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1. Introduction

The purpose of this paper is to study tensor spaces, i.e., vector spaces equipped with
various kinds of multi-linear forms. We construct (ultra)homogeneous? tensor spaces and
study their symmetry groups and model theory. Our work is closely related to several
current topics in algebra (such as geometry of tensors and Deligne interpolation), and
ties in with classical topics in model theory (such as homogeneous structures and w-
categoricity). In the remainder of the introduction, we state our results in more detail
and explain the motivation behind this work.

1.1. Tensor spaces

Fix a field & of characteristic 0. Let A = [Aq, ..., A;] be a tuple of non-empty partitions.
A A-structure on a k-vector space V is a tuple w = (w1, ...,w,) where w;: Sy, (V) — k
is a linear map, and S denotes the Schur functor associated to A\. A A-space is a vector
space equipped with a A-structure. These are the main objects of study in this paper.
Here are some examples of the above definition:

e Suppose A = [(2)], i-e., A consists of a single partition A\; = (2). The Schur functor
S(2) is the symmetric power Sym?. Thus a A-structure on V is just a quadratic form
(or symmetric bilinear form) on V', and a A-space is a quadratic space.

e Similarly, if A = [(1,1)] then a A-space is a vector space equipped with an anti-
symmetric bilinear form. (The Schur functor S(; ;) is the exterior square A%)

e Suppose A = [(3)]. Then a A-space is a cubic space, i.e., a vector space with a cubic
form (or symmetric trilinear form).

 Finally, suppose that A = [(2), (2)] consists of two copies of the partition (2). Then
a A-structure on V is a pair of quadratic forms on V.

An embedding of A-spaces W — V is an injective linear map such that the A-structure
on V pulls back to the one on W. An isomorphism is an embedding that is a linear
isomorphism.

The notion of A-space can be viewed as a linear analog of the notion of relational
structure appearing in model theory; the tuple A plays the role of the signature of a

2 In this context, “homogeneous” and “ultrahomogeneous” are often used interchangeably. We use “ultra-
homogeneous” in the title since “homogeneous” has many other meanings, but we use “homogeneous” in
the text since it is shorter.
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relational structure. This paper can be seen as an attempt to find linear analogs of some
ideas related to relational structures, such as Fraissé limits, w-categoricity, oligomorphic
groups, etc.

1.2. Homogeneous spaces

The following is our first main theorem:

Theorem A (Theorem 3.8). There exists a A-space Vy of countable dimension with the
following two properties:

(a) Universality: if W is a finite dimensional A\-space then there is an embedding W —
Vi.

(b) Homogeneity: if W and W' are finite dimensional subspaces of Vy, with the induced
structures, then any isomorphism W — W' extends to an automorphism of Vy.

Moreover, Vy is unique up to isomorphism: any A-space of countable dimension satisfying
(a) and (b) is isomorphic to V).

This theorem is rather surprising, as it distinguishes an isomorphism class of A-spaces
of countable dimension; there is nothing like this in finite dimensions, except for certain
small )\, like A = [(2)].

There are two ingredients in the proof of Theorem A. The first is a categorical variant
of Fraissé’s theorem. This goes back to the work of Droste-Gébel [9,10], and has appeared
in more recent work too [6,21,25]. We include an appendix giving a self-contained treate-
ment. The second is a direct construction of universal (but not necessarily homogeneous)
A-spaces.

Remark 1.1. The notion of universal A\-space appears implicitly in much recent work
[2,3,8,23,24], and is closely related to the notion of strength in commutative algebra
[1,13]. In particular, [24] implies that for A = [(d)] and k algebraically closed, a A-space
is universal if and only if its defining form has infinite strength. The paper [2] proves
a generalization of this result; see Remark 3.6. We also note that [4] classifies universal
cubic spaces of countable dimension up to isogeny.

Remark 1.2. We work in characteristic 0 throughout this paper. Our results on A-spaces
remain valid (with the same proofs) in positive characteristic p, provided p is larger than
each |A;|. In fact, over a finite field of such characteristic, one can prove Theorem A using
the classical form of Fraissé’s theorem. For small p, our definition of A-space is not really
correct: for example, in characteristic 2 one should allow for both quadratic forms and
symmetric bilinear forms. We suspect our results could be extended to this situation,
but we have not pursued it.
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1.8. Symmetry groups

Let G be the automorphism group of the space V) in Theorem A. This is an infinite
dimensional algebraic group; implicit in this assertion is the fact that the construction
of V) is compatible with extension of scalars. For certain small A, the group G, is
recognizable; for example, G((2)) is the split infinite orthogonal group. However, when A
contains a partition of size at least three, Gy seems to be unrelated to familiar groups.

It follows from the homogeneity of V) that the groups G, are reasonably large. For
example, if A = [(d)] and k is algebraically closed then G, has two orbits on the space
P(Vy) of lines in V), namely, the invariant hypersurface and its complement. To more
precisely quantify the size of G, we introduce the notion of a linear-oligomorphic group;
as the name suggests, this is the linear analog of the notion of oligomorphic group that
is so important to homogeneous structures (see [5,27]). See §4.1 for the definitions. We
then prove the following theorem:

Theorem B (Theorem 4.7). The group Gy is linear-oligomorphic.

We view the G as new infinite dimensional algebraic groups that are analogous to
the infinite orthogonal group. There are a number of potentially fascinating directions
to explore; we suggest a few here:

Question 1.3. How much of the theory of algebraic groups applies to G? Is there a
Cartan subgroup, Weyl group, and Dynkin diagram? What does the Lie algebra look like?
Are there interesting twisted forms? As an abstract group, is it close to being simple? Is
there a notion of automorphic representation?

We prove one additional result about the Gy: we determine its algebraic representation
theory (Theorem 4.10). To do this, we show that the representation theory of G, is
equivalent to the representation theory of the “generalized stabilizers” studied in [30].
The representation theory of G is very similar to that of infinite classical groups, as
studied in [12,28,29,32].

1.4. Model theory

We have drawn an analogy between A-spaces and relational structures. Homogeneous
relational structures have a number of interesting model-theoretic properties. With this
in mind, we examine some of the model-theoretic properties of homogeneous A-spaces.
The following theorem summarizes our main results:

Theorem C (Theorems 5.13 and 5.18). The A-space V) is linearly w-categorical, and
satisfies vector-quantifier elimination.



N. Harman, A. Snowden / Advances in Mathematics 443 (2024) 109599 5

Briefly, “linearly w-categorical” means that V) is determined up to isomorphism by its
first-order theory, and “vector-quantifier elimination” means that any first-order formula
about V) is equivalent to one where there are no quantifiers over vector-valued variables
(though there could still be quantifiers over scalar-valued variables). We also explain
that the theory of V) is decidable when k = Q. See §5 for details.

Remark 1.4. The model theory of bilinear forms has been previously studied, and some
results related to Theorem C have appeared in this case; see [15,22]. We also note that
the book [16] contains relevant results in this case.

We hope that Theorem C is just a first step in the model theory of A-spaces. Some
possible next steps are raised in following question:

Question 1.5. Does the linear analog of the Ryll-Nardzewski theorem hold? (See Re-
mark 5.15.) What about linear analogs of other results from model theory (e.g., omitting

types)?
1.5. Further results

Fix a vector space V of countable dimension. The space A2 of all M\-structures on V'
forms a geometric object called a GL-variety. These varieties were studied in detail in
[3]. In a follow-up paper [20], we will examine how the perspective of this paper interacts
with the geometry of A2. One result states that generalized orbits on A2 (introduced in
[3, §3]) correspond to “weakly homogeneous” A-spaces.

1.6. Motivation

Deligne [7] showed that one can “interpolate” the representation categories Rep(&,,)
of finite symmetric groups to obtain a novel tensor category Rep(&;), where ¢ is a
complex number. (Here &; is simply a formal symbol.). In recent work [18], we generalized
Deligne’s construction. Let G be an oligomorphic group. Given a measure u for G (in a
sense that we introduce), we construct a tensor category Perm(G; 1), and in some cases,
an abelian envelope Rep(G; ). When G is the symmetric group, this recovers Deligne’s
Rep(&;); the parameter ¢ corresponds to a choice of measure.

Deligne (and Deligne—Milne [11]) also showed that one can interpolate representation
categories of classical groups. We expect that there is an analog of the theory developed
in [18] in the algebraic case. This motivated us to look for examples of linear-oligomorphic
groups, which led to the present work. In this vein, the next questions are:

Question 1.6. What is the correct notion of measure on a linear-oligomorphic group? Are
there any interesting measures on the G’s, outside the ones corresponding to known
interpolation categories?
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In recent work [19], we showed that every “discrete” pre-Tannakian tensor category
arises from an oligomorphic group. One might hope that algebraic oligomorphic groups (a
common generalization of oligomorphic and linear oligomorphic groups, see Remark 4.4),
and their super analogs, explain all pre-Tannakian categories in characteristic 0.

1.7. Notation and terminology

We list the most important notation:

A field of characteristic 0.

A tuple of partitions [A1,..., A].

The category of A-spaces (§2.2).

The sum of the Schur functors of the partitions in A (§2.3).
The universal homogeneous countable A-space (Definition 3.9).

wn QP> =
\Sly [>

The automorphism group of V) (Definition 4.5).
(€) A coslice category (§2.5).

> Q

.

We use “finite” for “finite dimensional” and “countable” for “countably infinite dimen-
sional” in the context of vector spaces.

Acknowledgments

We thank Arthur Bik and Jan Draisma for helpful discussions.
2. Basics of tensor spaces
2.1. Multi-linear forms

Fix a field k of characteristic 0. Let V' be a k-vector space and let n be a non-negative
integer. An n-form on V is a multi-linear map V" — k, or, equivalently, a linear map
Ven — k. When n = 0, an n-form on V is just a scalar.

Bilinear forms decompose into symmetric and skew-symmetric pieces. There is a sim-
ilar, but more complicated, decomposition of n-forms. For a partition A of n, let S* be
the corresponding Specht module over k; this is the irreducible representation of the

symmetric group &,, corresponding to A\. The Schur functor associated to A is defined
by

Sx(V) = Home,, (%, V&™),

where &,, acts on V®" by permuting tensor factors. A A-form on V is a linear map
Sx(V) — k. When A = (n), the Specht module is the trivial representation of &,,
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and the Schur functor Sy is the symmetric power Sym”. In particular, a (2)-form is a
symmetric bilinear form.
We have a canonical isomorphism

ver =P s @ 8a\(V),

AFn

where the sum is over all partitions of n. The Specht module S* carries a basis given
by the standard tableaux of shape A. Let w be an n-form on V. Given a partition A of
n and a standard tableau T' of shape A, we obtain a A-form wy 7 on V as the following
composition

T®id

S\ (V) S*® S, (V) yen k

where the second map is the canonical inclusion. The construction w — (wy 1) gives a
bijection between n-forms and tuples consisting of a A-form for each pair (A, T).

