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representation theory of G. We also establish some model-
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1. Introduction

The purpose of this paper is to study tensor spaces, i.e., vector spaces equipped with 
various kinds of multi-linear forms. We construct (ultra)homogeneous2 tensor spaces and 
study their symmetry groups and model theory. Our work is closely related to several 
current topics in algebra (such as geometry of tensors and Deligne interpolation), and 
ties in with classical topics in model theory (such as homogeneous structures and ω-
categoricity). In the remainder of the introduction, we state our results in more detail 
and explain the motivation behind this work.

1.1. Tensor spaces

Fix a field k of characteristic 0. Let λ = [λ1, . . . , λr] be a tuple of non-empty partitions. 
A λ-structure on a k-vector space V is a tuple ω = (ω1, . . . , ωr) where ωi : Sλi(V ) → k

is a linear map, and Sλ denotes the Schur functor associated to λ. A λ-space is a vector 
space equipped with a λ-structure. These are the main objects of study in this paper.

Here are some examples of the above definition:

• Suppose λ = [(2)], i.e., λ consists of a single partition λ1 = (2). The Schur functor 
S(2) is the symmetric power Sym2. Thus a λ-structure on V is just a quadratic form 
(or symmetric bilinear form) on V , and a λ-space is a quadratic space.

• Similarly, if λ = [(1, 1)] then a λ-space is a vector space equipped with an anti-
symmetric bilinear form. (The Schur functor S(1,1) is the exterior square 

∧2.)
• Suppose λ = [(3)]. Then a λ-space is a cubic space, i.e., a vector space with a cubic 

form (or symmetric trilinear form).
• Finally, suppose that λ = [(2), (2)] consists of two copies of the partition (2). Then 

a λ-structure on V is a pair of quadratic forms on V .

An embedding of λ-spaces W → V is an injective linear map such that the λ-structure 
on V pulls back to the one on W . An isomorphism is an embedding that is a linear 
isomorphism.

The notion of λ-space can be viewed as a linear analog of the notion of relational 
structure appearing in model theory; the tuple λ plays the role of the signature of a 

2 In this context, “homogeneous” and “ultrahomogeneous” are often used interchangeably. We use “ultra-
homogeneous” in the title since “homogeneous” has many other meanings, but we use “homogeneous” in 
the text since it is shorter.
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relational structure. This paper can be seen as an attempt to find linear analogs of some 
ideas related to relational structures, such as Fraïssé limits, ω-categoricity, oligomorphic 
groups, etc.

1.2. Homogeneous spaces

The following is our first main theorem:

Theorem A (Theorem 3.8). There exists a λ-space Vλ of countable dimension with the 
following two properties:

(a) Universality: if W is a finite dimensional λ-space then there is an embedding W →
Vλ.

(b) Homogeneity: if W and W ′ are finite dimensional subspaces of Vλ, with the induced 
structures, then any isomorphism W → W ′ extends to an automorphism of Vλ.

Moreover, Vλ is unique up to isomorphism: any λ-space of countable dimension satisfying 
(a) and (b) is isomorphic to Vλ.

This theorem is rather surprising, as it distinguishes an isomorphism class of λ-spaces 
of countable dimension; there is nothing like this in finite dimensions, except for certain 
small λ, like λ = [(2)].

There are two ingredients in the proof of Theorem A. The first is a categorical variant 
of Fraïssé’s theorem. This goes back to the work of Droste–Göbel [9,10], and has appeared 
in more recent work too [6,21,25]. We include an appendix giving a self-contained treate-
ment. The second is a direct construction of universal (but not necessarily homogeneous) 
λ-spaces.

Remark 1.1. The notion of universal λ-space appears implicitly in much recent work 
[2,3,8,23,24], and is closely related to the notion of strength in commutative algebra 
[1,13]. In particular, [24] implies that for λ = [(d)] and k algebraically closed, a λ-space 
is universal if and only if its defining form has infinite strength. The paper [2] proves 
a generalization of this result; see Remark 3.6. We also note that [4] classifies universal 
cubic spaces of countable dimension up to isogeny.

Remark 1.2. We work in characteristic 0 throughout this paper. Our results on λ-spaces 
remain valid (with the same proofs) in positive characteristic p, provided p is larger than 
each |λi|. In fact, over a finite field of such characteristic, one can prove Theorem A using 
the classical form of Fraïssé’s theorem. For small p, our definition of λ-space is not really 
correct: for example, in characteristic 2 one should allow for both quadratic forms and 
symmetric bilinear forms. We suspect our results could be extended to this situation, 
but we have not pursued it.
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1.3. Symmetry groups

Let Gλ be the automorphism group of the space Vλ in Theorem A. This is an infinite 
dimensional algebraic group; implicit in this assertion is the fact that the construction 
of Vλ is compatible with extension of scalars. For certain small λ, the group Gλ is 
recognizable; for example, G[(2)] is the split infinite orthogonal group. However, when λ
contains a partition of size at least three, Gλ seems to be unrelated to familiar groups.

It follows from the homogeneity of Vλ that the groups Gλ are reasonably large. For 
example, if λ = [(d)] and k is algebraically closed then Gλ has two orbits on the space 
P(Vλ) of lines in Vλ, namely, the invariant hypersurface and its complement. To more 
precisely quantify the size of Gλ, we introduce the notion of a linear-oligomorphic group; 
as the name suggests, this is the linear analog of the notion of oligomorphic group that 
is so important to homogeneous structures (see [5,27]). See §4.1 for the definitions. We 
then prove the following theorem:

Theorem B (Theorem 4.7). The group Gλ is linear-oligomorphic.

We view the Gλ as new infinite dimensional algebraic groups that are analogous to 
the infinite orthogonal group. There are a number of potentially fascinating directions 
to explore; we suggest a few here:

Question 1.3. How much of the theory of algebraic groups applies to Gλ? Is there a 
Cartan subgroup, Weyl group, and Dynkin diagram? What does the Lie algebra look like? 
Are there interesting twisted forms? As an abstract group, is it close to being simple? Is 
there a notion of automorphic representation?

We prove one additional result about the Gλ: we determine its algebraic representation 
theory (Theorem 4.10). To do this, we show that the representation theory of Gλ is 
equivalent to the representation theory of the “generalized stabilizers” studied in [30]. 
The representation theory of Gλ is very similar to that of infinite classical groups, as 
studied in [12,28,29,32].

1.4. Model theory

We have drawn an analogy between λ-spaces and relational structures. Homogeneous 
relational structures have a number of interesting model-theoretic properties. With this 
in mind, we examine some of the model-theoretic properties of homogeneous λ-spaces. 
The following theorem summarizes our main results:

Theorem C (Theorems 5.13 and 5.18). The λ-space Vλ is linearly ω-categorical, and 
satisfies vector-quantifier elimination.
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Briefly, “linearly ω-categorical” means that Vλ is determined up to isomorphism by its 
first-order theory, and “vector-quantifier elimination” means that any first-order formula 
about Vλ is equivalent to one where there are no quantifiers over vector-valued variables 
(though there could still be quantifiers over scalar-valued variables). We also explain 
that the theory of Vλ is decidable when k = Q. See §5 for details.

Remark 1.4. The model theory of bilinear forms has been previously studied, and some 
results related to Theorem C have appeared in this case; see [15,22]. We also note that 
the book [16] contains relevant results in this case.

We hope that Theorem C is just a first step in the model theory of λ-spaces. Some 
possible next steps are raised in following question:

Question 1.5. Does the linear analog of the Ryll-Nardzewski theorem hold? (See Re-
mark 5.15.) What about linear analogs of other results from model theory (e.g., omitting 
types)?

1.5. Further results

Fix a vector space V of countable dimension. The space Aλ of all λ-structures on V
forms a geometric object called a GL-variety. These varieties were studied in detail in 
[3]. In a follow-up paper [20], we will examine how the perspective of this paper interacts 
with the geometry of Aλ. One result states that generalized orbits on Aλ (introduced in 
[3, §3]) correspond to “weakly homogeneous” λ-spaces.

1.6. Motivation

Deligne [7] showed that one can “interpolate” the representation categories Rep(Sn)
of finite symmetric groups to obtain a novel tensor category Rep(St), where t is a 
complex number. (Here St is simply a formal symbol.). In recent work [18], we generalized 
Deligne’s construction. Let G be an oligomorphic group. Given a measure µ for G (in a 
sense that we introduce), we construct a tensor category Perm(G; µ), and in some cases, 
an abelian envelope Rep(G; µ). When G is the symmetric group, this recovers Deligne’s 
Rep(St); the parameter t corresponds to a choice of measure.

Deligne (and Deligne–Milne [11]) also showed that one can interpolate representation 
categories of classical groups. We expect that there is an analog of the theory developed 
in [18] in the algebraic case. This motivated us to look for examples of linear-oligomorphic 
groups, which led to the present work. In this vein, the next questions are:

Question 1.6. What is the correct notion of measure on a linear-oligomorphic group? Are 
there any interesting measures on the Gλ’s, outside the ones corresponding to known 
interpolation categories?
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In recent work [19], we showed that every “discrete” pre-Tannakian tensor category 
arises from an oligomorphic group. One might hope that algebraic oligomorphic groups (a 
common generalization of oligomorphic and linear oligomorphic groups, see Remark 4.4), 
and their super analogs, explain all pre-Tannakian categories in characteristic 0.

1.7. Notation and terminology

We list the most important notation:

k A field of characteristic 0.
λ A tuple of partitions [λ1, . . . , λr].
Cλ The category of λ-spaces (§2.2).
Sλ The sum of the Schur functors of the partitions in λ (§2.3).
Vλ The universal homogeneous countable λ-space (Definition 3.9).
Gλ The automorphism group of Vλ (Definition 4.5).
∆X(C) A coslice category (§2.5).

We use “finite” for “finite dimensional” and “countable” for “countably infinite dimen-
sional” in the context of vector spaces.

Acknowledgments

We thank Arthur Bik and Jan Draisma for helpful discussions.

2. Basics of tensor spaces

2.1. Multi-linear forms

Fix a field k of characteristic 0. Let V be a k-vector space and let n be a non-negative 
integer. An n-form on V is a multi-linear map V n → k, or, equivalently, a linear map 
V ⊗n → k. When n = 0, an n-form on V is just a scalar.

Bilinear forms decompose into symmetric and skew-symmetric pieces. There is a sim-
ilar, but more complicated, decomposition of n-forms. For a partition λ of n, let Sλ be 
the corresponding Specht module over k; this is the irreducible representation of the 
symmetric group Sn corresponding to λ. The Schur functor associated to λ is defined 
by

Sλ(V ) = HomSn(Sλ, V ⊗n),

where Sn acts on V ⊗n by permuting tensor factors. A λ-form on V is a linear map 
Sλ(V ) → k. When λ = (n), the Specht module is the trivial representation of Sn, 
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and the Schur functor Sλ is the symmetric power Symn. In particular, a (2)-form is a 
symmetric bilinear form.

We have a canonical isomorphism

V ⊗n =
⊕

λ#n
Sλ ⊗ Sλ(V ),

where the sum is over all partitions of n. The Specht module Sλ carries a basis given 
by the standard tableaux of shape λ. Let ω be an n-form on V . Given a partition λ of 
n and a standard tableau T of shape λ, we obtain a λ-form ωλ,T on V as the following 
composition

Sλ(V ) T⊗id
Sλ ⊗ Sλ(V ) V ⊗n ω

k

where the second map is the canonical inclusion. The construction ω #→ (ωλ,T ) gives a 
bijection between n-forms and tuples consisting of a λ-form for each pair (λ, T ).

For each partition λ, fix a choice T (λ) of standard tableau of shape λ; for example, 
one could use the tableau whose first row is 1, . . . , λ1, second row is λ1 + 1, . . . , λ1 + λ2, 
and so on. Write a(λ) ⊂ k[Sn] for the annihilator of T (λ). Let ω be a λ-form on V , with 
|λ| = n. Define ω∗ be the unique n-form on V satisfying

ω∗
µ,T =

{
ω if µ = λ and T = T (λ)
0 otherwise.

