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Abstract

Time Series Segmentation (TSS) is a data mining task widely used
in many applications to generate a set of change points for a time
series. Current TSS performance analyses focus on accuracy and,
therefore, fail to fully evaluate the reliability and originality of a
segmentation. We investigate using uncertainty quantification (UQ)
to fully evaluate TSS performance. We propose UQ-TSS, a frame-
work to quantify uncertainties surrounding TSS. UQ-TSS captures
uncertainties from different sources in an integrative manner. It
incorporates a novel TS augmentation algorithm to address inher-
ent uncertainty in the data. It uses ensemble learning in a novel
way to create samples and estimate the probability distributions of
changepoint presence and locations. We demonstrate the ability of
UQ-TSS to guide hyperparameter selection, refine segmentations,
and determine an algorithm’s suitability for segmenting without
the need for ground truth. We validate these claims through exten-
sive experimentation using several well-established TSS algorithms
and datasets.
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1 Introduction

Time series segmentation (TSS) is the data mining task of detecting
changes between homogeneous data-generative states within a
given time series (TS). For example, a recording of a person’s move-
ments can be segmented into walking, running, and sitting activities.
TSS aims to detect changes in activities as a set of changepoints
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(CPs). The value of a CP indicates the location where the change
occurred. TSS is synonymous with the problem of changepoint
detection (CPD), and both methods are often grouped together in
benchmark studies [36, 37]. Many TSS algorithms exist for specific
domains, such as human speech [24], but the scope of our research
focuses on domain-agnostic TSS.

The output of TSS usually feeds into other analytical tasks. For
example, TS classification takes the segments obtained from TSS as
input. Errors from TSS propagate into these tasks, so it is impera-
tive to develop methodologies and measures to help users better
understand the suitability of a segmentation. However, current TSS
performance analysis focuses on using accuracy metrics that fail to
assess the stability and distinctiveness of a segmentation fully.

We propose designing uncertainty quantification (UQ) tech-
niques to help evaluate and gain insights into a TSS algorithm’s
performance. UQ can provide many benefits for TSS, which we dis-
cuss shortly. UQ is well established in classical statistics but is only
recently being explored by the broader data science community [10].
UQ is not simply about attaching probabilities to outcomes. Proba-
bility measures the likelihood of certain outcomes, but uncertainty
characterizes the distribution over those possible outcomes [33].
This entails treating the outcomes of a model as random variables,
generating samples, and estimating probability distributions for
characterization and measuring uncertainty.

UQ for TSS has several challenges that need to be addressed.
One challenge is identifying the various sources of uncertainty
associated with TSS. Each source requires its own strategies to
capture its uncertainty. Capturing uncertainty from the data is
especially challenging because it relies on perturbing the data in a
reasonable manner. Current methods are not designed for TSS. They
either distort the data too much or cannot be generalized. After
capturing uncertainty, there are challenges to quantifying it for the
various components of TSS. These components are: (1) the presence
of a CP, (2) the CP location, and (3) the overall segmentation. There
are also issues on how to interpret uncertainty. Uncertainty offers
a different perspective than accuracy measures like the F;-score
and can lead to an opposite conclusion about a TSS algorithm’s
performance. We propose UQ-TSS to address these challenges and
quantify TSS uncertainty.

To the best of our knowledge, UQ-TSS is the first gener-
alized UQ method that can be used to infer the uncertainty
of any given TSS method and dataset. UQ-TSS captures un-
certainty from several sources of TSS, including from any dataset.
UQ-TSS accomplishes this by using a novel TS augmentation al-
gorithm that can perturb any TS for UQ despite different trends,
seasonality, and noise hidden in the data. UQ-TSS uses a computa-
tionally efficient ensemble learning approach to generate samples
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from multiple segmentations. These samples are used to estimate
probability distributions for CP presence and location. These distri-
butions allow UQ-TSS to accurately estimate the uncertainty of CPs’
presence, their locations, and the overall segmentation. UQ-TSS is
generalizable and usable with any TS dataset and TSS algorithm.

The uncertainty measures calculated by UQ-TSS provide many
benefits. These measurements allow us to evaluate a segmentation
without needing ground truth. This is especially beneficial because
TSS is often an unsupervised method employed where ground truth
is missing. We can also use UQ to guide hyperparameter selection,
refine the segmentation, and create different interpretations of CP
locations. We showcase these benefits in Section 4.

Our contributions are outlined below:

e We propose UQ-TSS, a UQ framework for TSS designed for
use with any TS and TSS algorithm. UQ-TSS allows users
to estimate the uncertainty of the presence of CPs, the CP
locations, and the overall segmentation.

e We analyze the different sources of uncertainty for TSS and
design mechanisms and strategies to estimate uncertainty
from each. This includes a novel TS data augmentation algo-
rithm for estimating TS data uncertainty.

e UQ-TSS provides many benefits including segmentation re-
finement, creating different interpretations for CP locations,
evaluation measures that do not rely on ground truth, and
guidance for hyperparameter selection.

The paper is organized as follows. Section 2 discusses the back-
ground and related works. Section 3 presents the proposed UQ-TSS
framework. Section 4 provides extensive experimentation and dis-
cussion to validate and showcase the benefits of UQ for TSS. We
also provide the code and datasets for replication of our experi-
ments [11].

2 Background and Related Works

Domain-agnostic TSS research is surprisingly sparse. The most
recently proposed methods include FLOSS [15] and ClaSP [12].
Benchmark studies have also shown older methods like BOCPD [1]
remain competitive. However, these works ignore any aspect of
UQ. Peterson et al. [26] is the only research to explore UQ for TSS,
but their work is specific to seismic onset times. To the best of our
knowledge, UQ-TSS is the first generalized UQ method that can be
used to infer the uncertainty of any given TSS method and dataset.