For each partition A, fix a choice T'()\) of standard tableau of shape A; for example,
one could use the tableau whose first row is 1,..., A1, second row is Ay + 1,..., A1 + Ao,
and so on. Write a(\) C k[S,,] for the annihilator of T'(\). Let w be a A-form on V, with
|A| = n. Define w* be the unique n-form on V satisfying

§ {w if p=Xand T =T(\)
Wy =

0 otherwise.

Then w — w* is a bijection between A-forms and n-forms annihilated by a(A). In this
way, we can encode A-forms as n-forms. For example, this procedure encodes (2)-forms
as symmetric 2-forms.

The above discussion shows that n-forms and A-forms are essentially equivalent. While
n-forms are perhaps a bit simpler, it will ultimately be more convenient for us to work
with A-forms. We therefore base our theory on them.

2.2. Tensor spaces

A tuple of partitions, often abbreviated to just tuple, is an ordered tuple A =
[A1, ..., Ar] where each \; is a partition. The A; may have different sizes. We say that A
is pure if each A; is non-empty. This terminology was introduced in [3].

The following definition introduces the main objects of study in this paper:

Definition 2.1. Let A = [A1,..., ;] be a tuple of partitions. A A-structure on a vector
space V is a tuple w = (w1, ...,w,) where w; is a \;-form on V. A A-space is a vector
space equipped with a A-structure.
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We now introduce some additional definitions related to A-spaces. We say that a
A-space is finite, resp. countable, if its dimension is finite, resp. countably infinite. An
embedding W — V of A-spaces is an injective linear map such that the given A-structure
on V pulls back to the given A-structure on W. An isomorphism of A-spaces is a bijective
embedding. We let Cy be the category of A-spaces, and we let GfA be the category of finite
A-spaces (in both cases the morphisms are embeddings).

Remark 2.2. Let A = [A1,..., A;] be a tuple. Reindexing if necessary, suppose that A; =
coo=Xs =@ and Agy1,..., A\ are non-empty. Let y be the pure tuple [Asi1,...,A]. A
A-structure on V' can then be identified with a pair (¢, w) where ¢ € k° is a tuple of scalars
and w is a g-structure on V. If V. — W is an embedding of A-spaces, then the tuples
of scalars for V and W must be equal. We thus see that C, is equivalent to a disjoint
union of copies of €, indexed by k£°. This discussion shows that the “impure” part of A
is not very interesting, and for most purposes we can restrict to pure tuples. The reason
we allow impure tuples is that they appear when applying the shift operation; see §2.4.

We now give two examples illustrating some aspects of infinite dimensional A-spaces.

Example 2.3. Two [(1)]-spaces with non-zero forms are isomorphic if and only if they
have the same dimension. Equivalently, this means that if V' is a vector space then the
group GL(V) of all automorphisms of V acts transitively on the non-zero vectors in
the dual space V*. Suppose that V is countable, and fix a basis. Then GL(V) can be
identified with the group of all column-finite invertible matrices of size N x N. Similarly,
V* can be identified with the space of all row vectors of size N. The transitivity of the
action thus amounts to the fact that the first row of a matrix in GL(V) can be any
non-zero vector. Note that the smaller group J,,~,; GL, does not act transitively on

V=\{0}.

Example 2.4. Suppose k is algebraically closed and let (V,w) be a [(2)]-space. Recall
that the null space of w consists of those vectors v such that w(v, —) is identically zero.
Supposing the null space of w vanishes and V' has countable dimension, it is not difficult
to show that V' has an orthonormal basis; see [16, Chapter 2]. In particular, we see that
any two countable [(2)]-spaces with zero null space are isomorphic (map one orthonormal
basis to the other).

The countability hypothesis above is of crucial importance. For example, over the
complex numbers there are 2% distinct isomorphism classes of [(2)]-spaces of dimension
Ry and vanishing null space; see [16, Chapter 2].

2.8. Shifts of polynomial functors
Recall that a polynomial functor is an endofunctor of the category of vector spaces

that decomposes as a direct sum of Schur functors. The category of polynomial func-
tors is semi-simple abelian, with Schur functors as the simple objects. For a tuple
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A=A, 0], we let Sy = @;_,; S»,. Thus every finite length polynomial functor
is isomorphic to S, for some tuple A. We refer to [31] for additional background on
polynomial functors.

We define the nth shift of a polynomial functor F', denoted Sh,, (F'), to be the functor
given by (Sh, F)(V) = F(k™ @ V). It is easily seen to be a polynomial functor: in
fact, we have Sh,(S)) = Sy @ ---, where the remaining terms are Schur functors of
smaller degree. One can explicitly determine Sh,,(Sy) in terms of Littlewood—Richardson
coefficients. Given a tuple ), there is another tuple g, unique up to permutation, such
that Sh,(Sy) = S,,. We define sh,,()) to be the tuple g, and shy (A) to be the pure part
of u (discard all empty partitions).

Example 2.5. We have
Sym?(k" ® V) = Sym?(k") @ (k" @ V) @ Sym? (V).
It follows that
sha((2)) = [("3) - 2, n- (1), ()]

Here n - (1) indicates that the partition (1) appears n times.
2.4. Shifts of tensor spaces

Fix a tuple A. Define a category Sh,(C,) as follows. An object is a tuple (V,v,V’)
where V is a M\-space, v = (v1, ..., v,) are linearly independent vectors in V', and V' is a
subspace of V' that is complementary to span(v). A morphism f: (V,v, V') = (W, w, W)
is a morphism of A\-spaces f: V' — W such that f(v;) = w; for 1 <i <mnand f(V') C W'.

Proposition 2.6. Let p = shy,(A). If (V,v, V') is an object of Shy,(Cy) then V' carries a
natural p-structure, and the functor

U Shn(GA) — (?,i
given by (V,v, V') —= V' is an equivalence.
Proof. Suppose that (V,v,V”) is an object of Sh,(C,), and let w denote the A-structure
on V. We regard w as a linear map Sy (V) — k. Making the identification span(v) = k™,
we have V = k" & V', and so

SA(V) = (Shyn 8x) (V') = Sy (V).

Thus the A-structure w on V is equivalent to a p-structure w’ on V'. This is how we
define W on objects. It is clear from the definition that ¥ is essentially surjective.
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Suppose now that (W, w, W') is another object of Sh,,(C,). Let 5 be the A-structure
on W, and let ' be the corresponding p-structure on W’. Let f: V — W be a linear
map such that f(v;) = w; for 1 < ¢ < n and f(V') € W/, and let f': V' — W’ be
the map induced by f. Clearly, giving f is equivalent to giving f’. The following two
diagrams are isomorphic:

Sa(V) ————=k Su(V') ————=k
f / r /
SA(W) S.(W')

We thus see that f is a map of M\-spaces (i.e., the first diagram commutes) if and only if f’
is a map of u-spaces (i.e., the second diagram commutes). Thus defining ¥ on morphisms
by ¥(f) = f’, we see that ¥ is an equivalence. O

Example 2.7. Suppose A = [(2)]. An object of Sh;(C,) is a quadratic space (V,w)
equipped with a non-zero vector v and a complementary space V' to the span of v.
The above proposition states that V’ naturally has a shy(A) = [(2), (1), (0)] structure.
The (2)-form on V' is simply the restriction of w, the (1)-form is x — w(v,x), and the
(0)-form is the scalar w(v,v).

We will require a variant of the above construction as well. A pinning of a finite \-
space is an ordered basis, and a pinned finite A-space is one equipped with a pinning. Let
U be an n-dimensional pinned finite A\-space. Define Shy;(€y) to be the full subcategory
of Sh,,(€C,) spanned by objects (V, v, V') where span(v) is isomorphic to U as a pinned
A-space; note that such an isomorphism is unique.

Proposition 2.8. Let U be an n-dimensional A-space with a pinning, and put v = sh; (\).
Then the functor ¥ from Proposition 2.6 induces an equivalence Shy(Cy) — €.

Proof. Let p = sh, (A). Recall from Remark 2.2 that €, is a disjoint union of copies of
C, parametrized by k* where s is the number of empty partitions in . More canonically,
this k° is identified with S,(0)*, where 0 is the zero vector space, and so

e, J[ e

1€8,(0)*

Given a p-space (V,w), the corresponding 7 is the pull-back of w to 0 C V. In our
case we have S, (—) = Sx(k" @ —), and so S,,(0) = Sx(k™). Thus the copies of €, above
parametrize the A-structures on k™. The category Shy (€, ) is simply the summand where
(k™,n) 2 U as pinned A-spaces. O
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2.5. Coslice categories

Let X be an object of a category C. Recall that the coslice category Ax(C) is the
category of objects over X. Precisely, an object of Ax(C) is a pair (Y, ) where Y is an
object of € and a: X — Y is a morphism in €. A morphism (Y, a) — (Z,5) in Ax(C)
is a morphism v: Y — Z in € such that yoa = .

Coslice categories will be important to us due to their appearance in Fraissé’s theorem
(Theorem A.11). They are also closely related to shift categories, as we now explain. (This
is why we are interested in shift categories.) Let U be a finite pinned A-space. If (V, v, V)
is an object of Shyy(€y) then we have a natural embedding U — V' by mapping the given
basis vector of U to v. One easily sees that this defines a functor

Shy (Cx) = Ay (Cy).
We make one simple observation here:
Proposition 2.9. The above functor is essentially surjective.
Proof. Suppose that (V, @) is an object Ay (€Cy), where a: U — V is an embedding. Let
v be the image of the basis of U under «, and let V' be a subspace of V' complementary

to a(U). Then (V,u, V') is an object of Shy(€) that maps to (V,«a) under the above
functor. O

3. Homogeneous tensor spaces
3.1. Universal spaces

We are primarily interested in homogeneous spaces in this paper. However, to study
them we will require some results about universal spaces. We therefore examine them
now. We begin by giving the formal definition:

Definition 3.1. Let V be a A-space.

(a) V is universal if every finite A-space embeds into V.
(b) V is d-universal (for d € N) if every d-dimensional A-space embeds into V. O

The following is our main result on these spaces:
Theorem 3.2. Let \ be a pure tuple.

(a) A universal countable \-space exists.
(b) A d-universal finite A-space exists (for any d € N ).
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(¢c) If V is a universal countable \-space over k and k'/k is any field extension then
V @ k' is a universal \-space over k'.

Some related results appear in the literature; see Remark 3.6. We note that the purity
hypothesis in the theorem is necessary by Remark 2.2. We require a few lemmas before
proving the theorem. We begin with the key special case. For this, it will be convenient
to use n-spaces (i.e., spaces equipped with n-forms) instead of \-spaces.

Lemma 3.3. Let n be a positive integer. Let V' be a vector space with basis {v; j}1<ii1<j<n,
and let Vi, be the span of the v;; with1 <i <m and1 < j<n. Let xz;; € V* be the
dual vector to v; j, and consider the n-form

oo

w = Z(zyl @R Tin).

=1

Then (V,w) is a universal n-space. Moreover, given d there exists m, such that Vi, is a
d-universal n-space.

