useful. Corresponding to the cover of Q with balls, we have N transfor-
mations F (some of them not requiring changes of variables), and for each patchB; N Q,1 <i < N,
functions 8; = F(x;0), which obey equation in the whole space

1
5[91- +u; - V@, +L591 = fi' (13)

The operators L depend on the patch but they have the same second-order elliptic, Lipschitz
coefficients nature. The velocities u; depend on the whole 6, not only on 6;, but the depen-

1 __ —~ ~
dence is quasi-local, meaning that the u; = V*L™ 2(6;) + error where L is like L and 6; covers
6;, that is, 6; = n6; with n Lipschitz and compactly supported. The “forces” f; arise from errors
1

of intertwining and extension and depend in a nonlinear manner on 6. The operators L2
have variable coefficients. The Equations (13) are not stand alone equations, rather they are
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representations of localizations and extensions of (4), (5). Nevertheless, they serve the purpose
to estimate derivatives of 0. The system of Equation (13) is sparse (only few nearby patches inter-
act) but it is not treated as an algebraically coupled system, more like a redundantly oversampled
contact system.

We apply and extend the method of nonlinear maximum principle to the aggregate (13), taking
great advantage of an enhanced nonlinear lower bound. The fact that the operators have vari-
able coefficients, not unexpectedly implies that inequalities for the evolving C* norms for small
a cannot be closed, as they are driven by norms of full derivatives of 8. The nonlinear maximum
principle provides though powerful nonlinear damping. When trying to estimate the C* norm, the
most dangerous term still comes from the finite difference quotient of the active scalar’s veloc-
ity, as in the case of critical SQG in the whole space, and bounding it still requires the use of
the D(q) argument. Like in previous works using the method of the nonlinear maximum prin-
ciple, in the present work, we also have only one small parameter, namely a. We consider the
evolution of the difference quotient g = D;6; in each patch. In previous works [6, 13], the small-
ness of a was used to overcome the contribution of the difference quotient of the active scalar
velocity, D}llu, by crucially using D(q) in a pointwise manner, and also by using a nonlinear lower
bound

|h172*D(q) = c|h| " **g*|I6]l 14)

in the evolution of q2. In this work, we use the same idea to overcome the contribution of the inner

core of D;lul-. In addition, we use the observation that at the point of maximum of g, because 0 is
1

lal ) “. Thus, the term D(q) provides a

216 ¥ Lo
nonlinearly enhanced damping with an excess of order -,
a

a priori bounded, |h| must be very small, less than (

1

1 J—
|h|2%D(q) = cq” = |I6]l, <, (15)

resulting in a differential inequality for the maximum of the type

_1 1
9:q +cllfoll; q1+5 < translation and localization errors, (16)

and the smaller « is, the larger this useful excess is. The error terms due to the localization and
the absence of translation invariance are controlled by this high homogeneity of the nonlinear
damping. Thus, the smallness of « is used in two ways, once by bounding the worst term by part
of D(q), and the other, by affording high homogeneity nonlinear error terms using the excess
damping of homogeneity a~! provided also by D(q). The upshot, described in Lemma 5, is an a
priori bound of the supremum in time of the C* norm, which is driven by the time integral of
the CH% norm. Here, the factor Lis not part of the structure of the equation, it only represents
the crucially important fact that less than a whole derivative is lost. The loss of almost a whole
derivative is, however, unavoidable. This loss marks the difference between translation invariant
and nontranslation invariant equations, and it occurs even if we replace in the usual SQG equa-
tion in the whole space, the linear dissipation \/1 by the linear dissipation a(x) \/1 where a
is a uniformly bounded positive smooth function.
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In order to close the estimates, we employ a result about linear dissipative advection
equations of the type

1

dv+b-Vuo+L2v=f 17)

with b and f Holder continuous, b € L®(0, T; CF(R%)), f € L*(0, T; CE(R%)) and initial data
in CA(R?). We show (Lemma 2) that the norm of v in L'(0,T;C'**(R%)) is bounded in

terms of the norms of b, f,v(0) in CP for a < . For the proof of this result, we use a
1

method of freezing coefficients, which rectifies the variable coefficient operator b -V + L2,
that is, it approximates it by its tangent at each frozen point y, the constant coefficients
1

operator b(y) -V, +Ly5. This treatment requires a systematic study of the kernels of semi-
1

groups e~'L, e™L? and their approximations. The linear result of Lemma 2 is applied to
the specific nonlinear equation in Corollary 1 and is used in conjunction with the high
homogeneity of the nonlinear damping to close the estimates and prove the main result,
Theorem 2.

The paper is organized as follows. In Section 2, we set up the cover of the domain, recall
some basic facts about the Dirichlet Laplacian and introduce notation. In Section 3, we
describe the procedure of localization and extension. We prove in this section bounds for the
intertwining of the localized and extended heat semigroup e!“?, and bounds for the inter-
twining of the localized and extended Ap. We follow, in Section 4 with the derivation of the
extended localized system (13) and provide bounds for the errors of nonlinear intertwining.
Section 5 is devoted to proving the useful results on the linear dissipative advection Equa-
tion (17). In Section 6, we apply the nonlinear maximum principle method to the system and
obtain a priori bounds for Holder norms of solutions. The proof of Theorem 2, in its pre-
cise form, Theorem 5 is given in Section 7. A self-contained proof of local existence with
Holder initial data and global persistence of smooth solutions is given in Section 8. Appendix A
describes the change of variables Y and Appendix B provides useful estimates of heat kernels

and approximations.

2 | PRELIMINARIES

We consider a bounded connected (but not necessarily simply connected) domain Q ¢ R? with
smooth oriented boundary Q. We cover the boundary dQ with open balls B?, i=1,..,Nq,cen-
tered at points on the boundary, and take nested concentric open balls B? C Bl.1 C Bl.2 C B?, such
that the portion of the boundary of each 0Q N Bi3 is given after a translation and a rotation by

the graph of smooth function with nearly constant gradient. We consider smooth cutoffs )(l.j ,

i=1,..,Ny, j=0,1,2, such that )(ij is identically equal to 1 on §{ N Q and has compact sup-
port in Bl.j 11 Q. Thus )(lj = )(l.j 1 )(lj . The radius of the largest balls Bl.3 is denoted ry and is taken
without loss of generality to be the same for all i. This radius is taken small enough such that, if the
boundary dQ has several connected components, the balls corresponding to one connected com-
ponent of the boundary do not intersect the balls corresponding to another connected component

of the boundary. We cover Q \ U]iillBlQ with balls B) € Q, with i = N; +1,...,N and take nested
BY c B! ¢ B? c B} with B} C Q, and cutoffs ] with j = 0,1,2 which identically equal 1 on B/
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10 | CONSTANTIN ET AL.

and are compactly supported in Bl.j ! We refer to the balls with index i < N 1 as boundary balls,
and to the balls with N; < i < N as interior balls. The set of balls and cutoffs is entirely based on
the geometry of the domain, and is fixed throughout the paper. In each boundary ball, we define
diffeomorphisms

Y, :BnQ-RY: (18)

i =1,...,N; with certain properties. Without loss of generality, we take the cutoffs )(lj to be such

that )(l.j OYi_l have smooth even extensions across y; = 0. We associate to a smooth solution 6(x, t)
of (4) defined for x € Q and ¢ € [0, T] an array of functions

0,1t = G, ))i=1..n 19)

.....

defined on for y € R andt e [0, T] in the following manner. Fori = 1, ..., N, we set
6; = O((x0)oY; ") (20)

where O is odd extension across y; = 0. Fori = N; + 1, ..., N, we put

6; = x,6 (21)

where we denote by the same letter f the extension of a function f that is compactly supported
in Q by setting it equal to 0 outside the support of f. Norms of ® in space are equivalent to norms
of 6in Q.

We use in particular C" norms. We frequently use the interpolation inequality

I fllce < HANE AN EE (22)
for=ad+(1—a)yywith0O<a<1.
The L?(Q)-normalized eigenfunctions of the Dirichlet Laplacian —A[, are denoted w j» and its
eigenvalues counted with their multiplicities are denoted u;:

It is well known that 0 < y; < ... < u; — oo and that —Ap is a positive selfadjoint operator in
L*(Q) with domain D (—Ap) = H*(Q) N Hy(Q). The ground state w; is positive and

cod(x) < wy(x) < Cod(x) (24)
holds for all x € Q, where ¢\, C, are positive constants depending on Q, d(x) is the distance from

x to the boundary 6Q. Functional calculus can be defined using the eigenfunction expansion. In
particular,

(—ap)’'f = X 1 fjuw; 25)
j=1
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GLOBAL REGULARITY FOR CRITICAL SQG IN BOUNDED DOMAINS 11
with
5= [ FO 0y
Q
for f € D((=Ap)’) = {f] (" f}) € E3(N)}. We denote by
the fractional powers of the Dirichlet Laplacian and with || f||; p the norm in D (AE):
(s
2 _ 2
150 = X 517 27)
Jj=1
It is well-known that
D(Ap) = Hy(Q).
Note that in view of the identity,
Az = cs/ - e"l)t_l_idt, (28)
0
with
o N
1= cs/ 1- e‘T)T_l_EdT,
0
valid for 0 < s < 2, we have the representation
[s9) 1 s
() = [ [Fe0= e o) e (29)
0
for f € D((—Ap)’).
‘We use second-order elliptic operators in divergence form
L = —div,(A(x)V,) (30)
in Rd, where A is a symmetric matrix-valued function in Rd, which satisfies
AX)> ¢l Vx eRY, (31)
[IVA|lL» + [|AllL= < c2, (32)

with constants ¢, ¢, > 0.
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We denote by H; (x, y, t) the kernel of 3, + L in R? x (0, ). When A is a constant matrix, it is

well known that
A7z
_ﬂ> (33)

1
H;(x,x +z,t) :=—dexp< n

v/ det A(4rt)2

where A~ is the inverse of matrix A and (-) is the Euclidean scalar product in R¢. We define the
1

square root L2 of the operator L by

L%u(x) = co/ / H(x,x + z,s)(u(x) — u(x + z))dzs_zds, (34)
0 Jrd
with
¢ = ——. (35)
ZF(E)

In particular, when A is a constant matrix, we have

1 3 —
Lau(x) = —2 / ulx) — ulx llz)dz (36)
VdetA JRd (A-1z-2)2
with
d
HERGS)
Cop = 2 - (37)
71’5 F(E)
For each fixed y € R9, we define
Ly=- div, (A@)V,). (38)

This is a constant coefficients second-order elliptic operator. In view of (33), the kernel of 9, + L,
is given by

—1 .
Gap)(z,0) = ! — exp <_(A%y)4—tzz)>’ (39)

vdet A(y)(4rt)2

and, using (36), the square root of the operator L, is given by

1

Lyau(x) _ u(x) —u(x + 2)

Co
d+1 z.
Vdet A(y) /Rd (AQ)-z-2) 2

1 1 1 1
We emphasize that L; u(x)|y=y is not identical to L2u(x). However, Ly2 u(x)|y=x — L2u(x) is
a zero-order operator, for which we provide bounds in Lemma B5 of Appendix B. We prove
in Lemma BI useful quantitative bounds for the difference of heat kernels Hy(x,x + z,t) —

GA(x+z)(Z’ £).

(40)
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GLOBAL REGULARITY FOR CRITICAL SQG IN BOUNDED DOMAINS 13

3 | LOCALIZATION AND EXTENSION

In this section, we take d = 2. The localization and extension of the linear term can be done in
any dimension. We use the Poisson structure of the nonlinearity, and there d = 2 is important.

‘We consider a point on the boundary x, € dQ = I'. Without loss of generality, after a translation
and a rotation, x, = 0 and the domain Q is given locally near 0 as {x = (x;, X;) | x, > @(x;)} where
©(0) = ¢'(0) = 0 and the function ¢ : (—¢,¢) — R is smooth. By taking £ > 0 small enough, we
make sure

l'Gx)l <€ (41)
where € > 0 is a small nondimensional number at our disposal. We extend the function ¢ to all of
R so that (41) holds globally, and moreover, we may assume that ¢’ vanishes outside a compact set.

