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Abstract

We prove the existence and uniqueness of global smooth

solutions of the critical dissipative SQG equation in

bounded domains inℝ2. We introduce a newmethodology

of transforming the single nonlocal nonlinear evolution

equation in a bounded domain into an interacting system

of extended nonlocal nonlinear evolution equations in the

whole space. The proof then uses the method of the non-

linear maximum principle for nonlocal operators in the

extended system.
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1 INTRODUCTION

The Surface Quasigeostrophic equation (SQG) of geophysical origin [17] was proposed as a two-

dimensional model for the study of inviscid incompressible formation of singularities [4, 9]. The

equation has been studied extensively. Blow up from smooth initial data is still an open problem,

although the original blow-up scenario of [9] has been ruled out analytically [15] and numeri-

cally [8]. The addition of fractional dissipation yields globally regular solutions if the power of

the Laplacian is larger or equal than one half. When the linear dissipative operator is precisely

the square root of the Laplacian, the equation is commonly referred to as the <critical dissipative

SQG,= or <critical SQG.= The global regularity of solutions for critical SQG in the whole space
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4 CONSTANTIN et al.

or on the torus was obtained independently in [1] and [20] by very different methods. Several

subsequent proofs were obtained (see [12, 13] and references therein).

The basic ingredients used in [12] are specific nonlinear maximum principle lower bounds for

Λ =
√
−Δ, the square root of the Laplacian in the whole space ℝý. A typical example is

ÿ(ÿ) = ÿΛÿ −
1

2
Λ
(
ÿ2
) ≥ ý(‖ÿ‖ÿ∞)−1ÿ3 (1)

pointwise, for ÿ = ÿÿÿ a component of the gradient of a bounded function ÿ. This is a useful cubic

lower bound for a quadratic expression, when ‖ÿ‖ÿ∞ ≤ ‖ÿ0‖ÿ∞ is known to be bounded above.

The critical SQG equation in ℝ2 is

ÿýÿ + ÿ ⋅ ∇ÿ + Λÿ = 0, (2)

where

ÿ = ∇⟂Λ−1ÿ = ý⟂ÿ, (3)

and ∇⟂ = (−ÿ2, ÿ1). The equation has a weak maximum principle, the ÿ∞ norm of ÿ does not

grow in time. In [12] and [13], instead of estimating directly gradients, the proof of global regu-

larity proceeds by estimating finite difference quotients, with the aim of first obtaining bounds

for ÿÿ norms. A basic feature of the critical SQG equation in the whole space is the fact that

once the solution is bounded in ÿÿ, for some ÿ > 0, then it follows that the solution is in

fact ÿ∞ smooth. More generally, if a generalized SQG equation has a dissipation of order ý,

that is, Λ is replaced by Λý with 0 < ý ≤ 1, then if ÿ is bounded in ÿÿ with ÿ > 1 − ý, then

the solution is smooth [14]. This condition is sharp in the class of general linear advection

diffusion equations, [21]. In [13], the smallness of ÿ is crucially used to show that the non-

linear term appearing in the evolution of the finite difference quotient ÿ = ÿÿ
ℎ
ÿ of solutions

of (2) is entirely dominated by the term corresponding to ÿ(ÿ). This is no longer the case in

bounded domains.

The critical SQG equation in bounded domains is given by

ÿýÿ + ÿ ⋅ ∇ÿ + Λÿÿ = 0 (4)

with

ÿ = ∇⟂Λ−1ÿ ÿ. (5)

Here Ω ⊂ ℝý is a bounded open set with smooth oriented boundary, Λÿ is the square root of

the Laplacian with vanishing Dirichlet boundary conditions, and ∇⟂ = ý∇ with ý an invertible

antisymmetric matrix.

The problem of global regularity of critical SQG in bounded domainswas open until the present

work. Interior regularity was investigated in [6]. The approach, initiated in [5], was based on

bounds on the heat kernel. One of the main obstacles to implementing a proof of regularity in

bounded domains is the lack of translation invariance. It has as consequence the fact that the

Riesz transforms ýÿ = ∇Λ
−1
ÿ are not spectral operators, that is, they do not commute with func-

tions of the Dirichlet Laplacian. In [6], the method of the nonlinear maximum principle was used
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GLOBAL REGULARITY FOR CRITICAL SQG IN BOUNDED DOMAINS 5

in conjunction with estimates for the commutator between difference quotient operators andΛÿ .

These estimates degenerate at the boundary but they can be used to obtain a priori global in time

interior Lipschitz bounds of solutions. A construction of solutions with this degree of regularity

was done in [18]. Global weak solutions in bounded domains were studied in [10, 11]. In [7], nec-

essary and sufficient conditions for global ÿÿ bounds up to the boundary with ÿ < 1 −
ý

ý
were

given in terms of quantitative information on supercritical (ý > ý) ÿý norms of
ÿ

ý1
, where ý1

is the first eigenfunction of the Dirichlet Laplacian. Because ý1 vanishes linearly at the bound-

ary, this implies that global ÿÿ bounds are available if and only if solutions have a Holder rate of

vanishing of ÿ at ÿΩ.

The work [22] presented ÿÿ bounds of weak solutions, using an approach based on the method

of DeGiorgi, employed first in thewhole space in [1]. However, unlike the case of thewhole space,

going from ÿÿ to higher regularity up to the boundary in bounded domains was not known until

the present work. Global Holder continuous solutions were not known to be unique, nor smooth.

In this work, we prove the existence and uniqueness of global smooth solutions. In order to obtain

this result, we introduce a new methodology consisting of the extension of the single equation in

the bounded domain to an interacting systemof equations in thewhole space.We then employ the

method of the nonlinear maximum principle in the analysis of the extended nonlinear nonlocal

system.

1.1 Main results and description of ideas of proofs

In this paper, we prove the global regularity of solutions of critical SQG in bounded domains.

Theorem 1. Let Ω ⊂ ℝ2 be a bounded domain with smooth boundary. Let ÿ0 ∈ ÿ
1
0(Ω) ∩ ÿ

ÿ(Ω),

ÿ > 2, and let ÿ > 0. Then there exists a unique solution of (4), (5) with initial data ÿ0 and which

belongs to ÿ∞(0, ÿ;ÿ10(Ω) ∩ ÿ
ÿ(Ω)).

The solution is in fact smooth for all time and eventually exponentially decays to zero. The

initial data need not be smooth. By parabolic regularization, if the initial data are ÿ3ÿ0 for some

ÿ0 > 0 and vanish at the boundary, then the solution exists locally, is unique, becomes instantly

ÿ1+ÿ0 (Lemma 7), persists globally, and decays (Theorem 6).

The proof of Theorem 1 is based on the following a priori estimate.

Theorem 2. Let ÿ ∈ ÿ1+ÿ0([0, ÿ] × Ω) be a classical solution of (4), (5) for some ÿ0 ∈ (0, 1). There

exists a small constant ÿ depending only on ÿ and the domainΩ, such that, for 0 < ÿ < ÿ0 satisfying

ÿ(‖ÿ0‖ÿ∞(Ω) + 1) ≤ ÿ, (6)

there exists a constant ÿÿ depending (continuously and explicitly) only on ‖ÿ0‖ÿÿ(Ω), ÿ, the domain
Ω and ÿ, such that

sup
0≤ý≤ÿ ‖ÿ(⋅, ý)‖ÿÿ(Ω) + ∫

ÿ

0

‖ÿ(⋅, ý)‖
ÿ
1+
ÿ
2 (Ω)

ýý ≤ ÿÿ. (7)
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6 CONSTANTIN et al.

The detailed result is given in Theorem 5. The factor
1

2
is not structural, it is there only to

signify that the gain of regularity is <1, but regularity above ÿ1(ýý; ÿ1(Ω)) is attained. Once The-

orem 2 is obtained, then the proof of Theorem 1 follows from the local existence and uniqueness

of smooth solutions of (4), (5) given in [6] and a natural continuation result. More precisely, the

local existence theorem is given below.

Theorem 3. Let Ω be a bounded open domain with smooth boundary in ℝ2. Let ÿ ≥ 2 and let
ÿ0 ∈ ÿ

1
0(Ω) ∩ ÿ

ÿ(Ω). There exists a time ÿ0 > 0 and a unique solution ÿ of (4) satisfying

ÿ ∈ ÿ∞(0, ÿ0; ÿ
1
0(Ω) ∩ ÿ

ÿ(Ω)) ∩ ÿ2(0, ÿ0; ÿ
ÿ+

1

2 (Ω)). (8)

The time ÿ0 depends on the initial norm inÿ2(Ω).

This result was proved in [6] forÿ = 2 using Galerkin approximations

ÿý =

ý∑
ÿ=1

ýÿ(ý)ýÿ(ý),

Sobolev energy bounds and Sobolev embedding. The fact that the expansion is in terms of eigen-

functionsýÿ of theDirichlet Laplacian allows integration by parts because powers of the fractional

Laplacian applied to the Galerkin approximation vanish at the boundary, Λýÿÿý |ÿΩ = 0. The
generalÿ ≥ 2 case follows in the same manner.
The local existence theorem is combined with the following natural continuation result.

Theorem 4. Let Ω be a bounded open domain with smooth boundary in ℝ2. Let ÿ0 ∈ ÿ
1
0(Ω) ∩

ÿÿ(Ω),ÿ ≥ 2 be given and let ÿ ∈ ÿ∞([0, ÿ0), ÿÿ(Ω)) be a solution of (4),(5). Assume that for some
0 < ÿ < 1, there exists a constant ÿÿ such that

∫
ÿ0

0

‖ÿ(⋅, ý)‖ÿ1+ÿ(Ω)ýý ≤ ÿÿ (9)

holds. Then there exists a constant ÿÿ depending (continuously and explicitly) only on ‖ÿ0‖ÿÿ(Ω),
the domainΩ and ÿÿ , such that

sup
0≤ý≤ÿ0

‖ÿ(⋅, ý)‖ÿÿ(Ω) ≤ ÿÿ. (10)

Combined with the local existence result, this implies that the solution can be uniquely

extended beyond ÿ0. The proof of Theorem 4 is based on energy estimates and well-known facts

about the boundedness of Riesz transforms inÿÿ(Ω) [2]. The condition (9) is sufficient for unique-

ness and persistence of smoothness of solutions in inviscid SQG as well. A detailed proof is left

for the interested reader. In this paper, we provide an independent local existence and persistence

proof directly based on ÿÿ spaces, without use of Sobolev spaces.

The proof of Theorem 2 requires the introduction of a number of new elements, which we

believe are of general interest. As in [6], we use functional calculus to represent the square root

Λÿ of the Dirichlet Laplacian in terms of the heat kernel, but unlike in [6], a direct commutator
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GLOBAL REGULARITY FOR CRITICAL SQG IN BOUNDED DOMAINS 7

between finite difference quotients and Λÿ is not attempted. We consider instead an appropri-

ate cover of Ω with open balls and smooth subordinated localizers ÿ. We associate to the balls

corresponding to the boundary ÿΩ smooth diffeomorphisms ý ∶ ý ∩ Ω → ℝ2+, which flatten the

boundary. For interior balls, the diffeomorphisms are just the identity. We consider then maps

 which take functions ÿý defined in patches ý ∩ Ω to functions defined in the whole space

ℝ2 by (ÿý) = (ÿý◦ý−1), where  is odd extension across the boundary of the half space.

While localization and flattening of the boundary is a familiar procedure for proving regularity

of elliptic and parabolic equations in bounded domains, our approach requires to extend also the

localized equation. This is needed because, unlike the case of local PDE, in the nonlocal case, it

is difficult to disentangle tangential directions from the normal direction in the principal sym-

bol of the equation. Thus, after the localization and change of variables, the Dirichlet Laplacian

is conjugated to (or intertwined with) a second-order elliptic operator ÿ with Lipschitz coeffi-

cients, defined in the whole space, plus an error. The change of variables ý is defined carefully

so that the cross terms involving normal and tangential derivatives vanish near the boundary, see

Appendix A. This allows ÿ to have Lipschitz coefficients (57), (58). We take advantage of the fact

that the heat equation is local, and therefore when we commute a smooth cutoff function ÿ with

ÿýΔÿ we obtain a local error, which we represent in terms of the heat operator using the Duhamel

formula. We then apply  and the functional representations of Λÿ and of ÿ
1

2 in terms of their

respective semigroups to obtain an expression for the intertwining of the localized Λÿ with the

corresponding ÿ
1

2 ,

(ÿΛÿÿ) − ÿ
1

2(ÿÿ) = ýÿ(ÿ) (11)

and show (Proposition 5) that

‖ýÿ(ÿ)‖ÿÿ(ℝ2) ≲ ‖ÿ‖ÿÿ(Ω) (12)

holds for 0 < ÿ < 1. We localize and extend the nonlinear term
(
∇⟂Λ−1ÿ ÿ

)
⋅ ∇ÿ = {Λ−1ÿ ÿ, ÿ}. It

is only here that we use the fact that we are in two dimensions. We use properties of the Poisson

bracket, which allow odd extension across the flattened boundary after compositionwithý, while

maintaining almost intact the Poisson structure (Proposition 6).

We arrive thus at a representation of the Equation (4), (5) as a coupled systemof equations in the

whole space. This constitutes a new methodology to study boundary value problems, which we

expect to be more broadly useful. Corresponding to the cover ofΩwith balls, we haveý transfor-

mations (someof themnot requiring changes of variables), and for eachpatchýÿ ∩ Ω, 1 ≤ ÿ ≤ ý,
functions ÿÿ = (ÿÿÿ), which obey equation in the whole space

ÿýÿÿ + ÿÿ ⋅ ∇ÿÿ + ÿ
1

2 ÿÿ = ÿÿ . (13)

The operators ÿ depend on the patch but they have the same second-order elliptic, Lipschitz

coefficients nature. The velocities ÿÿ depend on the whole ÿ, not only on ÿÿ , but the depen-

dence is quasi-local, meaning that the ÿÿ = ∇
⟂ÿ̃
−
1

2 (ÿ̃ÿ) + error where ÿ̃ is like ÿ and ÿ̃ÿ covers

ÿÿ , that is, ÿÿ = ÿÿ̃ÿ with ÿ Lipschitz and compactly supported. The <forces= ÿÿ arise from errors

of intertwining and extension and depend in a nonlinear manner on ÿ. The operators ÿ
1

2

have variable coefficients. The Equations (13) are not stand alone equations, rather they are
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8 CONSTANTIN et al.

representations of localizations and extensions of (4), (5). Nevertheless, they serve the purpose

to estimate derivatives of ÿ. The system of Equation (13) is sparse (only few nearby patches inter-

act) but it is not treated as an algebraically coupled system, more like a redundantly oversampled

contact system.

We apply and extend the method of nonlinear maximum principle to the aggregate (13), taking

great advantage of an enhanced nonlinear lower bound. The fact that the operators have vari-

able coefficients, not unexpectedly implies that inequalities for the evolving ÿÿ norms for small

ÿ cannot be closed, as they are driven by norms of full derivatives of ÿ. The nonlinear maximum

principle provides though powerful nonlinear damping.When trying to estimate theÿÿ norm, the

most dangerous term still comes from the finite difference quotient of the active scalar’s veloc-

ity, as in the case of critical SQG in the whole space, and bounding it still requires the use of

the ÿ(ÿ) argument. Like in previous works using the method of the nonlinear maximum prin-

ciple, in the present work, we also have only one small parameter, namely ÿ. We consider the

evolution of the difference quotient ÿ = ÿÿ
ℎ
ÿÿ in each patch. In previous works [6, 13], the small-

ness of ÿ was used to overcome the contribution of the difference quotient of the active scalar

velocity, ÿ1
ℎ
ÿ, by crucially using ÿ(ÿ) in a pointwise manner, and also by using a nonlinear lower

bound

|ℎ|−2ÿÿ(ÿ) ≥ ý|ℎ|−1+ÿÿ3‖ÿ‖−1ÿ∞ (14)

in the evolution of ÿ2. In this work, we use the same idea to overcome the contribution of the inner

core of ÿ1
ℎ
ÿÿ . In addition, we use the observation that at the point of maximum of ÿ, because ÿ is

a priori bounded, |ℎ| must be very small, less than
( |ÿ|
2‖ÿ‖ÿ∞

)− 1
ÿ
. Thus, the term ÿ(ÿ) provides a

nonlinearly enhanced damping with an excess of order
1

ÿ
,

|ℎ|−2ÿÿ(ÿ) ≥ ýÿ2+ 1ÿ ‖ÿ‖−
1

ÿ
ÿ∞ , (15)

resulting in a differential inequality for the maximum of the type

ÿýÿ + ý‖ÿ0‖
−
1

ÿ
ÿ∞ ÿ

1+
1

ÿ ≤ translation and localization errors, (16)

and the smaller ÿ is, the larger this useful excess is. The error terms due to the localization and

the absence of translation invariance are controlled by this high homogeneity of the nonlinear

damping. Thus, the smallness of ÿ is used in two ways, once by bounding the worst term by part

of ÿ(ÿ), and the other, by affording high homogeneity nonlinear error terms using the excess

damping of homogeneity ÿ−1 provided also by ÿ(ÿ). The upshot, described in Lemma 5, is an a

priori bound of the supremum in time of the ÿÿ norm, which is driven by the time integral of

the ÿ
1+

ÿ

2 norm. Here, the factor
1

2
is not part of the structure of the equation, it only represents

the crucially important fact that less than a whole derivative is lost. The loss of almost a whole

derivative is, however, unavoidable. This loss marks the difference between translation invariant

and nontranslation invariant equations, and it occurs even if we replace in the usual SQG equa-

tion in the whole space, the linear dissipation
√
−Δ by the linear dissipation ÿ(ý)

√
−Δ, where ÿ

is a uniformly bounded positive smooth function.
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GLOBAL REGULARITY FOR CRITICAL SQG IN BOUNDED DOMAINS 9

In order to close the estimates, we employ a result about linear dissipative advection

equations of the type

ÿýÿ + ÿ ⋅ ∇ÿ + ÿ
1

2 ÿ = ÿ (17)

with ÿ and ÿ Holder continuous, ÿ ∈ ÿ∞(0, ÿ; ÿÿ(ℝý)), ÿ ∈ ÿ∞(0, ÿ; ÿÿ(ℝý)) and initial data

in ÿÿ(ℝý). We show (Lemma 2) that the norm of ÿ in ÿ1(0, ÿ; ÿ1+ÿ(ℝý)) is bounded in

terms of the norms of ÿ, ÿ, ÿ(0) in ÿÿ for ÿ < ÿ. For the proof of this result, we use a

method of freezing coefficients, which rectifies the variable coefficient operator ÿ ⋅ ∇ + ÿ
1

2 ,

that is, it approximates it by its tangent at each frozen point ÿ, the constant coefficients

operator ÿ(ÿ) ⋅ ∇ý + ÿ
1

2
ÿ . This treatment requires a systematic study of the kernels of semi-

groups ÿ−ýÿ, ÿ−ýÿ
1
2 and their approximations. The linear result of Lemma 2 is applied to

the specific nonlinear equation in Corollary 1 and is used in conjunction with the high

homogeneity of the nonlinear damping to close the estimates and prove the main result,

Theorem 2.

The paper is organized as follows. In Section 2, we set up the cover of the domain, recall

some basic facts about the Dirichlet Laplacian and introduce notation. In Section 3, we

describe the procedure of localization and extension. We prove in this section bounds for the

intertwining of the localized and extended heat semigroup ÿýΔÿ , and bounds for the inter-

twining of the localized and extended Λÿ . We follow, in Section 4 with the derivation of the

extended localized system (13) and provide bounds for the errors of nonlinear intertwining.

Section 5 is devoted to proving the useful results on the linear dissipative advection Equa-

tion (17). In Section 6, we apply the nonlinear maximum principle method to the system and

obtain a priori bounds for Holder norms of solutions. The proof of Theorem 2, in its pre-

cise form, Theorem 5 is given in Section 7. A self-contained proof of local existence with

Holder initial data and global persistence of smooth solutions is given in Section 8. Appendix A

describes the change of variables ý and Appendix B provides useful estimates of heat kernels

and approximations.

2 PRELIMINARIES

We consider a bounded connected (but not necessarily simply connected) domain Ω ⊂ ℝý with

smooth oriented boundary ÿΩ. We cover the boundary ÿΩ with open balls ý0
ÿ
, ÿ = 1, … ,ý1, cen-

tered at points on the boundary, and take nested concentric open balls ý0ÿ ⊂ ý
1
ÿ ⊂ ý

2
ÿ ⊂ ý

3
ÿ , such

that the portion of the boundary of each ÿΩ ∩ ý3ÿ is given after a translation and a rotation by

the graph of smooth function with nearly constant gradient. We consider smooth cutoffs ÿ
ÿ
ÿ
,

ÿ = 1, … ,ý1, ÿ = 0, 1, 2, such that ÿ
ÿ
ÿ is identically equal to 1 on ý

ÿ

ÿ ∩ Ω and has compact sup-

port in ý
ÿ+1
ÿ
∩ Ω. Thus ÿ

ÿ
ÿ
= ÿ

ÿ+1
ÿ
ÿ
ÿ
ÿ
. The radius of the largest balls ý3

ÿ
is denoted ÿ0 and is taken

without loss of generality to be the same for all ÿ. This radius is taken small enough such that, if the

boundary ÿΩ has several connected components, the balls corresponding to one connected com-

ponent of the boundary do not intersect the balls corresponding to another connected component

of the boundary. We cover Ω ⧵ ∪
ý1
ÿ=1
ý0
ÿ
with balls ý0

ÿ
⊂ Ω, with ÿ = ý1 + 1,… ,ý and take nested

ý0
ÿ
⊂ ý1

ÿ
⊂ ý2

ÿ
⊂ ý3

ÿ
with ý3

ÿ
⊂ Ω, and cutoffs ÿ

ÿ
ÿ
with ÿ = 0, 1, 2 which identically equal 1 on ý

ÿ
ÿ
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10 CONSTANTIN et al.

and are compactly supported in ý
ÿ+1
ÿ . We refer to the balls with index ÿ ≤ ý1 as boundary balls,

and to the balls with ý1 < ÿ ≤ ý as interior balls. The set of balls and cutoffs is entirely based on

the geometry of the domain, and is fixed throughout the paper. In each boundary ball, we define

diffeomorphisms

ýÿ ∶ ý
3
ÿ
∩ Ω → ℝý+ (18)

ÿ = 1, … ,ý1 with certain properties. Without loss of generality, we take the cutoffs ÿ
ÿ
ÿ
to be such

thatÿ
ÿ
ÿ ◦ý

−1
ÿ have smooth even extensions across ÿý = 0. We associate to a smooth solution ÿ(ý, ý)

of (4) defined for ý ∈ Ω and ý ∈ [0, ÿ] an array of functions

Θ(ÿ, ý) = (ÿ̃ÿ(ÿ, ý))ÿ=1,…,ý (19)

defined on for ÿ ∈ ℝý and ý ∈ [0, ÿ] in the following manner. For ÿ = 1, … ,ý1, we set

ÿ̃ÿ = ((ÿ1
ÿ
ÿ)◦ý−1

ÿ
) (20)

where  is odd extension across ÿý = 0. For ÿ = ý1 + 1,… ,ý, we put

ÿ̃ÿ = ÿ
1
ÿ
ÿ (21)

where we denote by the same letter ÿ the extension of a function ÿ that is compactly supported

inΩ by setting it equal to 0 outside the support of ÿ. Norms ofΘ in space are equivalent to norms

of ÿ in Ω.

We use in particular ÿÿ norms. We frequently use the interpolation inequality

‖ÿ‖ÿÿ ≤ ‖ÿ‖ÿ
ÿÿ
‖ÿ‖1−ÿ

ÿÿ
(22)

for ÿ = ÿÿ + (1 − ÿ)ÿ with 0 < ÿ < 1.

