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Abstract
Time Series Segmentation (TSS) is a data mining task widely used

in many applications to generate a set of change points for a time

series. Current TSS performance analyses focus on accuracy and,

therefore, fail to fully evaluate the reliability and originality of a

segmentation. We investigate using uncertainty quantification (UQ)

to fully evaluate TSS performance. We propose UQ-TSS, a frame-

work to quantify uncertainties surrounding TSS. UQ-TSS captures

uncertainties from different sources in an integrative manner. It

incorporates a novel TS augmentation algorithm to address inher-

ent uncertainty in the data. It uses ensemble learning in a novel

way to create samples and estimate the probability distributions of

changepoint presence and locations. We demonstrate the ability of

UQ-TSS to guide hyperparameter selection, refine segmentations,

and determine an algorithm’s suitability for segmenting without

the need for ground truth. We validate these claims through exten-

sive experimentation using several well-established TSS algorithms

and datasets.

CCS Concepts
• Information systems→ Clustering; • Computing methodolo-
gies→ Ensemble methods; Uncertainty quantification; •Mathe-
matics of computing→ Time series analysis.
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1 Introduction
Time series segmentation (TSS) is the data mining task of detecting

changes between homogeneous data-generative states within a

given time series (TS). For example, a recording of a person’s move-

ments can be segmented intowalking, running, and sitting activities.

TSS aims to detect changes in activities as a set of changepoints
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(CPs). The value of a CP indicates the location where the change

occurred. TSS is synonymous with the problem of changepoint

detection (CPD), and both methods are often grouped together in

benchmark studies [36, 37]. Many TSS algorithms exist for specific

domains, such as human speech [24], but the scope of our research

focuses on domain-agnostic TSS.

The output of TSS usually feeds into other analytical tasks. For

example, TS classification takes the segments obtained from TSS as

input. Errors from TSS propagate into these tasks, so it is impera-

tive to develop methodologies and measures to help users better

understand the suitability of a segmentation. However, current TSS

performance analysis focuses on using accuracy metrics that fail to

assess the stability and distinctiveness of a segmentation fully.

We propose designing uncertainty quantification (UQ) tech-

niques to help evaluate and gain insights into a TSS algorithm’s

performance. UQ can provide many benefits for TSS, which we dis-

cuss shortly. UQ is well established in classical statistics but is only

recently being explored by the broader data science community [10].

UQ is not simply about attaching probabilities to outcomes. Proba-

bility measures the likelihood of certain outcomes, but uncertainty

characterizes the distribution over those possible outcomes [33].

This entails treating the outcomes of a model as random variables,

generating samples, and estimating probability distributions for

characterization and measuring uncertainty.

UQ for TSS has several challenges that need to be addressed.

One challenge is identifying the various sources of uncertainty

associated with TSS. Each source requires its own strategies to

capture its uncertainty. Capturing uncertainty from the data is

especially challenging because it relies on perturbing the data in a

reasonable manner. Current methods are not designed for TSS. They

either distort the data too much or cannot be generalized. After

capturing uncertainty, there are challenges to quantifying it for the

various components of TSS. These components are: (1) the presence

of a CP, (2) the CP location, and (3) the overall segmentation. There

are also issues on how to interpret uncertainty. Uncertainty offers

a different perspective than accuracy measures like the 𝐹1-score

and can lead to an opposite conclusion about a TSS algorithm’s

performance. We propose UQ-TSS to address these challenges and

quantify TSS uncertainty.

To the best of our knowledge, UQ-TSS is the first gener-
alized UQ method that can be used to infer the uncertainty
of any given TSS method and dataset. UQ-TSS captures un-

certainty from several sources of TSS, including from any dataset.

UQ-TSS accomplishes this by using a novel TS augmentation al-

gorithm that can perturb any TS for UQ despite different trends,

seasonality, and noise hidden in the data. UQ-TSS uses a computa-

tionally efficient ensemble learning approach to generate samples
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from multiple segmentations. These samples are used to estimate

probability distributions for CP presence and location. These distri-

butions allow UQ-TSS to accurately estimate the uncertainty of CPs’

presence, their locations, and the overall segmentation. UQ-TSS is

generalizable and usable with any TS dataset and TSS algorithm.

The uncertainty measures calculated by UQ-TSS provide many

benefits. These measurements allow us to evaluate a segmentation

without needing ground truth. This is especially beneficial because

TSS is often an unsupervised method employed where ground truth

is missing. We can also use UQ to guide hyperparameter selection,

refine the segmentation, and create different interpretations of CP

locations. We showcase these benefits in Section 4.

Our contributions are outlined below:

• We propose UQ-TSS, a UQ framework for TSS designed for

use with any TS and TSS algorithm. UQ-TSS allows users

to estimate the uncertainty of the presence of CPs, the CP

locations, and the overall segmentation.

• We analyze the different sources of uncertainty for TSS and

design mechanisms and strategies to estimate uncertainty

from each. This includes a novel TS data augmentation algo-

rithm for estimating TS data uncertainty.

• UQ-TSS provides many benefits including segmentation re-

finement, creating different interpretations for CP locations,

evaluation measures that do not rely on ground truth, and

guidance for hyperparameter selection.

The paper is organized as follows. Section 2 discusses the back-

ground and related works. Section 3 presents the proposed UQ-TSS

framework. Section 4 provides extensive experimentation and dis-

cussion to validate and showcase the benefits of UQ for TSS. We

also provide the code and datasets for replication of our experi-

ments [11].

2 Background and Related Works
Domain-agnostic TSS research is surprisingly sparse. The most

recently proposed methods include FLOSS [15] and ClaSP [12].

Benchmark studies have also shown older methods like BOCPD [1]

remain competitive. However, these works ignore any aspect of

UQ. Peterson et al. [26] is the only research to explore UQ for TSS,

but their work is specific to seismic onset times. To the best of our

knowledge, UQ-TSS is the first generalized UQ method that can be

used to infer the uncertainty of any given TSS method and dataset.

There are very few UQ works towards TSS. Guédon proposes a

novel TSS method that utilizes UQ to determine segmentations [16].