There are very few UQ works towards TSS. Guédon proposes a
novel TSS method that utilizes UQ to determine segmentations [16].
Their TSS method uses Bayesian statistics to estimate CP location
distributions and measure the overall uncertainty of their segmen-
tations. However, their UQ calculations cannot be generalized to
other TSS methods. In contrast, we design our proposed method
to be both model-agnostic and domain-agnostic. Bors et al. [6]
propose a method to visualize the uncertainty of a segmentation.
They generate colored heatmaps based on stacked segmentation
derived from various hyperparameter settings. Their research is
primarily concerned with visual analytics and focuses on inferring
the uncertainty of a CP’s presence due to uncertainty in hyper-
parameter selection. They do not analyze uncertainty from other
major sources associated with TSS.
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A variant of TSS is trajectory segmentation [5]. Trajectory seg-
mentation typically focuses on applications towards domains of
traffic and transportation analysis [2, 25]. The uncertainty esti-
mations derived from trajectory segmentation revolve around the
spatial dimensions associated with trajectory segmentation [5, 21].
Overall, these works are too domain-specific for segmentation and
uncertainty estimation of purely temporal data.

A branch of TSS research tries to detect gradual changes based
on principles of fuzzy set theory. For example, Bhaduri et al. [4] use
rough-fuzzy set theory to model the uncertainty associated with
gradual CPs for detection. These proposed methods may model
vagueness and calculate probabilities to detect spans of gradual
change. However, they do not attempt to analyze or fully measure
and characterize the variance of their output, which is the goal of
UQ.

UQ has greatly benefited different types of data mining and ma-
chine learning tasks. Kendall et al. [18] used UQ to create a new loss
function for Bayesian deep learners to improve image segmentation
performance. Pasaros et al. [27] explore UQ for neural networks
to create new evaluation metrics and post hoc performance im-
provement techniques. Nemani et al. [23] study ways UQ can be
used to solve and gain insight into engineering design and health
prognostic problems.

Our research avoids categorizing sources of uncertainty as aleatoric
or epistemic. These terms and their calculations are rooted in infor-
mation theory and often used in other UQ research [9]. However,
recent research has found several incoherencies in data mining and
machine learning applications [39]. For this reason, we avoid them
in our research and instead focus on the core idea of UQ, which is
characterizing the distributions of outcomes [33].

Our proposed method relies on a novel TS data augmentation
method tailored for UQ. We briefly review the related works for TS
data augmentation here. Iglesias et al. [17] and Wen et al. [38] pro-
vide a comprehensive TS data augmentation methods taxonomy. TS
augmentation methods fall into the following categories: slicing, jit-
tering, scaling, rotation, permutation, statistical generative models,
learning models, permutation, and decomposition. Jittering is the
most naive approach, as it simply adds random noise to the TS. We
avoid this approach because its degree of perturbation depends on
the data-generative state within the TS. There is a major difference
between the augmented and original TS that may add a bias to the
data. Another reason we avoid jittering is that adding noise to low
noise level states may have greater effects than higher noise states.
For example, adding the same level of noise to a regime of some-
one sitting versus running in an accelerometer recording perturbs
the sitting regime much more than the running. Slicing, rotation,
and perturbation augmentation methods reorder the temporal de-
pendencies of the TS. Since TSS datasets typically have several
data-generative states, this reordering may cause some states to
mix with others. This mixing generally leads to false CP detection.
Scaling and statistical generative models require hyperparameter
tuning. This tuning can be sensitive, and these methods tend to
work only for specific data domains. Statistical generative models
rely on prior knowledge of the TS and can become very domain-
specific. Learning models require training data and ground truth.
Decomposition methods separate the TS into seasonality, trend, and
residuals. Decomposition methods currently focus on applications
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towards classification, forecasting, or anomaly detection. [3, 17].
They are not designed for TSS and can drastically distort a TS with
several data-generative states.

3 UQ-TSS Framework

This section presents UQ-TSS, our proposed method for measuring
TSS uncertainty. We first introduce the terminology.

Let a TS be represented as T = {td, tg, tgl, tff} where n is the
number of observations and each observation is on d dimensions.
Let T[i] denote the n observations on dimension i. Given a time
series T, a TSS algorithm returns a set of CPs, which is represented
as Q = {ay, a2, @3, ..., &}, ...} (a; € [1,n]). The value of @; indicates
its location within T. UQ-TSS finds the range of possible outcomes
for each a € Q and uses them as samples to estimate probability
distributions and derive uncertainty. We define these samples as
a set, Q" = {Cy,Cy, ..., Cr}, where C; contains the samples corre-
sponding to CP «;. The samples are generated from an ensemble
with M members. M is a hyperparameter that users need to set.

3.1 Capture of Different Uncertainty Sources

We identify four sources of uncertainty in TSS: (1) the TS data,
(2) data preprocessing, (3) algorithm calibration, and (4) inference
of indicators for CPs. We discuss these sources and our methods
for capturing their uncertainty in detail below. In general, many
real-world scenarios of TSS need to handle all these sources of
uncertainty, but some may not. UQ-TSS is designed to omit any
source of uncertainty from its calculations freely.

3.1.1  Data Uncertainty. One source of uncertainty comes from the
TS data itself. Each recorded observation has a random measure-
ment error associated with it, also known as noise. Noise causes
uncertainty in CP presence and location.