The ÿ2(Ω)-normalized eigenfunctions of the Dirichlet Laplacian −Δÿ are denoted ýÿ , and its

eigenvalues counted with their multiplicities are denoted ÿÿ:

−Δÿýÿ = ÿÿýÿ . (23)

It is well known that 0 < ÿ1 ≤ … ≤ ÿÿ →∞ and that −Δÿ is a positive selfadjoint operator in

ÿ2(Ω) with domainò (−Δÿ) = ÿ2(Ω) ∩ ÿ10(Ω). The ground state ý1 is positive and
ý0ý(ý) ≤ ý1(ý) ≤ ÿ0ý(ý) (24)

holds for all ý ∈ Ω, where ý0, ÿ0 are positive constants depending onΩ, ý(ý) is the distance from

ý to the boundary ÿΩ. Functional calculus can be defined using the eigenfunction expansion. In

particular,

(−Δÿ)
ÿ
ÿ =

∞∑
ÿ=1

ÿ
ÿ
ÿ
ÿÿýÿ (25)
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GLOBAL REGULARITY FOR CRITICAL SQG IN BOUNDED DOMAINS 11

with

ÿÿ = ∫
Ω

ÿ(ÿ)ýÿ(ÿ)ýÿ

for ÿ ∈ ò((−Δÿ)ÿ) = {ÿ| (ÿÿÿ ÿÿ) ∈ ý2(ℕ)}. We denote by

Λýÿ = (−Δÿ)
ý

2 , (26)

the fractional powers of the Dirichlet Laplacian and with ‖ÿ‖ý,ÿ the norm inò (
Λýÿ

)
:

‖ÿ‖2ý,ÿ =
∞∑
ÿ=1

ÿý
ÿ
ÿ2
ÿ
. (27)

It is well-known that

ò(Λÿ) = ÿ10(Ω).
Note that in view of the identity,

ÿ
ý

2 = ýý ∫
∞

0

(1 − ÿ−ýÿ)ý
−1−

ý

2 ýý, (28)

with

1 = ýý ∫
∞

0

(1 − ÿ−ÿ)ÿ
−1−

ý

2 ýÿ,

valid for 0 ≤ ý < 2, we have the representation
(
(Λÿ)

ý
ÿ
)
(ý) = ýý ∫

∞

0

[
ÿ(ý) − ÿýΔÿÿ(ý)

]
ý
−1−

ý

2 ýý (29)

for ÿ ∈ ò (
(−Λÿ)

ý)
.

We use second-order elliptic operators in divergence form

ÿ = −divý(ý(ý)∇ý) (30)

in ℝý, where ý is a symmetric matrix-valued function in ℝý, which satisfies

ý(ý) ≥ ý1ý ∀ý ∈ ℝý, (31)

||∇ý||ÿ∞ + ||ý||ÿ∞ ≤ ý2, (32)

with constants ý1, ý2 > 0.
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12 CONSTANTIN et al.

We denote by ÿÿ(ý, ÿ, ý) the kernel of ÿý + ÿ in ℝ
ý × (0,∞). When ý is a constant matrix, it is

well known that

ÿÿ(ý, ý + ÿ, ý) ∶=
1

√
detý(4ÿý)

ý

2

exp

(
−
(ý−1ÿ ⋅ ÿ)

4ý

)
(33)

where ý−1 is the inverse of matrix ý and (⋅) is the Euclidean scalar product in ℝý. We define the

square root ÿ
1

2 of the operator ÿ by

ÿ
1

2 ÿ(ý) = ý0 ∫
∞

0
∫
ℝý
ÿÿ(ý, ý + ÿ, ý)(ÿ(ý) − ÿ(ý + ÿ))ýÿý

−
3

2 ýý, (34)

with

ý0 =
1

2Γ(
1

2
)
. (35)

In particular, when ý is a constant matrix, we have

ÿ
1

2ÿ(ý) =
ý̃0√
detý ∫

ℝý

ÿ(ý) − ÿ(ý + ÿ)

(ý−1ÿ ⋅ ÿ)
ý+1

2

ýÿ (36)

with

ý̃0 =
1

ÿ
ý

2

Γ(
ý+1

2
)

Γ(
1

2
)
. (37)

For each fixed ÿ ∈ ℝý, we define

ÿÿ = −divý(ý(ÿ)∇ý). (38)

This is a constant coefficients second-order elliptic operator. In view of (33), the kernel of ÿý + ÿÿ
is given by

ÿý(ÿ)(ÿ, ý) =
1

√
detý(ÿ)(4ÿý)

ý

2

exp

(
−
(ý(ÿ)−1ÿ ⋅ ÿ)

4ý

)
, (39)

and, using (36), the square root of the operator ÿÿ is given by

ÿ
1

2
ÿ ÿ(ý) =

ý̃0√
detý(ÿ) ∫ℝý

ÿ(ý) − ÿ(ý + ÿ)

(ý(ÿ)−1ÿ ⋅ ÿ)
ý+1

2

ýÿ. (40)

We emphasize that ÿ
1

2
ÿ ÿ(ý)|ÿ=ý is not identical to ÿ

1

2 ÿ(ý). However, ÿ
1

2
ÿ ÿ(ý)|ÿ=ý − ÿ

1

2 ÿ(ý) is

a zero-order operator, for which we provide bounds in Lemma B5 of Appendix B. We prove

in Lemma B1 useful quantitative bounds for the difference of heat kernels ÿÿ(ý, ý + ÿ, ý) −

ÿý(ý+ÿ)(ÿ, ý).
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GLOBAL REGULARITY FOR CRITICAL SQG IN BOUNDED DOMAINS 13

3 LOCALIZATION AND EXTENSION

In this section, we take ý = 2. The localization and extension of the linear term can be done in

any dimension. We use the Poisson structure of the nonlinearity, and there ý = 2 is important.

We consider a point on the boundary ý0 ∈ ÿΩ = Γ.Without loss of generality, after a translation

and a rotation, ý0 = 0 and the domainΩ is given locally near 0 as {ý = (ý1, ý2) |ý2 > ÿ(ý1)}where
ÿ(0) = ÿ′(0) = 0 and the function ÿ ∶ (−ý, ý) → ℝ is smooth. By taking ý > 0 small enough, we

make sure

|ÿ′(ý1)| ≤ ÿ (41)

where ÿ > 0 is a small nondimensional number at our disposal. We extend the function ÿ to all of

ℝ so that (41) holds globally, andmoreover, wemay assume thatÿ′ vanishes outside a compact set.

We consider the global change of variables ℝ2 → ℝ2, ý ↦ ý(ý) = (ý1(ý), ý2(ý)) ∈ ÿ
∞ in which

ý1 is given in Appendix A by (A13), and

ý2(ý) = ý2 − ÿ(ý1). (42)

From the construction of ý1 in Appendix A, we have

||∇ý − ý||ÿ∞ ≤ 1
4

(43)

(see (A18)) and

∇ý1 ⋅ ∇ý2 = 0 in a neighborhood of Γ. (44)

We denote the inverse ofý byÿ,ý−1 = ÿ. Themapýmaps the portion near ý0 = 0 ofΩ corre-

sponding to |ý1| < ý to an open subset of ÿ2 > 0, and the corresponding portion of the boundary
ÿΩ to an open segment {|ÿ1| < ý′, ÿ2 = 0}.
As it is very well known, under the change of variables ÿ ↦ ý = ÿ(ÿ), the Laplacian

becomes

ÿ̃ÿÿ(
ÿ̃ÿÿ

ÿ̃
ÿÿ(ÿ◦ÿ)) = (Δýÿ)◦ÿ, (45)

where ÿÿ =
ÿ

ÿÿÿ
and

ÿ̃ÿÿ = (∇ýýÿ ⋅ ∇ýýÿ)◦ÿ, ÿ̃ = (det∇ý)◦ÿ. (46)

In view of (44), we have

ÿ̃12 = 0 in a neighborhood of {ÿ2 = 0}. (47)

We consider functions ý(ý) defined in Ω and a cutoff ÿ ∈ ÿ∞0 (ℝ
2 ∩ Ω) with support included in

((−ý, ý) × ℝ) ∩ Ω. Then functions ÿý can be composed with ÿ and define functions compactly

supported in ÿ2 ≥ 0 near 0. If ý|ÿΩ = 0, these functions vanish at ÿ2 = 0. We consider odd and
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14 CONSTANTIN et al.

even extensions of functions ÿ defined on ℝ2+,

ÿ(ÿ1, ÿ2) =
{
ÿ(ÿ1, ÿ2), for ÿ2 > 0,

−ÿ(ÿ1, −ÿ2), for ÿ2 < 0,
(48)

and

óÿ(ÿ1, ÿ2) =
{
ÿ(ÿ1, ÿ2), for ÿ2 > 0,

ÿ(ÿ1, −ÿ2), for ÿ2 < 0.
(49)

We have

ÿ1ÿ = ÿ1ÿ, if ÿ ∈ ÿ1(ℝ2+),
ÿ1óÿ = óÿ1ÿ, if ÿ ∈ ÿ1(ℝ2+),
ÿ2óÿ = ÿ2ÿ, if ÿ ∈ ÿ1(ℝ2+),
ÿ2ÿ = óÿ2ÿ, if ÿ ∈ ÿ10(ℝ

2

+),

(50)

and the product rules

(ÿý) = (ÿ)ó(ý) = ó(ÿ)(ý),
ó(ÿý) = ó(ÿ)ó(ý) = (ÿ)(ý). (51)

In view of (45), it follows that for function ÿý◦ÿ, we have

(Δý(ÿý)◦ÿ) = ÿÿÿ(ÿÿÿÿ ÿÿ(((ÿý)◦ÿ)) (52)

where we denote

ÿ = ó(ÿ̃), (53)

ÿÿÿ = ó(ÿ̃ÿÿ), ÿ = 1, 2, (54)

and

ÿ12 = (ÿ̃12). (55)

We denote by ÿ, ý the operators

ÿÿ = −ÿÿ(ÿÿÿÿÿÿ), ýÿ =
ÿÿÿ

ÿ
ÿÿÿÿÿÿ (56)

viewed as operators defined inℝ2 (for instance on functions ÿ ∈ ÿ2(ℝ2)). The coefficients of the

extended operators are ÿ, ÿ11, ÿ22, which are even extensions of ÿ̃, ÿ̃11, ÿ̃22, and ÿ12 = ÿ21, which

are odd extensions of the cross terms ÿ̃12 = ÿ̃21. This convention is kept throughout the paper.

Note that, in view of the construction of ý, and in particular (47), we have

(ÿÿÿ) ≳ ý, ÿ ≳ 1, (57)
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GLOBAL REGULARITY FOR CRITICAL SQG IN BOUNDED DOMAINS 15

||ÿ||ÿ1,∞(ℝ2) + ||ÿÿÿ||ÿ1,∞(ℝ2) ≲ 1. (58)

Indeed, as the coefficients ÿ, ÿ̃11, ÿ̃22 are smooth up to the boundary, their even extensions are

Lipschitz continuous. The odd extension of a smooth function onℝ
2

+ is Lipschitz only if the func-

tion vanishes at ý2 = 0. This is where (47) is used, and it implies that ÿ12 is Lipschitz. We fix

a smooth cutoff ÿ2 ∈ ÿ
∞
0 (ℝ

2) compactly supported in ((−ý, ý) × ℝ) ∩ Ω and with the property

that ÿ2(ý1, ý2) = 1 for ý1 ∈ [−
ý

2
,
ý

2
] and ÿ(ý1) ≤ ý2 ≤ ÿ(ý1) + ÿ. We denote by  the operator

ý ↦ (ý) = ((ÿ2ý)◦ÿ), (59)

and we note that

 ∶ ÿ10(Ω) → ÿ1(ℝ2) (60)

and

 ∶ ò(Δÿ) = ÿ10(Ω) ∩ ÿ2(Ω) → ÿ2(ℝ2) (61)

are bounded linear operators. We formalize the calculation (52) in the following statement.

Proposition 1. Let ý ∈ ò(Δÿ). Let ÿ ∈ ÿ∞0 (ℝ2) be such that ÿÿ2 = ÿ (i.e., ÿ2 = 1 on the support
of ÿ). Then (ÿý) ∈ ÿ2(ℝ2) and

−(Δÿ(ÿý)) = ÿ(ÿý) + ý(ÿý). (62)

Proof. We note that ÿ2 = 1 on the support of Δÿ(ÿý) and the formal calculation (52) is correct for

ý ∈ ÿ∞0 (Ω), which is dense inÿ
1
0(Ω). □

Remark 1. Let ý be a smooth compactly supported function inℝ
2

+ with ý(ÿ) = 1 for ÿ ∈ [−ÿ, ÿ] ×

{0}. Then the function ÿ(ÿ) = ÿ22ý(ÿ) is smooth in ℝ
2

+, vanishes quadratically but (ÿ) has dis-
continuous second derivatives. This example shows that second derivatives of odd extensions of

smooth functions which vanish quadratically need not be continuous.

Remark 2. The extension of the change of variables ý ↦ ý(ý) to the whole space does not nec-

essarily map the whole domain Ω to the upper half plane, only a very small piece of it, near the

boundary point ý0 = 0. The extensions  and ó can be used only on functions in Ω which have

been properly localized near ý0.

We compute now(ÿÿýΔÿÿ).Wedenoteÿ = ÿýΔÿÿ and thereforewehave ÿýÿ = Δÿÿ.Moreover,
Δÿ(ÿÿ) = ÿΔÿÿ + 2∇ÿ ⋅ ∇ÿ + (Δÿ)ÿ. Therefore, in view of (62)

(ÿý + ÿ)((ÿÿ)) = −ý(ÿÿ) − (2∇ÿ ⋅ ∇ÿ + (Δÿ)ÿ) ∶= ýÿ(ý). (63)

Using the Duhamel formula, we have shown the following proposition:
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16 CONSTANTIN et al.

Proposition 2. Let ÿ ∈ ÿ2(Ω) and ý ≥ 0. Then,
(ÿÿýΔÿÿ) − ÿ−ýÿ(ÿÿ) = ∫

ý

0

ÿ−(ý−ý)ÿýÿ(ý)ýý =∶ ýÿ(ý). (64)

The right-hand side ýÿ(ý) of (64) plays an important role.

Proposition 3. Let ÿ ∈ ÿ∞(Ω). For any 0 ≤ ÿ < 2, 0 ≤ ÿ < 1, ÿ ≥ ÿ, there exists a constant ÿÿ
depending only on ÿ and ÿ, diam(Ω), such that for any ý ≥ 0, we have

‖ýÿ(ý)‖ÿÿ(ℝ2) ≤ ÿÿ log(2 + ý)ý + 1
min{ý, 1}

ÿ+1−ÿ

2 ‖ÿ‖ÿÿ(Ω). (65)

Proof. We use the bound

‖ÿýΔÿÿ‖ÿ1(Ω) ≲ min{ý, 1}−
1−ÿ

2 ÿ−ý0ý‖ÿ‖ÿÿ(Ω) (66)

valid for ý ≥ 0 and for some ý0 > 0. This bound follows from a priori bounds on the heat kernel

ÿÿ of the heat operator, see for instance [6]. Thus, in view of (57) and (58), we have

||ýÿ(ý)||ÿ∞∩ÿ1 ≲ ||ýÿ(ý)||ÿ∞ ≲ min{ý, 1}−
1−ÿ

2 ÿ−ý0ý‖ÿ‖ÿÿ(Ω). (67)

Using (B5) and (B19), (67), we obtain

||ýÿ(ý)||ÿ∞ ≲ ∫
ý

0

1

1 + ý − ý
||ýÿ(ý)||ÿ∞∩ÿ1ýý ≲ min{ý, 1}

1+ÿ

2

1 + ý
‖ÿ‖ÿÿ(Ω), (68)

||∇ýÿ(ý)||ÿ∞ ≲ ∫
ý

0

log(2 + ý − ý)

1 + ý − ý

1

min{ý − ý, 1}
1

2

||ýÿ(ý)||ÿ∞∩ÿ1ýý ≲ log(2 + ý)min{ý, 1}
ÿ

2

ý + 1
‖ÿ‖ÿÿ(Ω).

(69)

In view of (B38) and (B39), (67), we obtain for any |ℎ| ≤ 1.

||ÿℎ∇ýÿ(ý)||ÿ∞ ≲ ∫
ý

0

ÿý−ý≤1
»¼¼¼½

min{
|ℎ|√
ý−ý
, 1}

√
ý − ý

+ |ℎ|
log(2 +

√
ý−ý

|ℎ| )

(ý − ý)
1

2

¾¿¿¿À
min{ý, 1}

−
1−ÿ

2 ÿ−ý0ýýý‖ÿ‖ÿÿ(Ω)

+ ∫
ý

0

ÿý−ý>1|ℎ| log(2 + 1

|ℎ| )
log(2 + ý − ý)

ý − ý
min{ý, 1}

−
1−ÿ

2 ÿ−ý0ýýý‖ÿ‖ÿÿ(Ω)

≲

(
min{

|ℎ|√
ý
, 1} + |ℎ|

)
log(

2

|ℎ| )min{ý, 1}
ÿ

2 ÿ
−
ý0

2
ý‖ÿ‖ÿÿ(Ω) + ÿý≥1 log(2 + ý)ý + 1

|ℎ| log( 2|ℎ| )‖ÿ‖ÿÿ(Ω).
(70)

Here we used the fact that

∫
ý

0

ÿý−ý≤1
min{

|ℎ|√
ý−ý
, 1}

√
ý − ý

≲ log(
2

|ℎ| )
√
ý min{

|ℎ|√
ý
, 1}. (71)

Therefore, we obtain (65). □
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GLOBAL REGULARITY FOR CRITICAL SQG IN BOUNDED DOMAINS 17

Remark 3. In view of (70), we have ∇ýÿ ∈ ÿ
1−log and

sup
|ℎ|≤1

||ÿℎ∇ýÿ(ý)||ÿ∞
|ℎ| log(2∕|ℎ|) ≲

log(2 + ý)

ý + 1
min{ý, 1}

ÿ−1

2 ‖ÿ‖ÿÿ(Ω). (72)

This is an optimal regularity because ÿ has only Lipschitz coefficients.

We take ÿ ∈ ÿ∞(Ω) and consider the stream function

ÿÿ = Λ
−1
ÿ ÿ =

1

Γ(
1

2
) ∫

∞

0

ý
−
1

2 ÿýΔÿÿýý. (73)

We have directly from (64) the following statement.

Proposition 4. Let ÿ ∈ ÿ∞(Ω). We have

(ÿÿÿ) − ÿ−
1

2(ÿÿ) = 1

Γ(
1

2
) ∫

∞

0

ý
−
1

2ýÿ(ý)ýý =∶ ÿÿ,ÿ (74)

where

||ÿÿ,ÿ||ÿÿ(ℝ2) ≲ 1

2 − ÿ
‖ÿ‖ÿ∞(Ω) (75)

holds for all 0 ≤ ÿ < 2. Here ÿ− 12 is defined as the inverse operator of ÿ 12 and is given by (B52).
Proof. In view of (65), we have

||ÿÿ,ÿ||ÿÿ(ℝ2) ≲ ∫
∞

0

ý
−
1

2
log(2 + ý)

ý + 1
min{ý, 1}

1−ÿ

2 ýý‖ÿ‖ÿ∞(Ω) ≲ 1

2 − ÿ
‖ÿ‖ÿ∞(Ω). (76)

This implies (75). □

We represent the localized and extended operator relationship for Λÿ .

Proposition 5. Let ÿ ∈ ÿ∞(Ω). Then,

(ÿΛÿÿ) − ÿ
1

2(ÿÿ) = − 1

2Γ(
1

2
) ∫

∞

0

ý
−
3

2ýÿ(ý)ýý =∶ ýÿ(ÿ) (77)

holds. Moreover, we have

||ýÿ(ÿ)||ÿÿ(ℝ2) ≲ ‖ÿ‖ÿÿ(Ω), (78)

for any 0 < ÿ < 1.
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18 CONSTANTIN et al.

Proof. Using the heat operator representations of Λÿ and ÿ
1

2 , we have

(ÿΛÿÿ) − ÿ
1

2(ÿÿ) = 1

2Γ(
1

2
) ∫

∞

0

ý
−
3

2
(
ÿ−ýÿ(ÿÿ) − (ÿÿýΔÿÿ))ýý. (79)

Using (64), we arrive at (77).

In view of (65), we have for any 0 < ÿ < ÿ < 1 and |ℎ| ≤ 1

|ýÿ(ÿ)| ≲ ∫
∞

0

ý
−
3

2
log(2 + ý)

ý + 1
min{ý, 1}

ÿ+1

2 ýý‖ÿ‖ÿÿ(Ω) ≲ 1ÿ ‖ÿ‖ÿÿ(Ω), (80)

|ÿℎýÿ(ÿ)| ≲ ∫
∞

0

ý
−
3

2
log(2 + ý)

ý + 1
min{ý, 1}

ÿ+1

2 min

{
|ℎ|√
min{ý, 1}

, 1

}ÿ

ýý‖ÿ‖ÿÿ(Ω). (81)

We split the integral (81) in ∫ ∞
0
= ∫ |ℎ|2

0
+ ∫ 2|ℎ|2 + ∫ ∞

2
to get

|ÿℎýÿ(ÿ)| ≲
(
∫

|ℎ|2

0

ý
−1+

ÿ

2 ýý + |ℎ|ÿ ∫
2

|ℎ|2
ý
−1−

ÿ−ÿ

2 ýý + |ℎ|ÿ ∫
∞

2

ý
−
3

2
log(2 + ý)

ý + 1
ýý

)
‖ÿ‖ÿÿ(Ω)

≲ |ℎ|ÿ‖ÿ‖ÿÿ(Ω). (82)

Combining this with (80), we obtain the result. □

Remark 4. Similarly, we have

||ÿÿÿÿÿ − Λ−1ℝ2(ÿÿÿÿ)||ÿÿ(ℝ2) ≲ ‖ÿ‖ÿ∞(Ω), (83)

||ÿÿÿΛÿÿ − Λℝ2(ÿÿÿÿ)||ÿÿ(ℝ2) ≲ ‖ÿ‖ÿÿ(Ω), (84)

for any 0 < ÿ < 2 and 0 < ÿ < 1 where ÿÿÿ is a cutoff function satisfying ÿÿÿ = 1 in ý(ý0, ÿ0) and

ÿÿÿ = 0 in ℝ
2∖ý(ý0,

5

4
ÿ0) with ý(ý0, 2ÿ0) ⊂ Ω.

Remark 5. In view of Remark 4, Proposition 4 and (5), and (B55), we have the bounds

||Λ−1ÿ ÿ||ÿÿ(Ω) ≲ ||ÿ||ÿ(ÿ−1)+ (Ω), for any ÿ ∈ (0, 2)∖{1}, (85)

||Λ−1ÿ ÿ||ÿ1(Ω) ≲ ||ÿ||ÿÿ(Ω), for any ÿ ∈ (0, 1), (86)

||Λÿÿ||ÿÿ(Ω) ≲ ||ÿ||ÿ1+ÿ(Ω), for any ÿ ∈ (0, 1). (87)

We consider now the localization and extension of the nonlinear term. We denote the usual

Poisson bracket by {ÿ, ÿ} = ý(ÿ, ÿ),

{ÿ, ÿ} = ∇⟂ÿ ⋅ ∇ÿ (88)
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GLOBAL REGULARITY FOR CRITICAL SQG IN BOUNDED DOMAINS 19

and use its behavior under composition

{ÿ◦ÿ, ý◦ÿ} = (ýÿý ∇ÿ)({ÿ, ý}◦ÿ). (89)

Thus, in particular,

{ÿ1ÿ, ÿÿ}◦ÿ = ÿ̃ ⋅ {(ÿ1ÿ)◦ÿ, (ÿÿ)◦ÿ}. (90)

holds for smooth cutoffs ÿ, ÿ1 supported in Ω, and where ÿ̃ = (det∇ý)◦ÿ) (see (46)).

We also use the important observation that odd extensions commute with the Poisson bracket.

This follows from the properties (50) and from the product rules (51). We have thus, recalling our

definition (53), ÿ = ó ÿ̃,
({ÿ1ÿ, ÿÿ}◦ÿ) = ÿ ⋅ {((ÿ1ÿ)◦ÿ),((ÿÿ)◦ÿ)}. (91)

Therefore, we have

((∇⟂(ÿ1ÿÿ) ⋅ ∇(ÿÿ))◦ÿ) = ÿ∇⟂(((ÿ1ÿÿ)◦ÿ) ⋅ ∇(((ÿÿ)◦ÿ)). (92)

We proved the following statement.

Proposition 6. Let ÿ ∈ ÿ∞(Ω), let ÿÿ be a stream function defined by (73) and let ÿ1, ÿ be smooth

cutoffs supported inΩ. Then,

(∇⟂ý (ÿ1ÿÿ) ⋅ ∇ý(ÿÿ)) = ÿ∇⟂ÿ ((ÿ1ÿÿ)) ⋅ ∇ÿ(ÿÿ) (93)

holds.

