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This paper proposes a new paradigm of extreme manufacturing from the temporal perspective in contrast to the
current extreme manufacturing paradigm based on length scales (e.g., from nanometer to close-to-atom). The
advent of 5 G and future 6 G (NextG) wireless communication provides unique capabilities of ultra-low end-to-
end (E2E) latency (~1 ms), high speed (up to 20 Gb/s), high reliability (>99.999 %), and high flexibility
(wireless) to meet the stringent requirements of future manufacturing. The ultra-low E2E latency enables NextG

Manufacturing - a new extreme manufacturing paradigm from the latency perspective. This positioning paper
identifies the needs of NextG manufacturing, introduces the characteristics of NextG wireless communication
networks, proposes a framework for NextG manufacturing, demonstrates use cases, summarizes current chal-
lenges, and provides an outlook for future research directions.

1. Introduction to NextG manufacturing

This decade sees a wave of dramatic changes [1-3] in the
manufacturing landscape to shape future manufacturing. The funda-
mental change is referred to as “Industry 4.0” [4,5] which integrates IT
and OT to forge a cyber-physical production system. A major enabler for
Industry 4.0 is based on widespread and powerful connectivity and
computing infrastructure, which interlinks machines, robots, sensors,
devices, and people in a timely, flexible, consistent, and secure manner.
In contrast to the conventional static sequential production paradigm,
future manufacturers need machines and production lines that are
flexible, versatile, scalable, modular, and plug-and-play [6-11]. How-
ever, there are several critical barriers to achieving such a future
manufacturing paradigm:

Long End-to-End (E2E) latency: Latency, the time that it takes to
transfer a given piece of information from a source to a destination, is
critically important in real-time monitoring and control for future
manufacturing [12]. Fig. 1 shows the definition of E2E latency and cycle
time, which are commonly used in the field of communications [11].

Latency-critical manufacturing frequently needs ultra-low latency of

1-10 ms (ms) or even extreme-low latency of sub-1 ms for many vertical
applications (Table 1) [10-15]. However, many current manufacturing
processes cannot meet the latency requirement. Let’s start with a use
case to see how low E2E latency as a game-changer can be in reshaping
future manufacturing processes, sensors, and products. The
manufacturing of aircraft engine components is complex,
time-consuming, and expensive. The whole manufacturing chain of a
compressor component known as an integral blade rotor (IBR) [16] can
cost up to US$250,000. Precision, accuracy, and cost are vital in IBR
milling. Excessive vibration or “chatter” in milling is a very common
problem that leads to surface defects and rework.

However, the critical challenge is that there is no effective approach
to monitor vibration and tune the process in real-time while underway
because the E2E latency of current sensing technology is too long, and
the machined quality can only be known when the whole machining
process is done. This can lead to surface defects, rework rate (~25 %),
and thus high cost [17,18] in manufacturing high-value components
such as IBRs which cannot be inspected until the lengthy milling process
(> 24 hrs.) is over. To make the situation worse, the geometry of IBRs
continue to evolve in the future; thinner blades with more complex
geometry features make them more flexible and, therefore, prone to
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Nomenclature M2M Machine-To-Machine
MIMO  Multiple Input Multiple Output
3GPP 3rd Generation Partnership Project ML Machine Learning
5G Fifth Generation mMTC  Massive Machine Type Communications
5GPPP 5 g Infrastructure Public Private Partnership mmWave Millimeter Wave
5GSA 5 g Standalone MNOs  Mobile Network Operators
6G Sixth Generation MPC Model Predictive Control
AGV Automated Guided Vehicles NJAMI New Jersey Advanced Manufacturing Initiative
Al Artificial Intelligence NR New Radio
AR Augmented Reality OSCP Open Spatial Computing Platform
c2C Control-To-Control oT Operations Technology
CAD Computer Aid Design PDEs Partial Differential Equations
E2E End-To-End PDP Physical-To-Digital-To-Physical (PDP)
eMBB  Enhanced Mobile Broadband PINN Physics-Informed Neural Network
EWD Education and Workforce Development PLC Programmable Logic Controller
FPGAs  Field Programmable Gate Arrays SMS Short Message/Messaging Services
IBR Integral Blade Rotor TSN Time-Sensitive Networking
ICT Information and Communication Technology UE User Equipment
IMT International Mobile Telecommunications UKTIN  United Kingdom Telecoms Innovation Network
IoT Internet Of Things URLLC  Ultra-Reliable Low Latency Communication
IPT Institute For Production Technology VR Virtual Reality
IT Information Technology WSNs Wireless Sensor Networks.
ITU International Telecommunication Union
Limited flexibility: The communication among industrial machines
Requestor - Receiver is traditionally based on wired Ethernet systems. The key drawback is
Ty ecelvle”r' | that it requires physical cabling between machines and moving parts,
- T 3: which significantly limits flexibility, mobility, and applicability [15].
! Indeed, a wired sensor cannot be put on a fast-rotating part (e.g., blisk
T, 4 ! milling) [17]. The increasingly dynamic machines (e.g., AGVs and ro-
T,: Requestor to receiver latency Emm—— - bots roaming or moving on tracks) make wired communication simply
T,: Receiver to requestor latency infea.siblfa [15]. On the other hand, standard wi'reless p.rotoco¥s like
T,: Processing time Wl'-Fl, Zigbee, and l?luetooth can’t meet the str‘u‘lgent industrial re-
TCycle (Ty+ T,+ T3): Cycle time qu1rements.for consmtenc.y,. %atel}cy, ?md scalablhty. [.14,15]. Future
manufacturing needs flexibility in wireless connectivity and sensor
Fig. 1. Definition of latency and cycle time. placement.
Lack of computational intelligence: Many latency-critical appli-
cations such as real-time process monitoring and controlling are still
Table 1 conducted locally through machine-specific embedded sensors and
Manufacturing performance requirements [10-15]. controllers that only have limited computing power and limited access
Applications Latency Pay-load # of Device to the operation data from other machines [19]. This creates a critical
- - 5 barrier for leveraging the rich online data and modeling resources from
Factory automation 1 -10ms Varies 10,000/Km . . .
AGV ~1ms Kb — Mb ~50 multiple machines on the factory floor and taking advantage of the
VR/AR <1ms Kb ~ Mb ~50 fast-developing AI and ML for future manufacturing.
Motion control <2ms ~20b > 100 The advent of fifth-generation (5G) and future 6 G wireless
Mobile robots <10 ms < 150 Kb ~100

chatter in machining, which will further increase the manufacturing
challenge. However, in aerospace industries that require high process
stability and strict compliance control, there is no room for error.
Reduced E2E latency has facilitated the development of many
essential networked applications. For instance, the average E2E latency
has consistently fallen below 300 ms since the early 2000s, and video
conferencing over wide area networks has gained traction. Today, it is a
staple of productivity — effectively connecting businesses and in-
dividuals in meaningful ways. In the manufacturing domain, wired
Gigabit Ethernet networks do not supply low enough E2E latencies for
these stringent manufacturing needs due to the accumulated latency
caused by looping architectures and daisy-chaining devices. Future
manufacturing needs an ultra-low E2E latency communication from the
device level (sensor, actuator), to the Fieldbus (PLC, industrial PC), and
from there up to the edge, cloud, and enterprise applications [4,5].
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communication (hereafter NextG) may reshape latency-critical
manufacturing fundamentally because NextG holds the key to over-
come these barriers due to its unique communication capabilities of
ultra-low latency (1-10 ms), high speed (up to 20 Gb/s), high reliability
(>99.999 %), and high flexibility (wireless) to meet the demanding
requirements of latency-critical manufacturing [10,11,14,15].

