
 

Available online at www.sciencedirect.com 

Manufacturing Letters 
Manufacturing Letters 41 (2024) 200–207 

            
      

   

 

52nd SME North American Manufacturing Research Conference (NAMRC 52, 2024) 

Feasibility of 5G-Enabled Process Monitoring in Milling Operations 

Liwen Hua,b, Baihui Chena,b, ElHussein Shataa,b, Shashank Shekharc, Charif Mahmoudic 

Ivan Seskard, Qingze Zoua,b, Y.B. Guoa,b,* 
aDepartment of Mechanical and Aerospace Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA 

bNew Jersey Advanced Manufacturing Initiative, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA 
cSiemens Corporation Technology, Princeton, NJ 08540, USA 

dWireless Information Network Laboratory, Rutgers University-New Brunswick, NJ 08902, USA 
 

* Corresponding author. Tel.: +001-848-445-2225; fax: +001-732-445-3124. E-mail address: yuebin.guo@rutgers.edu 
2213-8463 © 2024 The Authors. Published by ELSEVIER Ltd. This is an open access article under the CC BY-NC-ND license 
(https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the NAMRI/SME. 

Abstract 

5G monitoring holds immense potential for revolutionizing manufacturing processes by enabling real-time data transmission, remote control, 
enhanced quality control, and increased efficiency. However, it also presents challenges related to 5G monitoring infrastructure. To explore 5G’s 
potential for process monitoring, this study introduces a novel 5G-enabled architecture designed to address the challenges, enhancing the process 
monitoring’s efficiency, accuracy, and reliability in the case of milling operation. To investigate the feasibility of this sophisticated 5G network 
for process monitoring, two testbeds, i.e., the 5G robotic milling testbed and the 5G CNC milling testbed, have been developed. An accelerometer 
and a laser scanner have been retrofitted with 5G communications capability to capture critical process signals in the testbeds, respectively. It has 
shown that the sensor data can be upstreamed to a 5G edge server for data analytics and visualization in ultra-low latency. This work highlights 
the transformative impact of 5G communication on process monitoring for time-critical manufacturing. 
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1. Introduction 

1.1 Background 

The manufacturing industry has witnessed significant 
advancements in recent years, with the integration of cutting-
edge technologies to enhance efficiency and productivity. One 
such technology that holds immense promise for manufacturing 
processes is the fifth-generation (5G) wireless network. 5G 
offers high-speed, low-latency communication, making it an 
ideal candidate for real-time monitoring and control of 
manufacturing operations. The ultra-low latency of 5G 
networks enables real-time data transmission, allowing 
manufacturers to collect and analyze data from various sensors 
and devices in real-time. This capability enhances decision-

making processes and enables rapid responses to change in the 
production environment. 5G networks also enable remote 
monitoring and control of manufacturing processes, reducing 
the need for physical presence on the factory floor. This not 
only improves safety but also allows experts to remotely 
troubleshoot and optimize production processes, reducing 
downtime and maintenance costs. 

Several notable developments have been achieved to assess 
the feasibility and benefits of 5G in manufacturing. These 
studies provide valuable insights into the potential practical 
applications of 5G technology. This study focuses on the 
application of 5G technology in advanced manufacturing, 
specifically examining 5G-enabled process monitoring in 
milling operations through detailed case studies.  
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Milling is a common technology for fabricating high-value 
components, such as turbine blades, engine blocks, and molds 
[1], with numerous industrial applications. Despite its 
widespread applications and extensive studies [2-4], milling 
remains a complex process influenced by numerous factors, 
including tool conditions [5], machining parameters [6], 
workpiece material characteristics [7], etc. The milled surface 
quality is critical for its functionalities, including friction, wear 
resistance, and fatigue life [8]. Therefore, real-time milling 
process monitoring is imperative to identify and mitigate 
potential process abnormalities. The prevalent method for 
process monitoring employs various online sensors, such as 
accelerometers [9], dynamometers [10], acoustic emission (AE) 
sensors [11], and microphones [12], to capture the milling 
process signals. Multi-sensor monitoring systems are also often 
used [13, 14] to simultaneously harness data from different 
sensors to track different process aspects. The rich sensor 
dataset facilitates a comprehensive analysis for applications 
like tool life estimation [5], stability studies [13, 14], and 
surface finish prediction [15, 16], ultimately driving cost 
reduction and enhancing product quality. The growing demand 
for process efficiency has also spurred the development of 
adaptive control strategies to mitigate chatter and other 
detrimental phenomena during milling [17-19]. 

