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Abstract.
This report summarizes results of the first lattice QCD calculation of coupled-
channel πΣ − K̄N scattering in the Λ(1405) region. This study was carried out
using a single CLS ensemble with a heavier-than-physical pion mass mπ ≈ 200
MeV and a lighter-than-physical kaon mass mK ≈ 487 MeV. Once the finite-
volume energy spectrum has been reliably extracted, the Lüscher method was
employed to obtain scattering amplitudes. Through a variety of parametriza-
tions of the two-channel K-matrix, the final results show a virtual bound state
below the πΣ threshold and a resonance right below K̄N.

1 Introduction

The Λ(1405) baryon is considered a puzzling state when trying to accommodate it within
conventional quark models, and several studies have been conducted in order to tackle and
understand it (see Refs. [1, 2] for a more extensive review). This 4-star state (according to
[3]) with I(JP) = 0( 1

2
−) and strangeness S = −1 was initially predicted in [4]. In their work,

the analysis of low-energy K−p scattering amplitudes implied a resonance in the 1405 MeV
region. This was later experimentally confirmed in [5] when looking into the πΣ mass spec-
trum. From the variety of approaches investigating the Λ(1405), important aspects to address
this state have emerged, such as the importance of including meson-baryon components in
the scattering analysis [6, 7], and the concept of a two-pole picture in the complex energy
plane of the scattering amplitude [8]. The latter was further explored in [9, 10], suggesting
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that resonances like the Λ(1405) can be dynamically generated by underlying meson-baryon
interactions, which result in two poles in this energy region. Moreover, while there are many
lattice QCD studies that have been done to learn about this baryon, none of them extracted
the full spectrum including the πΣ − K̄N coupled-channel scattering analysis.

This first lattice QCD calculation determining the πΣ − K̄N coupled-channel scattering
amplitude [11, 12] was carried out using a single ensemble and included not only single-
hadron operators, but also meson-baryon interpolating fields. This study aims to address the
long-standing disagreement regarding whether there is one or two poles and their positions
in the complex energy plane. In order to do so, the Lüscher method [13, 14] is utilized,
since it has been shown to be a powerful tool to access the hadron scattering amplitudes and
infer resonance properties. This method connects the continuum scattering amplitudes to the
finite-volume energy spectra obtained from lattice QCD calculations [15].

This report is organized such that Section 2 briefly summarizes all details of the lattice
techniques utilized to carry out the study, including the tools used to compute correlation
function matrices and the methodologies used to diagonalize and fit them, as well as final
results of the finite-volume energy spectra. Later, Section 3 introduces the Lüscher formal-
ism and the main results of the coupled-channel πΣ − K̄N scattering amplitude analysis and
the position of the poles when analytically continued to the complex energy plane. Finally,
Section 4 summarizes the main results, the importance of the methods used, and future paths.

2 Lattice details and correlation functions

This section introduces the most important details of the ensemble of QCD gauge configura-
tions used in this study [11, 12]. The finite-volume energy spectra extracted were computed
and are shown in Figure 3.

Lattice details. – A single ensemble of QCD gauge configurations generated by the Co-
ordinated Lattice Simulations consortium (CLS) was employed: namely D200 [16]. These
gauge field configurations have heavier-than-physical degenerate u- and d-quarks and a
lighter-than-physical s-quark. These were generated with the tree-level improved Lüscher-
Weisz gauge action, and a non-perturbatively O(a)-improved Wilson fermion action. Also,
open temporal boundary conditions were used in order to reduce autocorrelation of the global
topological charge. Additional information about the gauge field configurations is summa-
rized in Table 1.

Correlators. – Euclidean time correlation functions were computed using the stochastic
Laplacian Heaviside method (sLapH) [17, 18], these included single- and multi-hadron op-
erators with different momentum combinations: Λ("P), π("P1)Σ("P2) and K̄("P1)N("P2). These
correlation functions satisfy

Ci j(t) = 〈Oi(t)Ō j(0)〉 =
∑

n

Ane−tEn . (1)

Where the multi-hadron correlators in Eq. (1) needed to be diagonalized to obtain the finite-
volume energy levels. This diagonalization was achieved by solving the Generalized Eigen-
value Problem (GEVP) [19, 20].

a[fm] (L/a)3 × T/a amπ amK mπL
0.0633(4)(6) 643 × 128 0.06533(25) 0.15602(16) 4.181(16)

Table 1. Properties of the CLS D200 ensemble. a is the lattice spacing and L3 × T is the lattice extent.