We consider the global change of variables R? - R?, x = Y(x) = (Y;(x), Y,(x)) € C*® in which
Y, is given in Appendix A by (A13), and

Y5 (x) = X3 — o(x1). (42)
From the construction of Y, in Appendix A, we have

VY = I||[o < (43)

AN

(see (A18)) and
VY; - VY, =0 in a neighborhood of I'. (44)

We denote the inverse of Y by X, Y~! = X. The map Y maps the portion near x,, = 0 of Q corre-
sponding to |x;| < ¢ to an open subset of y, > 0, and the corresponding portion of the boundary
dQ to an open segment {|y;| < ¢’, y, = 0}.

As it is very well known, under the change of variables y — x = X(y), the Laplacian
becomes

a.
40,(50,($oX)) = (Axh)oX, (45)
]
where 0; = — and
oyi
aij = (Vin . Vij)OX, a= (detVY)OX (46)
In view of (44), we have
d;; =0 inaneighborhood of {y, = 0}. (47)

We consider functions g(x) defined in Q and a cutoff y € C¢° (R*n 5) with support included in

((=¢,¢) x R) N Q. Then functions yg can be composed with X and define functions compactly
supported in y, > 0 near 0. If g5 = 0, these functions vanish at y, = 0. We consider odd and

UB-SULIA)/ W0 KoM Kreiqrjautuoy/:sdiy) suonipuo)) pue suia], ay) 29§ *[Sz07/S0/61] uo Areiqr auruQ Kapia “Aistaarun apdwag, Aq 177z edd/z001°01/10p/wod Kafim  KIeIqraur[uoy/:sdny woiy papeo[umo( ‘T ‘S70z “TI1€0L60T
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14 CONSTANTIN ET AL.

even extensions of functions f defined on R2,

fO1¥2)s for y, > 0,
Of(y1,y2) = v 2 (48)
_f(yla_y2)9 foryz <05

and

fO1Ly), fory, >0,
Ef01y2) = 49
S {f(yl’ —y2), fory, <0. (49)

‘We have
_2
8,0f = 04, f, if f € C(R,),
_2
8, Ef = &8.f, if f € C'(RY),

_ (50)
0,Ef = 90, f, if f € CY(R,),
3,0f = £3,f, if f € cg(@i),
and the product rules
O(fg) = O(f)E(Q) = E(SO), (s1)
E(fg) = E(NHE(Q) = O(NHO().
In view of (45), it follows that for function ygoX, we have
O (x8)0X) = 20,23, (O(xg)oX)) (s2)
where we denote
a = £®), (53)
a; = &(@), i=12, (54)
and
a; = O0(ays). (55)
We denote by L, B the operators
Lf = ~3@d; ). Bf = “La,a0,f (56)

viewed as operators defined in R? (for instance on functions f € H?(R?)). The coefficients of the
extended operators are a, a1, a,,, Which are even extensions of a, @;;, @,,, and a;, = a,;, which
are odd extensions of the cross terms a;, = @,;. This convention is kept throughout the paper.
Note that, in view of the construction of Y, and in particular (47), we have

(pzlazl, (57)
j
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GLOBAL REGULARITY FOR CRITICAL SQG IN BOUNDED DOMAINS | 15

lallwiem2) + [la;jllwieor:) S 1. (58)

Indeed, as the coefficients a, a;;, d,, are smooth up to the boundary, their even extensions are

—2
Lipschitz continuous. The odd extension of a smooth function on R, is Lipschitz only if the func-
tion vanishes at x, = 0. This is where (47) is used, and it implies that a,, is Lipschitz. We fix
a smooth cutoff y, € C;° (R?) compactly supported in ((—¢,¢) x R) n Q and with the property

that y,(x;,x,) = 1for x; € [—g, g] and ¢(x;) < x5 < @(x7) + 8. We denote by F the operator

g~ F(8) = O((x28)0X), (59)
and we note that
F 1 Hy(Q) — H'(R?) (60)
and
F 1 D(Ap) = Hy(Q) N HX(Q) —» H*(R?) (61)

are bounded linear operators. We formalize the calculation (52) in the following statement.

Proposition 1. Let g € D(Ap). Let y € C(‘)"’(Rz) be such that y y, = x (i.e., xy, = 1 on the support
of x). Then F(xg) € H*(R?) and

—F(Ap(xg)) = LF(xg) + BF(xg). (62)

Proof. We note that y, = 1 on the support of Ap(yg) and the formal calculation (52) is correct for
g € C(Q), which is dense in H;(Q). O

—2
Remark 1. Let g be a smooth compactly supported function in R, with g(y) = 1fory € [-6, 8] X

—2
{0}. Then the function f(y) = y%g(y) is smooth in R, vanishes quadratically but O(f) has dis-
continuous second derivatives. This example shows that second derivatives of odd extensions of
smooth functions which vanish quadratically need not be continuous.

Remark 2. The extension of the change of variables x — Y(x) to the whole space does not nec-
essarily map the whole domain Q to the upper half plane, only a very small piece of it, near the
boundary point x;, = 0. The extensions © and £ can be used only on functions in Q which have

been properly localized near x,.

We compute now F(ye'“r0). We denote p = e'*p8 and therefore we have 3,0 = App. Moreover,
Ap(xp) = xApp +2Vy - Vp + (Ay)p. Therefore, in view of (62)

O + LY(F(xp)) = —BF(xp) —FQ2Vx - Vo + (Ax)p) := go(D). (63)

Using the Duhamel formula, we have shown the following proposition:
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16 | CONSTANTIN ET AL.

Proposition 2. Let 6 € L>(Q) and t > 0. Then,
t
F(xetr0) — e 'LF(x6) = / e (=ILgo(s)ds =: Ry(t). (64)
0

The right-hand side Ry(¢) of (64) plays an important role.

Proposition 3. Let 6 € L*(Q). For any 0 < 3<2,0<r < 1,8 >r, there exists a constant Cy
depending only on y and r, diam(Q), such that for any t > 0, we have

log( + t) '+1—/3

IRe(Dllcs 2y < €y in{t,1} 2 1Bllcr(o)- (65)

Proof. We use the bound

1-r

lle*226l|c1(q) S minfs, 1} 2 e~0%[16]|cr(q) (66)

valid for s > 0 and for some ¢, > 0. This bound follows from a priori bounds on the heat kernel
Hp, of the heat operator, see for instance [6]. Thus, in view of (57) and (58), we have

1-r

1186 ()I|zeonrt S 1186(S)I|ze S min{s, 1} 2 e™0%(|B]|cr(q.- (67)

Using (B5) and (B19), (67), we obtain

1+r

t . =
1 min{z, 1} 2
Rl S [ s lesOllisnurds $ P Bl (69)
o 1+t—s n 1+t Q)
t . :
log2+t—5s) 1 log(2 + t) min{¢, 1}2
VRl S / — 118o@lz=nnrds S T lBllcra)-
0 : 5
min{t — s, 1}2
(69)

In view of (B38) and (B39), (67), we obtain for any |h| < 1.

t mln{\/_ ,1} ‘/lf) .
116, VR (]| 5/ L« +1h| — |min{s, 1} = e7%ds]|6]lcr(q)
0 V t—s (t — S)E

log(2 +t —s)

t 1-r
n / 1 ookl log(2 + —5) mins, 15 e ds[10o o
0 |h| t—s

2 . ro_w log(2 +t) 2
pS <mlﬂ{\/_ 1} + |h|>10g(m)mm{t,1}ze 2 116l era +1t21gtT|h|10g(m)||9||cr(g)-
(70)
Here we used the fact that
. |h|
t min{——, 1}
Vit—=s
1,_ S log(— )\/_ mm{ (71)
/0 s || \[

Therefore, we obtain (65). O
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Remark 3. In view of (70), we have VR, € C'71°2 and

16, VROl _ log(2+1) . =1
su hS min{t, 1} 2 ||0]|criq)- (72)
w 1hllog(2/ )~ 41 @

This is an optimal regularity because L has only Lipschitz coefficients.

We take 6 € L*°(Q) and consider the stream function

|
ve=ATe=—1 [ (iettopdr. (73)
P F(%) 0

We have directly from (64) the following statement.
Proposition 4. Let 6 € L*°(Q). We have

FObe) ~ L FGO) = — [ R0t = 55, ()
r 0

where

1
INRIRECERS m”QHLw(ﬂ) (75)

1 1

holds for all 0 < B < 2. Here L™ 2 is defined as the inverse operator of L2 and is given by (B52).

Proof. In view of (65), we have

® _llog(2+1t) | 18 1
[1Se,x lcsme) S /0 t S — min{t, 1} 2 dt||0]| o) S mllellmm)- (76)
This implies (75). O
We represent the localized and extended operator relationship for Ap.
Proposition 5. Let 6 € L*°(Q). Then,
1 1 ® 3
F(xApb) —L2F(x0) = -— t 2Rg(t)dt =: R, (6) (77)
2I'(=) Jo
2
holds. Moreover, we have

[IR, Ollcrwzy S N€llcr (), (78)

forany0<r <1
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18 | CONSTANTIN ET AL.

1
Proof. Using the heat operator representations of Ap and L2, we have

1
21(5)

F(xApb) — Léf'()(e) = / t_% (e LF(x0) — F(xe'*r6))dt. (79)
0

Using (64), we arrive at (77).
In view of (65), we have forany0 < r < S < 1land |h]| <1

< _3log(2+1) . r+ 1
Re@1s [ > E T mindt 1 dullera) < 7 16leran, (80)
0
g
© _3log(2+t r+1 h
164R,, ()] 5/ t 2%min{t,l} Fmind — 1 U dlee. @)
0 + v/ min{t, 1}
Ih?

We split the integral (81) in fooo =/, + /Iizzlz + f;o to get

e 2 b © _3log(2+t
164R (0] < / T dr 4 |h|ﬁ/ T de |h|ﬁ/ 3108240 10llcro)
0 2 2 t+1

< 1Al 8ller(q)- (82)

Combining this with (80), we obtain the result. O
Remark 4. Similarly, we have

1 Xine — At Cin®l oy S N1811Les (83)

I XinApE — Ar2(Xin®)lcrr2) S 1Bllcr(q)s (84)

forany 0 < § < 2 and 0 < r < 1 where y;, is a cutoff function satisfying y;, = 1 in B(x, ry) and
Xin = 01in R2\B(x,, ZFO) with B(xy, 2ry) C Q.

Remark 5. In view of Remark 4, Proposition 4 and (5), and (B55), we have the bounds

1145181 cry S 1181l () forany r € (0,2\{1}, (85)
1AL 6llc1) S 6llerays forany r € (0,1), (86)
IADOllcra) S 11€llc1+r () forany r € (0,1). (87)

We consider now the localization and extension of the nonlinear term. We denote the usual
Poisson bracket by {¢, 6} = J (¢, 6),

{$,6}=Viy . Vo (88)
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GLOBAL REGULARITY FOR CRITICAL SQG IN BOUNDED DOMAINS 19

and use its behavior under composition
{foX,goX} = (det VX)({f, g}oX). (89)
Thus, in particular,
{1, x63oX =a - {()1)oX, (x6)oX}. (90)

holds for smooth cutoffs y, y; supported in Q, and where @ = (det VY)oX) (see (46)).

We also use the important observation that odd extensions commute with the Poisson bracket.
This follows from the properties (50) and from the product rules (51). We have thus, recalling our
definition (53),a = £a,

O{x19, x61oX) = a - {O((x19)oX), O((x0)oX)}. €2y
Therefore, we have

O((V*0ne) - V(x8))oX) = aVHO((x1%e)oX) - V(O(x6)oX)). (92)

We proved the following statement.

Proposition 6. Let 0 € L*(Q), let g be a stream function defined by (73) and let x,, x be smooth
cutoffs supported in Q. Then,

F(VxOae) - Vx(x0)) = aVi(F(e)) - V, F(x6) (93)

holds.