1.2. 5G-based process monitoring 

Real-time monitoring of the milling process is fraught with 
challenges, primarily due to the complexity of the process and 
the high-speed dynamics involved. The volume of data 
generated by sensor systems necessitates robust and fast 
communication networks to transmit, process, and analyze the 
information in real-time [20, 21]. Conventional communication 
technologies often fail to meet these demands, leading to long-
latency issues and potential loss of critical data [22-24]. 
Additionally, the harsh manufacturing environment poses 
another layer of difficulty, where sensors and communication 
equipment must withstand extreme conditions while 
maintaining accuracy and reliability. Moreover, the prevalent 
use of wire-based sensors in manufacturing settings introduces 
practical challenges, particularly in installation (e.g., the 
rotating blades in milling) and maintenance. The 
manufacturing space is often constrained and densely packed 
with machinery, complicating the task of deploying wired 
devices and potentially hindering their optimal placement for 
precise monitoring. These challenges underscore the necessity 
of a paradigm shift in the monitoring approach, setting the stage 
for integrating 5G technology to address these bottlenecks and 
unlock the full potential of real-time milling process 
monitoring. 

5G, advancing over the previous generation of wireless 
communications, represents the fifth-generation technology 
standard for broadband cellular networks. Given the 
advancements in broadband cellular networks, the 5G protocol 
outlined by the 3rd Generation Partnership Project (3GPP) is 
widely accepted within the industry as the prevailing standard 
for 5G technology. The advent of 5G technology has opened 
new possibilities for the manufacturing industry [25, 26], 
enabling faster, more reliable wireless connectivity and real-
time communication [27, 28] between machine tools, sensors, 

and control units. 5G applications in manufacturing include the 
development of smart factories [29], remote monitoring and 
control of equipment, augmented reality [30], and real-time 
tracking of goods and materials in the supply chain. These 
applications have the potential to significantly improve 
efficiency, productivity, and cost-effectiveness in 
manufacturing operations. The 5G manufacturing research 
trend can be observed in Fig. 1, which depicts the results of a 
Scopus analysis using “5G” and “manufacturing” as keywords. 
The search provides insight into the increasing interest and 
activity in the field of 5G-enabled manufacturing, as the 
research interests have been steadily growing since 2016.  

 
The comparative analysis of different wireless 

communication protocols is summarized in Table 1. 
References [22-24, 31] elucidate the superiority of 5G, which 
excels with its impressive data rate ranging from 1 to 10 Gbps 
and latency as low as one millisecond, catering perfectly to 
real-time applications such as monitoring a dynamic milling 
process. 4G/LTE and Wi-Fi 6 provide reasonable alternatives 
but surpass 5G in speed and responsiveness. Bluetooth and 
Zigbee are more suited for short-range, low-data-rate 
applications, with Zigbee catering to ultra-low power 
scenarios. LoRa/LoRAWAN stands out for its long-range 
capabilities, though at the expense of data rate and latency. 
Overall, 5G’s high data rate and ultra-low latency offer a 
transformative potential for real-time industrial monitoring, 
outperforming other protocols in process monitoring. 