Finite-volume energy spectra. – Once the correlation matrices were built and diagonal-
ized, the fitting and analysis phase begins. In this step, the diagonalized correlators were fitted
employing correlated-χ2 fits over different time intervals (labelled [tmin, tmax]), and based on
a variety of fit forms. These include single exponential, two-exponential, and geometric se-
ries ansatzes (see Figure 1 for example results of the pion). The multi-hadron correlators
also incorporated a ratio of correlator fits (see Figure 2 for an example of fit forms of the
multi-hadron correlators). The final finite-volume energy spectra extracted are shown in Fig-
ure 3, and only levels below the three particle threshold (ππΛ) are taken into account for the
scattering amplitude analysis.
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Figure 1. (Left) Effective energy of the pion mass in purple, and corresponding fit in gray. (Right)
Different fit form results for the pion correlator versus tmin. The correlated-χ2s were computed over the
range [tmin, tmax], where the chosen tmin is expected to reduce excited states contamination. The final
results were chosen so that there is consistency among the fit forms.
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Figure 2. Example results of the G1u irrep for a variety of fit forms versus tmin. The ratio of correlators
was done using a single exponential ansatz to a ratio of the diagonal correlator over the nearby non-
interacting K̄(#P1)N(#P2) or π(#P1)Σ(#P2) level (see Refs. [11, 12] for more details).
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Figure 3. Final finite-volume energy spectra used as a constraint in the scattering amplitude analysis. In
this plot, dashed lines correspond to scattering thresholds, gray lines and bands are the non-interacting
levels (sum of energies of non-interacting hadrons) with increasing momenta, and green points are the
finite-volume energy spectrum in the center-of-mass frame with their bootstrap error.

3 Scattering amplitudes

This section introduces the Lüscher formalism the associated quantization condition that re-
lates the finite-volume stationary-state energy spectra with the continuum scattering ampli-
tudes, and the final results of the positions of the poles.

Lüscher formalism. – This method is a useful tool to extract information about reso-
nances. This connection arises from the following condition

det
[
K̃ + F−1

]
= 0, (2)

where K̃ is the parametrized scattering matrix and F−1 is the “box matrix” for a particular
total momentum P = (2π/L)d (with d ∈ Z3) and it encodes information of the lattice and
the breaking of rotational symmetry. The importance of this determinant condition lies on
the relation the K̃-matrix has with the scattering transition amplitude. This is used to relate
lattice results with the position of the poles in the complex energy plane of the scattering
transition amplitude when analytically continued.

K−matrix parametrization. – Once the finite-volume energy spectra are extracted, the
quantization condition in Eq. (2) takes the following form for the coupled-channel K̄N − πΣ:

det


(

K̃πΣ→πΣ K̃πΣ→K̄N
K̃K̄N→πΣ K̃K̄N→K̄N

)
+



F−1
πΣ (En, "P, L) 0

0 F−1
K̄N(En, "P, L)




 = 0. (3)

In this description, the multi-channel K̃-matrix was parametrized and constrained by the
finite-volume energy spectra extracted from lattice. A thorough list of parametrizations were
employed to study the behavior of the pole positions in the complex energy plane. Below is
the Effective Range Expansion (ERE) parametrization as an example (see [11, 12] for the
full list)

Ecm
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K̃i j = Ai j + Bi j∆πΣ, (4)
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Figure 4. Scattering transition amplitude results as a function of energy in the center-of-mass frame
over the pion mass. ti j and ki j are defined in Eq. (6), and i, j are the flavor channels. (Left) The up-
per panel shows the transition amplitudes for several parametrizations. The transparency parameter is
associated to AIC results, where darker lines correspond to a lower AIC. The middle panel depicts the
position of the poles in the complex energy plane, and the bottom panel contains the finite-volume en-
ergy spectra used to constrain the fits. (Right) Results of the parametrization of the scattering amplitude
that had the best fit, where uncertainties were estimated by bootstrap resampling.

where

∆πΣ =
E2

cm − (mπ + mΣ)2

(mπ + mΣ)2 . (5)

As shown in Figure 4, various fits were carried out for all the K-matrix parametrizations
to check consistency and sensitivity of the results (full set of results in Tables VII to XI
of Appendix C in Ref. [11]). The best-fit values were chosen based on the lowest Akaike
Information Criterion (AIC). Then the scattering transition amplitude was defined as

t−1 = K̃−1 − ik̂, (6)

where k̂ = diag
(
kπΣ, kK̄N

)
. Lattice data constrained the coupled-channel πΣ − K̄N scattering

amplitude, hence providing information in this energy range, and enabling the analytical
continuation to the complex Ecm. Eq. (7) can be further written as

t =
mπ

Ecm − Epole

(
c2
πΣ cπΣcK̄N

cπΣcK̄N c2
K̄N

)
, (7)

where the complex residues cπΣ, cK̄N are the couplings of the resonance poles to each channel.
The final results in Figure 4 exhibit two poles in the following positions