4 | EXTENDED LOCALIZED CRITICAL SQG
We start by computing, with y = )(? and y; = )(l.l two localizers,1 <i <N,

X (V) - VO = V- V(x0) — (V9 - Vx)O

(94)
= Vi) - V(x0) — (V*Oay) - Vx)e.
The last equality follows because y; = 1 on the support of y.
Applying the product rules (51) and Proposition 6, we obtain the following statement.
Proposition 7. Let 6 € L*(Q), let g be a stream function defined by (73). Then we have
F(x(V*pg - VO)) —aVEIF(x13g) - VF(x6) = —aVIF (i) - F((V0)8). (95)
In view of (74), we have
1
F(ive) =L 2F()10) + So 4, - (96)

We denote by 6;, 51 the functions

8; = F(x0), 97)
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20 CONSTANTIN ET AL.
8 = F(x:6), (98)
by u;
1
u; =aVEL 2(6)) + Uy, (99)
with
U, =aV+iSy, , (100)
and by ¥ the vector
7 =F((V))0). (101)
Note that
6 =16, (102)

where 7 = &(yoX) is a Lipschitz cutoff function satisfying n =1 in B(xy,r;), n =1 in

R?\B(x,, 4r;) for some x, € R? and r; > 0.

Multiplying the SQG Equation (4) by )(19, using the definitions (97)-(101) above, together with

(95), (96), and (77), we arrive at
0:6; +u; - V6, +L%6i =f,
where
f=-R,@+u;-7

fori < Nj.
Lemmal. Forany0 <r < 1and0 < f§ < 1, the following inequalities hold
e llor@m2y S 101l
I lermey S 11811cry (1 +11611csq))-
Proof. In view of (57), (58), (75), and (B55), we obtain (105) and

Huilles@ey S 11011cs) + 118111 S 18llce)-

Combining this with (78) and [[¥1]csrz2) S 11611cs(q), We obtain (106).
Similarly, the equation for interior balls (N; + 1 <i < N) for 6; = )(?6 is

atei + u; - V@l + ARzQi = fin’

u; = VLA&%(XIG) + Uer ins

(103)

(104)

(105)

(106)

(107)

(108)

(109)
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where
fin = Ap2(x0) — xAp(6) + (u - Vx)o,

Uerin = VL(XIAI_)l(e)) - VJ_A&%(XIQ)’

and y = x7, 1 = x] forN; <i < N.
In view of Remark 4, we have

Nttre,inllcrm2y S 1€z (s

| finllergey S 16llery (1 +11611cs )

forany0<r,f < 1.

(110)

(111)

(112)

(113)

5 | BOUNDS FOR A LINEAR DISSIPATIVE ADVECTION EQUATION

In this section, we consider the linear advection equation
1
d;u(x,t) + b(x,t) - Vu(x,t) + L2v(x, t) = f(x,t),

1
in R% x [0, T], with d > 2 where L2 is given by (34).

(114)

Lemma 2. Assume thatv € L*([0,T],C%) N Ly (0, T], C'*%0) is a solution of (114) for some o, €

(0,1). Then, the following inequalities hold for any a; € (0,1/3),a, € (0,1), and a, > oy,

10113 sy S M + D (1100 ez + ol my + 12 o))

3 a

= T ap
a - az
M+ DA / 1+ 11bl]ce) (0]l ds;
0

and

ol peocamy + sup s'[[u($)]|g1eay S My[|U(O)]| 2wy + My sup s =4[ f($)]| ¢

T s€l0,T] sel0,T]
5 2
+ (M{” T2 (1 4 [[b | peogeen)) @ + MlTl—m)nan;O(m);

and

sup s [u(S)]| g1 S MITA[0(0)]| 3y + My sup s f($)]] e

s€[0,T] s€[0,T]

3 1

+ M TS (14 b ogeany) ¥ 110 ggogeny + My T ] ros),

where My = 1+ [|b]|reo(z).

(115)

(116)

(117)
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Remark 6. We see from (117), that SUPse(o.7] s1=1|v(s)|| g1+« is small when T is small. This
property is used in the proof of the Lemma 7, which is key for the proof of Theorem 6.

Remark 7. When b(x, t) = 0, estimates (115)—(117) are proven by K. Chen, R. Hu, and the third
author in [3, Theorem 1.1]. When b(x, t) # 0, these estimates are new.

The proof of Lemma (2) is based on a method of freezing coefficients, to avoid directly differen-
1

tiating b or the variable coefficients of L2. We start by taking a fixed x, and computing the kernel
1

of the semigroup generated by the constant coefficients operator L)%O. A direct calculation verifies
that

2 c t
1504P =
P vdet A(xg) < 1 -

t2 + |A(x0)_5x|2>

H () (X, 1) = Gaxg(x =, (118)

I

1 _dH _1
is the kernel of 8, + L , where ¢; [, (1+1x|*) 2 dx = 1. Above A(x,) 2 is the square root of
the positive symmetric matrix A(x,) !
We write

1

9,v(x, 1) + b(xo, 1) - Vo(x, 8) + L2, v(x, 1) = F(x, Xo, ) (119)

for any x, € R where

F(x,Xg,t) = { FO 0+ L2000y — Liv(x, t))}

{(L v(x,t) — sz(x Dly=x) + (b(xo,t) — b(x, 1)) Vu(x, t)}

:=F1(x, t)+F2(X,X0,t). (120)

Using (B79) and (B11), (B12), we have

IOl S IOl + 110 [coze, (121)
1
a6, X0, D] S 13 = %1% (1 1Bz ) IO, TN (122)

and

IS;OFz(X,Xo, [) - S;OFZ(y’XO’ t)l

1 1 1 1

SILE L, = L0, = (L2, = L300, 0] +18,b(xg, DIIVU(x, ) — Vo, )
< Ix = YIFIRIF (14 1@ e ) 10O 10, (123)

for any x € (0, min{l — a,, a,}).
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1
Now we compute the kernel of 3; + b(xo, 1)V + Lg . Integrating by parts, we have

t
N

t
/ /d Hy)(x—y — / b(xy, t)dt,t — s)F(y, x¢, s)dyds
0 R
t t 1
- / / HLy oy (X —  — / b, )t t — s><asv(y, $)+ bxo, V0 5) + L2 0, s)>dyds
0 JRd s

t
— o(x,1) - / (- y - / b(xo, D)dz, o (y, 0)dy
R 0

t t
— / / d lHA(xO)(x -y- / b(xq, T)dz, t — s)] u(s,y)dyds
0 JRd s

t 1 t
t [ ] @G0V L Ha )=y = | b et = syt dyds
0 R N

t
=v(x,t)— / Hyy(x -y — / b(xy, 7)dt, t)v(y, 0)dy. (124)
Rd 0

Thus,

t
v(x,t) = /d Hy)x—y - / b(z, xg)dz, t)v(y, 0)dy
R 0

t t
+ / / HA(XO)(x —-y- / b(T’ xO)dTa t— S)F(y’ Xo, S)dde, (125)
0 JRd s

for any x, € R¢.
This verifies that the map (,s,x,y) = Hy )t —s,x —y — /St b(t, xo)d7) is the kernel of the

1
semigroup generated by the operator — | b(t,X,) - V + Lg,

In the proof of Lemma (2), we make use of the following bound.

Lemma 3. For 3 € [0,1), and j = 0,1, we have

. h h|B
sup | 167V /o)l DlzPdz < min 17 B (126)
X Rd

Proof. Case 1: |h| < 4t. We have

i h|t
Ava) < |
|(6thHA(x))|(Zyt)~ (l’+ |Z|)d+j+2' (127)
So,
; |ht Id
su 5, VVH z, t zﬁdz,S/ —  |z|Pdz ~ — . 128
xp/Rd 184V HLyge)) Iz, 2] e~ s (128)
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24 | CONSTANTIN ET AL.

Case 2: |h| > 4t. We have

. t t |h|?
su 6,VVH z,t zﬁdzg/ ( — + - >zﬁd25—..
[ 16ROl S | (o + o ez s

(129)

The two cases together yield the result. [l

Proof of Lemma 2. We apply 5;,Vfc, j = 0,1 to both sides of (125), then we take x, = x to obtain
that

t
8 Viv(x, 1) = /d(5thHA(x0))(x—y—/ b(x, T)d7, £)|,=x (¥, 0)dy
R 0

t t
" / / (V) -y - / bt DT, £ — )|y (F1 (v, 5) + Fa(y, x,8))dyds. (130)
0 R N

Then, we write
t
8, Viu(x,t) = / (VH())(x —y — / b(x, T)d7, )|, =x(6_pv (¥, 0) — 6_,v(x,0))dy
Rd 0

t t
# [t [ @HA G =y = [ b0 = Dl 009 = Fix,5) + Ex0x, )y
0 Rd s

t—s

t t
n / 1, | (VE )y - / by, DT, = )]s (B Fr(025) = 8_uFy (. s))dlyds
0 Rd s

t—s

t
+Z(—1)i+1/ lw /(VHA(XO))(x+lh y— /b(xo,f)df,t—s)|x0=xF2(y,x+ih,s)dyds
N

i=0,1
t t
# [, [ =y = [ b 0= 9l
0 t—s Rd s
X (F,(y,x,8) — F,(y,x + h,s) — (Fy(x + h,x,5) — F5(x + h, x + h, s)))dyds. (131)

Here we used the fact that

[ G-y = [ =98 ae0)dy. ¥ (132)
R R
t
/d(VHA(xO))(x -y - / b(xp, 7)dT,t = 5)|,=xdy =0 V X,s,t. (133)
R N

Thus, using (121)—(123), we have for any ay, oy, a4 € (0,1), ay > aq, a7 < 20,
t
18, Vu(x, )] < / [(VH 5, )I(x =y —/ b(x, T)AT, )] c,=x [1|% [x — y|“~1dy|[V(0)]] ¢
Rd 0

t
/ L / (8, VHLy )l — 3 — / b(tor D).t — )|y s lx — Y E(s)dyds
N
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t
/ tay [ VB Imy= [ b e = il =51 Edyds

t
/ 1w>1/ IViH )l (x +ih—y — / b(xy, T)d7,t — 5)|, =x|X + ih — Y| E(s)dyds
i=0,170 s

t
/ o, / ((V Hoyo )G+ h—y - / by, D), £ = ), s

X |x +h —y[*dy|h|=7*(1 + [[D(3)]| - [U(S)]| 142 s, (134)
where
E(s) = = [1f )¢ + (14 1B e )OI, NGNS, + [0l lczar
S HFOless + (1 1O o )OO VOIS + o) lpe. (135)
Using (126), we deduce

t
/ GV I / b(x, D)z, £ — )y [Fdy
R s

< [ 1INt = )1zl + 10 = sl bl
R

sSM, mln{ ' | 1}l g 'hlﬁs (136)
t
/[R VI - / b(x, D)dz, ¢ — )ylPdy < My(t — 5) 1+, (137)
for any 8 € (0, 1). Thus,
e O am wlE
[6,Vu(x, t)| S My |h|* 1t~ 1+ |0(0)]] ey +M1/0 mln{m,l} 2 T E(s)ds
(t—s 2
t
+M,; /0 Ly (¢ =971 (1 + [1D($)] ] g ) OS] | g1 s (138)
t—s

Because ||g]|-s S 1Igllcs, forany 0 < 81 < B, itis enough to prove (115) when 0 < a; — oy << a.
Using (138) with a4y = a, > a7 and ¥ = a, — o7 < o7, we obtain

t
E(s)ds
i < —1+a,—«a wr N
||U(t)||c1+ 1 S Mt 2 1”U(O)”C 2 +M1/0 (t _S)l—(az—al)
ds

t
+M1/0 (1+||b(S)||ca1)||U(S)||c'1+az—a1m

t
E(s)ds
< Myt~ 1= p(0)|] sa M I St
S M, [[0(0)|| ey + My ) (=)~

t o
02 [ 1B e ) = [0l P g e 95 (139)
1 0 C*2 o Cl+ (t _ S)l_(az_al) :
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In the last inequality, we used interpolation inequalities.
Thus, in view of (135), we obtain

0l ey S MiT (10O on + 11012y + 1 pae))

T
— 20— 14+a,—2a a 1—a
+ M;T® “1</ (1+IIbIIcaz)“z|IvI|C;1 Hloll s, (L bl 1011 |IvI|C1+;1>-
0

¢
(140)
Using Holder’s inequality, we deduce
1011y S MUT (10O + 10llzgioy + 11 iy )
3 ap—ay T a i a_z_l T L
v TR [ @ bl T ol + M T [+ 1Bl ol
0 0
3 9‘2
S MA@+ D (IOl + 10l + 1Tl ) + M, (T + D5 / (U 1Bl 1ol
(141)

a1

Here we used — < 2 when a, — a; < a;. This implies (115).