4 EXTENDED LOCALIZED CRITICAL SQG

We start by computing, with ÿ = ÿ0ÿ and ÿ1 = ÿ
1
ÿ two localizers, 1 ≤ ÿ ≤ ý,

ÿ(∇⟂ÿ) ⋅ ∇ÿ = ∇⟂ÿ ⋅ ∇(ÿÿ) −
(
∇⟂ÿ ⋅ ∇ÿ

)
ÿ

= ∇⟂(ÿ1ÿ) ⋅ ∇(ÿÿ) −
(
∇⟂(ÿ1ÿ) ⋅ ∇ÿ

)
ÿ.

(94)

The last equality follows because ÿ1 ≡ 1 on the support of ÿ.
Applying the product rules (51) and Proposition 6, we obtain the following statement.

Proposition 7. Let ÿ ∈ ÿ∞(Ω), let ÿÿ be a stream function defined by (73). Then we have

(ÿ(∇⟂ÿÿ ⋅ ∇ÿ)) − ÿ∇⟂(ÿ1ÿÿ) ⋅ ∇(ÿÿ) = −ÿ∇⟂(ÿ1ÿÿ) ⋅ ((∇ÿ)ÿ). (95)

In view of (74), we have

(ÿ1ÿÿ) = ÿ−
1

2(ÿ1ÿ) + ÿÿ,ÿ1 . (96)

We denote by ÿÿ , ÿ̃ÿ the functions

ÿÿ = (ÿÿ), (97)
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20 CONSTANTIN et al.

ÿ̃ÿ = (ÿ1ÿ), (98)

by ÿÿ

ÿÿ = ÿ∇
⟂ÿ
−
1

2 (ÿ̃ÿ) + ÿÿÿ, (99)

with

ÿÿÿ = ÿ∇
⟂ÿÿ,ÿ1 , (100)

and by ÿ̃ the vector

ÿ̃ = ((∇ÿ)ÿ). (101)

Note that

ÿÿ = ÿÿ̃ÿ , (102)

where ÿ = ó(ÿ◦ÿ) is a Lipschitz cutoff function satisfying ÿ = 1 in ý(ý0, ÿ1), ÿ = 1 in

ℝ2∖ý(ý0, 4ÿ1) for some ý0 ∈ ℝ
2 and ÿ1 > 0.

Multiplying the SQG Equation (4) by ÿ0
ÿ
, using the definitions (97)–(101) above, together with

(95), (96), and (77), we arrive at

ÿýÿÿ + ÿÿ ⋅ ∇ÿÿ + ÿ
1

2 ÿÿ = ÿ, (103)

where

ÿ = −ýÿ(ÿ) + ÿÿ ⋅ ÿ̃ (104)

for ÿ ≤ ý1.
Lemma 1. For any 0 < ÿ < 1 and 0 < ÿ < 1, the following inequalities hold

||ÿÿÿ||ÿÿ(ℝ2) ≲ ‖ÿ‖ÿ∞(Ω), (105)

||ÿ||ÿÿ(ℝ2) ≲ ||ÿ||ÿÿ(Ω)
(
1 + ||ÿ||ÿÿ(Ω)

)
. (106)

Proof. In view of (57), (58), (75), and (B55), we obtain (105) and

||ÿÿ||ÿÿ(ℝ2) ≲ ||ÿ||ÿÿ(Ω) + ||ÿ||ÿ1(Ω) ≲ ||ÿ||ÿÿ(Ω). (107)

Combining this with (78) and ||ÿ̃||ÿÿ(ℝ2) ≲ ||ÿ||ÿÿ(Ω), we obtain (106). □

Similarly, the equation for interior balls (ý1 + 1 ≤ ÿ ≤ ý) for ÿÿ = ÿ0ÿ ÿ is
ÿýÿÿ + ÿÿ ⋅ ∇ÿÿ + Λℝ2ÿÿ = ÿÿÿ, (108)

ÿÿ = ∇
⟂Λ−1

ℝ2
(ÿ1ÿ) + ÿÿÿ,ÿÿ, (109)
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GLOBAL REGULARITY FOR CRITICAL SQG IN BOUNDED DOMAINS 21

where

ÿÿÿ = Λℝ2(ÿÿ) − ÿΛÿ(ÿ) + (ÿ ⋅ ∇ÿ)ÿ, (110)

ÿÿÿ,ÿÿ = ∇
⟂(ÿ1Λ

−1
ÿ (ÿ)) − ∇

⟂Λ−1
ℝ2
(ÿ1ÿ), (111)

and ÿ = ÿ0
ÿ
, ÿ1 = ÿ

1
ÿ
for ý1 < ÿ ≤ ý.

In view of Remark 4, we have

||ÿÿÿ,ÿÿ||ÿÿ(ℝ2) ≲ ‖ÿ‖ÿ∞(Ω), (112)

||ÿÿÿ||ÿÿ(ℝ2) ≲ ||ÿ||ÿÿ(Ω)
(
1 + ||ÿ||ÿÿ(Ω)

)
, (113)

for any 0 < ÿ, ÿ < 1.

5 BOUNDS FOR A LINEAR DISSIPATIVE ADVECTION EQUATION

In this section, we consider the linear advection equation

ÿýÿ(ý, ý) + ÿ(ý, ý) ⋅ ∇ÿ(ý, ý) + ÿ
1

2 ÿ(ý, ý) = ÿ(ý, ý), (114)

in ℝý × [0, ÿ], with ý ≥ 2 where ÿ 12 is given by (34).
Lemma 2. Assume that ÿ ∈ ÿ∞([0, ÿ], ÿÿ0) ∩ ÿ∞

ýýý
((0, ÿ], ÿ1+ÿ0) is a solution of (114) for some ÿ0 ∈

(0, 1). Then, the following inequalities hold for any ÿ1 ∈ (0, 1∕3), ÿ2 ∈ (0, 1), and ÿ2 > ÿ1,

||ÿ||ÿ1ÿ(ÿ̇1+ÿ1 ) ≲ ý1(ÿ + 1)
(
||ÿ(0)||ÿÿ2 + ||ÿ||ÿ1ÿ(ÿ∞) + ||ÿ||ÿ1ÿ(ÿÿ2 )

)

+ý

3

ÿ1
1 (ÿ + 1)

ÿ2
ÿ1 ∫

ÿ

0

(1 + ||ÿ||ÿÿ2 )
ÿ2

ÿ2
1 ||ÿ||ÿ̇ÿ1ýý; (115)

and

||ÿ||ÿ∞ÿ (ÿ̇2ÿ1 ) + sup
ý∈[0,ÿ]

ý1−ÿ1 ||ÿ(ý)||ÿ̇1+ÿ1 ≲ ý1||ÿ(0)||ÿ̇2ÿ1 +ý1 sup
ý∈[0,ÿ]

ý1−ÿ1 ||ÿ(ý)||ÿ̇ÿ1

+

(
ý

6

ÿ1
1 ÿ

2(1−ÿ1)
(
1 + ||ÿ||ÿ∞(ÿ̇ÿ1 )

) 2

ÿ1 +ý1ÿ
1−ÿ1

)
||ÿ||ÿ∞ÿ (ÿ∞); (116)

and

sup
ý∈[0,ÿ]

ý1−ÿ1 ||ÿ(ý)||ÿ̇1+ÿ1 ≲ ý1ÿÿ1 ||ÿ(0)||ÿ̇3ÿ1 +ý1 sup
ý∈[0,ÿ]

ý1−ÿ1 ||ÿ(ý)||ÿ̇ÿ1

+ý

3

ÿ1
1 ÿ

1−ÿ1
(
1 + ||ÿ||ÿ∞(ÿ̇ÿ1 )

) 1

ÿ1 ||ÿ||ÿ∞ÿ (ÿ̇ÿ1 ) +ý1ÿ1−ÿ1 ||ÿ||ÿ∞ÿ (ÿ∞), (117)

whereý1 = 1 + ||ÿ||ÿ∞ÿ (ÿ∞).
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Remark 6. We see from (117), that supý∈[0,ÿ] ý
1−ÿ1 ||ÿ(ý)||ÿ̇1+ÿ1 is small when ÿ is small. This

property is used in the proof of the Lemma 7, which is key for the proof of Theorem 6.

Remark 7. When ÿ(ý, ý) ≡ 0, estimates (115)–(117) are proven by K. Chen, R. Hu, and the third
author in [3, Theorem 1.1]. When ÿ(ý, ý) ≠ 0, these estimates are new.
The proof of Lemma (2) is based on amethod of freezing coefficients, to avoid directly differen-

tiating ÿ or the variable coefficients of ÿ
1

2 . We start by taking a fixed ý0 and computing the kernel

of the semigroup generated by the constant coefficients operator ÿ
1

2
ý0
. A direct calculation verifies

that

ÿý(ý0)(ý, ý) =
1√
ÿ ∫

∞

0

ÿ−ÿ√
ÿ
ÿý(ý0)(ý − ÿ,

ý2

4ÿ
)ýÿ =

ý1√
detý(ý0)

ý

(
ý2 + |ý(ý0)−

1

2 ý|2
) ý+1

2

(118)

is the kernel of ÿý + ÿ
1

2
ý0
, where ý1 ∫ℝý

(
1 + |ý|2)−

ý+1

2 ýý = 1. Above ý(ý0)
−
1

2 is the square root of

the positive symmetric matrix ý(ý0)
−1.

We write

ÿýÿ(ý, ý) + ÿ(ý0, ý) ⋅ ∇ÿ(ý, ý) + ÿ
1

2
ý0
ÿ(ý, ý) = ý(ý, ý0, ý) (119)

for any ý0 ∈ ℝ
ý where

ý(ý, ý0, ý) =

{
ÿ(ý, ý) + (ÿ

1

2
ÿ ÿ(ý, ý)|ÿ=ý − ÿ

1

2 ÿ(ý, ý))

}

+

{
(ÿ

1

2
ý0
ÿ(ý, ý) − ÿ

1

2
ÿ ÿ(ý, ý)|ÿ=ý) + (ÿ(ý0, ý) − ÿ(ý, ý))∇ÿ(ý, ý)

}

∶= ý1(ý, ý) + ý2(ý, ý0, ý). (120)

Using (B79) and (B11), (B12), we have

||ý1(ý)||ÿ̇ÿ2 ≲ ||ÿ(ý)||ÿ̇ÿ2 + ||ÿ(ý)||ÿÿ2+ÿ , (121)

|ý2(ý, ý0, ý)| ≲ |ý − ý0|ÿ2
(
1 + ||ÿ||ÿ∞ÿ (ÿ̇ÿ2 )

)
||ÿ(ý)||ÿ1

ÿ̇ÿ1
||ÿ(ý)||1−ÿ1

ÿ̇1+ÿ1
, (122)

and

|ÿý0
ℎ
ý2(ý, ý0, ý) − ÿ

ý0
ℎ
ý2(ÿ, ý0, ý)|

≤ |(ÿ
1

2

ý0+ℎ
− ÿ

1

2
ý0
)ÿ(ý, ý) − (ÿ

1

2

ý0+ℎ
− ÿ

1

2
ý0
)ÿ(ÿ, ý)| + |ÿℎÿ(ý0, ý)||∇ÿ(ý, ý) − ∇ÿ(ÿ, ý)|

≲ |ý − ÿ|ÿ|ℎ|ÿ2−ÿ(1 + ||ÿ(ý)||ÿ̇ÿ2−ÿ
)||ÿ(ý)||ÿ̇1+ÿ , (123)

for any ÿ ∈ (0,min{1 − ÿ2, ÿ2}).
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Now we compute the kernel of ÿý + ÿ(ý0, ý)∇ + ÿ
1

2
ý0
. Integrating by parts, we have

∫
ý

0
∫
ℝý
ÿý(ý0)(ý − ÿ − ∫

ý

ý

ÿ(ý0, ÿ)ýÿ, ý − ý)ý(ÿ, ý0, ý)ýÿýý

= ∫
ý

0
∫
ℝý
ÿý(ý0)(ý − ÿ − ∫

ý

ý

ÿ(ý0, ÿ)ýÿ, ý − ý)

(
ÿýÿ(ÿ, ý) + ÿ(ý0, ý)∇ÿ(ÿ, ý) + ÿ

1

2
ý0
ÿ(ÿ, ý)

)
ýÿýý

= ÿ(ý, ý) − ∫
ℝý
ÿý(ý0)(ý − ÿ − ∫

ý

0

ÿ(ý0, ÿ)ýÿ, ý)ÿ(ÿ, 0)ýÿ

− ∫
ý

0
∫
ℝý
ÿý

[
ÿý(ý0)(ý − ÿ − ∫

ý

ý

ÿ(ý0, ÿ)ýÿ, ý − ý)

]
ÿ(ý, ÿ)ýÿýý

+ ∫
ý

0
∫
ℝý
(ÿ(ý0, ý)∇ý + ÿ

1

2
ý0
ÿý(ý0))(ý − ÿ − ∫

ý

ý

ÿ(ÿ, ý0)ýÿ, ý − ý)ÿ(ÿ, ý)ýÿýý

= ÿ(ý, ý) − ∫
ℝý
ÿý(ý0)(ý − ÿ − ∫

ý

0

ÿ(ý0, ÿ)ýÿ, ý)ÿ(ÿ, 0)ýÿ. (124)

Thus,

ÿ(ý, ý) = ∫
ℝý
ÿý(ý0)(ý − ÿ − ∫

ý

0

ÿ(ÿ, ý0)ýÿ, ý)ÿ(ÿ, 0)ýÿ

+ ∫
ý

0
∫
ℝý
ÿý(ý0)(ý − ÿ − ∫

ý

ý

ÿ(ÿ, ý0)ýÿ, ý − ý)ý(ÿ, ý0, ý)ýÿýý, (125)

for any ý0 ∈ ℝ
ý.

This verifies that the map (ý, ý, ý, ÿ) → ÿý(ý0)(ý − ý, ý − ÿ − ∫ ý
ý
ÿ(ÿ, ý0)ýÿ) is the kernel of the

semigroup generated by the operator −

(
ÿ(ý, ý0) ⋅ ∇ + ÿ

1

2
ý0

)
.

In the proof of Lemma (2), we make use of the following bound.

Lemma 3. For ÿ ∈ [0, 1), and ÿ = 0, 1, we have

sup
ý ∫

ℝý
|(ÿÿ

ℎ
∇
ÿ
ÿÿý(ý))|(ÿ, ý)|ÿ|ÿýÿ ≲ min{ |ℎ|ý , 1}

1−ÿ |ℎ|ÿ
ýÿ
. (126)

Proof. Case 1: |ℎ| ≤ 4ý. We have
|(ÿÿ

ℎ
∇
ÿ
ÿÿý(ý))|(ÿ, ý) ≲ |ℎ|ý

(ý + |ÿ|)ý+ÿ+2 . (127)

So,

sup
ý ∫

ℝý
|(ÿℎ∇ÿÿý(ý))|(ÿ, ý)|ÿ|ÿýÿ ≲ ∫

ℝý

|ℎ|ý
(ý + |ÿ|)ý+ÿ+2 |ÿ|

ÿýÿ ∼
|ℎ|
ýÿ+1−ÿ

. (128)
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Case 2: |ℎ| ≥ 4ý. We have

sup
ý ∫

ℝý
|(ÿℎ∇ÿÿý(ý))|(ÿ, ý)|ÿ|ÿýÿ ≲ ∫

ℝý

(
ý

(ý + |ÿ − ℎ|)ý+ÿ+1 +
ý

(ý + |ÿ|)ý+ÿ+1
)
|ÿ|ÿýÿ ≲ |ℎ|ÿ

ýÿ
.

(129)

The two cases together yield the result. □

Proof of Lemma 2. We apply ÿℎ∇
ÿ
ý, ÿ = 0, 1 to both sides of (125), then we take ý0 = ý to obtain

that

ÿℎ∇
ÿ
ýÿ(ý, ý) = ∫

ℝý
(ÿℎ∇

ÿÿý(ý0))(ý − ÿ − ∫
ý

0

ÿ(ý0, ÿ)ýÿ, ý)|ý0=ýÿ(ÿ, 0)ýÿ

+ ∫
ý

0
∫
ℝý
(ÿℎ∇

ÿÿý(ý0))(ý − ÿ − ∫
ý

ý

ÿ(ý0, ÿ)ýÿ, ý − ý)|ý0=ý(ý1(ÿ, ý) + ý2(ÿ, ý, ý))ýÿýý. (130)

Then, we write

ÿℎ∇ýÿ(ý, ý) = ∫
ℝý
(∇ÿý(ý0))(ý − ÿ − ∫

ý

0

ÿ(ý0, ÿ)ýÿ, ý)|ý0=ý(ÿ−ℎÿ(ÿ, 0) − ÿ−ℎÿ(ý, 0))ýÿ

+ ∫
ý

0

ÿ |ℎ|
ý−ý

≤1 ∫
ℝý
(ÿℎ∇ÿý(ý0))(ý − ÿ − ∫

ý

ý

ÿ(ý0, ÿ)ýÿ, ý − ý)|ý0=ý(ý1(ÿ, ý) − ý1(ý, ý) + ý2(ÿ, ý, ý))ýÿýý

+ ∫
ý

0

ÿ |ℎ|
ý−ý
>1 ∫

ℝý
(∇ÿý(ý0))(ý − ÿ − ∫

ý

ý

ÿ(ý0, ÿ)ýÿ, ý − ý)|ý0=ý(ÿ−ℎý1(ÿ, ý) − ÿ−ℎý1(ý, ý))ýÿýý

+
∑
ÿ=0,1

(−1)ÿ+1 ∫
ý

0

ÿ |ℎ|
ý−ý
>1 ∫

ℝý
(∇ÿý(ý0))(ý + ÿℎ − ÿ − ∫

ý

ý

ÿ(ý0, ÿ)ýÿ, ý − ý)|ý0=ýý2(ÿ, ý + ÿℎ, ý)ýÿýý

+ ∫
ý

0

ÿ |ℎ|
ý−ý
>1 ∫

ℝý
(∇ÿý(ý0))(ý + ℎ − ÿ − ∫

ý

ý

ÿ(ý0, ÿ)ýÿ, ý − ý)|ý0=ý

× (ý2(ÿ, ý, ý) − ý2(ÿ, ý + ℎ, ý) − (ý2(ý + ℎ, ý, ý) − ý2(ý + ℎ, ý + ℎ, ý)))ýÿýý. (131)

Here we used the fact that

∫
ℝý
(ÿℎÿ1)(ý − ÿ)ÿ2(ÿ)ýÿ = ∫

ℝý
ÿ1(ý − ÿ)ÿ−ℎÿ2(ÿ)ýÿ, ∀ ÿ1, ÿ2, (132)

∫
ℝý
(∇ÿý(ý0))(ý − ÿ − ∫

ý

ý

ÿ(ý0, ÿ)ýÿ, ý − ý)|ý0=ýýÿ = 0 ∀ ý, ý, ý. (133)

Thus, using (121)–(123), we have for any ÿ1, ÿ2, ÿ4 ∈ (0, 1), ÿ4 ≥ ÿ1, ÿ1 ≤ 2ÿ2

|ÿℎ∇ÿ(ý, ý)| ≤ ∫
ℝý
|(∇ÿý(ý0))|(ý − ÿ − ∫

ý

0

ÿ(ý0, ÿ)ýÿ, ý)|ý0=ý|ℎ|ÿ1 |ý − ÿ|ÿ4−ÿ1ýÿ||ÿ(0)||ÿ̇ÿ4

+ ∫
ý

0

ÿ |ℎ|
ý−ý

≤1 ∫
ℝý
|(ÿℎ∇ÿý(ý0))|(ý − ÿ − ∫

ý

ý

ÿ(ý0, ÿ)ýÿ, ý − ý)|ý0=ý|ý − ÿ|ÿ2ý(ý)ýÿýý
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+ ∫
ý

0

ÿ |ℎ|
ý−ý
>1 ∫

ℝý
|∇ýÿý(ý0)|(ý − ÿ − ∫

ý

ý

ÿ(ý0, ÿ)ýÿ, ý − ý)|ý0=ý|ℎ|
ÿ1

2 |ý − ÿ|ÿ2− ÿ12 ý(ý)ýÿýý

+
∑
ÿ=0,1

∫
ý

0

ÿ |ℎ|
ý−ý
>1 ∫

ℝý
|∇ýÿý(ý0)|(ý + ÿℎ − ÿ − ∫

ý

ý

ÿ(ý0, ÿ)ýÿ, ý − ý)|ý0=ý|ý + ÿℎ − ÿ|ÿ2ý(ý)ýÿýý

+ ∫
ý

0

ÿ |ℎ|
ý−ý
>1 ∫

ℝý
|(∇ýÿý(ý0))|(ý + ℎ − ÿ − ∫

ý

ý

ÿ(ý0, ÿ)ýÿ, ý − ý)|ý0=ý

× |ý + ℎ − ÿ|ÿýÿ|ℎ|ÿ2−ÿ(1 + ||ÿ(ý)||ÿ̇ÿ2−ÿ )||ÿ(ý)||ÿ̇1+ÿýý, (134)

where

ý(ý) ∶ = ||ÿ(ý)||ÿ̇ÿ2 +
(
1 + ||ÿ(ý)||ÿ̇ÿ2

)||ÿ(ý)||ÿ1
ÿ̇ÿ1

||ÿ(ý)||1−ÿ1
ÿ̇1+ÿ1

+ ||ÿ(ý)||ÿÿ2+ÿ

≲ ||ÿ(ý)||ÿ̇ÿ2 +
(
1 + ||ÿ(ý)||ÿ̇ÿ2

)||ÿ(ý)||ÿ1
ÿ̇ÿ1

||ÿ(ý)||1−ÿ1
ÿ̇1+ÿ1

+ ||ÿ(ý)||ÿ∞ . (135)

Using (126), we deduce

∫
ℝý
|(ÿℎ∇ÿý(ý))|(ÿ − ∫

ý

ý

ÿ(ý, ÿ)ýÿ, ý − ý)|ÿ|ÿýÿ

≤ ∫
ℝý
|(ÿℎ∇ÿý(ý))|(ÿ, ý − ý)(|ÿ| + |ý − ý|||ÿ||ÿ∞ÿ (ÿ∞))

ÿ
ýÿ

≲ ý1min{
|ℎ|
ý − ý

, 1}1−ÿ
|ℎ|ÿ
ý − ý

, (136)

∫
ℝý
|(∇ÿý(ý))|(ÿ − ∫

ý

ý

ÿ(ý, ÿ)ýÿ, ý − ý)|ÿ|ÿýÿ ≲ ý1(ý − ý)−1+ÿ , (137)

for any ÿ ∈ (0, 1). Thus,

|ÿℎ∇ÿ(ý, ý)| ≲ ý1|ℎ|ÿ1ý−1+ÿ4−ÿ1 ||ÿ(0)||ÿ̇ÿ4 +ý1 ∫
ý

0

min{
|ℎ|
ý − ý

, 1}
1−

ÿ1
2

|ℎ|
ÿ1
2

(ý − ý)
1−ÿ2+

ÿ1
2

ý(ý)ýý

+ ý1 ∫
ý

0

ÿ |ℎ|
ý−ý
>1
(ý − ý)−1+ÿ|ℎ|ÿ2−ÿ(1 + ||ÿ(ý)||ÿ̇ÿ2−ÿ

)||ÿ(ý)||ÿ̇1+ÿýý. (138)

Because ||ý||ÿÿ1 ≲ ||ý||ÿÿ2 for any 0 < ÿ1 < ÿ2, it is enough to prove (115) when 0 < ÿ2 − ÿ1 ≪ ÿ1.

Using (138) with ÿ4 = ÿ2 > ÿ1 and ÿ = ÿ2 − ÿ1 ≪ ÿ1, we obtain

||ÿ(ý)||ÿ̇1+ÿ1 ≲ ý1ý−1+ÿ2−ÿ1 ||ÿ(0)||ÿ̇ÿ2 +ý1 ∫
ý

0

ý(ý)ýý

(ý − ý)1−(ÿ2−ÿ1)

+ý1 ∫
ý

0

(
1 + ||ÿ(ý)||ÿ̇ÿ1

)||ÿ(ý)||ÿ̇1+ÿ2−ÿ1 ýý

(ý − ý)1−(ÿ2−ÿ1)

≲ ý1ý
−1+ÿ2−ÿ1 ||ÿ(0)||ÿ̇ÿ2 +ý1 ∫

ý

0

ý(ý)ýý

(ý − ý)1−(ÿ2−ÿ1)

+ý2
1 ∫

ý

0

(
1 + ||ÿ(ý)||ÿ̇ÿ2

) ÿ1
ÿ2 ||ÿ||2ÿ1−ÿ2

ÿ̇ÿ1
||ÿ||1+ÿ2−2ÿ1

ÿ̇1+ÿ1

ýý

(ý − ý)1−(ÿ2−ÿ1)
. (139)
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In the last inequality, we used interpolation inequalities.