Proof. The result is clear for n = 1, so we assume n > 1. Let (W, 7) be a finite dimension
n-space, and let 1, ..., yq be a basis for W*. Let (aq,...,ay): [d"] — [d]™ be a bijection;
here [d"] denotes the set of integers {1,...,d"} and [d]™ denotes the set of n-tuples with
values in {1,...,d}. We thus see that y,, ;) @ - - @y, ;) indexes a basis of (W*)®" as i
varies in [d"]. Write

o
n= Zci “War (i) @+ @ Yan(5))-
=1

Let m = d" + d, and let w’ denote the restriction of w to V,,. Define a linear map
2 VE = W by

CilYa, (i) f1<i<d"and j=1
Ya, (i) ifl1<i<d"andj>1
0 ifd"+1<i<d"4+mnandj=1
Yi—gn fd*"+1<i<d"+dandj>1

Maiy) =

and let ¢: W — V,,, be the dual map. The first two lines above ensure that " maps the
1th term in the sum defining «’ to the ith term in the sum defining n for 1 < ¢ < d", while
the third line ensures that ¢ kills the remaining terms of w’. Thus ¢t*(w’) = 7. The fourth
line in the definition of + ensures that .t is surjective, and so ¢ is injective. We thus see
that ¢ is an embedding of n-spaces. Hence V,,, is d-universal, and V is universal. 0O
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We now prove two additional lemmas that will allow us to deduce the theorem from
the above lemma and some formal manipulations.

Lemma 3.4. Let A = [A1,...,\;] be a pure tuple, let 1 < s <r, and let N = [\1,..., Aq].
Suppose that (V,w) is a universal (resp. d-universal) A-space, and put w’' = (w1, ..., ws).
Then (V,w') is a universal (resp. d-universal) N -space.

Proof. Let (W, /) be a finite dimensional \'-space, where ’ = (11, ...,7s). Define ns41 =
<o =1, =0, so that n = (m1,...,7n,) is a A-structure on W. By hypothesis, we have
an embedding (W, n) — (V,w) of A-spaces. Of course, this is also defines an embedding
(W,n') = (V,w’) of XN-spaces, which shows that (V,w’) is universal. The proof for d-
universal is the same. 0O

Suppose now that A = [A1,...,A;] and g = [u1,. .., ps| are two tuples. Define

AUM: [)‘17"'7>\1”7M17"'7l’b5]‘

Suppose that (V,w) is a A\-space and (V’,w’) is a u-space. We regard w, as a \;-structure
on V @ V' by pull-back along the projection V' @& V' — V, and similarly for w/. In this
way,

(W1 ey Wy WYy e e, W)

is a (AU p)-structure on V& V',

Lemma 3.5. Maintain the above notation. Suppose that V is a universal (resp. d-
universal) \-space and V' is a universal (resp. d-universal) p-space. Then V @ V' is
a ungversal (resp. d-universal) (AU p)-space.

Proof. Let (W, n) be a finite dimensional (AUg)-space, and write p = (91, ..., 00,05, - - -, 75)-
By hypothesis, there are embeddings

P (anla'-wn?“) — (M&L '(/): (Wnllavn;) - (V/a('_‘/)

of A\- and p-spaces. One easily verifies that ¢ & ¢: W — V @ V' is an embedding of
(AU p)-spaces, and so V @ V' is universal. The proof for d-universal is the same. O

Proof of Theorem 3.2. (a) Let A = [A1,...,\;] be a pure tuple. Let n be the size of \;.
Let p be the tuple such that S, is the nth tensor power functor; thus a p-structure is
equivalent to giving an n-form. By Lemma 3.3 there is a universal countable u-space.
Since \; is one of the y;’s, it follows from Lemma 3.4 that there is a universal countable
A1-space. Similarly for the other \;’s. Lemma 3.5 now shows that there is a universal
countable A-space.
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(b) This follows just like (a).

(c) Let @: Cg\’k — (3&7 . be the base change functor, and identify countable A-spaces
with ind-objects in el (see §A.2). By Proposition A.15, it suffices to show that ® carries
some universal ind—o%ject of (‘Zg\)k to a universal ind-object of @g\)k,. Let V (resp. V')
be the universal countable A-space over k (resp. k') constructed in (a). By inspection,
V' = ®(V); the point is simply that the field did not figure into the construction at all.
This completes the proof. 0O

Remark 3.6. Suppose k is an algebraically closed field and A is a pure tuple. Let V be
a k-vector space of countable dimension, and let A2 be the infinite dimensional affine
scheme parametrizing A-structures on V' (see [3, §1.1]). The general linear group GL(V)
acts on A2, and a point is called GL-generic if it has dense GL(V)-orbit [3, §3.4]. By
[3, Proposition 3.13], GL-generic points exist; the proof is essentially the same as the
proof of Theorem 3.2(a) given above. An important result [2, Corollary 2.6.3] implies
that (V,w) is universal if and only if w is GL-generic. (We note that this was first proved
in the case symmetric powers by [24].)

3.2. Homogeneous spaces

We now reach the central concept of this paper:

Definition 3.7. A A-space V is homogeneous if for any finite dimensional subspaces W
and W’ of V', any isomorphism W — W' of A-spaces extends to an automorphism of V.

The following is the first main theorem of this paper:

Theorem 3.8. Let A be a pure tuple.

(a) A universal homogeneous countable A-space exists.

(b) Any two universal homogeneous countable \-spaces are isomorphic.

(c) If V is a universal homogeneous countable A-space over k and k'/k is any field
extension then V @y k' is a universal homogeneous A-space over k'.

Proof. Throughout this proof, we identify countable A-spaces with ind-objects in the
category (33; see §A.2. We also note that, since A is pure, €, has an initial object,
namely, the zero space. Thus €, is the coslice category Ay (€y) with U = 0.

(a) By Fraissé’s theorem (Theorem A.11), it suffices to show that each coslice category
AU(GfA) has a universal ind-object. Let U be an n-dimensional A-space, and choose a
pinning (basis) of U. We have an equivalence Shy(€y) = €, where p = sh; (}), by
Proposition 2.8; this clearly induces an equivalence ShU(CfA) = GL. By Theorem 3.2, the
category (‘Zlfi has a universal ind-object. We thus see that the same is true for ShU(GfA).
The forgetful functor Shy (€5) — Ay (€Y) is essentially surjective (Proposition 2.9). Thus
Ay(€Y) also has a universal ind-object (Proposition A.15).



N. Harman, A. Snowden / Advances in Mathematics 443 (2024) 109599 15

(b) Universal homogeneous ind-objects are always unique up to isomorphism; see
Proposition A.7(b).

(c) Let ®: €}, — €}, be the base change functor V' — V ®; k’. To prove the
statement, it suffices to show that ® preserves universal ind-objects on coslice categories
(Proposition A.16).

Let U be an n-dimensional A\-space over k, and choose a pinning on U. Let U’ = U®k'.
We have a commutative (up to isomorphism) diagram

ei,k - ShU(GfA,k) AU(GfA,k)
€l = Shy (€4 1) Ay (G 1)

On the top line the first equivalence comes from Proposition 2.8, and the second functor
is the forgetful functor, which is essentially surjective (Proposition 2.9); similarly on the
second line. The vertical maps are base change maps.

Let €2 be a universal ind-object in ShU(Ciyk) and let o, 3, and €24 be its images in
the categories AU(Gg,k), ShU/(GfA’k,), and AU/(GfA’k,). The left vertical functor preserves
universal ind—objects_ by Theorem 3.2(b), and so the middle one does as well; thus Qg3 is
universal. Since the final functors on each line are essentially surjective, they preserve
universal ind-objects (Proposition A.15); thus Qs and Q4 are universal. We thus see
that the right functor maps the universal ind-object 25 to the universal ind-object 24
(up to isomorphism), and so this functor preserves all universal ind-objects (Proposi-
tion A.15). O

Definition 3.9. For a pure tuple A, we let V) denote the universal homogeneous countable
A-space. It is well-defined up to isomorphism.

Example 3.10. Suppose that A = [(2)], so that a A-space is a quadratic space. Recall that
the hyperbolic plane H is the 2-dimensional quadratic space with form xzy. We claim that
Vy can be taken to be H®> (countable orthogonal sum of copies of H).

We first show that H® is universal. Let W be a finite dimensional quadratic space.
Decompose W into an orthogonal direct sum Wy & Wy where Wi is the null space of
the form and W, is non-degenerate. It is well-known that Wy, @ Wj = H ©n  where
n = dim(Wy) and W is obtained from Wy by negating the form. Thus W embeds into
H®" Now, suppose that W, is m-dimensional with basis e1,...,e,. Then W; embeds
into H®™ by mapping e; to an isotropic vector in the ith summand. We thus see that
W embeds into H®(*+™) and thus into H®>*. Hence H®> is universal. (In fact, this
argument shows that H®? is d-universal.)

Now suppose that ¢: W — W’ is an isometry of finite dimensional subspaces of H%°,
Let n be such that W and W' are contained in H®". By Witt’s theorem, ¢ extends to
an isometry of H®", which in turn extends to an isometry of H®>®. Thus H®> is
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homogeneous. (In the language of this paper, Witt’s theorem simply states that a finite
dimensional non-degenerate quadratic space is homogeneous.)

We note that V) admits other descriptions too. For instance, if —1 is a square in k
then one can take V to be the quadratic space with form Y., z7.

Example 3.11. Suppose k is algebraically closed and A = [(2),(2)]. Let V = k%°°, and
represent a A-structure on V' by a pair (A4, B) of infinite symmetric matrices. Note that
all entries in A or B are allowed to be non-zero. One can show that (A, B) is a universal
homogeneous structure if and only if the columns of A and B, taken all together, are
linearly independent.

Remark 3.12. Every countable A-space embeds into V) by Proposition A.7(c). Thus (the
A-structure on) Vy belongs to the maximal class in [2, Theorem 2.9.1].

3.8. Classification

When considering some class of relational structures, a common problem is to classify
the homogeneous structures. For example, [20] classified homogeneous graphs. With this
in mind, a natural problem is to classify homogeneous (but not necessarily universal)
A-spaces.

To begin, we note that non-universal homogeneous A-spaces do exist. Here are some
examples:

e Any finite dimensional non-degenerate quadratic space is homogeneous by Witt’s
theorem, and obviously not universal.

« Over the real numbers, the countable quadratic space with form >°,., z? is homo-
geneous (again by Witt’s theorem), but not universal (since it is positive definite).

e Any space equipped with the zero A-structure is homogeneous and not universal.

e More generally, if V' is a homogeneous A-space then it is also a homogeneous [\, pl-
space when given the zero p-structure.

From now on, we work over an algebraically closed field and confine our attention to
infinite dimensional spaces. It seems plausible that in this case all homogeneous spaces
come from taking a universal homogeneous space and padding by zeros, as in the final
example above. We have only proved this in the following special case:

Proposition 3.13. Suppose k is algebraically closed and A = [(d)] for some positive integer
d. Let V' be a homogeneous countable A-space with non-zero form f. Then V is universal.