Then ω #→ ω∗ is a bijection between λ-forms and n-forms annihilated by a(λ). In this 
way, we can encode λ-forms as n-forms. For example, this procedure encodes (2)-forms 
as symmetric 2-forms.

The above discussion shows that n-forms and λ-forms are essentially equivalent. While 
n-forms are perhaps a bit simpler, it will ultimately be more convenient for us to work 
with λ-forms. We therefore base our theory on them.

2.2. Tensor spaces

A tuple of partitions, often abbreviated to just tuple, is an ordered tuple λ =
[λ1, . . . , λr] where each λi is a partition. The λi may have different sizes. We say that λ
is pure if each λi is non-empty. This terminology was introduced in [3].

The following definition introduces the main objects of study in this paper:

Definition 2.1. Let λ = [λ1, . . . , λr] be a tuple of partitions. A λ-structure on a vector 
space V is a tuple ω = (ω1, . . . , ωr) where ωi is a λi-form on V . A λ-space is a vector 
space equipped with a λ-structure.
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We now introduce some additional definitions related to λ-spaces. We say that a 
λ-space is finite, resp. countable, if its dimension is finite, resp. countably infinite. An 
embedding W → V of λ-spaces is an injective linear map such that the given λ-structure 
on V pulls back to the given λ-structure on W . An isomorphism of λ-spaces is a bijective 
embedding. We let Cλ be the category of λ-spaces, and we let Cf

λ be the category of finite 
λ-spaces (in both cases the morphisms are embeddings).

Remark 2.2. Let λ = [λ1, . . . , λr] be a tuple. Reindexing if necessary, suppose that λ1 =
· · · = λs = ∅ and λs+1, . . . , λr are non-empty. Let µ be the pure tuple [λs+1, . . . , λr]. A 
λ-structure on V can then be identified with a pair (c, ω) where c ∈ ks is a tuple of scalars 
and ω is a µ-structure on V . If V → W is an embedding of λ-spaces, then the tuples 
of scalars for V and W must be equal. We thus see that Cλ is equivalent to a disjoint 
union of copies of Cµ indexed by ks. This discussion shows that the “impure” part of λ
is not very interesting, and for most purposes we can restrict to pure tuples. The reason 
we allow impure tuples is that they appear when applying the shift operation; see §2.4.

We now give two examples illustrating some aspects of infinite dimensional λ-spaces.

Example 2.3. Two [(1)]-spaces with non-zero forms are isomorphic if and only if they 
have the same dimension. Equivalently, this means that if V is a vector space then the 
group GL(V ) of all automorphisms of V acts transitively on the non-zero vectors in 
the dual space V ∗. Suppose that V is countable, and fix a basis. Then GL(V ) can be 
identified with the group of all column-finite invertible matrices of size N ×N. Similarly, 
V ∗ can be identified with the space of all row vectors of size N. The transitivity of the 
action thus amounts to the fact that the first row of a matrix in GL(V ) can be any 
non-zero vector. Note that the smaller group 

⋃
n≥1 GLn does not act transitively on 

V ∗ \ {0}.

Example 2.4. Suppose k is algebraically closed and let (V, ω) be a [(2)]-space. Recall 
that the null space of ω consists of those vectors v such that ω(v, −) is identically zero. 
Supposing the null space of ω vanishes and V has countable dimension, it is not difficult 
to show that V has an orthonormal basis; see [16, Chapter 2]. In particular, we see that 
any two countable [(2)]-spaces with zero null space are isomorphic (map one orthonormal 
basis to the other).

The countability hypothesis above is of crucial importance. For example, over the 
complex numbers there are 2ℵ0 distinct isomorphism classes of [(2)]-spaces of dimension 
ℵ1 and vanishing null space; see [16, Chapter 2].

2.3. Shifts of polynomial functors

Recall that a polynomial functor is an endofunctor of the category of vector spaces 
that decomposes as a direct sum of Schur functors. The category of polynomial func-
tors is semi-simple abelian, with Schur functors as the simple objects. For a tuple 
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λ = [λ1, . . . , λr], we let Sλ =
⊕r

i=1 Sλi . Thus every finite length polynomial functor 
is isomorphic to Sλ for some tuple λ. We refer to [31] for additional background on 
polynomial functors.

We define the nth shift of a polynomial functor F , denoted Shn(F ), to be the functor 
given by (Shn F )(V ) = F (kn ⊕ V ). It is easily seen to be a polynomial functor: in 
fact, we have Shn(Sλ) = Sλ ⊕ · · · , where the remaining terms are Schur functors of 
smaller degree. One can explicitly determine Shn(Sλ) in terms of Littlewood–Richardson 
coefficients. Given a tuple λ, there is another tuple µ, unique up to permutation, such 
that Shn(Sλ) ∼= Sµ. We define shn(λ) to be the tuple µ, and sh◦

n(λ) to be the pure part 
of µ (discard all empty partitions).

Example 2.5. We have

Sym2(kn ⊕ V ) = Sym2(kn) ⊕ (kn ⊗ V ) ⊕ Sym2(V ).

It follows that

shn([(2)]) = [
(n+1

2
)
·∅, n · (1), (2)].

Here n · (1) indicates that the partition (1) appears n times.

2.4. Shifts of tensor spaces

Fix a tuple λ. Define a category Shn(Cλ) as follows. An object is a tuple (V, v, V ′)
where V is a λ-space, v = (v1, . . . , vn) are linearly independent vectors in V , and V ′ is a 
subspace of V that is complementary to span(v). A morphism f : (V, v, V ′) → (W, w, W ′)
is a morphism of λ-spaces f : V → W such that f(vi) = wi for 1 ≤ i ≤ n and f(V ′) ⊂ W ′.

Proposition 2.6. Let µ = shn(λ). If (V, v, V ′) is an object of Shn(Cλ) then V ′ carries a 
natural µ-structure, and the functor

Ψ : Shn(Cλ) → Cµ

given by (V, v, V ′) #→ V ′ is an equivalence.

Proof. Suppose that (V, v, V ′) is an object of Shn(Cλ), and let ω denote the λ-structure 
on V . We regard ω as a linear map Sλ(V ) → k. Making the identification span(v) = kn, 
we have V = kn ⊕ V ′, and so

Sλ(V ) = (Shn Sλ)(V ′) = Sµ(V ′).

Thus the λ-structure ω on V is equivalent to a µ-structure ω′ on V ′. This is how we 
define Ψ on objects. It is clear from the definition that Ψ is essentially surjective.
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Suppose now that (W, w, W ′) is another object of Shn(Cλ). Let η be the λ-structure 
on W , and let η′ be the corresponding µ-structure on W ′. Let f : V → W be a linear 
map such that f(vi) = wi for 1 ≤ i ≤ n and f(V ′) ⊂ W ′, and let f ′ : V ′ → W ′ be 
the map induced by f . Clearly, giving f is equivalent to giving f ′. The following two 
diagrams are isomorphic:

Sλ(V )
ω

f

k

Sλ(W )

η

Sµ(V ′)
ω′

f ′

k

Sµ(W ′)
η′

We thus see that f is a map of λ-spaces (i.e., the first diagram commutes) if and only if f ′

is a map of µ-spaces (i.e., the second diagram commutes). Thus defining Ψ on morphisms 
by Ψ(f) = f ′, we see that Ψ is an equivalence. !

Example 2.7. Suppose λ = [(2)]. An object of Sh1(Cλ) is a quadratic space (V, ω)
equipped with a non-zero vector v and a complementary space V ′ to the span of v. 
The above proposition states that V ′ naturally has a sh1(λ) = [(2), (1), (0)] structure. 
The (2)-form on V ′ is simply the restriction of ω, the (1)-form is x #→ ω(v, x), and the 
(0)-form is the scalar ω(v, v).

We will require a variant of the above construction as well. A pinning of a finite λ-
space is an ordered basis, and a pinned finite λ-space is one equipped with a pinning. Let 
U be an n-dimensional pinned finite λ-space. Define ShU (Cλ) to be the full subcategory 
of Shn(Cλ) spanned by objects (V, v, V ′) where span(v) is isomorphic to U as a pinned 
λ-space; note that such an isomorphism is unique.

Proposition 2.8. Let U be an n-dimensional λ-space with a pinning, and put ν = sh◦
n(λ). 

Then the functor Ψ from Proposition 2.6 induces an equivalence ShU (Cλ) → Cν .

Proof. Let µ = shn(λ). Recall from Remark 2.2 that Cµ is a disjoint union of copies of 
Cν parametrized by ks where s is the number of empty partitions in µ. More canonically, 
this ks is identified with Sµ(0)∗, where 0 is the zero vector space, and so

Cµ
∼=

∐

η∈Sµ(0)∗
Cν .

Given a µ-space (V, ω), the corresponding η is the pull-back of ω to 0 ⊂ V . In our 
case we have Sµ(−) = Sλ(kn ⊕−), and so Sµ(0) = Sλ(kn). Thus the copies of Cν above 
parametrize the λ-structures on kn. The category ShU (Cλ) is simply the summand where 
(kn, η) ∼= U as pinned λ-spaces. !
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2.5. Coslice categories

Let X be an object of a category C. Recall that the coslice category ∆X(C) is the 
category of objects over X. Precisely, an object of ∆X(C) is a pair (Y, α) where Y is an 
object of C and α : X → Y is a morphism in C. A morphism (Y, α) → (Z, β) in ∆X(C)
is a morphism γ : Y → Z in C such that γ ◦ α = β.

Coslice categories will be important to us due to their appearance in Fraïssé’s theorem 
(Theorem A.11). They are also closely related to shift categories, as we now explain. (This 
is why we are interested in shift categories.) Let U be a finite pinned λ-space. If (V, v, V ′)
is an object of ShU (Cλ) then we have a natural embedding U → V by mapping the given 
basis vector of U to v. One easily sees that this defines a functor

ShU (Cλ) → ∆U (Cλ).

We make one simple observation here:

Proposition 2.9. The above functor is essentially surjective.

Proof. Suppose that (V, α) is an object ∆U (Cλ), where α : U → V is an embedding. Let 
v be the image of the basis of U under α, and let V ′ be a subspace of V complementary 
to α(U). Then (V, v, V ′) is an object of ShU (C) that maps to (V, α) under the above 
functor. !

3. Homogeneous tensor spaces

3.1. Universal spaces

We are primarily interested in homogeneous spaces in this paper. However, to study 
them we will require some results about universal spaces. We therefore examine them 
now. We begin by giving the formal definition:

Definition 3.1. Let V be a λ-space.

(a) V is universal if every finite λ-space embeds into V .
(b) V is d-universal (for d ∈ N) if every d-dimensional λ-space embeds into V . !

The following is our main result on these spaces:

Theorem 3.2. Let λ be a pure tuple.

(a) A universal countable λ-space exists.
(b) A d-universal finite λ-space exists (for any d ∈ N).
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(c) If V is a universal countable λ-space over k and k′/k is any field extension then 
V ⊗k k′ is a universal λ-space over k′.

Some related results appear in the literature; see Remark 3.6. We note that the purity 
hypothesis in the theorem is necessary by Remark 2.2. We require a few lemmas before 
proving the theorem. We begin with the key special case. For this, it will be convenient 
to use n-spaces (i.e., spaces equipped with n-forms) instead of λ-spaces.

Lemma 3.3. Let n be a positive integer. Let V be a vector space with basis {vi,j}1≤i,1≤j≤n, 
and let Vm be the span of the vi,j with 1 ≤ i ≤ m and 1 ≤ j ≤ n. Let xi,j ∈ V ∗ be the 
dual vector to vi,j, and consider the n-form

ω =
∞∑

i=1
(xi,1 ⊗ · · ·⊗ xi,n).

Then (V, ω) is a universal n-space. Moreover, given d there exists m, such that Vm is a 
d-universal n-space.

Proof. The result is clear for n = 1, so we assume n > 1. Let (W, η) be a finite dimension 
n-space, and let y1, . . . , yd be a basis for W ∗. Let (a1, . . . , an) : [dn] → [d]n be a bijection; 
here [dn] denotes the set of integers {1, . . . , dn} and [d]n denotes the set of n-tuples with 
values in {1, . . . , d}. We thus see that ya1(i) ⊗ · · ·⊗ yan(i) indexes a basis of (W ∗)⊗n as i
varies in [dn]. Write

η =
dn∑

i=1
ci · (ya1(i) ⊗ · · ·⊗ yan(i)).

