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A B S T R A C T

This paper proposes a new paradigm of extreme manufacturing from the temporal perspective in contrast to the 
current extreme manufacturing paradigm based on length scales (e.g., from nanometer to close-to-atom). The 
advent of 5 G and future 6 G (NextG) wireless communication provides unique capabilities of ultra-low end-to- 
end (E2E) latency (~1 ms), high speed (up to 20 Gb/s), high reliability (>99.999 %), and high flexibility 
(wireless) to meet the stringent requirements of future manufacturing. The ultra-low E2E latency enables NextG 
Manufacturing - a new extreme manufacturing paradigm from the latency perspective. This positioning paper 
identifies the needs of NextG manufacturing, introduces the characteristics of NextG wireless communication 
networks, proposes a framework for NextG manufacturing, demonstrates use cases, summarizes current chal
lenges, and provides an outlook for future research directions.

1. Introduction to NextG manufacturing

This decade sees a wave of dramatic changes [1–3] in the 
manufacturing landscape to shape future manufacturing. The funda
mental change is referred to as “Industry 4.0” [4,5] which integrates IT 
and OT to forge a cyber-physical production system. A major enabler for 
Industry 4.0 is based on widespread and powerful connectivity and 
computing infrastructure, which interlinks machines, robots, sensors, 
devices, and people in a timely, flexible, consistent, and secure manner. 
In contrast to the conventional static sequential production paradigm, 
future manufacturers need machines and production lines that are 
flexible, versatile, scalable, modular, and plug-and-play [6–11]. How
ever, there are several critical barriers to achieving such a future 
manufacturing paradigm:

Long End-to-End (E2E) latency: Latency, the time that it takes to 
transfer a given piece of information from a source to a destination, is 
critically important in real-time monitoring and control for future 
manufacturing [12]. Fig. 1 shows the definition of E2E latency and cycle 
time, which are commonly used in the field of communications [11].

Latency-critical manufacturing frequently needs ultra-low latency of 

1–10 ms (ms) or even extreme-low latency of sub-1 ms for many vertical 
applications (Table 1) [10–15]. However, many current manufacturing 
processes cannot meet the latency requirement. Let’s start with a use 
case to see how low E2E latency as a game-changer can be in reshaping 
future manufacturing processes, sensors, and products. The 
manufacturing of aircraft engine components is complex, 
time-consuming, and expensive. The whole manufacturing chain of a 
compressor component known as an integral blade rotor (IBR) [16] can 
cost up to US$250,000. Precision, accuracy, and cost are vital in IBR 
milling. Excessive vibration or “chatter” in milling is a very common 
problem that leads to surface defects and rework.

However, the critical challenge is that there is no effective approach 
to monitor vibration and tune the process in real-time while underway 
because the E2E latency of current sensing technology is too long, and 
the machined quality can only be known when the whole machining 
process is done. This can lead to surface defects, rework rate (~25 %), 
and thus high cost [17,18] in manufacturing high-value components 
such as IBRs which cannot be inspected until the lengthy milling process 
(> 24 hrs.) is over. To make the situation worse, the geometry of IBRs 
continue to evolve in the future; thinner blades with more complex 
geometry features make them more flexible and, therefore, prone to 
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chatter in machining, which will further increase the manufacturing 
challenge. However, in aerospace industries that require high process 
stability and strict compliance control, there is no room for error.

Reduced E2E latency has facilitated the development of many 
essential networked applications. For instance, the average E2E latency 
has consistently fallen below 300 ms since the early 2000s, and video 
conferencing over wide area networks has gained traction. Today, it is a 
staple of productivity – effectively connecting businesses and in
dividuals in meaningful ways. In the manufacturing domain, wired 
Gigabit Ethernet networks do not supply low enough E2E latencies for 
these stringent manufacturing needs due to the accumulated latency 
caused by looping architectures and daisy-chaining devices. Future 
manufacturing needs an ultra-low E2E latency communication from the 
device level (sensor, actuator), to the Fieldbus (PLC, industrial PC), and 
from there up to the edge, cloud, and enterprise applications [4,5].

Limited flexibility: The communication among industrial machines 
is traditionally based on wired Ethernet systems. The key drawback is 
that it requires physical cabling between machines and moving parts, 
which significantly limits flexibility, mobility, and applicability [15]. 
Indeed, a wired sensor cannot be put on a fast-rotating part (e.g., blisk 
milling) [17]. The increasingly dynamic machines (e.g., AGVs and ro
bots roaming or moving on tracks) make wired communication simply 
infeasible [15]. On the other hand, standard wireless protocols like 
Wi-Fi, Zigbee, and Bluetooth can’t meet the stringent industrial re
quirements for consistency, latency, and scalability [14,15]. Future 
manufacturing needs flexibility in wireless connectivity and sensor 
placement.

Lack of computational intelligence: Many latency-critical appli
cations such as real-time process monitoring and controlling are still 
conducted locally through machine-specific embedded sensors and 
controllers that only have limited computing power and limited access 
to the operation data from other machines [19]. This creates a critical 
barrier for leveraging the rich online data and modeling resources from 
multiple machines on the factory floor and taking advantage of the 
fast-developing AI and ML for future manufacturing.

The advent of fifth-generation (5 G) and future 6 G wireless 
communication (hereafter NextG) may reshape latency-critical 
manufacturing fundamentally because NextG holds the key to over
come these barriers due to its unique communication capabilities of 
ultra-low latency (1–10 ms), high speed (up to 20 Gb/s), high reliability 
(>99.999 %), and high flexibility (wireless) to meet the demanding 
requirements of latency-critical manufacturing [10,11,14,15].

In recent years, NextG has significantly reduced E2E latencies, 
enabling innovative applications such as real-time music/video 
streaming, multiplayer online gaming, and VR/AR. However, these ap
plications are still in the early stages of adoption due to inconsistent 
latency performance. While NextG and other advanced wireless 
communication networks were expected to catalyze various low-latency 
dependent industries, their widespread implementation remains 
limited. This is partly because the current networks often fail to achieve 
latencies of a few ms. Data from 5 G Mobile Network Operators (MNOs) 
shows that the latency experienced by users typically stays within the 
range of tens of milliseconds. Sub-ms latencies might only be realistic in 
private 5 G networks with significant investment in radio resources. 

Nomenclature

3GPP 3rd Generation Partnership Project
5 G Fifth Generation
5GPPP 5 g Infrastructure Public Private Partnership
5GSA 5 g Standalone
6 G Sixth Generation
AGV Automated Guided Vehicles
AI Artificial Intelligence
AR Augmented Reality
C2C Control-To-Control
CAD Computer Aid Design
E2E End-To-End
eMBB Enhanced Mobile Broadband
EWD Education and Workforce Development
FPGAs Field Programmable Gate Arrays
IBR Integral Blade Rotor
ICT Information and Communication Technology
IMT International Mobile Telecommunications
IoT Internet Of Things
IPT Institute For Production Technology
IT Information Technology
ITU International Telecommunication Union

M2M Machine-To-Machine
MIMO Multiple Input Multiple Output
ML Machine Learning
mMTC Massive Machine Type Communications
mmWave Millimeter Wave
MNOs Mobile Network Operators
MPC Model Predictive Control
NJAMI New Jersey Advanced Manufacturing Initiative
NR New Radio
OSCP Open Spatial Computing Platform
OT Operations Technology
PDEs Partial Differential Equations
PDP Physical-To-Digital-To-Physical (PDP)
PINN Physics-Informed Neural Network
PLC Programmable Logic Controller
SMS Short Message/Messaging Services
TSN Time-Sensitive Networking
UE User Equipment
UKTIN United Kingdom Telecoms Innovation Network
URLLC Ultra-Reliable Low Latency Communication
VR Virtual Reality
WSNs Wireless Sensor Networks.