In recent years, NextG has significantly reduced E2E latencies,
enabling innovative applications such as real-time music/video
streaming, multiplayer online gaming, and VR/AR. However, these ap-
plications are still in the early stages of adoption due to inconsistent
latency performance. While NextG and other advanced wireless
communication networks were expected to catalyze various low-latency
dependent industries, their widespread implementation remains
limited. This is partly because the current networks often fail to achieve
latencies of a few ms. Data from 5 G Mobile Network Operators (MNOs)
shows that the latency experienced by users typically stays within the
range of tens of milliseconds. Sub-ms latencies might only be realistic in
private 5 G networks with significant investment in radio resources.
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Similarly, achieving less than 10 ms latencies in Wi-Fi 6 Wireless Local
Area Networks (WLANSs) is contingent on optimal conditions like low
network traffic and high bandwidth. Furthermore, uplink latencies can
be more than twice those of downlink, necessitating bidirectional E2E
latency guarantees. For low-latency applications to thrive, factors such
as Control Plane latency and service availability/reliability must also be
addressed. Although Mobile Network Operators (MNOs) assert that 5 G
Standalone (5 GSA) mode networks can achieve the required low-
latency and reliability standards, their effectiveness under actual con-
ditions still needs to be confirmed.

While current extreme manufacturing [20] has been dominantly
focusing on extreme lengths from the nanometer scale [21] to the atomic
scale [22], the generic and ubiquitous latency-critical manufacturing
has represented a new paradigm of extreme manufacturing from the
viewpoint of temporal scale to achieve extreme-low E2E latency in an
integrated and networked manufacturing environment. NextG-enabled
manufacturing (NextG manufacturing) may provide the degree of flex-
ibility, mobility, versatility, and scalability that is required for the smart,
sustainable, and resilient factory of the future. It is crucial to determine
and confirm the specific latency guarantees needed for different vertical
applications, and then to show how these standards, such as end-to-end
latencies of a few milliseconds with high reliability, can be achieved in
NextG networks. These demonstrations must also ensure that spectral
efficiencies are maintained to preserve the profitability of deployments.

The methodology employed for this study is detailed in Fig. 2.
Publications relevant to the scope of this review were selected based on
publication date and keywords. The titles, abstracts, keywords, and
citation count of these articles were examined to assess their relevance,
scope, and quality. In addition to academic articles, government white
papers and news articles were also included to enrich the discussion.
This comprehensive analysis may help identify, summarize, and discuss
key research hotspots, gaps, and challenges.

This positioning paper is organized as follows. The above Section 1
identifies the needs of extreme-low E2E latency for future
manufacturing. Section 2 introduces the characteristics of the NextG
wireless communication network. Section 3 proposes a framework for
NextG manufacturing. Section 4 demonstrates the use cases of NextG
manufacturing. Section 5 summarizes current challenges and the
outlook.

2. NextG wireless communication network
2.1. NextG evolutions

While NextG refers to current 5 G and future 6 G and beyond, this
paper will focus on 5 G due to its dominant role in future manufacturing.
5 G mobile network, representing the latest evolution in wireless
communication systems, offers a dramatic leap in capabilities compared
to its predecessors. The evolution of mobile networks from 1 G to 5 G
can be seen as a continuous endeavor to improve wireless communica-
tion in various aspects, such as data rate, latency, and connectivity.

Initial Search

Tool: Scopus
Time Range: 2014 -
Key words:

5G Manufacturing
NextG manufacturi
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Fig. 3 shows the evolution of mobile networks from 1 G to 5 G [23,24].
Each generation of mobile network technology aimed to enhance the
existing standards significantly. 1 G, launched in the 1980s, laid the
foundation for analog voice communication. The subsequent 2 G
network, introduced in the 1990s, digitalized communication and
brought forth services such as SMS. The 3 G network that emerged in
2001 provided mobile internet access and improved data services, which
set the stage for the 4 G network in 2009, offering dramatically faster
data speeds and enabling higher multimedia experiences. Current 5 G
offers unprecedented speeds, low latency, mass connectivity, and many
more. The use of the network standards and the number of connecting
devices within the network is shown below the timeline. Around 80
billion devices are expected to be connected to the Internet by 2030 [23,
25].

The 5G standards are conceptualized and governed by the 3rd
Generation Partnership Project (3GPP), a consortium of various tele-
communications standards organizations. The foundational specifica-
tions for 5 G are delineated in the 3GPP’s Release 15 and subsequent
releases, which mark the advent of New Radio (NR) technology in 5 G
networks. In June 2018, the 3GPP finalized the inaugural formal spec-
ifications for 5 G, encapsulated in Release 15 [26]. This event heralded a
significant milestone in 5 G’s evolution, laying the groundwork for
subsequent technological advancements and deployments. The first
commercial deployment of 5 G in the United States came to fruition in
April 2019 [27] when Verizon rolled out its 5 G NR network in select
regions of Chicago and Minneapolis.

5 G encompasses a broad set of improvements such as significantly
higher data rates (potentially up to 10 Gbps), ultra-low latencies (as low
as 1 ms), larger bandwidths per unit area, improved spectral efficiency,
and the capability to connect a far greater number of devices concur-
rently. This monumental enhancement is facilitated using advanced
technologies, including massive MIMO (Multiple Input Multiple
Output), mmWave (millimeter wave) spectrum [28], beamforming,
network slicing, and edge computing. Beyond providing faster individ-
ual connections, 5 G is designed to serve as the foundation for truly
connected systems, driving innovations in various vertical domains,
from smart cities and autonomous vehicles to telemedicine and Industry
4.0. As such, 5G is more than just an upgrade; it is a critical infra-
structure transformation that could reshape how we interact with
technology in our daily lives.

2.2. 5 G unique characteristics

The advent of 5 G marks a pivotal moment in the evolution of mobile
networks, primarily distinguished by its unparalleled capabilities and
potential applications. Table 2 illustrates the comparative analysis of
different wireless communication protocols and elucidates the advances
in 5G [29-37]. These attributes cement the role of 5 G as a revolu-
tionary wireless communication technology capable of fulfilling the
stringent demands of NextG manufacturing. The ensuing sections will
delve deeper into the potentialities that NextG manufacturing could

Fig. 2. Methodology used to conduct literature review.
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1980s 1990s 2000s 2010s 2020s
- . High Speed  Ultra-High Speed
Analog Telecom Digital Telecom  Mobile Internet Network Network
No. of devices connected (in billions)
100 80
50 0o
10 15 20 I I
0 NA NA - || [ |

1G 2G 2005 2010 2015 2020 2025 2030

Fig. 3. Evolution from 1 G to 5 G.