Proof. Suppose f is degenerate in the sense of 3, §9.1]. Write f = ®(g1, ..., g,) where
® is a polynomial, g; € (Sym® V)*, and (g1, ..., g,) is non-degenerate, which is possible
by iteratively applying [3, Proposition 9.1], and take  minimal. Re-ordering if necessary,
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suppose d; > dy > -+ > d,, and let s be such that dy = --- =d; and ds # dsy1. If 0 is
an automorphism of V' then o preserves the k-span of g1, ..., gs by [3, Theorem 9.5].
Now, for any c¢1,...,¢, € k we can find a non-zero v € V' such that g;(v) = ¢; for

1 <4 < r. This follows from [2, Corollary 2.6.3] (see also [4, §2]). Let v be a non-zero
vector such that g;(v) = 0 for all 4. Let ¢y, ..., ¢, € k be such that ®(cy,...,¢.) =0 but
c1 # 0, and let w € V be such that g;(w) = ¢; for all 1 <4 < r. Thus f(v) = f(w) =0,
and so v and w generate isomorphic 1-dimensional A-subspaces of V. However, there is no
automorphism of V' moving v to w, since Aut(V') preserves the locus g; = --- = g; = 0.
Thus V is not homogeneous, a contradiction.

The above argument shows that f is non-degenerate, and so V is universal by Re-
mark 3.6. O

Remark 3.14. When d = 2 the above proof shows that a quadratic space of infinite
dimension but finite non-zero rank is not homogeneous. The key point is that there are
two types of isotropic vectors: those in the null space and those not in the null space.

4. Linear-oligomorphic groups
4.1. Linear-oligomorphic groups

Recall that an oligomorphic group is a group G with a faithful action on a set 2 such
that G has finitely many orbits on Q" for all n > 0. The most basic example is the infinite
symmetric group, i.e., take ) to be an infinite set and G the group of all permutations
of Q. There is an intimate connection between oligomorphic groups and homogeneous
structures; see [5] or [27] for general background.

We aim to extend this story to the linear case. To this end, we introduce the following
concept:

Definition 4.1. Let V' be a vector space and let G be a subgroup of GL(V). We say that
G is linear-oligomorphic if for any d > 0 there exists a finite dimensional subspace E of
V such that if W is an d-dimensional subspace of V' then there exists g € G such that
gW C E.

Note that a permutation group (G,€Q) is oligomorphic if and only if the following
condition holds: for every m > 0 there is a finite subset S of € such that if T is any
n-element subset of 2 then there is some g € G such that ¢g7" C S. The above definition
simply reformulates this in linear terms.

Example 4.2. The group GL(V) is clearly linear-oligomorphic. It is also easy to see
directly that the split infinite orthogonal group and the infinite symplectic group are
linear-oligomorphic.
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Remark 4.3. Definition 4.1 is not intended to be definitive: e.g., one might also want
G to be a closed ind-subscheme of GL(V'), and for the defining property to hold after
passing to extensions of k. However, for the purposes of this paper, Definition 4.1 will
suffice.

Remark 4.4. Consider an oligomorphic group G acting on the set 2. We can linearize 2
to obtain a permutation representation V = k[Q}] of G. It is not necessarily true that G
is a linear-oligomorphic subgroup of GL(V). For instance, if G is the symmetric group
on the infinite set 2 = N then G is not linear-oligomorphic: indeed, if L,, is the 1-
dimensional subspace of k[Q] spanned by >_." | e; then any finite dimensional subspace
of V' contains conjugates of only finitely many of the L,,’s.

We would like to have a class of groups (“algebraic-oligomorphic groups”) that includes
both oligomorphic and linear-oligomorphic groups. One reason for this is for applications
to tensor categories, as described in §1.6. Here is a candidate. Consider a group ind-
scheme G equipped with a class % of closed subgroups such that the following conditions
hold:

(a) % is closed under conjugation and finite intersections.

(b) We have (cq U = 1.

(¢) Given U,V € % there is a closed subscheme X of G that is of finite type over k such
that the map U x X x V — G given by (u, z,v) — uxv is surjective. O

An oligomorphic group G satisfies the above definition: regard G as a discrete ind-scheme,
and take % to be the groups defining the admissible topology discussed in [18, §2.2].
Now let G C GL(V) be linear-oligomorphic, and suppose that G is Zariski closed (and

thus a group ind-scheme). Then G satisfies the above conditions, by taking % to be the
subgroups that pointwise fix some finite dimensional subspace of V.

4.2. Automorphism groups

Fix a pure tuple A. We now introduce the following important object:
Definition 4.5. We let G be the automorphism group of the A-space Vj.

Example 4.6. We give some examples of the G groups:

(a) Gy is the infinite general linear group, where @ is the empty tuple.
(b) Gy is the stabilizer in GL(V}y]) of a non-zero linear functional.
(c) Gy is the split infinite orthogonal group (see Example 3.10).
(d) Gya,1y is the infinite symplectic group.

)

(e) Gie),(2) is the intersection of two generic conjugates of the infinite orthogonal group
(the stabilizers of A and B in Example 3.11, if k is algebraically closed).
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(f) Gy does not seem to be closely related to any familiar groups. O
The following theorem shows that the group G is reasonably large:
Theorem 4.7. The group G is linear-oligomorphic.

Proof. Let d > 0 be given. Let E be a d-universal finite A-space, which exists by The-
orem 3.2. Fix an embedding £ — V), which exists because V) is universal, and treat
E as a subspace of V). Now suppose that W is an d-dimensional subspace of Vj, and
let ©: W — V) denote the inclusion. Since E is d-universal, there is an embedding
j: W — E. Since V) is homogeneous, there is g € G such that goi = j. It follows that
gW C E, and so G is linear-oligomorphic. O

Given a group G acting on a set X and a tuple z = (z1,...,%;) in X™, we let G(z)
be the subgroup of G consisting of elements that fix each x;. We will require the following
strengthening of the above theorem when we prove quantifier elimination in §5.6.

Proposition 4.8. For any u € V" the group Gx(u) is linear-oligomorphic.

Proof. Fix d > 0. Let U be the span of uy, ..., u;,, regarded as a pinned A-space. Recall
(Proposition 2.8) that we have an equivalence Shy(€y) = €, where g = sh; (A), given
by (V,v,V’) — V’'. Let E’ be a d-universal finite u-space, which exists by Theorem 3.2,
and let (E, e, E') be the corresponding object of Shyy(Cy). Fix an embedding E — V), of
A-spaces, and identify I/ with a subspace of V) in what follows. Since V) is homogeneous,
there is g € G such that ge = u. Replacing E with gF, we assume e = u.

Now let W’ be a d-dimensional subspace of V) such that UNW’ =0, and let W =
U+ W’'. Welet i: W — V) be the inclusion, and we regard (W, u, W’) as an object of
Shyy(€y). Since E’ is d-universal, there is an embedding W' — E’ of p-spaces, which
translates to an embedding (W, u, W’) — (E,u, E’) in Shy(Cy). In other words, we have
an embedding j: W — V) such that j(u) = w and j(W) C E. Since V, is homogeneous,
there is g € G, such that j = g o ¢. This shows that there is ¢ € Gx(u) such that
gW' e E'.

Changing notation slightly, we have thus proved the following: there is a finite di-
mensional subspace E of V) such that if W is a d-dimensional subspace of V) with
W NU = 0 then there is ¢ € Gx(u) such that gW C E. Of course, we are free to en-
large E, and so we may as well suppose U C E. Suppose now that W is an arbitrary
d-dimensional subspace of V). We have W C U + W’ for some d-dimensional subspace
W' with UNW’ = 0. Letting g € G (u) be such that gW’ C E, we have gW C E. Thus
G (u) is linear-oligomorphic. O

Remark 4.9. There are other examples of linear-oligomorphic groups. For instance, if k
is algebraically closed then the automorphism group of any countable quadratic space
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is linear-oligomorphic. More generally, we show in [20] that the automorphism group of
any weakly homogeneous A-space is linear-oligomorphic.

4.3. Representation theory

Let G be a subgroup of GL(V). We can then regard V as a representation of G; we
call it the standard representation. We say that a representation of G is polynomial if it
occurs as a subquotient of a (possibly infinite) direct sum of tensor powers of the standard
representation. We let ReppOI(G) be the category of polynomial representation of G. It
is a Grothendieck abelian category and is closed under tensor product. We believe that
studying this category for linear-oligomorphic groups should be an interesting problem.

In fact, the paper [30] essentially solves this problem when G = G,. The following
theorem describes the most important points. This generalizes results from [12,28,29,32]
on infinite rank classical groups.

Theorem 4.10. Let A be a pure tuple. In what follows, we consider representations of G .

(a) The representation VA‘X’” is of finite length, for any n > 0.

(b) For a partition p, the socle L, of S,,(Vy) is irreducible; every irreducible polynomial
representation s isomorphic to L, for a unique p.

(¢) The representation S, (Va) is injective in the category RepP(G).

(d) Ewery finite length polynomial representation has finite injective dimension.

Before proving the theorem, we recall some material from [30]. Let w be a A-structure
on a countable vector space V. Write V' = |J,,~; Vi, with each V,, finite. Define I',,(n) to
be the set of all ¢ € GL(V') such that g 'w and w have the same restriction to V,,. This
is typically just a set, and not a subgroup. The generalized stabilizer of w is the system
Iy = {T'y(n)}n>1. One of the main ideas of [30] is that, while the stabilizer of w is often
“too small,” the generalized stabilizer is always large enough.

A pre-representation of T'y, is a vector space W equipped with a partially defined
action map I', x W --» W. A little more precisely, for each w € W there must exist
n > 1 such that the action of g on w is defined for all g € T, (n). A representation of
T, is a pre-representation satisfying some natural conditions. We refer to [30, §7.2] for
the exact definitions. Since each T',,(n) is contained in GL(V'), there is a natural pre-
representation of I', on V', which is a representation. A representation of I, is polynomial
if it occurs as a subquotient of a direct sum of tensor powers of V. We let RepP® (T,,)
denote the category of polynomial representations.

Let G, be the stabilizer of w in GL(V). We have G,, C T'y(n) for all n > 1. In
particular, if W is a representation of I, then there is well-defined action map G, x W —
W, which is easily seen to define a representation of G, on W; we call this the restriction
of W to G,. It is clear that if W is a polynomial representation of Iy, then its restriction
is a polynomial representation of G,,. We thus have a restriction functor
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res: RepP?/(T',) — Rep”®(G,,) (4.11)
The following two lemmas are the key results needed for Theorem 4.10:

Lemma 4.12. Suppose (V,w) is homogeneous. Then Gy, is dense in Iy, in the following
sense: given g € T'y(n) there exists h € Gy, such that g and h have the same restriction
to V.

Proof. Let g be as in the statement of the lemma. Then g: (V,,,w) — (¢V,h,w) is an
isomorphism of A-spaces. By homogeneity, there is h € G, such that g and h have equal
restriction to V,,. O

Lemma 4.13. Suppose (V,w) is homogeneous. Then (4.11) is an equivalence.