Fig. 1. Definition of latency and cycle time.

Table 1 
Manufacturing performance requirements [10–15].

Applications Latency Pay-load # of Device

Factory automation 1 −10 ms Varies 10,000/Km2

AGV ~1 ms Kb ~ Mb ~50
VR/AR < 1 ms Kb ~ Mb ~50
Motion control < 2 ms ~20 b > 100
Mobile robots < 10 ms < 150 Kb ~100
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Similarly, achieving less than 10 ms latencies in Wi-Fi 6 Wireless Local 
Area Networks (WLANs) is contingent on optimal conditions like low 
network traffic and high bandwidth. Furthermore, uplink latencies can 
be more than twice those of downlink, necessitating bidirectional E2E 
latency guarantees. For low-latency applications to thrive, factors such 
as Control Plane latency and service availability/reliability must also be 
addressed. Although Mobile Network Operators (MNOs) assert that 5 G 
Standalone (5 GSA) mode networks can achieve the required low- 
latency and reliability standards, their effectiveness under actual con
ditions still needs to be confirmed.

While current extreme manufacturing [20] has been dominantly 
focusing on extreme lengths from the nanometer scale [21] to the atomic 
scale [22], the generic and ubiquitous latency-critical manufacturing 
has represented a new paradigm of extreme manufacturing from the 
viewpoint of temporal scale to achieve extreme-low E2E latency in an 
integrated and networked manufacturing environment. NextG-enabled 
manufacturing (NextG manufacturing) may provide the degree of flex
ibility, mobility, versatility, and scalability that is required for the smart, 
sustainable, and resilient factory of the future. It is crucial to determine 
and confirm the specific latency guarantees needed for different vertical 
applications, and then to show how these standards, such as end-to-end 
latencies of a few milliseconds with high reliability, can be achieved in 
NextG networks. These demonstrations must also ensure that spectral 
efficiencies are maintained to preserve the profitability of deployments.

The methodology employed for this study is detailed in Fig. 2. 
Publications relevant to the scope of this review were selected based on 
publication date and keywords. The titles, abstracts, keywords, and 
citation count of these articles were examined to assess their relevance, 
scope, and quality. In addition to academic articles, government white 
papers and news articles were also included to enrich the discussion. 
This comprehensive analysis may help identify, summarize, and discuss 
key research hotspots, gaps, and challenges.

This positioning paper is organized as follows. The above Section 1
identifies the needs of extreme-low E2E latency for future 
manufacturing. Section 2 introduces the characteristics of the NextG 
wireless communication network. Section 3 proposes a framework for 
NextG manufacturing. Section 4 demonstrates the use cases of NextG 
manufacturing. Section 5 summarizes current challenges and the 
outlook.

2. NextG wireless communication network

2.1. NextG evolutions

While NextG refers to current 5 G and future 6 G and beyond, this 
paper will focus on 5 G due to its dominant role in future manufacturing. 
5 G mobile network, representing the latest evolution in wireless 
communication systems, offers a dramatic leap in capabilities compared 
to its predecessors. The evolution of mobile networks from 1 G to 5 G 
can be seen as a continuous endeavor to improve wireless communica
tion in various aspects, such as data rate, latency, and connectivity. 

Fig. 3 shows the evolution of mobile networks from 1 G to 5 G [23,24]. 
Each generation of mobile network technology aimed to enhance the 
existing standards significantly. 1 G, launched in the 1980s, laid the 
foundation for analog voice communication. The subsequent 2 G 
network, introduced in the 1990s, digitalized communication and 
brought forth services such as SMS. The 3 G network that emerged in 
2001 provided mobile internet access and improved data services, which 
set the stage for the 4 G network in 2009, offering dramatically faster 
data speeds and enabling higher multimedia experiences. Current 5 G 
offers unprecedented speeds, low latency, mass connectivity, and many 
more. The use of the network standards and the number of connecting 
devices within the network is shown below the timeline. Around 80 
billion devices are expected to be connected to the Internet by 2030 [23, 
25].

The 5 G standards are conceptualized and governed by the 3rd 
Generation Partnership Project (3GPP), a consortium of various tele
communications standards organizations. The foundational specifica
tions for 5 G are delineated in the 3GPP’s Release 15 and subsequent 
releases, which mark the advent of New Radio (NR) technology in 5 G 
networks. In June 2018, the 3GPP finalized the inaugural formal spec
ifications for 5 G, encapsulated in Release 15 [26]. This event heralded a 
significant milestone in 5 G’s evolution, laying the groundwork for 
subsequent technological advancements and deployments. The first 
commercial deployment of 5 G in the United States came to fruition in 
April 2019 [27] when Verizon rolled out its 5 G NR network in select 
regions of Chicago and Minneapolis.

5 G encompasses a broad set of improvements such as significantly 
higher data rates (potentially up to 10 Gbps), ultra-low latencies (as low 
as 1 ms), larger bandwidths per unit area, improved spectral efficiency, 
and the capability to connect a far greater number of devices concur
rently. This monumental enhancement is facilitated using advanced 
technologies, including massive MIMO (Multiple Input Multiple 
Output), mmWave (millimeter wave) spectrum [28], beamforming, 
network slicing, and edge computing. Beyond providing faster individ
ual connections, 5 G is designed to serve as the foundation for truly 
connected systems, driving innovations in various vertical domains, 
from smart cities and autonomous vehicles to telemedicine and Industry 
4.0. As such, 5 G is more than just an upgrade; it is a critical infra
structure transformation that could reshape how we interact with 
technology in our daily lives.

2.2. 5 G unique characteristics

The advent of 5 G marks a pivotal moment in the evolution of mobile 
networks, primarily distinguished by its unparalleled capabilities and 
potential applications. Table 2 illustrates the comparative analysis of 
different wireless communication protocols and elucidates the advances 
in 5 G [29–37]. These attributes cement the role of 5 G as a revolu
tionary wireless communication technology capable of fulfilling the 
stringent demands of NextG manufacturing. The ensuing sections will 
delve deeper into the potentialities that NextG manufacturing could 

Fig. 2. Methodology used to conduct literature review.
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unlock.

2.3. NextG-enabled smart manufacturing

The smart manufacturing domain is very diverse, which is man
ifested by distinct applications. This heterogeneous manufacturing 

environment requires very different communication requirements, 
including service quality, reliability, scalability, compatibility, cost- 
efficiency, maintainability, and cybersecurity (Fig. 4). For example, 
discrete manufacturing (i.e., making discrete parts) may differ sub
stantially from others, such as continuous manufacturing (e.g., phar
maceutical manufacturing and oil refinery). The common view of these 

Fig. 3. Evolution from 1 G to 5 G.