Their TSS method uses Bayesian statistics to estimate CP location

distributions and measure the overall uncertainty of their segmen-

tations. However, their UQ calculations cannot be generalized to

other TSS methods. In contrast, we design our proposed method

to be both model-agnostic and domain-agnostic. Bors et al. [6]

propose a method to visualize the uncertainty of a segmentation.

They generate colored heatmaps based on stacked segmentation

derived from various hyperparameter settings. Their research is

primarily concerned with visual analytics and focuses on inferring

the uncertainty of a CP’s presence due to uncertainty in hyper-

parameter selection. They do not analyze uncertainty from other

major sources associated with TSS.

A variant of TSS is trajectory segmentation [5]. Trajectory seg-

mentation typically focuses on applications towards domains of

traffic and transportation analysis [2, 25]. The uncertainty esti-

mations derived from trajectory segmentation revolve around the

spatial dimensions associated with trajectory segmentation [5, 21].

Overall, these works are too domain-specific for segmentation and

uncertainty estimation of purely temporal data.

A branch of TSS research tries to detect gradual changes based

on principles of fuzzy set theory. For example, Bhaduri et al. [4] use

rough-fuzzy set theory to model the uncertainty associated with

gradual CPs for detection. These proposed methods may model

vagueness and calculate probabilities to detect spans of gradual

change. However, they do not attempt to analyze or fully measure

and characterize the variance of their output, which is the goal of

UQ.

UQ has greatly benefited different types of data mining and ma-

chine learning tasks. Kendall et al. [18] used UQ to create a new loss

function for Bayesian deep learners to improve image segmentation

performance. Pasaros et al. [27] explore UQ for neural networks

to create new evaluation metrics and post hoc performance im-

provement techniques. Nemani et al. [23] study ways UQ can be

used to solve and gain insight into engineering design and health

prognostic problems.

Our research avoids categorizing sources of uncertainty as aleatoric

or epistemic. These terms and their calculations are rooted in infor-

mation theory and often used in other UQ research [9]. However,

recent research has found several incoherencies in data mining and

machine learning applications [39]. For this reason, we avoid them

in our research and instead focus on the core idea of UQ, which is

characterizing the distributions of outcomes [33].

Our proposed method relies on a novel TS data augmentation

method tailored for UQ. We briefly review the related works for TS

data augmentation here. Iglesias et al. [17] and Wen et al. [38] pro-

vide a comprehensive TS data augmentation methods taxonomy. TS

augmentation methods fall into the following categories: slicing, jit-

tering, scaling, rotation, permutation, statistical generative models,

learning models, permutation, and decomposition. Jittering is the

most naive approach, as it simply adds random noise to the TS. We

avoid this approach because its degree of perturbation depends on

the data-generative state within the TS. There is a major difference

between the augmented and original TS that may add a bias to the

data. Another reason we avoid jittering is that adding noise to low

noise level states may have greater effects than higher noise states.

For example, adding the same level of noise to a regime of some-

one sitting versus running in an accelerometer recording perturbs

the sitting regime much more than the running. Slicing, rotation,

and perturbation augmentation methods reorder the temporal de-

pendencies of the TS. Since TSS datasets typically have several

data-generative states, this reordering may cause some states to

mix with others. This mixing generally leads to false CP detection.

Scaling and statistical generative models require hyperparameter

tuning. This tuning can be sensitive, and these methods tend to

work only for specific data domains. Statistical generative models

rely on prior knowledge of the TS and can become very domain-

specific. Learning models require training data and ground truth.

Decomposition methods separate the TS into seasonality, trend, and

residuals. Decomposition methods currently focus on applications
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towards classification, forecasting, or anomaly detection. [3, 17].

They are not designed for TSS and can drastically distort a TS with

several data-generative states.

3 UQ-TSS Framework
This section presents UQ-TSS, our proposed method for measuring

TSS uncertainty. We first introduce the terminology.

Let a TS be represented as 𝑇 = {𝑡𝑑
1
, 𝑡𝑑
2
, 𝑡𝑑
3
, ..., 𝑡𝑑𝑛 } where 𝑛 is the

number of observations and each observation is on 𝑑 dimensions.

Let 𝑇 [𝑖] denote the 𝑛 observations on dimension 𝑖 . Given a time

series 𝑇 , a TSS algorithm returns a set of CPs, which is represented

as Ω = {𝛼1, 𝛼2, 𝛼3, ..., 𝛼𝑖 , ...} (𝛼𝑖 ∈ [1, 𝑛]). The value of 𝛼𝑖 indicates
its location within 𝑇 . UQ-TSS finds the range of possible outcomes

for each 𝛼 ∈ Ω and uses them as samples to estimate probability

distributions and derive uncertainty. We define these samples as

a set, Ω′ = {𝐶1,𝐶2, ...,𝐶𝑘 }, where 𝐶𝑖 contains the samples corre-

sponding to CP 𝛼𝑖 . The samples are generated from an ensemble

with𝑀 members.𝑀 is a hyperparameter that users need to set.

3.1 Capture of Different Uncertainty Sources
We identify four sources of uncertainty in TSS: (1) the TS data,

(2) data preprocessing, (3) algorithm calibration, and (4) inference

of indicators for CPs. We discuss these sources and our methods

for capturing their uncertainty in detail below. In general, many

real-world scenarios of TSS need to handle all these sources of

uncertainty, but some may not. UQ-TSS is designed to omit any

source of uncertainty from its calculations freely.

3.1.1 Data Uncertainty. One source of uncertainty comes from the

TS data itself. Each recorded observation has a random measure-

ment error associated with it, also known as noise. Noise causes

uncertainty in CP presence and location.

Many TS augmentation algorithms [17] exist for generating

alternate versions of a TS. These algorithms are not appropriate to

augment TS because of the reasons discussed in Section 2.

We propose a novel TS augmentation algorithm that particularly

supports UQ for TSS. We design our algorithm to isolate noise and

perturb it so that the underlying features of multiple regimes within

a TS are preserved. Our technique separates the noise from the TS

and perturbs it on an individual scale. Our algorithm prevents

regimes from inheriting others’ properties and noise biases while

also inducing differences in TSS. Our algorithm also makes no

assumptions about the TS and can be applied to any data domain

for TSS.

Algorithm 1 shows the pseudocode for our TS augmentation

algorithm. Our algorithm decomposes a given TS 𝑇 using a 1-

dimensional convolution operator across each dimension (Line 4).