Proof. It is clear that res is faithful. We now show that it is full. Thus let W and W’
be polynomial representations of I'y, and let f: W — W’ be a G-linear map. Write
W = W1 /Wy where Wy C W1 are I',,-subrepresentations of a sum of tensor powers of V,
and similarly write W’ = W{/WJ. Let w € W be given, let w’ = f(w'), and let wy € W
and w] € W/ be lifts. Let n be such that w; and w] belong to the appropriate sums of
tensor powers of V,,. We claim that f(gw) = gf(w) for all g € I',(n), which will show
that f is a map of I',,-representations. Thus let g be given. Appealing to Lemma 4.12,
let h € G, have the same restriction to V,, as g. Then gw; = hw; and gw] = hwj.
Thus f(gw) = f(hw) = hf(w) = gf(w), where in the second step we used that f is
G-equivariant. This proves the claim, and the fullness of res follows.

It remains to show that res is essentially surjective. Thus let W be a polynomial
representation of G,. Write W = W /W5 where Wy C Wy are G,-subrepresentations of
a sum of tensor powers of V. We claim that W; and Wy are I',,-subrepresentations; this
will imply that W is naturally a polynomial I',,-representation, and establish essential
surjectivity. Let w € W; be given and let n be such that w belongs to the appropriate
sum of tensor powers of V,,. Given g € T',(n), by Lemma 4.12 there is h € G,, with the
same restriction to V,,; thus gw = hw belongs to Wi. Thus gw € W for all g € T, (n),
which proves that W; is a I',,-subrepresentation. The proof for Wy is similar. O

Theorem 4.10 follows from Lemma 4.13 and properties of ReppOI(I‘ﬂ) established in
[30].

Remark 4.14. The category Rep®®(T,,) is equivalent to several other categories, as dis-
cussed in [30, §1.5]. Thus RepP®(G,) is equivalent to these categories as well. For
instance, Repp°1(G ) is equivalent to the category of locally finite representations of
the upwards A-Brauer category, which gives a combinatorial description of the category.

Question 4.15. The paper [33] develops the theory of the spin representation for the in-
finite orthogonal group. Is there an analogous theory for Gy ?
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5. Model-theoretic aspects
We emphasize that “A-space” means “A-space over k” unless otherwise mentioned.
5.1. Theories

Fix a tuple A = [A1,...,\]. We now introduce the first-order language £y = Lk
we use to describe A\-spaces. This language is two-sorted: we use Greek symbols (such as
a, B) for scalar variables, and Roman symbols (such as z, y) for vector variables. The
language contains function symbols for addition and multiplication of scalars, together
with constants for each element of k. It also contains function symbols for scalar-vector
multiplication and vector addition, together with a constant symbol O for the zero vector.
Finally, for each 1 < ¢ < r there is a scalar-valued function symbol w; taking |A;| vector

inputs.

Suppose that ¢ is a formula with m free scalars variables as, . .., a,, and n free vector
variables z1,...,x,. We then say that ¢ is a (m,n)-formule. It will be convenient to
package the variables into tuples a = (aq,...,q;) and z = (z1,...,2,), and write
(e, z) in place of w(ay, ..., Qn,T1,...,ZTn).

Let V be a A-space. Then k IV is naturally a structure for £y. (It is important to
remember that the scalars are part of the structure.) To define w;, we convert the given
Ai-form on V' to a multilinear map as in §2.1. We let Th(V') be the theory of V; this is
the set of all sentences in £, that are true for V. We say that two A-spaces V and W
are elementarily equivalent if TH(V) = TH(W).

Remark 5.1. Suppose that V' is a A-space over an extension field k&’ of k. Then k' IV’ is
naturally a structure for £y, and we let ThH(V’, k') be its theory. We will mostly not be
concerned with this situation. However, one must keep it in mind, for if V is a A-space
then a model of the theory TH(V) is a A-space V' over k’ such that TH(V' k') = TH(V).
Thus the model theory of TH(V') “sees” these examples.

We now give two examples to illustrate some of the information first-order statements
can detect about A-spaces.

Example 5.2. Consider the formula 05(z1, z2) given by
Vag,as(arz; + agze =0 = a3 =0Aay =0)

This formula expresses that x1 and x5 are linearly independent. Of course, there is a simi-
lar (0, n)-formula 6, (z) expressing linear independence of n vectors. We have dim(V') > n
if and only if the sentence 3x(6,,(z)) belongs to TH(V'). Thus if V and W are elementarily
equivalent then either V and W are both infinite dimensional, or V and W have equal
finite dimension.
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Example 5.3. Let A = [(2)], so that we are working with quadratic spaces. Consider the
formula v(z) given by

Vy(w(z,y) = 0).

This formula expresses that x is in the null space of the form w. Thus the sentence

dz(z # 0 A p(x))

means that the null space is non-zero. Similarly, letting 6,, be as in Example 5.2, the
sentence

1, .y (On(x1, .o xn) AU(x) A Ab(y))

means that there are n linearly independent vectors in the null space. We thus see that
if V and W are elementarily equivalent quadratic spaces then the null spaces of V and
W are either both infinite dimensional, or have the same finite dimension.

5.2. Types

An important idea in model theory is the notion of type. We will require a small amount
of type theory, which we now discuss. We refer to [17, §6.3] for additional background.

Let ¥ be a complete theory in the language £, e.g., the theory of some A-space. We
say that two (0, n)-formulas ¢(z) and ¢ (z) are equivalent modulo ¥ if the sentence

Vz(p(z) — ¥(z))

belongs to ¥. The set R,, of equivalence classes forms a boolean algebra under conjunction
and disjunction. Of course, one could make a more general definition that accommodates
(m, n)-formulas, but we will not need this.

Let V be a A-space with ¥ = T(V), and let v € V™. The type of v, denoted t(v), is
the set of all (0,n)-formulas ¢ satisfied by v. Note that if ¢ and ¢ are equivalent the
(v) holds if and only if ¢(v) holds. Thus ¢(v) is a union of equivalence classes, and
can therefore be regarded as a subset of R,,. The type of v determines the isomorphism
type of the A-space span(v), but typically contains more information (related to how this
space sits in V).

In fact, there is a more abstract notion of type: an n-type of ¥ is a maximal ideal of
the ring R,,. The type t(v) of v € V™ is a type in this sense: indeed, ¢(v) is the kernel of
the ring homomorphism R,, — F5 that takes ¢ to 0 if ¢(v) holds, and 1 otherwise. We
say that a type t of ¥ occurs in V' if t = ¢(v) for some v € V™.

We now look at a few special classes of types.
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5.2.1. Linearly independent types

We say that an n-type is linearly independent if it contains the formula 6,, from
Example 5.2. Of course, if v € V™ then ¢(v) is linearly independent if and only if v is. It
typically suffices to study linearly independent types.

5.2.2. Principal types

We say that an n-type t is principal if it is axiomatized by a single formula x(z) €
t. This means that ¢ consists of exactly those formulas ¢(z) for which the sentence
Va(k(z) = ¢(z)) belongs to T. Equivalently, it means that ¢ is the principal ideal of R,
generated by k(z). Principal types are especially easy to work with: if x(z) axiomatizes
t then v € V™ has type t if and only if x(v) holds.

Example 5.4. Suppose that A = &, so we just have vector spaces, and let ¥ be the theory
of a countable vector space V. The following four formulas axiomatize principal types:

x =0, x #0, O2(x,y), (x #0) A (y = 2z).

Here 05 tests linear independence (see Example 5.2). We briefly explain why these are
principal types. Let k be one of the above four formulas. It suffices to check that if ¢
is some (0, n)-formula for which there is some v € V™ such that x(v) and ¢(v) hold,
then @(w) holds for all other w satisfying k. It is not difficult to see that GL(V') acts
transitively on the set of vectors (or pairs of vectors) satisfying x, so if k(v) and k(w)
hold then w = gv for some g € GL(V'), and so ¢(v) is equivalent to p(w). We will see a
more detailed version of this type of argument in Proposition 5.11.

The following proposition demonstrates the usefulness of principal types:

Proposition 5.5. Let V and W be countable A-spaces that are elementarily equivalent and
in which all linearly independent types are principal. Then V and W are isomorphic.

Proof. Suppose that we have linearly independent tuples v € V™ and w € W™ such that
t(v) = t(w), and let v,41 be another element of V' that is linearly independent of v. We
show that there exists w,4+1 € W such that (v, v,41) = t(w, wyy1). This implies that
Wp+1 18 linearly independent of w. Of course, the analogous statement with V' and W
switched will then be true by symmetry.

Let ¢ (z, xn41) axiomatize t(v, vp41). Since 3zp41(Y(v, Tnt1)) is true (vn41 is a wit-
ness), it follows that the formula 3z, 41 (¥ (z, n41)) belongs to t(v). It therefore belongs
to t(w), and so Fx,41(Y(w, xpy1)) is true. Let w,41 be a witness. Since ¥ (w, wp4+1)
holds and v axiomatizes t(v, vp41), it follows that t(w, wn41) = (v, Vpy1).

The result now follows from a back and forth argument, as follows. Fix bases X and
Y of V and W indexed by N. We will construct new bases (v;);>1 and (w;)i>1 of V
and W such that t(vy,...,v,) = t(ws,...,wy,) for all n. This implies that v; — w; is
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an isomorphism of A-spaces. We construct our new bases inductively. Suppose we have

constructed (v1,...,v,) and (w1, ..., w,). We then do the following two steps:
o Let v,41 be the first basis vector in X not in the span of (vy,...,v,), and let wy41
be a vector in W such that ¢(w1,..., wny1) = t(v1,.. ., Vpt1).
o Let wy42 be the first basis vector in Y not in the span of (wy,...,w,11), and let
Unt2 be a vector in V' such that t(v1,...,vn42) = t(wr, ..., Wni2).
The choice of v,, 11 ensures that (v, ..., v,41) is linearly independent, and so (w1, . .., Wp11)

is linearly independent too. Similarly for the second step. Since every element of X be-
longs to the span of (vi,...,v,) for some n, it follows that (v;);>1 is indeed a basis;
similarly for (w;);>1. O

Remark 5.6. The above proof is an adaptation of a standard argument [17, Theo-
rem 7.2.3] to the linear case.

Remark 5.7. Let V be a A-space in which all linearly independent types are principal.
One can then show that all types in V' are principal. In fact, this even holds for (m,n)-
types, i.e., types involving scalars. In the terminology of model theory, V is an atomic
structure. See [17, §7.2] for more.

5.2.3. Rational types

Every type appears in some model of T. However, we only care about models where
the scalar field is k. With this in mind, we say that an n-type t is rational if there exists
a A-space V with TH(V) = T such that ¢ occurs in V. (We re-emphasize that V is over
k.) We note that even is k is algebraically closed, irrational types will typically exist.

Example 5.8. Here is an example of an irrational 2-type. Take A to be empty and ¥ to
be the theory of a countable dimensional k-vector space. Start with the formulas

Ja(z = ay), x #£0, y # 0.