 
Table 1. Comparative analysis of wireless communication protocols. 
Communication 

Protocol 
Data Rate Latency Range Frequency 

5G* ~ 20 Gbps < 10 ms ~ 200 m 30 GHz to 300 
GHz, < 6 GHz 

4G/LTE ~ 100 Mbps < 50 ms ~ 200 m < 6 GHz 
WLAN  
(Wi-Fi 6) 

~ 9.6 Gbps < 50 ms ~ 100 m 
2.4 GHz, 5 
GHz 

Bluetooth 2 ~ 3 Mbps > 10 ms ~ 100 m ~ 2.4 GHz 

Zigbee ~ 250 Kbps 
Few ms 
~ 
seconds 

~ 100 m 
868 MHz, 915 
MHz, 2.4 GHz 

LoRa/ 
LoRAWAN 

~ 21.9 Kbps 
~ 
seconds 

2 ~ 15 
Km 

< 1 GHz 

*Note:  
1. The data rate for 5G is approximately 20 Gbps for downlink and 10 Gbps 
for uplink. 
2. The range of 200m is specific to millimeter-wave (mmWave). The sub-
6 GHz frequencies offer a significantly higher range. 

Fig. 1. 5G Manufacturing publications trend since 2001.
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Numerous 5G applications have been developed to address 
challenges inherent in traditional communication protocols. 
Table 2. highlights several leading research groups working on 
5G applications. Fraunhofer IPT has initiated 5G applications 
for the manufacturing industry in Germany. Mohanram et al. 
[32] introduced a 5G-based multi-sensor platform for 
monitoring workpieces and machine status. Equipped with 
diverse sensors, multiple data types (e.g., vibration, 
temperature, torque, etc.) were collected from workpieces and 
machines and wirelessly connected to the factory cloud using 
5G. Kehl et al. [33] proposed a 5G-enabled Time-Sensitive 
Network (TSN) and assessed its performance on an edge-
controlled mobile robot. The results revealed the 
communication latency is as low as 1 ms. Ansari et al. [28] 
conducted 5G trials using an FPGA-based tool to generate data 
traffic simulating industrial protocol traffic. The findings 
demonstrated that traffic latencies remained below 1.09-1.12 
ms when utilizing the proposed network structure.  Ericsson 
and Fraunhofer IPT collaborated on a case study examining 
5G-enabled milling vibration monitoring during the blisk 
milling process [34]. The report suggested that 5G-enabled 
real-time monitoring and control could result in annual savings 
of Euro 360 million on blisk production. Gundall et al. [35] 
enumerated several 5G-enabled Industry 4.0 use cases, 
including 5G-enabled cooperative goods transportation, 5G 
remote control, and industrial campus applications. Huawei 
Wireless X Labs published a white paper [36] investigating a 
5G-enabled cloud robot. The cloud provides advanced control 
software, while 5G ensures rapid and secure communication 
between the cloud and the robot.  

1.3 Research objectives  

This literature analysis assesses the current state of research 
and developments in 5G monitoring for manufacturing 
processes and highlights the potential of 5G technology in 
addressing various manufacturing challenges, including the 
lack of 5G monitoring infrastructure to realize its potential. 
This study aims to create a 5G network with 5G-enabled 
sensors for milling process monitoring and demonstrate the 
unique capabilities of ultra-low latency sensing and 
visualization in real time. Specifically, this study aims to 
demonstrate the capabilities of a novel 5G-enabled monitoring 
system architecture and implementation, focusing on 
retrofitting sensors with 5G communications capability, 
precisely measuring the workpiece geometrical characteristics 
and process signatures, 5G edge computing, and visualization. 
The paper is structured as follows: Section 2 presents the 

system architecture and testbeds setup. Section 3 demonstrates 
5G measurement, edge computing, and visualization. Section 4 
summarizes the key results of this work. 

2. 5G-Enabled Process Monitoring Approach 

2.1. Monitoring System Architecture 

The schematic of the 5G-based monitoring system (Fig. 2) 
demonstrates the integral components of the 5G-enabled 
monitoring system designed for sensing the milling process 
signature and visualizing the data in real time. The 5G NR 
(New Radio) transceiver captures raw data from the sensor(s), 
which monitor the milling process in real-time. This transceiver 
acts as the initial contact point to bridge the gap with legacy 
equipment, as commercial sensors and machinery have yet to 
integrate native 5G support. Once the data is transmitted over 
5G, it is received by the 5G Remote Radio Unit. This unit is a 
powerful router designed to send data over a long distance 
within the network to a 5G edge server for analysis. The edge 
analysis plays a crucial role in swiftly processing the raw data, 
extracting essential features and relevant information that 
would be used for real-time data visualization. Post-edge 
analysis sends the processed data back through the 5G network 
to the 5G NR-Transceiver again. This transceiver feeds the data 
to a remote PC, enabling data visualization in an edge device 
(e.g., on-site PC). This visualization assists experts and 
technicians in understanding the milling process’s dynamics 
and helping in better decision-making. 

