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Abstract

5G monitoring holds immense potential for revolutionizing manufacturing processes by enabling real-time data transmission, remote control,
enhanced quality control, and increased efficiency. However, it also presents challenges related to 5G monitoring infrastructure. To explore 5G’s
potential for process monitoring, this study introduces a novel 5G-enabled architecture designed to address the challenges, enhancing the process
monitoring’s efficiency, accuracy, and reliability in the case of milling operation. To investigate the feasibility of this sophisticated 5G network
for process monitoring, two testbeds, i.e., the 5G robotic milling testbed and the 5G CNC milling testbed, have been developed. An accelerometer
and a laser scanner have been retrofitted with 5G communications capability to capture critical process signals in the testbeds, respectively. It has
shown that the sensor data can be upstreamed to a 5G edge server for data analytics and visualization in ultra-low latency. This work highlights
the transformative impact of 5G communication on process monitoring for time-critical manufacturing.
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1. Introduction making processes and enables rapid responses to change in the
production environment. 5G networks also enable remote
monitoring and control of manufacturing processes, reducing
the need for physical presence on the factory floor. This not
only improves safety but also allows experts to remotely

troubleshoot and optimize production processes, reducing

1.1 Background

The manufacturing industry has witnessed significant
advancements in recent years, with the integration of cutting-

edge technologies to enhance efficiency and productivity. One
such technology that holds immense promise for manufacturing
processes is the fifth-generation (5G) wireless network. 5G
offers high-speed, low-latency communication, making it an
ideal candidate for real-time monitoring and control of
manufacturing operations. The ultra-low latency of 5G
networks enables real-time data transmission, allowing
manufacturers to collect and analyze data from various sensors
and devices in real-time. This capability enhances decision-

downtime and maintenance costs.

Several notable developments have been achieved to assess
the feasibility and benefits of 5G in manufacturing. These
studies provide valuable insights into the potential practical
applications of 5G technology. This study focuses on the
application of 5G technology in advanced manufacturing,
specifically examining 5G-enabled process monitoring in
milling operations through detailed case studies.
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Milling is a common technology for fabricating high-value
components, such as turbine blades, engine blocks, and molds
[1], with numerous industrial applications. Despite its
widespread applications and extensive studies [2-4], milling
remains a complex process influenced by numerous factors,
including tool conditions [5], machining parameters [6],
workpiece material characteristics [7], etc. The milled surface
quality is critical for its functionalities, including friction, wear
resistance, and fatigue life [8]. Therefore, real-time milling
process monitoring is imperative to identify and mitigate
potential process abnormalities. The prevalent method for
process monitoring employs various online sensors, such as
accelerometers [9], dynamometers [ 10], acoustic emission (AE)
sensors [11], and microphones [12], to capture the milling
process signals. Multi-sensor monitoring systems are also often
used [13, 14] to simultaneously harness data from different
sensors to track different process aspects. The rich sensor
dataset facilitates a comprehensive analysis for applications
like tool life estimation [5], stability studies [13, 14], and
surface finish prediction [15, 16], ultimately driving cost
reduction and enhancing product quality. The growing demand
for process efficiency has also spurred the development of
adaptive control strategies to mitigate chatter and other
detrimental phenomena during milling [17-19].

1.2. 5G-based process monitoring

Real-time monitoring of the milling process is fraught with
challenges, primarily due to the complexity of the process and
the high-speed dynamics involved. The volume of data
generated by sensor systems necessitates robust and fast
communication networks to transmit, process, and analyze the
information in real-time [20, 21]. Conventional communication
technologies often fail to meet these demands, leading to long-
latency issues and potential loss of critical data [22-24].
Additionally, the harsh manufacturing environment poses
another layer of difficulty, where sensors and communication
equipment must withstand extreme conditions while
maintaining accuracy and reliability. Moreover, the prevalent
use of wire-based sensors in manufacturing settings introduces
practical challenges, particularly in installation (e.g., the
rotating blades in milling) and maintenance. The
manufacturing space is often constrained and densely packed
with machinery, complicating the task of deploying wired
devices and potentially hindering their optimal placement for
precise monitoring. These challenges underscore the necessity
of a paradigm shift in the monitoring approach, setting the stage
for integrating 5G technology to address these bottlenecks and
unlock the full potential of real-time milling process
monitoring.