The convolution window averages𝑤 values within 𝑇 to construct

𝑇 ′. We then isolate the noise by subtracting 𝑇 ′ from 𝑇 (Line 6).

Each noise value is multiplied by an independent and identically

distributed random value sampled from a continuous uniform distri-

bution between 0.5 to 1.5 (Line 9). This step amplifies approximately

half the noise (multiplied by a value between 1.0 and 1.5) and dec-

imates the other half by the same amount (multiplied by a value

between 0.5 to 1.0). The array of perturbed noise values is added to

𝑇 ′ to yield 𝑇 , the augmented TS (Line 13).

Algorithm 1 UQ-TSS data augmentation.

1: function AugmentTS(𝑇 ,𝑤 )

2: 𝑤𝑖𝑛𝑑𝑜𝑤 = [ 1𝑤 ,
1

𝑤 , ...,
1

𝑤 ] of size𝑤
3: for 𝑖 = 1 to 𝑑 do
4: 𝑇 ′ [𝑖] ← Convolution(𝑇 [𝑖],𝑤𝑖𝑛𝑑𝑜𝑤)
5: end for
6: 𝑛𝑜𝑖𝑠𝑒 = 𝑇 −𝑇 ′
7: for 𝑖 = 1 to 𝑑 do
8: for 𝑗 = 1 to 𝑛 do
9: 𝑟 ← Random value between 0.5 to 1.5

10: 𝑛𝑜𝑖𝑠𝑒′ [𝑖] [ 𝑗] = 𝑛𝑜𝑖𝑠𝑒 [𝑖] [ 𝑗] ∗ 𝑟
11: end for
12: end for
13: 𝑇 = 𝑇 ′ + 𝑛𝑜𝑖𝑠𝑒′
14: return 𝑇
15: end function

The user can adjust the range for 𝑟 . The minimum and maximum

values need to be equal distance from 1.0; if not, the original TS’s

overall noise will be distorted. This means the maximum range for

𝑟 is 0 − 2.0. We found that ranges from 0.5 − 1.5 to 0 − 2.0 yield
similar uncertainty estimations. Ranges too small fail to perturb

the TS at all for uncertainty estimation.

Our decomposition method is relatively simple compared to oth-

ers like Seasonal and Trend decomposition using Loess (STL) [28].

However, these methods require domain knowledge about the TS,

such as its seasonality. In TSS, a dataset with multiple activities

can have multiple seasonalities, reducing the effectiveness of these

more advanced decomposition methods.

3.1.2 TSS Algorithm Uncertainty. We identify TSS algorithm uncer-

tainty as the uncertainty surrounding hyperparameter calibration,

not the selection of the algorithm itself. For UQ, we are interested

in how minor adjustments in the hyperparameters affect TSS re-

sults. We are not interested in breaking the algorithm with extreme

hyperparameter values outside the range of recommendations. We

capture TSS algorithm uncertainty by testing a set of candidate

values for each hyperparameter.

The hyperparameter candidate sets are defined based on a user’s

uncertainty. For example, let 𝑥 be some hyperparameter, and guide-

lines suggest its value should be between 150 and 250. A user can

capture this uncertainty with UQ-TSS by defining a candidate set

as {150, 175, 200, 225, 250}. Ad hoc experimentation can reveal that

each value produces similar segmentations to its neighbor. Defining

the candidate values as a discrete set instead of a continuous one

better reflects how a user would test a range of potential settings.

Defining the candidate set is situational, but this is the general

procedure. We provide a detailed example using a real dataset in

Section 4.2.

3.1.3 Inference Uncertainty. Many TSS algorithms infer CP detec-

tions from a score over the TS. Local minimums/maximums imply

a change has occurred. Figure 1 shows an example from the TSS

method FLOSS [14]. The TS is labeled with one CP at timestamp

8000, and FLOSS detects that CP with its score over time. However,

arguments could easily be made to include timestamps 12000 and
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16000 as CPs. This uncertainty about which minimums/maximums

are strong enough to be considered CPs is inference uncertainty.

In full-scale pipelines, these decisions fall upon peak detection

algorithms. A Peak detection algorithm may use a variety of hyper-

parameters, but all typically share a prominence hyperparameter

that controls its sensitivity. The prominence is a threshold value

that describes the minimum prominence a peak should have. The

value of the prominence depends on the peak detection algorithm

but is typically derived from some combination of the width and

depth of the peak. Similarly to TSS algorithm uncertainty, we are

not interested in breaking the peak detection algorithm. Instead,

we want to select values that include/exclude ambiguous local min-

imum/maximum.

We can capture inference uncertainty by defining a candidate set

for prominence based on visual inspection of the score. For example,

Figure 1 finds a CP at timestamp 8000when prominence=0.25. Times-

tamps 12000 and 16000 are included when the sensitivity is raised to

prominence=0.2 and prominence=0.15, respectively. Therefore, the
candidate set for inference uncertainty should be {0.15, 0.2, 0.25}.
Our framework automatically incorporates different hyperparam-

eter values to generate different CPs, which serve as samples to

estimate distributions for CP presence and location.

Figure 1: Example of CAC score returned by FLOSS.

3.1.4 Preprocessing Uncertainty. Uncertainty due to preprocessing

refers to regularization methods associated with TSS [34]. Regular-

ization methods are usually domain-specific. For example, digital

signal recordings of someone talking may need a low-pass filter

such as Butterworth or Bessel [30] to remove background noise.

The list of regularization methods is extensive, often coming from

several research fields, such as data science, signal processing, and

statistics.

Capturing uncertainty from preprocessing requires creating a

candidate set of potential regularization methods and candidate sets

for their respective hyperparameters. Establishing these candidate

sets is situational, and automating the approach is almost impossible.

This approach may seem impractical, but other UQ research has

touched on capturing preprocessing uncertainty. Peterson et al. [26]

provides an example of capturing uncertainty from preprocessing.

They define a reasonable candidate set of preprocessing methods

and evaluate the resulting CPs for seismic onset times.

Our research considers all sources of uncertainty except prepro-

cessing. The focus of this research is a general UQ method for TSS.

As discussed before, preprocessing is very situational and domain-

specific. Therefore, testing it is beyond the scope of this paper, but

we still acknowledge it as a source of uncertainty.