Let m = dn + d, and let ω′ denote the restriction of ω to Vm. Define a linear map 
ι† : V ∗

m → W ∗ by

ι†(xi,j) =






ciya1(i) if 1 ≤ i ≤ dn and j = 1
yaj(i) if 1 ≤ i ≤ dn and j > 1
0 if dn + 1 ≤ i ≤ dn + n and j = 1
yi−dn if dn + 1 ≤ i ≤ dn + d and j > 1

and let ι : W → Vm be the dual map. The first two lines above ensure that ι† maps the 
ith term in the sum defining ω′ to the ith term in the sum defining η for 1 ≤ i ≤ dn, while 
the third line ensures that ι† kills the remaining terms of ω′. Thus ι∗(ω′) = η. The fourth 
line in the definition of ι† ensures that ι† is surjective, and so ι is injective. We thus see 
that ι is an embedding of n-spaces. Hence Vm is d-universal, and V is universal. !
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We now prove two additional lemmas that will allow us to deduce the theorem from 
the above lemma and some formal manipulations.

Lemma 3.4. Let λ = [λ1, . . . , λr] be a pure tuple, let 1 ≤ s ≤ r, and let λ′ = [λ1, . . . , λs]. 
Suppose that (V, ω) is a universal (resp. d-universal) λ-space, and put ω′ = (ω1, . . . , ωs). 
Then (V, ω′) is a universal (resp. d-universal) λ′-space.

Proof. Let (W, η′) be a finite dimensional λ′-space, where η′ = (η1, . . . , ηs). Define ηs+1 =
· · · = ηr = 0, so that η = (η1, . . . , ηr) is a λ-structure on W . By hypothesis, we have 
an embedding (W, η) → (V, ω) of λ-spaces. Of course, this is also defines an embedding 
(W, η′) → (V, ω′) of λ′-spaces, which shows that (V, ω′) is universal. The proof for d-
universal is the same. !

Suppose now that λ = [λ1, . . . , λr] and µ = [µ1, . . . , µs] are two tuples. Define

λ ∪ µ = [λ1, . . . ,λr, µ1, . . . , µs].

Suppose that (V, ω) is a λ-space and (V ′, ω′) is a µ-space. We regard ωi as a λi-structure 
on V ⊕ V ′ by pull-back along the projection V ⊕ V ′ → V , and similarly for ω′

j . In this 
way,

(ω1, . . . ,ωr,ω
′
1, . . . ,ω

′
s)

is a (λ ∪ µ)-structure on V ⊕ V ′.

Lemma 3.5. Maintain the above notation. Suppose that V is a universal (resp. d-
universal) λ-space and V ′ is a universal (resp. d-universal) µ-space. Then V ⊕ V ′ is 
a universal (resp. d-universal) (λ ∪ µ)-space.

Proof. Let (W, η) be a finite dimensional (λ∪µ)-space, and write η = (η1, . . . , ηr, η′1, . . . , η
′
s). 

By hypothesis, there are embeddings

ϕ : (W, η1, . . . , ηr) → (V,ω), ψ : (W, η′1, . . . , η
′
s) → (V ′,ω′)

of λ- and µ-spaces. One easily verifies that ϕ ⊕ ψ : W → V ⊕ V ′ is an embedding of 
(λ ∪ µ)-spaces, and so V ⊕ V ′ is universal. The proof for d-universal is the same. !

Proof of Theorem 3.2. (a) Let λ = [λ1, . . . , λr] be a pure tuple. Let n be the size of λ1. 
Let µ be the tuple such that Sµ is the nth tensor power functor; thus a µ-structure is 
equivalent to giving an n-form. By Lemma 3.3 there is a universal countable µ-space. 
Since λ1 is one of the µi’s, it follows from Lemma 3.4 that there is a universal countable 
λ1-space. Similarly for the other λi’s. Lemma 3.5 now shows that there is a universal 
countable λ-space.
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(b) This follows just like (a).
(c) Let Φ : Cf

λ,k → Cf
λ,k′ be the base change functor, and identify countable λ-spaces 

with ind-objects in Cf
λ (see §A.2). By Proposition A.15, it suffices to show that Φ carries 

some universal ind-object of Cf
λ,k to a universal ind-object of Cf

λ,k′ . Let V (resp. V ′) 
be the universal countable λ-space over k (resp. k′) constructed in (a). By inspection, 
V ′ = Φ(V ); the point is simply that the field did not figure into the construction at all. 
This completes the proof. !

Remark 3.6. Suppose k is an algebraically closed field and λ is a pure tuple. Let V be 
a k-vector space of countable dimension, and let Aλ be the infinite dimensional affine 
scheme parametrizing λ-structures on V (see [3, §1.1]). The general linear group GL(V )
acts on Aλ, and a point is called GL-generic if it has dense GL(V )-orbit [3, §3.4]. By 
[3, Proposition 3.13], GL-generic points exist; the proof is essentially the same as the 
proof of Theorem 3.2(a) given above. An important result [2, Corollary 2.6.3] implies 
that (V, ω) is universal if and only if ω is GL-generic. (We note that this was first proved 
in the case symmetric powers by [24].)

3.2. Homogeneous spaces

We now reach the central concept of this paper:

Definition 3.7. A λ-space V is homogeneous if for any finite dimensional subspaces W
and W ′ of V , any isomorphism W → W ′ of λ-spaces extends to an automorphism of V .

The following is the first main theorem of this paper:

Theorem 3.8. Let λ be a pure tuple.

(a) A universal homogeneous countable λ-space exists.
(b) Any two universal homogeneous countable λ-spaces are isomorphic.
(c) If V is a universal homogeneous countable λ-space over k and k′/k is any field 

extension then V ⊗k k′ is a universal homogeneous λ-space over k′.

Proof. Throughout this proof, we identify countable λ-spaces with ind-objects in the 
category Cf

λ; see §A.2. We also note that, since λ is pure, Cλ has an initial object, 
namely, the zero space. Thus Cλ is the coslice category ∆U (Cλ) with U = 0.

(a) By Fraïssé’s theorem (Theorem A.11), it suffices to show that each coslice category 
∆U (Cf

λ) has a universal ind-object. Let U be an n-dimensional λ-space, and choose a 
pinning (basis) of U . We have an equivalence ShU (Cλ) ∼= Cµ, where µ = sh◦

n(λ), by 
Proposition 2.8; this clearly induces an equivalence ShU (Cf

λ) ∼= Cf
µ. By Theorem 3.2, the 

category Cf
µ has a universal ind-object. We thus see that the same is true for ShU (Cf

λ). 
The forgetful functor ShU (Cf

λ) → ∆U (Cf
λ) is essentially surjective (Proposition 2.9). Thus 

∆U (Cf
λ) also has a universal ind-object (Proposition A.15).
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(b) Universal homogeneous ind-objects are always unique up to isomorphism; see 
Proposition A.7(b).

(c) Let Φ : Cf
λ,k → Cf

λ,k′ be the base change functor V #→ V ⊗k k′. To prove the 
statement, it suffices to show that Φ preserves universal ind-objects on coslice categories 
(Proposition A.16).

Let U be an n-dimensional λ-space over k, and choose a pinning on U . Let U ′ = U⊗kk′. 
We have a commutative (up to isomorphism) diagram

Cf
µ,k ShU (Cf

λ,k) ∆U (Cf
λ,k)

Cf
µ,k′ ShU ′(Cf

λ,k′) ∆U ′(Cf
λ,k′)

On the top line the first equivalence comes from Proposition 2.8, and the second functor 
is the forgetful functor, which is essentially surjective (Proposition 2.9); similarly on the 
second line. The vertical maps are base change maps.

Let Ω1 be a universal ind-object in ShU (Cf
λ,k) and let Ω2, Ω3, and Ω4 be its images in 

the categories ∆U (Cf
λ,k), ShU ′(Cf

λ,k′), and ∆U ′(Cf
λ,k′). The left vertical functor preserves 

universal ind-objects by Theorem 3.2(b), and so the middle one does as well; thus Ω3 is 
universal. Since the final functors on each line are essentially surjective, they preserve 
universal ind-objects (Proposition A.15); thus Ω2 and Ω4 are universal. We thus see 
that the right functor maps the universal ind-object Ω2 to the universal ind-object Ω4
(up to isomorphism), and so this functor preserves all universal ind-objects (Proposi-
tion A.15). !

Definition 3.9. For a pure tuple λ, we let Vλ denote the universal homogeneous countable 
λ-space. It is well-defined up to isomorphism.

Example 3.10. Suppose that λ = [(2)], so that a λ-space is a quadratic space. Recall that 
the hyperbolic plane H is the 2-dimensional quadratic space with form xy. We claim that 
Vλ can be taken to be H⊕∞ (countable orthogonal sum of copies of H).

We first show that H⊕∞ is universal. Let W be a finite dimensional quadratic space. 
Decompose W into an orthogonal direct sum W0 ⊕ W1 where W1 is the null space of 
the form and W0 is non-degenerate. It is well-known that W0 ⊕ W ′

0
∼= H⊕n, where 

n = dim(W0) and W ′
0 is obtained from W0 by negating the form. Thus W0 embeds into 

H⊕n. Now, suppose that W1 is m-dimensional with basis e1, . . . , em. Then W1 embeds 
into H⊕m by mapping ei to an isotropic vector in the ith summand. We thus see that 
W embeds into H⊕(n+m), and thus into H⊕∞. Hence H⊕∞ is universal. (In fact, this 
argument shows that H⊕d is d-universal.)

Now suppose that ϕ : W → W ′ is an isometry of finite dimensional subspaces of H⊕∞. 
Let n be such that W and W ′ are contained in H⊕n. By Witt’s theorem, ϕ extends to 
an isometry of H⊕n, which in turn extends to an isometry of H⊕∞. Thus H⊕∞ is 
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homogeneous. (In the language of this paper, Witt’s theorem simply states that a finite 
dimensional non-degenerate quadratic space is homogeneous.)

We note that Vλ admits other descriptions too. For instance, if −1 is a square in k
then one can take Vλ to be the quadratic space with form 

∑
i≥1 x

2
i .

Example 3.11. Suppose k is algebraically closed and λ = [(2), (2)]. Let V = k⊕∞, and 
represent a λ-structure on V by a pair (A, B) of infinite symmetric matrices. Note that 
all entries in A or B are allowed to be non-zero. One can show that (A, B) is a universal 
homogeneous structure if and only if the columns of A and B, taken all together, are 
linearly independent.

Remark 3.12. Every countable λ-space embeds into Vλ by Proposition A.7(c). Thus (the 
λ-structure on) Vλ belongs to the maximal class in [2, Theorem 2.9.1].

3.3. Classification

When considering some class of relational structures, a common problem is to classify 
the homogeneous structures. For example, [26] classified homogeneous graphs. With this 
in mind, a natural problem is to classify homogeneous (but not necessarily universal) 
λ-spaces.

To begin, we note that non-universal homogeneous λ-spaces do exist. Here are some 
examples:

• Any finite dimensional non-degenerate quadratic space is homogeneous by Witt’s 
theorem, and obviously not universal.

• Over the real numbers, the countable quadratic space with form 
∑

i≥1 x
2
i is homo-

geneous (again by Witt’s theorem), but not universal (since it is positive definite).
• Any space equipped with the zero λ-structure is homogeneous and not universal.
• More generally, if V is a homogeneous λ-space then it is also a homogeneous [λ, µ]-

space when given the zero µ-structure.

From now on, we work over an algebraically closed field and confine our attention to 
infinite dimensional spaces. It seems plausible that in this case all homogeneous spaces 
come from taking a universal homogeneous space and padding by zeros, as in the final 
example above. We have only proved this in the following special case:

Proposition 3.13. Suppose k is algebraically closed and λ = [(d)] for some positive integer 
d. Let V be a homogeneous countable λ-space with non-zero form f . Then V is universal.