The entire monitoring system seamlessly integrates 
advanced 5G technology with traditional sensors and milling 
processes. The primary objective is to capture raw data, 
transmit it in real-time over 5G networks, analyze it at the edge, 
and visualize the processed data to provide actionable insights.  

2.2. 5G Communication Network 

The 5G Network in this study has been developed and 
managed using the Orbit-Lab platform. Fig. 3 illustrates the 
configuration of the 5G communication system. The 5G 
network is rooted in the COSMOS wireless testbed [37], which 
leverages an architecture that facilitates dynamic 
programming. This permits distinct layers tailored for various 
applications managed by the Software Defined Radio (SDR) 
[38].  

The 5G yellow node acts as a user equipment endpoint (UE) 
and features a SIMCOM SIM 8200-M2 5G Module, interfaced 

Table 2. 5G applications in manufacturing research. 

Research Group Key Features Ref 

Fraunhofer IPT 

5G-based sensor platform for workpiece and 
machine monitoring 

[32] 

5G-enabled edge-controlled robot [33] 
5G network performance review with 
automation traffic 

[28] 

Ericsson 
Milling vibration monitoring using a 5G 
network 

[34] 

Bell Labs 5G-enabled Industry 4.0 use cases [35] 
Wireless X Labs 5G-enabled cloud robot [36] 

Fig. 2. 5G-Enabled milling monitoring system architecture. 
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via PCI-Express (PCIe) and USB 3.0. The SIM8200-M2 is a 
multi-band 5G modem capable of supporting high data transfer 
speeds up to 2.4 Gbps. One of its key strengths is the ability to 
utilize a large number of supported bandwidth configurations 
across various frequencies, making it highly effective for 
experiments involving RF space congestion and network 
behavior under diverse conditions. This module is paired with 
a Linux-based Quad Core i7 PC, which is used to implement 
various UE adaptation strategies and to provide the necessary 
local processing power for sensors and actuators that are 
attached to it. The flexibility and computational capability of 
this Linux platform are crucial for handling complex 
processing tasks and for real-time algorithmic adjustments. 

 
At the other end of the 5G link, the SDR-based setup 

employs the USRP-2974, a unit that integrates an embedded 
X86 PC with an X310 USRP. This powerful combination 
provides an effective platform for advanced SDR applications 
including running the Amarisoft SDR-based gNodeB software 
and the 5G core [39, 40]. This setup supports the high-speed, 
low-latency communication that is crucial for edge computing 
applications in the 5G ecosystem. The SDR-based 
implementation with the USRP-2974 and Amarisoft enables us 
to interact with all segments of the 5G spectrum in the sub-6 
GHz range (FR1). This capability provides extensive flexibility 
in exploring and manipulating various aspects of radio 
functionalities, enhancing our control and understanding of 
network dynamics for smart manufacturing deployments.  

Complementing the USRP-2974, we use high-performance 
backend servers powered by Xeon processors, primarily for 
edge processing. These servers are tasked with handling the 
significant computational demands required for advanced data 
processing and network functions at the edge of the 5G 
network.  A notable feature of our setup is the connectivity 
between the USRP-2974 and the edge servers, which is 
facilitated through a 10 Gbps Ethernet link. This high-speed 
connectivity is vital for ensuring swift and efficient data 
transfer, allowing for real-time processing and responsiveness 
within the network. 

3. 5G-Enabled Milling Testbeds 

Two testbeds were developed to demonstrate the capability 
of the proposed 5G-enabled milling monitoring system 
described in the previous sections.  