Thus, in view of (135), we obtain

||ÿ||ÿ1ÿ(ÿ̇1+ÿ1 ) ≲ ý1ÿÿ2−ÿ1
(
||ÿ(0)||ÿ̇ÿ2 + ||ÿ||ÿ1ÿ(ÿ∞) + ||ÿ||ÿ1ÿ(ÿ̇ÿ2 )

)

+ý2
1ÿ
ÿ2−ÿ1

(
∫
ÿ

0

(1 + ||ÿ||ÿ̇ÿ2 )
ÿ1
ÿ2 ||ÿ||2ÿ1−ÿ2

ÿ̇ÿ1
||ÿ||1+ÿ2−2ÿ1

ÿ̇1+ÿ1
+
(
1 + ||ÿ||ÿ̇ÿ2

)||ÿ||ÿ1
ÿ̇ÿ1

||ÿ||1−ÿ1
ÿ̇1+ÿ1

)
.

(140)

Using Holder’s inequality, we deduce

||ÿ||ÿ1ÿ(ÿ̇1+ÿ1 ) ≲ ý1ÿ
ÿ2−ÿ1

(
||ÿ(0)||ÿ̇ÿ2 + ||ÿ||ÿ1ÿ(ÿ∞) + ||ÿ||ÿ1ÿ(ÿ̇ÿ2 )

)

+ý

2

2ÿ1−ÿ2

1 ÿ
ÿ2−ÿ1

2ÿ1−ÿ2 ∫
ÿ

0

(1 + ||ÿ||ÿ̇ÿ2 )
ÿ1

ÿ2(2ÿ1−ÿ2) ||ÿ||ÿ̇ÿ1 +ý
2

ÿ1

1 ÿ
ÿ2

ÿ1
−1

∫
ÿ

0

(1 + ||ÿ||ÿ̇ÿ2 )
1

ÿ1 ||ÿ||ÿ̇ÿ1

≲ ý1(ÿ + 1)
(
||ÿ(0)||ÿÿ2 + ||ÿ||ÿ1ÿ(ÿ∞) + ||ÿ||ÿ1ÿ(ÿÿ2 )

)
+ý

3

ÿ1

1 (ÿ + 1)
ÿ2

ÿ1 ∫
ÿ

0

(1 + ||ÿ||ÿÿ2 )
ÿ2

ÿ2
1 ||ÿ||ÿ̇ÿ1 .

(141)

Here we used
ÿ1

ÿ2(2ÿ1−ÿ2)
,
1

ÿ1
<
ÿ2

ÿ21
when ÿ2 − ÿ1 ≪ ÿ1. This implies (115).

Using (138) with ÿ1 = ÿ2 ≤ ÿ4∕2 and ÿ = ÿ1

2
, we have

|ÿℎ∇ÿ(ý, ý)| ≲ ý1|ℎ|ÿ1 ý−1+ÿ4−ÿ1 ||ÿ(0)||ÿ̇ÿ4 +ý1 ∫
ý

0

min{
|ℎ|
ý − ý

, 1}
1−

ÿ1

2
|ℎ| ÿ12 ý−1+ÿ1
(ý − ý)

1−
ÿ1

2

ýý sup
ý∈[0,ÿ]

ý1−ÿ1ý(ý)

+ ý1

(
1 + ||ÿ||

ÿ∞(ÿ̇
ÿ1
2 )

)
|ℎ| ÿ12 ∫

ý

0

ÿ |ℎ|
ý−ý
>1
(ý − ý)

−1+
ÿ1

2 ý−1+ÿ1ýý sup
ý∈[0,ÿ]

ý1−ÿ1 ||ÿ(ý)||
ÿ̇
1+
ÿ1
2

≲ ý1|ℎ|ÿ1 ý−1+ÿ4−ÿ1 ||ÿ(0)||ÿ̇ÿ4 +ý1|ℎ|ÿ1 ý−1+ÿ1 sup
ý∈[0,ÿ]

ý1−ÿ1ý(ý)

+ ý1

(
1 + ||ÿ||

ÿ∞(ÿ̇
ÿ1
2 )

)
|ℎ|ÿ1 ý−1+ÿ1 ||ÿ||

ÿ1

2

ÿ∞ÿ (ÿ̇
ÿ1 )
sup
ý∈[0,ÿ]

ý1−ÿ1 ||ÿ(ý)||1−
ÿ1

2

ÿ̇1+ÿ1
, (142)

where ý(ý) satisfies (135) with ÿ2 = ÿ1.

Thus,

sup
ý∈[0,ÿ]

ý1−ÿ1 ||ÿ(ý)||ÿ̇1+ÿ1 ≲ ý1ÿ
ÿ4−2ÿ1 ||ÿ(0)||ÿ̇ÿ4 +ý1ÿ

1−ÿ1 ||ÿ||ÿ∞ÿ (ÿ∞) +ý1 sup
ý∈[0,ÿ]

ý1−ÿ1 ||ÿ(ý)||ÿ̇ÿ1

+ý1ÿ
ÿ1(1−ÿ1)

(
1 + ||ÿ||ÿ∞ÿ (ÿ̇ÿ1 )

)
||ÿ||ÿ1

ÿ∞ÿ (ÿ̇
ÿ1 )

(
sup
ý∈[0,ÿ]

ý1−ÿ1 ||ÿ(ý)||ÿ̇1+ÿ1
)1−ÿ1

+ý
3

2

1 ÿ
ÿ1(1−ÿ1)

2

(
1 + ||ÿ||ÿ∞(ÿ̇ÿ1 )

) 1
2 ||ÿ||

ÿ1

2

ÿ∞ÿ (ÿ̇
ÿ1 )

(
sup
ý∈[0,ÿ]

ý1−ÿ1 ||ÿ(ý)||ÿ̇1+ÿ1
)1− ÿ1

2

. (143)
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Here we used the interpolation inequality

(
1 + ||ÿ||

ÿ∞(ÿ̇
ÿ1
2 )

)
≲ ý

1

2
1

(
1 + ||ÿ||ÿ∞(ÿ̇ÿ1 )

) 1
2 .

Using Holder’s inequality,

sup
ý∈[0,ÿ]

ý1−ÿ1 ||ÿ(ý)||ÿ̇1+ÿ1 ≲ ý1ÿ
ÿ4−2ÿ1 ||ÿ(0)||ÿ̇ÿ4 +ý1ÿ

1−ÿ1 ||ÿ||ÿ∞ÿ (ÿ∞) +ý1 sup
ý∈[0,ÿ]

ý1−ÿ1 ||ÿ(ý)||ÿ̇ÿ1

+ý

3

ÿ1

1 ÿ
1−ÿ1

(
1 + ||ÿ||ÿ∞(ÿ̇ÿ1 )

) 1

ÿ1 ||ÿ||ÿ∞ÿ (ÿ̇ÿ1 ). (144)

This implies (117) by taking ÿ4 = 3ÿ1.

It follows from (121), (122), and (130), that for ÿ1 = ÿ2

|ÿℎÿ(ý, ý)| ≲ ∫
ℝý
ÿý(ý0)(ý − ÿ − ∫

ý

0

ÿ(ý, ÿ)ýÿ, ý)|ý0=ý|ÿ−ℎÿ(ÿ, 0)|ýÿ

+ ∫
ý

0
∫
ℝý
|ÿℎÿý(ý0)(ý − ÿ − ∫

ý

ý

ÿ(ý, ÿ)ýÿ, ý − ý)|ý0=ý||ÿ − ý|ÿ1ýÿý(ý)ýý

(126)

≲ |ℎ|2ÿ1 ||ÿ(0)||ÿ̇2ÿ1 +ý1 ∫
ý

0

|ℎ|ÿ1 min{ |ℎ|
ý − ý

, 1}1−ÿ1ý(ý)ýý

≲ |ℎ|2ÿ1 ||ÿ(0)||ÿ̇2ÿ1 +ý1 ∫
ý

0

|ℎ|ÿ1 min{ |ℎ|
ý − ý

, 1}1−ÿ1ý−1+ÿ1ýý sup
ý∈[0,ÿ]

ý1−ÿ1ý(ý)

∼ |ℎ|2ÿ1
(
||ÿ(0)||ÿ̇2ÿ1 +ý1 sup

ý∈[0,ÿ]
ý1−ÿ1ý(ý)

)
, (145)

where ý(ý) satisfies (135) with ÿ2 = ÿ1.

Therefore, as in (143), we obtain

||ÿ||ÿ∞ÿ (ÿ̇2ÿ1 ) ≲ ||ÿ(0)||ÿ̇2ÿ1 +ý1ÿ1−ÿ1 ||ÿ||ÿ∞ÿ (ÿ∞) +ý1 supý∈[0,ÿ]
ý1−ÿ1 ||ÿ(ý)||ÿ̇ÿ1

+ý1ÿ
ÿ1(1−ÿ1)

(
1 + ||ÿ||ÿ∞ÿ (ÿ̇ÿ1 )

)
||ÿ||ÿ1

ÿ∞ÿ (ÿ̇
ÿ1 )

(
sup
ý∈[0,ÿ]

ý1−ÿ1 ||ÿ(ý)||ÿ̇1+ÿ1
)1−ÿ1

. (146)

Combining this with (144) (for ÿ4 = 2ÿ2) and Holder’s inequality, we deduce

||ÿ||ÿ∞ÿ (ÿ̇2ÿ1 ) + sup
ý∈[0,ÿ]

ý1−ÿ1 ||ÿ(ý)||ÿ̇1+ÿ1 ≲ ý1||ÿ(0)|| ̇ÿ2ÿ1
+ý1ÿ

1−ÿ1 ||ÿ||ÿ∞ÿ (ÿ∞)

+ý1 sup
ý∈[0,ÿ]

ý1−ÿ1 ||ÿ(ý)||ÿ̇ÿ1 +ý
3

ÿ1
1 ÿ

1−ÿ1
(
1 + ||ÿ||ÿ∞(ÿ̇ÿ1 )

) 1

ÿ1 ||ÿ||ÿ∞ÿ (ÿ̇ÿ1 ). (147)

Now (116) follows because ||ÿ||ÿ∞ÿ (ÿ̇ÿ1 ) ≲ ||ÿ||
1

2

ÿ∞ÿ (ÿ
∞)
||ÿ||

1

2

ÿ∞ÿ (ÿ̇
2ÿ1 )

and Holder’s inequality. □
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6 THE NONLINEARMAXIMUM PRINCIPLE

We consider a solution ÿ of (4) defined on an interval of time [0, ÿ]. In this section, we assume that

the solution belongs to ÿ1+ÿ0([0, ÿ] × Ω) for some 0 < ÿ0 < 1. The local existence Theorem (3)

guarantees this to be the case if ÿ is small. Here we obtain the basic a priori estimates which allow

the continuation of the solution. We consider one of the boundary or interior balls 1 ≤ ÿ ≤ ý, and
take the function ÿÿ = ÿ

0
ÿ
ÿ as the basic variable. The extended localized Equation (103) for ÿ ≤ ý1

and its interior counterpart forý1 + 1 ≤ ÿ ≤ ý, (108), are both represented below by the equation

ÿýÿ + ÿ ⋅ ∇ÿ + ÿ
1

2
1 ÿ = ÿ (148)

in ℝý, ý ≥ 2, where ÿ = ÿÿ̃ and ÿ obeys

ÿ = ý∇ÿ
−
1

2
2 (ÿ̃) + ÿ1. (149)

with ÿ1 a lower order term, and where

(i) ý = ý(ý) is a matrix valued function which satisfies

||ý||ÿ1,∞(ℝý) ≲ 1 (150)

(ii) ÿÿ = −div(ýÿ∇.), ÿ = 1, 2,ý1, ý2 are symmetricmatrix valued functions inℝ
ý, which satisfy

(31) and (32);

(iii) ÿ is a Lipschitz cutoff function ÿ = 1 in ý(0, ÿ0) and ÿ = 0 in ý(0, 2ÿ0)
ý
.

We reiterate that in this section, we use the name ÿ, but this variable corresponds to one of the

ÿÿ and not to the solution ÿ of (4), (5). Equation (149) has implicitly assumed that ÿ̃ is known.

In the application to (103), ÿ̃ is compactly supported obtained from the solution of (4), (5) by the

formula (98).

We apply the method of nonlinear maximum principle introduced in [12] for the whole space,

used in [13] in the periodic case and in [6] to establish interiorHölder bounds in bounded domains.

In this section, we do not explicitly use the divergence-free property of velocity ÿ. We expand

here the range of applicability of the method to allow for nonlinear forcing and the absence of

translation invariance. We make use of the following result [13, Lemma B.1].

Lemma 4. Let Υ(ý, ÿ) ∶ [0, ÿ] × ℝÿ → [0,∞),ÿ ∈ ℕ be such that suppΥ(ý, .) ⊂ ýý ⊂ ℝ
ÿ for any

ý ∈ [0, ÿ] and for some ý > 0. Assume that Υ(ý, ÿ) ∈ ÿ1([0, ÿ], ÿÿ(ℝÿ)) ∩ ÿÿ([0, ÿ], ÿ1(ℝÿ)) for

some ÿ ∈ (0, 1). Let ÿ(ý) = supÿ Υ(ý, ÿ) for any ý ∈ [0, ÿ]. Then, ÿ is Lipschitz continuous in [0, ÿ]

with

||ÿ||ÿÿý([0,ÿ]) ≤ ||ÿýΥ||ÿ∞([0,ÿ]×ℝÿ), (151)

for almost every ý ∈ [0, ÿ], the function ÿ is differentiable at ý and there exists ÿ(ý) ∈ ℝÿ such that

simultaneously

ý

ýý
ÿ(ý) = (ÿýΥ)(ý, ÿ(ý)) and ÿ(ý) = Υ(ý, ÿ(ý)) (152)
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hold. In particular, ÿ is absolutely continuous functions on [0, ÿ] and

ÿ(ý2) = ÿ(ý1) + ∫
ý2

ý1

ý

ýý
ÿ(ý)ýý (153)

for any 0 ≤ ý1 < ý2 ≤ ÿ.
Lemma 5. Assume that ÿ ∈ ÿ1+ÿ0([0, ÿ], ÿÿ0(ℝý)) ∩ ÿÿ0([0, ÿ], ÿ1+ÿ0(ℝý)), for some ÿ0 ∈ (0, 1)

is a solution of (148) and (149). Then,

sup
ý∈[0,ÿ]

||ÿ(ý)||
1

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ
+ ||ÿ||−

1

ÿ

ÿ∞ÿ (ÿ
∞) ∫

ÿ

0

||ÿ||
2

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ
≲ ||ÿ0||

1

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ
+ý ∫

ÿ

0

||ÿ||
ÿ̇
1+
ÿ
2

+ý

(
||ÿ̃||ÿ1ÿ(ÿ∞∩ÿ1) + ∫

ÿ

0

||ÿ̃||
1

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ
+ ∫

ÿ

0

||ÿ̃||
ÿ̇
3
4
||ÿ̃||

ÿ̇
1
4
+ ∫

ÿ

0

||ÿ1||6
ÿ̇
1+2ÿ
3

+ ∫
ÿ

0

||ÿ||2
ÿ̇ÿ

)

(154)

holds for ÿ such that ÿ(1 + ||ÿ̃||ÿ∞ÿ (ÿ∞)) is small enough. Above, the constantý is given by

ý = (||ÿ̃||ÿ∞ÿ (ÿ1∩ÿ∞) + 1)
2

ÿ .

Proof. We take 0 < ÿ ≤ ÿ0

16
and consider the equation obeyed by ÿÿ

ℎ
ÿ =

ÿℎÿ

|ℎ|ÿ with ÿℎÿ = ÿ(ý +
ℎ) − ÿ(ý). We apply first the finite difference ÿℎ:

(ÿý + ÿ ⋅ ∇ý + (ÿℎÿ) ⋅ ∇ℎ + ÿ
1

2
1 )ÿℎÿ = ÿ

1

2
1 ÿℎÿ − ÿℎ(ÿ

1

2
1 ÿ) + ÿℎÿ. (155)

Then we obtain the equation obeyed by ÿ(ý, ý, ℎ) = ÿÿ
ℎ
ÿ ∶

(ÿý + ÿ ⋅ ∇ý + (ÿℎÿ) ⋅ ∇ℎ + ÿ
1

2
1 )ÿ = ÿ

1

2
1 ÿ

ÿ
ℎ
ÿ − ÿÿ

ℎ
(ÿ

1

2
1 ÿ) + ÿ

ÿ
ℎ
ÿ − ÿ

(
ÿℎÿ ⋅

ℎ

|ℎ|2
)
ÿ. (156)

We multiply (156) by ÿ and use the quadratic difference lower bound (B87), (B50), where ÿ(ÿ) is

defined in (B49), and (150), to obtain

1

2
(ÿý + ÿ ⋅ ∇ý + (ÿℎÿ) ⋅ ∇ℎ + ÿ

1

2
1 )(ÿ

2) + ý||ÿ||−1ÿ∞ |ℎ|−1+ÿ|ÿ|3 + ý|ℎ|−2ÿÿ(ÿℎ(ÿÿ̃))

≤ ÿ
ý

(
|ℎ|−1−2ÿ|ÿℎ∇ÿ

−
1

2
2 (ÿ̃)|(ÿℎ(ÿÿ̃))2 + ||∇ÿ

−
1

2
2 (ÿ̃)||ÿ∞ÿ2

)
+ |ÿ||ÿ

1

2
1 ÿ

ÿ
ℎ
ÿ − ÿÿ

ℎ
(ÿ

1

2
1 ÿ)|

+ ÿ|ÿÿ
ℎ
ÿ| + ÿ|ℎ|−1||ÿℎÿ1||ÿ∞ÿ2, (157)

where the constant ý > 0 does not depend on ÿ.

Note that

sup
ℎ,ý∈ℝý

ÿ(ý, ý, ℎ)
2
= sup
ℎ,ý∈ℝý

[
ÿ1(ý)ÿ2(ℎ)ÿ(ý, ý, ℎ)

2
]

(158)
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where ÿ1, ÿ2 are cutoff functions such that ÿ1 = 1 in ý(0, ÿ0) and ÿ2 = 1 in ý(0, ÿ0)∖ý(0, 1∕ÿ0);

ÿ1 = ÿ2 = 0 in ℝ
ý∖ý(0, 2ÿ0), ÿ2 = 0 in ý(0, 1∕(2ÿ0)) for some ÿ0 ≥ 1 large enough.

Thus, we apply Lemma 4 to deduce that there exists (ýý, ℎý) ∈ ℝ
ý × ℝý such that

ÿ(ý) ∶= ÿ(ý, ýý, ℎý) = sup
ℎ,ý
ÿ(ý, ý, ℎ) ∈ ÿ1,∞([0, ÿ]). (159)

Moreover, ÿ is an absolutely continuous function on [0, ÿ] and

ý

ýý
ÿ(ý) = (ÿýÿ)(ý, ýý, ℎý) a.e. in ý ∈ [0, ÿ]. (160)

We take great advantage of the fact that

0 < |ℎý| ≤ min
⎧
⎪«⎪¬
4ÿ0,

(
2||ÿ||ÿ∞
ÿ(ý)

) 1

ÿ

«
⎪¬⎪­
, ÿ(ý) ≥ ýÿ−ÿ0 ||ÿ(ý)||ÿ∞ . (161)

In (157), we take (ý, ℎ) = (ýý, ℎý) and use (160) to obtain that

ÿÿýÿ +
ý

2
||ÿ||−1ÿ∞ |ℎ|−1+ÿ|ÿ|3 + ý|ℎ|−2ÿÿ(ÿℎ(ÿÿ̃))

≤ ÿ
ý
|ℎ|−1−2ÿ|ÿℎ∇ÿ

−
1

2

2 (ÿ̃)|(ÿℎ(ÿÿ̃))
2
+ ÿ|ℎ|2(1−ÿ)||∇ÿ−

1

2

2 (ÿ̃)||3ÿ∞ ||ÿ||2ÿ∞

+ |ÿ||ÿ
1

2

1 ÿ
ÿ
ℎ
ÿ − ÿÿ

ℎ
(ÿ

1

2

1 ÿ)| + ÿ||ÿ||ÿ̇ÿ + ÿ3ÿ||ÿ||2ÿ∞ ||ÿ1||3
ÿ̇
1+2ÿ
3

.

(162)

Here we have used Holder’s inequalities

ÿ

ý
||∇ÿ−

1

2
2 (ÿ̃)||ÿ∞ÿ2 ≤ ý

4
||ÿ||−1ÿ∞ |ℎ|−1+ÿ|ÿ|3 + ÿ|ℎ|2(1−ÿ)||∇ÿ

−
1

2
2 (ÿ̃)||3ÿ∞ ||ÿ||2ÿ∞ , (163)

and

ÿ|ℎ|−1||ÿℎÿ1||ÿ∞ÿ2 ≤ ý

4
||ÿ||−1ÿ∞ |ℎ|−1+ÿ|ÿ|3+(

4

ý
)2ÿ3||ÿ||2ÿ∞ ||ÿ1||3

ÿ̇
1+2ÿ
3

. (164)

We invoke Corollary B1 with the estimate (B70) to obtain

|ℎ|−1−2ÿ|ÿℎ∇ÿ
−
1

2
2 (ÿ̃)|(ÿℎ(ÿÿ̃))2 ≤ ÿ||ÿ̃||ÿ∞ |ℎ|−2ÿÿ(ÿℎ(ÿÿ̃)) + ÿ||ÿ̃||ÿ∞ ||ÿ̃||2ÿ̇ÿ

+ ÿ|ℎ|2−2ÿ||ÿ̃||ÿ∞ ||ÿ̃||
ÿ̇
3
4
||ÿ̃||

ÿ̇
1
4
+ ÿÿ|ℎ|1−2ÿ(||ÿ̃||ÿ∞∩ÿ1 + 1)||ÿ̃||2ÿ∞∩ÿ1 log(2 + ||ÿ̃||ÿ̇ÿ )

≤ ÿ||ÿ̃||ÿ∞ |ℎ|−2ÿÿ(ÿℎ(ÿÿ̃)) + ÿ|ℎ|2−2ÿ||ÿ̃||ÿ∞ ||ÿ̃||
ÿ̇
3
4
||ÿ̃||

ÿ̇
1
4

+ ÿÿ(1 + ÿ0)(||ÿ̃||ÿ∞∩ÿ1 + 1)2||ÿ̃||ÿ∞∩ÿ1(1 + ||ÿ̃||2ÿ̇ÿ ), (165)

where ÿ does not depend on ÿ, but ÿÿ depends on ÿ.
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We emphasize the key point that in the above estimate, the constant ÿ in front of

||ÿ̃||ÿ∞ |ℎ|−2ÿÿ(ÿℎ(ÿÿ̃)) does not depend on ÿ. Thus, crucially, if ÿ is small enough, the corre-
sponding term, which comes in (162) multiplied by

ÿ

ý
, and is the most dangerous term, is less

than a fraction of the term provided by the dissipation ÿ(ÿ).