Table 2 
Comparative analysis of different wireless communication protocols.

Communication Protocol Data Rate Latency Range Frequency Cell density 
(users/cell)

5 G* ~ 20 Gbps < 10 ms ~ 200 m 24.25 GHz ~ 52.6 GHz 
410 MHz ~ 6 GHz

20K-40K

4 G/LTE ~ 100 Mbps 20 - 50 ms ~ 10 Km ~ 3.8 GHz 200 −600
WLAN (Wi-Fi 6) < 9.6 Gbps < 50 ms ~ 10 Km ~ 5 GHz ~ 256
Bluetooth ~ 3 Mbps 100 ms ~ s ~ 100 m ~ 2.4 GHz ~ 7
Zigbee ~ 250 Kbps A few ms ~ s ~ 15 m ~ 2.4 GHz ~ 64 K (theoretical) 

~ 64 (typical)
LoRa/LoRAWAN ~ 21.9 Kbps ~ seconds ~ 10 Km ~ 928 MHz 1K-10K

*Note 
• The data rate for 5 G is approximately 20 Gbps for downlink and 10 Gbps for uplink.
• The range of 200 m is specific to millimeter-wave (mmWave).
• The sub-6 GHz frequencies offer a significantly higher range.

Fig. 4. Future manufacturing capabilities enabled by 5 G.
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relevant manufacturing applications is that a new generation of digital 
connectivity may lead to significant manufacturing improvements and 
optimizations [38,39].

The major innovations enabled by 5 G have been defined in three 
broad application areas, including Enhanced Mobile Broadband (eMBB), 
Ultra-Reliable Low Latency Communications (URLLC), and Massive 
Machine Type Communications (mMTC) as shown in Fig. 5 [40]. The 
area of eMBB is in continuous evolution from 4 G LTE with higher 
throughput, faster connections, and more capacity. URLLC is the key 
capability of 5 G that would enable uninterrupted, reliable, and 
ultra-low-latency services for mission-critical applications. mMTC refers 
to using the 5 G network to connect to a massive number of devices, 
providing internet access by collecting a huge volume of small data 
packets from large numbers of devices. By design, 5 G communication 
technology is being developed at a time when many industries are 
introducing connectivity and automation to their domains on an un
precedented scale using technologies such as the IoT, ML, and robotics. 
Smart manufacturing is part of this broader trend and incorporates 
different performance requirements. Private local-area networks 
deployed on the factory premises are usually required to meet URLLC 
performance targets of industrial automation consistently. The 5 G 
system architecture is designed to support such standalone operations 
without connections to external networks.

Digital connectivity is critical for smart manufacturing. Reliable and 
secure data transmission in real-time is the key requirement for an in
dustrial communication system. Fig. 5 shows several representative 
examples of the benefits of 5 G in smart manufacturing, in which typical 
use cases are organized based on their primary communication needs 
according to the basic 5 G service types, i.e., eMBB, URLLC, and mMTC. 
It is clear that many industrial use cases, including motion control, have 
very strict demands in ultra-low latency, reliability, and determinism. 
On the other extreme scenario, augmented reality (AR) needs very high 
rates of data transmission of video streams from and to an AR device. 
Nevertheless, process automation lies between the two extreme sce
narios and concentrates on monitoring and controlling mechanical, 
physical, biological, chemical, or other manufacturing processes within 
a facility. This involves using various sensors (e.g., for measuring flows, 
forces, speeds, and temperatures) and actuators (e.g. heaters or valves) 
to control the process. Whereas other cases, such as WSN often need 
more extensive mMTC-based services.

A comparison of the key performance of the current 5 G technology 
with the requirements of smart manufacturing shows clearly that some 
requirements have not been met in the current release of eMBB-focused 
5 G technology [29]. However, these critical requirements are expected 
to be satisfied in future 5 G releases.

3. Framework of NextG manufacturing

3.1. Architecture of NextG manufacturing

In the pursuit of implementing Industry 4.0, Specification #22.804 
has been outlined in the 3GPP (Release 16) [15]. The specification in
troduces a forward-looking vision for Factories of the Future, aiming at 
enhancing flexibility, versatility, resource and cost efficiency, worker 
support, and the quality of industrial production and logistics. The 3GPP 
Release delineates a series of 5 G industrial applications to realize these 
goals, detailing their specific requirements and challenges.

Building on this foundation, an innovative NextG manufacturing 
architecture is developed in this work to synthesize the key elements of 
the 3GPP Release into an integrated architectural blueprint. It aims to 
instigate a transformative shift in the industrial manufacturing sector by 
leveraging the inherent potential of 5 G. The NextG manufacturing 
framework presents an innovative paradigm designed to propel indus
trial manufacturing into an era of streamlined efficiency and unprece
dented processing speeds. The NextG manufacturing framework 
explicitly highlights the E2E latency requirements and user equipment 
(UE) needs, which are defined and characterized across manufacturing 
levels - from machine, factory, to enterprise. These specifications 
address unique challenges in the context of NextG manufacturing, which 
have not previously been addressed [41].

The architecture envisions a tri-layered structure: machine level, 
factory level, and enterprise level. Each level reflects a distinct magni
tude and complexity of components, as shown in Fig. 6. From the broad 
expanse of the enterprise level to the granular detail at the machine 
level, the structure exhibits a top-down hierarchical magnitude. 
Concurrently, the E2E latency and the quantity of user equipment (UE) 
requirements undergo a corresponding transition across these strata, 
mirroring their inherent breadth and complexity: The enterprise level, 
possessing the most extensive scale, tolerates the highest latency (1–2 s) 
and necessitates the largest number of UEs (~10,000). For the factory 
level in the middle, where most of the process automation is, the typical 
E2E latency gets smaller to ~50 ms (for process monitoring purposes), 
and the demand for UE connections is reduced to 10–100 units. At the 
machine level, machine tools require E2E latency of 1–10 ms and about 
20 UEs. Ultimately, machine tools demand an E2E latency of 1–10 ms at 
the machine level and require around 20 UEs. For a given machine tool, 
especially in motion control applications, where communication pri
marily occurs between the controller, sensors, and actuators, the E2E 
latency may dip as low as 0.5 ms [14,15]. This gradation in latency and 
UE requirements across the structure’s layers underscores their distinct 
roles and functionalities within the overarching architecture.

Enterprise level: The enterprise level is at the topmost tier of the 
architecture. It broadly encompasses multiple manufacturing factories 
and other facilities. Each of these units interfaces with the central Cloud 
server via the Internet [15,42]. This Cloud server, which can be physi
cally distant from the manufacturing facilities, forges a connection with 
manufacturing factories through the 5 G Edge server.

The Cloud server possesses the capability to store non-time-sensitive 
data from factories, enabling its analysis for business management 
purposes. Equipped with the computing power of the Cloud, the man
agement team can undertake computationally intensive tasks such as big 
data analysis [43]. The insights gleaned from these analyses, such as 
supply chain demand and planning decisions, are then channeled back 
to the manufacturing facilities to affect the necessary high-level ad
justments. In essence, the enterprise level serves as the strategic com
mand center, focusing on the business management objectives of 
manufacturing assets and supply chain management. This level is crucial 
in leveraging data and computational capacity for informed 
decision-making and operational optimization.