3.1. 5G robotic milling testbed 

The architecture of the 5G robotic milling testbed is 
illustrated in Fig. 4. Within this setup, an industrial robot is 

placed next to a rotary table that securely holds the workpiece. 
This workpiece is meticulously examined by a laser camera 
integrated with the 5G yellow node. The camera transmits the 
measure data cloud (a stream of large image data) to the 5G 
yellow node, relaying the data to the 5G link. A remotely 
situated 5G edge provides the capability to access and process 
the data. This testbed excels at performing detailed robotic 
milling tasks to rectify defective regions. It is worth mentioning 
that while the intricacies of the 5G-empowered robotic control 
for milling are noteworthy, they will be explored in a different 
study as they are not the primary focus of this research. 

 
The implemented testbed (Fig. 5) is equipped with a 

Yaskawa GP25, a 6-axis industrial robot, with a Pushcorp 
SM1503 end milling effector. The sensor is a Gocator 2180 
laser camera with a measurement resolution of up to 92 
micrometers. It is set up next to a workbench where the 
workpiece is held by a rotary table (VH-6). The robot and 
camera have TCP/IP interfaces connected to the 5G yellow 
node to enable 5G communications. The yellow node is 
wirelessly connected to a 5G Link for long-distance data 
transmission. A 5G edge is located remotely and can access the 
components through the 5G network. The testbed is equipped 
with the “yellow node” UE acting as the endpoint of the 5G 
link.  

3.2. 5G CNC milling testbed 

The architecture of the 5G Milling Testbed is described in 
Fig. 6. Similar to the 5G Robotic Testbed, the vibration sensor 
attached to the workpiece is connected to the Data Acquisition 
(DAQ) unit. The DAQ is connected to the 5G yellow node to 
integrate with the 5G platform. The measured data is 

Fig. 3. 5G communication system setup. 

Fig. 4. 5G Robot Testbed Architecture. 

Fig. 5. 5G robot milling testbed. 



204 L. Hu et al. / Manufacturing Letters 41 (2024) 200–207 

transmitted via the 5G link to the 5G edge for post-processing 
and then downloaded for visualization. 

Fig. 7. shows the 5G milling testbed which is based on a 
Microlution 5100 5-axis milling machine with a 5-enabled 
accelerometer. The milling tool is a 6.35 mm two-flute flat-end 
mill. A Kistler 8763B100 tri-axial accelerometer is attached to 
the workpiece to monitor process vibration. The NI-9234 data 
acquisition unit collects the vibration data from the sensor. The 
DAQ uses the TCP/IP interface to connect with a 5G yellow 
node to transmit measured data wirelessly. A Python script has 
been deployed on the 5G edge to access the DAQ via the NI 
Python application interface (API). 

4. Results and Discussion 

4.1 5G-enabled imaging and visualization 

In the robotic milling testbed, the workpiece with a defect 
simulant is measured by a 5G-enabled laser scanner shown in 
Fig. 8. The measured data cloud is up streamed to the 5G edge 
server in which edge computing, i.e., data analytics, is 
performed. A cylindrical workpiece is mounted on a rotary 
table, while the Gocator laser scanner is positioned adjacent to 
the workpiece for surface scanning. The initial scanning output 
from the laser scanner consists of a line profile that measures 
the distance (Z-axis) between the current laser-illuminated 

location (X-axis) on the workpiece and the scanner. During the 
scanning process, the rotary table rotates counterclockwise, 
allowing the scanner to capture the entire surface of the 
workpiece. It should be mentioned that the rotation and 
workpiece axes might not be perfectly aligned, which could 
result in a certain fluctuation in the acquired data of surface 
topography.  