3.2 Overview of UQ-TSS
In order to capture segmentation uncertainty, different sources must

be used in conjunction with each other. Results from individual

sources cannot simply be added together. This entails sampling

combinations of hyperparameters from our candidate sets.

We propose an ensemble learning approach for UQ-TSS. En-

semble learning allows us to incorporate the random sampling of

hyperparameters and our TS augmentation algorithm. Each en-

semble member computes a segmentation using its own version

of the TS generated by our augmentation algorithm and a random

selection of hyperparameters from the candidate sets. The CPs

from all segmentations calculated by the ensemble are grouped and

treated as samples for estimating probability distributions. UQ-TSS

characterizes these distributions to measure the uncertainty of CP

presence, CP location, and overall segmentation.

Algorithm 2 shows the pseudocode for UQ-TSS. This algorithm

has three major steps. In the first step, each ensemble member

calculates a unique segmentation Ω𝑚 (1 ≤ 𝑚 ≤ 𝑀) (Lines 1-14),

which consists of a list of CPs. The CPs from different ensemble

members may not be the same ultimately, but they can still refer

to the same CP. For example, assume three ensemble members

compute the three CP sets: {24, 172}, {25, 178}, and {25}. These CPs

correspond to two CPs around timestamps 25 and 175. The second

step is designed based on this observation. The second step clusters

the CPs from the ensemble members (Lines 15-22). Each cluster

consists of CPs that serve as samples to estimate the actual CP.

Clusters with few samples are removed to help improve accuracy.

The third step estimates two probability distributions (Lines 23-27)

from each CP corresponding to its presence and location. From

these distributions, UQ-TSS calculates final CP predictions and the

Shannon entropy [31], a measure of uncertainty.

The details of specific components, including ensemble learning,

clustering, and prediction, are explained in the sections below.

3.3 Ensemble Learning
UQ-TSS uses randomization-based ensemble learning to combine

multiple segmentations. We use this design for several reasons.

Randomization-based ensemble learning has been proven to work

well in other data-driven UQ research [20, 26, 27, 40]. The calcula-

tions of randomization-based ensemble learning are independent

and easily parallelized. Therefore UQ-TSS does not impede the scal-

ability of any TSS algorithm used with it. Ensemble learning has

also been proven to help create more robust and accurate results in

other machine learning tasks [8].

UQ-TSS creates an ensemble of𝑀 members. Each member seg-

ments their own augmented version of the TS based on a ran-

dom selection from the candidate sets. The𝑚-th ensemble member

consists of four components, 𝑇 (𝑚) , ℎ (𝑚) (𝜆 (𝑚)
1

, . . .), 𝑓 (𝜆 (𝑚)
2

, . . .),
and 𝑔(𝜆 (𝑚)

3
, . . .) where . . . represent irrelevant input. 𝑇 (𝑚) is the

augmented TS created by our novel TS augmentation algorithm

(Section 3.1.1). The ℎ(), 𝑓 (), and 𝑔() functions correspond to pre-

processing, time series segmentation, and inference. Among these

three functions, ℎ() is randomly selected from a candidate set of

preprocessing functions H, while 𝑓 () and 𝑔() are fixed. Their hy-
perparameters are randomly selected from the three candidate sets

Λ1, Λ2, and Λ3, respectively.
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Algorithm 2 UQ-TSS(𝑇 ,𝑤 ,𝑀 , 𝑓 , 𝑔, H, Λ1, Λ2, Λ3, 𝛽)

Input: 𝑇 : original time series;𝑤 : window length used for

augmenting 𝑇 ;𝑀 : number of ensemble members; 𝑓 : time series

segmentation function; 𝑔: inference function; H: candidate set of
preprocessing methods; Λ1: candidate set for H hyperparameters;

Λ2: candidate set for 𝑓 hyperparameters; Λ3: candidate set for 𝑔; 𝛽 :

threshold value filtering out small clusters

Output: Ω′: the final CP predictions;𝑤𝐶𝑖
: the probability

distributions for CP locations; 𝑞𝐶𝑖
the probability distributions for

CP presence; U: the overall segmentation uncertainty

1: for m=1 · · · M do
2: 𝑇 ← AugmentTS(T, w) ⊲ Algorithm 1

3: /* Select preprocess method ℎ() from set H */

4: ℎ ← RandomSelection(H)
5: /* Select hyperparameters for ℎ() from set Λ1 */

6: 𝜆1 ← RandomSelection(Λ1)
7: 𝑇 ← ℎ(𝑇, 𝜆1) ⊲ Preprocess 𝑇

8: /* Select hyperparameters for 𝑓 () from set Λ2 */

9: 𝜆2 ← Random Selection(Λ2)
10: 𝑠𝑐𝑜𝑟𝑒 ← 𝑓 (𝑇, 𝜆2) ⊲ Calculate score over 𝑇

11: /* Select hyperparameters for 𝑔() from set Λ3 */

12: 𝜆3 ← RandomSelection(Λ3)
13: Ω𝑚 ← 𝑔(𝑠𝑐𝑜𝑟𝑒, 𝜆3) ⊲ Find CPs

14: end for
15: Ω𝑚𝑒𝑟𝑔𝑒𝑑 ← [Ω1,Ω2, ...,Ω𝑚, ....,Ω𝑀 ]
16: Ω′ ← Cluster(Ω𝑚𝑒𝑟𝑔𝑒𝑑 )
17: /* Calculate final CP predictions */

18: for i=1 · · · |Ω′| do
19: if |𝐶𝑖 | < 𝛽 then
20: Remove 𝐶𝑖 from Ω′

21: end if
22: end for
23: for i=1 · · · |Ω′| do
24: Estimate 𝑞𝐶𝑖

from 𝐶𝑖 ⊲ CP presence uncertainty

25: Estimate𝑤𝐶𝑖
from 𝐶𝑖 ⊲ CP location uncertainty

26: Ω′
𝑖
← Median of 𝐶𝑖 ⊲ CP prediction

27: end for
28: /* Overall Uncertainty of Segmentation */

29: U← Average entropy of 𝐶𝑖 ∈ Ω′
30: return Ω′, 𝑞𝐶𝑖

,𝑤𝐶𝑖
,U

Each member calculates an array of CP predictions denoted as

Ω𝑚 . We merge each Ω𝑚 into one array of predictions, Ω𝑚𝑒𝑟𝑔𝑒𝑑 . We

view the CP predictions within Ω𝑚𝑒𝑟𝑔𝑒𝑑 as samples for estimating

CP probability distributions. We need to find which samples within

Ω𝑚𝑒𝑟𝑔𝑒𝑑 correspond to the same CP probability distributions. A

naive approach might be to fit Gaussian mixture models to Ω𝑚𝑒𝑟𝑔𝑒𝑑 .