Proof. Suppose f is degenerate in the sense of [3, §9.1]. Write f = Φ(g1, . . . , gr) where 
Φ is a polynomial, gi ∈ (Symdi V )∗, and (g1, . . . , gr) is non-degenerate, which is possible 
by iteratively applying [3, Proposition 9.1], and take r minimal. Re-ordering if necessary, 
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suppose d1 ≥ d2 ≥ · · · ≥ dr, and let s be such that d1 = · · · = ds and ds /= ds+1. If σ is 
an automorphism of V then σ preserves the k-span of g1, . . . , gs by [3, Theorem 9.5].

Now, for any c1, . . . , cr ∈ k we can find a non-zero v ∈ V such that gi(v) = ci for 
1 ≤ i ≤ r. This follows from [2, Corollary 2.6.3] (see also [4, §2]). Let v be a non-zero 
vector such that gi(v) = 0 for all i. Let c1, . . . , cr ∈ k be such that Φ(c1, . . . , cr) = 0 but 
c1 /= 0, and let w ∈ V be such that gi(w) = ci for all 1 ≤ i ≤ r. Thus f(v) = f(w) = 0, 
and so v and w generate isomorphic 1-dimensional λ-subspaces of V . However, there is no 
automorphism of V moving v to w, since Aut(V ) preserves the locus g1 = · · · = gs = 0. 
Thus V is not homogeneous, a contradiction.

The above argument shows that f is non-degenerate, and so V is universal by Re-
mark 3.6. !

Remark 3.14. When d = 2 the above proof shows that a quadratic space of infinite 
dimension but finite non-zero rank is not homogeneous. The key point is that there are 
two types of isotropic vectors: those in the null space and those not in the null space.

4. Linear-oligomorphic groups

4.1. Linear-oligomorphic groups

Recall that an oligomorphic group is a group G with a faithful action on a set Ω such 
that G has finitely many orbits on Ωn for all n ≥ 0. The most basic example is the infinite 
symmetric group, i.e., take Ω to be an infinite set and G the group of all permutations 
of Ω. There is an intimate connection between oligomorphic groups and homogeneous 
structures; see [5] or [27] for general background.

We aim to extend this story to the linear case. To this end, we introduce the following 
concept:

Definition 4.1. Let V be a vector space and let G be a subgroup of GL(V ). We say that 
G is linear-oligomorphic if for any d ≥ 0 there exists a finite dimensional subspace E of 
V such that if W is an d-dimensional subspace of V then there exists g ∈ G such that 
gW ⊂ E.

Note that a permutation group (G, Ω) is oligomorphic if and only if the following 
condition holds: for every n ≥ 0 there is a finite subset S of Ω such that if T is any 
n-element subset of Ω then there is some g ∈ G such that gT ⊂ S. The above definition 
simply reformulates this in linear terms.

Example 4.2. The group GL(V ) is clearly linear-oligomorphic. It is also easy to see 
directly that the split infinite orthogonal group and the infinite symplectic group are 
linear-oligomorphic.
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Remark 4.3. Definition 4.1 is not intended to be definitive: e.g., one might also want 
G to be a closed ind-subscheme of GL(V ), and for the defining property to hold after 
passing to extensions of k. However, for the purposes of this paper, Definition 4.1 will 
suffice.

Remark 4.4. Consider an oligomorphic group G acting on the set Ω. We can linearize Ω
to obtain a permutation representation V = k[Ω] of G. It is not necessarily true that G
is a linear-oligomorphic subgroup of GL(V ). For instance, if G is the symmetric group 
on the infinite set Ω = N then G is not linear-oligomorphic: indeed, if Lm is the 1-
dimensional subspace of k[Ω] spanned by 

∑m
i=1 ei then any finite dimensional subspace 

of V contains conjugates of only finitely many of the Lm’s.
We would like to have a class of groups (“algebraic-oligomorphic groups”) that includes 

both oligomorphic and linear-oligomorphic groups. One reason for this is for applications 
to tensor categories, as described in §1.6. Here is a candidate. Consider a group ind-
scheme G equipped with a class U of closed subgroups such that the following conditions 
hold:

(a) U is closed under conjugation and finite intersections.
(b) We have 

⋂
U∈U U = 1.

(c) Given U, V ∈ U there is a closed subscheme X of G that is of finite type over k such 
that the map U ×X × V → G given by (u, x, v) #→ uxv is surjective. !

An oligomorphic group G satisfies the above definition: regard G as a discrete ind-scheme, 
and take U to be the groups defining the admissible topology discussed in [18, §2.2]. 
Now let G ⊂ GL(V ) be linear-oligomorphic, and suppose that G is Zariski closed (and 
thus a group ind-scheme). Then G satisfies the above conditions, by taking U to be the 
subgroups that pointwise fix some finite dimensional subspace of V .

4.2. Automorphism groups

Fix a pure tuple λ. We now introduce the following important object:

Definition 4.5. We let Gλ be the automorphism group of the λ-space Vλ.

Example 4.6. We give some examples of the Gλ groups:

(a) G∅ is the infinite general linear group, where ∅ is the empty tuple.
(b) G[(1)] is the stabilizer in GL(V[1]) of a non-zero linear functional.
(c) G[(2)] is the split infinite orthogonal group (see Example 3.10).
(d) G[(1,1)] is the infinite symplectic group.
(e) G[(2),(2)] is the intersection of two generic conjugates of the infinite orthogonal group 

(the stabilizers of A and B in Example 3.11, if k is algebraically closed).
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(f) G[(3)] does not seem to be closely related to any familiar groups. !

The following theorem shows that the group Gλ is reasonably large:

Theorem 4.7. The group Gλ is linear-oligomorphic.

Proof. Let d ≥ 0 be given. Let E be a d-universal finite λ-space, which exists by The-
orem 3.2. Fix an embedding E → Vλ, which exists because Vλ is universal, and treat 
E as a subspace of Vλ. Now suppose that W is an d-dimensional subspace of Vλ, and 
let i : W → Vλ denote the inclusion. Since E is d-universal, there is an embedding 
j : W → E. Since Vλ is homogeneous, there is g ∈ Gλ such that g ◦ i = j. It follows that 
gW ⊂ E, and so Gλ is linear-oligomorphic. !

Given a group G acting on a set X and a tuple x = (x1, . . . , xm) in Xm, we let G(x)
be the subgroup of G consisting of elements that fix each xi. We will require the following 
strengthening of the above theorem when we prove quantifier elimination in §5.6.

Proposition 4.8. For any u ∈ V m
λ the group Gλ(u) is linear-oligomorphic.

Proof. Fix d ≥ 0. Let U be the span of u1, . . . , um, regarded as a pinned λ-space. Recall 
(Proposition 2.8) that we have an equivalence ShU (Cλ) = Cµ, where µ = sh◦

m(λ), given 
by (V, v, V ′) #→ V ′. Let E′ be a d-universal finite µ-space, which exists by Theorem 3.2, 
and let (E, e, E′) be the corresponding object of ShU (Cλ). Fix an embedding E → Vλ of 
λ-spaces, and identify E with a subspace of Vλ in what follows. Since Vλ is homogeneous, 
there is g ∈ Gλ such that ge = u. Replacing E with gE, we assume e = u.

Now let W ′ be a d-dimensional subspace of Vλ such that U ∩W ′ = 0, and let W =
U + W ′. We let i : W → Vλ be the inclusion, and we regard (W, u, W ′) as an object of 
ShU (Cλ). Since E′ is d-universal, there is an embedding W ′ → E′ of µ-spaces, which 
translates to an embedding (W, u, W ′) → (E, u, E′) in ShU (Cλ). In other words, we have 
an embedding j : W → Vλ such that j(u) = u and j(W ) ⊂ E. Since Vλ is homogeneous, 
there is g ∈ Gλ such that j = g ◦ i. This shows that there is g ∈ Gλ(u) such that 
gW ′ ∈ E′.

Changing notation slightly, we have thus proved the following: there is a finite di-
mensional subspace E of Vλ such that if W is a d-dimensional subspace of Vλ with 
W ∩ U = 0 then there is g ∈ Gλ(u) such that gW ⊂ E. Of course, we are free to en-
large E, and so we may as well suppose U ⊂ E. Suppose now that W is an arbitrary 
d-dimensional subspace of Vλ. We have W ⊂ U + W ′ for some d-dimensional subspace 
W ′ with U ∩W ′ = 0. Letting g ∈ Gλ(u) be such that gW ′ ⊂ E, we have gW ⊂ E. Thus 
Gλ(u) is linear-oligomorphic. !

Remark 4.9. There are other examples of linear-oligomorphic groups. For instance, if k
is algebraically closed then the automorphism group of any countable quadratic space 
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is linear-oligomorphic. More generally, we show in [20] that the automorphism group of 
any weakly homogeneous λ-space is linear-oligomorphic.

4.3. Representation theory

Let G be a subgroup of GL(V ). We can then regard V as a representation of G; we 
call it the standard representation. We say that a representation of G is polynomial if it 
occurs as a subquotient of a (possibly infinite) direct sum of tensor powers of the standard 
representation. We let Reppol(G) be the category of polynomial representation of G. It 
is a Grothendieck abelian category and is closed under tensor product. We believe that 
studying this category for linear-oligomorphic groups should be an interesting problem.

In fact, the paper [30] essentially solves this problem when G = Gλ. The following 
theorem describes the most important points. This generalizes results from [12,28,29,32]
on infinite rank classical groups.

Theorem 4.10. Let λ be a pure tuple. In what follows, we consider representations of Gλ.

(a) The representation V ⊗n
λ is of finite length, for any n ≥ 0.

(b) For a partition µ, the socle Lµ of Sµ(Vλ) is irreducible; every irreducible polynomial 
representation is isomorphic to Lµ for a unique µ.

(c) The representation Sµ(Vλ) is injective in the category Reppol(Gλ).
(d) Every finite length polynomial representation has finite injective dimension.

Before proving the theorem, we recall some material from [30]. Let ω be a λ-structure 
on a countable vector space V . Write V =

⋃
n≥1 Vn with each Vn finite. Define Γω(n) to 

be the set of all g ∈ GL(V ) such that g−1ω and ω have the same restriction to Vn. This 
is typically just a set, and not a subgroup. The generalized stabilizer of ω is the system 
Γω = {Γω(n)}n≥1. One of the main ideas of [30] is that, while the stabilizer of ω is often 
“too small,” the generalized stabilizer is always large enough.

A pre-representation of Γω is a vector space W equipped with a partially defined 
action map Γω × W !!" W . A little more precisely, for each w ∈ W there must exist 
n ≥ 1 such that the action of g on w is defined for all g ∈ Γω(n). A representation of 
Γω is a pre-representation satisfying some natural conditions. We refer to [30, §7.2] for 
the exact definitions. Since each Γω(n) is contained in GL(V ), there is a natural pre-
representation of Γω on V , which is a representation. A representation of Γω is polynomial
if it occurs as a subquotient of a direct sum of tensor powers of V . We let Reppol(Γω)
denote the category of polynomial representations.

Let Gω be the stabilizer of ω in GL(V ). We have Gω ⊂ Γω(n) for all n ≥ 1. In 
particular, if W is a representation of Γω then there is well-defined action map Gω×W →
W , which is easily seen to define a representation of Gω on W ; we call this the restriction
of W to Gω. It is clear that if W is a polynomial representation of Γω then its restriction 
is a polynomial representation of Gω. We thus have a restriction functor
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res : Reppol(Γω) → Reppol(Gω) (4.11)

The following two lemmas are the key results needed for Theorem 4.10:

Lemma 4.12. Suppose (V, ω) is homogeneous. Then Gω is dense in Γω in the following 
sense: given g ∈ Γω(n) there exists h ∈ Gω such that g and h have the same restriction 
to Vn.

Proof. Let g be as in the statement of the lemma. Then g : (Vn, ω) → (gVn, ω) is an 
isomorphism of λ-spaces. By homogeneity, there is h ∈ Gω such that g and h have equal 
restriction to Vn. !

Lemma 4.13. Suppose (V, ω) is homogeneous. Then (4.11) is an equivalence.