Many TS augmentation algorithms [17] exist for generating
alternate versions of a TS. These algorithms are not appropriate to
augment TS because of the reasons discussed in Section 2.

We propose a novel TS augmentation algorithm that particularly
supports UQ for TSS. We design our algorithm to isolate noise and
perturb it so that the underlying features of multiple regimes within
a TS are preserved. Our technique separates the noise from the TS
and perturbs it on an individual scale. Our algorithm prevents
regimes from inheriting others’ properties and noise biases while
also inducing differences in TSS. Our algorithm also makes no
assumptions about the TS and can be applied to any data domain
for TSS.

Algorithm 1 shows the pseudocode for our TS augmentation
algorithm. Our algorithm decomposes a given TS T using a 1-
dimensional convolution operator across each dimension (Line 4).
The convolution window averages w values within T to construct
T’. We then isolate the noise by subtracting T’ from T (Line 6).
Each noise value is multiplied by an independent and identically
distributed random value sampled from a continuous uniform distri-
bution between 0.5 to 1.5 (Line 9). This step amplifies approximately
half the noise (multiplied by a value between 1.0 and 1.5) and dec-
imates the other half by the same amount (multiplied by a value
between 0.5 to 1.0). The array of perturbed noise values is added to
T’ to yield T, the augmented TS (Line 13).
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Algorithm 1 UQ-TSS data augmentation.

1: function AUGMENTTS(T , w)

2 window = [%, %, . %] of size w
3 fori=1toddo

4 T’[i] « Convolution(T[i], window)

5: end for

6 noise=T - T’

7 fori=1toddo

8 for j=1tondo

9 r < Random value between 0.5 to 1.5

10: noise’ [i][j] = noise[i][j] = r
11: end for

12: end for

13: T =T + noise’

14: return T

15: end function

The user can adjust the range for r. The minimum and maximum
values need to be equal distance from 1.0; if not, the original TS’s
overall noise will be distorted. This means the maximum range for
r is 0 — 2.0. We found that ranges from 0.5 — 1.5 to 0 — 2.0 yield
similar uncertainty estimations. Ranges too small fail to perturb
the TS at all for uncertainty estimation.

Our decomposition method is relatively simple compared to oth-
ers like Seasonal and Trend decomposition using Loess (STL) [28].
However, these methods require domain knowledge about the TS,
such as its seasonality. In TSS, a dataset with multiple activities
can have multiple seasonalities, reducing the effectiveness of these
more advanced decomposition methods.

3.1.2  TSS Algorithm Uncertainty. We identify TSS algorithm uncer-
tainty as the uncertainty surrounding hyperparameter calibration,
not the selection of the algorithm itself. For UQ, we are interested
in how minor adjustments in the hyperparameters affect TSS re-
sults. We are not interested in breaking the algorithm with extreme
hyperparameter values outside the range of recommendations. We
capture TSS algorithm uncertainty by testing a set of candidate
values for each hyperparameter.

The hyperparameter candidate sets are defined based on a user’s
uncertainty. For example, let x be some hyperparameter, and guide-
lines suggest its value should be between 150 and 250. A user can
capture this uncertainty with UQ-TSS by defining a candidate set
as {150, 175, 200, 225, 250}. Ad hoc experimentation can reveal that
each value produces similar segmentations to its neighbor. Defining
the candidate values as a discrete set instead of a continuous one
better reflects how a user would test a range of potential settings.
Defining the candidate set is situational, but this is the general
procedure. We provide a detailed example using a real dataset in
Section 4.2.

3.1.3 Inference Uncertainty. Many TSS algorithms infer CP detec-
tions from a score over the TS. Local minimums/maximums imply
a change has occurred. Figure 1 shows an example from the TSS
method FLOSS [14]. The TS is labeled with one CP at timestamp
8000, and FLOSS detects that CP with its score over time. However,
arguments could easily be made to include timestamps 12000 and
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16000 as CPs. This uncertainty about which minimums/maximums
are strong enough to be considered CPs is inference uncertainty.

In full-scale pipelines, these decisions fall upon peak detection
algorithms. A Peak detection algorithm may use a variety of hyper-
parameters, but all typically share a prominence hyperparameter
that controls its sensitivity. The prominence is a threshold value
that describes the minimum prominence a peak should have. The
value of the prominence depends on the peak detection algorithm
but is typically derived from some combination of the width and
depth of the peak. Similarly to TSS algorithm uncertainty, we are
not interested in breaking the peak detection algorithm. Instead,
we want to select values that include/exclude ambiguous local min-
imum/maximum.

We can capture inference uncertainty by defining a candidate set
for prominence based on visual inspection of the score. For example,
Figure 1 finds a CP at timestamp 8000 when prominence=0.25. Times-
tamps 12000 and 16000 are included when the sensitivity is raised to
prominence=0.2 and prominence=0.15, respectively. Therefore, the
candidate set for inference uncertainty should be {0.15,0.2,0.25}.
Our framework automatically incorporates different hyperparam-
eter values to generate different CPs, which serve as samples to
estimate distributions for CP presence and location.
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Figure 1: Example of CAC score returned by FLOSS.

3.1.4  Preprocessing Uncertainty. Uncertainty due to preprocessing
refers to regularization methods associated with TSS [34]. Regular-
ization methods are usually domain-specific. For example, digital
signal recordings of someone talking may need a low-pass filter
such as Butterworth or Bessel [30] to remove background noise.
The list of regularization methods is extensive, often coming from
several research fields, such as data science, signal processing, and
statistics.