Table 2
Comparative analysis of different wireless communication protocols.
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Communication Protocol Data Rate Latency Range Frequency Cell density
(users/cell)
5G* ~ 20 Gbps <10 ms ~ 200 m 24.25 GHz ~ 52.6 GHz 20K-40K
410 MHz ~ 6 GHz
4 G/LTE ~ 100 Mbps 20 - 50 ms ~ 10 Km ~ 3.8 GHz 200 —600
WLAN (Wi-Fi 6) < 9.6 Gbps <50 ms ~ 10 Km ~ 5GHz ~ 256
Bluetooth ~ 3 Mbps 100 ms ~ s ~ 100 m ~ 2.4 GHz ~7
Zigbee ~ 250 Kbps A few ms ~ s ~15m ~ 2.4 GHz ~ 64 K (theoretical)
~ 64 (typical)
LoRa/LoRAWAN ~ 21.9 Kbps ~ seconds ~ 10 Km ~ 928 MHz 1K-10K
*Note

e The data rate for 5 G is approximately 20 Gbps for downlink and 10 Gbps for uplink.
e The range of 200 m is specific to millimeter-wave (mmWave).
e The sub-6 GHz frequencies offer a significantly higher range.

unlock.

2.3. NextG-enabled smart manufacturing

environment requires very different communication requirements,
including service quality, reliability, scalability, compatibility, cost-
efficiency, maintainability, and cybersecurity (Fig. 4). For example,
discrete manufacturing (i.e., making discrete parts) may differ sub-
stantially from others, such as continuous manufacturing (e.g., phar-

The smart manufacturing domain is very diverse, which is man-
ifested by distinct applications. This heterogeneous manufacturing

maceutical manufacturing and oil refinery). The common view of these

Future Manufacturing Needs

High
reliability

density

@

Enhanced mobile
broadband

20 Gb/s
Peak downlink rate

10 Gb/s
Peak uplink rate

10 Thps pro km?
Capacity

5G Capabilities

@

Ultra-reliable and low|Massive machine type
latency communication
communication
<lms 100x
Latency More connected
devices
<99.999% ~ 15 Jahre
Reliability Battery life
500 km/h 1,000,000/km?
Mobility Device density

[N
5G-technologies enable a wealth of new
manufacturing applications

Fig. 4. Future manufacturing capabilities enabled by 5 G.
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relevant manufacturing applications is that a new generation of digital
connectivity may lead to significant manufacturing improvements and
optimizations [38,39].

The major innovations enabled by 5 G have been defined in three
broad application areas, including Enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low Latency Communications (URLLC), and Massive
Machine Type Communications (mMTC) as shown in Fig. 5 [40]. The
area of eMBB is in continuous evolution from 4 G LTE with higher
throughput, faster connections, and more capacity. URLLC is the key
capability of 5G that would enable uninterrupted, reliable, and
ultra-low-latency services for mission-critical applications. mMTC refers
to using the 5 G network to connect to a massive number of devices,
providing internet access by collecting a huge volume of small data
packets from large numbers of devices. By design, 5 G communication
technology is being developed at a time when many industries are
introducing connectivity and automation to their domains on an un-
precedented scale using technologies such as the IoT, ML, and robotics.
Smart manufacturing is part of this broader trend and incorporates
different performance requirements. Private local-area networks
deployed on the factory premises are usually required to meet URLLC
performance targets of industrial automation consistently. The 5G
system architecture is designed to support such standalone operations
without connections to external networks.

Digital connectivity is critical for smart manufacturing. Reliable and
secure data transmission in real-time is the key requirement for an in-
dustrial communication system. Fig. 5 shows several representative
examples of the benefits of 5 G in smart manufacturing, in which typical
use cases are organized based on their primary communication needs
according to the basic 5 G service types, i.e., eMBB, URLLC, and mMTC.
It is clear that many industrial use cases, including motion control, have
very strict demands in ultra-low latency, reliability, and determinism.
On the other extreme scenario, augmented reality (AR) needs very high
rates of data transmission of video streams from and to an AR device.
Nevertheless, process automation lies between the two extreme sce-
narios and concentrates on monitoring and controlling mechanical,
physical, biological, chemical, or other manufacturing processes within
a facility. This involves using various sensors (e.g., for measuring flows,
forces, speeds, and temperatures) and actuators (e.g. heaters or valves)
to control the process. Whereas other cases, such as WSN often need
more extensive mMTC-based services.

A comparison of the key performance of the current 5 G technology
with the requirements of smart manufacturing shows clearly that some
requirements have not been met in the current release of eMBB-focused
5 G technology [29]. However, these critical requirements are expected
to be satisfied in future 5 G releases.

Enhanced mobile
Broadband (eMBB)

Augmented reality

Process automation

Massive wireless o
— monitoring

sensor networks
Motion control

Massive machine-type
communication (mMTC)

Ultra-reliable low-latency
communications (URLLC)

Fig. 5. Representative industrial use cases and their basic communication re-
quirements (adapted ZVEI [40])
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3. Framework of NextG manufacturing
3.1. Architecture of NextG manufacturing

In the pursuit of implementing Industry 4.0, Specification #22.804
has been outlined in the 3GPP (Release 16) [15]. The specification in-
troduces a forward-looking vision for Factories of the Future, aiming at
enhancing flexibility, versatility, resource and cost efficiency, worker
support, and the quality of industrial production and logistics. The 3GPP
Release delineates a series of 5 G industrial applications to realize these
goals, detailing their specific requirements and challenges.

Building on this foundation, an innovative NextG manufacturing
architecture is developed in this work to synthesize the key elements of
the 3GPP Release into an integrated architectural blueprint. It aims to
instigate a transformative shift in the industrial manufacturing sector by
leveraging the inherent potential of 5 G. The NextG manufacturing
framework presents an innovative paradigm designed to propel indus-
trial manufacturing into an era of streamlined efficiency and unprece-
dented processing speeds. The NextG manufacturing framework
explicitly highlights the E2E latency requirements and user equipment
(UE) needs, which are defined and characterized across manufacturing
levels - from machine, factory, to enterprise. These specifications
address unique challenges in the context of NextG manufacturing, which
have not previously been addressed [41].

The architecture envisions a tri-layered structure: machine level,
factory level, and enterprise level. Each level reflects a distinct magni-
tude and complexity of components, as shown in Fig. 6. From the broad
expanse of the enterprise level to the granular detail at the machine
level, the structure exhibits a top-down hierarchical magnitude.
Concurrently, the E2E latency and the quantity of user equipment (UE)
requirements undergo a corresponding transition across these strata,
mirroring their inherent breadth and complexity: The enterprise level,
possessing the most extensive scale, tolerates the highest latency (1-2 s)
and necessitates the largest number of UEs (~10,000). For the factory
level in the middle, where most of the process automation is, the typical
E2E latency gets smaller to ~50 ms (for process monitoring purposes),
and the demand for UE connections is reduced to 10-100 units. At the
machine level, machine tools require E2E latency of 1-10 ms and about
20 UEs. Ultimately, machine tools demand an E2E latency of 1-10 ms at
the machine level and require around 20 UEs. For a given machine tool,
especially in motion control applications, where communication pri-
marily occurs between the controller, sensors, and actuators, the E2E
latency may dip as low as 0.5 ms [14,15]. This gradation in latency and
UE requirements across the structure’s layers underscores their distinct
roles and functionalities within the overarching architecture.

Enterprise level: The enterprise level is at the topmost tier of the
architecture. It broadly encompasses multiple manufacturing factories
and other facilities. Each of these units interfaces with the central Cloud
server via the Internet [15,42]. This Cloud server, which can be physi-
cally distant from the manufacturing facilities, forges a connection with
manufacturing factories through the 5 G Edge server.