5G, advancing over the previous generation of wireless
communications, represents the fifth-generation technology
standard for broadband cellular networks. Given the
advancements in broadband cellular networks, the 5G protocol
outlined by the 3rd Generation Partnership Project (3GPP) is
widely accepted within the industry as the prevailing standard
for 5G technology. The advent of 5G technology has opened
new possibilities for the manufacturing industry [25, 26],
enabling faster, more reliable wireless connectivity and real-
time communication [27, 28] between machine tools, sensors,

and control units. 5G applications in manufacturing include the
development of smart factories [29], remote monitoring and
control of equipment, augmented reality [30], and real-time
tracking of goods and materials in the supply chain. These
applications have the potential to significantly improve
efficiency, productivity, and  cost-effectiveness in
manufacturing operations. The 5G manufacturing research
trend can be observed in Fig. 1, which depicts the results of a
Scopus analysis using “5G” and “manufacturing” as keywords.
The search provides insight into the increasing interest and
activity in the field of 5G-enabled manufacturing, as the
research interests have been steadily growing since 2016.
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Fig. 1. 5G Manufacturing publications tren

The comparative analysis of different wireless
communication protocols is summarized in Table 1.
References [22-24, 31] elucidate the superiority of 5G, which
excels with its impressive data rate ranging from 1 to 10 Gbps
and latency as low as one millisecond, catering perfectly to
real-time applications such as monitoring a dynamic milling
process. 4G/LTE and Wi-Fi 6 provide reasonable alternatives
but surpass 5G in speed and responsiveness. Bluetooth and
Zigbee are more suited for short-range, low-data-rate
applications, with Zigbee catering to ultra-low power
scenarios. LoRa/LoRAWAN stands out for its long-range
capabilities, though at the expense of data rate and latency.
Overall, 5G’s high data rate and ultra-low latency offer a
transformative potential for real-time industrial monitoring,
outperforming other protocols in process monitoring.

Table 1. Comparative analysis of wireless communication protocols.

Communication

Protocol Data Rate Latency Range Frequency
30 GHz to 300
* ~ ~
5G 20 Gbps <10 ms 200 m GHz, < 6 GHz
4G/LTE ~ 100 Mbps <50 ms ~200m <6GHz
WLAN 2.4 GHz, 5
(Wi-Fi 6) ~9.6 Gbps <50ms ~100m GHz
Bluetooth 2~3Mbps >10ms ~100m ~24GHz
Few ms
. 868 MHz, 915
Zigbee ~250Kbps ~ ~100 m MHz, 2.4 GHz
seconds
LoRa/ ~ 2~15
LoRAWAN ~21.9Kbps seconds Km < 1GHz
*Note:

1. The data rate for 5G is approximately 20 Gbps for downlink and 10 Gbps
for uplink.

2. The range of 200m is specific to millimeter-wave (mmWave). The sub-
6 GHz frequencies offer a significantly higher range.
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Numerous 5G applications have been developed to address
challenges inherent in traditional communication protocols.
Table 2. highlights several leading research groups working on
5G applications. Fraunhofer IPT has initiated 5G applications
for the manufacturing industry in Germany. Mohanram et al.
[32] introduced a 5G-based multi-sensor platform for
monitoring workpieces and machine status. Equipped with
diverse sensors, multiple data types (e.g., vibration,
temperature, torque, etc.) were collected from workpieces and
machines and wirelessly connected to the factory cloud using
5G. Kehl et al. [33] proposed a 5G-enabled Time-Sensitive
Network (TSN) and assessed its performance on an edge-
controlled mobile robot. The results revealed the
communication latency is as low as 1 ms. Ansari et al. [28]
conducted 5G trials using an FPGA-based tool to generate data
traffic simulating industrial protocol traffic. The findings
demonstrated that traffic latencies remained below 1.09-1.12
ms when utilizing the proposed network structure. Ericsson
and Fraunhofer IPT collaborated on a case study examining
5G-enabled milling vibration monitoring during the blisk
milling process [34]. The report suggested that 5G-enabled
real-time monitoring and control could result in annual savings
of Euro 360 million on blisk production. Gundall et al. [35]
enumerated several 5G-enabled Industry 4.0 use cases,
including 5G-enabled cooperative goods transportation, 5G
remote control, and industrial campus applications. Huawei
Wireless X Labs published a white paper [36] investigating a
5G-enabled cloud robot. The cloud provides advanced control
software, while 5G ensures rapid and secure communication
between the cloud and the robot.

Table 2. 5G applications in manufacturing research.