E1 = 1392(9)st(2)md(16)a MeV, (8)
E2 = [1455(13)st(2)md(17)a − i11.5(4.4)st(4)md(0.1)a] MeV, (9)

and the ratios of residues
∣∣∣∣∣∣∣
c(1)
πΣ

c(1)
πΣ

∣∣∣∣∣∣∣
= 1.9(4)st(6)md,

∣∣∣∣∣∣∣
c(2)
πΣ

c(2)
πΣ

∣∣∣∣∣∣∣
= 0.53(9)st(10)md. (10)

The uncertainties st, md, a correspond to statistical error, model parametrization, and propa-
gated errors from the precision of the lattice scale-setting, respectively. The pole at E1 cou-
ples more strongly to the πΣ channel and we conclude it corresponds to a virtual bound state,

4

EPJ Web of Conferences 303, 01004 (2024) https://doi.org/10.1051/epjconf/202430301004
MENU 2023



G1u(0)G1g(0) G1(1) G2(1) G(2) F1(3) F2(3) G(3)

6.75

7.00

7.25

7.50

7.75

8.00

8.25

E
cm
/m

π

πΣ

ππΛ

K̄N

Figure 3. Final finite-volume energy spectra used as a constraint in the scattering amplitude analysis. In
this plot, dashed lines correspond to scattering thresholds, gray lines and bands are the non-interacting
levels (sum of energies of non-interacting hadrons) with increasing momenta, and green points are the
finite-volume energy spectrum in the center-of-mass frame with their bootstrap error.

3 Scattering amplitudes

This section introduces the Lüscher formalism the associated quantization condition that re-
lates the finite-volume stationary-state energy spectra with the continuum scattering ampli-
tudes, and the final results of the positions of the poles.

Lüscher formalism. – This method is a useful tool to extract information about reso-
nances. This connection arises from the following condition

det
[
K̃ + F−1

]
= 0, (2)

where K̃ is the parametrized scattering matrix and F−1 is the “box matrix” for a particular
total momentum P = (2π/L)d (with d ∈ Z3) and it encodes information of the lattice and
the breaking of rotational symmetry. The importance of this determinant condition lies on
the relation the K̃-matrix has with the scattering transition amplitude. This is used to relate
lattice results with the position of the poles in the complex energy plane of the scattering
transition amplitude when analytically continued.

K−matrix parametrization. – Once the finite-volume energy spectra are extracted, the
quantization condition in Eq. (2) takes the following form for the coupled-channel K̄N − πΣ:

det


(

K̃πΣ→πΣ K̃πΣ→K̄N
K̃K̄N→πΣ K̃K̄N→K̄N

)
+



F−1
πΣ (En, "P, L) 0

0 F−1
K̄N(En, "P, L)




 = 0. (3)

In this description, the multi-channel K̃-matrix was parametrized and constrained by the
finite-volume energy spectra extracted from lattice. A thorough list of parametrizations were
employed to study the behavior of the pole positions in the complex energy plane. Below is
the Effective Range Expansion (ERE) parametrization as an example (see [11, 12] for the
full list)

Ecm

mπ
K̃i j = Ai j + Bi j∆πΣ, (4)

0.0

0.5

1.0

k̂ i
k̂ j
|t i

j|2

πΣ → πΣ

K̄N → K̄N

πΣ → K̄N

−0.1

0.0

Im
E

cm
m

π

0.0 0.2 0.4 0.6 0.8
Re (Ecm −mπ −mΣ)/mπ

0.0

0.5

1.0

k̂ i
k̂ j
|t i

j|2

πΣ → πΣ

K̄N → K̄N

πΣ → K̄N

−0.1

0.0

Im
E

cm
m

π

0.0 0.2 0.4 0.6 0.8
Re (Ecm −mπ −mΣ)/mπ

Figure 4. Scattering transition amplitude results as a function of energy in the center-of-mass frame
over the pion mass. ti j and ki j are defined in Eq. (6), and i, j are the flavor channels. (Left) The up-
per panel shows the transition amplitudes for several parametrizations. The transparency parameter is
associated to AIC results, where darker lines correspond to a lower AIC. The middle panel depicts the
position of the poles in the complex energy plane, and the bottom panel contains the finite-volume en-
ergy spectra used to constrain the fits. (Right) Results of the parametrization of the scattering amplitude
that had the best fit, where uncertainties were estimated by bootstrap resampling.

where

∆πΣ =
E2

cm − (mπ + mΣ)2

(mπ + mΣ)2 . (5)