Proof. It is clear that res is faithful. We now show that it is full. Thus let W and W ′

be polynomial representations of Γω and let f : W → W ′ be a Gω-linear map. Write 
W = W1/W2 where W2 ⊂ W1 are Γω-subrepresentations of a sum of tensor powers of V , 
and similarly write W ′ = W ′

1/W
′
2. Let w ∈ W be given, let w′ = f(w′), and let w1 ∈ W1

and w′
1 ∈ W ′

1 be lifts. Let n be such that w1 and w′
1 belong to the appropriate sums of 

tensor powers of Vn. We claim that f(gw) = gf(w) for all g ∈ Γω(n), which will show 
that f is a map of Γω-representations. Thus let g be given. Appealing to Lemma 4.12, 
let h ∈ Gω have the same restriction to Vn as g. Then gw1 = hw1 and gw′

1 = hw′
1. 

Thus f(gw) = f(hw) = hf(w) = gf(w), where in the second step we used that f is 
Gω-equivariant. This proves the claim, and the fullness of res follows.

It remains to show that res is essentially surjective. Thus let W be a polynomial 
representation of Gω. Write W = W1/W2 where W2 ⊂ W1 are Gω-subrepresentations of 
a sum of tensor powers of V . We claim that W1 and W2 are Γω-subrepresentations; this 
will imply that W is naturally a polynomial Γω-representation, and establish essential 
surjectivity. Let w ∈ W1 be given and let n be such that w belongs to the appropriate 
sum of tensor powers of Vn. Given g ∈ Γω(n), by Lemma 4.12 there is h ∈ Gω with the 
same restriction to Vn; thus gw = hw belongs to W1. Thus gw ∈ W1 for all g ∈ Γω(n), 
which proves that W1 is a Γω-subrepresentation. The proof for W2 is similar. !

Theorem 4.10 follows from Lemma 4.13 and properties of Reppol(Γω) established in 
[30].

Remark 4.14. The category Reppol(Γω) is equivalent to several other categories, as dis-
cussed in [30, §1.5]. Thus Reppol(Gλ) is equivalent to these categories as well. For 
instance, Reppol(Gλ) is equivalent to the category of locally finite representations of 
the upwards λ-Brauer category, which gives a combinatorial description of the category.

Question 4.15. The paper [33] develops the theory of the spin representation for the in-
finite orthogonal group. Is there an analogous theory for Gλ?
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5. Model-theoretic aspects

We emphasize that “λ-space” means “λ-space over k” unless otherwise mentioned.

5.1. Theories

Fix a tuple λ = [λ1, . . . , λr]. We now introduce the first-order language Lλ = Lλ,k

we use to describe λ-spaces. This language is two-sorted: we use Greek symbols (such as 
α, β) for scalar variables, and Roman symbols (such as x, y) for vector variables. The 
language contains function symbols for addition and multiplication of scalars, together 
with constants for each element of k. It also contains function symbols for scalar-vector 
multiplication and vector addition, together with a constant symbol 0 for the zero vector. 
Finally, for each 1 ≤ i ≤ r there is a scalar-valued function symbol ωi taking |λi| vector 
inputs.

Suppose that ϕ is a formula with m free scalars variables α1, . . . , αm and n free vector 
variables x1, . . . , xn. We then say that ϕ is a (m, n)-formula. It will be convenient to 
package the variables into tuples α = (α1, . . . , αm) and x = (x1, . . . , xn), and write 
ϕ(α, x) in place of ϕ(α1, . . . , αm, x1, . . . , xn).

Let V be a λ-space. Then k 1 V is naturally a structure for Lλ. (It is important to 
remember that the scalars are part of the structure.) To define ωi, we convert the given 
λi-form on V to a multilinear map as in §2.1. We let Th(V ) be the theory of V ; this is 
the set of all sentences in Lλ that are true for V . We say that two λ-spaces V and W
are elementarily equivalent if Th(V ) = Th(W ).

Remark 5.1. Suppose that V ′ is a λ-space over an extension field k′ of k. Then k′1V ′ is 
naturally a structure for Lλ, and we let Th(V ′, k′) be its theory. We will mostly not be 
concerned with this situation. However, one must keep it in mind, for if V is a λ-space 
then a model of the theory Th(V ) is a λ-space V ′ over k′ such that Th(V ′, k′) = Th(V ). 
Thus the model theory of Th(V ) “sees” these examples.

We now give two examples to illustrate some of the information first-order statements 
can detect about λ-spaces.

Example 5.2. Consider the formula ,2(x1, x2) given by

∀α1,α2(α1x1 + α2x2 = 0 =⇒ α1 = 0 ∧ α2 = 0)

This formula expresses that x1 and x2 are linearly independent. Of course, there is a simi-
lar (0, n)-formula ,n(x) expressing linear independence of n vectors. We have dim(V ) ≥ n

if and only if the sentence ∃x(,n(x)) belongs to Th(V ). Thus if V and W are elementarily 
equivalent then either V and W are both infinite dimensional, or V and W have equal 
finite dimension.
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Example 5.3. Let λ = [(2)], so that we are working with quadratic spaces. Consider the 
formula ψ(x) given by

∀y(ω(x, y) = 0).

This formula expresses that x is in the null space of the form ω. Thus the sentence

∃x(x /= 0 ∧ ψ(x))

means that the null space is non-zero. Similarly, letting ,n be as in Example 5.2, the 
sentence

∃x1, . . . , xn(,n(x1, . . . , xn) ∧ ψ(x1) ∧ · · · ∧ ψ(xn))

means that there are n linearly independent vectors in the null space. We thus see that 
if V and W are elementarily equivalent quadratic spaces then the null spaces of V and 
W are either both infinite dimensional, or have the same finite dimension.

5.2. Types

An important idea in model theory is the notion of type. We will require a small amount 
of type theory, which we now discuss. We refer to [17, §6.3] for additional background.

Let T be a complete theory in the language Lλ, e.g., the theory of some λ-space. We 
say that two (0, n)-formulas ϕ(x) and ψ(x) are equivalent modulo T if the sentence

∀x(ϕ(x) ⇐⇒ ψ(x))

belongs to T. The set Rn of equivalence classes forms a boolean algebra under conjunction 
and disjunction. Of course, one could make a more general definition that accommodates 
(m, n)-formulas, but we will not need this.

Let V be a λ-space with T = T(V ), and let v ∈ V n. The type of v, denoted t(v), is 
the set of all (0, n)-formulas ϕ satisfied by v. Note that if ϕ and ψ are equivalent the 
ϕ(v) holds if and only if ψ(v) holds. Thus t(v) is a union of equivalence classes, and 
can therefore be regarded as a subset of Rn. The type of v determines the isomorphism 
type of the λ-space span(v), but typically contains more information (related to how this 
space sits in V ).

In fact, there is a more abstract notion of type: an n-type of T is a maximal ideal of 
the ring Rn. The type t(v) of v ∈ V n is a type in this sense: indeed, t(v) is the kernel of 
the ring homomorphism Rn → F2 that takes ϕ to 0 if ϕ(v) holds, and 1 otherwise. We 
say that a type t of T occurs in V if t = t(v) for some v ∈ V n.

We now look at a few special classes of types.
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5.2.1. Linearly independent types
We say that an n-type is linearly independent if it contains the formula ,n from 

Example 5.2. Of course, if v ∈ V n then t(v) is linearly independent if and only if v is. It 
typically suffices to study linearly independent types.

5.2.2. Principal types
We say that an n-type t is principal if it is axiomatized by a single formula κ(x) ∈

t. This means that t consists of exactly those formulas ϕ(x) for which the sentence 
∀x(κ(x) =⇒ ϕ(x)) belongs to T. Equivalently, it means that t is the principal ideal of Rn

generated by κ(x). Principal types are especially easy to work with: if κ(x) axiomatizes 
t then v ∈ V n has type t if and only if κ(v) holds.

Example 5.4. Suppose that λ = ∅, so we just have vector spaces, and let T be the theory 
of a countable vector space V . The following four formulas axiomatize principal types:

x = 0, x /= 0, ,2(x, y), (x /= 0) ∧ (y = 2x).

Here ,2 tests linear independence (see Example 5.2). We briefly explain why these are 
principal types. Let κ be one of the above four formulas. It suffices to check that if ϕ
is some (0, n)-formula for which there is some v ∈ V n such that κ(v) and ϕ(v) hold, 
then ϕ(w) holds for all other w satisfying κ. It is not difficult to see that GL(V ) acts 
transitively on the set of vectors (or pairs of vectors) satisfying κ, so if κ(v) and κ(w)
hold then w = gv for some g ∈ GL(V ), and so ϕ(v) is equivalent to ϕ(w). We will see a 
more detailed version of this type of argument in Proposition 5.11.

The following proposition demonstrates the usefulness of principal types:

Proposition 5.5. Let V and W be countable λ-spaces that are elementarily equivalent and 
in which all linearly independent types are principal. Then V and W are isomorphic.

Proof. Suppose that we have linearly independent tuples v ∈ V n and w ∈ Wn such that 
t(v) = t(w), and let vn+1 be another element of V that is linearly independent of v. We 
show that there exists wn+1 ∈ W such that t(v, vn+1) = t(w, wn+1). This implies that 
wn+1 is linearly independent of w. Of course, the analogous statement with V and W
switched will then be true by symmetry.

Let ψ(x, xn+1) axiomatize t(v, vn+1). Since ∃xn+1(ψ(v, xn+1)) is true (vn+1 is a wit-
ness), it follows that the formula ∃xn+1(ψ(x, xn+1)) belongs to t(v). It therefore belongs 
to t(w), and so ∃xn+1(ψ(w, xn+1)) is true. Let wn+1 be a witness. Since ψ(w, wn+1)
holds and ψ axiomatizes t(v, vn+1), it follows that t(w, wn+1) = t(v, vn+1).

The result now follows from a back and forth argument, as follows. Fix bases X and 
Y of V and W indexed by N. We will construct new bases (vi)i≥1 and (wi)i≥1 of V
and W such that t(v1, . . . , vn) = t(w1, . . . , wn) for all n. This implies that vi #→ wi is 
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an isomorphism of λ-spaces. We construct our new bases inductively. Suppose we have 
constructed (v1, . . . , vn) and (w1, . . . , wn). We then do the following two steps:

• Let vn+1 be the first basis vector in X not in the span of (v1, . . . , vn), and let wn+1
be a vector in W such that t(w1, . . . , wn+1) = t(v1, . . . , vn+1).

• Let wn+2 be the first basis vector in Y not in the span of (w1, . . . , wn+1), and let 
vn+2 be a vector in V such that t(v1, . . . , vn+2) = t(w1, . . . , wn+2).

The choice of vn+1 ensures that (v1, . . . , vn+1) is linearly independent, and so (w1, . . . , wn+1)
is linearly independent too. Similarly for the second step. Since every element of X be-
longs to the span of (v1, . . . , vn) for some n, it follows that (vi)i≥1 is indeed a basis; 
similarly for (wi)i≥1. !

Remark 5.6. The above proof is an adaptation of a standard argument [17, Theo-
rem 7.2.3] to the linear case.

Remark 5.7. Let V be a λ-space in which all linearly independent types are principal. 
One can then show that all types in V are principal. In fact, this even holds for (m, n)-
types, i.e., types involving scalars. In the terminology of model theory, V is an atomic 
structure. See [17, §7.2] for more.

5.2.3. Rational types
Every type appears in some model of T. However, we only care about models where 

the scalar field is k. With this in mind, we say that an n-type t is rational if there exists 
a λ-space V with Th(V ) = T such that t occurs in V . (We re-emphasize that V is over 
k.) We note that even is k is algebraically closed, irrational types will typically exist.

Example 5.8. Here is an example of an irrational 2-type. Take λ to be empty and T to 
be the theory of a countable dimensional k-vector space. Start with the formulas

∃α(x = αy), x /= 0, y /= 0.

Thus we are looking at a pair of non-zero linearly dependent vectors. Of course, the 
scalar α in the first equation is unique. Now let t0 be a 1-type in the theory of k (as a 
field, or really, field extension of k), which is not the type of 0 ∈ k. For each formula 
ψ(α) in t0, add the formula

∃α(x = αy ∧ ψ(α))

to our list of formulas. Now take the 2-type t axiomatized by all the above formulas. 
This expresses that x and y are linearly dependent, and that the scalar relating them 
has type t0. If t0 does not occur as a type in k then t will not be a rational type. (To 
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produce such a t0, let k∗ be an ultrapower of k, let a be an element of k∗ that does not 
belong to k, and take t0 be the type of a.)