Factory level: The Factory level forms the intermediate tier in this 
architecture, representing the middle level of the system. Instead of 
treating factories as single, monolithic entities, this level breaks them 

Fig. 5. Representative industrial use cases and their basic communication re
quirements (adapted ZVEI [40])
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down into individual machines. Each machinery within a factory is 
connected to the overarching 5 G network, facilitating information 
sharing about machine status amongst various units - a communication 
form known as Control-to-Control (C2C). C2C communication, already 
prevalent in applications like large-scale machines (e.g., newspaper 
printing machines) and assembly lines, enables coordinated functioning 
and workpiece handover between individual units. Beyond sharing data 
within the factory, the machinery is also equipped to upload data to the 
5 G edge server for process automation and optimization purposes. 
Despite its less powerful computing capacity compared to the enterprise 
Cloud server, the 5 G edge server serves a pivotal role as the gateway 
linking the factory network to the Internet. This server conducts real- 
time sensitive computations, returning results like optimized process 
decisions back to each machine. Additionally, it uploads machine status 
data to the enterprise cloud server via the Internet for managerial pur
poses. The machines’ status is uploaded to the enterprise cloud server by 
the 5 G edge server through the Internet for management purposes.

In essence, the 5 G edge server functions as the distributed compu
tational resource for real-time sensitive computations. This server can 
host AI/ML models such as pre-trained ML algorithms for accelerated 
decision-making. Through the 5 G network, these decisions are dis
patched back to the machinery for automatic process optimization. 
Conversely, non-real-time data can be sent to the Cloud server for more 
comprehensive computational analysis and higher-tier asset manage
ment. This tier highlights the integral role of 5 G technology in ensuring 
robust and efficient inter-machine communication and data 
management.

Machine level: At the base of this system is the machine level, which 
spotlights the individual components of each machine. This level focuses 
on the fundamental elements that enable the functioning of machinery. 
These components are the smallest operational units of the overall ar
chitecture, but their performance significantly influences the efficiency 
of the machines and, consequently, the entire manufacturing facility.

This level is characterized by real-time sensitive data flow among 
sensors, controllers, and actuators. This high latency requirement is 
assured via 5 G networks, with as low as 1 ms latency for closed-loop 
control. The sensors, controllers, and actuators, all equipped with 5 G 
technology, are capable of intercommunication via the 5 G network 
while concurrently uploading data to the 5 G edge server. This allows 
the 5 G edge server to analyze real-time sensing data and dispatch 
updated control decisions to the controllers, helping to avoid product 
defects and wastage.

The NextG manufacturing architecture facilitates swift and seamless 
data transmission, high-speed data processing, and real-time control 

actions - three crucial elements for a successful implementation of NextG 
manufacturing. This structure illustrates how 5 G technology underpins 
every manufacturing level, offering unprecedented levels of efficiency, 
control, and precision.

3.2. Enabling technologies for NextG manufacturing

The foundation of NextG manufacturing is built upon a diverse array 
of enabling technologies/components, including 5G-enabled sensing 
and monitoring, data integration and computation, AI/ML models, and 
model-based real-time control. These components work in unison to 
enable NextG manufacturing that is not only smart and efficient but also 
capable of extreme-low E2E latencies crucial for real-time applications. 
To demonstrate the interrelationships among these components, Fig. 7
shows the data flow between these enabling components, which are 
summarized and detailed in Sections 3.3 – 3.6.

At the heart of NextG manufacturing is the 5 G network, acting as the 
communication backbone to link the enabling components, allowing 
ultra-low E2E latency and high-bandwidth data transmission critical for 
real-time operations. The 5 G capabilities are essential for facilitating 
the rapid exchange of data across the components, ensuring timely and 
synchronized operations across various manufacturing processes.

The 5G-enabled sensing and monitoring component is the primary 
data generator, capturing operational metrics such as speed, 

Fig. 6. NextG manufacturing architecture.

Fig. 7. Data flow of NextG manufacturing enabling components.
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temperature, and other machine status. Integrated with 5 G, this 
component transmits monitoring data wirelessly and in real-time, 
ensuring immediate responsiveness to any operational changes or 
anomalies.

The edge computing component processes real-time monitoring data 
at a location close to the data source, which guarantees that instant data 
is processed at the earliest possible opportunity. The processed data is 
then standardized, facilitating utilization by AI/ML models.

AI/ML models can be developed to provide real-time insights at 
scale, detecting complex patterns, and accommodating to the needs of 
real-time applications. The model predictions are then translated into 
real-time control algorithms through the 5 G network, ensuring swift 
responses to dynamic manufacturing conditions.

Within the real-time control component, AI-driven decisions are 
promptly made, and appropriate control commands are issued to the 
actuators to adjust a manufacturing process as needed. The sensors 
monitor these adjustments and relay the information back into the 
system, sustaining the feedback loop essential for continuous process 
optimization.

3.3. NextG-enabled sensors and monitoring

Sensors are crucial components of NextG manufacturing for moni
toring and optimizing manufacturing operations. Sensors can be cate
gorized based on measured attributes, applications, and usage scenarios. 
For instance, depending on the attributes they measure, such as tem
perature [44], force [45], vibration [46,47], acoustic [48], pyrometry 
[49] and topography [50], sensors have distinct applications. A more 
comprehensive classification scheme and detailed discussion can be 
found in previous studies [51]. When classified by use, wireless sensors 
are witnessing significant growth [52]. The ongoing evolution of wire
less communication technology has prompted an intensified focus on 
wireless sensors from users, sensor manufacturers, and the academic 
community.

NextG-enabled sensors offer several benefits, not only enabling 
technicians to gain useful information from hard-to-reach areas 
compared with wired sensors but also enabling ultra-low latency for 
data transmission. NextG-enabled sensor structure consists of four ele
ments [53]: sensing elements, microcontroller, 5 G NR transceiver, and 
on-board power supply. Fig. 8 shows a NextG-enabled sensor architec
ture. The sensing element, the heart of the sensor, detects environmental 
changes. Depending on the sensor type, it can measure various param
eters such as temperature, pressure, or motion. The microcontroller 
processes the data captured by the sensing element and directs the 
overall operations of the sensor. The on-board power supply ensures that 
the sensor can perform its sensing operations. The battery lifespan is 
critical, and consequently, energy efficiency is a significant focus in 
wireless sensor development [54,55]. The 5 G NR transceiver endows 
the sensor with wireless capabilities, facilitating the transmission and 
reception of data (uplink and downlink). The transceiver operates in 
four states - receive, transmit, idle, and sleep - each associated with 
different power consumption levels [51]. The 5 G NR transceiver 

enhances the sensor’s capabilities by establishing direct communication 
with a 5 G edge server, ensuring rapid and reliable data transmission. 
This connection is essential for leveraging the full potential of real-time 
analytics in industrial applications.

In harmony, these components enable NextG sensing. These sensors 
do not require physical connections, so they can be deployed where 
space is limited, power is scarce, or wiring is impractical. They also 
enable data transmission to remote locations and offer the flexibility of 
repositioning sensors without rewiring. Consequently, wireless sensors 
are a pivotal trend in Industry 4.0, offering significant benefits and 
transforming numerous industries and applications.