On the other hand, using (B89), (B55) and interpolation inequality, we also have

|ÿ
1

2
1 ÿ

ÿ
ℎ
ÿ − ÿÿ

ℎ
(ÿ

1

2
1 ÿ)| ≲ ÿÿ|ℎ|1−ÿÿ

ÿ

2−ÿ ||ÿ||
2(1−ÿ)

2−ÿ

ÿ̇
1+
ÿ
2

+ ÿÿ|ℎ|1−ÿ||ÿ||ÿ1 , (166)

and

||∇ÿ−
1

2
2 (ÿ̃)||3ÿ∞ ≤ ÿÿ||∇ÿ−

1

2
2 (ÿ̃)||3

ÿ
ÿ
3

≤ ÿÿ
(
||ÿ̃||

ÿ
ÿ
3
+ ||ÿ̃||ÿ1

)3

≤ ÿÿ||ÿ̃||2ÿ∞∩ÿ1(||ÿ̃||ÿ1 + ||ÿ̃||ÿ̇ÿ )
≤ ÿÿ(||ÿ̃||ÿ∞∩ÿ1 + 1)2||ÿ̃||ÿ∞∩ÿ1(1 + ||ÿ̃||ÿ̇ÿ ). (167)

Let ÿ ∈ (0, 1) be small enough such that

ÿÿ||ÿ̃||ÿ∞ý,ý + ÿ ≤ min{ý, 1}
8

. (168)

We obtain

ÿÿýÿ +
ý

2
||ÿ||−1ÿ∞ |ℎ|−1+ÿ|ÿ|3 ≲ (||ÿ̃||ÿ∞∩ÿ1 + 1)4||ÿ̃||ÿ∞∩ÿ1(1 + ||ÿ̃||2ÿ̇ÿ )

+ |ℎ|2−2ÿ||ÿ̃||ÿ∞ ||ÿ̃||
ÿ̇
3
4
||ÿ̃||

ÿ̇
1
4
+ |ℎ|1−ÿÿ

2

2−ÿ ||ÿ||
2(1−ÿ)

2−ÿ

ÿ
1+
ÿ
2

+ |ℎ|1−ÿÿ||ÿ||ÿ1∩ÿ∞ + ÿ||ÿ||ÿ̇ÿ + ||ÿ||2ÿ∞ ||ÿ1||3
ÿ̇
1+2ÿ
3

. (169)

Using |ℎý| ≤
(
2||ÿ||ÿ∞
ÿ(ý)

) 1

ÿ
, we deduce

ÿÿýÿ + ý
′||ÿ||−

1

ÿ
ÿ∞ |ÿ|

1

ÿ
+2
≲ (||ÿ̃||ÿ∞∩ÿ1 + 1)4||ÿ̃||ÿ∞∩ÿ1(1 + ||ÿ̃||2ÿ̇ÿ )

+ ||ÿ||
2−2ÿ

ÿ
ÿ∞ ÿ

−
2

ÿ
+2||ÿ̃||ÿ∞ ||ÿ̃||

ÿ̇
3
4
||ÿ̃||

ÿ̇
1
4
+ ||ÿ||

1−ÿ

ÿ
ÿ∞ ÿ

−
1

ÿ
+
4−ÿ

2−ÿ ||ÿ||
2(1−ÿ)

2−ÿ

ÿ̇
1+
ÿ
2

+ ||ÿ̃||
1−ÿ

ÿ
ÿ∞ ÿ

−
1

ÿ
+2||ÿ̃||ÿ1∩ÿ∞ + ÿ||ÿ||ÿ̇ÿ + ||ÿ̃||2ÿ∞ ||ÿ1||3

ÿ̇
1+2ÿ
3

. (170)

We divide both sides by ÿ
−
1

ÿ
+
4−ÿ

2−ÿ

ÿý(ÿ
1

ÿ
−

ÿ

2−ÿ ) + ý′′||ÿ||−
1

ÿ
ÿ∞ ÿ

2

ÿ
−

ÿ

2−ÿ ≲ ÿ
1

ÿ
−
4−ÿ

2−ÿ (||ÿ̃||ÿ∞∩ÿ1 + 1)4||ÿ̃||ÿ∞∩ÿ1(1 + ||ÿ̃||2ÿ̇ÿ )
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+ ||ÿ||
2−2ÿ

ÿ
ÿ∞ ÿ

−
1

ÿ
−

ÿ

2−ÿ ||ÿ̃||ÿ∞ ||ÿ̃||
ÿ̇
3
4
||ÿ̃||

ÿ̇
1
4
+ ||ÿ||

1−ÿ

ÿ
ÿ∞ ||ÿ||

2(1−ÿ)

2−ÿ

ÿ̇
1+
ÿ
2

+ ||ÿ̃||
1−ÿ

ÿ
ÿ∞ ÿ

−
ÿ

2−ÿ ||ÿ̃||ÿ1∩ÿ∞ + ÿ
1

ÿ
−

2

2−ÿ ||ÿ||ÿ̇ÿ + ÿ
1

ÿ
−
4−ÿ

2−ÿ ||ÿ||2ÿ∞ ||ÿ1||3
ÿ̇
1+2ÿ
3

. (171)

Note that the positive constant ý′′ now depends on ÿ.

Using ÿ(ý) ≥ ýÿ−ÿ0 ||ÿ(ý)||ÿ∞ ; ÿ ≲ ||ÿ̃||ÿ̇ÿ and ||ÿ||
2(1−ÿ)

2−ÿ

ÿ̇
1+
ÿ
2

≲ÿ0 ||ÿ||
−

ÿ

2−ÿ
ÿ∞ ||ÿ||

ÿ̇
1+
ÿ
2
, we have

ÿ
1

ÿ
−
4−ÿ

2−ÿ (||ÿ̃||ÿ∞∩ÿ1 + 1)4||ÿ̃||ÿ∞∩ÿ1(1 + ||ÿ̃||2ÿ̇ÿ ) ≲ (||ÿ̃||ÿ∞∩ÿ1 + 1)4||ÿ̃||ÿ∞∩ÿ1(1 + ||ÿ̃||2ÿ̇ÿ )||ÿ̃||
1

ÿ
−
4−ÿ

2−ÿ

ÿ̇ÿ

≲ ý||ÿ̃||
1

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ
; (172)

||ÿ||
2−2ÿ

ÿ
ÿ∞ ÿ

−
1

ÿ
−

ÿ

2−ÿ ||ÿ̃||ÿ∞ ||ÿ̃||
ÿ̇
3
4
||ÿ̃||

ÿ̇
1
4
+ ||ÿ||

1−ÿ

ÿ
ÿ∞ ||ÿ||

2(1−ÿ)

2−ÿ

ÿ̇
1+
ÿ
2

+ ||ÿ̃||
1−ÿ

ÿ
ÿ∞ ÿ

−
ÿ

2−ÿ ||ÿ̃||ÿ1∩ÿ∞

≲ ý

(
||ÿ̃||

ÿ̇
3
4
||ÿ̃||

ÿ̇
1
4
+ ||ÿ||

ÿ̇
1+
ÿ
2
+ ||ÿ̃||ÿ1∩ÿ∞

)
; (173)

ÿ
1

ÿ
−

2

2−ÿ ||ÿ||ÿ̇ÿ ≤ ÿ||ÿ||−
1

ÿ
ÿ∞ ÿ

2

ÿ
−

ÿ

2−ÿ + ÿÿý||ÿ||2ÿ̇ÿ ; (174)

ÿ
1

ÿ
−
4−ÿ

2−ÿ ||ÿ||2ÿ∞ ||ÿ1||3
ÿ̇
1+2ÿ
3

≤ ÿ||ÿ||−
1

ÿ
ÿ∞ ÿ

2

ÿ
−

ÿ

2−ÿ + ÿÿý||ÿ1||6
ÿ̇
1+2ÿ
3

, (175)

for any ÿ > 0. Combining these with (171), we deduce

ÿý(ÿ
1

ÿ
−

ÿ

2−ÿ ) + ý′′||ÿ||−
1

ÿ
ÿ∞ ÿ

2

ÿ
−

ÿ

2−ÿ

≲ ý

(
||ÿ̃||ÿ1∩ÿ∞ + ||ÿ̃||

1

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ
+ ||ÿ̃||

ÿ̇
3
4
||ÿ̃||

ÿ̇
1
4
+ ||ÿ1||6

ÿ̇
1+2ÿ
3

+ ||ÿ||2
ÿ̇ÿ
+ ||ÿ||

ÿ̇
1+
ÿ
2

)
. (176)

This implies (154) by using (153). □

Corollary 1. Assume that ÿ ∈ ÿ1+ÿ0([0, ÿ], ÿÿ0(ℝý)) ∩ ÿÿ0([0, ÿ], ÿ1+ÿ0(ℝý)), ÿ0 ∈ (0, 1) is a

solution of (148)-(149). Then, for ÿ ∈ (0, ÿ0) such that ÿ(1 + ||ÿ̃||ÿ∞ÿ (ÿ∞)) is small enough, we
have

sup
ý∈[0,ÿ]

||ÿ(ý)||
1

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ
+ ∫

ÿ

0

||ÿ||
2

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ
+ ∫

ÿ

0

||ÿ||
ÿ̇
1+
ÿ
2
≲ ý̃||ÿ0||

1

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ

+ ý̃

(
∫

ÿ

0

||ÿ̃||
1

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ
+ ∫

ÿ

0

||ÿ̃||
ÿ̇
3
4
||ÿ̃||

ÿ̇
1
4
+ ∫

ÿ

0

||ÿ1||6
ÿ̇
1+2ÿ
3

+ ∫
ÿ

0

||ÿ||2
ÿ̇ÿ

)

+ ý̃ý2(||ÿ0||
ÿ
5ÿ
8
+ ||ÿ̃||ÿ1ÿ(ÿ∞∩ÿ1) + ||ÿ||ÿ1ÿ(ÿ 5ÿ8 )) + ý̃ý

6

ÿ

2 ∫
ÿ

0

(1 + ||ÿ̃||
5

8

ÿÿ + ||ÿ1||ÿ 5ÿ8 )
5

2ÿ ||ÿ̃||
ÿ̇
ÿ
2
,

(177)
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where

ý̃ = (||ÿ̃||ÿ∞ÿ (ÿ1∩ÿ∞) + ÿ + 1)
3

ÿ , (178)

ý2 = (1 + ||ÿ̃||ÿ∞ÿ (ÿ∞∩ÿ1)) log(2 + ||ÿ̃||ÿ∞ÿ (ÿ̇ÿ)) + ||ÿ1||ÿ∞ÿ (ÿ∞). (179)

Proof. We apply (115) to (ÿ, ÿ) = (ÿ, ÿ) with ÿ1 =
ÿ

2
, ÿ2 =

5ÿ

8
,

||ÿ||
ÿ1ÿ(ÿ̇

1+
ÿ
2 )
≲ ý1(ÿ + 1)

(
||ÿ0||

ÿ
5ÿ
8
+ ||ÿ||ÿ1ÿ(ÿ∞) + ||ÿ||ÿ1ÿ(ÿ

5ÿ
8 )

)

+ý
6

ÿ
1 (1 + ÿ)

5

4 ∫
ÿ

0

(1 + ||ÿ||
ÿ
5ÿ
8
)
5

2ÿ ||ÿ||
ÿ̇
ÿ
2
ýý, (180)

withý1 = 1 + ||ÿ||ÿ∞ÿ (ÿ∞).
In view of (150), (B54), and (B55), we estimate

||ÿ(ý)||
ÿ
5ÿ
8
≲ ||ÿ̃(ý)||

ÿ
5ÿ
8
+ ||ÿ̃(ý)||ÿ1 + ||ÿ1(ý)||

ÿ
5ÿ
8

≲ ||ÿ̃(ý)||
3

8
ÿ∞ ||ÿ̃(ý)||

5

8

ÿÿ
+ ||ÿ̃(ý)||ÿ1 + ||ÿ1(ý)||

ÿ
5ÿ
8
, (181)

ý1 ≲
(
1 + ||ÿ̃||ÿ∞ÿ (ÿ∞∩ÿ1)

)
log(2 + ||ÿ̃||ÿ∞ÿ (ÿ̇ÿ)) + ||ÿ1||ÿ∞ÿ (ÿ∞) ∶= ý2, (182)

we get

||ÿ||
ÿ1ÿ(ÿ̇

1+
ÿ
2 )
≲ ý2(ÿ + 1)

(
||ÿ0||

ÿ
5ÿ
8
+ ||ÿ||ÿ1ÿ(ÿ∞) + ||ÿ||ÿ1ÿ(ÿ

5ÿ
8 )

)

+ý
6

ÿ
2 (ÿ + 1)

5

4 ∫
ÿ

0

(1 + ||ÿ̃||
3

8
ÿ∞ ||ÿ̃||

5

8

ÿÿ + ||ÿ̃||ÿ1 + ||ÿ1||
ÿ
5ÿ
8
)

5

2ÿ

||ÿ̃||
ÿ̇
ÿ
2
. (183)

Combining this with (154), we obtain (177). □

7 HOLDER REGULARITY

In this section, we prove a basic a priori estimate on the solutions of (4), (5) in the bounded domain

Ω. The proof utilizes Equations (148) and (149) of Section 6, which are set in the whole space. The

procedure of localization and extension of (4) to the whole space leads to particular cases of (148)

and (149). The a priori bound (177) on solutions of Equations (148) and (149) is applied in the proof

below to the extension of the localization to interior balls, and yields a bound (186) concerning

norms of the solution in the interior balls, in terms of bounds in the whole domain Ω. These are

obtained from the right-hand side of (177) by using the fact that ÿÿ bounds on ÿ̃, that is bounds on

(ÿ1
ÿ
ÿ), are majorized by bounds on ÿÿ norms of the solution ÿ in the domain. The identification

of (148) and (149)with the localized and extended SQGequations is done separately for the interior

balls and for boundary balls. For interior balls, this is done by referring to (108) and (109) and to

bounds for ÿ and ÿ1, (112) and (113). For boundary balls, the identification is done by referring to
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34 CONSTANTIN et al.

(103) and the bounds on ÿ and ÿ1 (105) and (106). For boundary balls, the estimate (177) results

in (191). The right-hand side is again in terms of the whole field ÿ in Ω. We sum the left-hand

sides of (186) and (191) to obtain a bound on the solution ÿ in Ω, (192), which we use to prove the

inequality (184) below.

Theorem5. Let ÿ ∈ ÿ([0, ÿ], ÿÿ0(Ω)) ∩ ÿ
1+ÿ0
ýýý

((0, ÿ], ÿÿ0(Ω)) ∩ ÿ
ÿ0
ýýý
((0, ÿ], ÿ1+ÿ0(Ω)),ÿ0 ∈ (0, 1)

be a solution to (4), (5). Let ÿ > 0 be such that ÿ(‖ÿ0‖ÿ∞ + 1) is small enough and ÿ < ÿ0

2
. Then,

sup
ý∈[0,ÿ]

||ÿ||
1

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ(Ω)
+ ∫

ÿ

0

||ÿ(ý)||
2

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ(Ω)
ýý + ∫

ÿ

0

||ÿ(ý)||
ÿ̇
1+
ÿ
2 (Ω)
ýý ≲ (||ÿ0||ÿÿ(Ω) + diam(Ω) + ÿ + 1)

36

ÿ2

(184)

holds.

Proof. We know from (4) that

sup
ý>0

||ÿ(ý)||ÿ∞(Ω) ≤ ||ÿ0||ÿ∞(Ω) (185)

holds.

First, we prove (184) with assumption ÿ ∈ ÿ1+ÿ0([0, ÿ], ÿÿ0(Ω)) ∩ ÿÿ0([0, ÿ], ÿ1+ÿ0(Ω)). We

apply (177) with (ÿ, ÿ1) = (ÿÿÿ, ÿÿÿ,ÿÿ) to the system (108)–(109) and use (112), (113), and (185) to

obtain that

sup
ý∈[0,ÿ]

||ÿ||
1

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ(ý0
ÿ
)
+ ∫

ÿ

0

||ÿ||
2

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ(ý0
ÿ
)
+ ∫

ÿ

0

||ÿ||
ÿ̇
1+
ÿ
2 (ý0

ÿ
)
≲ ý̃1+

+ ý̃1

(
∫
ÿ

0

||ÿ||
1

ÿ
−

ÿ

2−ÿ

ÿÿ
+ ∫

ÿ

0

||ÿ||
ÿ
3
4
||ÿ||

ÿ
1
4
+ ∫

ÿ

0

||ÿ||4
ÿÿ

)

+ ý̃1 log (2 + ||ÿ||ÿ∞ÿ (ÿÿ))
6

ÿ ∫
ÿ

0

(1 + ||ÿ||ÿÿ )
25

16ÿ
+
1

2 ∶= ý4, (186)

for ý1 + 1 ≤ ÿ ≤ ý, where

ý̃1 = (||ÿ0||ÿÿ(Ω) + diam(Ω) + ÿ + 1)
12

ÿ . (187)

In this inequality, we estimated

ý̃||ÿ0||
1

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ
+ ý̃ ∫

ÿ

0

||ÿ1||6
ÿ̇
1+2ÿ
3

+ ý̃ý2

(
||ÿ0||

ÿ
5ÿ
8
+ ||ÿ̃||ÿ1ÿ(ÿ∞∩ÿ1)

)
≲ ý̃1 log(2 + ||ÿ||ÿ∞ÿ (ÿÿ));

(188)

ý̃ ∫
ÿ

0

||ÿ||2
ÿ̇ÿ
+ ý̃ý2||ÿ||

ÿ1ÿ(ÿ
5ÿ
8 )
≲ ý̃1 + ý̃1 ∫

ÿ

0

||ÿ||4
ÿÿ
; (189)
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and

ý̃ý
6

ÿ
2 ∫

ÿ

0

(1 + ||ÿ̃||
5

8

ÿÿ
+ ||ÿ1||

ÿ
5ÿ
8
)

5

2ÿ

||ÿ̃||
ÿ̇
ÿ
2
≲ ý̃1 log (2 + ||ÿ||ÿ∞ÿ (ÿÿ))

6

ÿ ∫
ÿ

0

(1 + ||ÿ||ÿÿ )
25

16ÿ
+
1

2 .

(190)

Similarly, we apply (177) to Equation (103) and use (58), (105), (106), and (185) to deduce that

sup
ý∈[0,ÿ]

||ÿ||
1

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ(ý0
ÿ
∩Ω)

+ ∫
ÿ

0

||ÿ||
2

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ(ý0
ÿ
∩Ω)
ýý + ∫

ÿ

0

||ÿ(ý)||
ÿ̇
1+
ÿ
2 (ý0

ÿ
∩Ω)

≲ ý4 (191)

for 1 ≤ ÿ ≤ ý1.
As we have a cover of Ω by ∪ý

ÿ=1
ý0
ÿ
, then we obtain from (186) and (191) that

sup
ý∈[0,ÿ]

||ÿ||
1

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ(Ω)
+ ∫

ÿ

0

||ÿ||
2

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ(Ω)
+ ∫

ÿ

0

||ÿ||
ÿ̇
1+
ÿ
2 (Ω)

≲ ý4. (192)

By interpolation, Holder’s inequalities and (202), (203), we obtain

ý̃1

(
∫
ÿ

0

||ÿ||
1

ÿ
−

ÿ

2−ÿ

ÿÿ
+ ∫

ÿ

0

||ÿ||4
ÿÿ

)
≲ ÿ ∫

ÿ

0

||ÿ||
2

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ
+ ÿÿý̃

3
1 ; (193)

ý̃1 ∫
ÿ

0

||ÿ||
ÿ
3
4
||ÿ||

ÿ
1
4

(185)

≲ ý̃1 ∫
ÿ

0

||ÿ0||
2(1+ÿ)

2+ÿ

ÿ∞ ||ÿ||
2

2+ÿ

ÿ
1+
ÿ
2

≲ ÿ ∫
ÿ

0

||ÿ||
ÿ̇
1+
ÿ
2
+ ÿÿý̃

3

ÿ
1 ; (194)

and

ý̃1 log (2 + ||ÿ||ÿ∞ÿ (ÿÿ))
6

ÿ ∫
ÿ

0

(1 + ||ÿ||ÿÿ )
25

16ÿ
+
1

2 ≲ ÿ(sup
[0,ÿ]

||ÿ||
1

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ
+ ∫

ÿ

0

||ÿ||
2

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ
) + ÿÿý̃

3
1 .

(195)

Thus,

sup
[0,ÿ]

||ÿ||
1

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ(Ω)
+ ∫

ÿ

0

||ÿ||
2

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ(Ω)
ýý + ∫

ÿ

0

||ÿ||
ÿ̇
1+
ÿ
2 (Ω)

≲ ý̃
3

ÿ
1 . (196)

This implies (184) with assumption ÿ ∈ ÿ1+ÿ0([0, ÿ], ÿÿ0(Ω)) ∩ ÿÿ0([0, ÿ], ÿ1+ÿ0(Ω)). Now, we

prove (184) without this assumption.

Indeed, because ÿ ∈ ÿ1+ÿ0([ÿ, ÿ], ÿÿ0(Ω)) ∩ ÿÿ0([ÿ, ÿ], ÿ1+ÿ0(Ω)), for ÿ > 0, we apply (184) on

ÿ + [0, ÿ − ÿ] = [ÿ, ÿ] and deduce that

sup
ý∈[ÿ,ÿ]

||ÿ||
1

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ(Ω)
+ ∫

ÿ

ÿ

||ÿ(ý)||
2

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ(Ω)
ýý + ∫

ÿ

ÿ

||ÿ(ý)||
ÿ̇
1+
ÿ
2 (Ω)
ýý ≲ (||ÿ(ÿ)||ÿÿ(Ω) + diam(Ω) + ÿ − ÿ + 1)

36

ÿ2

(197)

provided that ÿ(‖ÿ(ÿ)‖ÿ∞ + 1)
(185)≤ ÿ(‖ÿ0‖ÿ∞ + 1) is small enough and ÿ < ÿ0

2
.

Using ÿ ∈ ÿ([0, ÿ], ÿÿ0(Ω)) and ÿ < ÿ0∕2 and letting ÿ → 0 to deduce that

sup
ý∈[0,ÿ]

||ÿ||
1

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ(Ω)
+ ∫

ÿ

0

||ÿ(ý)||
2

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ(Ω)
ýý + lim sup

ÿ→0 ∫
ÿ

ÿ

||ÿ(ý)||
ÿ̇
1+
ÿ
2 (Ω)

ýý
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= lim sup
ÿ→0

(
sup
ý∈[ÿ,ÿ]

||ÿ||
1

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ(Ω)
+ ∫

ÿ

ÿ

||ÿ(ý)||
2

ÿ
−

ÿ

2−ÿ

ÿ̇ÿ(Ω)
ýý + ∫

ÿ

ÿ

||ÿ(ý)||
ÿ̇
1+
ÿ
2 (Ω)

ýý

)

≲ lim sup
ÿ→0

(||ÿ(ÿ)||ÿÿ(Ω) + diam(Ω) + ÿ − ÿ + 1)
36

ÿ2

≤ (||ÿ0||ÿÿ(Ω) + diam(Ω) + ÿ + 1)
36

ÿ2 . (198)

This implies the result by using monotone convergence theorem. □

Lemma 6. For any ÿ0, ÿ1, … , ÿý > 0, ÿ1, … , ÿý ≤ ÿ0, and ÿ0,ÿ1, … ,ÿý ≥ 0, we have

∫
ÿ

0

||ÿ||ÿ1
ÿÿ1 (Ω)

… ||ÿ||ÿý
ÿÿý (Ω)

≲ (1 + ||ÿ0||ÿ∞)
∑ý
ÿ=1 ÿÿ

(
∫
ÿ

0

||ÿ||ÿ0
ÿÿ0 (Ω)

+ ÿ + 1

)
(199)

provided
∑ý

ÿ=1 ÿÿÿÿ ≤ ÿ0ÿ0.

Proof. Using Holder’s inequality, we only need to prove (199) with
∑ý

ÿ=1 ÿÿÿÿ = ÿ0ÿ0. Indeed, in
view of (22), we have

||ÿ(ý)||ÿÿ
ÿ
ÿÿ (Ω)

≲ ||ÿ(ý)||
ÿÿ− ÿÿÿÿÿ0
ÿ∞(Ω)

||ÿ(ý)||
ÿÿÿÿ
ÿ0

ÿÿ0 (Ω)
≲ ||ÿ0||

ÿÿ− ÿÿÿÿÿ0
ÿ∞(Ω)

||ÿ(ý)||
ÿÿÿÿ
ÿ0

ÿÿ0 (Ω)
. (200)

Thus,

||ÿ(ý)||ÿ1
ÿÿ1 (Ω)

… ||ÿ(ý)||ÿý
ÿÿý (Ω)

≲ ||ÿ0||
∑ý
ÿ=1 ÿÿ−ÿ0

ÿ∞(Ω)
||ÿ(ý)||ÿ0

ÿÿ0 (Ω)
. (201)

This implies (199) with
∑ý

ÿ=1 ÿÿÿÿ = ÿ0ÿ0. □

Corollary 2. For any ÿ1, … , ÿý > 0, ÿ1, … , ÿý ≤ 1 + ÿ

2
, and ÿ1, … ,ÿý ≥ 0, we have

∫
ÿ

0

||ÿ||ÿ1
ÿÿ1 (Ω)

… ||ÿ||ÿý
ÿÿý (Ω)

≲ (1 + ||ÿ0||ÿ∞)
∑ý
ÿ=1 ÿÿ

(
∫
ÿ

0

||ÿ||
ÿ
1+
ÿ
2 (Ω)

+ ÿ + 1

)
(202)

provided
∑ý

ÿ=1 ÿÿÿÿ ≤ 1 + ÿ

2
.