Capturing uncertainty from preprocessing requires creating a
candidate set of potential regularization methods and candidate sets
for their respective hyperparameters. Establishing these candidate
sets is situational, and automating the approach is almost impossible.
This approach may seem impractical, but other UQ research has
touched on capturing preprocessing uncertainty. Peterson et al. [26]
provides an example of capturing uncertainty from preprocessing.
They define a reasonable candidate set of preprocessing methods
and evaluate the resulting CPs for seismic onset times.

Our research considers all sources of uncertainty except prepro-
cessing. The focus of this research is a general UQ method for TSS.
As discussed before, preprocessing is very situational and domain-
specific. Therefore, testing it is beyond the scope of this paper, but
we still acknowledge it as a source of uncertainty.
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3.2 Overview of UQ-TSS

In order to capture segmentation uncertainty, different sources must
be used in conjunction with each other. Results from individual
sources cannot simply be added together. This entails sampling
combinations of hyperparameters from our candidate sets.

We propose an ensemble learning approach for UQ-TSS. En-
semble learning allows us to incorporate the random sampling of
hyperparameters and our TS augmentation algorithm. Each en-
semble member computes a segmentation using its own version
of the TS generated by our augmentation algorithm and a random
selection of hyperparameters from the candidate sets. The CPs
from all segmentations calculated by the ensemble are grouped and
treated as samples for estimating probability distributions. UQ-TSS
characterizes these distributions to measure the uncertainty of CP
presence, CP location, and overall segmentation.

Algorithm 2 shows the pseudocode for UQ-TSS. This algorithm
has three major steps. In the first step, each ensemble member
calculates a unique segmentation Q,, (1 < m < M) (Lines 1-14),
which consists of a list of CPs. The CPs from different ensemble
members may not be the same ultimately, but they can still refer
to the same CP. For example, assume three ensemble members
compute the three CP sets: {24, 172}, {25, 178}, and {25}. These CPs
correspond to two CPs around timestamps 25 and 175. The second
step is designed based on this observation. The second step clusters
the CPs from the ensemble members (Lines 15-22). Each cluster
consists of CPs that serve as samples to estimate the actual CP.
Clusters with few samples are removed to help improve accuracy.
The third step estimates two probability distributions (Lines 23-27)
from each CP corresponding to its presence and location. From
these distributions, UQ-TSS calculates final CP predictions and the
Shannon entropy [31], a measure of uncertainty.

The details of specific components, including ensemble learning,
clustering, and prediction, are explained in the sections below.

3.3 Ensemble Learning

UQ-TSS uses randomization-based ensemble learning to combine
multiple segmentations. We use this design for several reasons.
Randomization-based ensemble learning has been proven to work
well in other data-driven UQ research [20, 26, 27, 40]. The calcula-
tions of randomization-based ensemble learning are independent
and easily parallelized. Therefore UQ-TSS does not impede the scal-
ability of any TSS algorithm used with it. Ensemble learning has
also been proven to help create more robust and accurate results in
other machine learning tasks [8].

UQ-TSS creates an ensemble of M members. Each member seg-
ments their own augmented version of the TS based on a ran-
dom selection from the candidate sets. The m-th ensemble member
consists of four components, T(m) p(m) (Aim), R f(l;m), R

and g(/lém), ...) where ... represent irrelevant input. T(™) is the
augmented TS created by our novel TS augmentation algorithm
(Section 3.1.1). The h(), f(), and g() functions correspond to pre-
processing, time series segmentation, and inference. Among these
three functions, h() is randomly selected from a candidate set of
preprocessing functions H, while f() and g() are fixed. Their hy-
perparameters are randomly selected from the three candidate sets
A1, A2, and As, respectively.
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Algorithm 2 UQ-TSS(T, w, M, f, g, H, A1, Az, As, p)

Input: T: original time series; w: window length used for
augmenting T; M: number of ensemble members; f: time series
segmentation function; g: inference function; H: candidate set of
preprocessing methods; A1: candidate set for H hyperparameters;
Agz: candidate set for f hyperparameters; As: candidate set for g; f:
threshold value filtering out small clusters

Output: Q': the final CP predictions; wc,: the probability
distributions for CP locations; qc, the probability distributions for
CP presence; U: the overall segmentation uncertainty

1: form=1 --- Mdo

2 T — AugmentTS(T, w) > Algorithm 1
3 /* Select preprocess method A() from set H */

4 h < RandomSelection(H)

5: /* Select hyperparameters for h() from set A; */

6 A1 < RandomSelection(A1)

7 T — h(T, A1) > Preprocess T
8 /* Select hyperparameters for f() from set Ay */

9 A2 « Random Selection(Ay)

10: score «— f(f, A2) > Calculate score over T

11 /* Select hyperparameters for g() from set A3 */

12: A3 < RandomSelection(As)
13: Qp < g(score, A3) > Find CPs
14: end for

15: Qmerged — [Ql, Qg, cens Qm, ey QM]
16: Q" « Cluster(Qmerged)

17: /* Calculate final CP predictions */
18: for i=1 --- |Q’| do

19: if |Cj| < f then

20: Remove C; from Q’

21: end if

22: end for

23 for i=1 --- |Q’| do

24: Estimate gc, from C;

25: Estimate w¢, from C;

26: Q] « Median of C;

27: end for

28: /* Overall Uncertainty of Segmentation */
29: U « Average entropy of C; € Q'