Expanding on individual wireless sensors’ capabilities, WSNs have 
emerged as a crucial technology underpinning smart manufacturing. A 
WSN is an ensemble of spatially distributed sensors designed to monitor 
specific environmental parameters, such as temperature fluctuations or 
movement. These sensors relay their collected data wirelessly, either to 
each other or to a central control point often referred to as the gateway. 
The configuration or layout of these sensor nodes within a WSN is 
known as the network’s topology. The interaction between the sensor 
nodes and the gateway and the communication among the sensor nodes 
themselves primarily dictate the topology. The star, mesh, and hybrid 
topology represent the three primary types of topologies [15,51]. As 
shown in Fig. 9, a star topology, each sensor node communicates solely 
with the gateway, without any inter-node communication. This requires 
all nodes to be within the gateway’s communication range. While en
ergy efficient, this configuration is not suitable for larger networks due 
to its limited scalability.

On the contrary, a mesh topology allows sensor nodes to interact 
both with the gateway and other nodes, given they are within commu
nication range. This configuration is ideal for larger networks due to its 
enhanced reliability but comes with higher energy consumption 
compared to a star topology. The hybrid topology incorporates elements 
of both the star and mesh models, creating a more adaptable network. 
Here, a sensor node with lower power reserves does not relay informa
tion from other nodes, promoting energy efficiency in the network. 
These topologies significantly influence the data routing from each 
sensor node to the gateway and the data management within each sensor 
node, making their selection a critical aspect of WSN design and 
operation.

Recently, 5G-enabled sensors have attracted great interest from re
searchers. The benefits of 5G-enabled sensors can be summarized in the 
following aspects: (1) Energy efficiency - 5 G has been designed to be 
more energy-efficient, an essential factor for battery-powered sensors in 
WSNs. Energy efficiency can lead to longer sensor battery life, reducing 
maintenance costs and time. (2) Low E2E latency - 5 G technology 
promises lower latency than previous generations of cellular technology 
(See Table 2). This means data is transmitted with minimal delay, which 
is crucial for time-sensitive vertical applications. (3) Support for massive 
IoT - 5 G supports massive IoT, meaning it’s designed to efficiently 
connect with many devices in a small area [56]. This is particularly 
beneficial for applications like industrial automation, where many sen
sors must be interconnected. (4) Enhanced reliability - 5 G networks are 

Fig. 8. NextG-enabled sensor architecture.
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designed to provide a more reliable connection, reducing the risk of 
dropped signals or lost data. This is critical in applications like industrial 
automation, where continuous monitoring is required.

In summary, the evolution of wireless sensors and 5 G technology 
has led to transformative advancements in smart manufacturing, un
derpinning the shift towards highly connected and efficient industrial 
processes. However, current 5G-enabled sensors are limited to lab- 
retrofitted environments, and industrial/commercial ones are still 
under development.

3.4. Edge-based data integration and computation

Data is the lifeblood of NextG manufacturing. The manufacturing 
data is not only heterogeneous (e.g. CAD data, sensor data, production 
data, model data) but also massive. However, simply putting all the data 
into the same repository would not make the data actionable. A holistic 
data architecture along with distributed algorithms is critical and highly 
needed to curate and integrate these multimodal data sets for subse
quent analytics and actions. An information management system con
sisting of data placement, data discovery, data integration, and data 
standardization will overcome the inefficiencies caused by common data 
management shortcomings in current typical manufacturing operations. 
Toward this end, integrating edge computing and manufacturing oper
ations provides unique opportunities with execution resources (compute 
and storage) and sufficient connectivity (networking) near the data 
sources on factory floors. In the context of NextG manufacturing, edge 
computing is the crucial nexus where data, computing power, and 
control coalesce to deliver real-time analytics and decision-making ca
pabilities at the machine’s edge. The core benefits of edge solutions are 
low E2E latency, high bandwidth, and trusted computing and storage, 
which are particularly important for latency-sensitive manufacturing 
automation.

Edge computing is a transformative approach to network architec
ture that processes data at the network’s edge, as close as possible to the 
source where it is generated. While cloud computing offers significant 
computational power and data storage capacity [57,58], this centralized 
approach is marred by inherent latency issues, as the distance between 
data generation and processing centers impedes real-time data analysis. 
Moreover, constant data traffic to and from the Cloud may cause 
bandwidth congestion, which is particularly problematic in the realm of 
data-heavy manufacturing tasks. These constraints become critical ob
stacles when swift data processing and immediate decision-making are 
essential.

In response to these challenges, edge computing has emerged as a 
compelling alternative, decentralizing data processing by bringing it 
closer to where data is generated — at the edge of the network. This 
proximity markedly diminishes latency and mitigates bandwidth limi
tations. By enabling this paradigm shift, edge computing significantly 
amplifies the velocity and efficiency of processing operations while 
bolstering the system’s dependability and agility in adapting to the ex
igencies of dynamic manufacturing environments.

In Fig. 6, the 5 G Edge Server, strategically positioned within the 
factory, connects to the manufacturing equipment via a 5 G network. 
This connection is crucial for achieving ultra-low latency 

communication. Real-time decision-making models, such as AI/ML 
analysis models, housed within the 5 G Edge Server enable on-site, in- 
situ process monitoring, optimization, and prediction. This arrangement 
accelerates data flow and integrates smoothly with real-time control 
systems.

With these advancements, the adoption of edge computing in NextG 
manufacturing signifies more than a mere technological upgrade; it 
represents a strategic overhaul of the manufacturing infrastructure. By 
distributing computational resources and harnessing the rapidity of 5 G 
networks, edge computing cultivates an ecosystem where precision, 
efficiency, and responsiveness are consistently realized in real-time.

3.5. AI/ML models

The federated data at a 5 G edge server may be utilized for forward 
prediction of manufacturing performance, inverse learning of unknown 
parameters of governing physical laws, making decisions under uncer
tain and time-varying conditions, and translating decisions from the 
digital domain into autonomous actions in the physical domain through 
real-time control. It is imperative to leverage the rich dataset to enable 
advances across the three horizons of (1) process/machine optimization 
to increase productivity via real-time control, (2) manufacturing system 
optimization to improve throughput, quality, and overall efficiency 
[59], and (3) new business models to leverage AI/ML and integrate 
solutions into manufacturing systems.

Data-driven models refer to approaches and techniques that derive 
insights, patterns, or knowledge directly from data when theoretical 
models are not feasible. Instead of relying on pre-defined models or 
theories, data-driven models adapt and evolve based on the online data 
they are exposed to. These techniques are particularly beneficial when 
there isn’t a clear theoretical model to describe a phenomenon or when 
the volume of data is so vast that traditional or physics-driven methods 
become inefficient. ML is a subset of data-driven methods that allow 
computers to learn from data [60]. In essence, ML provides computers 
with the ability to automatically learn and forecast from the history data 
without being explicitly programmed for specific tasks. It involves al
gorithms that find patterns or regularities in data [61].

The advancement in communication and sensing technologies has 
significantly increased the availability of manufacturing data [62,63]. 
This surge in data accessibility has bolstered data-driven manufacturing, 
especially with the concurrent rise of AI/ML. Accounting for its multiple 
forms of AI, the McKinsey Global Institute report estimates that, by 
2030, AI will increase the size of the global economy by $13 trillion 
[64]. Accenture estimates that AI will add $8.3 trillion to the U.S. 
economy alone [65] by 2035. Many manufacturing objectives are 
widely used to fulfill through different types of ML methods, such as 
supervised learning [66–68], unsupervised learning [69], reinforcement 
learning [70,71], and generative learning [72].