As shown in Figure 4, various fits were carried out for all the K-matrix parametrizations
to check consistency and sensitivity of the results (full set of results in Tables VII to XI
of Appendix C in Ref. [11]). The best-fit values were chosen based on the lowest Akaike
Information Criterion (AIC). Then the scattering transition amplitude was defined as

t−1 = K̃−1 − ik̂, (6)

where k̂ = diag
(
kπΣ, kK̄N

)
. Lattice data constrained the coupled-channel πΣ − K̄N scattering

amplitude, hence providing information in this energy range, and enabling the analytical
continuation to the complex Ecm. Eq. (7) can be further written as

t =
mπ

Ecm − Epole

(
c2
πΣ cπΣcK̄N

cπΣcK̄N c2
K̄N

)
, (7)

where the complex residues cπΣ, cK̄N are the couplings of the resonance poles to each channel.
The final results in Figure 4 exhibit two poles in the following positions

E1 = 1392(9)st(2)md(16)a MeV, (8)
E2 = [1455(13)st(2)md(17)a − i11.5(4.4)st(4)md(0.1)a] MeV, (9)

and the ratios of residues
∣∣∣∣∣∣∣
c(1)
πΣ

c(1)
πΣ

∣∣∣∣∣∣∣
= 1.9(4)st(6)md,

∣∣∣∣∣∣∣
c(2)
πΣ

c(2)
πΣ

∣∣∣∣∣∣∣
= 0.53(9)st(10)md. (10)

The uncertainties st, md, a correspond to statistical error, model parametrization, and propa-
gated errors from the precision of the lattice scale-setting, respectively. The pole at E1 cou-
ples more strongly to the πΣ channel and we conclude it corresponds to a virtual bound state,

5

EPJ Web of Conferences 303, 01004 (2024) https://doi.org/10.1051/epjconf/202430301004
MENU 2023



whereas the pole at E2 has a stronger coupling to K̄N and is consistence with a resonance. It
is noteworthy to mention that, all the K-matrix parametrizations used found two poles in the
Λ(1405) region, even though they made no assumptions about the number of poles.

4 Conclusion

Lattice QCD is a powerful tool in hadronic physics, since it allows for predictions once the
quark masses and the coupling are fixed, and is ab-initio and systematically improvable. In
the Λ(1405) sector, its use facilitates the exploration of the πΣ scattering amplitude below
the K̄N threshold, where the resulting finite-volume energy spectra is related to the scattering
amplitude through the Lüscher method, and resonance properties are inferred.

We suggest it is due to the inclusion of meson-baryon operators that make this coupled-
channel πΣ − K̄N lattice QCD study important to understand the controversial Λ(1405). By
adding these operators, the full finite-volume energy spectra were obtained, and a com-
prehensive scattering analysis based on the Lüscher method is possible. Our final results
found two poles in the complex energy plane for all parametrizations of the K-matrix.
The position of the poles varies slightly for each parametrization, and the best-fit param-
eter values obtained based on the lowest AIC led to a virtual bound state below the πΣ
threshold (E1 = 1392(9)st(2)md(16)a MeV) and a resonance just below the K̄N threshold
(E2 = [1455(13)st(2)md(17)a − i11.5(4.4)st(4)md(0.1)a] MeV). These are consistent with the
PDG [3], even though we work with slightly unphysical pion and kaon masses.

Future studies exploring the quark-mass-dependence of the pole positions are likely to
further improve the understanding of these states. Also, although we work at relatively fine
lattice spacing, results at different lattice spacing will be invaluable.
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whereas the pole at E2 has a stronger coupling to K̄N and is consistence with a resonance. It
is noteworthy to mention that, all the K-matrix parametrizations used found two poles in the
Λ(1405) region, even though they made no assumptions about the number of poles.

4 Conclusion

Lattice QCD is a powerful tool in hadronic physics, since it allows for predictions once the
quark masses and the coupling are fixed, and is ab-initio and systematically improvable. In
the Λ(1405) sector, its use facilitates the exploration of the πΣ scattering amplitude below
the K̄N threshold, where the resulting finite-volume energy spectra is related to the scattering
amplitude through the Lüscher method, and resonance properties are inferred.

We suggest it is due to the inclusion of meson-baryon operators that make this coupled-
channel πΣ − K̄N lattice QCD study important to understand the controversial Λ(1405). By
adding these operators, the full finite-volume energy spectra were obtained, and a com-
prehensive scattering analysis based on the Lüscher method is possible. Our final results
found two poles in the complex energy plane for all parametrizations of the K-matrix.
The position of the poles varies slightly for each parametrization, and the best-fit param-
eter values obtained based on the lowest AIC led to a virtual bound state below the πΣ
threshold (E1 = 1392(9)st(2)md(16)a MeV) and a resonance just below the K̄N threshold
(E2 = [1455(13)st(2)md(17)a − i11.5(4.4)st(4)md(0.1)a] MeV). These are consistent with the
PDG [3], even though we work with slightly unphysical pion and kaon masses.

Future studies exploring the quark-mass-dependence of the pole positions are likely to
further improve the understanding of these states. Also, although we work at relatively fine
lattice spacing, results at different lattice spacing will be invaluable.
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