30: return Q’, qc,, we,, U

> CP presence uncertainty
> CP location uncertainty
> CP prediction

Each member calculates an array of CP predictions denoted as
Qm. We merge each Qy, into one array of predictions, Q;,ergeq- We
view the CP predictions within Q¢ geq as samples for estimating
CP probability distributions. We need to find which samples within
Qmerged correspond to the same CP probability distributions. A

naive approach might be to fit Gaussian mixture models to Qperged-

However, this requires the number of distributions to be known and
assumes these distributions are Gaussian. Instead, we opt to use
density-based clustering to group predictions and post-process the
clusters to estimate our CP probability distributions. Density-based
clustering does not require the number of clusters to be known and
makes no assumptions about the distribution shape.
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3.4 Clustering CP Predictions

Given Qpergeq, we want to find which CP predictions correspond
to the same CP across the M ensemble members. For example, an en-
semble with three members may yield Qpergeq = [24, 25, 25,172, 178].
The CP predictions within Qpepgeq indicate two CPs around ob-
servations 25 and 175. We use density-based spatial clustering [13]
(DBSCAN) to automate this process. We selected DBSCAN because
selecting its hyperparameters is very intuitive in our situation. A
user only needs to know the sampling frequency, which is readily
available information in most real-world situations. We explain this
intuition shortly.

DBSCAN requires two hyperparameters: radius and minPts. The
radius describes the maximum distance between CPs before they
are no longer in the same neighborhood. minPts describes the min-
imum number of samples needed within a neighborhood for that
sample to be considered a core sample. Core samples determine
clusters, and samples are clustered together depending on whether
they are within the same neighborhood as a core point. We are
interested in all CP detections for UQ and, therefore, set minPts = 1.
Tuning radius is usually difficult in most applications but trivial in
ours because it directly references the time dimension. We can set
the radius according to the expected length of the changes. For ex-
ample, in human activity recordings, it is reasonable to assume that
a change from walking to running takes no more than 30 seconds.
Therefore, the radius should be set to 30 seconds of observations.
We can also adjust radius according to cluster results. If distribu-
tions are found in quick succession, this suggests radius was set too
low. If distributions span very long periods of time, this suggests
that radius was set too high.

DBSCAN yields Q’ = {C1, Cy, ..., Cx. } where C; is the i-th cluster
found by DBSCAN and k is the total number of clusters found. The
CPs within each cluster serve as samples for estimating our CP
probability distributions and final CP predictions.

3.5 Final CP Predictions and Estimating
Segmentation Uncertainty

To make UQ-TSS directly comparable to other TSS methods, we
calculate its median to convert each C; € Q’ into a single CP pre-
diction. UQ-TSS provides an opportunity to improve segmentation
accuracy. Any CPs detected by only a minority of the ensemble can
be removed. More formally, for any |C;| < f§, remove C; € Q.

3.5.1 Measuring Changepoint Presence and Segmentation Uncer-
tainty. This section describes how we derive our probability dis-
tributions for the presence of each CP and use it to measure seg-
mentation uncertainty. Let X; be a random variable representing
the presence of the i-th CP. Given C; € Q’, we can estimate the
probability distribution qc, (X; = x, p;) where p; represents the
probability of X; = 1. We view X; as a binary random variable
where X; = x,x € {0,1}. A value of 1 indicates the presence of a
CP, and 0 indicates its absence. Since X; is binary, we can estimate
qc; (Xi = x, p;) as a Bernoulli distribution defined in Equation 1.

G

where p; = (1)

qc,(Xi =x;pi) = p¥ = (1—pp)'™™
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Since TSS algorithms are typically designed to avoid CPs near
each other, we can assume |C;| < M,VC; € Q’. Therefore, the
probability p; can be derived by dividing the size of cluster C; by
the size of the ensemble, M.

Since g, (Xi = x; p;) is a Bernoulli distribution, we can calculate
the Shannon entropy [31] to quantify the uncertainty of the CP’s
presence [32]. Shannon entropy is commonly used to measure un-
certainty in other machine learning UQ research [39]. The Shannon
entropy for the presence of CP X; is derived as follows:

U(Xi) = —pilogy pi — (1= pi)logz(1 - pi)

LR e, (G,
Shannon entropy ranges from 0 to 1, where 1 indicates maximum
uncertainty, and 0 indicates no uncertainty in a random variable’s
outcome. In UQ-TSS, the uncertainty is minimized when all en-
semble members detect a CP (i.e., |C;| = M) or only one member
detects a CP (i.e., |C;| = 1). Uncertainty is maximized when 50% of
the ensemble detects a CP (i.e., |Ci| = %).

Calculating the Shannon entropy for the presence of each CP
allows us to calculate the uncertainty of the overall segmentation.
We propose averaging the entropies calculated for each CP presence.
Equation 3 defines the segmentation uncertainty.

)ogz (1 - @

k

(@) = 7+ DU ©)
3.5.2 Measuring Changepoint Location Uncertainty. This section
defines our approach for quantifying the uncertainty of the CP
locations. We use kernel density estimation [35] (KDE) to estimate
the probability distribution for i-th CP location, wc, (Y; = y). We
select KDE because it is computationally efficient and makes no
assumptions about the shape of the probability distribution. We
view the CP location for the i-th CP as a random variable denoted as
Y;. Our KDE is defined in Equation 4 where Y; takes on the values in
C;i. We use the Gaussian kernel defined as K(u) in Equation 4. The
Gaussian kernel highlights where CP locations coalesce, an impor-
tant aspect of CP location UQ. These highlighted locations help us
determine the different interpretations of where the change occurs
within the TS. We provide a detailed discussion in Section 4.2. The
hyperparameter h refers to the bandwidth. We automate the selec-
tion of b by using the improved Sheather Jones (IS]) algorithm [7].
The IS] algorithm is well suited for estimating various distributions,
which we expect to find for our CP location distributions.
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We can analyze wc, to infer the uncertainty of the CP location.
For example, a small variance implies less uncertainty about the
location of the CP and vice versa. However, this may not always
be true. A flat uniform distribution may have a high variance, but
it implies the change within the TS is more gradual, and trying to
define it as a CP is improper. There is no uncertainty about the
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location of a CP; a uniform distribution just indicates that a more
gradual change is occurring over that span of time. The number of
modes of the distribution can also indicate uncertainty. A bimodal
distribution implies two interpretations for the CP location and,
therefore, more uncertainty compared to a normal distribution with
a single mode. Overall, analyzing the shape of the distribution is
just as important for accessing the uncertainty for the CP location
as the statistical moments like variance.