However, the “black-box” nature of data-driven AI/ML models is 
often criticized for lacking physics and uncertainty, limiting model 
interpretability, generalizability, applicability, and transferability in 
various conditions [73]. Incorporating ML into the vertical 
manufacturing domain also presents specific challenges, such as the 
need for vast datasets, time-consuming model training, expensive 

Fig. 9. Wireless sensor network topology.
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computing resources, and poor interpretability. While physics-based 
methods (e.g., multi-physics simulations) are based on real-world 
physical laws, data-driven ML models can sometimes provide physi
cally inconsistent results or seem implausible though excellent at fitting 
observations. PINN provides a transformative approach to integrating 
manufacturing physics and sensor data to address such challenges [74]. 
Fig. 10 illustrates the three potential scenarios based on the availability 
of manufacturing data and knowledge of physics. The left scenario with 
a comprehensive understanding of the process physics but limited 
manufacturing data, making it conducive for traditional physics-based 
analysis. In the right scenario with abundant process data but minimal 
knowledge of its underlying physics, purely data-driven ML becomes the 
most appropriate choice. In the middle scenario, there is partial access to 
data, such as machine parameters and process conditions, but only 
partial knowledge of process physics. In such cases, PINN emerges as the 
natural choice due to the potential incompleteness of both data and 
physics. Currently, PINN is an emerging approach to solving dynamical 
manufacturing problems, often represented by PDEs, such as fluid dy
namics [75–77], heat transfer [78,79], machining dynamics [80,81], 
and solid mechanics [82], etc.

The highly dynamic nature of manufacturing is manifested by non- 
linear effects, unknown dynamics, high dimensionality, stochasticity, 
and uncertainty, which are very difficult, even impossible, to be suffi
ciently taken into physics-based model development. The advances in 
AI/ML provide great opportunities to address this challenge in 
manufacturing by leveraging the rich data sets of measured data. 
However, AI/ML models cannot achieve absolute certainty inherently, 
as they operate on a limited scope of information. As ML models 
increasingly inform critical aspects of manufacturing, such as process 
optimization and quality control, the integration of uncertainty quan
tification becomes pivotal. This aspect of ML accounts for the variability 
and unpredictability inherent in real-world manufacturing processes. It 
enables models to predict outcomes and assess the confidence in these 
predictions, thereby facilitating more informed and resilient decision- 
making. The ultra-low latency of NextG enhances ML model capa
bility, allowing for real-time adjustments in manufacturing operations 
based on predictions considering uncertainty factors. This approach is 
particularly crucial for scenarios where decisions must be made under 
incomplete information or where the consequences of incorrect de
cisions are significant. Advanced ML techniques, such as Bayesian 
Neural Networks, provide a framework for incorporating uncertainty 
directly into the learning process. This ensures that the ML models are 
not only fast and responsive but also robust and reliable, capable of 
guiding manufacturing systems through the complexities and variabil
ities of production environments.

Leveraging the capabilities of 5 G in NextG manufacturing, the 
resource-intensive training of ML models can be offloaded to Cloud 
Servers. These servers, equipped with substantial computational power, 
house vast data volumes aggregated from manufacturing facilities. 
Subsequently, once trained, sophisticated ML models like uncertainty- 
informed PINN models can be integrated into Field Programmable 
Gate Arrays (FPGAs) to expedite the inference process, thereby enabling 

real-time ML monitoring in on-field scenarios.

3.6. Learning-based NextG control

A survey by Deloitte [5] has highlighted the disconnects or para
doxes to fully harness each stage of the PDP loop in smart 
manufacturing. The survey has shown that while most studies have a 
sort of the first stage, i.e., establishing digital records, and some have the 
second (i.e., analytics and visualization), far fewer are yet able to 
harness the last, most important stage—the ability to leap from digital 
technologies to action in the physical world—that constitutes the 
essence of smart manufacturing. Model predictive control (MPC) [83, 
84] is an advanced method to close the digital-physical loop.

Fig. 11 illustrates how NextG control advances MPC by integrating 
5 G technology for enhanced data transmission and edge server capa
bilities. The 5 G edge server connects to the NextG sensor and actuator 
via the 5 G network. Within the edge server, an AI predictive model 
takes the current state of the measurement and predicts the future out
puts over a certain horizon. This is based on potential control actions, 
considering disturbances. The AI model evaluates the difference be
tween the predicted outputs (with disturbances) and the desired output. 
It computes control actions that minimize this difference, given the 
constraints. Then, the control action for the next time step is sent as the 
control input to the actuator. The actuator reacts to both the control 
input and the disturbances, resulting in a new output, which is measured 
and sent back to the 5 G edge server as the measured output. The process 
repeats at the next time step, with the 5 G edge server continually 
adjusting based on the latest measurements and disturbances.

Recent advancements in ML and the increasing availability of 
massive manufacturing data and high-performance computing resources 
have stimulated a rising interest in learning-based, data-driven control 
systems. Learning-based NextG control can be broadly segmented into 
two categories based on the learning objective [85]: understanding 
system dynamics and determining controller behavior. In many 
real-world manufacturing scenarios, the exact dynamics of a 
manufacturing system may remain elusive or evolve. Under such cir
cumstances, comprehending system dynamics becomes paramount. 
Understanding manufacturing dynamics through a data-driven 
approach aims to bolster NextG control by integrating ML or adaptive 
methods, allowing for ongoing updates to a manufacturing dynamics 
model based on observed behaviors. Examples of this approach include 
applications in understanding the behavior of connected vehicles, such 
as in vehicle-to-vehicle communication for an intelligent transportation 
system [86], autonomous vehicles [87], and robots [88], and discerning 
the unfamiliar system dynamics of robots to boost their performance 
[89]. Conversely, the focus of learning controller behavior transcends 
merely understanding system dynamics. Instead, it zeroes in on the 
direct acquisition of control actions or policies. The goal here is to 
employ data-driven techniques to determine the optimal control actions 
considering a given system state and its anticipated future trajectory. 
Instances of this method include the extraction of controller parameters 
from amassed data [90,91]. Typically, this approach is 
performance-centric since it aims for the direct optimization of specific 

Fig. 10. Physics-based, PINN, and data-driven modeling scenarios. Fig. 11. Working principle of NextG Control.
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performance metrics or reward functions [85,92].
In essence, learning-based NextG control amalgamates traditional 

control with ML, offering significant advantages. It’s agile in adapting to 
manufacturing system alterations and is tailored for intricate scenarios 
that are challenging to model definitively. By incessantly fine-tuning its 
model, it champions performance and adeptly navigates uncertainties. 
Harnessing massive datasets, it curtails computational demands and 
adeptly manages non-linear scenarios, extending its relevance across a 
spectrum of manufacturing systems. Given these merits, learning-based 
NextG control, augmented by previously mentioned technologies like 
PINN and FPGA-enhanced ML, finds its niche in NextG manufacturing 
for real-time control applications, underscoring the promise of ultra-low 
latency and sterling performance.