The Cloud server possesses the capability to store non-time-sensitive
data from factories, enabling its analysis for business management
purposes. Equipped with the computing power of the Cloud, the man-
agement team can undertake computationally intensive tasks such as big
data analysis [43]. The insights gleaned from these analyses, such as
supply chain demand and planning decisions, are then channeled back
to the manufacturing facilities to affect the necessary high-level ad-
justments. In essence, the enterprise level serves as the strategic com-
mand center, focusing on the business management objectives of
manufacturing assets and supply chain management. This level is crucial
in leveraging data and computational capacity for informed
decision-making and operational optimization.

Factory level: The Factory level forms the intermediate tier in this
architecture, representing the middle level of the system. Instead of
treating factories as single, monolithic entities, this level breaks them
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E2E Latency User Equipment (UE)
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Enterprise Level Cloud Server

Cloud server

1~2's ~10,000 Edge Edge
Asset Internet
management Factory ' . _ _. _ _._. _ T ___________ ; Factory Factory data
. Factory Level 5G Edge Server
~50 ms \ Product Process data
Process 10~100 = i'l D @ I =
monitoring ©O000) e}
Robot Machlne Optimization
Machine Level
1~10 ms 20
Machine tool Cont Ier_,_ A Sensor Sensor & controller
- data
@) \\‘9 3
0.5ms Actuator I
Control

Control decision

Fig. 6. NextG manufacturing architecture.

down into individual machines. Each machinery within a factory is
connected to the overarching 5 G network, facilitating information
sharing about machine status amongst various units - a communication
form known as Control-to-Control (C2C). C2C communication, already
prevalent in applications like large-scale machines (e.g., newspaper
printing machines) and assembly lines, enables coordinated functioning
and workpiece handover between individual units. Beyond sharing data
within the factory, the machinery is also equipped to upload data to the
5G edge server for process automation and optimization purposes.
Despite its less powerful computing capacity compared to the enterprise
Cloud server, the 5 G edge server serves a pivotal role as the gateway
linking the factory network to the Internet. This server conducts real-
time sensitive computations, returning results like optimized process
decisions back to each machine. Additionally, it uploads machine status
data to the enterprise cloud server via the Internet for managerial pur-
poses. The machines’ status is uploaded to the enterprise cloud server by
the 5 G edge server through the Internet for management purposes.

In essence, the 5 G edge server functions as the distributed compu-
tational resource for real-time sensitive computations. This server can
host AI/ML models such as pre-trained ML algorithms for accelerated
decision-making. Through the 5 G network, these decisions are dis-
patched back to the machinery for automatic process optimization.
Conversely, non-real-time data can be sent to the Cloud server for more
comprehensive computational analysis and higher-tier asset manage-
ment. This tier highlights the integral role of 5 G technology in ensuring
robust and efficient inter-machine communication and data
management.

Machine level: At the base of this system is the machine level, which
spotlights the individual components of each machine. This level focuses
on the fundamental elements that enable the functioning of machinery.
These components are the smallest operational units of the overall ar-
chitecture, but their performance significantly influences the efficiency
of the machines and, consequently, the entire manufacturing facility.

This level is characterized by real-time sensitive data flow among
sensors, controllers, and actuators. This high latency requirement is
assured via 5 G networks, with as low as 1 ms latency for closed-loop
control. The sensors, controllers, and actuators, all equipped with 5 G
technology, are capable of intercommunication via the 5 G network
while concurrently uploading data to the 5 G edge server. This allows
the 5G edge server to analyze real-time sensing data and dispatch
updated control decisions to the controllers, helping to avoid product
defects and wastage.

The NextG manufacturing architecture facilitates swift and seamless
data transmission, high-speed data processing, and real-time control
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actions - three crucial elements for a successful implementation of NextG
manufacturing. This structure illustrates how 5 G technology underpins
every manufacturing level, offering unprecedented levels of efficiency,
control, and precision.

3.2. Enabling technologies for NextG manufacturing

The foundation of NextG manufacturing is built upon a diverse array
of enabling technologies/components, including 5G-enabled sensing
and monitoring, data integration and computation, AI/ML models, and
model-based real-time control. These components work in unison to
enable NextG manufacturing that is not only smart and efficient but also
capable of extreme-low E2E latencies crucial for real-time applications.
To demonstrate the interrelationships among these components, Fig. 7
shows the data flow between these enabling components, which are
summarized and detailed in Sections 3.3 — 3.6.

At the heart of NextG manufacturing is the 5 G network, acting as the
communication backbone to link the enabling components, allowing
ultra-low E2E latency and high-bandwidth data transmission critical for
real-time operations. The 5 G capabilities are essential for facilitating
the rapid exchange of data across the components, ensuring timely and
synchronized operations across various manufacturing processes.

The 5G-enabled sensing and monitoring component is the primary
data generator, capturing operational metrics such as speed,

Real-time data

Future manufacturing
communications

o Ultra-low latency: ~1 ms

o High speed: ~20 Gb/s

© High UEs: ~1,000,000/km?

Sensing & Edge
Monitoring Computing  :
<44 ';

Control commands

Real-time ‘ y :
Control Model
1]

Model predictions

Fig. 7. Data flow of NextG manufacturing enabling components.
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temperature, and other machine status. Integrated with 5G, this
component transmits monitoring data wirelessly and in real-time,
ensuring immediate responsiveness to any operational changes or
anomalies.

The edge computing component processes real-time monitoring data
at a location close to the data source, which guarantees that instant data
is processed at the earliest possible opportunity. The processed data is
then standardized, facilitating utilization by AI/ML models.

AI/ML models can be developed to provide real-time insights at
scale, detecting complex patterns, and accommodating to the needs of
real-time applications. The model predictions are then translated into
real-time control algorithms through the 5 G network, ensuring swift
responses to dynamic manufacturing conditions.

Within the real-time control component, Al-driven decisions are
promptly made, and appropriate control commands are issued to the
actuators to adjust a manufacturing process as needed. The sensors
monitor these adjustments and relay the information back into the
system, sustaining the feedback loop essential for continuous process
optimization.

3.3. NextG-enabled sensors and monitoring

Sensors are crucial components of NextG manufacturing for moni-
toring and optimizing manufacturing operations. Sensors can be cate-
gorized based on measured attributes, applications, and usage scenarios.
For instance, depending on the attributes they measure, such as tem-
perature [44], force [45], vibration [46,47], acoustic [48], pyrometry
[49] and topography [50], sensors have distinct applications. A more
comprehensive classification scheme and detailed discussion can be
found in previous studies [51]. When classified by use, wireless sensors
are witnessing significant growth [52]. The ongoing evolution of wire-
less communication technology has prompted an intensified focus on
wireless sensors from users, sensor manufacturers, and the academic
community.