However, this requires the number of distributions to be known and

assumes these distributions are Gaussian. Instead, we opt to use

density-based clustering to group predictions and post-process the

clusters to estimate our CP probability distributions. Density-based

clustering does not require the number of clusters to be known and

makes no assumptions about the distribution shape.

3.4 Clustering CP Predictions
Given Ω𝑚𝑒𝑟𝑔𝑒𝑑 , we want to find which CP predictions correspond

to the same CP across the𝑀 ensemble members. For example, an en-

semblewith threemembersmay yieldΩ𝑚𝑒𝑟𝑔𝑒𝑑 = [24, 25, 25, 172, 178].
The CP predictions within Ω𝑚𝑒𝑟𝑔𝑒𝑑 indicate two CPs around ob-

servations 25 and 175. We use density-based spatial clustering [13]

(DBSCAN) to automate this process. We selected DBSCAN because

selecting its hyperparameters is very intuitive in our situation. A

user only needs to know the sampling frequency, which is readily

available information in most real-world situations. We explain this

intuition shortly.

DBSCAN requires two hyperparameters: 𝑟𝑎𝑑𝑖𝑢𝑠 and𝑚𝑖𝑛𝑃𝑡𝑠 . The

𝑟𝑎𝑑𝑖𝑢𝑠 describes the maximum distance between CPs before they

are no longer in the same neighborhood.𝑚𝑖𝑛𝑃𝑡𝑠 describes the min-

imum number of samples needed within a neighborhood for that

sample to be considered a core sample. Core samples determine

clusters, and samples are clustered together depending on whether

they are within the same neighborhood as a core point. We are

interested in all CP detections for UQ and, therefore, set𝑚𝑖𝑛𝑃𝑡𝑠 = 1.

Tuning 𝑟𝑎𝑑𝑖𝑢𝑠 is usually difficult in most applications but trivial in

ours because it directly references the time dimension. We can set

the 𝑟𝑎𝑑𝑖𝑢𝑠 according to the expected length of the changes. For ex-

ample, in human activity recordings, it is reasonable to assume that

a change from walking to running takes no more than 30 seconds.

Therefore, the 𝑟𝑎𝑑𝑖𝑢𝑠 should be set to 30 seconds of observations.

We can also adjust 𝑟𝑎𝑑𝑖𝑢𝑠 according to cluster results. If distribu-

tions are found in quick succession, this suggests 𝑟𝑎𝑑𝑖𝑢𝑠 was set too

low. If distributions span very long periods of time, this suggests

that 𝑟𝑎𝑑𝑖𝑢𝑠 was set too high.

DBSCAN yields Ω′ = {𝐶1,𝐶2, ...,𝐶𝑘 } where𝐶𝑖 is the 𝑖-th cluster

found by DBSCAN and 𝑘 is the total number of clusters found. The

CPs within each cluster serve as samples for estimating our CP

probability distributions and final CP predictions.

3.5 Final CP Predictions and Estimating
Segmentation Uncertainty

To make UQ-TSS directly comparable to other TSS methods, we

calculate its median to convert each 𝐶𝑖 ∈ Ω′ into a single CP pre-

diction. UQ-TSS provides an opportunity to improve segmentation

accuracy. Any CPs detected by only a minority of the ensemble can

be removed. More formally, for any |𝐶𝑖 | < 𝛽, remove 𝐶𝑖 ∈ Ω′.

3.5.1 Measuring Changepoint Presence and Segmentation Uncer-
tainty. This section describes how we derive our probability dis-

tributions for the presence of each CP and use it to measure seg-

mentation uncertainty. Let 𝑋𝑖 be a random variable representing

the presence of the 𝑖-th CP. Given 𝐶𝑖 ∈ Ω′, we can estimate the

probability distribution 𝑞𝐶𝑖
(𝑋𝑖 = 𝑥, 𝑝𝑖 ) where 𝑝𝑖 represents the

probability of 𝑋𝑖 = 1. We view 𝑋𝑖 as a binary random variable

where 𝑋𝑖 = 𝑥, 𝑥 ∈ {0, 1}. A value of 1 indicates the presence of a

CP, and 0 indicates its absence. Since 𝑋𝑖 is binary, we can estimate

𝑞𝐶𝑖
(𝑋𝑖 = 𝑥, 𝑝𝑖 ) as a Bernoulli distribution defined in Equation 1.

𝑞𝐶𝑖
(𝑋𝑖 = 𝑥 ;𝑝𝑖 ) = 𝑝𝑥𝑖 ∗ (1 − 𝑝𝑖 )

1−𝑥
where 𝑝𝑖 =

|𝐶𝑖 |
𝑀

(1)
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Since TSS algorithms are typically designed to avoid CPs near

each other, we can assume |𝐶𝑖 | ≤ 𝑀,∀𝐶𝑖 ∈ Ω′. Therefore, the
probability 𝑝𝑖 can be derived by dividing the size of cluster 𝐶𝑖 by

the size of the ensemble,𝑀 .

Since 𝑞𝐶𝑖
(𝑋𝑖 = 𝑥 ; 𝑝𝑖 ) is a Bernoulli distribution, we can calculate

the Shannon entropy [31] to quantify the uncertainty of the CP’s

presence [32]. Shannon entropy is commonly used to measure un-

certainty in other machine learning UQ research [39]. The Shannon

entropy for the presence of CP 𝑋𝑖 is derived as follows:

𝑈 (𝑋𝑖 ) = −𝑝𝑖 log2 𝑝𝑖 − (1 − 𝑝𝑖 )𝑙𝑜𝑔2 (1 − 𝑝𝑖 )

= −( |𝐶𝑖 |
𝑀

𝑙𝑜𝑔2
|𝐶𝑖 |
𝑀
− (1 − |𝐶𝑖 |

𝑀
)𝑙𝑜𝑔2 (1 −

|𝐶𝑖 |
𝑀
)

(2)

Shannon entropy ranges from 0 to 1, where 1 indicates maximum

uncertainty, and 0 indicates no uncertainty in a random variable’s

outcome. In UQ-TSS, the uncertainty is minimized when all en-

semble members detect a CP (i.e., |𝐶𝑖 | = 𝑀) or only one member

detects a CP (i.e., |𝐶𝑖 | = 1). Uncertainty is maximized when 50% of

the ensemble detects a CP (i.e., |𝐶𝑖 | = 𝑀
2
).