Thus we are looking at a pair of non-zero linearly dependent vectors. Of course, the
scalar « in the first equation is unique. Now let ¢y be a 1-type in the theory of k (as a
field, or really, field extension of k), which is not the type of 0 € k. For each formula
Y(a) in tg, add the formula

Jo(z = ay A ()

to our list of formulas. Now take the 2-type t axiomatized by all the above formulas.
This expresses that z and y are linearly dependent, and that the scalar relating them
has type to. If to does not occur as a type in k then ¢ will not be a rational type. (To
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produce such a tg, let £* be an ultrapower of k, let a be an element of k* that does not
belong to k, and take ty be the type of a.)

5.8. The classifying map

We now pause our discussion of model theory to introduce a useful tool. Let (V,w)
be a A-space. Fix a non-negative integer n, and let V") be the subset of V™ consisting
of tuples (v1,...,v,) that are linearly independent. Let X = Sy (k™)* be the space of
A-structures on k™. Given v € V" we obtain an injective linear map j,: k* — V by
mapping the ith basis vector e; of k™ to v;. We define a function

T V[”]—>X, m(v) = j,(w).

We call 7 the classifying map.

Note that X is a finite dimensional k-vector space. If we fix a basis, then the com-
ponents of 7(v) are obtained by evaluating the given A;-forms on the components of v
(and taking linear combinations). We thus see that 7 is expressible in the language £ .

Example 5.9. Suppose A = [(2)]. We can then identify X with the space of symmetric
n x n matrices. Let x; ; with 1 < ¢ < j < n be the coordinates on this space. Then
7,5 (v) = w(v;, v;), where m; ; denotes the (4, j) coordinate of 7.

We need a few simple properties of 7:

Proposition 5.10. Maintain the above notation, and let G = Aut(V).

(a) The map 7 is G-invariant, i.e., w(v) = 7(gv) for g € G.

(b) If V is universal then T is surjective.

(¢) If V is homogeneous then w is injective modulo G, i.e., w(v) = w(w) if and only if
v = gw for some g € G.

Proof. (a) We have

T(gv) = Jgu (W) = (9Jn)" (@) = jpg" (W) = jy (W) = 7(v).

Here g*(w) = w since g is an automorphism of V.

(b) Let n € X be a A-structure on k™. Since V' is universal, there is an embedding of
A-spaces j: (k",n) — (V,w); this means j*(w) = n. Letting v; = j(e;), we have j = j,,
and so w(v) = n.

(¢) Suppose 7(v) = w(w). This exactly means that the linear isomorphism span(v) —
span(w) taking v; to w; is an isomorphism of A-spaces. Since V' is homogeneous, this
isomorphism extends to an automorphism g of G. Clearly, v = gw, which proves the
claim. 0O
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5.4. Types in homogeneous spaces

We now examine n-types in the universal homogeneous countable A-space V = V.
Let 7: V"l — X be the classifying map (§5.3), with X = S,(k™)*. Suppose that X
is m~dimensional (as a vector space), and fix a basis. Let x(a, z) be the (m,n)-formula
such that

k(a,v) <= O,(v) A7(v) = a,

where 6,, is as in Example 5.2. In other words, k(a,v) holds if and only if v is linearly
independent and 7(v) is the point a of X. We let k,(z) denote the (0, n)-formula x(a, z).

Proposition 5.11. We have the following:

(a) Fora € X, the formula ko(x) axiomatizes a principal type t, of TH(V) which occurs
inV.
(b) The linearly independent rational types of TH(V') are exactly the t, with a € X.

Proof. (a) Let a € X be given. Choose v € V" with 7(v) = a, which is possible since 7
is surjective (Proposition 5.10). It is clear that k,(x) belongs to t(v). We claim that it
axiomatizes it. Suppose that ¢(z) belongs to t(v). We must show that the sentence

Vi(ka(z) = o(2))

belongs to TH(V'). To verify this, it is enough to show that x,(w) implies (w) for all
w € V™. Thus suppose k,(w) holds. Then w is linearly independent and w(w) = a = 7(v).
Since 7 is injective modulo G (Proposition 5.10), we have w = gv for some g € G).
Since ¢ is invariant under G, and (v) holds, it follows that ¢(w) holds.

(b) Let ¢ be a linearly independent rational type of ThH(V). By definition, there is
some A-space W with TH(W) = TH(V) and some w € W™ such that ¢ = t(w). Let
7': Wl — X be the classifying map, and let @ = 7/(w). Then k4(w) holds, and so
t(w)=t, O

5.5. Categoricity

In classical model theory, a countable structure X is called w-categorical if any other
countable structure that is elementarily equivalent to X is actually isomorphic to X.
This has proved to be an important concept, and is closely related to homogeneity (most
countable homogeneous structures of interest are w-categorical). It therefore makes sense
to examine the idea in the linear setting.

The usual concept of w-categorical is not the right thing to consider for A-spaces. There
are two problems. The first is that if k£ is uncountable then there are no relevant countable
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structures. (The field k is technically part of the structure, so even the zero space leads to
an uncountable structure.) The second problem relates to the issue raised in Remark 5.1
concerning the coefficient field. We illustrate this with an example. Suppose k = Q and A
is empty so that we just have vector spaces. We would like k%> (countable sum) to count
as w-categorical. However, if k' # Q is a countable field that is elementarily equivalent
to k as field then the £,-structures associated to (k')®> and k%> are elementarily
equivalent but not isomorphic. Since such &’ do exist, it follows that k9> is not w-
categorical.

Due to the above issues, we introduce the following variant of the w-categorical concept
in our setting:

Definition 5.12. Let V' be a countable A-space. We say that V is linearly w-categorical if
any countable A-space that is elementarily equivalent to V' is isomorphic to V.

We emphasize that in the above definition, “countable” means “dimension Ng,” and
both V' and W are over k. The following is our main theorem related to this concept:

Theorem 5.13. The space V) is linearly w-categorical.

Proof. Let W be a countable A-space that is elementarily equivalent to V. Since every
linearly independent rational type of ThH(V') = ThH(W) is principal (Proposition 5.11), it
follows that all linearly independent types in V and W are principal. Thus V and W are
isomorphic (Proposition 5.5), and so V is linearly w-categorical. O

Remark 5.14. There are other examples of linearly w-categorical spaces. For example, if
k is algebraically closed then any countable quadratic space is linearly w-categorical. One
can see this using the observation in Example 5.3 and some related ideas. This example
is also discussed (from a different perspective) in [22].

Remark 5.15. Let  be a countable structure over a countable language. The classical
Ryll-Nardzewski theorem asserts that the following conditions are equivalent:

o () is w-categorical.
o TH(N) has finitely many n-types for all n.
o Aut(Q) is oligomorphic.

See [17, §7.3] for a more complete statement.
It is natural to look for a linear analog of the Ryll-Nardzewski theorem. Let V be a
countable A-space. Consider the following conditions:

o V is linearly w-categorical.
o The n-types in TH(V') form a finite dimensional space, for all n.
e Aut(V) is linear-oligomorphic.
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Are these conditions equivalent? The precise meaning of the second condition is not
clear to us yet. For V), we showed that the linearly independent rational n-types are the
k-points of the finite dimensional variety X = Sy (k™) (Proposition 5.11), which confirms
this condition to some extent.

Remark 5.16. One can also define linearly k-categorical, for other infinite cardinals x: the
A-spaces involved should have dimension x. We do not know what happens in uncount-
able cardinalities. The behavior of quadratic spaces in dimension ®; (see Example 2.4)
suggests the situation could be very different.

5.6. Quantifier elimination

Recall that a first-order theory ¥ has quantifier elimination if every formula is equiv-
alent (modulo ¥) to a quantifier-free formula, and a structure has quantifier elimination
if its theory does. In general, A-spaces do not have quantifier elimination. There are two
issues. First, k itself may not have quantifier elimination (as a field), and this prevents
THh(V) from having quantifier elimination. Second, the formula 8,, from Example 5.2 ex-
pressing linear independence will typically not be equivalent to a quantifier-free formula,
for any k.

In both issues above, the problematic quantifiers are over scalar variables. This sug-
gests the following definition:

Definition 5.17. We say that a theory ¥ for £ has vector-quantifier elimination if every
formula is equivalent (modulo %) to one involving no quantifiers over vector variables.
We say that a A-space V has vector-quantifier elimination if Th(V') does.

The following is our main result in this direction:
Theorem 5.18. The space V) has vector-quantifier elimination.

We require several lemmas before giving the proof. We say that a subset S of k™ is
a D-(sub)set if it is definable in the language of fields (using constants from k). This
is typically called a “definable subset,” but this terminology could be ambiguous in our
setting (since we have both the language of fields and of A-spaces). Note that the notion
of D-set is invariant under GL,, (k), and so it therefore makes sense for subsets of finite
dimensional vector spaces.

Lemma 5.19. Let V be a finite A\-space, let p(a,z) be an (m,n)-formula, and let K C
E™ x V™ be the set satisfying . Then K is a D-set.

Proof. Choosing a basis, identify V with k¢, and regard K as a subset of k™ x k™. The
\i-forms on V amount to polynomial maps k¢ — k, which makes the lemma clear. O



30 N. Harman, A. Snowden / Advances in Mathematics 443 (2024) 109599

Lemma 5.20. Let V' be a A-space, let G = Aut(V), and assume G(u) is linear-
oligomorphic for all w € V™. Let o(a,z) be an (m,n)-formula, and let L C k™ x V™
be the set satisfying o(a,z). Let W be a finite dimensional subspace of V, and let
K =LnN(k™xW™m™). Then K is a D-subset of k™ x W™.

Proof. We prove the proposition assuming that ¢ has the form Jy(¢(a, z,y)) where v
has no vector quantifiers. This is sufficient for the application of the lemma, and the
proof in the general case is not much different.

Let H C Aut(V) be the subgroup fixing each element of W. By assumption, H is a
linear-oligomorphic subgroup of GL(V'). Let W C V' be a finite dimensional subspace
of V such that every H-orbit on V meets V’. Regard V'’ as a finite A-space, and let
L' C k™ x (V)™ be the set satisfying ¢; here the existential quantifier in ¢ only ranges
over V'. The set L' is a D-set by Lemma 5.19.

We claim that K = L' N (k™ x W™), which will prove that K is a D-set. Since L' C L,
it is clear that the right side is contained in K. Suppose now that (a,v) is an element
of K. Then there is some w € V such that 1 (a,v,w) holds. Let h € H be such that
hw € V’. Since h fixes v and the veracity of v is unaffected by applying h, we see that
¥(a, v, hw) holds. In other words, we can find a witness to ¢(a,v) in V', and so (a,v)
belongs to L’. This completes the proof. O

Let ¢(a,z) be an (m,n)-formula. We say that ¢ satisfies (LI) if ¢(a, v) implies that
the tuple (v1,...,v,) is linearly independent.

Lemma 5.21. Let V be a A-space. Suppose every (m,n)-formula satisfying (LI) is equiv-
alent modulo IH(V) to one without vector-quantifiers. Then V has vector-quantifier
elimination.