NextG-enabled sensors offer several benefits, not only enabling
technicians to gain useful information from hard-to-reach areas
compared with wired sensors but also enabling ultra-low latency for
data transmission. NextG-enabled sensor structure consists of four ele-
ments [53]: sensing elements, microcontroller, 5 G NR transceiver, and
on-board power supply. Fig. 8 shows a NextG-enabled sensor architec-
ture. The sensing element, the heart of the sensor, detects environmental
changes. Depending on the sensor type, it can measure various param-
eters such as temperature, pressure, or motion. The microcontroller
processes the data captured by the sensing element and directs the
overall operations of the sensor. The on-board power supply ensures that
the sensor can perform its sensing operations. The battery lifespan is
critical, and consequently, energy efficiency is a significant focus in
wireless sensor development [54,55]. The 5 G NR transceiver endows
the sensor with wireless capabilities, facilitating the transmission and
reception of data (uplink and downlink). The transceiver operates in
four states - receive, transmit, idle, and sleep - each associated with
different power consumption levels [51]. The 5G NR transceiver
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enhances the sensor’s capabilities by establishing direct communication
with a 5 G edge server, ensuring rapid and reliable data transmission.
This connection is essential for leveraging the full potential of real-time
analytics in industrial applications.

In harmony, these components enable NextG sensing. These sensors
do not require physical connections, so they can be deployed where
space is limited, power is scarce, or wiring is impractical. They also
enable data transmission to remote locations and offer the flexibility of
repositioning sensors without rewiring. Consequently, wireless sensors
are a pivotal trend in Industry 4.0, offering significant benefits and
transforming numerous industries and applications.

Expanding on individual wireless sensors’ capabilities, WSNs have
emerged as a crucial technology underpinning smart manufacturing. A
WSN is an ensemble of spatially distributed sensors designed to monitor
specific environmental parameters, such as temperature fluctuations or
movement. These sensors relay their collected data wirelessly, either to
each other or to a central control point often referred to as the gateway.
The configuration or layout of these sensor nodes within a WSN is
known as the network’s topology. The interaction between the sensor
nodes and the gateway and the communication among the sensor nodes
themselves primarily dictate the topology. The star, mesh, and hybrid
topology represent the three primary types of topologies [15,51]. As
shown in Fig. 9, a star topology, each sensor node communicates solely
with the gateway, without any inter-node communication. This requires
all nodes to be within the gateway’s communication range. While en-
ergy efficient, this configuration is not suitable for larger networks due
to its limited scalability.

On the contrary, a mesh topology allows sensor nodes to interact
both with the gateway and other nodes, given they are within commu-
nication range. This configuration is ideal for larger networks due to its
enhanced reliability but comes with higher energy consumption
compared to a star topology. The hybrid topology incorporates elements
of both the star and mesh models, creating a more adaptable network.
Here, a sensor node with lower power reserves does not relay informa-
tion from other nodes, promoting energy efficiency in the network.
These topologies significantly influence the data routing from each
sensor node to the gateway and the data management within each sensor
node, making their selection a critical aspect of WSN design and
operation.

Recently, 5G-enabled sensors have attracted great interest from re-
searchers. The benefits of 5G-enabled sensors can be summarized in the
following aspects: (1) Energy efficiency - 5 G has been designed to be
more energy-efficient, an essential factor for battery-powered sensors in
WSNs. Energy efficiency can lead to longer sensor battery life, reducing
maintenance costs and time. (2) Low E2E latency - 5G technology
promises lower latency than previous generations of cellular technology
(See Table 2). This means data is transmitted with minimal delay, which
is crucial for time-sensitive vertical applications. (3) Support for massive
IoT - 5 G supports massive [0T, meaning it’s designed to efficiently
connect with many devices in a small area [56]. This is particularly
beneficial for applications like industrial automation, where many sen-
sors must be interconnected. (4) Enhanced reliability - 5 G networks are
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Fig. 8. NextG-enabled sensor architecture.
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designed to provide a more reliable connection, reducing the risk of
dropped signals or lost data. This is critical in applications like industrial
automation, where continuous monitoring is required.

In summary, the evolution of wireless sensors and 5 G technology
has led to transformative advancements in smart manufacturing, un-
derpinning the shift towards highly connected and efficient industrial
processes. However, current 5G-enabled sensors are limited to lab-
retrofitted environments, and industrial/commercial ones are still
under development.

3.4. Edge-based data integration and computation

Data is the lifeblood of NextG manufacturing. The manufacturing
data is not only heterogeneous (e.g. CAD data, sensor data, production
data, model data) but also massive. However, simply putting all the data
into the same repository would not make the data actionable. A holistic
data architecture along with distributed algorithms is critical and highly
needed to curate and integrate these multimodal data sets for subse-
quent analytics and actions. An information management system con-
sisting of data placement, data discovery, data integration, and data
standardization will overcome the inefficiencies caused by common data
management shortcomings in current typical manufacturing operations.
Toward this end, integrating edge computing and manufacturing oper-
ations provides unique opportunities with execution resources (compute
and storage) and sufficient connectivity (networking) near the data
sources on factory floors. In the context of NextG manufacturing, edge
computing is the crucial nexus where data, computing power, and
control coalesce to deliver real-time analytics and decision-making ca-
pabilities at the machine’s edge. The core benefits of edge solutions are
low E2E latency, high bandwidth, and trusted computing and storage,
which are particularly important for latency-sensitive manufacturing
automation.

Edge computing is a transformative approach to network architec-
ture that processes data at the network’s edge, as close as possible to the
source where it is generated. While cloud computing offers significant
computational power and data storage capacity [57,58], this centralized
approach is marred by inherent latency issues, as the distance between
data generation and processing centers impedes real-time data analysis.
Moreover, constant data traffic to and from the Cloud may cause
bandwidth congestion, which is particularly problematic in the realm of
data-heavy manufacturing tasks. These constraints become critical ob-
stacles when swift data processing and immediate decision-making are
essential.

In response to these challenges, edge computing has emerged as a
compelling alternative, decentralizing data processing by bringing it
closer to where data is generated — at the edge of the network. This
proximity markedly diminishes latency and mitigates bandwidth limi-
tations. By enabling this paradigm shift, edge computing significantly
amplifies the velocity and efficiency of processing operations while
bolstering the system’s dependability and agility in adapting to the ex-
igencies of dynamic manufacturing environments.

In Fig. 6, the 5 G Edge Server, strategically positioned within the
factory, connects to the manufacturing equipment via a 5 G network.
This connection is crucial for achieving ultra-low latency
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communication. Real-time decision-making models, such as AI/ML
analysis models, housed within the 5 G Edge Server enable on-site, in-
situ process monitoring, optimization, and prediction. This arrangement
accelerates data flow and integrates smoothly with real-time control
systems.

With these advancements, the adoption of edge computing in NextG
manufacturing signifies more than a mere technological upgrade; it
represents a strategic overhaul of the manufacturing infrastructure. By
distributing computational resources and harnessing the rapidity of 5 G
networks, edge computing cultivates an ecosystem where precision,
efficiency, and responsiveness are consistently realized in real-time.

3.5. AI/ML models

The federated data at a 5 G edge server may be utilized for forward
prediction of manufacturing performance, inverse learning of unknown
parameters of governing physical laws, making decisions under uncer-
tain and time-varying conditions, and translating decisions from the
digital domain into autonomous actions in the physical domain through
real-time control. It is imperative to leverage the rich dataset to enable
advances across the three horizons of (1) process/machine optimization
to increase productivity via real-time control, (2) manufacturing system
optimization to improve throughput, quality, and overall efficiency
[59], and (3) new business models to leverage AI/ML and integrate
solutions into manufacturing systems.