4. Use cases of NextG manufacturing

The potential of NextG manufacturing is gradually materializing 
across the globe, with major industrialized countries embracing its 
transformative capabilities to redefine the manufacturing paradigm. 
From instantly responsive manufacturing operations to the inception of 
real-time future factories, the extreme-low E2E latency promised by 
NextG is enhancing manufacturing outcomes. This section delves into 
global trends highlighting NextG manufacturing initiatives and use 
cases, encapsulating its evolving influence.

4.1. Global trend of NextG manufacturing initiatives

Several initiatives around the world have been established to stan
dardize 5G-enabled manufacturing. Table 3 shows the 5 G initiatives 
along with advanced manufacturing initiatives worldwide. Set by the 
International Telecommunication Union (ITU), the IMT-2020 represents 
the global standards for 5 G technologies. Notably, China has made 
significant efforts in its development and promotion, aligning the term 
“IMT-2020” with its vision for 5 G [93,94]. Europe’s 5 G Infrastructure 
Public Private Partnership (5GPPP), a collaboration between the Euro
pean Commission and the European ICT industry [95], spearheads the 
5 G R&D in Europe and ensures regional leadership in the evolving 
telecommunication landscape. Concurrently, Germany introduced the 
“Industry 4.0” initiative, encapsulating the integration of contemporary 
digital technologies with conventional manufacturing. The 5 G Forum, 
established in 2013, acts as South Korea’s beacon for 5 G advancement, 
comprising government, academia, and industry stakeholders [96]. 
Alongside this, the government launched the “Manufacturing Industry 
Innovation 3.0”, focusing on holistic smart factory implementations to 
revolutionize manufacturing [97,98]. The United Kingdom’s national 
innovation endeavor, UKTIN, propels its 5 G initiatives [99]. To com
plement this in the manufacturing domain, the “Made Smarter” program 
strives for manufacturing advancements. In the USA, “5 G Americas” 
[100] plays a pivotal role, primarily emphasizing 5 G’s evolution and 
deployment. Concurrently, the “Smart Manufacturing” initiative 
emerges as the region’s blueprint for information-integrated 
manufacturing, aiming to bolster productivity, efficiency, and adapt
ability [101,102].

The international endeavors and initiatives in 5 G, as elucidated in 
the preceding section, underscore the momentous shift in the global 
manufacturing landscape. These pioneering moves have concurrently 

catalyzed industrial and academic thrusts in the realm of NextG 
manufacturing. In the wake of globally resonating initiatives, key 
technological vendors have geared up to play seminal roles in materi
alizing the NextG manufacturing vision. The key wireless vendors and 
their visions are summarized. Ericsson, for instance, envisions a world 
driven by massive M2M connectivity [103], widening technology ap
plications across sectors. Huawei emphasizes the trinity of massive 
connectivity, ultra-low latency, and high reliability [104], looking to 
redefine manufacturing processes. Nokia champions the combination of 
scalable services with Gigabit bandwidths, making a case for ultra-low 
latency as a defining attribute [105]. Qualcomm foresees a connected 
society where the intelligent edge plays a pivotal role in streamlining 
operations and delivering efficiencies [106]. Not to be left behind, 
Samsung is betting big on multimedia services integrated with the IoT 
[107], envisaging a networked world where every device communicates 
and operates in harmony.

4.2. Use cases

The proliferation of 5 G in manufacturing, backed by global initia
tives and visions, opens the door to a multitude of advanced use cases, 
capitalizing on the promise of ultra-low E2E latency. These use cases are 
pivotal to realizing the full potential of NextG manufacturing, demon
strating how rapid communication can redefine the manufacturing 
realm.

5G-enabled smart sensor platforms refine traditional sensing tech
nology by pairing it with 5 G networks for seamless, real-time data 
collection in manufacturing settings. Notably, the Fraunhofer Institute 
for Production Technology (IPT) in RWTH Aachen University, Germany 
has retrofitted multiple 5G-enabled sensors specifically for real-time 
monitoring of both machining processes and machine states [108,109]
Each sensor in this sensing system is linked to a central motherboard 
equipped with data collection modules, a battery, and a 5 G communi
cation unit. These wireless sensors can be affixed to moving components 
like spindles and rotary axes to capture precise, in-situ signals, which are 
then transmitted to 5 G servers for AI-based analysis. The NJAMI at 
Rutgers University in the USA, a smart milling testbed enabled by a 
5G-enabled accelerometer and an ML model has been developed to 
monitor and predict chatter in milling engine blades in real-time. The 
Advanced Manufacturing Research Centre Northwest at the University 
of Sheffield in the UK has made similar efforts in innovating a 
5G-enabled sensor to monitor auditory and vibrational signals in ma
chinery [110].

AGVs are indispensable mobile robots in modern manufacturing 
[111], offering efficient and versatile material-handling solutions. A 
study by Nakimuli et al. [112] compared 4 G and 5G-enabled AGVs, 
focusing on guidance errors and energy consumption. Their findings 
reveal that 5G-powered AGVs demonstrate reduced latency, thereby 
enhancing control precision and conserving energy during course cor
rections. A use case of a 5G-enabled AGV was focused on the AGV 
guidance errors and current consumption compared to a 4G-enabled 
AGV. The results show that 5 G has a lower E2E latency connection, 
thus providing improved control of positioning and less power 
consumed on course corrections. Another study used edge-based ML 
models to predict and preemptively correct guidance errors, preventing 
potentially hazardous situations [113].

NextG manufacturing facilitates instantaneous, remote control of 
robotic systems in manufacturing units, offering substantial operational 
speed and reliability improvements. Specifically, Ericsson and Aachen 
University have developed a mobile robot platform controlled via 5 G 
edge computing [114,115]. This platform incorporates TSN into a 5 G 
framework, achieving communication latencies below 10 ms, thereby 
meeting the stringent requirements of real-time robotic control. NJAMI 
at Rutgers University has set up a 5G-enabled and computer vision-based 
robotic remanufacturing testbed to achieve a real-time sensin
g-learning-control loop with an E2E latency < 10 ms.

Table 3 
Global NextG manufacturing initiatives.

Country/Regin 5 G Initiatives Manufacturing Initiatives

Europe 5 GPPP Industry 4.0
China IMT 2020 Made in China 2025
South Korea 5 G Forum Manufacturing Industry Innovation 3.0
United Kingdom UKTIN Made Smarter
USA 5 G Americas Smart Manufacturing
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In the manufacturing context, AR and VR primarily serve purposes 
such as design visualization, workforce training, and maintenance 
assistance. These technologies can significantly benefit from 5 G’s ultra- 
low latency and high bandwidth. For example, a group of researchers 
recently introduced an open-source, 5G-enabled AR system that sup
ports object visual positioning, content creation, and discovery. This 
system is built upon the OSCP and uses the COSMOS 5 G testbed, 
achieving the required latency of under 7 ms [116] for effective AR/VR 
applications [117].

In summary, NextG manufacturing opens a plethora of promising use 
cases that can demonstrate its significant business value in revolution
izing the manufacturing industry. As research and development in this 
area continue to progress, more advanced and diverse applications will 
likely emerge.