wQu—a) @ o

Using (138) with a; = o, < ay/2 and x = 71, we have

|h]

t
. _a |h 2S—1+a1
6170, 1 % My A o) + My | ming 2L, 1773 Il—ds sup S E(s)
0

( S) s€[0,T]

t
+M1<1+”b”m(c )lhl 2 / 1M>l(t—s)_l % sy sup s'~ O]
0 t—s

se[0,T] ?
S My |h|“ ST [0(0)] | ¢oy + My R|M T+ sup sTTE(S)
s€[0,T]

“ _a

a; —1+a 2 1 —a
M (1B o) RIS o) 50 S0 (142)

where E(s) satisfies (135) with a, = «;.
Thus,

sup s [(s)|grver S MITH24[0(0)] e + MAT' 0] | ooy + My sUp s~ || f(5)]] ¢
s€[0,T] s€[0,T]

1-a
+ M 70 (14 ||b||Lm<cal>)||v|lmca1)< sgp]sl—“l||v(s)||cw)
sel0,T

-4

1 2
v ||Lm(ca1)< sup 51~ “1||v<s>||cwl> : (143)

2 o((lo()

+MT = (L4 11bll o))

SN
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1 1
Here we used the interpolation inequality <1 + ||b]| © @ )> M 12 (1 + ||b]| Lw(cal)) 2
L®(C2
Using Holder’s inequality,

st]sl o e S MyT24 V(0] ¢es + My T4 [V 1) + My Su]@]s1 TFO e
s€l0,T

3

1
+ M T (14 (b (o)) ol Loy (144)

This implies (117) by taking oty = 3.
It follows from (121), (122), and (130), that for at; = «,

t
18pu(x, 0] S /d H () (X =y —/ b(x, T)d, )] x,=x 8- (y, 0)|dy
R 0

/ /|%HMwu y— /"Mnﬂmw—wuﬁﬂw—MWQE@Ms

(126) t |h|
S 1RIPv(0)] ] g2y +M1/ |h|™ mln{ 1}1 A E(s)ds
0

~

g Hads sup s'TME(s)

S 1P 0(0)] | ¢2n +M1/ [h|* mln{
s€[0,T]

~ Ih|2“1<llv(0)llcza1 +M; sup Sl_“lE(S)>, (145)

s€[0,T]

where E(s) satisfies (135) with a, = a;.
Therefore, as in (143), we obtain

[Vl c2ay S 10O g2ar +MITH = 0] |00y + My SFP]Sl O gen
T

1—oay
+mwﬂ%(uwwmwﬁmmmm<$%fmm®mw) . (46)
€[0,T

Combining this with (144) (for a4 = 2a,) and Holder’s inequality, we deduce

10l (aary + sup. s [o(S)lleasen S Myl[U(O)]]

+ M T [v]| o o)
s€[0,T]

Cz.al

3 1

+M,; sElp]sl “FONger + M T (L 1D s eeny) = 0] o o - (147)
selo,T

1 1

Now (116) follows because ||v]| 12(ca) S S Iv] | (L) [|v]]? and Holder’s inequality. O

L co (CZal )
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6 | THE NONLINEAR MAXIMUM PRINCIPLE

We consider a solution 6 of (4) defined on an interval of time [0, T]. In this section, we assume that
the solution belongs to C'*% ([0, T] x Q) for some 0 < «;, < 1. The local existence Theorem (3)
guarantees this to be the case if T is small. Here we obtain the basic a priori estimates which allow
the continuation of the solution. We consider one of the boundary or interior balls 1 <i < N, and
take the function 6; = )(?9 as the basic variable. The extended localized Equation (103) for i < N;
and its interior counterpart for N; + 1 <i < N, (108), are both represented below by the equation

1

06 +u-VO+L26=f (148)

in R?, d > 2, where 8 = 78 and u obeys

u=1JVL, %(é) +u,. (149)
with u; a lower order term, and where
(i) J = J(x) is a matrix valued function which satisfies
13 lwieomd) S 1 (150)

(ii) L; = —div(A;V.),j = 1,2, A;, A, are symmetric matrix valued functions in R¢, which satis
J ALY y
(31) and (32);
(iii) # is a Lipschitz cutoff function # = 1 in B(0,r,) and 7 = 0 in B(0, 2r)’.

‘We reiterate that in this section, we use the name 6, but this variable corresponds to one of the
6; and not to the solution 6 of (4), (5). Equation (149) has implicitly assumed that 6 is known.
In the application to (103), g is compactly supported obtained from the solution of (4), (5) by the
formula (98).

We apply the method of nonlinear maximum principle introduced in [12] for the whole space,
used in [13] in the periodic case and in [6] to establish interior Holder bounds in bounded domains.
In this section, we do not explicitly use the divergence-free property of velocity u. We expand
here the range of applicability of the method to allow for nonlinear forcing and the absence of
translation invariance. We make use of the following result [13, Lemma B.1].

Lemma4. LetY(t,z) : [0,T] x R™ — [0, ), m € N be such that suppY(t,.) C Bx C R™ for any
t € [0,T] and for some R > 0. Assume that Y(t,z) € C1([0,T], CF(R™)) n CA([0, T], CL(R™)) for
some 3 € (0,1). Let ¢(t) = sup, Y(t,z) for any t € [0,T]. Then, ¢ is Lipschitz continuous in [0, T]
with

lellLipo,rn < N0 Y | Leo(jo,r)xmm)s (151)

for almost every t € [0, T], the function ¢ is differentiable at t and there exists z(t) € R™ such that
simultaneously

%e(t) = (8, Y)(t, z(1)) and o(t) = Y(t,2(1)) (152)
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hold. In particular, ¢ is absolutely continuous functions on [0, T] and

5]
o) = et + [ ot 1s3)
51

forany0<t; <t, <T.
Lemma 5. Assume that 8 € C1*%([0,T], C%(R%)) n C%([0, T], C1*%(R4)), for some a, € (0,1)

is a solution of (148) and (149). Then,

1« L T 2« 1_a
sup |I9(t)II"‘ e +II9IILw(LDo)/ 110115, e <II60II“ e +M/ 11611 o
te[0,T]

T 1« T T T
+M/( 10111 oo + é?z—“+/é 6 +/u6 +/ 2
(II 121 eonr) /0 116112, ; G112 11811 1 i I 1”c¥ i AT
(154)

holds for a such that (1 + ||8]] L;o(Lm)) is small enough. Above, the constant M is given by

2

M= (||é||L;°(L1nL°°) +1)a.

Proof. We take 0 < a < 1— and consider the equation obeyed by D; 6 = ° with onf=fx+

h|a
h) — f(x). We apply first the finite difference &:
1 1 1
(6, +u-V,+ (5hU) -V + le )51’19 = le 6,0 — 5h(L12 6) + éhf (155)

Then we obtain the equation obeyed by q(t, x,h) = D;;6 :
1 1 1

(O +u-Vy+(@©pu)-Vyp+L1)g =1L} D"‘@ D“(L 9)+D°‘f a(éhu |1f|2>q (156)

We multiply (156) by q and use the quadratic difference lower bound (B87), (B50), where D(v) is
defined in (B49), and (150), to obtain

1

1 : o ~ i
5(5z+u'Vx+(5hu)'Vh +L7)(g?) + cll6llgs [~ 1q]? + c|h|**D(8,,(n6))

1 1

1 1
L - 2 -~ 2 2
< %<|h|—1—2a|5m2 2(0)1(8r ()" + |IVL, 2<9>“L°°q2> AN PE = P

+q|D§ f1 + alh 7|8k |- g2, (157)

where the constant ¢ > 0 does not depend on a.
Note that

sup q(t,x,h)’ = sup [g1(0pa(Walt,x,h’| (158)
h,xeRd h,xeRd
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where ¢;, ¢, are cutoff functions such that ¢; = 1 in B(0, 1) and ¢, = 1 in B(0,1¢)\B(0,1/1);
@1 = ¢, = 0in R¥\B(0,24,), @, = 01in B(0,1/(24,)) for some A, > 1 large enough.
Thus, we apply Lemma 4 to deduce that there exists (x;, h;) € R? x R? such that

q(t) = CI(t, x[7 ht) = S]Fp ‘J([a X, h) € Wl,oo([o’ T]) (159)
,X
Moreover, q is an absolutely continuous function on [0, T] and

%q(t) = (0,q)(t,x;,h,) a.e.in t € [0,T]. (160)

We take great advantage of the fact that

1

2“9“L°°)“ L q() > e 16(0)] |- (161)

q(t)

0 < |hy| < min < 4r, <

In (157), we take (x, h) = (x;, h;) and use (160) to obtain that

¢ - —1+a —2a A
q9:q + 5110117 1hI7*<Iq ] + c|h| ~**D(84(36))

I ., I
< %Ih|'1'2“|5hVLz 20)1(8,(06))” + Clh[*=2||VL, *O)|[; 11611}

1

+1qlIL; D6 = D (L; O)| + qlIfll¢e + &*ClI6]17c [lual®

L 14+2a

¢T3

(162)

Here we have used Holder’s inequalities

1 1
a -5 c _ _ _ -5 =
FIIVL2 *O)l~g* < ZIIGIILiIhI g3 + Cn2D| | VL, 2 (B)] 3. 116] 2w, (163)
and

c _ _ 4
alhl ™ 18pu |12 q* < 1161175 IRl 1+"‘Iql3+(2)2063lIGIIfooIIu1II3 . (164)

 142a
c 3

We invoke Corollary Bl with the estimate (B70) to obtain

1

|RI7172%18, VL, * ©)|(3,(nB)) < Cl1B111o |11 ~2*D(8,(nB)) + C118] 1< 16112,

+ClRIP2¥18]1= 11811 3 11611 1 + Cal A" (18] |zt + DIOII} ., 10g(2 + 1161]¢=)
c4 c4
< CllélleIhl'zaD(5h(né))+CIhIZ'Z"‘IlélleIIQIIC%Iléllc,%
+Co(1+10)(I181 szt + D611z (1 + 116112, (165)

where C does not depend on «, but C, depends on a.
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We emphasize the key point that in the above estimate, the constant C in front of
11611 2| 2*D(8,,(n6)) does not depend on «. Thus, crucially, if « is small enough, the corre-
sponding term, which comes in (162) multiplied by =, and is the most dangerous term, is less

c

than a fraction of the term provided by the dissipation D(q).
On the other hand, using (B89), (B55) and interpolation inequality, we also have

1 1 o 2(1-a)
|L; D6 — Di(L; )| S Colhl'™*q=116]] *7% + ColhI"[I6IL1, (166)
c T2
and
_1 _1 3
VL, * @l < CallVL, O & < Co(1181] 2 +1161111)
C3
< CallBl1F 1 (1611 + 11011 ¢e)
< Co(11811zonr1 + 21611 100nrr (1 + [18]]¢e). (167)
Let o € (0,1) be small enough such that
- in{c, 1
Callll, +a < 4T, (169)
‘We obtain
c _ _ ~ ~ -
96,q + 51181175 1h 7 1ql* < (18] zsazr + DHIBlonrr (1 +116117,)
. . . 2 2(1-a)
+ [RP25 1161111611 31111 1 + |hI*=Sg>=16]] *%
ca ca clit2
+ |01 %ql1B]Irinre + qlIf e + 1101121 1o (169)
c 3
1
Using || < (m)“,we deduce
q(t)
T l+2 =X = 112
9. + 1111, &1l S (101onrr + D*161Izeonrr (1 +116117,)
272, a4 4 2(1-a)
+11611,E g = 111111811 21811 1 + 116115 q = = 18l] >
L ci ¢l L ¢ty
lma
Al « 21218 3112 3
+11011,% @ = 18lziazes + gl fllea + 161l s - (170)
C 3
1l 4
We divide both sidesby q « 2«

L 2 4 1 4-a

1 a i - - -
0(q= =) +c"N18ll S g = S ga 2w (|18llznrt + DHIOllrsnrt (1 + 116112,
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2—2a 1 l—_a 2(1—a)
+110ll,& g « 2“||6||L°°”e” 11611 1 + 116115 116l E
C3a C3 otz
1-a « 12 1 4« s
+ 110115 ¢ = 110llare + = == || fllga + g5 = 18117 Nt |1® 1 - (A7)