Research Group Key Features Ref
5G-based sensor platform for workpiece and [32]
machine monitoring

Fraunhofer IPT 5G-enabled edge-controlled robot [33]
5G network performance review with 28]
automation traffic

Ericsson Milling vibration monitoring using a 5G (34]
network

Bell Labs 5G-enabled Industry 4.0 use cases [35]

Wireless X Labs | 5G-enabled cloud robot [36]

1.3 Research objectives

This literature analysis assesses the current state of research
and developments in 5G monitoring for manufacturing
processes and highlights the potential of 5G technology in
addressing various manufacturing challenges, including the
lack of 5G monitoring infrastructure to realize its potential.
This study aims to create a 5G network with 5G-enabled
sensors for milling process monitoring and demonstrate the
unique capabilities of ultra-low latency sensing and
visualization in real time. Specifically, this study aims to
demonstrate the capabilities of a novel 5G-enabled monitoring
system architecture and implementation, focusing on
retrofitting sensors with 5G communications capability,
precisely measuring the workpiece geometrical characteristics
and process signatures, 5G edge computing, and visualization.
The paper is structured as follows: Section 2 presents the

system architecture and testbeds setup. Section 3 demonstrates
5G measurement, edge computing, and visualization. Section 4
summarizes the key results of this work.

2. 5G-Enabled Process Monitoring Approach
2.1. Monitoring System Architecture

The schematic of the 5G-based monitoring system (Fig. 2)
demonstrates the integral components of the 5G-enabled
monitoring system designed for sensing the milling process
signature and visualizing the data in real time. The 5G NR
(New Radio) transceiver captures raw data from the sensor(s),
which monitor the milling process in real-time. This transceiver
acts as the initial contact point to bridge the gap with legacy
equipment, as commercial sensors and machinery have yet to
integrate native 5G support. Once the data is transmitted over
5@, it is received by the SG Remote Radio Unit. This unit is a
powerful router designed to send data over a long distance
within the network to a 5G edge server for analysis. The edge
analysis plays a crucial role in swiftly processing the raw data,
extracting essential features and relevant information that
would be used for real-time data visualization. Post-edge
analysis sends the processed data back through the 5G network
to the 5G NR-Transceiver again. This transceiver feeds the data
to a remote PC, enabling data visualization in an edge device
(e.g., on-site PC). This visualization assists experts and
technicians in understanding the milling process’s dynamics
and helping in better decision-making.

The entire monitoring system seamlessly integrates
advanced 5G technology with traditional sensors and milling
processes. The primary objective is to capture raw data,
transmit it in real-time over 5G networks, analyze it at the edge,
and visualize the processed data to provide actionable insights.

Sensor Data

Stream
e NB- — — —"* | 5G Remote
Transceiver 5G Setias
' Milling Visualization
)7 L Process IE
)) - " = - -
[FEERN

Sensor(s) Remote PC

Fig. 2. 5G-Enabled milling monitoring system architecture.

2.2. 5G Communication Network

The 5G Network in this study has been developed and
managed using the Orbit-Lab platform. Fig. 3 illustrates the
configuration of the 5G communication system. The 5G
network is rooted in the COSMOS wireless testbed [37], which
leverages an architecture that facilitates dynamic
programming. This permits distinct layers tailored for various
applications managed by the Software Defined Radio (SDR)
[38].

The 5G yellow node acts as a user equipment endpoint (UE)
and features a SIMCOM SIM 8200-M2 5G Module, interfaced
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via PCI-Express (PCle) and USB 3.0. The SIM8200-M2 is a
multi-band 5G modem capable of supporting high data transfer
speeds up to 2.4 Gbps. One of its key strengths is the ability to
utilize a large number of supported bandwidth configurations
across various frequencies, making it highly effective for
experiments involving RF space congestion and network
behavior under diverse conditions. This module is paired with
a Linux-based Quad Core 17 PC, which is used to implement
various UE adaptation strategies and to provide the necessary
local processing power for sensors and actuators that are
attached to it. The flexibility and computational capability of
this Linux platform are crucial for handling complex
processing tasks and for real-time algorithmic adjustments.

i

1
SIM- 5G Link ’
8200EA 1 AMARISOFT SDR

y

5G Yellow Node

Fig. 3. 5G communication system setup.