The measured raw data is noted as 𝑀௥௔௪ , where 𝑀௥௔௪ is 
given by Eq. (1): 

𝑀௥௔௪ = [𝑥(𝑡௜), 𝑧(𝑡௜)]௜ (1) 

where 𝑥(𝑡௜) stands for the X-axis distance and 𝑧(𝑡௜) stands for 
the distance between the workpiece surface and the scanner. 
The timestamp for each scanned line profile is 𝑡௜ , where 𝑖 = 
1,2,3… Fig. 9 shows a plot of the raw measured data. Note the 
measured raw data is a set of timed line profiles.  A post-
process converted the timed raw measurement data into a 3D 
topography. Eqs. (2-4) express the operation of converting the 
raw measurement. The distance between the workpiece 
rotation center and the laser scanner is measured and noted as 
𝑑௥௘௙. And 𝜔 ∙ ∑ 𝑡௜

௡
ଵ  stands for the angles that the workpiece has 

rotated since the measurement started, where 𝜔 stands for the 
rotating angler speed, and n stands for the current time stamp. 
Fig. 10 shows the post-processed workpiece measurement. 

𝑀௣௢௦௧ = ൣ𝑋௧௢௣௢, 𝑌௧௢௣௢, 𝑍௧௢௣௢൧, 𝑤ℎ𝑒𝑟𝑒 𝑋௧௢௣௢ = [𝑥(𝑡௜)] (2) 

𝑌௧௢௣௢ = [(𝑑௥௘௙ + 𝑧(𝑡௜)) ∙ cos (𝜔 ∙ ∑ 𝑡௜
௡
ଵ )] (3) 

𝑍௧௢௣௢ = [(𝑑௥௘௙ + 𝑧(𝑡௜)) ∙ sin (𝜔 ∙ ∑ 𝑡௜
௡
ଵ )] (4) 

To identify the location of the defect simulant, a CAD model 
of the referred workpiece is converted into a point cloud (𝐶௥௘௙) 
to compare with the measurement data cloud. Note that the 
CAD model is the workpiece design file and has a higher 
resolution than the measured data. The 𝐶௥௘௙  and 𝑀௣௢௦௧  
coordinates can be aligned using the iterative closest point 
(ICP) algorithm. To identify the defect coordinates, each point 
in 𝑀௣௢௦௧  is iterated for searching the closet point in 𝐶௥௘௙. If the 
distance between those points is less than the camera 
resolution, the points in 𝑀௣௢௦௧  are marked as normal. 
Otherwise, it is marked as a defect. Fig. 11 shows the defect 
points of the workpiece selected by this process. 

Generating a surface from the point cloud is a well-studied 
topic in computer graphics. Many algorithms are already 
developed for these purposes. In this study, we used the Ball 
Pivoting Algorithm (BPA) to connect the individual points to 
the surface [41]. The algorithm operates by iteratively 
"pivoting" a ball of a specified radius around each edge in the 

Fig. 6. 5G CNC milling testbed architecture. 
 

Fig. 7. 5G CNC milling testbed. 

Fig. 9. Plot of measured raw data cloud. Fig. 10. Post-processed data cloud.

Fig. 8. Camera scanning process. 
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cloud. When the ball touches a new point, a triangle is formed 
with the edge's vertices, generating the surface mesh. The 
process continues until all edges are processed, with the ball 
radius and initial seed triangle significantly influencing the 
final output. It’s notable for its adaptability to handle large data 
sets and the flexibility provided by the tuneable ball radius. The 
typical ball radius is set close to the average distance of the 
points cloud. In this study, several ball radii are tested. Fig.12 
shows the generated surface topography of the defect region 
using different radii, in which R=8×avg_dist gives the best 
results among others. 
 

4.2 5G-enabled CNC milling vibration monitoring and 
visualization 

In the CNC milling testbed, the process vibration is 
measured by a 5G-enabled accelerometer and is up streamed to 
the 5G edge for data analysis, and then, the vibration data is 
sent back to a local computer for data visualization. The milling 
experiments were carried out to validate the functionality of the 
milling testbed. Fig. 13 shows the experiment setup with the 
milling tool path. The accelerometer was affixed to the base of 
the workpiece to capture the vibration signals throughout the 
milling operation. The milling tool path started before the tool 
engaged with the workpiece material to create a 70 mm x 3.175 

mm slot, concluding with another air-cutting phase. The data 
acquisition starts recording the vibration signals shortly before 
the initiation of the milling process. 