¢T3

Note that the positive constant ¢’ now depends on «.
2(1—a) a

Using q(t) 2 cry“[16()| |13 g S 116]|¢w and ||9|| TE S 11,2 11el| oi+%» we have

1 1_4-a
ge = “(He”LwnLl + D160 (L + 10112 S U161 srrr + D16 enrr 1+ NO1Z )N,
1_«
Mlell;, = 172)
2-2a 1 1-a 2(1-a) 1-a
1ell,s q « EHGHLWHGH %II |l 1 + 11611, 1181l “i +11611,% g > “HellLlnL""
2
<M<||9|| 311 || %+||9|| a4+ +||9||L1nLoo> (173)
1_2 -= 2w 5
g« >=|Ifllga S ellBllpage >+ CMIIfIIL,s (174)
1 4=« 3 12 a
g = 1012l 1y < el & g5 = + CM | |l° (175)
c 3 c 3
for any € > 0. Combining these with (171), we deduce
1« -2 2 a
0/(q= >«) +c"||6]] sqe =
1=
<M(I|9||L1nLoo+||9||“ 4101 %II II,% + 1wl +||f||2C-a+||9|IC.1+;>- (176)
¢ 3
This implies (154) by using (153). O

Corollary 1. Assume that 6 € C'*%([0, T], C*(R%)) n C% ([0, T],C1*%(R%)), oy € (0,1) is a
solution of (148)-(149). Then, for a € (0, ) such that a(1+ ||8]] L%O(Loo)) is small enough, we
have

@ T 2« T 1«
sup 1161 S e el s wsl,
0 0

telo,T]

T 1 T T T
£ / Ik +/ ||é||.;||é||.1+/ rll6 1o /n 2
(0 Ca o Cci Fot o 1 C1+32 o f Ca

)+ MM / (1+||e||ca+||u1|| ) IIéIIC%,
(177)

+MM(160]1 5 + 11811y ey + 111,
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where

3
M = (||9||L;°(L1nL°°) +T+ 1)<, 178)

M, = (1+ 6| Lo (reont)) 10g(2 + ||9~||L;°(c'a)) + ] L2o (o). (179)

Proof. We apply (115) to (v, b) = (6, u) with a; = %, a, = S?a,

a < o 0 o
1611, g, S M(T + 1)<||90||058 + 116112 + ”f”L;(cZ))

] 5

- T 5
+Mf(1+T>Z/ L+ llull s)2[6]] «ds, (180)
0 C8 Cc2

withM; =1+ ||u||L;o(Lm).
In view of (150), (B54), and (B55), we estimate

Hu@I sz S UG sa + 118)][r1 + ur ()] s«
Ccs C’s Ccs

3 5
S 1B 1611 + N8I + (O] s (181)
My S (14 118z qonn ) 108 + 16111 o) + [t Iy = Mo, (182)
we get
¢ « SM(T+1 6 « + ||6 oy + a
1611 0%, S Mo )(n oll_sz + 1181111z IIfIIL%(ng)>
5
s s T R u
+M§(T+1)4/ (L4 118115 1N + 1181l + ]| ) 161l (183)
0
Combining this with (154), we obtain (177). O

7 | HOLDER REGULARITY

In this section, we prove a basic a priori estimate on the solutions of (4), (5) in the bounded domain
Q. The proof utilizes Equations (148) and (149) of Section 6, which are set in the whole space. The
procedure of localization and extension of (4) to the whole space leads to particular cases of (148)
and (149). The a priori bound (177) on solutions of Equations (148) and (149) is applied in the proof
below to the extension of the localization to interior balls, and yields a bound (186) concerning
norms of the solution in the interior balls, in terms of bounds in the whole domain Q. These are
obtained from the right-hand side of (177) by using the fact that C* bounds on 8, that is bounds on
F( ){}6), are majorized by bounds on C* norms of the solution 6 in the domain. The identification
of (148) and (149) with the localized and extended SQG equations is done separately for the interior
balls and for boundary balls. For interior balls, this is done by referring to (108) and (109) and to
bounds for f and u;, (112) and (113). For boundary balls, the identification is done by referring to
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(103) and the bounds on f and u; (105) and (106). For boundary balls, the estimate (177) results
in (191). The right-hand side is again in terms of the whole field 8 in Q. We sum the left-hand
sides of (186) and (191) to obtain a bound on the solution 6 in Q, (192), which we use to prove the
inequality (184) below.

Theorem 5. Let§ € C([0,T], C%(Q)) N C. (0, T1, C*(Q)) n C2 (0, T, ClHea(Q), o € (0.1)

be a solution to (4), (5). Let c > 0 be such that a(]|0y||;~ + 1) is small enough and a < 7. Then,

1 a T 2 a T 16
sup 1612, 2 + ||e(s)||:”ds+ 1] vz ds S (118llcacay + diam(Q) + T +1)=
Ce(Q) Ce(Q) cT2(Q)
tel0,T] 0
(184)

holds.
Proof. We know from (4) that

sup 6110 < 1100ll(0) (185)
t>

holds.

First, we prove (184) with assumption 8 € C'*%([0, T], C%(Q)) N C% ([0, T], C1*%(Q)). We
apply (177) with (f,u;) = (fin, Urein) to the system (108)-(109) and use (112), (113), and (185) to
obtain that

1_a T2« T
sup 1181255 + [ 1835 + [ 11l 0t

te[0,T]
T 1« T T
+M1</ 11z “+/ el s el 1+/ ||e||;§a>
0 0 c4 c4 0

6 T 25 1
+ My log 2+ [18llsce)= [ (L+118llce) o> 1= My, (186)
0
for Ny +1 <i < N, where
E
= (|16ollca(qy + diam(Q) + T + 1) «. (187)
In this inequality, we estimated
MlelI: * + 3 ||u1||6w + MM, (11801122 + 118113 0mn) ) S My 1082 + 1181 1z5co);

(188)

T T
M/ AR, + MMLIIFI s 5M1+M1/ 16112, (189)
0 ¢ L1(CF) 0
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and

5
~ 25 1

6 3 2 6
~ a ~ ~ - _+_
MM; / (1+II9|Iéa+IIu1IICs§) ||9||C.z S My log (2 + 11812 (ca)) = 1+ [[6]]ca)ea "2
0 0

)

(190)

Similarly, we apply (177) to Equation (103) and use (58), (105), (106), and (185) to deduce that
2

1 «a T a T
sup ||6 + ol1% > ds+ ot <M 191
R Ry T TR e A TCOTIENS T )

for1 <i < Nj.
As we have a cover of Q by Ufi 13?’ then we obtain from (186) and (191) that
1« T 2_« T
a 2-a a  2-a
sup 1181155+ [ VOIE G+ [ el s S b (192)

tel0,T]

By interpolation, Holder’s inequalities and (202), (203), we obtain

T 1 a T T 2 a
M1</ 1611 fa 2_a+/ ||9||éa>,§5/ 110115, 2“+CM3 (193)
0 0 0

2(14a) 2

T (185) T 2 T 3
Ml/ o1l 11l s < Ml/ 16011, 116117, <s/ 161l o,z +CMF; (194)
0 c4 0 c'tz 0

and
_ 6 5,1 1« T 2« .
M log 2+ [|8llLe(ca))= [ (1 + 116]|ca) 1o "2 <E([SUP]||9||“ o +/ 116115, *) + CM;.
0 0,T 0
(195)
Thus,
1 a T 2 a T 3
6% > + e““d+/ 6 SM:. 196
sup l6l1g. 5+ [ OIIE s+ [ ells ) 5 (196)

This implies (184) with assumption 6 € C'*% ([0, T],C%(Q)) n C%([0, T], C*%(Q)). Now, we
prove (184) without this assumption.

Indeed, because 6 € C1*%([¢, T], C*(Q)) N C%([¢, T], C1+%(Q)), for € > 0, we apply (184) on
€+ [0,T — €] = [¢, T] and deduce that

1« T 2 a T 36
sup 1911 5, + / G ds+ / 18G5 o s S (10l + diam(@) + T — ¢ + 1)
tele, T

197)

(185)
provided that a(]|6(e)||;o + 1) < a(||6gllz~ + 1) is small enough and a < %
Using 6 € C([0,T],C*(Q)) and a < a,/2 and letting € — 0 to deduce that

T

S T 2«
o1]* 2a+ 6 a 2-aq +1 0 . d
[GSBPT]H HC“(Q) / Il (S)”Coc(Q) S 1msup'/€ I (S)”C'”f(ﬂ) s
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1 a T 2 T
-k o]« 2 a 2] a 2 *d e] « d
l?f‘;lp(é{i%]” ”ca(o) +/E Il (S)”Cm) s+/€ [l (S)”CHE(Q) s>

36

< limsup (116(e)||ca(q) + diam(Q) + T — € + 1)<?
e—0

36

< (1160llca(qy + diam(Q) + T + 1)< (198)
This implies the result by using monotone convergence theorem. [

Lemma 6. Forany 4,01, ., Bk > 0,81, ., Pr < Po, and xy, x1, ... , %, > 0, we have

T k
X1 %
< =1"%J
/0 011, )~ 1181175, () S (L + 1180l 11=) </0 ||ellcﬁo(m+T+1> (199)

provided 211;1 Bjxj < Boxo-

Proof. Using Holder’s inequality, we only need to prove (199) with 23?:1 Bjxj = Boxo- Indeed, in
view of (22), we have

J _Bjxj Bjxj ; _Bjxj Bjxj
}{j <
16O, S 118y N8I S o) S 1ol ey N6OIZS . (200)
Thus,
< j 1%j7%0
BN, o - IOOIS, S ||90||L°°(Q) 18IS, o (201)
This implies (199) with 2’;:1 Bjxj = Boxo- O

Corollary 2. Forany 81, ..., 8k > 0,81, ....fk <1+ % and xq, ..., x; > 0, we have

T k T
T
< . =17J a
/0||9||C51(Q) 18I, ) S L+ 118ol1)™ </0 ||e||CH2(Q)+T+1> (202)

. k a
provided 3, Bjx; <1+ >

Corollary 3. Forany f31,...,8r > 0,01, ..., < &, and x, ..., x;; = 0, we have

T Kk T 2«
Z'— xj « 2-a
< o )&=
/0 ||9||C/31(Q) ||ellcf3k(g) (A + [16p =)™ (/0 1811 Cecry +T+1> (203)

2
provided Z Bixj<2— E
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8 | LOCAL EXISTENCE WITH HOLDER INITIAL DATA AND
GLOBAL HIGHER REGULARITY

‘We consider
ov+b-Vo+Apv=f in Q, v|zgqg=0, (204)

with b = Viw € L®([0,T] X Q), w = f = 0 on Q.

Proposition 8. Let ay € (0,1/10]. Assume v € L*([0,T],C**(Q)) N L2 (0, T], C***(Q)), and
b € L*([0,T], C*(Q)). The following inequalities hold forany T > 0 :

sup [[o()]] g2z (g + t X [V(O)] ] ¢14e0 (0
te[0,T]

4
2 —
S (1411l gey ) T+ <||U0||c2a0(9) + sup ¢! a°||f(s)||c«o<m>
se|0,

6 2

+ <1 + IIbIIL;o(Lm(Q))> OTI%(1 4+ T)(l + ||b||L;9(cao(Q))> “Noollpe() :=J1, (205)

and

_ 2 _
sup 7% |[o(8)]|¢rseo() S (1 + 1]l geeiy) (1 +T)<T“°||vo||csao<m + sup s' a°||f(5)||cau(g)>
te[0,T] s€[0,T]

1

3
+ (@ + 11l ay) T <1 + ”b”L;"(C“O(Q))) “ o] |z (coo(q)) += o (206)
Proof. We have

Suopllv(f)lle(Q) <Illvollzr@)  Vp €[1,00]. (207)
>

(1) Boundary estimate: Let 1 < i < Nj. As (103), we multiply (204) by y = x?, using (95), (77) and
flsa = 0, we arrive at

1
0,0+b-VO+L20 = f,, (208)
0=F(xv), b=aViF(y w), (209)
where a is given in (52) and satisfies (58);
f2=b-F(Vx)v) + F(x)f) + R,0(v). (210)

Using (78) (58), and w = f = 0 on 02, we have
1Bllcs ey S 1bllesy ¥ B € 10,1), (1)

1f2llcemey S 1fHles@) + @+ 1blliea=)lvlesq) + Hvolle @l 1bllceq) ¥ B € (0,1). (212)
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We apply (116), (117) with a; = a and use (207), (211), and (212) to get that

||U||L§9(C2ao(3<?ng))+ sup Sl_aOHU(S)”cHao(BQnQ)
! s€[0,T] !