Proof. Let ¢ be a (m,n)-formula. We show that ¢ is equivalent to a formula without
vector quantifiers. We just treat the case (m,n) = (0,2) for notational simplicity; the
idea in general is the same. Let 6,, be the (0, n)-formula from Example 5.2 that detects
linear independence. We introduce the following three formulas:

1(x,y): O2(x,y) A o(z,y)
wa(a, x): 01(x) A p(z, ax)
©2(B,y): O1(y) A o(By, y)

We have

play) = ¢i(@,y)
Vda(y = ax A p2(a,z))

vV 3B(x = By A es(B,y))
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V(z=y=0A¢0,0)).

This essentially breaks up ¢(x,y) into cases depending on the possible linear depen-
dencies between z and y. The formulas @1, o, and @3 satisfy (LI), and are therefore
equivalent to formulas without vector-quantifiers. By the above, we see that ¢ is also
equivalent to a formula without vector-quantifiers. O

Proof of Theorem 5.18. Let ¢(a, z) be an (m, n)-formula satisfying (LI). We show that ¢
is equivalent to a formula having no vector-quantifiers. This will establish the theorem by
Lemma 5.21. We note that it suffices (by induction on the number of vector quantifiers)
to treat the case where ¢ has the form Jy(¢(a, z,y)) where ¢ has no vector quantifiers,
though we do not use this.

Let V = Vy and G = G,. Let mp: V" — X be the classifying map (see §5.3),
with X = S, (k™)*. Let m: k™ X VIl 5 E™ x X be the map id x mp. We use Proposi-
tion 5.10 without mention in what follows. Let W be a finite dimensional subspace of V'
such that every G-orbit on V" meets W™, This exists since G is linear-oligomorphic
(Theorem 4.7).

Let L € k™ x VI"l be the set satisfying ¢, and let K = LN (k™ x W), The set
K is a D-set by Lemma 5.20; note that G satisfies the assumption of that lemma by
Proposition 4.8. Thus K’ = w(K) is a D-subset of k™ x X. Let ¢'(a, z) be a formula
without vector quantifiers expressing that z is linear independent and 7 (o, x) € K'.

Let (a,v) € k™ x VI"l. We claim that ¢(a,v) holds if and only if ¢'(a,v) holds; this
will prove the theorem. First suppose that ¢(a,v) holds. Let g € G be an element such
that gv € WM. Since ¢ is G-invariant, it follows that ¢(a, gv) holds, and so (a, gv) € K.
Hence 7(a, gv) € K'. But 7 is G-invariant, and so m(a,v) € K’, that is, ¢'(a,v) holds.

Now suppose that ¢'(a,v) holds, meaning 7(a,v) € K’. It follows that there is some
(byw) € K such that n(a,v) = w(bw), i.e., a = b and mo(v) = mo(w). Since mq is
injective modulo G, there is some g € G such that v = gw. Since ¢(b, w) holds and ¢ is
G-invariant, it follows that ¢(a, v) holds. This completes the proof. O

Remark 5.22. Suppose k has quantifier elimination, e.g., k is algebraically closed or real
closed (Tarski). Then the D-set K’ in the above proof can be described in the language
of fields without quantifiers, and so ¢’ can be chosen without quantifiers. This shows
that we only need quantifiers to test linear independence.

We can reformulate this as follows. Let £) be the language obtained from £, by
adding relation symbols that test for linear independence and function symbols that
give the coefficients when expressing one vector as a linear combination of a tuple of
linear independent vectors. Then the theory of V) over the language £ has quantifier
elimination for vectors and scalars.

Remark 5.23. Assume & = Q. One can then show that Th(V}) is decidable. The key
point is that everything in the proof of Theorem 5.18 is effective, and so we have effective
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elimination of quantifiers. Perhaps the most subtle point is the construction of W, and
what it even means to do computations in V. For this, we must look at the construction
of the Fraissé limit in §A.6. In the case of A\-spaces, these constructions are effective; this
hinges on the explicit construction of universal A-spaces. This construction therefore
produces a model of V) in which we can do computations. To find W, one finds an
embedding of a finite n-universal space into Vj.

Remark 5.24. There is a converse to Theorem 5.18: if V' is a A-space with vector-quantifier
elimination then V' is homogeneous. We sketch the proof. Let V' be given. Suppose ¢(z)
is an (0,n)-formula with no vector quantifiers. If v € V[ then the veracity of o(v)
depends only on 7(v) € X. It follows that w(v) completely determines the type t(v), and
so (as in §5.4) every linearly independent type in V is principal. Suppose v,w € V™
satisfy 7(v) = w(w), i.e., we have an isomorphism span(v) — span(w) of pinned A-spaces.
The proof of Proposition 5.5 shows that we can find an automorphism g of V' such that
gv = w. This shows that V' is homogeneous.

Appendix A. Fraissé theory
A.1. Overview

Fraissé [14] proved an important theorem that, roughly speaking, explains when a
collection of finite relational structures can be assembled to a countable homogeneous
structure. See [5, §2.6] for an expository treatment. We want to apply Fraissé’s theorem
to construct homogeneous \-spaces. However, since A-spaces are not finite, and may not
even be countable, the classical form of the theorem does not apply. In this appendix,
we formulate a generalization of Fraissé’s theorem that applies in our setting. We use
the language of category theory since it seems to be the most flexible and convenient.

We do not claim any originality here: categorical formulations of Fraissé’s theorem
have been known since the work of Droste-Gdobel [9,10], and have appeared in more
recent work as well [6,21,25]. We have included this material simply for the convenience
of the reader.

A.2. Ind-objects

Fix, throughout §A, a category € in which all morphisms are monic. We often refer to
morphisms in € as embeddings. The main case to keep in mind is where € is a category
of finite A-spaces.

An ind-object of C is a diagram

X14>X24>X34>,,,

More formally, an ind-object is a pair X = (X, €e,o) where X; is an object of € for i > 1,
and € ;j: X; — X; is a morphism for ¢ < j, such that ¢; ; is the identity and €; 0 ¢€; ; =
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€; k. Of course, one can consider ind-objects indexed by other filtered categories, but we
do not here.

Let Y = (Y,,0s.) be a second ind-object. A morphism of ind-objects a: X — Y is
specified by a non-decreasing function a: Zy — Z4 and morphisms «a;: X; — Y, for
each i € Z, such that a; o €;; = dq4(i),a(j) © i for all @ < j. Suppose b: Z; — Z, is a
second non-decreasing function such that b(i) > a(i) for all i. Define 3;: X; — Y3(;) by
Bi = Sai),p(i) © - Then (a, a,) and (b, B,) represent the same morphism X — Y.

An object X of € is identified with the constant ind-object X — X — ... where
all transition maps are the identity. In this way we can talk about embeddings X — Y
where Y is an ind-object. Any such embedding factors through Y,, for some n.

Example A.1. Suppose € is the category of finite dimensional vector spaces, with mor-
phisms being injective linear maps. If X is an ind-object in € then we can associate to it
the vector space ®(X) = lim X,,, which has dimension < N. If Y is a second ind-object
then giving an embedding X — Y of ind-objects is equivalent to giving an injective
linear map ®(X) — ®(Y). In this way, ® provides an equivalence between the category
of ind-objects in € and the category of vector spaces of dimension < Ny (with injective
maps).

Example A.2. Let C = GfA be the category of finite A-spaces. Then, just as above, ind-
objects in GfA are equivalent to A-spaces of dimension < V.

A.83. Universal objects

We now introduce an important class of ind-objects:
Definition A.3. An ind-object 2 of € is universal if every object of € embeds into €.

We now establish a result that characterizes when a universal ind-object exists. To
this end, we introduce the following conditions on C:

(CC) Countable cofinality: there is a cofinal sequence of objects, i.e., there
are objects { X, } ,>1 such that for any object ¥ there is an embedding
Y — X, for some n.
(JEP) Joint embedding property: given objects X and Y, there is an object
Z and embeddings X — Z and Y — Z.

The result is the following:

Proposition A.4. The category C has a universal ind-object if and only if it satisfies (CC)
and (JEP).
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Proof. Suppose € satisfies (CC) and (JEP). Let {X,, },,>1 be a cofinal sequence of objects
as in (CC). Now choose a diagram

0 Qy Q3
X, X, X,

We can construct such a diagram as follows. Take €2, = X;. Having defined €2,,_1, define
Q,, to be an object into which both Q,,_; and X,, embed; this exists by (JEP). Then Q
is an ind-object, and clearly universal: indeed, any object embeds into some X,,, which
in turn embeds into 2.

Now suppose that € has a universal ind-object 2. Given any object X, there is an
embedding X — Q, which factors through some €2,,. Thus any object embeds into some
Q,,, and so (CC) holds. In fact, since Q2,, embeds into Q,, for any m > n, we see that
any X embeds into €, for any n > 0, from which (JEP) follows. O

A.4. Homogeneous and f-injective objects

We now introduce two additional important classes of ind-objects:
Definition A.5. An ind-object € is homogeneous if the following condition holds: given

objects X and Y of €, embeddings a: X — Q and #: Y — (), and an isomorphism
v: X — Y, there exists an automorphism o: @ — 2 such that the diagram

o
E——

Q
=0
<D

™

¥
_—
comiutes.

Definition A.6. An ind-object Q2 is f-injective if the following condition holds: given an
embedding a: X — Y in € and an embedding v: X — €, there exists an embedding
B:Y — Q making the diagram

Q

5
e
X% .y

commute.
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We note that if € has an initial object then any f-injective ind-object is automatically
universal: in the above diagram, take X to be an initial object and Y to be an arbitrary
object. The following proposition connects the above concepts:

Proposition A.7. We have the following:

(a) A universal ind-object is f-injective if and only if it is homogeneous.
(b) Any two universal homogeneous ind-objects are isomorphic.
(¢) Given a universal homogeneous ind-object, every ind-object can be embedded into it.

We first prove a lemma that abstracts the classical back and forth argument.

Lemma A.8. Let Q and Q' be f-injective, let §: X — Q and §': X' — Q' be embed-
dings with X and X' in C, and let v: X — X' be an embedding. Then there exists an
isomorphism «: Q — Q' such that «od =" or.

Proof. Let & = (23 — Qo — --+). The map ¢6: X — Q factors through some Q,.
Relabeling, we may as well assume that ; = X and J = €12 is the first transition map
in Q. Similarly for X’ — €. Thus ~ is an embedding a;: Q; — Q}, and we want to
extend a; to an isomorphism a: Q — €.

Put n(1) = m(1) = 1. Since € is f-injective, the embedding 2,,(1) — €2 extends along
1. We can thus find an embedding f : Q;(l) — {,(2) such that Si1a1 = €,(1),n(2)- Since
Q' is f-injective, the embedding €] ;) — ' extends along ;. We can thus find a map
az: Qpe) — le(2) such that asf; = e;n(l),m@). Continuing in this way, we obtain a
commutative diagram

Q) - Qo) - o Qs o

o 2 e 2 2

)y gy = Yy

Q/

m(1
Thus a: Q — Q' extends a1, and is an isomorphism with inverse 3. O

Proof of Proposition A.7. (a) Suppose {2 is an ind-object that is universal and homoge-
neous. We show that € is f-injective. Let a: X — Y and v: X — Q be given. Since (2 is
universal, there exists an embedding 3’: Y — €. Since Q is homogeneous, the two em-
beddings v and '« of X differ by an automorphism, that is, there is an automorphism
o of Q such that o3’a = ~. Taking 8 = o/’ thus gives v = Sa, and so Q) is f-injective.