Calculating the Shannon entropy for the presence of each CP

allows us to calculate the uncertainty of the overall segmentation.

We propose averaging the entropies calculated for each CP presence.

Equation 3 defines the segmentation uncertainty.

U(Ω′) = 1

𝑘
∗

𝑘∑︁
𝑖=1

𝑈 (𝑋𝑖 ) (3)

3.5.2 Measuring Changepoint Location Uncertainty. This section
defines our approach for quantifying the uncertainty of the CP

locations. We use kernel density estimation [35] (KDE) to estimate

the probability distribution for 𝑖-th CP location, 𝑤𝐶𝑖
(𝑌𝑖 = 𝑦). We

select KDE because it is computationally efficient and makes no

assumptions about the shape of the probability distribution. We

view the CP location for the 𝑖-th CP as a random variable denoted as

𝑌𝑖 . Our KDE is defined in Equation 4 where𝑌𝑖 takes on the values in

𝐶𝑖 . We use the Gaussian kernel defined as 𝐾 (𝑢) in Equation 4. The

Gaussian kernel highlights where CP locations coalesce, an impor-

tant aspect of CP location UQ. These highlighted locations help us

determine the different interpretations of where the change occurs

within the TS. We provide a detailed discussion in Section 4.2. The

hyperparameter ℎ refers to the bandwidth. We automate the selec-

tion of 𝑏 by using the improved Sheather Jones (ISJ) algorithm [7].

The ISJ algorithm is well suited for estimating various distributions,

which we expect to find for our CP location distributions.

𝑤𝐶𝑖
(𝑌𝑖 = 𝑦) =

1

𝑏 ∗ |𝐶𝑖 |

|𝐶𝑖 |∑︁
𝑗=1

𝐾 (
𝑦 − 𝑦 𝑗
𝑏
)

𝐾 (𝑢) = 1

√
2𝜋

exp(−𝑢
2

2

)

(4)

We can analyze𝑤𝐶𝑖
to infer the uncertainty of the CP location.

For example, a small variance implies less uncertainty about the

location of the CP and vice versa. However, this may not always

be true. A flat uniform distribution may have a high variance, but

it implies the change within the TS is more gradual, and trying to

define it as a CP is improper. There is no uncertainty about the

location of a CP; a uniform distribution just indicates that a more

gradual change is occurring over that span of time. The number of

modes of the distribution can also indicate uncertainty. A bimodal

distribution implies two interpretations for the CP location and,

therefore, more uncertainty compared to a normal distribution with

a single mode. Overall, analyzing the shape of the distribution is

just as important for accessing the uncertainty for the CP location

as the statistical moments like variance.

4 Experiment Evaluation
We design all experiments to be reproducible, and the code is pub-

licly available, documented, and ready to use [11].

To the best of our knowledge, this is the first study of a frame-

work for estimating the uncertainty of any given TSS method and

TS dataset. There are no other methods that we can directly com-

pare to UQ-TSS. There are also no trivial solutions to adapt existing

TSS methods for UQ. Additionally, there is no ground truth to tell

us how much uncertainty a segmentation should have from a spe-

cific TSS method and dataset. Therefore, it would be difficult to

say which measure of uncertainty is more correct between two

generalized UQ frameworks for TSS. Instead, we opt to evaluate

UQ-TSS to showcase

• how uncertainty measures of UQ-TSS differ from and are

more useful than accuracy;

• how UQ-TSS can be used to guide hyperparameter perfor-

mance;

• what interpretations of CP locations we can infer from UQ-

TSS output.

In Section 4.2 and Section 4.3, we incorporate different baseline

TSS algorithms including PELT [19], FLOSS [14], ClaSP [12], and

BOCPD [1], which are detailed later, into UQ-TSS and conduct

experiments on one long TS (often neglected in TSS literature) and

32 standard benchmark TS to demonstrate the above three aspects.

We also test the following: the effectiveness of our TS data aug-

mentation for TSS compared against baselines (Section 4.4); se-

lecting ensemble size (Section 4.5); and computational overhead

(Section 4.6).

General settings. We set the data augmentation window length

(𝑤 ) to span 0.5 seconds of observations. Our supportingwebsite [11]

provides experiments on the sensitivity of𝑤 . Overall, its selection

is robust, and we omit the results from this paper for brevity. 𝛽

in Algorithm 2 is set to 0.15 ∗ 𝑀 . We use covering to measure

segmentation accuracy [37].

4.1 Datasets
We use a benchmark collection of 32 TS from other recent TSS

research [12, 14]. This repository contains a mix of real, synthetic,

and semi-real TS. However, much of this repository contains shorter

TS with few CPs (1 in most cases). We provide the full dataset details

on our supporting website [11].

We also use the long TS, PAMAP2 [29] to evaluate UQ-TSS.

PAMAP2 is a 10.7-hour TS of a person performing various physical

activities. The dataset consists of 3850505 observations over 45 vari-

ables and contains 25 CPs to detect. We showcase PAMAP2 because

these types of TS datasets naturally have more opportunities for un-

certainty to arise than shorter TS datasets. The higher uncertainty
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and more CPs allow us to better demonstrate the hyperparameter

optimization and CP location distributions of UQ-TSS.

4.2 Uncertainty Quantification: PAMAP2
This experiment demonstrates how UQ-TSS helps guide hyperpa-

rameter selection, create different interpretations for CP locations,

and how uncertainty metrics differ from traditional accuracy met-

rics.