2
S (1 + ||b||L;°(L°°(Q))> <||Uo||c2“0(9> + SFP]Sl_“OIIf(S)IIcaom) + Tl‘“OIIvIIL;O(cao(Q»)
se|0,T

6 2

+ (14 bl oy ) T+ T 1+ |1bllrecooqy ) “ volle) 1= Jo, (213)
T T

sup sl‘“ollv(s)llcl+a0(39) <J,. (214)
s€[0,T] !

(2) Interior estimate: Define v = )(?v for N; <i < N.We have
8,0+ (x;b)- VU + Apa0 = fy in R?, (215)
where
f1= X + Ag2¥ = x)Apu. (216)

In view of (84), we have for any 8 € (0,1)

1 csmay S HFO sy + o es(q)- (217)
We apply (116), (117) with o; = «, to get that
VIl peo(¢2e0(p0y) + SUP Sl_aOHU(S)”CHao(BQ) S Jo, (218)
T i s€[0,T] i
sup s'7|[u(s)] | g1+aq 50y S - (219)
s€(0,T] !

We cover Q by U;_; NB?, then we obtain (206) and

.....

sup [[v(0)]|¢2a0 + 74|80 g14a0 S Jo- (220)
tel0,T]
1 1
i i (a0 Q) S 2 2 ’
This follows (205) by using ||U||LT «© O(Q))N||v0||Loo(Q)||v||L;o (C20() and Holder’s
inequality. O

Now, we use Proposition 8 to prove local existence and higher regularity of the system (4) and
(5). We define

Srr ={v € LX(L®(Q)) : vlsq = Avlsg =0,

(e = 0) = 6, [0l < 6ol iy [11olllr <R},
(221)
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with
olllor := sup [[o(®)]|¢2s0(q), (222)
tel0,T]
ol := sup 7% [u(0)]| g1 (g (223)
tel0,T]
ol == Hvlllor + [HVl1,7- (224)

We define the map 7 (6) = v as a solution of

o, v+b-Vuo+Apv =0 in Q, (225)

b=VIAL'6,6 € Srp, (226)

with v(t = 0) = 8, € C3%(Q) and §, = 0 on Q.
In view of (85) and (86) and we have

1 1

1Bz (oot S 1180112 161115 7 1Bl Loy S N80l LEg 6NN, (227)

for any x € (0,1].

Lemma 7. There exist R > 0 large enough and T > 0 small enough depending on ||y|| 3 ) and
Q such that T (St g) C St and

1
7)) =T@)llr < 7110 = Olllr 61,0, € Sy (228)
Proof.

(1) Let6 € Sy g, v = T(6). We have

ollLe o)) < 16ollLe(a)- (229)

Thus, to get 7 (St g) C St g, we have to show that |||v]||; < R forsome R > 0largeand T > 0
small enough.
Using Proposition 8 with f = 0 and T > 0; and using (227), we have

8
1ol S L +7) <(1+||60|Lw(m|||e||| )||eo||cz%(m+(1+|||e|||o,T)a»Tl—%neoan(m),

(230)
4
Mol S @+ T+ 11161100 (T8l lcs0cq) + Tl olllor), (231)
for any x € (0,1].
We deduce for any T € (0, 1)
8
lHolllor S (1+ 16| Lw(mR“) 180l Ic0(qy + (L + R) TT0[ 8[| sy (232)

4

olllr S @+ R) (T%][6]|c3a0(q) + TP 0R). (233)
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In view of (232) and (233), we can take R > 1 large, then T small such that

1
Hollhr <R, lvlllor < RS, (234)
These imply |||v]||7 < R. _
(2) Let 6,0, € Sy be such that 6,(t = 0) = 6,(t = 0) = 6. Setv; = T7(6;) and v = v; — 05,0 =
6, — 6,. We can write

8,0 + VEAS'6, - VO + Aps = —VIAS'6 - Vo, (235)

with v(t = 0) = 0.
Using (231), we have

ol + Hoalllr S CR 6ol csao @) T* ¥V T € (0,1]. (236)

Because VA0 - V|3 = 0, so we apply (205) in Proposition 8 with f = ~VLAZ16 - Vo,
to obtain that for any T € (0, 1)

Blr S A+R)* sup s [|VEASE - Voy(8)llcao S (1 + R T[16] || (237)
s€[0,T]
Thus, we deduce (228) by taking T > 0 small enough. O

Theorem 6. Let 6, € C3*(Q) and 6, = 0 on Q for some a,, € (0,1/10). Then, Equation (4) has
a global unique solution 6 satisfying

NO(O | 220 + tl‘“ollv(t)llc.u%o(m < Cl18oll 30 (), D)™, (238)
forany t > 0 and for some c > 0.

Proof. Using Lemma 7 and the Banach fixed point theorem, Equation (4) has a local unique
solution 6 in [0, T, ] satisfying

181117, < oo, (239)

for some T; > 0. Moreover, we also have 6 € C([0,T,], C*(Q)).
Define

T* :=sup{T : 0 exists on [0, T]| with [||8]||7 < oo} (240)

In view of (239), we have T* > 0.
We prove T* = +o0. Indeed, we assume 0 < T* < o0. So, we can apply Theorem 5 for 6 in [0, T]
forany T < T * to get that

1 a 36

N8 Ea 5y < CUUIBollc3e0 (), It + 1)<, (241)

for any t < T* and for some a € (0, ay) small enough.
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Using (231), we get

£7%0 [u(0)] | 10y < CC1Bol 0y Q& + 1™,

for any t € (0, T*] and for some m, > 0. From this and (239), we get a contradiction.

Therefore, for any ¢ > 1
o)) ¢1+20(qy < CU1Bolese0 s E + )™

On the other hand, we have

1

3118112, ) + 2IAZEDI2, ) =O.

Using (27),
8112, ) + 261 [10(D)I 2, ) < O.
This implies
N6(Dl12) < 3_2”1[||90||L2(Q)-

Using interpolation, we obtain from this and (243) that for any ¢ > 1

10Oy, S CUIGleeocy D™,
for some ¢ > 0. Thus, we obtain the result.
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APPENDIX A

This is a construction in d = 2. A similar construction can be done in any dimension. We take
without loss of generality ¢(x;) to have ¢’ = 0 for |x;| > ¢ and |¢"”’| < C,. We assumed ¢(0) =
¢'(0) = 0and |¢’'(x;)| < eforall x; (asin (41)). Clearly, p(x;) = h; = ¢(¢) for x; > € and ¢(x;) =
@(—=¢) = h, for x; < —¢. We take

Y,(x) = X3 — p(x1). (A1)
Now
VY, (x) = e, — ¢'(x1)e; (A2)
is a globally defined vector field
N =e, — ¢'(x1)e;. (A3)
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We build a function Z(x) so that N - VZ = 0. We set
VZ = y(x)(e; + ¢'(x1)ey), (A4)
where y will be specified below. This can be done if, and only if,
0,y = 91(¢'y), (A5)
which is a first-order equation
N-Vy=9¢"y. (A6)

We solve this on characteristics and show that the solution is global. It is good to set data on the
curve

I' = {x]x; = p(x)} (A7)
The characteristics are
as
T =9® (A8)
with €(0) = x; and
dn
I = 1 (A9)
with initial data 7(0) = ¢(x;). Clearly,
n(s) = p(x;) + . (A10)
On characteristics, y solves
%7(5 (8),m(s)) = " (§()y(§(5), n(s)). (A1)

We set the initial data for y on the curve T,

y(§(0),7(0)) = y(x1,9(x1)) = 1. (A12)

Itisclear from our assumptions that the characteristics exist for all s. If | x; | > ¢, the characteristics
are vertical lines £(s) = x;. Also, if x; = 0, the characteristic is the x, axis. Moreover y(x;, x,) = 1
2

for |x;| > ¢. We note that y(0,s) = ¢?"(0s_ Tt is instructive to look at the case Q= %1 for which
& = xje7% and y = ¢°. In this case, we can determine y(x;, x,) implicitly from the relation x, =

24
Y5 +logy.
We define Y (x) by setting

X1
Vi) =3+ 4G | (rx) - 1z (A13)
0
where y(x,) = 1 for |x,| < H and y(x,) = 0 for |x,| > 2H with H > ef. We have

01Y1 = x(x2)y(x1, X2) + (1 = x(x2)) (A14)
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and, using (A5),

d 1
0¥, = XG0 ) + 55 [z - . (A15)
2 Jo
Therefore,
dy [
VY VY; = /- ) + o / (r(z.%,) — dz (Al6)
0

vanishes in a neighborhood of I" because the condition H > ¢¢ implies that the strip |x,| < H
contains a neighborhood of T.

We can arrange the cutoff y so that x — (Y;,Y,) is a global diffeomorphism. This is done by
noting from (Al4) that ,Y; > % may be arranged by ensuring y > i on the support of y. This
follows if H is small enough, which is possible if €€ is small. Then the Jacobian det VY is bounded
away from zero, provided € and ¢ are small enough and |;—j2| < CH™!.In fact, the matrix VY — [

is given by
dy rx1
-1), Iy L ,X,) — 1d
vy 1= (X0 =D xr¢'+ o [ (@ x0) — Ddz (A1)
_¢’, 0
and therefore
Cllly —Ulpw, _ 1
IVY = Ul <8 = max{llxly = Ulle, 1+ [1x7llpe)e, — =< 2, (A1)

and the condition (43) follows if y — 1 is small enough on the support of y, if ¢ is small enough, and
1f £’ isbounded. This can be easily arranged, for instance by taking ¢ = H = € and € small enough.

ThlS shows that x — Y is locally injective. To show global invertibility, we show that Y can be
continuously deformed to the identity, by taking ¢ to zero. We note also

Y,(x) = x;, for|x,|>2H,

(A19)
Y,(x) = x,. for|x;| >¢.

Once we have established the existence of the smooth diffeomorphism X = Y1, we have the
intertwining (62).

APPENDIX B: ESTIMATES OF HEAT KERNELS
In this section, we establish estimates for the heat kernel of the operator

L = —div, (A(x)V,) (B1)
in RY, for d > 2 where A is a symmetric matrix-valued function in R¢ satisfying

A(x) > ¢;1 Vx € R4, (B2)

IVA[lLe + [|AllLe <, (B3)

with constants ¢, ¢, > 0.
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Let be H; (x, y, t) the kernel of 3, + L in R? x (0, o), that is,
0;H(x,x + z,t) —div,(A(x + z)V,H (x,x + z,t)) = 0,
yna H(x,x +z,t) = 8,_0, (B4)
for any x, z € R¢.
It is well-known that the kernel H; (x, y, t) satisfies

|z|? 1 |z|?
exp(—c4T) <Hp(x,x+2z,1) < — exp(—c3T (B5)
C3tE

d
Cyt2

for some ¢z, ¢4 > 0, see [16, Theorem 3.3.4]. Moreover, we also have

o |x —y?
IVHL (8,2, 0] + [V, Hi (4,6, 0)] < — T exp(—

t2 min{t, 1}2

) (B6)

see [19, chapter IV, section 13, (13.1)] for case ¢ € (0,1]; when ¢ > 1, it follows by using semigroup
1 1
property: Hy(t,x,y) = /Rd HL(E,x,Z)HL(t —- 3% y)dz.
In particular, (B6) implies

e~ div(@)l ety < € min{t, 137 1lgl oy (B7)
for any a € (0, 1).
For fixed y € R4, we define
Ly, = —div, (A(y)V,). (B8)
Its heat kernel is given in (39),
G (2. = exp(- A2 D), (89)

\/detA(y)(47rt)§

and the square root of the operator L, is given by

1

Lju(x) _ u(x) —u(x + 2)

%
Vet AG) J (A0)y1z-2)7

dz. (B10)

The Lipschitz continuity properties

1 1
sup Ly, u(x) = Ly,u(x)| S min{ly; — yal, Bllullg, Hull 57, (B11)
xeR
1 1 1 1
|(Ly, u(x) = Ly u(x)) — (Ly, u(y) — Ly, u(y))| S min{|y; — y2, L|x — y|*|ull¢ita- (B12)

hold for any a € (0, 1). Indeed, we write

1

(L3 u(x) — L u(x)) — (L} u(y) — L}, u(»)

- / FOnya 2)(6,u(y) — ,u(x))dz, (B13)
Rd
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with
& 1 o 1
F(yl’y252)= d+1 d+1 " (B14)
VAetAD) (a(y,)-1z-2)2 VAetAG) (a(p,)-1z.2) 3
Then, (B12) follows by using the following inequalities:
6,u(y) — 8;u(x)| < x — y|**0|z|' =0 ju||¢1a for |z| =[x — I, (B15)

1(6,u(y) = zVu)) — (6u(x) = zVu()| < |x — y|*|z|"*||ul|g1ra for |z] < |x -y,
(B16)

min{l, [y; — y,1}

|z|d+1 ’ (B17)

[F(¥1, Y2, 2| S

for ¢, € (0, %).
1 1
In order to study VL 2 and L2, we make use of the following fine properties of the kernel

Hi(x,y,t).