5.3. The classifying map

We now pause our discussion of model theory to introduce a useful tool. Let (V, ω)
be a λ-space. Fix a non-negative integer n, and let V [n] be the subset of V n consisting 
of tuples (v1, . . . , vn) that are linearly independent. Let X = Sλ(kn)∗ be the space of 
λ-structures on kn. Given v ∈ V [n], we obtain an injective linear map jv : kn → V by 
mapping the ith basis vector ei of kn to vi. We define a function

. : V [n] → X, .(v) = j∗v (ω).

We call . the classifying map.
Note that X is a finite dimensional k-vector space. If we fix a basis, then the com-

ponents of .(v) are obtained by evaluating the given λi-forms on the components of v
(and taking linear combinations). We thus see that . is expressible in the language Lλ.

Example 5.9. Suppose λ = [(2)]. We can then identify X with the space of symmetric 
n × n matrices. Let xi,j with 1 ≤ i ≤ j ≤ n be the coordinates on this space. Then 
.i,j(v) = ω(vi, vj), where .i,j denotes the (i, j) coordinate of ..

We need a few simple properties of .:

Proposition 5.10. Maintain the above notation, and let G = Aut(V ).

(a) The map . is G-invariant, i.e., .(v) = .(gv) for g ∈ G.
(b) If V is universal then . is surjective.
(c) If V is homogeneous then . is injective modulo G, i.e., .(v) = .(w) if and only if 

v = gw for some g ∈ G.

Proof. (a) We have

.(gv) = j∗gv(ω) = (gjv)∗(ω) = j∗vg
∗(ω) = j∗v (ω) = .(v).

Here g∗(ω) = ω since g is an automorphism of V .
(b) Let η ∈ X be a λ-structure on kn. Since V is universal, there is an embedding of 

λ-spaces j : (kn, η) → (V, ω); this means j∗(ω) = η. Letting vi = j(ei), we have j = jv, 
and so .(v) = η.

(c) Suppose .(v) = .(w). This exactly means that the linear isomorphism span(v) →
span(w) taking vi to wi is an isomorphism of λ-spaces. Since V is homogeneous, this 
isomorphism extends to an automorphism g of G. Clearly, v = gw, which proves the 
claim. !



N. Harman, A. Snowden / Advances in Mathematics 443 (2024) 109599 27

5.4. Types in homogeneous spaces

We now examine n-types in the universal homogeneous countable λ-space V = Vλ. 
Let . : V [n] → X be the classifying map (§5.3), with X = Sλ(kn)∗. Suppose that X
is m-dimensional (as a vector space), and fix a basis. Let κ(α, x) be the (m, n)-formula 
such that

κ(a, v) ⇐⇒ ,n(v) ∧ .(v) = a,

where ,n is as in Example 5.2. In other words, κ(a, v) holds if and only if v is linearly 
independent and .(v) is the point a of X. We let κa(x) denote the (0, n)-formula κ(a, x).

Proposition 5.11. We have the following:

(a) For a ∈ X, the formula κa(x) axiomatizes a principal type ta of Th(V ) which occurs 
in V .

(b) The linearly independent rational types of Th(V ) are exactly the ta with a ∈ X.

Proof. (a) Let a ∈ X be given. Choose v ∈ V [n] with .(v) = a, which is possible since .
is surjective (Proposition 5.10). It is clear that κa(x) belongs to t(v). We claim that it 
axiomatizes it. Suppose that ϕ(x) belongs to t(v). We must show that the sentence

∀x(κa(x) =⇒ ϕ(x))

belongs to Th(V ). To verify this, it is enough to show that κa(w) implies ϕ(w) for all 
w ∈ V n. Thus suppose κa(w) holds. Then w is linearly independent and .(w) = a = .(v). 
Since . is injective modulo Gλ (Proposition 5.10), we have w = gv for some g ∈ Gλ. 
Since ϕ is invariant under Gλ and ϕ(v) holds, it follows that ϕ(w) holds.

(b) Let t be a linearly independent rational type of Th(V ). By definition, there is 
some λ-space W with Th(W ) = Th(V ) and some w ∈ Wn such that t = t(w). Let 
.′ : W [n] → X be the classifying map, and let a = .′(w). Then κa(w) holds, and so 
t(w) = ta. !

5.5. Categoricity

In classical model theory, a countable structure X is called ω-categorical if any other 
countable structure that is elementarily equivalent to X is actually isomorphic to X. 
This has proved to be an important concept, and is closely related to homogeneity (most 
countable homogeneous structures of interest are ω-categorical). It therefore makes sense 
to examine the idea in the linear setting.

The usual concept of ω-categorical is not the right thing to consider for λ-spaces. There 
are two problems. The first is that if k is uncountable then there are no relevant countable 
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structures. (The field k is technically part of the structure, so even the zero space leads to 
an uncountable structure.) The second problem relates to the issue raised in Remark 5.1
concerning the coefficient field. We illustrate this with an example. Suppose k = Q and λ
is empty so that we just have vector spaces. We would like k⊕∞ (countable sum) to count 
as ω-categorical. However, if k′ /= Q is a countable field that is elementarily equivalent 
to k as field then the Lλ-structures associated to (k′)⊕∞ and k⊕∞ are elementarily 
equivalent but not isomorphic. Since such k′ do exist, it follows that k⊕∞ is not ω-
categorical.

Due to the above issues, we introduce the following variant of the ω-categorical concept 
in our setting:

Definition 5.12. Let V be a countable λ-space. We say that V is linearly ω-categorical if 
any countable λ-space that is elementarily equivalent to V is isomorphic to V .

We emphasize that in the above definition, “countable” means “dimension ℵ0,” and 
both V and W are over k. The following is our main theorem related to this concept:

Theorem 5.13. The space Vλ is linearly ω-categorical.

Proof. Let W be a countable λ-space that is elementarily equivalent to V . Since every 
linearly independent rational type of Th(V ) = Th(W ) is principal (Proposition 5.11), it 
follows that all linearly independent types in V and W are principal. Thus V and W are 
isomorphic (Proposition 5.5), and so V is linearly ω-categorical. !

Remark 5.14. There are other examples of linearly ω-categorical spaces. For example, if 
k is algebraically closed then any countable quadratic space is linearly ω-categorical. One 
can see this using the observation in Example 5.3 and some related ideas. This example 
is also discussed (from a different perspective) in [22].

Remark 5.15. Let Ω be a countable structure over a countable language. The classical 
Ryll-Nardzewski theorem asserts that the following conditions are equivalent:

• Ω is ω-categorical.
• Th(Ω) has finitely many n-types for all n.
• Aut(Ω) is oligomorphic.

See [17, §7.3] for a more complete statement.
It is natural to look for a linear analog of the Ryll-Nardzewski theorem. Let V be a 

countable λ-space. Consider the following conditions:

• V is linearly ω-categorical.
• The n-types in Th(V ) form a finite dimensional space, for all n.
• Aut(V ) is linear-oligomorphic.
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Are these conditions equivalent? The precise meaning of the second condition is not 
clear to us yet. For Vλ, we showed that the linearly independent rational n-types are the 
k-points of the finite dimensional variety X = Sλ(kn) (Proposition 5.11), which confirms 
this condition to some extent.

Remark 5.16. One can also define linearly κ-categorical, for other infinite cardinals κ: the 
λ-spaces involved should have dimension κ. We do not know what happens in uncount-
able cardinalities. The behavior of quadratic spaces in dimension ℵ1 (see Example 2.4) 
suggests the situation could be very different.

5.6. Quantifier elimination

Recall that a first-order theory T has quantifier elimination if every formula is equiv-
alent (modulo T) to a quantifier-free formula, and a structure has quantifier elimination
if its theory does. In general, λ-spaces do not have quantifier elimination. There are two 
issues. First, k itself may not have quantifier elimination (as a field), and this prevents 
Th(V ) from having quantifier elimination. Second, the formula ,n from Example 5.2 ex-
pressing linear independence will typically not be equivalent to a quantifier-free formula, 
for any k.

In both issues above, the problematic quantifiers are over scalar variables. This sug-
gests the following definition:

Definition 5.17. We say that a theory T for Lλ has vector-quantifier elimination if every 
formula is equivalent (modulo T) to one involving no quantifiers over vector variables. 
We say that a λ-space V has vector-quantifier elimination if Th(V ) does.

The following is our main result in this direction:

Theorem 5.18. The space Vλ has vector-quantifier elimination.

We require several lemmas before giving the proof. We say that a subset S of kn is 
a D-(sub)set if it is definable in the language of fields (using constants from k). This 
is typically called a “definable subset,” but this terminology could be ambiguous in our 
setting (since we have both the language of fields and of λ-spaces). Note that the notion 
of D-set is invariant under GLn(k), and so it therefore makes sense for subsets of finite 
dimensional vector spaces.

Lemma 5.19. Let V be a finite λ-space, let ϕ(α, x) be an (m, n)-formula, and let K ⊂
km × V n be the set satisfying ϕ. Then K is a D-set.

Proof. Choosing a basis, identify V with kd, and regard K as a subset of km × knd. The 
λi-forms on V amount to polynomial maps kd → k, which makes the lemma clear. !
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Lemma 5.20. Let V be a λ-space, let G = Aut(V ), and assume G(u) is linear-
oligomorphic for all u ∈ V m. Let ϕ(α, x) be an (m, n)-formula, and let L ⊂ km × V n

be the set satisfying ϕ(α, x). Let W be a finite dimensional subspace of V , and let 
K = L ∩ (km ×Wn). Then K is a D-subset of km ×Wn.

Proof. We prove the proposition assuming that ϕ has the form ∃y(ψ(α, x, y)) where ψ
has no vector quantifiers. This is sufficient for the application of the lemma, and the 
proof in the general case is not much different.

Let H ⊂ Aut(V ) be the subgroup fixing each element of W . By assumption, H is a 
linear-oligomorphic subgroup of GL(V ). Let W ⊂ V ′ be a finite dimensional subspace 
of V such that every H-orbit on V meets V ′. Regard V ′ as a finite λ-space, and let 
L′ ⊂ km × (V ′)n be the set satisfying ϕ; here the existential quantifier in ϕ only ranges 
over V ′. The set L′ is a D-set by Lemma 5.19.

We claim that K = L′∩ (km×Wn), which will prove that K is a D-set. Since L′ ⊂ L, 
it is clear that the right side is contained in K. Suppose now that (a, v) is an element 
of K. Then there is some w ∈ V such that ψ(a, v, w) holds. Let h ∈ H be such that 
hw ∈ V ′. Since h fixes v and the veracity of ψ is unaffected by applying h, we see that 
ψ(a, v, hw) holds. In other words, we can find a witness to ϕ(a, v) in V ′, and so (a, v)
belongs to L′. This completes the proof. !

Let ϕ(α, x) be an (m, n)-formula. We say that ϕ satisfies (LI) if ϕ(a, v) implies that 
the tuple (v1, . . . , vn) is linearly independent.

Lemma 5.21. Let V be a λ-space. Suppose every (m, n)-formula satisfying (LI) is equiv-
alent modulo Th(V ) to one without vector-quantifiers. Then V has vector-quantifier 
elimination.

Proof. Let ϕ be a (m, n)-formula. We show that ϕ is equivalent to a formula without 
vector quantifiers. We just treat the case (m, n) = (0, 2) for notational simplicity; the 
idea in general is the same. Let ,n be the (0, n)-formula from Example 5.2 that detects 
linear independence. We introduce the following three formulas:

ϕ1(x, y) : ,2(x, y) ∧ ϕ(x, y)
ϕ2(α, x) : ,1(x) ∧ ϕ(x,αx)
ϕ2(β, y) : ,1(y) ∧ ϕ(βy, y)

We have

ϕ(x, y) ⇐⇒ ϕ1(x, y)
∨ ∃α(y = αx ∧ ϕ2(α, x))
∨ ∃β(x = βy ∧ ϕ3(β, y))
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∨ (x = y = 0 ∧ ϕ(0,0)).