4.2.1 Settings. We select Pruned Exact Linear Time (PELT) [19] as

our TSS algorithm. PELT is well suited for long multivariate TS like

PAMAP2. However, hyperparameter optimization is difficult due to

PELT’s lack of indicators. PELT uses two hyperparameters: Penalty

and Jump. Jump determines how many observations are skipped in

the calculation. Jump is used to control the running time but has

some influence on CP location. Penalty is a threshold value. An

observation above the penalty is considered a CP. When optimizing

PELT, the main concern is how to set the penalty.

We test penalty settings from 17000 to 33000 (step size 1000).

Bayesian Information Criterion (BIC) [22], often used to help set

this hyperparameter, yielded ≈ 20000 for PAMAP2. BIC tends to

underestimate. Thus, our selection of penalty values is skewed to

include more high-end values. We set the ensemble size𝑀 = 200.

We set the DBSCAN distance to 5 seconds of observations. The

range of the penalty candidate set is 4000 with a step size of 1000.

For example, when testing penalty=28000, a candidate set of [26000,

27000, 28000, 29000, 30000] is generated. These sets are established

based on neighboring values yielding very similar segmentations.

They reflect the user’s uncertainty when trying to set the penalty.

The jump candidate set is [80, 90, 100, 110, 120]. For each PELT

segmentation, we measure the uncertainty and accuracy without

UQ-TSS, as well as accuracy with UQ-TSS.

We ran this experiment 10 times. The variance between results

was minuscule, showing UQ-TSS to be very stable. Full details of

these results can be found on our supporting website [11].

Figure 2: Uncertainty and covering of PELT segmentations
over increasing penalty settings.

4.2.2 Interpreting Uncertainty with UQ-TSS. Figure 2 demonstrates

how the uncertainty measure of UQ-TSS can guide hyperparameter

selection. The top plot shows the accuracy of PELT’s segmentations

with and without UQ-TSS across the penalty settings 17000 to 33000.

The bottom plot shows the uncertainty of the segmentations. The

penalty=31000 achieves the highest accuracy. The penalty=26000

achieves the lowest uncertainty.

In a scenario where ground truth is known, we can evaluate the

segmentations based on accuracy and uncertainty and tune the

penalty accordingly. Without looking at the uncertainty, setting

the penalty=31000 is the most reasonable choice since this is where

segmentation accuracy is highest. However, this segmentation has

much higher uncertainty compared to when penalty=26000. The

difference between their accuracies is only 1%. With knowledge

of the uncertainty and accuracy, a penalty=26000 is arguably the

better choice since it still maintains a high accuracy but has much

lower uncertainty.

In a scenario where ground truth is unknown, we can still evalu-

ate segmentation performance based on measures of uncertainty

alone. The penalty settings of 25000 and 26000 both yield low un-

certainty segmentations. Unbeknownst to the user, either selection

would result in high accuracy. This demonstrates that uncertainty

can be effective for hyperparameter tuning.

Lastly, Figure 2 also shows that most PELT segmentations with

UQ-TSS have slightly better or similar accuracy than those without

UQ-TSS.

Figure 3: Examples of CP location probability distributions
calculated by UQ-TSS.
4.2.3 Changepoint Location Uncertainty. ThemanyCPs of PAMAP2

provide an opportunity to test UQ-TSS’s CP location UQ. As men-

tioned before, we cannot validate due to the lack of ground truth

available for such aspects of TSS. However, the main point of this

experiment is to demonstrate how to infer the uncertainty of the

CP location and highlight the valuable information one can gain

from analyzing such information.

These distributions help a user identify spans of uncertainty.

A user can interpret observations within the span as belonging

to either the activity before or after the change. Excluding these
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spans of uncertainty can lead to purer examples on which other

downstream models can train. We can also create different inter-

pretations for where a change occurred. This information is useful

in scenarios where establishing cause and effect is important, e.g.,

finding the exact trigger for a person’s seizure in an EEG recording.

Figure 3 shows four examples of CP location probability distri-

butions found by UQ-TSS with PELT (penalty=28000) arranged in

increasing levels of uncertainty. The x-axis represents the index

of PAMAP2, where UQ-TSS estimates the probability distribution.

The y-axis represents the probability. Example 1 shows a unimodal

distribution where nearly all ensemble members detected the CP

at observation 138600. Example 2 is a bimodal where most of the

ensemble detected the CP at observation 362700, but some also de-

tected it earlier. Example 3 is another bimodal distribution but with

an even split between two points in time. Example 4 is a multimodal

distribution showing much disagreement among the ensemble and,

therefore, high uncertainty.

4.3 Testing Wider Application of UQ-TSS
The purpose of this experiment is to test UQ-TSS on a variety of TS

datasets and methods. We use a repository of 32 TS datasets and 3

TSS algorithms. We use an ensemble size of 200 for each TSS algo-

rithm. We describe the algorithms and relevant hyperparameters

below. We select these TSS algorithms because they are SOTA, or

benchmark studies have shown they are very competitive [37].

FLOSS. FLOSS [14] uses the matrix profile data structure. This data

structure relies on a subsequence length to calculate a score over

the TS to infer CP locations. We create a candidate set with five

values based on 0.8 to 1.2 times the optimal subsequence length

provided by the authors [14]. The candidate set for prominence is
[0.25, 0.30, 0.35].

ClaSP. ClaSP [12] classifies subsequences using self-supervised

learning. ClaSP automates any hyperparameter selections and is

parameter-free.

BOCPD. BOCPD [1] uses Bayesian statistics and a user-defined

probability distribution to calculate the likelihood a change has

occurred. We use a student-t distribution with three hyperparam-

eters for variance, skewness, and kurtosis. The candidate set for

all of them is [0.1,0.3,0.5]. BOCPD uses a hazard function with one

hyperparameter to describe the time between CPs. We create a

candidate set of five values based on 0.8 to 1.2 times one-fifth of the

TS length. Lastly, The candidate set for prominence is [0.25, 0.30,
0.35].

General settings. We base the candidate sets for hyperparameters

of the TSS algorithms and inference on the guidelines discussed in

Section 3.1.2 and Section 3.1.3, respectively. We use the find_peaks
algorithm from the SciPy library to detect peaks in scores over time.

Methods

FLOSS ClaSP BOCPD

Better/Same/Worse 18 / 8 / 6 25 / 3 / 4 18 / 2 / 12

Table 1: TSS method performance changes across 32 datasets
when used with UQ-TSS versus without UQ-TSS.