At the other end of the 5G link, the SDR-based setup
employs the USRP-2974, a unit that integrates an embedded
X86 PC with an X310 USRP. This powerful combination
provides an effective platform for advanced SDR applications
including running the Amarisoft SDR-based gNodeB software
and the 5G core [39, 40]. This setup supports the high-speed,
low-latency communication that is crucial for edge computing
applications in the 5G ecosystem. The SDR-based
implementation with the USRP-2974 and Amarisoft enables us
to interact with all segments of the 5G spectrum in the sub-6
GHz range (FR1). This capability provides extensive flexibility
in exploring and manipulating various aspects of radio
functionalities, enhancing our control and understanding of
network dynamics for smart manufacturing deployments.

Complementing the USRP-2974, we use high-performance
backend servers powered by Xeon processors, primarily for
edge processing. These servers are tasked with handling the
significant computational demands required for advanced data
processing and network functions at the edge of the 5G
network. A notable feature of our setup is the connectivity
between the USRP-2974 and the edge servers, which is
facilitated through a 10 Gbps Ethernet link. This high-speed
connectivity is vital for ensuring swift and efficient data
transfer, allowing for real-time processing and responsiveness
within the network.

3. 5G-Enabled Milling Testbeds

Two testbeds were developed to demonstrate the capability
of the proposed 5G-enabled milling monitoring system
described in the previous sections.

3.1. 5G robotic milling testbed

The architecture of the 5G robotic milling testbed is
illustrated in Fig. 4. Within this setup, an industrial robot is

placed next to a rotary table that securely holds the workpiece.
This workpiece is meticulously examined by a laser camera
integrated with the 5G yellow node. The camera transmits the
measure data cloud (a stream of large image data) to the 5G
yellow node, relaying the data to the 5G link. A remotely
situated 5G edge provides the capability to access and process
the data. This testbed excels at performing detailed robotic
milling tasks to rectify defective regions. It is worth mentioning
that while the intricacies of the 5G-empowered robotic control
for milling are noteworthy, they will be explored in a different
study as they are not the primary focus of this research.

Yaskawa Robot

Rotatings
Workpiece m

Laser
Fig. 4. 5G Robot Testbed Architecture.

Remote

\
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The implemented testbed (Fig. 5) is equipped with a
Yaskawa GP25, a 6-axis industrial robot, with a Pushcorp
SM1503 end milling effector. The sensor is a Gocator 2180
laser camera with a measurement resolution of up to 92
micrometers. It is set up next to a workbench where the
workpiece is held by a rotary table (VH-6). The robot and
camera have TCP/IP interfaces connected to the 5G yellow
node to enable 5G communications. The yellow node is
wirelessly connected to a 5G Link for long-distance data
transmission. A 5G edge is located remotely and can access the
components through the 5G network. The testbed is equipped
with the “yellow node” UE acting as the endpoint of the 5G
link.

Fig. 5. SG robot milling testbed.

3.2. 5G CNC milling testbed

The architecture of the 5G Milling Testbed is described in
Fig. 6. Similar to the 5G Robotic Testbed, the vibration sensor
attached to the workpiece is connected to the Data Acquisition
(DAQ) unit. The DAQ is connected to the 5G yellow node to
integrate with the 5G platform. The measured data is
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transmitted via the 5G link to the 5G edge for post-processing
and then downloaded for visualization.

Switch

1
I
I
LI}
- J
5G Yellow Node —
[

Remote PC

(Data Acquisition)
Fig. 6. 5G CNC milling testbed architecture.

Fig. 7. shows the 5G milling testbed which is based on a
Microlution 5100 5-axis milling machine with a 5-enabled
accelerometer. The milling tool is a 6.35 mm two-flute flat-end
mill. A Kistler §763B100 tri-axial accelerometer is attached to
the workpiece to monitor process vibration. The NI1-9234 data
acquisition unit collects the vibration data from the sensor. The
DAQ uses the TCP/IP interface to connect with a 5G yellow
node to transmit measured data wirelessly. A Python script has
been deployed on the 5G edge to access the DAQ via the NI
Python application interface (API).

Workstation

N

5G Yellow Node |

Fig. 7. 5G CNC milling testbed.

4. Results and Discussion
4.1 5G-enabled imaging and visualization

In the robotic milling testbed, the workpiece with a defect
simulant is measured by a 5G-enabled laser scanner shown in
Fig. 8. The measured data cloud is up streamed to the 5G edge
server in which edge computing, i.e., data analytics, is
performed. A cylindrical workpiece is mounted on a rotary
table, while the Gocator laser scanner is positioned adjacent to
the workpiece for surface scanning. The initial scanning output
from the laser scanner consists of a line profile that measures
the distance (Z-axis) between the current laser-illuminated

Rotary table Laser scanner

Workpiece

Fig. 8. Camera scanning process.

location (X-axis) on the workpiece and the scanner. During the
scanning process, the rotary table rotates counterclockwise,
allowing the scanner to capture the entire surface of the
workpiece. It should be mentioned that the rotation and
workpiece axes might not be perfectly aligned, which could
result in a certain fluctuation in the acquired data of surface
topography.