Corollary 3. For any ÿ1, … , ÿý > 0, ÿ1, … , ÿý ≤ ÿ, and ÿ1, … ,ÿý ≥ 0, we have

∫
ÿ

0

||ÿ||ÿ1
ÿÿ1 (Ω)

… ||ÿ||ÿý
ÿÿý (Ω)

≲ (1 + ||ÿ0||ÿ∞)
∑ý
ÿ=1 ÿÿ

(
∫
ÿ

0

||ÿ||
2

ÿ
−

ÿ

2−ÿ

ÿÿ(Ω)
+ ÿ + 1

)
(203)

provided
∑ý

ÿ=1 ÿÿÿÿ ≤ 2 − ÿ2

2−ÿ
.
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8 LOCAL EXISTENCEWITHHOLDER INITIAL DATA AND
GLOBAL HIGHER REGULARITY

We consider

ÿýÿ + ÿ ⋅ ∇ÿ + Λÿÿ = ÿ in Ω, ÿ|ÿΩ = 0, (204)

with ÿ = ∇⟂ý ∈ ÿ∞([0, ÿ] × Ω), ý = ÿ = 0 on ÿΩ.

Proposition 8. Let ÿ0 ∈ (0, 1∕10]. Assume ÿ ∈ ÿ
∞([0, ÿ], ÿ2ÿ0(Ω)) ∩ ÿ∞

ýýý
((0, ÿ], ÿ1+ÿ0(Ω)), and

ÿ ∈ ÿ∞([0, ÿ], ÿÿ0(Ω)). The following inequalities hold for any ÿ > 0 ∶

sup
ý∈[0,ÿ]

||ÿ(ý)||ÿ̇2ÿ0 (Ω) + ý1−ÿ0 ||ÿ(ý)||ÿ̇1+ÿ0 (Ω)

≲
(
1 + ||ÿ||ÿ∞ÿ (ÿ∞(Ω))

)4
(ÿ + 1)

2

(
||ÿ0||ÿ2ÿ0 (Ω) + sup

ý∈[0,ÿ]
ý1−ÿ0 ||ÿ(ý)||ÿÿ0 (Ω)

)

+
(
1 + ||ÿ||ÿ∞ÿ (ÿ∞(Ω))

) 6

ÿ0 ÿ1−ÿ0(1 + ÿ)
(
1 + ||ÿ||ÿ∞ÿ (ÿÿ0 (Ω))

) 2

ÿ0 ||ÿ0||ÿ∞(Ω) ∶= ý1, (205)

and

sup
ý∈[0,ÿ]

ý1−ÿ0 ||ÿ(ý)||ÿ̇1+ÿ0 (Ω) ≲ (1 + ||ÿ||ÿ∞ÿ (ÿ∞(Ω)))
2
(1 + ÿ)

(
ÿÿ0 ||ÿ0||ÿ3ÿ0 (Ω) + sup

ý∈[0,ÿ]
ý1−ÿ0 ||ÿ(ý)||ÿÿ0 (Ω)

)

+ (1 + ||ÿ||ÿ∞ÿ (ÿ∞(Ω)))
3

ÿ0 ÿ1−ÿ1
(
1 + ||ÿ||ÿ∞ÿ (ÿÿ0 (Ω))

) 1

ÿ0 ||ÿ||ÿ∞ÿ (ÿÿ0 (Ω)) ∶= ý2. (206)

Proof. We have

sup
ý≥0 ||ÿ(ý)||ÿý(Ω) ≤ ||ÿ0||ÿý(Ω) ∀ý ∈ [1,∞]. (207)

(1) Boundary estimate: Let 1 ≤ ÿ ≤ ý1. As (103), we multiply (204) by ÿ = ÿ0ÿ , using (95), (77) and
ÿ|ÿΩ = 0, we arrive at

ÿýÿ̃ + ÿ̃ ⋅ ∇ÿ̃ + ÿ
1

2 ÿ̃ = ÿ2, (208)

ÿ̃ = (ÿ0
ÿ
ÿ), ÿ̃ = ÿ∇⟂(ÿ1

ÿ
ý), (209)

where ÿ is given in (52) and satisfies (58);

ÿ2 = ÿ̃ ⋅ ((∇ÿ0ÿ )ÿ) + (ÿ0
ÿ
ÿ) + ýÿ0

ÿ
(ÿ). (210)

Using (78) (58), and ý = ÿ = 0 on ÿΩ, we have
||ÿ̃||ÿÿ(ℝ2) ≲ ||ÿ||ÿÿ(Ω) ∀ ÿ ∈ [0, 1), (211)

||ÿ2||ÿÿ(ℝ2) ≲ ||ÿ||ÿÿ(Ω) + (1 + ||ÿ||ÿ∞ÿ (ÿ∞))||ÿ||ÿÿ(Ω) + ||ÿ0||ÿ∞(Ω)||ÿ||ÿÿ(Ω) ∀ ÿ ∈ (0, 1). (212)
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We apply (116), (117) with ÿ1 = ÿ0 and use (207), (211), and (212) to get that

||ÿ||ÿ∞ÿ (ÿ̇2ÿ0 (ý0ÿ ∩Ω)) + sup
ý∈[0,ÿ]

ý1−ÿ0 ||ÿ(ý)||ÿ̇1+ÿ0 (ý0
ÿ
∩Ω)

≲
(
1 + ||ÿ||ÿ∞ÿ (ÿ∞(Ω))

)2(
||ÿ0||ÿ2ÿ0 (Ω) + sup

ý∈[0,ÿ]
ý1−ÿ0 ||ÿ(ý)||ÿÿ0 (Ω) + ÿ1−ÿ0 ||ÿ||ÿ∞ÿ (ÿÿ0 (Ω))

)

+
(
1 + ||ÿ||ÿ∞ÿ (ÿ∞(Ω))

) 6

ÿ0 ÿ1−ÿ0(1 + ÿ)
(
1 + ||ÿ||ÿ∞ÿ (ÿÿ0 (Ω))

) 2

ÿ0 ||ÿ0||ÿ∞(Ω) ∶= ý0, (213)

sup
ý∈[0,ÿ]

ý1−ÿ0 ||ÿ(ý)||ÿ̇1+ÿ0 (ý0
ÿ
) ≲ ý2. (214)

(2) Interior estimate: Define ÿ = ÿ0
ÿ
ÿ for ý1 < ÿ ≤ ý. We have

ÿýÿ + (ÿ
1
ÿ
ÿ) ⋅ ∇ÿ + Λℝ2ÿ = ÿ1 in ℝ

2, (215)

where

ÿ1 = ÿ
0
ÿ
ÿ + Λℝ2ÿ − ÿ

0
ÿ
Λÿÿ. (216)

In view of (84), we have for any ÿ ∈ (0, 1)

||ÿ1(ý)||ÿÿ(ℝ2) ≲ ||ÿ(ý)||ÿÿ(Ω) + ||ÿ(ý)||ÿÿ(Ω). (217)

We apply (116), (117) with ÿ1 = ÿ0 to get that

||ÿ||ÿ∞ÿ (ÿ̇2ÿ0 (ý0ÿ )) + sup
ý∈[0,ÿ]

ý1−ÿ0 ||ÿ(ý)||ÿ̇1+ÿ0 (ý0
ÿ
) ≲ ý0, (218)

sup
ý∈[0,ÿ]

ý1−ÿ0 ||ÿ(ý)||ÿ̇1+ÿ0 (ý0
ÿ
) ≲ ý2. (219)

We cover Ω by ∪ÿ=1,…,ýý
0
ÿ
, then we obtain (206) and

sup
ý∈[0,ÿ]

||ÿ(ý)||ÿ̇2ÿ0 + ý1−ÿ0 ||ÿ(ý)||ÿ̇1+ÿ0 ≲ ý0. (220)

This follows (205) by using ||ÿ||ÿ∞ÿ (ÿÿ0 (Ω)) ≲ ||ÿ0||
1

2

ÿ∞(Ω)
||ÿ||

1

2

ÿ∞ÿ (ÿ
2ÿ0 (Ω))

and Holder’s

inequality. □

Now, we use Proposition 8 to prove local existence and higher regularity of the system (4) and

(5). We define

ÿÿ,ý =
{
ÿ ∈ ÿ∞ÿ (ÿ

∞(Ω)) ∶ ÿ|ÿΩ = Δÿ|ÿΩ = 0,

ÿ(ý = 0) = ÿ0, ||ÿ||ÿ∞ÿ (ÿ∞(Ω)) ≤ ||ÿ0||ÿ∞(Ω), |||ÿ|||ÿ ≤ ý},
(221)
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with

|||ÿ|||0,ÿ ∶= sup
ý∈[0,ÿ]

||ÿ(ý)||ÿ̇2ÿ0 (Ω), (222)

|||ÿ|||1,ÿ ∶= sup
ý∈[0,ÿ]

ý1−ÿ0 ||ÿ(ý)||ÿ̇1+ÿ0 (Ω), (223)

|||ÿ|||ÿ ∶= |||ÿ|||0,ÿ + |||ÿ|||1,ÿ . (224)

We define the map  (ÿ) = ÿ as a solution of
ÿýÿ + ÿ ⋅ ∇ÿ + Λÿÿ = 0 in Ω, (225)

ÿ = ∇⊥Λ−1ÿ ÿ, ÿ ∈ ÿÿ,ý, (226)

with ÿ(ý = 0) = ÿ0 ∈ ÿ
3ÿ0(Ω) and ÿ0 = 0 on ÿΩ.

In view of (85) and (86) and we have

||ÿ||ÿ∞ÿ (ÿÿ0 (Ω)) ≲ ||ÿ0||
1

2

ÿ∞(Ω)
|||ÿ|||

1

2
0,ÿ , ||ÿ||ÿ∞ÿ (ÿ∞(Ω)) ≲ ||ÿ0||1−ÿÿ∞(Ω)

|||ÿ|||ÿ0,ÿ (227)

for any ÿ ∈ (0, 1].

Lemma 7. There exist ý > 0 large enough and ÿ > 0 small enough depending on ||ÿ0||ÿ3ÿ0 (Ω) and
Ω such that  (ÿÿ,ý) ⊂ ÿÿ,ý and

||| (ÿ1) −  (ÿ2)|||ÿ ≤ 1
4
|||ÿ1 − ÿ2|||ÿ ∀ÿ1, ÿ2 ∈ ÿÿ,ý. (228)

Proof.

(1) Let ÿ ∈ ÿÿ,ý, ÿ =  (ÿ). We have
||ÿ||ÿ∞ÿ (ÿ∞(Ω)) ≤ ||ÿ0||ÿ∞(Ω). (229)

Thus, to get  (ÿÿ,ý) ⊂ ÿÿ,ý, we have to show that |||ÿ|||ÿ ≤ ý for some ý > 0 large and ÿ > 0
small enough.

Using Proposition 8 with ÿ = 0 and ÿ > 0; and using (227), we have

|||ÿ|||0,ÿ ≲ (1 + ÿ)2
((
1 + ||ÿ0||1−ÿÿ∞(Ω)

|||ÿ|||ÿ0,ÿ
)4
||ÿ0||ÿ2ÿ0 (Ω) +

(
1 + |||ÿ|||0,ÿ

) 8

ÿ0 ÿ1−ÿ0 ||ÿ0||ÿ∞(Ω)
)
,

(230)

|||ÿ|||1,ÿ ≲ (1 + ÿ)2(1 + |||ÿ|||0,ÿ)
4

ÿ0
(
ÿÿ0 ||ÿ0||ÿ3ÿ0 (Ω) + ÿ1−ÿ0 |||ÿ|||0,ÿ

)
, (231)

for any ÿ ∈ (0, 1].

We deduce for any ÿ ∈ (0, 1)

|||ÿ|||0,ÿ ≲
(
1 + ||ÿ0||1−ÿÿ∞(Ω)

ýÿ
)4
||ÿ0||ÿ2ÿ0 (Ω) + (1 + ý)

8

ÿ0 ÿ1−ÿ0 ||ÿ0||ÿ∞(Ω), (232)

|||ÿ|||1,ÿ ≲ (1 + ý)
4

ÿ0
(
ÿÿ0 ||ÿ0||ÿ3ÿ0 (Ω) + ÿ1−ÿ0ý

)
. (233)
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In view of (232) and (233), we can take ý ≥ 1 large, then ÿ small such that
|||ÿ|||1,ÿ ≤ ý−10, |||ÿ|||0,ÿ ≤ ý 15 . (234)

These imply |||ÿ|||ÿ ≤ ý.
(2) Let ÿ1, ÿ2 ∈ ÿÿ,ý be such that ÿ1(ý = 0) = ÿ2(ý = 0) = ÿ0. Set ÿÿ =  (ÿÿ) and ÿ = ÿ1 − ÿ2, ÿ =

ÿ1 − ÿ2. We can write

ÿýÿ + ∇
⊥Λ−1ÿ ÿ1 ⋅ ∇ÿ + Λÿÿ = −∇

⊥Λ−1ÿ ÿ ⋅ ∇ÿ2, (235)

with ÿ(ý = 0) = 0.

Using (231), we have

|||ÿ1|||1,ÿ + |||ÿ2|||1,ÿ ≲ ÿ(ý, ||ÿ0||ÿ3ÿ0 (Ω))ÿÿ0 ∀ ÿ ∈ (0, 1]. (236)

Because ∇⊥Λ−1ÿ ÿ ⋅ ∇ÿ2|ÿΩ = 0, so we apply (205) in Proposition 8 with ÿ = −∇⊥Λ−1ÿ ÿ ⋅ ∇ÿ2
to obtain that for any ÿ ∈ (0, 1)

|||ÿ|||ÿ ≲ (1 + ý)4 sup
ý∈[0,ÿ]

ý1−ÿ0 ||∇⊥Λ−1ÿ ÿ ⋅ ∇ÿ2(ý)||ÿÿ0 ≲ (1 + ý)5ÿÿ0 |||ÿ|||ÿ . (237)

Thus, we deduce (228) by taking ÿ > 0 small enough. □

Theorem 6. Let ÿ0 ∈ ÿ
3ÿ0(Ω) and ÿ0 = 0 on ÿΩ for some ÿ0 ∈ (0, 1∕10). Then, Equation (4) has

a global unique solution ÿ satisfying

||ÿ(ý)||ÿ2ÿ0 (Ω) + ý1−ÿ0 ||ÿ(ý)||
ÿ̇
1+
ÿ0
2 (Ω)

≤ ÿ(||ÿ0||ÿ3ÿ0 (Ω), Ω)ÿ−ýý, (238)

for any ý ≥ 0 and for some ý > 0.
Proof. Using Lemma 7 and the Banach fixed point theorem, Equation (4) has a local unique

solution ÿ in [0, ÿ1] satisfying

|||ÿ|||ÿ1 < ∞, (239)

for some ÿ1 > 0. Moreover, we also have ÿ ∈ ÿ([0, ÿ1], ÿ
ÿ0(Ω)).

Define

ÿ∗ ∶= sup{ÿ ∶ ÿ exists on [0, ÿ] with |||ÿ|||ÿ < ∞} (240)

In view of (239), we have ÿ∗ > 0.

We prove ÿ∗ = +∞. Indeed, we assume 0 < ÿ∗ < ∞. So, we can apply Theorem 5 for ÿ in [0, ÿ]

for any ÿ < ÿ ∗ to get that

||ÿ(ý)||
1

ÿ
−

ÿ

2−ÿ

ÿÿ(Ω)
≤ ÿ(||ÿ0||ÿ3ÿ0 (Ω), Ω)(ý + 1)

36

ÿ2 , (241)

for any ý ≤ ÿ∗ and for some ÿ ∈ (0, ÿ0) small enough.
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Using (231), we get

ý1−ÿ0 ||ÿ(ý)||ÿ̇1+ÿ0 (Ω) ≤ ÿ(||ÿ0||ÿ3ÿ0 (Ω), Ω)(ý + 1)ÿ0 , (242)

for any ý ∈ (0, ÿ∗] and for someÿ0 > 0. From this and (239), we get a contradiction.

Therefore, for any ý ≥ 1
||ÿ(ý)||ÿ̇1+ÿ0 (Ω) ≤ ÿ(||ÿ0||ÿ3ÿ0 (Ω), Ω)(ý + 1)ÿ0 . (243)

On the other hand, we have

ÿý(||ÿ(ý)||2ÿ2(Ω)) + 2||Λ
1

2
ÿÿ(ý)||2ÿ2(Ω) = 0. (244)

Using (27),

ÿý(||ÿ(ý)||2ÿ2(Ω)) + 2ÿ1||ÿ(ý)||2ÿ2(Ω) ≤ 0. (245)

This implies

||ÿ(ý)||ÿ2(Ω) ≤ ÿ−2ÿ1ý||ÿ0||ÿ2(Ω). (246)

Using interpolation, we obtain from this and (243) that for any ý ≥ 1
||ÿ(ý)||

ÿ̇
1+
ÿ0
2 (Ω)

≤ ÿ(||ÿ0||ÿ3ÿ0 (Ω), Ω)ÿ−ýý, (247)

for some ý > 0. Thus, we obtain the result. □
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APPENDIX A

This is a construction in ý = 2. A similar construction can be done in any dimension. We take

without loss of generality ÿ(ý1) to have ÿ
′ = 0 for |ý1| ≥ ý and |ÿ′′| ≤ ÿ0. We assumed ÿ(0) =

ÿ′(0) = 0 and |ÿ′(ý1)| ≤ ÿ for all ý1 (as in (41)). Clearly, ÿ(ý1) = ℎ1 = ÿ(ý) for ý1 ≥ ý and ÿ(ý1) =
ÿ(−ý) = ℎ2 for ý1 ≤ −ý. We take

ý2(ý) = ý2 − ÿ(ý1). (A1)

Now

∇ý2(ý) = ÿ2 − ÿ
′(ý1)ÿ1 (A2)

is a globally defined vector field

ý = ÿ2 − ÿ
′(ý1)ÿ1. (A3)
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We build a function ý(ý) so that ý ⋅ ∇ý = 0. We set

∇ý = ÿ(ý)(ÿ1 + ÿ
′(ý1)ÿ2), (A4)

where ÿ will be specified below. This can be done if, and only if,

ÿ2ÿ = ÿ1(ÿ
′ÿ), (A5)

which is a first-order equation

ý ⋅ ∇ÿ = ÿ′′ÿ. (A6)

We solve this on characteristics and show that the solution is global. It is good to set data on the

curve

Γ = {ý|ý2 = ÿ(ý1)}. (A7)

The characteristics are

ýÿ

ýý
= −ÿ′(ÿ) (A8)

with ÿ(0) = ý1 and

ýÿ

ýý
= 1 (A9)

with initial data ÿ(0) = ÿ(ý1). Clearly,

ÿ(ý) = ÿ(ý1) + ý. (A10)

On characteristics, ÿ solves

ý

ýý
ÿ(ÿ(ý), ÿ(ý)) = ÿ′′(ÿ(ý))ÿ(ÿ(ý), ÿ(ý)). (A11)

We set the initial data for ÿ on the curve Γ,

ÿ(ÿ(0), ÿ(0)) = ÿ(ý1, ÿ(ý1)) = 1. (A12)

It is clear fromour assumptions that the characteristics exist for all ý. If |ý1| ≥ ý, the characteristics
are vertical lines ÿ(ý) = ý1. Also, if ý1 = 0, the characteristic is the ý2 axis. Moreover ÿ(ý1, ý2) = 1

for |ý1| ≥ ý. We note that ÿ(0, ý) = ÿÿ′′(0)ý. It is instructive to look at the case ÿ = ý21
2
for which

ÿ = ý1ÿ
−ý and ÿ = ÿý. In this case, we can determine ÿ(ý1, ý2) implicitly from the relation ý2 =

ÿ2
ý21
2
+ log ÿ.

We define ý1(ý) by setting

ý1(ý) = ý1 + ÿ(ý2)∫
ý1

0

(ÿ(ÿ, ý2) − 1)ýÿ (A13)

where ÿ(ý2) = 1 for |ý2| ≤ ÿ and ÿ(ý2) = 0 for |ý2| ≥ 2ÿ withÿ > ÿý. We have

ÿ1ý1 = ÿ(ý2)ÿ(ý1, ý2) + (1 − ÿ(ý2)) (A14)
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and, using (A5),

ÿ2ý1 = ÿ(ý2)ÿ(ý1, ý2)ÿ
′(ý1) +

ýÿ

ýý2 ∫
ý1

0

(ÿ(ÿ, ý2) − 1)ýÿ. (A15)

Therefore,

∇ý1 ⋅ ∇ý2 = −ÿ
′(1 − ÿ(ý2)) +

ýÿ

ýý2 ∫
ý1

0

(ÿ(ÿ, ý2) − 1)ýÿ (A16)

vanishes in a neighborhood of Γ because the condition ÿ > ÿý implies that the strip |ý2| < ÿ
contains a neighborhood of Γ.

We can arrange the cutoff ÿ so that ý ↦ (ý1, ý2) is a global diffeomorphism. This is done by

noting from (A14) that ÿ1ý1 ≥ 1

2
may be arranged by ensuring ÿ ≥ 1

2
on the support of ÿ. This

follows ifÿ is small enough, which is possible if ÿý is small. Then the Jacobian det∇ý is bounded

away from zero, provided ÿ and ý are small enough and | ýÿ
ýý2

| ≤ ÿÿ−1. In fact, the matrix ∇ý − ý
is given by

∇ý − ý =

(
ÿ(ÿ − 1), ÿÿÿ′ +

ýÿ

ýý2
∫ ý1
0
(ÿ(ÿ, ý2) − 1)ýÿ

−ÿ′, 0

)
(A17)

and therefore

‖∇ý − ý‖ÿ∞ ≤ ÿ = max{‖ÿ|ÿ − 1|‖ÿ∞ , (1 + ||ÿÿ||ÿ∞)ÿ, ÿý‖ÿ − 1‖ÿ∞ÿ
} ≤ 1

4
, (A18)

and the condition (43) follows if ÿ − 1 is small enough on the support ofÿ, if ÿ is small enough, and

if
ÿý

ÿ
is bounded. This can be easily arranged, for instance by takingý = ÿ = ÿ and ÿ small enough.

This shows that ý ↦ ý is locally injective. To show global invertibility, we show that ý can be

continuously deformed to the identity, by taking ÿ to zero. We note also

ý1(ý) = ý1, for |ý2| ≥ 2ÿ,
ý2(ý) = ý2. for |ý1| ≥ ý. (A19)

Once we have established the existence of the smooth diffeomorphism ÿ = ý−1, we have the

intertwining (62).

APPENDIX B: ESTIMATES OF HEAT KERNELS

In this section, we establish estimates for the heat kernel of the operator

ÿ = −divý(ý(ý)∇ý) (B1)

in ℝý, for ý ≥ 2 where ý is a symmetric matrix-valued function in ℝý satisfying

ý(ý) ≥ ý1ý ∀ý ∈ ℝý, (B2)

||∇ý||ÿ∞ + ||ý||ÿ∞ ≤ ý2, (B3)

with constants ý1, ý2 > 0.
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Let beÿÿ(ý, ÿ, ý) the kernel of ÿý + ÿ in ℝ
ý × (0,∞), that is,

ÿýÿÿ(ý, ý + ÿ, ý) − divÿ(ý(ý + ÿ)∇ÿÿÿ(ý, ý + ÿ, ý)) = 0,

lim
ý→0
ÿ(ý, ý + ÿ, ý) = ÿÿ=0, (B4)

for any ý, ÿ ∈ ℝý.

It is well-known that the kernelÿÿ(ý, ÿ, ý) satisfies

1

ý4ý
ý

2

exp(−ý4
|ÿ|2
ý
) ≤ ÿÿ(ý, ý + ÿ, ý) ≤ 1

ý3ý
ý

2

exp(−ý3
|ÿ|2
ý
) (B5)

for some ý3, ý4 > 0, see [16, Theorem 3.3.4]. Moreover, we also have

|∇ýÿÿ(ý, ý, ÿ)| + |∇ÿÿÿ(ý, ý, ÿ)| ≤ ÿ

ý
ý

2 min{ý, 1}
1

2

exp(−
ý3
4

|ý − ÿ|2
ý

), (B6)

see [19, chapter IV, section 13, (13.1)] for case ý ∈ (0, 1]; when ý ≥ 1, it follows by using semigroup
property:ÿÿ(ý, ý, ÿ) = ∫

ℝý
ÿÿ(

1

2
, ý, ÿ)ÿÿ(ý −

1

2
, ÿ, ÿ)ýÿ.

In particular, (B6) implies

||ÿ−ýÿ div(ý)||ÿ∞(ℝý) ≤ ÿmin{ý, 1}−
1−ÿ

2 ||ý||ÿ̇ÿ(ℝý) (B7)

for any ÿ ∈ (0, 1).