During the data acquisition, the DAQ system establishes a 
connection with a 5G yellow node, facilitating the transmission 
of collected data to the 5G edge for temporary storage and pre-
processing. The data was acquired from the tri-axial 
accelerometer at 51.2 KHz for each channel.  Given the rapid 
data generation, amassing over 2 million data points within a 
mere 20 seconds of milling, storing the massive vibration data 
in a single file proved impractical. Therefore, the data was 
streamed to the 5G edge and divided into smaller “.py” format 
files, each comprising 51.2 K samples from each channel. This 
arrangement facilitated real-time computation/analysis of the 
vibration data on the 5G edge, providing a clear and immediate 
visual representation of the milling process’s vibrations. An 
example of such real-time vibration monitoring during a stable 
milling process is illustrated in Fig. 14. A more comprehensive 
study can be performed for both stable and unstable (e.g., 
chattering) milling processes in the future. 

 
The DAQ system stops recording the vibration signals 

shortly after the milling process concludes. Subsequently, the 
segmented recording files are merged into a comprehensive file 
containing all the vibration data. This consolidated data file 
was then transmitted from the 5G edge to a remote local PC for 
real-time visualization, as shown in Fig. 15. 

Table 3 shows the communication ping test of the 5G 
network used in both testbeds. The network’s performance was 
evaluated across two bandwidths, 20 MHz and 40 MHz, both 
utilizing 64-byte packet size and 1000-byte packet size. In each 
scenario, 10,000 packets were sent in the test, achieving an 
average 0.0027% packet loss rate. The Round-Trip Time 

Fig. 11. Defect point cloud of the workpiece.

Fig. 12. Generated surfaces of defect simulant with different radius.

Fig. 13. Milling tool path.

Fig. 14. Workpiece vibration during a stable milling process

Fig. 15. Visualization on the remote local PC after edge computing. 
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(RTT) measures the communication latency from the sender to 
the receiver and back. The network’s Downlink (DL) 
Throughput was recorded at 64 Mbps for the 20 MHz 
bandwidth and 72 Mbps for the 40 MHz bandwidth. 
Meanwhile, the Uplink (UL) Throughput significantly 
increased from 10.5 Mbps at 20 MHz to 43 Mbps at 40 MHz, 
underscoring the enhanced performance offered by the wider 
bandwidth. 

 
It is worth mentioning that reliable 5G communication is 

dependent on high-frequency band signals which could impose 
several challenges, including electromagnetic interference, 
physical obstructions, and signal attenuation, which need to be 
addressed in future research. Furthermore, a comparison 
between a 5G monitoring system and conventional monitoring 
methods (either wired or wireless) demonstrates the 
performance benefits of 5G in terms of latency and reliability. 
This type of comparison will be helpful even though it has been 
well-documented that 5G provides tremendous advantages 
over conventional communications. Such comparisons, while 
not the focus of this work, are aligned with the longer-term 
research objectives and are crucial for providing a 
comprehensive understanding of 5G’s advantages and areas for 
improvement. 

5. Summary 

This study provides an innovative 5G-enabled architecture, 
implementation, and feasibility for real-time process 
monitoring, edge computing, and local visualization in milling 
processes. Two distinct milling testbeds have been designed 
and implemented to showcase the unique capabilities of this 
5G-enabled process monitoring system.  

In the 5G robotic milling testbed, the comprehensive 
geometric data cloud of the workpiece with a defect simulant 
was acquired through a 5G-enabled laser scanner, enabling a 
meticulous comparison with the respective CAD model at the 
edge to precisely identify and visually represent defect 
geometry. In the 5G CNC milling testbed, workpiece vibration 
signals were monitored in real-time using a 5G-enabled 
accelerometer, streamed to the 5G edge for data analytics, and 
transmitted back to a remote local PC for visualization and 
analysis of the milling process. 

The adoption of 5G technology, characterized by its ultra-
low latency and high-speed data transmission, sped up defect 
identification in remanufacturing and monitoring a milling 
process condition. The feasibility study underscores the 
effectiveness of the 5G process monitoring system in milling 
operations, highlighting its significant potential as an enabling 
tool for future research and development initiatives in 
advanced manufacturing sectors.  
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