The measured raw data is noted as M,,,,, where M, is
given by Eq. (1):

Myqw = [x(ti)!z(ti)]i (1

where x(t;) stands for the X-axis distance and z(t;) stands for
the distance between the workpiece surface and the scanner.
The timestamp for each scanned line profile is t;, where i =
1,2,3... Fig. 9 shows a plot of the raw measured data. Note the
measured raw data is a set of timed line profiles. A post-
process converted the timed raw measurement data into a 3D
topography. Eqgs. (2-4) express the operation of converting the
raw measurement. The distance between the workpiece
rotation center and the laser scanner is measured and noted as
dyer. And w - YT t; stands for the angles that the workpiece has
rotated since the measurement started, where w stands for the
rotating angler speed, and » stands for the current time stamp.
Fig. 10 shows the post-processed workpiece measurement.

Post-processed workpiece data

Plot of measured raw data

Unit: mm Unit: mm

z(t;)
-20 0 20 40

-0
-50

Time Stamp 50 2200 x(t)

oy

Fig. 9. Plot of measured raw data cloud.  Fig. 10. Post—prgé%ssed data cloud.
Mpose = [Xeopo: Yeopor Zeopo |, Where Xiopo = [x(t)]  (2)
Ytopo = [(dref + Z(ti)) cos(w -+ X1 t)] (3)

= [(dref + Z(ti)) ) Sin(a) ) Z? ti)] 4)

To identify the location of the defect simulant, a CAD model
of the referred workpiece is converted into a point cloud (Cyf)
to compare with the measurement data cloud. Note that the
CAD model is the workpiece design file and has a higher
resolution than the measured data. The Crof and Mg
coordinates can be aligned using the iterative closest point
(ICP) algorithm. To identify the defect coordinates, each point
in M, is iterated for searching the closet point in Cyf. If the
distance between those points is less than the camera
resolution, the points in M, are marked as normal.
Otherwise, it is marked as a defect. Fig. 11 shows the defect
points of the workpiece selected by this process.

Generating a surface from the point cloud is a well-studied
topic in computer graphics. Many algorithms are already
developed for these purposes. In this study, we used the Ball
Pivoting Algorithm (BPA) to connect the individual points to
the surface [41]. The algorithm operates by iteratively
"pivoting" a ball of a specified radius around each edge in the

Ztopo



L. Hu et al. / Manufacturing Letters 41 (2024) 200-207 205

Defect point clouds

Unit: mm
o

Fig. 11. Defect point cloud of the workpiece.

cloud. When the ball touches a new point, a triangle is formed
with the edge's vertices, generating the surface mesh. The
process continues until all edges are processed, with the ball
radius and initial seed triangle significantly influencing the
final output. It’s notable for its adaptability to handle large data
sets and the flexibility provided by the tuneable ball radius. The
typical ball radius is set close to the average distance of the
points cloud. In this study, several ball radii are tested. Fig.12
shows the generated surface topography of the defect region
using different radii, in which R=8xavg dist gives the best
results among others.

R=5 X avg_dist

R=6 X avg_dist

R=7 x avg_dist

R=8 X avg_dist R=9 X avg_dist

Fig. 12. Generated surfaces of defect simulant with different radius.

4.2 5G-enabled CNC milling vibration monitoring and
visualization

In the CNC milling testbed, the process vibration is
measured by a 5G-enabled accelerometer and is up streamed to
the 5G edge for data analysis, and then, the vibration data is
sent back to a local computer for data visualization. The milling
experiments were catried out to validate the functionality of the
milling testbed. Fig. 13 shows the experiment setup with the
milling tool path. The accelerometer was affixed to the base of
the workpiece to capture the vibration signals throughout the
milling operation. The milling tool path started before the tool
engaged with the workpiece material to create a 70 mm x 3.175

Accelerometer

Fig. 13. Milling tool path.

mm slot, concluding with another air-cutting phase. The data
acquisition starts recording the vibration signals shortly before
the initiation of the milling process.