4 Experiment Evaluation

We design all experiments to be reproducible, and the code is pub-
licly available, documented, and ready to use [11].

To the best of our knowledge, this is the first study of a frame-
work for estimating the uncertainty of any given TSS method and
TS dataset. There are no other methods that we can directly com-
pare to UQ-TSS. There are also no trivial solutions to adapt existing
TSS methods for UQ. Additionally, there is no ground truth to tell
us how much uncertainty a segmentation should have from a spe-
cific TSS method and dataset. Therefore, it would be difficult to
say which measure of uncertainty is more correct between two
generalized UQ frameworks for TSS. Instead, we opt to evaluate
UQ-TSS to showcase

e how uncertainty measures of UQ-TSS differ from and are
more useful than accuracy;

e how UQ-TSS can be used to guide hyperparameter perfor-
mance;

o what interpretations of CP locations we can infer from UQ-
TSS output.

In Section 4.2 and Section 4.3, we incorporate different baseline
TSS algorithms including PELT [19], FLOSS [14], ClaSP [12], and
BOCPD [1], which are detailed later, into UQ-TSS and conduct
experiments on one long TS (often neglected in TSS literature) and
32 standard benchmark TS to demonstrate the above three aspects.

We also test the following: the effectiveness of our TS data aug-
mentation for TSS compared against baselines (Section 4.4); se-
lecting ensemble size (Section 4.5); and computational overhead
(Section 4.6).

General settings. We set the data augmentation window length
(w) to span 0.5 seconds of observations. Our supporting website [11]
provides experiments on the sensitivity of w. Overall, its selection
is robust, and we omit the results from this paper for brevity. g
in Algorithm 2 is set to 0.15 * M. We use covering to measure
segmentation accuracy [37].

4.1 Datasets

We use a benchmark collection of 32 TS from other recent TSS
research [12, 14]. This repository contains a mix of real, synthetic,
and semi-real TS. However, much of this repository contains shorter
TS with few CPs (1 in most cases). We provide the full dataset details
on our supporting website [11].

We also use the long TS, PAMAP2 [29] to evaluate UQ-TSS.
PAMAP2 is a 10.7-hour TS of a person performing various physical
activities. The dataset consists of 3850505 observations over 45 vari-
ables and contains 25 CPs to detect. We showcase PAMAP2 because
these types of TS datasets naturally have more opportunities for un-
certainty to arise than shorter TS datasets. The higher uncertainty
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and more CPs allow us to better demonstrate the hyperparameter
optimization and CP location distributions of UQ-TSS.

4.2 Uncertainty Quantification: PAMAP2

This experiment demonstrates how UQ-TSS helps guide hyperpa-
rameter selection, create different interpretations for CP locations,
and how uncertainty metrics differ from traditional accuracy met-
rics.

4.2.1 Settings. We select Pruned Exact Linear Time (PELT) [19] as
our TSS algorithm. PELT is well suited for long multivariate TS like
PAMAP2. However, hyperparameter optimization is difficult due to
PELT’s lack of indicators. PELT uses two hyperparameters: Penalty
and Jump. Jump determines how many observations are skipped in
the calculation. Jump is used to control the running time but has
some influence on CP location. Penalty is a threshold value. An
observation above the penalty is considered a CP. When optimizing
PELT, the main concern is how to set the penalty.

We test penalty settings from 17000 to 33000 (step size 1000).
Bayesian Information Criterion (BIC) [22], often used to help set
this hyperparameter, yielded ~ 20000 for PAMAP2. BIC tends to
underestimate. Thus, our selection of penalty values is skewed to
include more high-end values. We set the ensemble size M = 200.
We set the DBSCAN distance to 5 seconds of observations. The
range of the penalty candidate set is 4000 with a step size of 1000.
For example, when testing penalty=28000, a candidate set of [26000,
27000, 28000, 29000, 30000] is generated. These sets are established
based on neighboring values yielding very similar segmentations.
They reflect the user’s uncertainty when trying to set the penalty.
The jump candidate set is [80, 90,100, 110, 120]. For each PELT
segmentation, we measure the uncertainty and accuracy without
UQ-TSS, as well as accuracy with UQ-TSS.

We ran this experiment 10 times. The variance between results
was minuscule, showing UQ-TSS to be very stable. Full details of
these results can be found on our supporting website [11].

Uncertainty and Accuracy of PELT Segmentations

—

—— With UQ-TSS 7

Without UQ-TSS /\ -~

_/\/J

Accuracy

Uncertainty
o
N

o

o
S}

T e e e TR A R S S S
18000 20000 22000 24000 26000 28000 30000 32000
PELT Penalty Setting

Figure 2: Uncertainty and covering of PELT segmentations
over increasing penalty settings.
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4.2.2 Interpreting Uncertainty with UQ-TSS. Figure 2 demonstrates
how the uncertainty measure of UQ-TSS can guide hyperparameter
selection. The top plot shows the accuracy of PELT’s segmentations
with and without UQ-TSS across the penalty settings 17000 to 33000.
The bottom plot shows the uncertainty of the segmentations. The
penalty=31000 achieves the highest accuracy. The penalty=26000
achieves the lowest uncertainty.