The converse follows from Lemma A.8; in fact, this lemma shows that any f-injective
object is homogeneous.

(b) Let Q and Q' be universal and f-injective. Since ) is universal, there is an em-
bedding ©; — €. Lemma A.8 implies that this extends to an isomorphism Q — €.



36 N. Harman, A. Snowden / Advances in Mathematics 443 (2024) 109599

(c) Let © be a universal homogeneous ind-object and let = be another ind-object.
Since (2 is universal, there is an embedding =Z; — €. Since (2 is f-injective, this embedding
extends to an embedding =5 — €2, which in turn extends to an embedding =3 — 2, and
so on. In this way, we inductively construct an embedding = — Q. O

A.5. Fraissé categories

Motivated by the importance of homogeneous objects, we introduce the following
terminology:

Definition A.9. We say that C is a Fraissé category if it has a universal homogeneous
ind-object.

We prove one simply permanence property of these categories here. Recall from §2.5
the notion of the coslice category Ax(C).

Proposition A.10. Let C be a Fraissé category and let X be an object of C. Then the
coslice category Ax(C) is also Fraissé.

Proof. Let 2 be a universal homogeneous ind-object of €. Since € is universal, there is
an embedding a: X — €. Reindexing, we assume that o = oy maps X into ;. We let
oy X — , be the composition of a; with the transition map €;,: Q1 — Q,. Thus
each (Q,, a,) is an object of Ax(€), and collectively they form an ind-object of Ax(C),
which we denote simply by (92, «).

We claim that (€, «) is a universal homogeneous ind-object of Ax (€); this will com-
plete the proof. Let (Y, 5) be an object of Ax(C), where 8: X — Y is a morphism in
C. Since § is f-injective (as an ind-object of €), we can find a morphism v: ¥ —  such
that v o f = a. Thus « defines a morphism (Y, 5) — (£, ) in (the ind-category of)
Ax (@), which shows that (€, «) is universal.

Finally, we show that (€, a) is f-injective. Thus suppose we have maps ¢: (Y, ) —
(Q,a) and ¢: (Y, ) — (Z,7). Unraveling all of this, we have a commutative diagram

Q
A

is)
Q
S}

N

Z

Since € is f-injective in €, we can find a morphism p making the rightmost triangle (and
thus the whole diagram) commute. It is clear that p defines a morphism (Z,v) — (£, @)
such that p o ¢ = ¢, which shows that (£, «) is f-injective. O
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A.6. Fraissé’s theorem

We now prove a version of Fraissés theorem, which characterizes Fraissé categories.
For this, we introduce two more conditions on C:

(RCC) Relative countable cofinality: for any object X of C there exists a cofinal sequence
of morphisms out of X, i.e., there is a sequence of morphisms {a,: X — Y, }n>1
such that if f: X — Y is any morphism then there is a morphism ~v: Y — Y,
for some n such that vo 8 = a,.
(AP) Amalgamation property: given embeddings W — X and W — Y there exists a
commutative diagram

X —7Z
W ——=Y

for some object Z.

If C has an initial object then (CC) is a special case of (RCC), and (JEP) is a special
case of (AP). We note that (RCC) holds for € if and only if (CC) holds for Ax(€) for
all X; similarly, (AP) holds for € if and only if (JEP) holds for Ax(€) for all X.

The following is our categorical version of Fraissé’s theorem:

Theorem A.11. The following are equivalent:

(a) Cis a Fraissé category, i.e., it has a universal homogeneous ind-object.
(b) C satisfies (CC), (RCC), (JEP), and (AP).
(c) € and each of its coslice categories Ax(C) has a universal ind-object.

Proposition A.4 shows that (b) and (c) are equivalent. If € is Fraissé then it obviously
has a universal ind-object; since the coslice categories of C are also Fraissé (Proposi-
tion A.10), they too have universal ind-objects, and so (c¢) holds. In the remainder of
§A.6, we assume that (b) holds and show that C is Fraissé.

Lemma A.12. Suppose we have a diagram
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in C. Then there exists an object X, 11 and morphisms a,: X, = X1 and v;: Y; —
X1 for 1 <i <mn such that the diagram commutes, that is, we have

VioBi =@po---0aip 00y

foralll <i<n.

Proof. We proceed by induction on n. The statement is clear for n = 1: we can take
Xy =Y, with a; = 1 and 7, = id. Suppose now the statement is true for n — 1, and let
us prove it for n. By the inductive hypothesis, we can find an object X, an embedding
ah_1: Xpo1 — X, and embeddings 7}: Y; — X for 1 < i < n — 1 such that the

relevant diagram commutes. Consider the diagram

On—1 /Bn
anl Xn Yn
O‘;z—l l TYn
!/ g Y
Xn > Xn+1

By (AP), we can find an object X, 1 and morphisms ¢ and ~, making the diagram
commute. We define o, : X,, = X,,+1 to be the composition v, 05, and for 1 <¢<n—1
we define 7;: Y; — X, 41 to be the composition ¢ o /. It is clear that the necessary
conditions hold. O

Fix a cofinal sequence of objects {A(m)}m>1 as in (CC). For each object X, choose
a cofinal sequence {Ax ,: X — X(m)};,>1 of morphisms out of X, as in (RCC). We
assume that A(m) embeds into X (m) for each m; we can arrange this since (JEP) holds.
A special ind-object is an ind-object © equipped with maps £y m: Oy (m) — Qpqp, for
all n,m > 1 such that the diagram

€n ,nt+m

Qn Qn+m

commutes for all n and m.
Lemma A.13. A special ind-object exists.
Proof. We inductively construct 2. To start, we take {2; to be any object. Suppose now

we have constructed € — Qs — .-+ — ,_; and the K, ,, for n +m < r. Consider the
diagram
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Ql(’l" - 1) QQ(T — 2) Q¢_2(2) Qr—l(l)
)\rfl T Ar—Z T )\2 T A1 T
€1 €2 €r—3 €r_2
Q Qy e Q. Q1

Here €; = €; ;+1. By Lemma A.12, we can find an object €2, and morphisms €, : Q,_; —
Q, and Ky ;: Qi(r —i) — Q, for 0 < i < r — 1 such that the diagram commutes. This
constructs € up to level r, which completes the proof. O

Lemma A.14. A special ind-object is universal and homogeneous.

Proof. Let © be special. We have embeddings A(m) — Q;(m) — Q for all m > 1. Since
every object embeds into some A(m), it follows that € is universal.

We now show that 2 is f-injective. Thus let a: X — Y and v: X — Q be given. Let
n be such that X maps into €2,,. Consider a commutative diagram

|

which exists by (AP). Now choose a map Z — Q,(m) for some m such that Q, —
Z — Qp(m) is A\p; this exists by the definition of the A’s. We thus have a commutative
diagram

Qp, —
'Y

[e%
[

Am

/\ Knm

Q, Qn(m) —— Qppm

X (e

where [ is defined to be the composition. Since the composition of the top line is the
transition map €y, y4m, it follows that v = o o as embeddings X — Q. This completes
the proof. O

Lemmas A.13 and A.14 show that a universal homogeneous object exists, which com-
pletes the proof of Theorem A.11.

A.7. Functors

Suppose now that D is a second category in which all morphisms are monic and
®: C — D is a functor. We now examine how & interacts with the classes of ind-objects
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considered above. We begin with universal objects. For this, we introduce the following
property:

(EP) Embedding property: for every object Y of D there is an object Z of € and an
embedding Y — ®(2).

If ® is essentially surjective then (EP) holds, as one can then find an isomorphism
Y = ®(2).

Proposition A.15. Suppose that C has a universal ind-object. Then the following are
equivalent:

(a) @ satisfies (EP).
(b) ® maps some universal ind-object of € to a universal ind-object of D.
(c) ® maps every universal ind-object of C to a universal ind-object of D.

Proof. (a) = (c). Let Q be a universal ind-object of €. We must show that ®(2)
is universal. Let Y be an object of D. By (EP), there is an embedding Y — ®(Z) for
some object Z of €. Since (2 is universal, there is an embedding Z — (), which yields
an embedding ®(Z) — (). We thus obtain an embedding Y — ®(Q2), and so ®(Q) is
universal.

(¢) = (b) is trivial.

(b) = (a). Let Q be a universal ind-object of € such that ®(2) is universal. Let Y be
an object of D. Then there is an embedding Y — ®(€2). This comes from an embedding
Y — ®(Q,) for some n, and so (EP) holds. O

We now examine how & interacts with homogeneous objects. For this, we introduce
a variant of the (EP) property:

(REP) Relative embedding property: given a morphism a: ®(X) — Y in D, there exists
a commutative diagram

where v: X — Z is a morphism in €.

Note that (REP) holds if and only if for every object X of € the natural functor
®: Ax(C) = Agx)(D) satisfies (EP).
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Proposition A.16. Suppose that C and D are Fraissé categories. Then the following are
equivalent:

(a) ® maps any universal homogeneous ind-object of C to a universal homogeneous ind-
object of D.

(b) ® satisfies (EP) and (REP)

(c) ® and the induced functors Ax(C) — Agx)(D) (for any object X of C) map uni-
versal ind-objects to universal ind-objects.

We note that because all universal homogeneous ind-objects are isomorphic, condition
(a) will be satisfied if ® maps any particular universal homogeneous ind-object of € to a
universal homogeneous ind-object of D.

Proof. Proposition A.15 shows that (b) and (c¢) are equivalent.

Suppose that (a) holds. Let €2 be a universal homogeneous ind-object of €, so that
®(Q) is a universal homogeneous ind-object of D. Given an embedding a: X — €,
(the proof of) Proposition A.10 shows that (€2, &) is a universal homogeneous ind-object
of Ax(€). By the same reasoning, (®(Q),®(«)) = ®(Q, a) is a universal homogeneous
object of Ag(x)(D). Thus (c) holds.

Suppose (b) holds, let Q be a universal homogeneous ind-object of €, and let
be a universal homogeneous object of D. Put n(l) = 1 and choose an embedding
ar: Q1)) — Q;n(l) for some m(1), which is possible since §' is universal. By (REP),
a; factors into a morphism ®(€2,;) — Z) for some Z in €. Since (2 is f-injective, the
morphism 2,1y — Z factors into one of the transition maps €,(1)n(2): Qn1) = Qn(2)
for some n(2). The upshot is that we can find a commutative diagram

D (en(1),n(2))
O(Qn1)) D(Qn2))

Qo)

for some 3;. Now, since €’ is f-injective, we can extend the embedding le(l) — Q' along
1. We can thus extend the above diagram to a commutative diagram

D (en(1),n(2))
(1)) D(Q(2))

’
Qm,(l)

’
Qm(2)

€m(1),m (2)
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for some m(2). Continuing in this manner, we construct an isomorphism «: ®(2) — Q.
Thus ®(Q) is a universal homogeneous ind-object of D, and so (a) holds. O
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