Lemma B1. The following inequalities hold

2

eXP(—Co%)
|HL(X, X+ z, t) - GA(x+z)(Z7 t)| + |HL(X +z, X, t) - GA(x+z)(Z’ t)| S B (BIS)

t2 (1+1):2

VZHL(X7 X+ z t) - VZGA(X+ZO)(Z7 t)lz():z

log(2 + 1) |z|?

+ |VZHL(x +2z,x,t) — VzGA(x+zo)(Z’ t)lzozz < -4 EXP(—COT > (B19)
t2

|5;VZHL(x, X+ 2,8) = 82V, G px120)(Z Dlys

|z|?
Vi exp(=co—-)
< |h|log(2 + m)ﬁ
t2 min{t, 1}2
(B20)

+ |87V H(x +2,X,1) = 67 V,G A(x420)(Z5 Dl 2y =2

foranyt > 0and |h| < 4/min{t, 1}/10. Here 6, f(x) := f(x + h) — f(x).

Proof. Our proof is based on a method of freezing coefficients. It is similar to [19, chapter IV,
section 13] and it is probably not new.

(1) Using (B4), we have for any z, € R4,

0:H(x,x + z,t) — div,(A(x + z¢)V,Hr(x,x + z,t))

= div,((A(x + z) — A(x + zy))V, H(x,x + z,1)) (B21)
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so, integrating by parts, we obtain

Hyp(x, X + 2,t) — G4(x47,)(2, 1)

t
= / / V.Ga(rtz)(Z — 2/t = )(A(x + 2') — A(x + 29)) Vo Hi(x, x + 2/, 5)dz' ds.
Rd

(B22)
Thus, for any t € (0,1]
2 72
(B6) exp(—cs Izt_zsl ) exp(—cs %)
[H (x, x + 2,1) — Gaerny(2, )| S / / —————— min{|z - /|, 1}——————dz'ds
0 JRE (f—5)2 s2 min{s, 1}2

Iz exp(— Cs |)eXp( —es L)
S exp(—cs—— )/ / — Y dz'ds
N (e s)i s

|z|?

8t

d
t . -
min{t —s,s}> 1
) — 0 ds
0 (t—s): s>2
|z|?
8t

S exp(—cs——

S — exp(—cs——), (B23)

t

holds with ¢5 > 0. Here we have used the fact that

m‘n - , 1 _ 512
minflz — 2|, 1} exp(_cs%)s 1, (B24)
(t—5)2 °
lz—Z'|>  |Z)* _ |z)?
z 2 =2t 2 B2
t—s s 2t (B25)
Therefore,
|z|?
[HL(x, x + 2,t) = Gaxi)(Z, )| S ——exp(~ o (B26)
t2(141):

holds for some ¢, > 0.
(2) We apply V, to both sides of (B22), then we take z, = z to deduce that

VZHL(x’ X+ 2z, t) - VzGA(x+zO)(Za t)lz():z

t
= / / V2Ga(xt20)Z = 2/t = 9| zy=z (Ax + 2') = A(X + 2))Vy Hi (X, x + 2/, 5)dZ/ ds.
0 JRd
(B27)

So, as in (B23),

d
min{t — s, s}2
1 d+1

O A+t—9)2(t—s5)2

(B6) 122
V Hp(x,x +z,t) — VzGA(x+zo)(Z’ t)|zo=z S eXP(—Cs )

1 log(2 +1t)
- —ds S - exp(—csg

s2 min{s, 1}2 t2

lzI° (B28)
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(3) We apply 5}21 to both sides of (B27) with |h| < 4/min{t, 1}/10

|5ZVZHL(X’ x+z, t) - (VZGA(X+ZO)(Z + h, [)|zo=z+h - VzGA(x+ZO)(Z’ t)lz():z)

®B6) [t
</
0 Rd

—ViGa(xiz)(Z — 2"t = )|z (AlX +2) — A(x + z))|

VeGatxizg)(Z +h =2/t =) yein(Ax +2/) — A(x + z + h))

2’2
exp(—cST) ,
52 min{s, 1}2

t
1= / M(h, s)ds. (B29)
0
When s € [t — |h|?, t], as (B23) we estimate
|z—2 +ih|? 1z’
exp(—cs ————— _e 20
|z|2 p(—cs 2(—s) )exp( Cs . ,
M(h,s) S exp(—csg y y -dz
i=0,1 /R (t—s) 2 s2 min{s, 1}2

Ells
1 exp(=cs ” )

(B30)

~ 1d 1’
(t —s)2 t2 min{t, 1}2

When s € [0,t — |h|?], we have

M(h,s) 5 /d ‘VgGA(x+zo)(Z +h-z2,t- S)|20:z+h - VgGA(x+zo)(Z - Z,s L= S)Izozz+h
R

12
exp(—cs %)

x min{|z — 2’|, }—————dz

s2 min{s, 1}2

!/

VgGA(x+zo)(Z -z, t— S)Izo=z+h - vgGA(x+zo)(Z -z t— S)lz():z

+/
Rd

Eds
eXP(—CsT)
X min{|z — 2’|, 1}—————dz
s2 min{s, 1}2

!/

|z’ |2
5 , exp(—cs T)
VzGA(x+zO)(Z +h—-z,t— S)lzo=z+h ”’”ﬁ
s2 min{s, 1}2

dz'. (B31)

o).
Rd

Since |h|? < min{t — s, 1}, we get

|2 212
eXP(_Csl [_Sl )eXP(_CS%) )
M9 % 1hl | = 4z

R (t—s)2  s2minfs,1}2

d
min{t — s, s}2 1
a2 d 1
(t—s) 2 s2min{s,1}2

2
z
S Ih exp(—e; 1)

(B32)
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Combining this with (B29) and (B30), we obtain

ISZVZHL(X7 X +z, t) - (VZGA(X+ZO)(Z +h, t)lzo=z+h - VzGA(x+zo)(Z, t)lz():z)

|22 d
t exp(—cs—) t—|h}? s >
</ ! - 8 _ds+ |h| exp(—cs l21° )mm{t S, 5} 1 ds
t |]’l|2 (t

~ 1 d 1 8t a2 d 1
—5)2 t2 min{t, 1}2 0 (t—s)2 sz min{s, 1}2

; exp(— Cs—)
—l .
t2 min{t, 1}2

< |h|log(2 + —)

m (B33)

Thus,

5ZVZHL(x, X+ z,t)— 5;21VzGA(x+z0)(Z, )l z=z

\/; exp(— Csl ° )
7 )d— |V GA(x+zo)(Z +h, [)|zo—z+h \% GA(x+zo)(Z +h, t)lzo—z
t2 min{t, 1}2

S |h|log(2 +

exp(— Cs—)
—1 .
t2 min{t, 1}2

< |h|log(2 + i?) (B34)

Similarly, we also obtain for any || < 4/min{¢t,1}/10

2
nice
a+ t)z
log(z + )
~ d
2

t

|[HL(x + 2, %,t) = Gaer)(Z, )| S ),

d_
2

|z|?

z
‘VZHL(x +2z,x,t)— VZGA(x+ZO)(Z’ t)|ZO=Z p(—cOT ,

\/; exp(— Col & )
S hllog(2 + o) ———,
t2 min{t, 1}2

|5 VLHL(X + 2,%,8) = 62V ,G (x120)(Z Ol =2

for some ¢, > 0. Thus, we obtain (B18)-(B20). O
Proposition B1. The following inequalities hold

|x — y|?

log(2+t)
a ° 2

I(Vx + Vy)H (x,y, 0] S Xp(—Co ) (B35)

t2

2
. N ¢! y')
[(6,Vx + 67, V)HL(x,y,0)| S |h|log(2 + =)

h 17
Ihl tz min{t, 1}2

(B36)
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forany |h| < y/min{¢t,1}/10 and t > 0. In particular, we get

|| Vi

,1¢log(2 + i
min{t, 1}2

[ 1G5V+ 8,9 )iy, 0ldy < min VI @)
R

min{%, 1} log(2 + Ve

||
[ vyl s +1h| L (B3%)
R4 t minit, 1}2
log(2 +t
SUp 5,5, 3,01 S Ih Iog(2-+ i) (839)
|
t2 min{t, 1}
forany |h| <1,t > 0.
Proof. By (B19) and (B20), we have for |h| < 4/minf{t, 1}/10,
|VxHL(xa Y, [) - VxGA(zo)(x =Y t)lz(,:x
log(2 + 1) Ix —yI?
+ VyI"IL(x, y,t)+ VxGA(zO)(x =) t)lz(,:yi p - a4 xp(—¢y f ), (B40)
t2
5ZVxHL(x’ y,b)— 5;C1VxGA(ZO)(x - t)lzozx
2
t exp(— Co yI )

+[GLVSHL( .0 + 85, V. Gagey) (6 = ¥, Dlzgmy | S Il log2 4+ 1) —

—.
t2 min{t, 1}2

(B41)
So, we obtain (B35) and (B36). Moreover, we have for any |h| < 4/minf{t, 1}/10
30 Il Tog2 + )
[ @8, Vo poldy 5 —— (B42)
R4 min{t, 1}5
2
p a1 |x y|2 Vi expe )
[ vy s [ A expa ™20+ hitog + X ————dy
R RE t2 min{t, 1}2
1 log(2 + I\il-)
~ |h|| < + — | (B43)
min{t, 1}z
(B41) t log(2 +1¢
Sup |82V Hy (6,0 S Ao + [h| log(2 + % S S hllogz + R
i t t2 min{t, 1}2 t2 min{t, 1}

(B44)
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when y/min{t,1}/10 < |h| < 1
/R G+ & H Gy 0ldy

< [ I+ VRGOl + [ ViHLG 0 + Y, Hy Gy ~ hoDldy
R R

\/;

(B35) log(2 + t
P [ meeo, xp(—es =2y < log(2+ 1) 5 log(2 + o (B45)
Rd 5
t2
and
(B40) eXp(_CO@) log(2 +1) Ix —yI?
[ vty s [ ——t— 4 2 expea 20y
Rd Rd tT tE
Al Vi
min{—, 1} log(2 + +
log(2 +t
Llg@HD o VP s (B46)
min{t, 1}z Vi min{t, 1}2
1 log2+1) log(2 + 1)
Sup 18,V Hi (5,7, 01 § 5 + 22T < hllog2 + ﬁ)—g . (B4
t2 t2 t2 min{t, 1}
These imply (B37)-(B39). [l

Remark Bl. In view of Lemma BI and Proposition BI, it follows that for any 0 < o <1 and 0 <
B <1+ «a, the inequality

1+a—f
sup 5 2 ||Vetullea S [Ivllcs (B48)
s€(0,1]
holds.
‘We denote now
If GO = FOI?
b = [ LRI, (B49)
rd X =yt
Lemma B2. We have for any h # 0
D(8pu)(x) 2 C|lull;s [hI 7t 8pu(x)I. (B50)

Proof. We recall from [12, 13]. For 4 > 0,

|Z|
Sl o
D@ > [ nEHEa: g ucol [ suce+a)

Rd | |d+1

dz
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Ehy e
29-1 _ AT A
> Cl8uCOPA! = 2(8,uo [ull /[R | -

> Cl8pu()PA™" = C7M8pu()| [l | [RIAT2. (B51)

Here 7 is a cutoff function in [0, o0) such that » = 01in [0,1] and # = 1 in [2, c0). This implies the
result. O

1 1
We also define L™ 2 as the inverse operator of L2 given by

_1 1 ® 1
L 2 = — 2 H;(x,y,s)u(y)dyds. (B52
u(x) 11(%)/0 s /[R (6,3, Hu()dyds )

Lemma B3. The following inequalities hold

1 1 1 1 2 1

16, VL2 ()(X)| S [[v]| e [R13D(6,0)(x)3 + R 1log(2/IhD?[[VI1}, ol V1] feos (B53)

forany |h| S 1;
1
IVL™2(0)|ze0 S A+ [[V]|zeonz1)10g (2 + [[V]] ¢ ), (B54)
and
1
[IVL 2(0)llca S llvllea + [[0]]L1, (B55)

forany a € (0,1).
Proof.