This essentially breaks up ϕ(x, y) into cases depending on the possible linear depen-
dencies between x and y. The formulas ϕ1, ϕ2, and ϕ3 satisfy (LI), and are therefore 
equivalent to formulas without vector-quantifiers. By the above, we see that ϕ is also 
equivalent to a formula without vector-quantifiers. !

Proof of Theorem 5.18. Let ϕ(α, x) be an (m, n)-formula satisfying (LI). We show that ϕ
is equivalent to a formula having no vector-quantifiers. This will establish the theorem by 
Lemma 5.21. We note that it suffices (by induction on the number of vector quantifiers) 
to treat the case where ϕ has the form ∃y(ψ(α, x, y)) where ψ has no vector quantifiers, 
though we do not use this.

Let V = Vλ and G = Gλ. Let .0 : V [n] → X be the classifying map (see §5.3), 
with X = Sλ(kn)∗. Let . : km × V [n] → km ×X be the map id × .0. We use Proposi-
tion 5.10 without mention in what follows. Let W be a finite dimensional subspace of V
such that every G-orbit on V [n] meets W [n]. This exists since G is linear-oligomorphic 
(Theorem 4.7).

Let L ⊂ km × V [n] be the set satisfying ϕ, and let K = L ∩ (km × W [n]). The set 
K is a D-set by Lemma 5.20; note that G satisfies the assumption of that lemma by 
Proposition 4.8. Thus K ′ = .(K) is a D-subset of km × X. Let ϕ′(α, x) be a formula 
without vector quantifiers expressing that x is linear independent and .(α, x) ∈ K ′.

Let (a, v) ∈ km × V [n]. We claim that ϕ(a, v) holds if and only if ϕ′(a, v) holds; this 
will prove the theorem. First suppose that ϕ(a, v) holds. Let g ∈ G be an element such 
that gv ∈ W [n]. Since ϕ is G-invariant, it follows that ϕ(a, gv) holds, and so (a, gv) ∈ K. 
Hence .(a, gv) ∈ K ′. But . is G-invariant, and so .(a, v) ∈ K ′, that is, ϕ′(a, v) holds.

Now suppose that ϕ′(a, v) holds, meaning .(a, v) ∈ K ′. It follows that there is some 
(b, w) ∈ K such that .(a, v) = .(b, w), i.e., a = b and .0(v) = .0(w). Since .0 is 
injective modulo G, there is some g ∈ G such that v = gw. Since ϕ(b, w) holds and ϕ is 
G-invariant, it follows that ϕ(a, v) holds. This completes the proof. !

Remark 5.22. Suppose k has quantifier elimination, e.g., k is algebraically closed or real 
closed (Tarski). Then the D-set K ′ in the above proof can be described in the language 
of fields without quantifiers, and so ϕ′ can be chosen without quantifiers. This shows 
that we only need quantifiers to test linear independence.

We can reformulate this as follows. Let L′
λ be the language obtained from Lλ by 

adding relation symbols that test for linear independence and function symbols that 
give the coefficients when expressing one vector as a linear combination of a tuple of 
linear independent vectors. Then the theory of Vλ over the language L′

λ has quantifier 
elimination for vectors and scalars.

Remark 5.23. Assume k = Q. One can then show that Th(Vλ) is decidable. The key 
point is that everything in the proof of Theorem 5.18 is effective, and so we have effective 
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elimination of quantifiers. Perhaps the most subtle point is the construction of W , and 
what it even means to do computations in Vλ. For this, we must look at the construction 
of the Fraïssé limit in §A.6. In the case of λ-spaces, these constructions are effective; this 
hinges on the explicit construction of universal λ-spaces. This construction therefore 
produces a model of Vλ in which we can do computations. To find W , one finds an 
embedding of a finite n-universal space into Vλ.

Remark 5.24. There is a converse to Theorem 5.18: if V is a λ-space with vector-quantifier 
elimination then V is homogeneous. We sketch the proof. Let V be given. Suppose ϕ(x)
is an (0, n)-formula with no vector quantifiers. If v ∈ V [n] then the veracity of ϕ(v)
depends only on .(v) ∈ X. It follows that .(v) completely determines the type t(v), and 
so (as in §5.4) every linearly independent type in V is principal. Suppose v, w ∈ V [n]

satisfy .(v) = .(w), i.e., we have an isomorphism span(v) → span(w) of pinned λ-spaces. 
The proof of Proposition 5.5 shows that we can find an automorphism g of V such that 
gv = w. This shows that V is homogeneous.

Appendix A. Fraïssé theory

A.1. Overview

Fraïssé [14] proved an important theorem that, roughly speaking, explains when a 
collection of finite relational structures can be assembled to a countable homogeneous 
structure. See [5, §2.6] for an expository treatment. We want to apply Fraïssé’s theorem 
to construct homogeneous λ-spaces. However, since λ-spaces are not finite, and may not 
even be countable, the classical form of the theorem does not apply. In this appendix, 
we formulate a generalization of Fraïssé’s theorem that applies in our setting. We use 
the language of category theory since it seems to be the most flexible and convenient.

We do not claim any originality here: categorical formulations of Fraïssé’s theorem 
have been known since the work of Droste–Göbel [9,10], and have appeared in more 
recent work as well [6,21,25]. We have included this material simply for the convenience 
of the reader.

A.2. Ind-objects

Fix, throughout §A, a category C in which all morphisms are monic. We often refer to 
morphisms in C as embeddings. The main case to keep in mind is where C is a category 
of finite λ-spaces.

An ind-object of C is a diagram

X1 → X2 → X3 → · · ·

More formally, an ind-object is a pair X = (X•, /•,•) where Xi is an object of C for i ≥ 1, 
and /i,j : Xi → Xj is a morphism for i ≤ j, such that /i,i is the identity and /j,k ◦ /i,j =
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/i,k. Of course, one can consider ind-objects indexed by other filtered categories, but we 
do not here.

Let Y = (Y•, δ•,•) be a second ind-object. A morphism of ind-objects α : X → Y is 
specified by a non-decreasing function a : Z+ → Z+ and morphisms αi : Xi → Ya(i) for 
each i ∈ Z+ such that αj ◦ /i,j = δa(i),a(j) ◦ αi for all i ≤ j. Suppose b : Z+ → Z+ is a 
second non-decreasing function such that b(i) ≥ a(i) for all i. Define βi : Xi → Yb(i) by 
βi = δa(i),b(i) ◦ αi. Then (a, α•) and (b, β•) represent the same morphism X → Y .

An object X of C is identified with the constant ind-object X → X → · · · , where 
all transition maps are the identity. In this way we can talk about embeddings X → Y

where Y is an ind-object. Any such embedding factors through Yn for some n.

Example A.1. Suppose C is the category of finite dimensional vector spaces, with mor-
phisms being injective linear maps. If X is an ind-object in C then we can associate to it 
the vector space Φ(X) = lim−−→Xn, which has dimension ≤ ℵ0. If Y is a second ind-object 
then giving an embedding X → Y of ind-objects is equivalent to giving an injective 
linear map Φ(X) → Φ(Y ). In this way, Φ provides an equivalence between the category 
of ind-objects in C and the category of vector spaces of dimension ≤ ℵ0 (with injective 
maps).

Example A.2. Let C = Cf
λ be the category of finite λ-spaces. Then, just as above, ind-

objects in Cf
λ are equivalent to λ-spaces of dimension ≤ ℵ0.

A.3. Universal objects

We now introduce an important class of ind-objects:

Definition A.3. An ind-object Ω of C is universal if every object of C embeds into Ω.

We now establish a result that characterizes when a universal ind-object exists. To 
this end, we introduce the following conditions on C:

(CC) Countable cofinality: there is a cofinal sequence of objects, i.e., there 
are objects {Xn}n≥1 such that for any object Y there is an embedding 
Y → Xn for some n.

(JEP) Joint embedding property: given objects X and Y , there is an object 
Z and embeddings X → Z and Y → Z.

The result is the following:

Proposition A.4. The category C has a universal ind-object if and only if it satisfies (CC) 
and (JEP).
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Proof. Suppose C satisfies (CC) and (JEP). Let {Xn}n≥1 be a cofinal sequence of objects 
as in (CC). Now choose a diagram

Ω1 Ω2 Ω3 · · ·

X1 X2 X3

We can construct such a diagram as follows. Take Ω1 = X1. Having defined Ωn−1, define 
Ωn to be an object into which both Ωn−1 and Xn embed; this exists by (JEP). Then Ω
is an ind-object, and clearly universal: indeed, any object embeds into some Xn, which 
in turn embeds into Ω.

Now suppose that C has a universal ind-object Ω. Given any object X, there is an 
embedding X → Ω, which factors through some Ωn. Thus any object embeds into some 
Ωn, and so (CC) holds. In fact, since Ωn embeds into Ωm for any m > n, we see that 
any X embeds into Ωn for any n 8 0, from which (JEP) follows. !

A.4. Homogeneous and f-injective objects

We now introduce two additional important classes of ind-objects:

Definition A.5. An ind-object Ω is homogeneous if the following condition holds: given 
objects X and Y of C, embeddings α : X → Ω and β : Y → Ω, and an isomorphism 
γ : X → Y , there exists an automorphism σ : Ω → Ω such that the diagram

Ω σ Ω

X

α

γ
Y

β

commutes.

Definition A.6. An ind-object Ω is f-injective if the following condition holds: given an 
embedding α : X → Y in C and an embedding γ : X → Ω, there exists an embedding 
β : Y → Ω making the diagram

Ω

X
α

γ

Y

β

commute.
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We note that if C has an initial object then any f-injective ind-object is automatically 
universal: in the above diagram, take X to be an initial object and Y to be an arbitrary 
object. The following proposition connects the above concepts:

Proposition A.7. We have the following:

(a) A universal ind-object is f-injective if and only if it is homogeneous.
(b) Any two universal homogeneous ind-objects are isomorphic.
(c) Given a universal homogeneous ind-object, every ind-object can be embedded into it.

We first prove a lemma that abstracts the classical back and forth argument.

Lemma A.8. Let Ω and Ω′ be f-injective, let δ : X → Ω and δ′ : X ′ → Ω′ be embed-
dings with X and X ′ in C, and let γ : X → X ′ be an embedding. Then there exists an 
isomorphism α : Ω → Ω′ such that α ◦ δ = δ′ ◦ γ.

Proof. Let Ω = (Ω1 → Ω2 → · · · ). The map δ : X → Ω factors through some Ωn. 
Relabeling, we may as well assume that Ω1 = X and δ = /1,2 is the first transition map 
in Ω. Similarly for X ′ → Ω′. Thus γ is an embedding α1 : Ω1 → Ω′

1, and we want to 
extend α1 to an isomorphism α : Ω → Ω′.

Put n(1) = m(1) = 1. Since Ω is f-injective, the embedding Ωn(1) → Ω extends along 
α1. We can thus find an embedding β1 : Ω′

n(1) → Ωn(2) such that β1α1 = /n(1),n(2). Since 
Ω′ is f-injective, the embedding Ω′

m(1) → Ω′ extends along β1. We can thus find a map 
α2 : Ωn(2) → Ω′

m(2) such that α2β1 = /′m(1),m(2). Continuing in this way, we obtain a 
commutative diagram

Ωn(1)
ε

α1

Ωn(2)
ε

α2

Ωn(3)
ε

α3

· · ·

Ω′
m(1)

ε′

β1

Ω′
m(2)

ε′

β2

Ω′
m(3)

ε′

β3

· · ·

Thus α : Ω → Ω′ extends α1, and is an isomorphism with inverse β. !

Proof of Proposition A.7. (a) Suppose Ω is an ind-object that is universal and homoge-
neous. We show that Ω is f-injective. Let α : X → Y and γ : X → Ω be given. Since Ω is 
universal, there exists an embedding β′ : Y → Ω. Since Ω is homogeneous, the two em-
beddings γ and β′α of X differ by an automorphism, that is, there is an automorphism 
σ of Ω such that σβ′α = γ. Taking β = σβ′ thus gives γ = βα, and so Ω is f-injective.

The converse follows from Lemma A.8; in fact, this lemma shows that any f-injective 
object is homogeneous.