For fixed ÿ ∈ ℝý, we define

ÿÿ = −divý(ý(ÿ)∇ý). (B8)

Its heat kernel is given in (39),

ÿý(ÿ)(ÿ, ý) =
1

√
detý(ÿ)(4ÿý)

ý

2

exp(−
(ý(ÿ)−1ÿ ⋅ ÿ)

4ý
), (B9)

and the square root of the operator ÿÿ is given by

ÿ
1

2
ÿ ÿ(ý) =

ý̃0√
detý(ÿ) ∫ℝý

ÿ(ý) − ÿ(ý + ÿ)

(ý(ÿ)−1ÿ ⋅ ÿ)
ý+1

2

ýÿ. (B10)

The Lipschitz continuity properties

sup
ý∈ℝý

|ÿ
1

2
ÿ1
ÿ(ý) − ÿ

1

2
ÿ2
ÿ(ý)| ≲ min{|ÿ1 − ÿ2|, 1}||ÿ||ÿÿ̇ÿ ||ÿ||1−ÿÿ̇1+ÿ

, (B11)

|(ÿ
1

2
ÿ1
ÿ(ý) − ÿ

1

2
ÿ2
ÿ(ý)) − (ÿ

1

2
ÿ1
ÿ(ÿ) − ÿ

1

2
ÿ2
ÿ(ÿ))| ≲ min{|ÿ1 − ÿ2|, 1}|ý − ÿ|ÿ||ÿ||ÿ̇1+ÿ . (B12)

hold for any ÿ ∈ (0, 1). Indeed, we write

(ÿ
1

2
ÿ1
ÿ(ý) − ÿ

1

2
ÿ2
ÿ(ý)) − (ÿ

1

2
ÿ1
ÿ(ÿ) − ÿ

1

2
ÿ2
ÿ(ÿ))

= ∫
ℝý

ϝ(ÿ1, ÿ2, ÿ)(ÿÿÿ(ÿ) − ÿÿÿ(ý))ýÿ, (B13)
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with

ϝ(ÿ1, ÿ2, ÿ) = ý̃0√
detý(ÿ1)

1

(ý(ÿ1)−1ÿ ⋅ ÿ)
ý+1

2

−
ý̃0√

detý(ÿ2)

1

(ý(ÿ2)−1ÿ ⋅ ÿ)
ý+1

2

. (B14)

Then, (B12) follows by using the following inequalities:

|ÿÿÿ(ÿ) − ÿÿÿ(ý)| ≤ |ý − ÿ|ÿ+ÿ0 |ÿ|1−ÿ0 ||ÿ||ÿ̇1+ÿ for |ÿ| ≥ |ý − ÿ|, (B15)

|(ÿÿÿ(ÿ) − ÿ∇ÿ(ÿ)) − (ÿÿÿ(ý) − ÿ∇ÿ(ý))| ≤ |ý − ÿ|ÿ−ÿ0 |ÿ|1+ÿ0 ||ÿ||ÿ̇1+ÿ for |ÿ| ≤ |ý − ÿ|,
(B16)

|ϝ(ÿ1, ÿ2, ÿ)| ≲ min{1, |ÿ1 − ÿ2|}|ÿ|ý+1 , (B17)

for ÿ0 ∈ (0,
ÿ

2
).

In order to study ∇ÿ
−
1

2 and ÿ
1

2 , we make use of the following fine properties of the kernel

ÿÿ(ý, ÿ, ý).

Lemma B1. The following inequalities hold

||ÿÿ(ý, ý + ÿ, ý) − ÿý(ý+ÿ)(ÿ, ý)|| + ||ÿÿ(ý + ÿ, ý, ý) − ÿý(ý+ÿ)(ÿ, ý)|| ≲
exp(−ý0

|ÿ|2
ý
)

ý
ý−1

2 (1 + ý)
1

2

, (B18)

|||∇ÿÿÿ(ý, ý + ÿ, ý) − ∇ÿÿý(ý+ÿ0)(ÿ, ý)|ÿ0=ÿ
|||

+
|||∇ÿÿÿ(ý + ÿ, ý, ý) − ∇ÿÿý(ý+ÿ0)(ÿ, ý)|ÿ0=ÿ

||| ≲
log(2 + ý)

ý
ý

2

exp(−ý0
|ÿ|2
ý
), (B19)

|||ÿÿℎ∇ÿÿÿ(ý, ý + ÿ, ý) − ÿÿℎ∇ÿÿý(ý+ÿ0)(ÿ, ý)|ÿ0=ÿ
|||

+
|||ÿÿℎ∇ÿÿÿ(ý + ÿ, ý, ý) − ÿÿℎ∇ÿÿý(ý+ÿ0)(ÿ, ý)|ÿ0=ÿ

||| ≲ |ℎ| log(2 +
√
ý

|ℎ| )
exp(−ý0

|ÿ|2
ý
)

ý
ý

2 min{ý, 1}
1

2

(B20)

for any ý > 0 and |ℎ| ≤√
min{ý, 1}∕10. Here ÿℎÿ(ý) ∶= ÿ(ý + ℎ) − ÿ(ý).

Proof. Our proof is based on a method of freezing coefficients. It is similar to [19, chapter IV,

section 13] and it is probably not new.

(1) Using (B4), we have for any ÿ0 ∈ ℝ
ý,

ÿýÿÿ(ý, ý + ÿ, ý) − divÿ(ý(ý + ÿ0)∇ÿÿÿ(ý, ý + ÿ, ý))

= divÿ((ý(ý + ÿ) − ý(ý + ÿ0))∇ÿÿÿ(ý, ý + ÿ, ý)) (B21)
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so, integrating by parts, we obtain

ÿÿ(ý, ý + ÿ, ý) − ÿý(ý+ÿ0)(ÿ, ý)

= ∫
ý

0
∫
ℝý
∇ÿÿý(ý+ÿ0)(ÿ − ÿ

′, ý − ý)
(
ý(ý + ÿ′) − ý(ý + ÿ0)

)
∇ÿ′ÿÿ(ý, ý + ÿ

′, ý)ýÿ′ýý.

(B22)

Thus, for any ý ∈ (0, 1]

||ÿÿ(ý, ý + ÿ, ý) − ÿý(ý+ÿ)(ÿ, ý)||
(ý6)

≲ ∫
ý

0
∫
ℝý

exp(−ý5
|ÿ−ÿ′|2
ý−ý

)

(ý − ý)
ý+1

2

min{|ÿ − ÿ′|, 1}
exp(−ý5

|ÿ′|2
ý
)

ý
ý

2 min{ý, 1}
1

2

ýÿ′ýý

≲ exp(−ý5
|ÿ|2
8ý
)∫

ý

0
∫
ℝý

exp(−ý5
|ÿ−ÿ′|2
4(ý−ý)

)

(ý − ý)
ý

2

exp(−ý5
|ÿ′|2
4ý
)

ý
ý+1

2

ýÿ′ýý

≲ exp(−ý5
|ÿ|2
8ý
)∫

ý

0

min{ý − ý, ý}
ý

2

(ý − ý)
ý

2

1

ý
ý+1

2

ýý

≲
1

ý
ý−1

2

exp(−ý5
|ÿ|2
8ý
), (B23)

holds with ý5 > 0. Here we have used the fact that
min{|ÿ − ÿ′|, 1}

(ý − ý)
1

2

exp(−ý5
|ÿ − ÿ′|2
2(ý − ý)

)≲ 1, (B24)

|ÿ − ÿ′|2
ý − ý

+
|ÿ′|2
ý

≥ |ÿ|2
2ý
. (B25)

Therefore,

||ÿÿ(ý, ý + ÿ, ý) − ÿý(ý+ÿ)(ÿ, ý)|| ≲ 1

ý
ý−1

2 (1 + ý)
1

2

exp(−ý0
|ÿ|2
ý
) (B26)

holds for some ý0 > 0.

(2) We apply ∇ÿ to both sides of (B22), then we take ÿ0 = ÿ to deduce that

∇ÿÿÿ(ý, ý + ÿ, ý) − ∇ÿÿý(ý+ÿ0)(ÿ, ý)|ÿ0=ÿ

= ∫
ý

0
∫
ℝý
∇2ÿÿý(ý+ÿ0)(ÿ − ÿ

′, ý − ý)|ÿ0=ÿ
(
ý(ý + ÿ′) − ý(ý + ÿ)

)
∇ÿ′ÿÿ(ý, ý + ÿ

′, ý)ýÿ′ýý.

(B27)

So, as in (B23),

|||∇ÿÿÿ(ý, ý + ÿ, ý) − ∇ÿÿý(ý+ÿ0)(ÿ, ý)|ÿ0=ÿ
|||
(ý6)

≲ exp(−ý5
|ÿ|2
8ý
)∫

ý

0

min{ý − ý, ý}
ý

2

(1 + ý − ý)
1

2 (ý − ý)
ý+1

2

1

ý
ý

2 min{ý, 1}
1

2

ýý ≲
log(2 + ý)

ý
ý

2

exp(−ý5
|ÿ|2
8ý
). (B28)
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(3) We apply ÿÿ
ℎ
to both sides of (B27) with |ℎ| ≤√

min{ý, 1}∕10

|||ÿÿℎ∇ÿÿÿ(ý, ý + ÿ, ý) −
(
∇ÿÿý(ý+ÿ0)(ÿ + ℎ, ý)|ÿ0=ÿ+ℎ − ∇ÿÿý(ý+ÿ0)(ÿ, ý)|ÿ0=ÿ

)|||
(ý6)

≲ ∫
ý

0
∫
ℝý

|||∇2ÿÿý(ý+ÿ0)(ÿ + ℎ − ÿ′, ý − ý)|ÿ0=ÿ+ℎ
(
ý(ý + ÿ′) − ý(ý + ÿ + ℎ)

)

−∇2ÿÿý(ý+ÿ0)(ÿ − ÿ
′, ý − ý)|ÿ0=ÿ

(
ý(ý + ÿ′) − ý(ý + ÿ)

)|||
exp(−ý5

|ÿ′|2
ý
)

ý
ý

2 min{ý, 1}
1

2

ýÿ′ýý

∶= ∫
ý

0

ý(ℎ, ý)ýý. (B29)

When ý ∈ [ý − |ℎ|2, ý], as (B23) we estimate

ý(ℎ, ý) ≲ exp(−ý5
|ÿ|2
8ý
)
∑
ÿ=0,1

∫
ℝý

exp(−ý5
|ÿ−ÿ′+ÿℎ|2
4(ý−ý)

)

(ý − ý)
ý+1

2

exp(−ý5
|ÿ′|2
4ý
)

ý
ý

2 min{ý, 1}
1

2

ýÿ′

≲
1

(ý − ý)
1

2

exp(−ý5
|ÿ|2
8ý
)

ý
ý

2 min{ý, 1}
1

2

. (B30)

When ý ∈ [0, ý − |ℎ|2], we have

ý(ℎ, ý) ≲ ∫
ℝý

|||∇2ÿÿý(ý+ÿ0)(ÿ + ℎ − ÿ′, ý − ý)|ÿ0=ÿ+ℎ − ∇2ÿÿý(ý+ÿ0)(ÿ − ÿ′, ý − ý)|ÿ0=ÿ+ℎ
|||

×min{|ÿ − ÿ′|, 1}
exp(−ý5

|ÿ′|2
ý
)

ý
ý

2 min{ý, 1}
1

2

ýÿ′

+ ∫
ℝý

|||∇2ÿÿý(ý+ÿ0)(ÿ − ÿ′, ý − ý)|ÿ0=ÿ+ℎ − ∇2ÿÿý(ý+ÿ0)(ÿ − ÿ′, ý − ý)|ÿ0=ÿ
|||

×min{|ÿ − ÿ′|, 1}
exp(−ý5

|ÿ′|2
ý
)

ý
ý

2 min{ý, 1}
1

2

ýÿ′

+ ∫
ℝý

|||∇2ÿÿý(ý+ÿ0)(ÿ + ℎ − ÿ′, ý − ý)|ÿ0=ÿ+ℎ
||||ℎ|

exp(−ý5
|ÿ′|2
ý
)

ý
ý

2 min{ý, 1}
1

2

ýÿ′. (B31)

Since |ℎ|2 ≤ min{ý − ý, 1}, we get

ý(ℎ, ý) ≲ |ℎ|∫
ℝý

exp(−ý5
|ÿ−ÿ′|2
ý−ý

)

(ý − ý)
ý+2

2

exp(−ý5
|ÿ′|2
ý
)

ý
ý

2 min{ý, 1}
1

2

ýÿ′

≲ |ℎ| exp(−ý5 |ÿ|
2

8ý
)
min{ý − ý, ý}

ý

2

(ý − ý)
ý+2

2

1

ý
ý

2 min{ý, 1}
1

2

. (B32)
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Combining this with (B29) and (B30), we obtain

|||ÿÿℎ∇ÿÿÿ(ý, ý + ÿ, ý) −
(
∇ÿÿý(ý+ÿ0)(ÿ + ℎ, ý)|ÿ0=ÿ+ℎ − ∇ÿÿý(ý+ÿ0)(ÿ, ý)|ÿ0=ÿ

)|||

≲ ∫
ý

ý−|ℎ|2
1

(ý − ý)
1

2

exp(−ý5
|ÿ|2
8ý
)

ý
ý

2 min{ý, 1}
1

2

ýý + ∫
ý−|ℎ|2

0

|ℎ| exp(−ý5 |ÿ|
2

8ý
)
min{ý − ý, ý}

ý

2

(ý − ý)
ý+2

2

1

ý
ý

2 min{ý, 1}
1

2

ýý

≲ |ℎ| log(2 +
√
ý

|ℎ| )
exp(−ý5

|ÿ|2
8ý
)

ý
ý

2 min{ý, 1}
1

2

. (B33)

Thus,

|||ÿÿℎ∇ÿÿÿ(ý, ý + ÿ, ý) − ÿÿℎ∇ÿÿý(ý+ÿ0)(ÿ, ý)|ÿ0=ÿ
|||

≲ |ℎ| log(2 +
√
ý

|ℎ| )
exp(−ý5

|ÿ|2
8ý
)

ý
ý

2 min{ý, 1}
1

2

+
|||∇ÿÿý(ý+ÿ0)(ÿ + ℎ, ý)|ÿ0=ÿ+ℎ − ∇ÿÿý(ý+ÿ0)(ÿ + ℎ, ý)|ÿ0=ÿ

|||

≲ |ℎ| log(2 +
√
ý

|ℎ| )
exp(−ý5

|ÿ|2
8ý
)

ý
ý

2 min{ý, 1}
1

2

. (B34)

Similarly, we also obtain for any |ℎ| ≤√
min{ý, 1}∕10

||ÿÿ(ý + ÿ, ý, ý) − ÿý(ý+ÿ)(ÿ, ý)|| ≲ 1

ý
ý−1

2 (1 + ý)
1

2

exp(−ý0
|ÿ|2
ý
),

|||∇ÿÿÿ(ý + ÿ, ý, ý) − ∇ÿÿý(ý+ÿ0)(ÿ, ý)|ÿ0=ÿ
||| ≲

log(2 + ý)

ý
ý

2

exp(−ý0
|ÿ|2
ý
),

|||ÿÿℎ∇ÿÿÿ(ý + ÿ, ý, ý) − ÿÿℎ∇ÿÿý(ý+ÿ0)(ÿ, ý)|ÿ0=ÿ
||| ≲ |ℎ| log(2 +

√
ý

|ℎ| )
exp(−ý0

|ÿ|2
ý
)

ý
ý

2 min{ý, 1}
1

2

,

for some ý0 > 0. Thus, we obtain (B18)–(B20). □

Proposition B1. The following inequalities hold

|(∇ý + ∇ÿ)ÿÿ(ý, ÿ, ý)| ≲ log(2 + ý)
ý
ý

2

exp(−ý0
|ý − ÿ|2
2ý

), (B35)

|(ÿý
ℎ
∇ý + ÿ

ÿ
−ℎ
∇ÿ)ÿÿ(ý, ÿ, ý)| ≲ |ℎ| log(2 +

√
ý

|ℎ| )
exp(−ý0

|ý−ÿ|2
ý
)

ý
ý

2 min{ý, 1}
1

2

, (B36)
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for any |ℎ| ≤√
min{ý, 1}∕10 and ý > 0. In particular, we get

∫
ℝý
|(ÿý

ℎ
∇ý + ÿ

ÿ
−ℎ
∇ÿ)ÿÿ(ý, ÿ, ý)|ýÿ ≲ min

⎧⎪«⎪¬

|ℎ|
min{ý, 1}

1

2

, 1

«⎪¬⎪­
log(2 +

√
ý

|ℎ| ), (B37)

∫
ℝý
|ÿý
ℎ
∇ýÿÿ(ý, ÿ, ý)|ýÿ ≲

min{
|ℎ|√
ý
, 1}

√
ý

+ |ℎ|
log(2 +

√
ý

|ℎ| )

min{ý, 1}
1

2

, (B38)

sup
ý,ÿ

|ÿý
ℎ
∇ýÿÿ(ý, ÿ, ý)| ≲ |ℎ| log(2 + 1

|ℎ| )
log(2 + ý)

ý
ý

2 min{ý, 1}

, (B39)

for any |ℎ| ≤ 1, ý > 0.
Proof. By (B19) and (B20), we have for |ℎ| ≤√

min{ý, 1}∕10,

|||∇ýÿÿ(ý, ÿ, ý) − ∇ýÿý(ÿ0)(ý − ÿ, ý)|ÿ0=ý
|||

+
|||∇ÿÿÿ(ý, ÿ, ý) + ∇ýÿý(ÿ0)(ý − ÿ, ý)|ÿ0=ÿ

||| ≲
log(2 + ý)

ý
ý

2

exp(−ý0
|ý − ÿ|2
ý

), (B40)

|||ÿýℎ∇ýÿÿ(ý, ÿ, ý) − ÿýℎ∇ýÿý(ÿ0)(ý − ÿ, ý)|ÿ0=ý
|||

+
|||ÿ
ÿ
ℎ
∇ÿÿÿ(ý, ÿ, ý) + ÿ

ý
−ℎ
∇ýÿý(ÿ0)(ý − ÿ, ý)|ÿ0=ÿ||| ≲ |ℎ| log(2 +

√
ý

|ℎ| )
exp(−ý0

|ý−ÿ|2
ý
)

ý
ý

2 min{ý, 1}
1

2

.

(B41)

So, we obtain (B35) and (B36). Moreover, we have for any |ℎ| ≤√
min{ý, 1}∕10

∫
ℝý
|(ÿý

ℎ
∇ý + ÿ

ÿ
−ℎ
∇ÿ)ÿÿ(ý, ÿ, ý)|ýÿ

(ý36)

≲
|ℎ| log(2 +

√
ý

|ℎ| )

min{ý, 1}
1

2

; (B42)

∫
ℝý
|ÿý
ℎ
∇ýÿÿ(ý, ÿ, ý)|ýÿ

(ý41)

≲ ∫
ℝý

|ℎ|
ý
ý+2

2

exp(−ý0
|ý − ÿ|2
ý

) + |ℎ| log(2 +
√
ý

|ℎ| )
exp(−ý0

|ý−ÿ|2
ý
)

ý
ý

2 min{ý, 1}
1

2

ýÿ

∼ |ℎ|
»¼¼¼½

1

ý
+
log(2 +

√
ý

|ℎ| )

min{ý, 1}
1

2

¾¿¿¿À
; (B43)

sup
ý,ÿ

|ÿý
ℎ
∇ýÿÿ(ý, ÿ, ý)|

(ý41)

≲
|ℎ|
ý
ý+2

2

+ |ℎ| log(2 +
√
ý

|ℎ| )
1

ý
ý

2 min{ý, 1}
1

2

≲ |ℎ| log(2 + 1

|ℎ| )
log(2 + ý)

ý
ý

2 min{ý, 1}

;

(B44)
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when
√
min{ý, 1}∕10 ≤ |ℎ| ≤ 1

∫
ℝý
|(ÿý

ℎ
∇ý + ÿ

ÿ
−ℎ
∇ÿ)ÿÿ(ý, ÿ, ý)|ýÿ

≤ ∫
ℝý
|(∇ý + ∇ÿ)ÿÿ(ý, ÿ, ý)|ýÿ + ∫

ℝý
|∇ýÿÿ(ý + ℎ, ÿ, ý) + ∇ÿÿÿ(ý, ÿ − ℎ, ý)|ýÿ

(ý35)

≲ ∫
ℝý

log(2 + ý)

ý
ý

2

exp(−ý0
|ý − ÿ|2
ý

)ýÿ ≲ log(2 + ý) ≲ log(2 +

√
ý

|ℎ| ); (B45)

and

∫
ℝý
|ÿý
ℎ
∇ýÿÿ(ý, ÿ, ý)|ýÿ

(ý40)

≲ ∫
ℝý

exp(−ý0
|ý−ÿ|2
ý
)

ý
ý+1

2

+
log(2 + ý)

ý
ý

2

exp(−ý0
|ý − ÿ|2
ý

)ýÿ

∼
log(2 + ý)

min{ý, 1}
1

2

≲

min{
|ℎ|√
ý
, 1}

√
ý

+ |ℎ|
log(2 +

√
ý

|ℎ| )

min{ý, 1}
1

2

; (B46)

sup
ý,ÿ

|ÿý
ℎ
∇ýÿÿ(ý, ÿ, ý)| ≲ 1

ý
ý+1

2

+
log(2 + ý)

ý
ý

2

≲ |ℎ| log(2 + 1

|ℎ| )
log(2 + ý)

ý
ý

2 min{ý, 1}

. (B47)

These imply (B37)–(B39). □

Remark B1. In view of Lemma B1 and Proposition B1, it follows that for any 0 ≤ ÿ < 1 and 0 ≤
ÿ ≤ 1 + ÿ, the inequality

sup
ý∈[0,1]

ý
1+ÿ−ÿ

2 ||∇ÿýÿÿ||ÿÿ ≲ ||ÿ||ÿÿ (B48)

holds.

We denote now

ÿ(ÿ)(ý) = ∫
ℝý

|ÿ(ý) − ÿ(ÿ)|2
|ý − ÿ|ý+1 ýÿ. (B49)

Lemma B2. We have for any ℎ ≠ 0
ÿ(ÿℎÿ)(ý) ≥ ÿ||ÿ||−1ÿ∞ |ℎ|−1|ÿℎÿ(ý)|3. (B50)

Proof. We recall from [12, 13]. For ÿ > 0,

ÿ(ÿℎÿ)(ý) ≥ ∫
ℝý
ÿ(
|ÿ|
ÿ
)
|ÿℎÿ(ý)|2
|ÿ|ý+1 ýÿ − 2|ÿℎÿ(ý)|

|||||||
∫
ℝý
ÿℎÿ(ý + ÿ)

ÿ(
|ÿ|
ÿ
)

|ÿ|ý+1 ýÿ
|||||||
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≥ ÿ|ÿℎÿ(ý)|2ÿ−1 − 2|ÿℎÿ(ý)|||ÿ||ÿ∞ ∫
ℝý

|||||||

ÿ(
|ÿ|
ÿ
)

|ÿ|ý+1 −
ÿ(

|ÿ−ℎ|
ÿ
)

|ÿ − ℎ|ý+1
|||||||
ýÿ

≥ ÿ|ÿℎÿ(ý)|2ÿ−1 − ÿ−1|ÿℎÿ(ý)|||ÿ||ÿ∞ |ℎ|ÿ−2. (B51)

Here ÿ is a cutoff function in [0,∞) such that ÿ = 0 in [0,1] and ÿ = 1 in [2,∞). This implies the

result. □

We also define ÿ
−
1

2 as the inverse operator of ÿ
1

2 given by

ÿ
−
1

2 ÿ(ý) =
1

Γ(
1

2
) ∫

∞

0

ý
−
1

2 ∫
ℝý
ÿÿ(ý, ÿ, ý)ÿ(ÿ)ýÿýý. (B52)

Lemma B3. The following inequalities hold

|ÿℎ∇ÿ−
1

2 (ÿ)(ý)| ≲ ||ÿ||
1

3
ÿ∞ |ℎ|

1

3ÿ(ÿℎÿ)(ý)
1

3 + |ℎ| log(2∕|ℎ|)2||ÿ||
2

3

ÿ1∩ÿ∞
||ÿ||

1

3
ÿ∞ , (B53)

for any |ℎ| ≲ 1;

||∇ÿ−
1

2 (ÿ)||ÿ∞ ≲ (1 + ||ÿ||ÿ∞∩ÿ1) log
(
2 + ||ÿ||ÿ̇ÿ

)
, (B54)

and

||∇ÿ−
1

2 (ÿ)||ÿÿ ≲ ||ÿ||ÿÿ + ||ÿ||ÿ1 , (B55)

for any ÿ ∈ (0, 1).

Proof.