Data-driven models refer to approaches and techniques that derive
insights, patterns, or knowledge directly from data when theoretical
models are not feasible. Instead of relying on pre-defined models or
theories, data-driven models adapt and evolve based on the online data
they are exposed to. These techniques are particularly beneficial when
there isn’t a clear theoretical model to describe a phenomenon or when
the volume of data is so vast that traditional or physics-driven methods
become inefficient. ML is a subset of data-driven methods that allow
computers to learn from data [60]. In essence, ML provides computers
with the ability to automatically learn and forecast from the history data
without being explicitly programmed for specific tasks. It involves al-
gorithms that find patterns or regularities in data [61].

The advancement in communication and sensing technologies has
significantly increased the availability of manufacturing data [62,63].
This surge in data accessibility has bolstered data-driven manufacturing,
especially with the concurrent rise of AIl/ML. Accounting for its multiple
forms of AI, the McKinsey Global Institute report estimates that, by
2030, Al will increase the size of the global economy by $13 trillion
[64]. Accenture estimates that AI will add $8.3 trillion to the U.S.
economy alone [65] by 2035. Many manufacturing objectives are
widely used to fulfill through different types of ML methods, such as
supervised learning [66-68], unsupervised learning [69], reinforcement
learning [70,71], and generative learning [72].

However, the “black-box” nature of data-driven AI/ML models is
often criticized for lacking physics and uncertainty, limiting model
interpretability, generalizability, applicability, and transferability in
various conditions [73]. Incorporating ML into the vertical
manufacturing domain also presents specific challenges, such as the
need for vast datasets, time-consuming model training, expensive
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computing resources, and poor interpretability. While physics-based
methods (e.g., multi-physics simulations) are based on real-world
physical laws, data-driven ML models can sometimes provide physi-
cally inconsistent results or seem implausible though excellent at fitting
observations. PINN provides a transformative approach to integrating
manufacturing physics and sensor data to address such challenges [74].
Fig. 10 illustrates the three potential scenarios based on the availability
of manufacturing data and knowledge of physics. The left scenario with
a comprehensive understanding of the process physics but limited
manufacturing data, making it conducive for traditional physics-based
analysis. In the right scenario with abundant process data but minimal
knowledge of its underlying physics, purely data-driven ML becomes the
most appropriate choice. In the middle scenario, there is partial access to
data, such as machine parameters and process conditions, but only
partial knowledge of process physics. In such cases, PINN emerges as the
natural choice due to the potential incompleteness of both data and
physics. Currently, PINN is an emerging approach to solving dynamical
manufacturing problems, often represented by PDEs, such as fluid dy-
namics [75-77], heat transfer [78,79], machining dynamics [80,81],
and solid mechanics [82], etc.

The highly dynamic nature of manufacturing is manifested by non-
linear effects, unknown dynamics, high dimensionality, stochasticity,
and uncertainty, which are very difficult, even impossible, to be suffi-
ciently taken into physics-based model development. The advances in
AI/ML provide great opportunities to address this challenge in
manufacturing by leveraging the rich data sets of measured data.
However, AI/ML models cannot achieve absolute certainty inherently,
as they operate on a limited scope of information. As ML models
increasingly inform critical aspects of manufacturing, such as process
optimization and quality control, the integration of uncertainty quan-
tification becomes pivotal. This aspect of ML accounts for the variability
and unpredictability inherent in real-world manufacturing processes. It
enables models to predict outcomes and assess the confidence in these
predictions, thereby facilitating more informed and resilient decision-
making. The ultra-low latency of NextG enhances ML model capa-
bility, allowing for real-time adjustments in manufacturing operations
based on predictions considering uncertainty factors. This approach is
particularly crucial for scenarios where decisions must be made under
incomplete information or where the consequences of incorrect de-
cisions are significant. Advanced ML techniques, such as Bayesian
Neural Networks, provide a framework for incorporating uncertainty
directly into the learning process. This ensures that the ML models are
not only fast and responsive but also robust and reliable, capable of
guiding manufacturing systems through the complexities and variabil-
ities of production environments.

Leveraging the capabilities of 5G in NextG manufacturing, the
resource-intensive training of ML models can be offloaded to Cloud
Servers. These servers, equipped with substantial computational power,
house vast data volumes aggregated from manufacturing facilities.
Subsequently, once trained, sophisticated ML models like uncertainty-
informed PINN models can be integrated into Field Programmable
Gate Arrays (FPGAs) to expedite the inference process, thereby enabling

Physics-driven PINN Data-driven

More Physics Some Physics Less Physics

ystem

achine/system data

Less Data Some Data More Data

Fig. 10. Physics-based, PINN, and data-driven modeling scenarios.
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real-time ML monitoring in on-field scenarios.

3.6. Learning-based NextG control

A survey by Deloitte [5] has highlighted the disconnects or para-
doxes to fully harness each stage of the PDP loop in smart
manufacturing. The survey has shown that while most studies have a
sort of the first stage, i.e., establishing digital records, and some have the
second (i.e., analytics and visualization), far fewer are yet able to
harness the last, most important stage—the ability to leap from digital
technologies to action in the physical world—that constitutes the
essence of smart manufacturing. Model predictive control (MPC) [83,
84] is an advanced method to close the digital-physical loop.

Fig. 11 illustrates how NextG control advances MPC by integrating
5 G technology for enhanced data transmission and edge server capa-
bilities. The 5 G edge server connects to the NextG sensor and actuator
via the 5 G network. Within the edge server, an Al predictive model
takes the current state of the measurement and predicts the future out-
puts over a certain horizon. This is based on potential control actions,
considering disturbances. The Al model evaluates the difference be-
tween the predicted outputs (with disturbances) and the desired output.
It computes control actions that minimize this difference, given the
constraints. Then, the control action for the next time step is sent as the
control input to the actuator. The actuator reacts to both the control
input and the disturbances, resulting in a new output, which is measured
and sent back to the 5 G edge server as the measured output. The process
repeats at the next time step, with the 5G edge server continually
adjusting based on the latest measurements and disturbances.

Recent advancements in ML and the increasing availability of
massive manufacturing data and high-performance computing resources
have stimulated a rising interest in learning-based, data-driven control
systems. Learning-based NextG control can be broadly segmented into
two categories based on the learning objective [85]: understanding
system dynamics and determining controller behavior. In many
real-world manufacturing scenarios, the exact dynamics of a
manufacturing system may remain elusive or evolve. Under such cir-
cumstances, comprehending system dynamics becomes paramount.
Understanding manufacturing dynamics through a data-driven
approach aims to bolster NextG control by integrating ML or adaptive
methods, allowing for ongoing updates to a manufacturing dynamics
model based on observed behaviors. Examples of this approach include
applications in understanding the behavior of connected vehicles, such
as in vehicle-to-vehicle communication for an intelligent transportation
system [86], autonomous vehicles [87], and robots [88], and discerning
the unfamiliar system dynamics of robots to boost their performance
[89]. Conversely, the focus of learning controller behavior transcends
merely understanding system dynamics. Instead, it zeroes in on the
direct acquisition of control actions or policies. The goal here is to
employ data-driven techniques to determine the optimal control actions
considering a given system state and its anticipated future trajectory.
Instances of this method include the extraction of controller parameters
from amassed data [90,91]. Typically, this approach is
performance-centric since it aims for the direct optimization of specific
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Fig. 11. Working principle of NextG Control.
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performance metrics or reward functions [85,92].