(b) Let Ω and Ω′ be universal and f-injective. Since Ω′ is universal, there is an em-
bedding Ω1 → Ω′. Lemma A.8 implies that this extends to an isomorphism Ω → Ω′.
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(c) Let Ω be a universal homogeneous ind-object and let ( be another ind-object. 
Since Ω is universal, there is an embedding (1 → Ω. Since Ω is f-injective, this embedding 
extends to an embedding (2 → Ω, which in turn extends to an embedding (3 → Ω, and 
so on. In this way, we inductively construct an embedding ( → Ω. !

A.5. Fraïssé categories

Motivated by the importance of homogeneous objects, we introduce the following 
terminology:

Definition A.9. We say that C is a Fraïssé category if it has a universal homogeneous 
ind-object.

We prove one simply permanence property of these categories here. Recall from §2.5
the notion of the coslice category ∆X(C).

Proposition A.10. Let C be a Fraïssé category and let X be an object of C. Then the 
coslice category ∆X(C) is also Fraïssé.

Proof. Let Ω be a universal homogeneous ind-object of C. Since Ω is universal, there is 
an embedding α : X → Ω. Reindexing, we assume that α = α1 maps X into Ω1. We let 
αn : X → Ωn be the composition of α1 with the transition map /1,n : Ω1 → Ωn. Thus 
each (Ωn, αn) is an object of ∆X(C), and collectively they form an ind-object of ∆X(C), 
which we denote simply by (Ω, α).

We claim that (Ω, α) is a universal homogeneous ind-object of ∆X(C); this will com-
plete the proof. Let (Y, β) be an object of ∆X(C), where β : X → Y is a morphism in 
C. Since Ω is f-injective (as an ind-object of C), we can find a morphism γ : Y → Ω such 
that γ ◦ β = α. Thus γ defines a morphism (Y, β) → (Ω, α) in (the ind-category of) 
∆X(C), which shows that (Ω, α) is universal.

Finally, we show that (Ω, α) is f-injective. Thus suppose we have maps ϕ : (Y, β) →
(Ω, α) and ψ : (Y, β) → (Z, γ). Unraveling all of this, we have a commutative diagram

Ω

X

α

γ

β
Y

ϕ

ψ

Z

,

Since Ω is f-injective in C, we can find a morphism ρ making the rightmost triangle (and 
thus the whole diagram) commute. It is clear that ρ defines a morphism (Z, γ) → (Ω, α)
such that ρ ◦ ψ = ϕ, which shows that (Ω, α) is f-injective. !
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A.6. Fraïssé’s theorem

We now prove a version of Fraïssés theorem, which characterizes Fraïssé categories. 
For this, we introduce two more conditions on C:

(RCC) Relative countable cofinality: for any object X of C there exists a cofinal sequence 
of morphisms out of X, i.e., there is a sequence of morphisms {αn : X → Yn}n≥1
such that if β : X → Y is any morphism then there is a morphism γ : Y → Yn

for some n such that γ ◦ β = αn.
(AP) Amalgamation property: given embeddings W → X and W → Y there exists a 

commutative diagram

X Z

W Y

for some object Z.

If C has an initial object then (CC) is a special case of (RCC), and (JEP) is a special 
case of (AP). We note that (RCC) holds for C if and only if (CC) holds for ∆X(C) for 
all X; similarly, (AP) holds for C if and only if (JEP) holds for ∆X(C) for all X.

The following is our categorical version of Fraïssé’s theorem:

Theorem A.11. The following are equivalent:

(a) C is a Fraïssé category, i.e., it has a universal homogeneous ind-object.
(b) C satisfies (CC), (RCC), (JEP), and (AP).
(c) C and each of its coslice categories ∆X(C) has a universal ind-object.

Proposition A.4 shows that (b) and (c) are equivalent. If C is Fraïssé then it obviously 
has a universal ind-object; since the coslice categories of C are also Fraïssé (Proposi-
tion A.10), they too have universal ind-objects, and so (c) holds. In the remainder of 
§A.6, we assume that (b) holds and show that C is Fraïssé.

Lemma A.12. Suppose we have a diagram

Y1 Y2 Yn−1 Yn

X1

β1

α1
X2

β2

α2 · · ·
αn−2

Xn−1

βn−1

αn−1
Xn

βn
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in C. Then there exists an object Xn+1 and morphisms αn : Xn → Xn+1 and γi : Yi →
Xn+1 for 1 ≤ i ≤ n such that the diagram commutes, that is, we have

γi ◦ βi = αn ◦ · · · ◦ αi+1 ◦ αi

for all 1 ≤ i ≤ n.

Proof. We proceed by induction on n. The statement is clear for n = 1: we can take 
X2 = Y1, with α1 = β1 and γ1 = id. Suppose now the statement is true for n −1, and let 
us prove it for n. By the inductive hypothesis, we can find an object X ′

n, an embedding 
α′
n−1 : Xn−1 → X ′

n, and embeddings γ′
i : Yi → X ′

n for 1 ≤ i ≤ n − 1 such that the 
relevant diagram commutes. Consider the diagram

Xn−1
αn−1

α′
n−1

Xn

βn

Yn

γn

X ′
n

δ
Xn+1

By (AP), we can find an object Xn+1 and morphisms δ and γn making the diagram 
commute. We define αn : Xn → Xn+1 to be the composition γn◦βn, and for 1 ≤ i ≤ n −1
we define γi : Yi → Xn+1 to be the composition δ ◦ γ′

i. It is clear that the necessary 
conditions hold. !

Fix a cofinal sequence of objects {A(m)}m≥1 as in (CC). For each object X, choose 
a cofinal sequence {λX,m : X → X(m)}m≥1 of morphisms out of X, as in (RCC). We 
assume that A(m) embeds into X(m) for each m; we can arrange this since (JEP) holds. 
A special ind-object is an ind-object Ω equipped with maps κn,m : Ωn(m) → Ωn+m for 
all n, m ≥ 1 such that the diagram

Ωn

εn,n+m

λm

Ωn+m

Ωn(m)
κn,m

commutes for all n and m.

Lemma A.13. A special ind-object exists.

Proof. We inductively construct Ω. To start, we take Ω1 to be any object. Suppose now 
we have constructed Ω1 → Ω2 → · · · → Ωr−1 and the κn,m for n + m < r. Consider the 
diagram
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Ω1(r − 1) Ω2(r − 2) Ωr−2(2) Ωr−1(1)

Ω1

λr−1

ε1 Ω2

λr−2

ε2 · · ·
εr−3 Ωr−2

λ2

εr−2 Ωr−1

λ1

Here /i = /i,i+1. By Lemma A.12, we can find an object Ωr and morphisms /r−1 : Ωr−1 →
Ωr and κr,i : Ωi(r − i) → Ωr for 0 ≤ i ≤ r − 1 such that the diagram commutes. This 
constructs Ω up to level r, which completes the proof. !

Lemma A.14. A special ind-object is universal and homogeneous.

Proof. Let Ω be special. We have embeddings A(m) → Ω1(m) → Ω for all m ≥ 1. Since 
every object embeds into some A(m), it follows that Ω is universal.

We now show that Ω is f-injective. Thus let α : X → Y and γ : X → Ω be given. Let 
n be such that X maps into Ωn. Consider a commutative diagram

Ωn Z

X

γ

α
Y

which exists by (AP). Now choose a map Z → Ωn(m) for some m such that Ωn →
Z → Ωn(m) is λm; this exists by the definition of the λ’s. We thus have a commutative 
diagram

Ωn

λm

Z Ωn(m)
κn,m

Ωn+m

X

γ

α
Y

β

where β is defined to be the composition. Since the composition of the top line is the 
transition map /n,n+m, it follows that γ = β ◦ α as embeddings X → Ω. This completes 
the proof. !

Lemmas A.13 and A.14 show that a universal homogeneous object exists, which com-
pletes the proof of Theorem A.11.

A.7. Functors

Suppose now that D is a second category in which all morphisms are monic and 
Φ : C → D is a functor. We now examine how Φ interacts with the classes of ind-objects 
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considered above. We begin with universal objects. For this, we introduce the following 
property:

(EP) Embedding property: for every object Y of D there is an object Z of C and an 
embedding Y → Φ(Z).

If Φ is essentially surjective then (EP) holds, as one can then find an isomorphism 
Y → Φ(Z).

Proposition A.15. Suppose that C has a universal ind-object. Then the following are 
equivalent:

(a) Φ satisfies (EP).
(b) Φ maps some universal ind-object of C to a universal ind-object of D.
(c) Φ maps every universal ind-object of C to a universal ind-object of D.

Proof. (a) =⇒ (c). Let Ω be a universal ind-object of C. We must show that Φ(Ω)
is universal. Let Y be an object of D. By (EP), there is an embedding Y → Φ(Z) for 
some object Z of C. Since Ω is universal, there is an embedding Z → Ω, which yields 
an embedding Φ(Z) → Φ(Ω). We thus obtain an embedding Y → Φ(Ω), and so Φ(Ω) is 
universal.

(c) =⇒ (b) is trivial.
(b) =⇒ (a). Let Ω be a universal ind-object of C such that Φ(Ω) is universal. Let Y be 

an object of D. Then there is an embedding Y → Φ(Ω). This comes from an embedding 
Y → Φ(Ωn) for some n, and so (EP) holds. !

We now examine how Φ interacts with homogeneous objects. For this, we introduce 
a variant of the (EP) property:

(REP) Relative embedding property: given a morphism α : Φ(X) → Y in D, there exists 
a commutative diagram

Φ(X)

α

Φ(γ)
Φ(Z)

Y

β

where γ : X → Z is a morphism in C.

Note that (REP) holds if and only if for every object X of C the natural functor 
Φ : ∆X(C) → ∆Φ(X)(D) satisfies (EP).
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Proposition A.16. Suppose that C and D are Fraïssé categories. Then the following are 
equivalent:

(a) Φ maps any universal homogeneous ind-object of C to a universal homogeneous ind-
object of D.

(b) Φ satisfies (EP) and (REP)
(c) Φ and the induced functors ∆X(C) → ∆Φ(X)(D) (for any object X of C) map uni-

versal ind-objects to universal ind-objects.

We note that because all universal homogeneous ind-objects are isomorphic, condition 
(a) will be satisfied if Φ maps any particular universal homogeneous ind-object of C to a 
universal homogeneous ind-object of D.

Proof. Proposition A.15 shows that (b) and (c) are equivalent.
Suppose that (a) holds. Let Ω be a universal homogeneous ind-object of C, so that 

Φ(Ω) is a universal homogeneous ind-object of D. Given an embedding α : X → Ω, 
(the proof of) Proposition A.10 shows that (Ω, α) is a universal homogeneous ind-object 
of ∆X(C). By the same reasoning, (Φ(Ω), Φ(α)) = Φ(Ω, α) is a universal homogeneous 
object of ∆Φ(X)(D). Thus (c) holds.

Suppose (b) holds, let Ω be a universal homogeneous ind-object of C, and let Ω′

be a universal homogeneous object of D. Put n(1) = 1 and choose an embedding 
α1 : Φ(Ωn(1)) → Ω′

m(1) for some m(1), which is possible since Ω′ is universal. By (REP), 
α1 factors into a morphism Φ(Ωn(1) → Z) for some Z in C. Since Ω is f-injective, the 
morphism Ωn(1) → Z factors into one of the transition maps /n(1),n(2) : Ωn(1) → Ωn(2)
for some n(2). The upshot is that we can find a commutative diagram

Φ(Ωn(1))

α1

Φ(εn(1),n(2))
Φ(Ωn(2))

Ω′
m(1)

β1

for some β1. Now, since Ω′ is f-injective, we can extend the embedding Ω′
m(1) → Ω′ along 

β1. We can thus extend the above diagram to a commutative diagram

Φ(Ωn(1))

α1

Φ(εn(1),n(2))
Φ(Ωn(2))

α2

Ω′
m(1)

β1

ε′m(1),m(2)
Ω′

m(2)
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for some m(2). Continuing in this manner, we construct an isomorphism α : Φ(Ω) → Ω′. 
Thus Φ(Ω) is a universal homogeneous ind-object of D, and so (a) holds. !
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