(1) For ÿ ∈ (0, 1], |ℎ| ≲ 1, we have

|ÿℎ∇ÿ−
1

2 (ÿ)(ý)| ≲ ∫
ÿ2

0

|||||∫ℝý ÿ
ý
ℎ
∇ýÿÿ(ý, ÿ, ý)ÿ(ÿ)ýÿ

|||||
ý
−
1

2 ýý

+ ∫
2

ÿ2
∫
ℝý
|ÿý
ℎ
∇ýÿÿ(ý, ÿ, ý)|ýÿý−

1

2 ýý||ÿ||ÿ∞

+ ∫
∞

2
∫
ℝý
|ÿý
ℎ
∇ýÿÿ(ý, ÿ, ý)||ÿ(ÿ)|ýÿý−

1

2 ýý

= ý1 + ý2 + ý3. (B56)

In view of (B41), (B37), and (B38), we have

ý3 ≲ ∫
∞

2
∫
ℝý
|ℎ| log(2 +

√
ý

|ℎ| )
exp(−ý0

|ý−ÿ|2
ý
)

ý
ý

2

|ÿ(ÿ)|ýÿý−
1

2 ýý ≲ |ℎ| log( 2|ℎ| )||ÿ||
2

3

ÿ1
||ÿ||

1

3
ÿ∞ ; (B57)
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ý2 ≲ ∫
2

ÿ2

»¼¼¼½

min{
|ℎ|√
ý
, 1}

√
ý

+ |ℎ|
log(2 +

√
ý

|ℎ| )

ý
1

2

¾¿¿¿À
ý
−
1

2 ýý||ÿ||ÿ∞

≲

(|ℎ|
ÿ
+ |ℎ| log( 2|ℎ| )

2

)
||ÿ||ÿ∞ ; (B58)

and

ý1 ≲ ∫
ÿ2

0

|||||∫ℝý ÿ
ÿ
−ℎ
∇ÿÿÿ(ý, ÿ, ý)ÿ(ÿ)ýÿ

|||||
ý
−
1

2 ýý

+ ∫
ÿ2

0
∫
ℝý
|(ÿý

ℎ
∇ý + ÿ

ÿ
−ℎ
∇ÿ
)
ÿÿ(ý, ÿ, ý)|ýÿý−

1

2 ýý||ÿ||ÿ∞

≲ ∫
ÿ2

0
∫
ℝý
|∇ÿÿÿ(ý, ÿ, ý)||ÿℎÿ(ÿ) − ÿℎÿ(ý)|ýÿý−

1

2 ýý

+ ∫
1

0

min{
|ℎ|
ý
1

2

, 1} log(2 +

√
ý

|ℎ| )ý
−
1

2 ýý||ÿ||ÿ∞

≲
√
ÿÿ(ÿℎÿ)(ý) + |ℎ| log(2∕|ℎ|)2||ÿ||ÿ∞ , (B59)

here we have used the fact that

∫
ÿ2

0

(
∫
ℝý
|∇ÿÿÿ(ý, ÿ, ý)|2|ý − ÿ|ý+1ýÿ

) 1

2

ý
−
1

2 ýý ≲
√
ÿ. (B60)

Therefore,

|ÿℎ∇ÿ−
1

2 (ÿ)(ý)| ≲√ÿÿ(ÿℎÿ)(ý) + |ℎ|
ÿ
||ÿ||ÿ∞ + |ℎ| log(2∕|ℎ|)2||ÿ||

2

3

ÿ1∩ÿ∞
||ÿ||

1

3
ÿ∞ . (B61)

Choosing

ÿ =

( |ℎ|2||ÿ||2ÿ∞
ÿ(ÿℎÿ)(ý) + |ℎ|2||ÿ||2ÿ∞

) 1

3

(B62)

to get (B53).

(2) We have for ÿ ∈ (0, 1]

|∇ÿ−
1

2 (ÿ)(ý)| ≲ ∫
ÿ2

0

|||||∫ℝý ∇ÿÿÿ(ý, ÿ, ý)ÿ(ÿ)ýÿ
|||||
ý
−
1

2 ýý

+ ∫
ÿ2

0
∫
ℝý
|(∇ý + ∇ÿ)ÿÿ(ý, ÿ, ý)|ýÿý−

1

2 ýý||ÿ||ÿ∞
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+ ∫
2

ÿ2
∫
ℝý
|∇ýÿÿ(ý, ÿ, ý)|ýÿý−

1

2 ýý||ÿ||ÿ∞

+ ∫
∞

2

sup
ÿ∈ℝý

|∇ýÿÿ(ý, ÿ, ý)|ý−
1

2 ýý||ÿ||ÿ1 . (B63)

Using (B35) and (B40), we deduce

|∇ÿ− 12 (ÿ)(ý)| ≲ ∫
ÿ2

0
∫
ℝý
|∇ÿÿÿ(ý, ÿ, ý)||ÿ(ÿ) − ÿ(ý)|ýÿý−

1

2 ýý + log(2 +
1

ÿ
)||ÿ||ÿ∞ + ||ÿ||ÿ1

≲ ∫
ÿ2

0
∫
ℝý
|∇ÿÿÿ(ý, ÿ, ý)||ý − ÿ|ÿýÿý−

1

2 ýý||ÿ||ÿ̇ÿ + log(2 + 1ÿ )||ÿ||ÿ∞ + ||ÿ||ÿ1

≲ ÿÿ||ÿ||ÿ̇ÿ + log(2 + 1ÿ )||ÿ||ÿ∞ + ||ÿ||ÿ1 . (B64)

This implies (B54) by choosing ÿÿ =
1

1+||ÿ||ÿ̇ÿ
.

(3) Now we prove (B55). In (B64), we take ÿÿ =
||ÿ||ÿ∞

||ÿ||ÿ∞+||ÿ||ÿ̇ÿ
to obtain

||∇ÿ−
1

2 (ÿ)||ÿ∞ ≲ ||ÿ||ÿ∞ + log(2 +
||ÿ||ÿ̇ÿ
||ÿ||ÿ∞ )||ÿ||ÿ∞ + ||ÿ||ÿ1 ≲ ||ÿ||ÿÿ + ||ÿ||ÿ1 . (B65)

Moreover, in view of the proof of (B61), we have

|ÿℎ∇ÿ−
1

2 (ÿ)(ý)| ≲ ∫
1

0

|||||∫ℝý ÿ
ÿ
−ℎ
∇ÿÿÿ(ý, ÿ, ý)ÿ(ÿ)ýÿ

|||||
ý
−
1

2 ýý + |ℎ| log(2∕|ℎ|)2||ÿ||ÿ1∩ÿ∞ ,

for any |ℎ| ≤ 1

4
. Thus, it is enough to show that

∫
1

0

|||||∫ℝý ÿ
ÿ
−ℎ
∇ÿÿÿ(ý, ÿ, ý)ÿ(ÿ)ýÿ

|||||
ý
−
1

2 ýý ≲ |ℎ|ÿ(||ÿ||ÿÿ + ||ÿ||ÿ1), (B66)

for any |ℎ| ≤ 1

4
. Indeed, using (B40) and (B41), we have

∫
|ℎ|2

0

|||||∫ℝý ÿ
ÿ
−ℎ
∇ÿÿÿ(ý, ÿ, ý)ÿ(ÿ)ýÿ

|||||
ý
−
1

2 ýý

= ∫
|ℎ|2

0

|||||∫ℝý ∇ÿÿÿ(ý, ÿ, ý)(ÿℎÿ(ÿ) − ÿℎÿ(ý))ýÿ
|||||
ý
−
1

2 ýý

≲ ∫
|ℎ|2

0
∫
ℝý
|∇ÿÿÿ(ý, ÿ, ý)||ÿ − ý|

ÿ

2 |ℎ|
ÿ

2 ýÿý
−
1

2 ýý||ÿ||ÿ̇ÿ

≲ ∫
|ℎ|2

0
∫
ℝý

1

ý
ý+1

2

exp(−ý0
|ý − ÿ|2
ý

)|ÿ − ý|
ÿ

2 |ℎ|
ÿ

2 ýÿý
−
1

2 ýý||ÿ||ÿ̇ÿ

≲ ∫
|ℎ|2

0

|ℎ|
ÿ

2 ý
−1+

ÿ

4 ýý||ÿ||ÿ̇ÿ ∼ |ℎ|ÿ||ÿ||ÿ̇ÿ , (B67)
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and

∫
1

|ℎ|2

|||||∫ℝý ÿ
ÿ

−ℎ
∇ÿÿÿ(ý, ÿ, ý)ÿ(ÿ)ýÿ

|||||
ý
−
1

2 ýý ≤ ∫
1

|ℎ|2 ∫ℝý |ÿ
ÿ

−ℎ
∇ÿÿÿ(ý, ÿ, ý)||ý − ÿ|ÿýÿý−

1

2 ýý||ÿ||ÿ̇ÿ

≲ ∫
1

|ℎ|2 ∫ℝý
|ℎ|
ý
ý+2

2

exp(−ý0
|ý − ÿ|2
ý

)|ý − ÿ|ÿýÿý− 12 ýý||ÿ||ÿ̇ÿ

≲ ∫
1

|ℎ|2
|ℎ|ý− 32+ ÿ2 ýý||ÿ||ÿ̇ÿ ∼ |ℎ|ÿ||ÿ||ÿ̇ÿ . (B68)

Therefore, we obtain (B66). □

Lemma B4. We have for any |ℎ| ≤ 1,

|ℎ|−1|ÿℎ∇ÿ−
1

2 (ÿ)||ÿℎÿ(ý)|2 ≲ ||ÿ||ÿ∞
(
ÿ(ÿℎÿ)(ý) + |ℎ|2 log(2∕|ℎ|)6||ÿ||2ÿ∞∩ÿ1

)
. (B69)

Proof. In view of (B50) and (B53), we have

|ℎ|−1|ÿℎ∇ÿ−
1

2 (ÿ)||ÿℎÿ(ý)|2

≲ |ℎ|−1
(
||ÿ||

1

3
ÿ∞ |ℎ|

1

3ÿ(ÿℎÿ)(ý)
1

3 + |ℎ| log(2∕|ℎ|)2||ÿ||
2

3

ÿ1∩ÿ∞
||ÿ||

1

3
ÿ∞

)
(||ÿ||ÿ∞ |ℎ|ÿ(ÿℎÿ)(ý))

2

3

≲ ||ÿ||ÿ∞ÿ(ÿℎÿ)(ý) + |ℎ|
2

3 log(2∕|ℎ|)2||ÿ||
2

3

ÿ1∩ÿ∞
||ÿ||ÿ∞ÿ(ÿℎÿ)(ý)

2

3

≲ ||ÿ||ÿ∞
(
ÿ(ÿℎÿ)(ý) + |ℎ|2 log(2∕|ℎ|)6||ÿ||2ÿ∞∩ÿ1

)
.

This gives (B69). □

Corollary B1. We have

|ℎ|−1|ÿℎ∇ÿ−
1

2 (ÿ)||ÿℎ(ÿÿ)(ý)|2 ≲ ||ÿ||ÿ∞ÿ(ÿℎ(ÿÿ))(ý) + ||ÿ||ÿ∞ ||ÿℎÿ||2ÿ∞
+ |ℎ|

(
||ÿ||2

ÿ∞∩ÿ1
||ÿ||ÿ∞ + (1 + ||ÿ||ÿ∞∩ÿ1) log

(
2 + ||ÿ||ÿ̇ÿ

)||ÿ||2ÿ∞
)

+ |ℎ|2||ÿ||ÿ∞ ||ÿ||
ÿ̇
3
4
||ÿ||

ÿ̇
1
4
, (B70)

where ÿ is a Lipschitz cutoff function such that ÿ = 1 in ý(0, ÿ0) and ÿ = 0 in ý(0, 2ÿ0)
ý and suppÿ ⊆

ý(0, ÿ1) for some ÿ1 ≥ 4ÿ0
Proof. Since |ÿℎ(ÿÿ)(ý) − ÿ(ý)ÿℎÿ(ý)| ≲ |ℎ|||ÿ||ÿ∞ , we have

|ÿ(ý)ÿℎÿ(ý)|2 ≥ 12 |ÿℎ(ÿÿ)(ý)|2 − ÿ|ℎ|2||ÿ||2ÿ∞ . (B71)
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Thus,

ÿ2|ℎ|−1|ÿℎ∇ÿ−
1

2 (ÿ)||ÿℎÿ(ý)|2 ≥ 12 |ℎ|−1|ÿℎ∇ÿ
−
1

2 (ÿ)||ÿℎ(ÿÿ)(ý)|2 − ÿ|ℎ|||∇ÿ−
1

2 (ÿ)||ÿ∞ ||ÿ||2ÿ∞ .
(B72)

Note that

ÿÿÿℎ(ÿÿ)(ý) − ÿ(ý)ÿÿÿℎÿ(ý) = ÿ(ý + ℎ)(ÿÿÿℎÿ)(ý)

+ (ÿÿÿ)(ý)ÿℎÿ(ý + ÿ) + (ÿℎÿ)(ý + ÿ)(ÿÿÿ)(ý + ℎ), (B73)

we have

ÿ2ÿ(ÿℎÿ)(ý) ≤ 2ÿ(ÿℎ(ÿÿ))(ý) + ÿ ∫
ℝý
ÿ(ý + ℎ)2|ÿÿÿℎÿ(ý)|2 ýÿ

|ÿ|ý+1

+ ÿ ∫
ℝý
|ÿℎÿ(ý + ÿ)|2|ÿÿÿ(ý)|2 ýÿ

|ÿ|ý+1 + ÿ ∫
ℝý
|ÿÿÿ(ý + ℎ)|2|ÿℎÿ(ý + ÿ)|2 ýÿ

|ÿ|ý+1

≤ 2ÿ(ÿℎ(ÿÿ))(ý) + ÿ
(
|ℎ|||ÿ||2ÿ∞ + ||ÿℎÿ||2ÿ∞ + ÿ|ℎ|2||ÿ||ÿ̇ 34 ||ÿ||ÿ̇ 14

)
. (B74)

Here we have used the fact that

∫
ℝý
|ÿÿÿ(ý + ℎ)|2 ýÿ

|ÿ|ý+1 ≲ ||ÿ||ÿ̇ 34 ||ÿ||ÿ̇ 14 . (B75)

Combining (B72) and (B74) with (B69), we have

|ℎ|−1|ÿℎ∇ÿ−
1

2 (ÿ)||ÿℎ(ÿÿ)(ý)|2 ≲ ||ÿ||ÿ∞ÿ(ÿℎ(ÿÿ))(ý) + ||ÿ||ÿ∞ ||ÿℎÿ||2ÿ∞

+ |ℎ|||ÿ||2
ÿ∞∩ÿ1

||ÿ||ÿ∞ + |ℎ|2||ÿ||ÿ∞ ||ÿ||
ÿ̇
3
4
||ÿ||

ÿ̇
1
4
+ |ℎ|||∇ÿ−

1

2 (ÿ)||ÿ∞ ||ÿ||2ÿ∞
(ý54)

≲ ||ÿ||ÿ∞ÿ(ÿℎ(ÿÿ))(ý) + ||ÿ||ÿ∞ ||ÿℎÿ||2ÿ∞ + +|ℎ|2||ÿ||ÿ∞ ||ÿ||
ÿ̇
3
4
||ÿ||

ÿ̇
1
4

+ |ℎ|
(
||ÿ||2

ÿ∞∩ÿ1
||ÿ||ÿ∞ + (1 + ||ÿ||ÿ∞∩ÿ1) log

(
2 + ||ÿ||ÿ̇ÿ

)||ÿ||2ÿ∞
)
. (B76)

This implies (B70). □

Lemma B5. We denote

ýÿ(ý) ∶= (ÿ
1

2
ÿ ÿ(ý)|ÿ=ý − ÿ

1

2 ÿ(ý)). (B77)

The following inequalities hold

|ý(ý)| ≲ ∫
ℝý

|ÿ(ý + ÿ) − ÿ(ý)|
|ÿ|ý(|ÿ| + 1) ýÿ, (B78)

||ý||ÿ̇ÿ1 ≲ ||ÿ||ÿÿ1+ÿ , (B79)
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for any ÿ1 ∈ (0, 1) and ÿ ∈ (0, 1 − ÿ1). Moreover,

||ÿ
1

2 ÿ||ÿ∞ ≲ ||ÿ||
ÿ

2−ÿ

ÿ̇ÿ
||ÿ||

2(1−ÿ)

2−ÿ

ÿ̇
1+
ÿ
2

+ ||ÿ||ÿ∞ . (B80)

Proof. We have

ý(ý) = ý0 ∫
∞

0
∫
ℝý
ý0(ÿ, ý, ý)(ÿ(ý) − ÿ(ý + ÿ))ýÿý

−
3

2 ýý (B81)

with

ý0(ÿ, ý, ý) ∶= ÿý(ý)(ÿ, ý) − ÿÿ(ý, ý + ÿ, ý). (B82)

In view of (B18) and (B35), we have for any ý, ÿ ∈ ℝý,

|ý0(ÿ, ý, ý)| ≲ |ÿý(ý+ÿ)(ÿ, ý) − ÿý(ý)(ÿ, ý)| +
exp(−ý0

|ÿ|2
ý
)

ý
ý−1

2 (1 + ý)
1

2

≲
min{ý, 1}

1

2 exp(−ý0
|ÿ|2
ý
)

ý
ý

2

, (B83)

and

|∇ýý0(ÿ, ý, ý)| ≤ |∇ý(ÿÿ(ý, ý + ÿ, ý))| + |||∇ý
(
ÿý(ý)(ÿ, ý)

)||| ≲
log(2 + ý)

ý
ý

2

exp(−ý0
|ÿ|2
ý
). (B84)

So, we obtain (B78) and (B80).

Now, we prove (B79). By an interpolation inequality, we have

||ý||ÿ̇ÿ1 ≲ ∫
∞

0
∫
ℝý
(||ý0(ÿ, ., ý)||ÿ̇ÿ1 ||ÿ(.) − ÿ(. + ÿ)||ÿ∞ + ||ý0(ÿ, ., ý)||ÿ∞ ||ÿ(.) − ÿ(. + ÿ)||ÿ̇ÿ1 )ýÿý−

3

2 ýý

≲ ∫
∞

0
∫
ℝý

(
||ý0(ÿ, ., ý)||1−ÿ1ÿ∞ ||∇ý0(ÿ, ., ý)||ÿ1ÿ∞ min{|ÿ|, 1}ÿ1+ÿ

+||ý0(ÿ, ., ý)||ÿ∞ min{|ÿ|, 1}ÿ)ýÿý−
3

2 ýý||ÿ||ÿÿ1+ÿ , (B85)

for any ÿ ∈ (0, 1 − ÿ1).

Combining this with (B83) and (B84), we obtain

||ý||ÿ̇ÿ1 ≲ ∫
∞

0
∫
ℝý

(
min{ý, 1}

1−ÿ1
2 log(2 + ý)ÿ1 min{|ÿ|, 1}ÿ1+ÿ

+min{ý, 1}
1

2 min{|ÿ|, 1}ÿ
)
exp(−ý0

|ÿ|2
ý
)ýÿý

−
3+ý

2 ýý||ÿ||ÿ̇ÿ1+ÿ

≲ ∫
∞

0

min{ý, 1}
1+ÿ

2 log(2 + ý)ÿ1ý
−
3

2 ýý||ÿ||ÿÿ1+ÿ ∼ ||ÿ||ÿÿ1+ÿ . (B86)

Here we have used the fact that

∫
ℝý
|ÿ|ÿ exp(−ý0 |ÿ|

2

ý
)ýÿ = ý

ý+ÿ

2 ∀ÿ > −ý.

This implies (B79). □
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Lemma B6. Let ÿ be defined by (B49). The following inequalities hold

ÿ(ý)ÿ
1

2 ÿ(ý) −
1

2
ÿ
1

2 (ÿ2)(ý) ≥ ýÿ(ÿ)(ý), (B87)

and

||||(ÿℎÿ
1

2 ÿ)(ý) − ÿ
1

2 (ÿℎÿ)(ý)
|||| ≲ |ℎ|

1−ÿ(||ÿ||ÿ1−ÿ+ÿ ||ÿ||ÿ1−ÿ−ÿ )
1

2 + |ℎ|(||ÿ||ÿ1+ÿ ||ÿ||ÿ1−ÿ )
1

2 + |ℎ|1−ÿ||ÿ||ÿ1 ,
(B88)

for any |ℎ| ≤ 1 and 0 < ÿ ≤ ÿ ≤ 1

4
. In particular,

||||(ÿℎÿ
1

2 ÿ)(ý) − ÿ
1

2 (ÿℎÿ)(ý)
|||| ≲ |ℎ|

1−ÿ

(
||ÿ||

ÿ

2−ÿ

ÿ̇ÿ
||ÿ||

2(1−ÿ)

2−ÿ

ÿ̇
1+
ÿ
2

+ ||ÿ||ÿ1
)
, (B89)

for any ÿ ∈ (0,
1

4
].

Proof.

(1) Because ∫
ℝý
ÿÿ(ý, ÿ, ý)ýÿ = 1 for any ý > 0 and

∫
∞

0

ÿÿ(ý, ÿ, ý)ý
−
3

2 ýý
(ý5)
∼

1

|ý − ÿ|ý+1 ∀ý, ÿ ∈ ℝ
ý ý ≠ ÿ, (B90)

we have

ÿ(ý)ÿ
1

2 ÿ(ý) −
1

2
ÿ
1

2 (ÿ2)(ý) = ý ∫
∞

0
∫
ℝý
ÿÿ(ý, ÿ, ý)(ÿ(ý) − ÿ(ÿ))

2ý
−
3

2 ýÿýý ≥ ý′ÿ(ÿ)(ý).
(B91)

This implies (B87).

(2) Now we prove (B88). Note that for any ý, ℎ ∈ ℝý

ý(ý) ∶= (ÿℎÿ
1

2 ÿ)(ý) − ÿ
1

2 (ÿℎÿ)(ý) = ý ∫
∞

0
∫
ý

0

ÿ−(ý−ý)ÿ(div(ÿℎý)∇)ÿℎ(ÿ
−ýÿÿ)ýýý

−
3

2 ýý,

(B92)

where

ÿℎÿ(ý) = ÿ(ý + ℎ). (B93)

Using (B7) and the fact that

∫
∞

ý

min{ý − ý, 1}
−
1−ÿ

2 ý
−
3

2 ýý ≲ min{ý, 1}
−
1−ÿ

2 ý
−
1

2 , (B94)

||(ÿℎý)∇ÿℎ(ÿ−ýÿÿ)||ÿÿ ≲ |ℎ|1−ÿ||∇ÿ−ýÿÿ||ÿ∞ + |ℎ|||∇ÿ−ýÿÿ||ÿÿ , (B95)

||∇ÿýÿÿ||ÿÿ(ℝý) ≲ ý−
ý

2 ||ÿ||ÿ1 ∀ý ≥ 1, (B96)
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we get

||ý||ÿ∞ ≲ ∫
∞

0
∫
ý

0

min{ý − ý, 1}
−
1−ÿ

2 ||(ÿℎý)∇ÿℎ(ÿ−ýÿÿ)||ÿÿýýý−
3

2 ýý

≲ ∫
∞

0

min{ý, 1}
−
1−ÿ

2 ý
−
1

2
(|ℎ|1−ÿ||∇ÿ−ýÿÿ||ÿ∞ + |ℎ|||∇ÿýÿÿ||ÿÿ

)
ýý

≲ |ℎ|1−ÿ||ÿ||ÿ1 + ∫
1

0

ý
−1+

ÿ

2
(|ℎ|1−ÿ||∇ÿ−ýÿÿ||ÿ∞ + |ℎ|||∇ÿ−ýÿÿ||ÿÿ

)
ýý

≲ |ℎ|1−ÿ||ÿ||ÿ1 + |ℎ|1−ÿ
(
sup
ý∈[0,1]

ý
ÿ−ÿ

2 ||∇ÿ−ýÿÿ||ÿ∞
) 1

2
(
sup
ý∈[0,1]

ý
ÿ+ÿ

2 ||∇ÿ−ýÿÿ||ÿ∞
) 1

2

+ |ℎ|
(
sup
ý∈[0,1]

ý
ÿ−ÿ

2 ||∇ÿ−ýÿÿ||ÿÿ
) 1

2
(
sup
ý∈[0,1]

ý
ÿ+ÿ

2 ||∇ÿ−ýÿÿ||ÿÿ
) 1

2

. (B97)

This implies (B88) by using (B48). Then, (B89) follows from (B88) and interpolation

inequality. □
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