Table 1 shows howmany dataset segmentations had better, same,

or worse accuracy for each TSS method using UQ-TSS compared

to without using UQ-TSS. We consider the accuracy to be the same

Figure 4: TS Dataset with high segmentation uncertainty
among all three TSS methods.

if the difference is < 3%. We found differences of < 3% to have

insignificant changes in CP location.

Table 1 shows all three algorithms have an increase in perfor-

mance across most of the 32 datasets when used with UQ-TSS.

However, some datasets show worse performance. Most notably,

BOCPD with UQ-TSS has poorer performance across 12 datasets.

This is not necessarily a fault with UQ-TSS but an indicator that

these specific datasets have much uncertainty associated with them.

Alternatively, the TSS algorithm is simply a poor choice for seg-

menting the dataset. Datasets with worse performance among the

three TSS algorithms strongly indicate a high uncertainty associ-

ated with them. Inspecting these datasets should reveal ambiguous

CPs that are unlabeled in the given ground truth. We can use these

datasets to verify UQ-TSS by showing that UQ-TSS detects these

uncertain CPs.

Figure 5: Uncertainty boxplots of better, same, and worse
performance categories for the TSS methods FLOSS, ClaSP,
and BOCPD.

Figure 4 shows an example of a TS with worse performance

across all three TSS methods. The TS is the insect electrical pen-

etration graph (EPG) dataset, which is a recording of an insect’s

movements. The y-axis is the amplitude, and the x-axis is the ob-

servations. This TS is labeled with a single CP indicated by the

red vertical line. The green vertical lines indicate the approximate

locations where FLOSS with UQ-TSS detected a CP. These areas are

clearly ambiguous, displaying a sudden drop in mean at the first
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green vertical line and a sudden change in variance at the last green

vertical line. These detections by UQ-TSS cause worse performance

but also show that UQ-TSS successfully captures this uncertainty.

Our primary concern are datasets where the TSS algorithm with

UQ-TSS performs worse and the uncertainty is low. To a user, a low

uncertainty would falsely indicate that the TSS is well suited for

segmenting that TS even though performance is worse. Figure 5

shows boxplots of the uncertainty across all three categories of

performance change (better, worse, and same) for all three TSS

algorithms. The boxplots show that the uncertainty for worse-

performing datasets is high across all three TSS algorithms, with a

minimum uncertainty greater than 0.5. This result indicates that

these TSS algorithms are poor choices for segmenting those specific

datasets.

Augmentation Algorithms Accuracy
Original 0.967

UQ-TSS TS Augmentation 0.980

Jittering 0.415

Pooling 0.783

Time Warp 0.720

Block Bootstrapping 0.406

Table 2: Effects of augmentation algorithms on TSS accuracy.

4.4 Time Series Augmentation Effectiveness
Table 2 shows segmenting on our augmented TS maintains the

accuracy of the original segmentation. Every baseline performs

much worse than the original. This demonstrates the unsuitability

of these baselines for TSS purposes.

4.5 Selecting Ensemble Size
This section tests the necessary ensemble size for UQ-TSS to ac-

curately measure a segmentation’s uncertainty. We use three TSS

algorithms: ClaSP, FLOSS, and BOCPD. ClaSP uses no candidate

sets, FLOSS uses two candidate sets, and BOCPD uses five candidate

sets. We use the ”Insect EPG” TS from the 32 dataset repository

for this experiment because all three TSS algorithms measured

high levels of uncertainty. We expect the number of candidate sets

associated with each TSS method to affect the required ensemble

size. Each candidate set is a source of uncertainty. TSS methods

with more candidate sets likely require a bigger ensemble to accu-

rately capture its uncertainty from all its sources. ClaSP, FLOSS,

and BOCPD have candidate sets of 0, 2, and 5, respectively.

Figure 6 shows the uncertainty as ensemble size increases from

10 to 300 of ClaSP, FLOSS, and BOCPD. We see stability around

an ensemble size of 75 for ClaSP and FLOSS. However, BOCPD

Figure 6: Uncertainty Measures of FLOSS, ClaSP, and BOCPD
as Ensemble Size Increases.

requires an ensemble size of 175. We can conclude that the number

of candidate sets does affect the required ensemble size for measur-

ing uncertainty accurately. TSS with more candidate sets requires

larger ensembles. The relationship seems to be around 25 members

per candidate set, in addition to a minimum size of 75. We also see

how BOCPD uncertainty measures are always relatively higher

than those of ClaSP and FLOSS. Therefore, even small ensembles

are useful for gauging the uncertainty of the segmentation.

Our results indicate an ensemble size of ≈ 100 members is re-

quired even for scenarios with no candidate sets. This may seem

large, but most TSS algorithms are designed to be computation-

ally inexpensive and running 100 instances is not an issue even in

non-supercomputer settings.

Figure 7: Running time of PELT with UQ-TSS as ensemble
size increases.

4.6 Efficiency analysis
Figure 7 shows the running time of PELT with UQ-TSS and a TS

with a length of 500000 observations as the ensemble size increases

from 10 to 250. We chose PELT because of its capability to analyze a

long TS. The linear trend shows that the computations for capturing

and measuring uncertainty have negligible computational costs.

Therefore, the running time of UQ-TSS mainly depends on the TSS

algorithm and the size of the ensemble. This running time can easily

be mitigated by parallelizing each ensemble member since each

member is independent.

5 Conclusions
We propose UQ-TSS, a generalized framework for measuring seg-

mentation uncertainty from any given TSS algorithm and dataset.

We identify the sources of uncertainty in TSS and design mecha-

nisms for UQ-TSS to capture them. This includes a novel TS aug-

mentation algorithm for capturing TSS data uncertainty. UQ-TSS

uses ensemble learning to combine multiple CP predictions and

use them as samples to estimate probability distributions. UQ-TSS

characterizes these distributions to determine CP predictions, the

uncertainty of CP presence, the uncertainty of CP locations, and the

overall uncertainty of the segmentation. UQ-TSS provides several

benefits for TSS, including new evaluation measures, segmentation

refinement, hyperparameter guidance, and the creation of different

interpretations of CP locations.
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