In essence, learning-based NextG control amalgamates traditional
control with ML, offering significant advantages. It’s agile in adapting to
manufacturing system alterations and is tailored for intricate scenarios
that are challenging to model definitively. By incessantly fine-tuning its
model, it champions performance and adeptly navigates uncertainties.
Harnessing massive datasets, it curtails computational demands and
adeptly manages non-linear scenarios, extending its relevance across a
spectrum of manufacturing systems. Given these merits, learning-based
NextG control, augmented by previously mentioned technologies like
PINN and FPGA-enhanced ML, finds its niche in NextG manufacturing
for real-time control applications, underscoring the promise of ultra-low
latency and sterling performance.

4. Use cases of NextG manufacturing

The potential of NextG manufacturing is gradually materializing
across the globe, with major industrialized countries embracing its
transformative capabilities to redefine the manufacturing paradigm.
From instantly responsive manufacturing operations to the inception of
real-time future factories, the extreme-low E2E latency promised by
NextG is enhancing manufacturing outcomes. This section delves into
global trends highlighting NextG manufacturing initiatives and use
cases, encapsulating its evolving influence.

4.1. Global trend of NextG manufacturing initiatives

Several initiatives around the world have been established to stan-
dardize 5G-enabled manufacturing. Table 3 shows the 5 G initiatives
along with advanced manufacturing initiatives worldwide. Set by the
International Telecommunication Union (ITU), the IMT-2020 represents
the global standards for 5 G technologies. Notably, China has made
significant efforts in its development and promotion, aligning the term
“IMT-2020” with its vision for 5 G [93,94]. Europe’s 5 G Infrastructure
Public Private Partnership (5GPPP), a collaboration between the Euro-
pean Commission and the European ICT industry [95], spearheads the
5 GR&D in Europe and ensures regional leadership in the evolving
telecommunication landscape. Concurrently, Germany introduced the
“Industry 4.0 initiative, encapsulating the integration of contemporary
digital technologies with conventional manufacturing. The 5 G Forum,
established in 2013, acts as South Korea’s beacon for 5 G advancement,
comprising government, academia, and industry stakeholders [96].
Alongside this, the government launched the “Manufacturing Industry
Innovation 3.0”, focusing on holistic smart factory implementations to
revolutionize manufacturing [97,98]. The United Kingdom’s national
innovation endeavor, UKTIN, propels its 5 G initiatives [99]. To com-
plement this in the manufacturing domain, the “Made Smarter” program
strives for manufacturing advancements. In the USA, “5 G Americas”
[100] plays a pivotal role, primarily emphasizing 5 G’s evolution and
deployment. Concurrently, the “Smart Manufacturing” initiative
emerges as the region’s blueprint for information-integrated
manufacturing, aiming to bolster productivity, efficiency, and adapt-
ability [101,102].

The international endeavors and initiatives in 5 G, as elucidated in
the preceding section, underscore the momentous shift in the global
manufacturing landscape. These pioneering moves have concurrently

Table 3
Global NextG manufacturing initiatives.

Country/Regin 5 G Initiatives Manufacturing Initiatives

Europe 5 GPPP Industry 4.0

China IMT 2020 Made in China 2025

South Korea 5 G Forum Manufacturing Industry Innovation 3.0
United Kingdom UKTIN Made Smarter

USA 5 G Americas Smart Manufacturing
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catalyzed industrial and academic thrusts in the realm of NextG
manufacturing. In the wake of globally resonating initiatives, key
technological vendors have geared up to play seminal roles in materi-
alizing the NextG manufacturing vision. The key wireless vendors and
their visions are summarized. Ericsson, for instance, envisions a world
driven by massive M2M connectivity [103], widening technology ap-
plications across sectors. Huawei emphasizes the trinity of massive
connectivity, ultra-low latency, and high reliability [104], looking to
redefine manufacturing processes. Nokia champions the combination of
scalable services with Gigabit bandwidths, making a case for ultra-low
latency as a defining attribute [105]. Qualcomm foresees a connected
society where the intelligent edge plays a pivotal role in streamlining
operations and delivering efficiencies [106]. Not to be left behind,
Samsung is betting big on multimedia services integrated with the IoT
[107], envisaging a networked world where every device communicates
and operates in harmony.

4.2. Use cases

The proliferation of 5 G in manufacturing, backed by global initia-
tives and visions, opens the door to a multitude of advanced use cases,
capitalizing on the promise of ultra-low E2E latency. These use cases are
pivotal to realizing the full potential of NextG manufacturing, demon-
strating how rapid communication can redefine the manufacturing
realm.

5G-enabled smart sensor platforms refine traditional sensing tech-
nology by pairing it with 5 G networks for seamless, real-time data
collection in manufacturing settings. Notably, the Fraunhofer Institute
for Production Technology (IPT) in RWTH Aachen University, Germany
has retrofitted multiple 5G-enabled sensors specifically for real-time
monitoring of both machining processes and machine states [108,109]
Each sensor in this sensing system is linked to a central motherboard
equipped with data collection modules, a battery, and a 5 G communi-
cation unit. These wireless sensors can be affixed to moving components
like spindles and rotary axes to capture precise, in-situ signals, which are
then transmitted to 5 G servers for Al-based analysis. The NJAMI at
Rutgers University in the USA, a smart milling testbed enabled by a
5G-enabled accelerometer and an ML model has been developed to
monitor and predict chatter in milling engine blades in real-time. The
Advanced Manufacturing Research Centre Northwest at the University
of Sheffield in the UK has made similar efforts in innovating a
5G-enabled sensor to monitor auditory and vibrational signals in ma-
chinery [110].

AGVs are indispensable mobile robots in modern manufacturing
[111], offering efficient and versatile material-handling solutions. A
study by Nakimuli et al. [112] compared 4 G and 5G-enabled AGVs,
focusing on guidance errors and energy consumption. Their findings
reveal that 5G-powered AGVs demonstrate reduced latency, thereby
enhancing control precision and conserving energy during course cor-
rections. A use case of a 5G-enabled AGV was focused on the AGV
guidance errors and current consumption compared to a 4G-enabled
AGV. The results show that 5 G has a lower E2E latency connection,
thus providing improved control of positioning and less power
consumed on course corrections. Another study used edge-based ML
models to predict and preemptively correct guidance errors, preventing
potentially hazardous situations [113].

NextG manufacturing facilitates instantaneous, remote control of
robotic systems in manufacturing units, offering substantial operational
speed and reliability improvements. Specifically, Ericsson and Aachen
University have developed a mobile robot platform controlled via 5 G
edge computing [114,115]. This platform incorporates TSN into a 5 G
framework, achieving communication latencies below 10 ms, thereby
meeting the stringent requirements of real-time robotic control. NJAMI
at Rutgers University has set up a 5G-enabled and computer vision-based
robotic remanufacturing testbed to achieve a real-time sensin-
g-learning-control loop with an E2E latency < 10 ms.
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In the manufacturing context, AR and VR primarily serve purposes
such as design visualization, workforce training, and maintenance
assistance. These technologies can significantly benefit from 5 G’s ultra-
low latency and high bandwidth. For example, a group of researchers
recently introduced an open-source, 5G-enabled AR system that sup-
ports object visual positioning, content creation, and discovery. This
system is built upon the OSCP and uses the COSMOS 5 G testbed,
achieving the required latency of under 7 ms [116] for effective AR/VR
applications [117].