In a scenario where ground truth is known, we can evaluate the
segmentations based on accuracy and uncertainty and tune the
penalty accordingly. Without looking at the uncertainty, setting
the penalty=31000 is the most reasonable choice since this is where
segmentation accuracy is highest. However, this segmentation has
much higher uncertainty compared to when penalty=26000. The
difference between their accuracies is only 1%. With knowledge
of the uncertainty and accuracy, a penalty=26000 is arguably the
better choice since it still maintains a high accuracy but has much
lower uncertainty.

In a scenario where ground truth is unknown, we can still evalu-
ate segmentation performance based on measures of uncertainty
alone. The penalty settings of 25000 and 26000 both yield low un-
certainty segmentations. Unbeknownst to the user, either selection
would result in high accuracy. This demonstrates that uncertainty
can be effective for hyperparameter tuning.

Lastly, Figure 2 also shows that most PELT segmentations with
UQ-TSS have slightly better or similar accuracy than those without
UQ-TSS.

Probability Distribution Example 1 Probability Distribution Example 2
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Figure 3: Examples of CP location probability distributions
calculated by UQ-TSS.

4.2.3 Changepoint Location Uncertainty. The many CPs of PAMAP2
provide an opportunity to test UQ-TSS’s CP location UQ. As men-
tioned before, we cannot validate due to the lack of ground truth
available for such aspects of TSS. However, the main point of this
experiment is to demonstrate how to infer the uncertainty of the
CP location and highlight the valuable information one can gain
from analyzing such information.

These distributions help a user identify spans of uncertainty.
A user can interpret observations within the span as belonging
to either the activity before or after the change. Excluding these
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spans of uncertainty can lead to purer examples on which other
downstream models can train. We can also create different inter-
pretations for where a change occurred. This information is useful
in scenarios where establishing cause and effect is important, e.g.,
finding the exact trigger for a person’s seizure in an EEG recording.

Figure 3 shows four examples of CP location probability distri-
butions found by UQ-TSS with PELT (penalty=28000) arranged in
increasing levels of uncertainty. The x-axis represents the index
of PAMAP?2, where UQ-TSS estimates the probability distribution.
The y-axis represents the probability. Example 1 shows a unimodal
distribution where nearly all ensemble members detected the CP
at observation 138600. Example 2 is a bimodal where most of the
ensemble detected the CP at observation 362700, but some also de-
tected it earlier. Example 3 is another bimodal distribution but with
an even split between two points in time. Example 4 is a multimodal
distribution showing much disagreement among the ensemble and,
therefore, high uncertainty.

4.3 Testing Wider Application of UQ-TSS

The purpose of this experiment is to test UQ-TSS on a variety of TS
datasets and methods. We use a repository of 32 TS datasets and 3
TSS algorithms. We use an ensemble size of 200 for each TSS algo-
rithm. We describe the algorithms and relevant hyperparameters
below. We select these TSS algorithms because they are SOTA, or
benchmark studies have shown they are very competitive [37].
FLOSS. FLOSS [14] uses the matrix profile data structure. This data
structure relies on a subsequence length to calculate a score over
the TS to infer CP locations. We create a candidate set with five
values based on 0.8 to 1.2 times the optimal subsequence length
provided by the authors [14]. The candidate set for prominence is
[0.25, 0.30, 0.35].

ClaSP. ClaSP [12] classifies subsequences using self-supervised
learning. ClaSP automates any hyperparameter selections and is
parameter-free.

BOCPD. BOCPD [1] uses Bayesian statistics and a user-defined
probability distribution to calculate the likelihood a change has
occurred. We use a student-t distribution with three hyperparam-
eters for variance, skewness, and kurtosis. The candidate set for
all of them is [0.1,0.3,0.5]. BOCPD uses a hazard function with one
hyperparameter to describe the time between CPs. We create a
candidate set of five values based on 0.8 to 1.2 times one-fifth of the
TS length. Lastly, The candidate set for prominence is [0.25, 0.30,
0.35].

General settings. We base the candidate sets for hyperparameters
of the TSS algorithms and inference on the guidelines discussed in
Section 3.1.2 and Section 3.1.3, respectively. We use the find_peaks
algorithm from the SciPy library to detect peaks in scores over time.

Methods
FLOSS | ClaSP_ | BOCPD
Better/Same/Worse | 18/8/6 | 25/3/4 | 18/2/12

Table 1: TSS method performance changes across 32 datasets
when used with UQ-TSS versus without UQ-TSS.

Table 1 shows how many dataset segmentations had better, same,
or worse accuracy for each TSS method using UQ-TSS compared
to without using UQ-TSS. We consider the accuracy to be the same
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Figure 4: TS Dataset with high segmentation uncertainty
among all three TSS methods.

if the difference is < 3%. We found differences of < 3% to have
insignificant changes in CP location.

Table 1 shows all three algorithms have an increase in perfor-
mance across most of the 32 datasets when used with UQ-TSS.
However, some datasets show worse performance. Most notably,
BOCPD with UQ-TSS has poorer performance across 12 datasets.
This is not necessarily a fault with UQ-TSS but an indicator that
these specific datasets have much uncertainty associated with them.
Alternatively, the TSS algorithm is simply a poor choice for seg-
menting the dataset. Datasets with worse performance among the
three TSS algorithms strongly indicate a high uncertainty associ-
ated with them. Inspecting these datasets should reveal ambiguous
CPs that are unlabeled in the given ground truth. We can use these
datasets to verify UQ-TSS by showing that UQ-TSS detects these
uncertain CPs.