(1) For A € (0,1], |h| S 1, we have

12

16,V 3 )] < /

0

1
JIEARACEB R Sk
R

2 1
+ [ ] vy idys ol
22 JRd

0 1
t / / 187V, H, (x, y, 9l ldys 3 ds
2 Rd

In view of (B41), (B37), and (B38), we have

o Vs exp(—colx_sy| 1 5 2 1
135/ / Ihllog2 + o)~ 5 " juey)ldys 2ds < Al log(-=)[ol|2, [[ol]2; (BS?)
. [ R
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+ |h| s 2ds||v||fe

I </2 minf720} g2+ 30|
2~ 1
| E

h
p <u + Ihllog(m)2>llvllm; (BS8)

and

_1
s 2ds

AZ
115/
0

A2 1
+/ /d I(S;I‘Vx +5{th)HL(x,y,s)|dys_5ds||v||Loo
o Jmr

[ 83 Huey 00y
R

12 1
< / / 1V Hy (3 I800) - SoGoldys s
0 R

1
h s _1
+/ min{l—ll,l}log(2+|\/7])s 2ds||v|| e
0 2

< VAD(6,v)(x) + |kl log(2/|R)*|V]] L, (B59)

here we have used the fact that

1

22 5 1
/ ( / IV, Hy (x,y.5) 2| —y|d+1dy) s3ds S V. (B60)
0 Rd

Therefore,

2 1
I

18,V )] S VADER)) + 1l + (A 10g/ IRIPI[0]1], 0] e (B6D

Choosing

1

D@0 + [REI0I12

to get (B53).
(2) We have for A € (0,1]

_1
s 2ds

1 AZ
VL3 )] < /
0

/ ) VyH(x,y,s)v(y)dy
R

22 1
; / / (s + Y H Gy, 9ldysdslloll
0 R
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2 1
+/ / IVH(x, y,5)ldys 2ds||v]]re
A2 JRd

b 1
+/ sup |V H(x,y,s)|s 2ds||v]|L1. (B63)
2 yeRd

Using (B35) and (B40), we deduce
12

_1 _1 1
VL3 (o)) < / / 19, Hy(x,y, 9100 — vCldys ™ ds +1og2 + Dol + ol
0 Rd

4 1
1 1
S [ ]IV HG e = yidysdsl ol +log + Dol + ol
0 Rd

1
S A% [[vllee +10g(2 + DIVl + (0] (B64)

1
1+]ollga

3) Now we prove (BSS). In (B64), we take A% = —IIUHL to obtain
(
||U||L°° ||U||c'oc

This implies (B54) by choosing A% =

1 ”Cot

Moreover, in view of the proof of (B61), we have

VL™ 2(v)IILoo S |[vllLe + log(2 + Slvllze + 1ollze S flolles + 1ol (B65)

1 1 1
16,VL 3 ()] < / s™3ds + |h] log(2/ R0l l1nsees
0

/ 8V HL G 0y
R

for any |h| < i. Thus, it is enough to show that
1
/
for any |h| < i. Indeed, using (B40) and (B41), we have
k)2
/
Ih)?
-,

|h|
s/ / IV, Hy Gy, Iy — x13 [h13 dys™ 2 dsl 0]l

Ih|?
/ Rd

L «
2 142
5/ |hl2s " ads||vllga ~ [RI*[[V]]¢es (B67)
0

1
/ 8V 0Oy 3ds 5 TREol e + ol (B66)
R

_1
s 2ds

[ 8 Hieyuay
R

_1
s 2ds

/ V5,3, 906,00 — SuC0)dy
R

|x yl2 «
Ny = x|2 IhlzdyS 2dsllvllca

2
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and

1

/.

1 1 1
s 2ds < /|h|2 /Rd |5{thHL(x,y,s)||x_y|adys_5ds||v||c-a

/ 8 .V, Hy (x.y, s(y)dy
Rd

1

|h| lx — y|? 1
5/ / — exp(—¢, . )Ix — yl|dys 2ds||v]] ¢«
|h)2 IR

d ¢
1 3 a
__+_
s/ (1”5 S dsl ol o ~ [RI][0]lce. (B6S)
|h|2
Therefore, we obtain (B66). O

Lemma B4. We have for any |h| <1,

IRI18, VL2 @)1, S 1ollu (D@0 + 1k log@/IRDFlol 2., ) (Be9)

Proof. In view of (B50) and (B53), we have
1
|RI71 16, VL2 (0)]1850()]

1 1 1 2 1 2
S |h|_1<||v||L300|h|313(5hlJ)(x)3 + |h| log(z/lhl)zllvllzlan”vl|L300>(||U||L°°|h|D(5hU)(x))3

2

2 z 2
S ol L= D(8,0)(x) + |13 log(2/ [RD*[VI1}, o V]| Lo D(SRLI()3
S vl <D(5hv)(x) + |h|2log(2/|h|)6||v||ian1>.
This gives (B69). O

Corollary B1. We have

1
IR~ 18, VL2 ()18, 00)COI S 1101110 D@00 + [0llzee 1850112
#1112 ol + (1 1ol Tog (2 + olla ) vl )

+ hP[[vllz oIl sl 1, (B70)
c4 c4

where 1) is a Lipschitz cutoff function such thatn = 1in B(0,ry) and n = 0 in B(0, 2r()¢ and suppv C
B(0, ry) for some ry > 4r

Proof. Since |6,,(nv)(x) — n(x)d,v(x)| S |h|||v]|L~, We have

InCO8RLEI? = 518, = ClhI* V]| - (B71)

N =
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Thus,

1 1 1 1
n*|h| 78, VL 2(U)II%U(X)IZZ§|P1|_1|5hVL 2 ()18, (yV)(0)I* = Clh| || VL 20 10] [} o
(B72)

Note that
8,6n(nu)(x) — n(x)8,8,v(x) = v(x + h)(6,6,1)(x)
+(6,m(xX)épv(x + z) + (Spn)(x + 2)(6,0)(x + h), (B73)

we have

DD < 2D N0 +C [ oG+ b8P T
Rd

+c/ 8100+ P18 T +c/ 18.00x + WIS + DI

| |d+1
< 2D(, (7)) + C(IRII[V] . + 118,01 + AP0l 1ol ) (B74)
Here we have used the fact that
2
/ 820G+ P2 5 ol el (B75)
Combining (B72) and (B74) with (B69), we have
1
BI85 VL2 )18, 0)COL S 1101120 D@D + 0]l 18501 e
1
+ [RllIIR, 10l + ARl ol 210l 1+ RIIVE 2 @)l o] e
c4 Cc4
(B54) 5
S 101l D) + 1ol 185011 + A ol o]l 2 1ol
#1112 ol + U+ [Tollzsnz) Tog (2+ [[ollee ) 0] 2. ). (B76)
This implies (B70). O
Lemma B5. We denote
1 1
Ju(x) := (Lyu(x)|y=y — L2u(x)). (B77)
The following inequalities hold
peo s [ D EOlg,, (B78)
mi 1219z + 1)

[T S ullca+x, (B79)
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forany oy € (0,1) and x € (0,1 — ot;). Moreover,
1 . 2(1-a)
L2ullpe S [lull 25 ull 7% + ullre. (B80)
¢tz
Proof. We have
© 3
J(x)=cy / / Jo(z, x, 8)(u(x) — u(x + z))dzs 2ds (B81)
0o JRrd
with
Jo(z,x,5) := Gy (2,8) — H (X, X + z,5). (B82)
In view of (B18) and (B35), we have for any x, z € R¢,
|z , >
exp(—cOT) min{s, 1}2 exp(—c,
o(z, %, 9| S 1GA(x+2)(2:8) — Gax)(2,9)| + 1 - S ] (B83)
s2 (1+59)2 s2
and
log(2 +s) |z|?
IV.do(z % 9)| < 1Vo(Hi (e x + 2,9+ |V (Gago(2.9)) | § == exp(-eo—).  (B84)

S2

So, we obtain (B78) and (B80).
Now, we prove (B79). By an interpolation inequality, we have

1 g S/ / Moz, > Ol 1u() = ul + 2)llre + (o2, - e [u() = ul. + 2w )dzs ™ 2ds
0o Jma

<[] (10 199G 9l min, 1y
0 Rd

3
+||Jo(z2, ., $)|| - min{|z|, 1})dzs > ds||u||ca+,

foranyx € (0,1 — ay).
Combining this with (B83) and (B84), we obtain

© 1o
Wl / / d (min{s, 137 log(2 + ) minflz], 11+
0 R

(B85)

1 |z|? _3+d
+ min{s, 1}2 min{|z|, 1}* exp(—cOT)dzs 2 ds||u]] o +x

0 14x 3
pS min{s, 1} 2 log(2 + $)™s 2ds||ul|car+x ~ ||u]|cor+.
0
Here we have used the fact that

d+p

2
/ |z|P exp(—co%)dz =52 VB>-—d.
Rd

This implies (B79).

(BS6)
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Lemma B6. Let D be defined by (B49). The following inequalities hold
1 1
BEOLZ0(x) = 312 ()(X) 2 D)), (B87)
and

‘(5hL5v)(x) = L2(6,0)(0)| S A" (ullerae ulleia)® + Al ullcrel [ulle0)® + 1R 0],

(BSS)
orany |h| <land0<x <a < I articular,
L inp
a 2(1-a)
(5hL20)(X) L2(5hv)(X) S |kl “<|Iull2 - Ilull Th ot IluIIL1> (B89)
forany a € (0, i].
Proof.
(1) Because fRdHL(x,y, t)dy = 1 for any t > 0 and
/ Hi(x,y, 0t Zdt(Bs); Vx,y e R x #y, (B90)
| — y|d+1

we have
U(x)Lév(x) - %Lé(vz)(x) = c/ / Hi(x,y,)((x) — U(y))zt_zdydt > /'D(v)(x).
0o Jmd
(B91)

This implies (B87).
(2) Now we prove (B88). Note that for any x, h € R¢

1 1 0o ol 3
I(x) := (8pL20)(x) — L2(80)(x) = ¢ / / e =IL(div(5,A)V)1(eSLv)dst 2 dt,
0 0

(B92)
where

Thf(x) = f(x + h). (B93)

Using (B7) and the fact that

_lz= 3 iz 1
min{t —s,1} 2 t 2dt Smin{s,1} 2 s 2, (B94)
[18rA)VTR(e V)l Ice S 1A' Ve ™ 0] | Lo + [I[| Ve V]| e, (B95)
d

1Ve™ v |caqay S 5 2 [vllp Vs > 1, (B96)
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we get
(e8] t 1—a 3
e < / / min{t — 5,177 ||(GpA)Vep(e—L0)||cadst 2 dt
0 0

o 1

e -
s/ mings, 1} 2 52 (||| Ve~ 0] | + |A]]| Ve ul | ) ds
0

1 a
— —1+- — — —
S A o]l +/ s 2 (IR Ve ol | Lo + [RI| Ve ]| o ) ds
0

1 1

a—x 2 a+x 2
SR Jol|ps + [ sup 572 [[Ve || e sup s 2 ||Ve vl e
s€[0,1] s€[0,1]
1 1
a—x 2 a+x
+ |h|[ sup sz [|[Ve™Lv]|ca sup s 2 [|[Ve™Lvl|ca | . (B97)
s€[0,1] s€[0,1]

This implies (B88) by using (B48). Then, (B89) follows from (B88) and interpolation
inequality. O
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