In summary, NextG manufacturing opens a plethora of promising use
cases that can demonstrate its significant business value in revolution-
izing the manufacturing industry. As research and development in this
area continue to progress, more advanced and diverse applications will
likely emerge.

5. Summary, challenges, and outlook
5.1. Summary

As the developing wireless communication standard, 5 G is inher-
ently designed to cater to the stringent demands of low E2E latency,
flexibility, and reliability for highly time-sensitive and data-intensive
vertical applications. The implications of NextG manufacturing, an
extreme manufacturing paradigm from the temporal perspective, are
substantial and transformative.

The advent of NextG augments the manufacturing landscape with
unparalleled capabilities. Its hallmark extreme-low latency and high
rate of data transmission make NextG a game-changer for Industry 4.0
use cases. The extreme-low latency facilitates immediate responses to
sensor data, enabling swift real-time decision-making necessary in
manufacturing automation. On the other hand, the impressive rate of
data transmission makes NextG ideal for scenarios that demand instant
processing of voluminous data in real-time, leading to an exponential
rise in operational efficiency.

The 5 G’s ability to simultaneously support a large number of de-
vices, coupled with its network slicing capabilities, revolutionizes the
fundamental infrastructure of manufacturing. It allows for each sensor,
machine, and device on the factory floor to be interconnected, creating a
unified, synchronized manufacturing ecosystem. Meanwhile, network
slicing offers the ability to create customized virtual networks over a
single physical network, optimizing resource allocation and enhancing
overall efficiency in NextG manufacturing.

The transformative impact of NextG is further amplified when inte-
grated with other technological developments inherent in Industry 4.0,
such as AI/ML, digital twins [118,119], edge computing, and the IoT.
These integrations enable more sophisticated, real-time data analytics,
model development, decision-making, and operational control, all of
which contribute to improving the seven levels of value creation in
production [120]: quality, efficiency, lead time optimization, asset uti-
lization, resource allocation, worker guidance, and production planning
and control.

As a result, the advent of NextG catalyzes a new manufacturing
paradigm. It is transforming how manufacturing operations are
conceived, planned, and executed, elevating the global manufacturing
industry to new heights. However, it is crucial to note that the journey to
NextG manufacturing is complex and fraught with numerous challenges.
The subsequent sections of this paper will delve deeper into these
challenges, exploring potential solutions and future research directions.

5.2. Challenges and outlook

The advent of NextG wireless communication technologies will
change the manufacturing landscape fundamentally. NextG holds the
key to overcoming these barriers due to its unique communication ca-
pabilities of extreme-low E2E latency (~ 1 ms), high flexibility (wire-
less), high speed, and high reliability (>99.999 %) to meet the
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demanding requirements. Therefore, NextG manufacturing may meet
the needs of a smart, sustainable, and resilient factory of the future.
However, the challenges are very compelling.

NextG-enabled sensors. There is currently very limited capability to
connect industrial equipment (e.g., machines, robots) to a NextG
network. How to build NextG into a sensor to enable direct integration
between NextG and industrial equipment is a pressing challenge.
Building NextG into a sensor will enable direct integration between
NextG and industrial equipment while eliminating the need to wire up
using multiple devices. As current commercial sensors are not NextG-
enabled, retrofitting industrial sensors (e.g., accelerometer) with
NextG communication capability by adding a NextG module or chipset
to these sensors would be very demanding. Future research could also
focus on developing interntioanl standardized data transmission formats
or protocols to ensure uniformity and ease of adaptation across different
platforms. Additionally, miniaturizing NextG-enabled sensors is essen-
tial to enhance their applicability in space-constrained environments
and improve adaptability in complex industrial settings. Addressing
these areas will advance the integration of NextG technology in Industry
4.0, significantly expanding its potential applications.

Flexible NextG network architecture. For the flexible integration of the
NextG network with the legacy sensors/machinery wire-bound Ethernet
and industrial wireless (e.g., iWLAN) technologies for future
manufacturing, a hybrid network architecture is required to use the
industrial Ethernet-based solution (e.g., TTEthernet and TSN [121]) for
stationary and legacy machines while robots, mobile control panels. To
support diverse manufacturing applications, advanced network slicing is
an important research direction because it allows for the dynamic
allocation of network resources based on specific application needs,
enhancing both performance and efficiency [122,123]. Energy effi-
ciency and sustainability are also vital [124], as integrating
energy-saving technologies and exploring renewable energy sources
could significantly reduce the carbon footprint of manufacturing oper-
ations. Ultra-reliable low-latency communications are essential for
supporting real-time applications, where enhancements in reliability
and latency reduction can greatly improve automation and safety.
Lastly, the incorporation of edge computing and distributed networks
will address the need for processing large volumes of data near its
source, thereby reducing latency and lessening the load on the core
network.

Robust NextG network for complex and harsh manufacturing environ-
ments. Smart manufacturing environments pose the potential risk of
interference caused by unintended electromagnetic emissions, the large
number and types of devices using the same electromagnetic spectrum,
and the disruption/jamming of humans and robots on the industrial
floor. These potential disruptions point out the need for: a) constant
spectrum monitoring and identification, b) deployment of multi-modal
resilient communication techniques, and c) situational awareness that
is also multimodal. Additionally, the relatively weak penetration capa-
bility of 5 G signals poses a significant challenge, especially in envi-
ronments with dense or metallic obstructions. Research into how to
enhance signal penetration or develop alternative strategies to over-
come this limitation is crucial for an effective implementation of NextG
technologies in industrial settings. Moreover, while security and privacy
are general concerns for any networked manufacturing systems, which is
not unique to NextG-enabled manufacturing and beyond the scope of
this study. The ongoing evolution of network capabilities and integra-
tion levels highlights the importance of continual research in security
and privacy. Such research may enhance the security of NextG
manufacturing, ensuring that security measures evolve in tandem with
technological advancements [125].

NextG edge-based controller. The development of an economic yet
optimal NextG control algorithm with plug-and-play capability would
constitute a compelling challenge. The certification of the robustness
and stability of NextG edge-based control algorithms is also viewed as an
emerging challenge. Further research directions include enhancing real-
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time data processing and decision-making to ensure that edge control-
lers can process and act on data instantaneously, which is crucial for
dynamic industrial environments. Although NextG enables ultra-low
latency data transmission, effectively processing and handling such
massive amounts of data with similarly low latency remains a critical
challenge. FPGAs or other specialized edge devices at the edge could be
a promising direction to support the necessary processing speed and
adaptability required for these complex tasks. Fault tolerance and reli-
ability are also vital, as controllers must maintain operational efficacy
despite system failures or external disruptions. This demands research
into robust architectures and recovery protocols that ensure continuous
operation under adverse conditions. Advancements in these areas will
not only enhance the capabilities of NextG edge-based controllers but
also facilitate their wider adoption and improve performance in real-
world industrial settings.

Education and workforce development (EWD). The NextG revolution
will create 4.6 million new jobs through 2034 [126]. Yet, 99 % of
manufacturers cited that finding new skilled hires was the first and
foremost challenge [127]. However, a diverse NextG-savvy workforce is
scarce. Workforce development is a critical challenge for the successful
implementation of NextG manufacturing.
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