During the data acquisition, the DAQ system establishes a
connection with a 5G yellow node, facilitating the transmission
of collected data to the 5G edge for temporary storage and pre-
processing. The data was acquired from the tri-axial
accelerometer at 51.2 KHz for each channel. Given the rapid
data generation, amassing over 2 million data points within a
mere 20 seconds of milling, storing the massive vibration data
in a single file proved impractical. Therefore, the data was
streamed to the 5G edge and divided into smaller “.py” format
files, each comprising 51.2 K samples from each channel. This
arrangement facilitated real-time computation/analysis of the
vibration data on the 5G edge, providing a clear and immediate
visual representation of the milling process’s vibrations. An
example of such real-time vibration monitoring during a stable
milling process is illustrated in Fig. 14. A more comprehensive
study can be performed for both stable and unstable (e.g.,
chattering) milling processes in the future.

Unit: g
100
w====Channel 1
Channel 2
50 === Channel 3
L
°
2
=) o el iy ]
£
<
50
100, 10 20 30 40 50 k samples

Data points
Fig. 14. Workpiece vibration during a stable milling process

The DAQ system stops recording the vibration signals
shortly after the milling process concludes. Subsequently, the
segmented recording files are merged into a comprehensive file
containing all the vibration data. This consolidated data file
was then transmitted from the 5G edge to a remote local PC for
real-time visualization, as shown in Fig. 15.

g

=== Channel 1

7.5 | Air cutting Channel 2
=== Channel 3

5.0 {
$25
2
20 |
£ bas =
< 225 Air cutting

5.01

-7.5

Tool i Tool disengaging
0 200 400 600 800 samples
Data points

Fig. 15. Visualization on the remote local PC after edge computing.

Table 3 shows the communication ping test of the 5G
network used in both testbeds. The network’s performance was
evaluated across two bandwidths, 20 MHz and 40 MHz, both
utilizing 64-byte packet size and 1000-byte packet size. In each
scenario, 10,000 packets were sent in the test, achieving an
average 0.0027% packet loss rate. The Round-Trip Time
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(RTT) measures the communication latency from the sender to
the receiver and back. The network’s Downlink (DL)
Throughput was recorded at 64 Mbps for the 20 MHz
bandwidth and 72 Mbps for the 40 MHz bandwidth.
Meanwhile, the Uplink (UL) Throughput significantly
increased from 10.5 Mbps at 20 MHz to 43 Mbps at 40 MHz,
underscoring the enhanced performance offered by the wider
bandwidth.

Table 3. 5G testbed communication test

Bandwidth RTT RTT bL UL
(64B) (1000B) Throughput Throughput
20 MHz 21.1 ms 31.5 ms 64 Mbps 10.5 Mbps
40 MHz 23.9 ms 30.8 ms 72 Mbps 43 Mbps

It is worth mentioning that reliable 5G communication is
dependent on high-frequency band signals which could impose
several challenges, including electromagnetic interference,
physical obstructions, and signal attenuation, which need to be
addressed in future research. Furthermore, a comparison
between a 5G monitoring system and conventional monitoring
methods (either wired or wireless) demonstrates the
performance benefits of 5G in terms of latency and reliability.
This type of comparison will be helpful even though it has been
well-documented that 5G provides tremendous advantages
over conventional communications. Such comparisons, while
not the focus of this work, are aligned with the longer-term
research objectives and are crucial for providing a
comprehensive understanding of 5G’s advantages and areas for
improvement.

5. Summary

This study provides an innovative 5G-enabled architecture,
implementation, and feasibility for real-time process
monitoring, edge computing, and local visualization in milling
processes. Two distinct milling testbeds have been designed
and implemented to showcase the unique capabilities of this
5G-enabled process monitoring system.

In the 5G robotic milling testbed, the comprehensive
geometric data cloud of the workpiece with a defect simulant
was acquired through a 5G-enabled laser scanner, enabling a
meticulous comparison with the respective CAD model at the
edge to precisely identify and visually represent defect
geometry. In the 5G CNC milling testbed, workpiece vibration
signals were monitored in real-time using a 5G-enabled
accelerometer, streamed to the 5G edge for data analytics, and
transmitted back to a remote local PC for visualization and
analysis of the milling process.

The adoption of 5G technology, characterized by its ultra-
low latency and high-speed data transmission, sped up defect
identification in remanufacturing and monitoring a milling
process condition. The feasibility study underscores the
effectiveness of the 5G process monitoring system in milling
operations, highlighting its significant potential as an enabling
tool for future research and development initiatives in
advanced manufacturing sectors.
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