Boxplots of Uncertainty for FLOSS, ClaSP, and BOCPD
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Figure 5: Uncertainty boxplots of better, same, and worse
performance categories for the TSS methods FLOSS, ClaSP,
and BOCPD.

Figure 4 shows an example of a TS with worse performance
across all three TSS methods. The TS is the insect electrical pen-
etration graph (EPG) dataset, which is a recording of an insect’s
movements. The y-axis is the amplitude, and the x-axis is the ob-
servations. This TS is labeled with a single CP indicated by the
red vertical line. The green vertical lines indicate the approximate
locations where FLOSS with UQ-TSS detected a CP. These areas are
clearly ambiguous, displaying a sudden drop in mean at the first
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green vertical line and a sudden change in variance at the last green
vertical line. These detections by UQ-TSS cause worse performance
but also show that UQ-TSS successfully captures this uncertainty.

Our primary concern are datasets where the TSS algorithm with
UQ-TSS performs worse and the uncertainty is low. To a user, a low
uncertainty would falsely indicate that the TSS is well suited for
segmenting that TS even though performance is worse. Figure 5
shows boxplots of the uncertainty across all three categories of
performance change (better, worse, and same) for all three TSS
algorithms. The boxplots show that the uncertainty for worse-
performing datasets is high across all three TSS algorithms, with a
minimum uncertainty greater than 0.5. This result indicates that
these TSS algorithms are poor choices for segmenting those specific
datasets.

Augmentation Algorithms | Accuracy
Original 0.967
UQ-TSS TS Augmentation 0.980
Jittering 0.415
Pooling 0.783
Time Warp 0.720
Block Bootstrapping 0.406

Table 2: Effects of augmentation algorithms on TSS accuracy.

4.4 Time Series Augmentation Effectiveness

Table 2 shows segmenting on our augmented TS maintains the
accuracy of the original segmentation. Every baseline performs
much worse than the original. This demonstrates the unsuitability
of these baselines for TSS purposes.

4.5 Selecting Ensemble Size

This section tests the necessary ensemble size for UQ-TSS to ac-
curately measure a segmentation’s uncertainty. We use three TSS
algorithms: ClaSP, FLOSS, and BOCPD. ClaSP uses no candidate
sets, FLOSS uses two candidate sets, and BOCPD uses five candidate
sets. We use the "Insect EPG” TS from the 32 dataset repository
for this experiment because all three TSS algorithms measured
high levels of uncertainty. We expect the number of candidate sets
associated with each TSS method to affect the required ensemble
size. Each candidate set is a source of uncertainty. TSS methods
with more candidate sets likely require a bigger ensemble to accu-
rately capture its uncertainty from all its sources. ClaSP, FLOSS,
and BOCPD have candidate sets of 0, 2, and 5, respectively.

Figure 6 shows the uncertainty as ensemble size increases from
10 to 300 of ClaSP, FLOSS, and BOCPD. We see stability around
an ensemble size of 75 for ClaSP and FLOSS. However, BOCPD

Uncertainty Measure of TSS Algorithms Over Ensemble Size
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Figure 6: Uncertainty Measures of FLOSS, ClaSP, and BOCPD
as Ensemble Size Increases.
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requires an ensemble size of 175. We can conclude that the number
of candidate sets does affect the required ensemble size for measur-
ing uncertainty accurately. TSS with more candidate sets requires
larger ensembles. The relationship seems to be around 25 members
per candidate set, in addition to a minimum size of 75. We also see
how BOCPD uncertainty measures are always relatively higher
than those of ClaSP and FLOSS. Therefore, even small ensembles
are useful for gauging the uncertainty of the segmentation.

Our results indicate an ensemble size of ~ 100 members is re-
quired even for scenarios with no candidate sets. This may seem
large, but most TSS algorithms are designed to be computation-
ally inexpensive and running 100 instances is not an issue even in
non-supercomputer settings.
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Figure 7: Running time of PELT with UQ-TSS as ensemble
size increases.

4.6 Efficiency analysis

Figure 7 shows the running time of PELT with UQ-TSS and a TS
with a length of 500000 observations as the ensemble size increases
from 10 to 250. We chose PELT because of its capability to analyze a
long TS. The linear trend shows that the computations for capturing
and measuring uncertainty have negligible computational costs.
Therefore, the running time of UQ-TSS mainly depends on the TSS
algorithm and the size of the ensemble. This running time can easily
be mitigated by parallelizing each ensemble member since each
member is independent.

5 Conclusions

We propose UQ-TSS, a generalized framework for measuring seg-
mentation uncertainty from any given TSS algorithm and dataset.
We identify the sources of uncertainty in TSS and design mecha-
nisms for UQ-TSS to capture them. This includes a novel TS aug-
mentation algorithm for capturing TSS data uncertainty. UQ-TSS
uses ensemble learning to combine multiple CP predictions and
use them as samples to estimate probability distributions. UQ-TSS
characterizes these distributions to determine CP predictions, the
uncertainty of CP presence, the uncertainty of CP locations, and the
overall uncertainty of the segmentation. UQ-TSS provides several
benefits for TSS, including new evaluation measures, segmentation
refinement, hyperparameter guidance, and the creation of different
interpretations of CP locations.
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