5. Summary, challenges, and outlook

5.1. Summary

As the developing wireless communication standard, 5 G is inher
ently designed to cater to the stringent demands of low E2E latency, 
flexibility, and reliability for highly time-sensitive and data-intensive 
vertical applications. The implications of NextG manufacturing, an 
extreme manufacturing paradigm from the temporal perspective, are 
substantial and transformative.

The advent of NextG augments the manufacturing landscape with 
unparalleled capabilities. Its hallmark extreme-low latency and high 
rate of data transmission make NextG a game-changer for Industry 4.0 
use cases. The extreme-low latency facilitates immediate responses to 
sensor data, enabling swift real-time decision-making necessary in 
manufacturing automation. On the other hand, the impressive rate of 
data transmission makes NextG ideal for scenarios that demand instant 
processing of voluminous data in real-time, leading to an exponential 
rise in operational efficiency.

The 5 G’s ability to simultaneously support a large number of de
vices, coupled with its network slicing capabilities, revolutionizes the 
fundamental infrastructure of manufacturing. It allows for each sensor, 
machine, and device on the factory floor to be interconnected, creating a 
unified, synchronized manufacturing ecosystem. Meanwhile, network 
slicing offers the ability to create customized virtual networks over a 
single physical network, optimizing resource allocation and enhancing 
overall efficiency in NextG manufacturing.

The transformative impact of NextG is further amplified when inte
grated with other technological developments inherent in Industry 4.0, 
such as AI/ML, digital twins [118,119], edge computing, and the IoT. 
These integrations enable more sophisticated, real-time data analytics, 
model development, decision-making, and operational control, all of 
which contribute to improving the seven levels of value creation in 
production [120]: quality, efficiency, lead time optimization, asset uti
lization, resource allocation, worker guidance, and production planning 
and control.

As a result, the advent of NextG catalyzes a new manufacturing 
paradigm. It is transforming how manufacturing operations are 
conceived, planned, and executed, elevating the global manufacturing 
industry to new heights. However, it is crucial to note that the journey to 
NextG manufacturing is complex and fraught with numerous challenges. 
The subsequent sections of this paper will delve deeper into these 
challenges, exploring potential solutions and future research directions.

5.2. Challenges and outlook

The advent of NextG wireless communication technologies will 
change the manufacturing landscape fundamentally. NextG holds the 
key to overcoming these barriers due to its unique communication ca
pabilities of extreme-low E2E latency (~ 1 ms), high flexibility (wire
less), high speed, and high reliability (>99.999 %) to meet the 

demanding requirements. Therefore, NextG manufacturing may meet 
the needs of a smart, sustainable, and resilient factory of the future. 
However, the challenges are very compelling.

NextG-enabled sensors. There is currently very limited capability to 
connect industrial equipment (e.g., machines, robots) to a NextG 
network. How to build NextG into a sensor to enable direct integration 
between NextG and industrial equipment is a pressing challenge. 
Building NextG into a sensor will enable direct integration between 
NextG and industrial equipment while eliminating the need to wire up 
using multiple devices. As current commercial sensors are not NextG- 
enabled, retrofitting industrial sensors (e.g., accelerometer) with 
NextG communication capability by adding a NextG module or chipset 
to these sensors would be very demanding. Future research could also 
focus on developing interntioanl standardized data transmission formats 
or protocols to ensure uniformity and ease of adaptation across different 
platforms. Additionally, miniaturizing NextG-enabled sensors is essen
tial to enhance their applicability in space-constrained environments 
and improve adaptability in complex industrial settings. Addressing 
these areas will advance the integration of NextG technology in Industry 
4.0, significantly expanding its potential applications.

Flexible NextG network architecture. For the flexible integration of the 
NextG network with the legacy sensors/machinery wire-bound Ethernet 
and industrial wireless (e.g., iWLAN) technologies for future 
manufacturing, a hybrid network architecture is required to use the 
industrial Ethernet-based solution (e.g., TTEthernet and TSN [121]) for 
stationary and legacy machines while robots, mobile control panels. To 
support diverse manufacturing applications, advanced network slicing is 
an important research direction because it allows for the dynamic 
allocation of network resources based on specific application needs, 
enhancing both performance and efficiency [122,123]. Energy effi
ciency and sustainability are also vital [124], as integrating 
energy-saving technologies and exploring renewable energy sources 
could significantly reduce the carbon footprint of manufacturing oper
ations. Ultra-reliable low-latency communications are essential for 
supporting real-time applications, where enhancements in reliability 
and latency reduction can greatly improve automation and safety. 
Lastly, the incorporation of edge computing and distributed networks 
will address the need for processing large volumes of data near its 
source, thereby reducing latency and lessening the load on the core 
network.

Robust NextG network for complex and harsh manufacturing environ
ments. Smart manufacturing environments pose the potential risk of 
interference caused by unintended electromagnetic emissions, the large 
number and types of devices using the same electromagnetic spectrum, 
and the disruption/jamming of humans and robots on the industrial 
floor. These potential disruptions point out the need for: a) constant 
spectrum monitoring and identification, b) deployment of multi-modal 
resilient communication techniques, and c) situational awareness that 
is also multimodal. Additionally, the relatively weak penetration capa
bility of 5 G signals poses a significant challenge, especially in envi
ronments with dense or metallic obstructions. Research into how to 
enhance signal penetration or develop alternative strategies to over
come this limitation is crucial for an effective implementation of NextG 
technologies in industrial settings. Moreover, while security and privacy 
are general concerns for any networked manufacturing systems, which is 
not unique to NextG-enabled manufacturing and beyond the scope of 
this study. The ongoing evolution of network capabilities and integra
tion levels highlights the importance of continual research in security 
and privacy. Such research may enhance the security of NextG 
manufacturing, ensuring that security measures evolve in tandem with 
technological advancements [125].

NextG edge-based controller. The development of an economic yet 
optimal NextG control algorithm with plug-and-play capability would 
constitute a compelling challenge. The certification of the robustness 
and stability of NextG edge-based control algorithms is also viewed as an 
emerging challenge. Further research directions include enhancing real- 

L. Hu et al.                                                                                                                                                                                                                                       Journal of Manufacturing Systems 77 (2024) 418–431 

428 



time data processing and decision-making to ensure that edge control
lers can process and act on data instantaneously, which is crucial for 
dynamic industrial environments. Although NextG enables ultra-low 
latency data transmission, effectively processing and handling such 
massive amounts of data with similarly low latency remains a critical 
challenge. FPGAs or other specialized edge devices at the edge could be 
a promising direction to support the necessary processing speed and 
adaptability required for these complex tasks. Fault tolerance and reli
ability are also vital, as controllers must maintain operational efficacy 
despite system failures or external disruptions. This demands research 
into robust architectures and recovery protocols that ensure continuous 
operation under adverse conditions. Advancements in these areas will 
not only enhance the capabilities of NextG edge-based controllers but 
also facilitate their wider adoption and improve performance in real- 
world industrial settings.

Education and workforce development (EWD). The NextG revolution 
will create 4.6 million new jobs through 2034 [126]. Yet, 99 % of 
manufacturers cited that finding new skilled hires was the first and 
foremost challenge [127]. However, a diverse NextG-savvy workforce is 
scarce. Workforce development is a critical challenge for the successful 
implementation of NextG manufacturing.
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