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Abstract—In this work, we employ neural architecture search
(NAS) to enhance the efficiency of deploying diverse machine
learning (ML) tasks on in-memory computing (IMC) architec-
tures. Initially, we design three fundamental components inspired
by the convolutional layers found in VGG and ResNet models.
Subsequently, we utilize Bayesian optimization to construct
a convolutional neural network (CNN) model with adaptable
depths, employing these components. Through the Bayesian
search algorithm, we explore a vast search space comprising
over 640 million network configurations to identify the optimal
solution, considering various multi-objective cost functions like
accuracy/latency and accuracy/energy. Our evaluation of this
NAS approach for IMC architecture deployment spans three dis-
tinct image classification datasets, demonstrating the effectiveness
of our method in achieving a balanced solution characterized by
high accuracy and reduced latency and energy consumption.

Index Terms—In-memory computing, neural architecture
search, processing-in-memory, memristive crossbar, optimization.

I. INTRODUCTION

In-memory computing (IMC) architectures, also referred
to as processing-in-memory (PIM) or compute-in-memory
(CIM), have emerged as promising alternatives to traditional
von Neumann-based machine learning (ML) hardware [1],
[2]. These architectures capitalize on characteristics such as
massive parallelism, analog computation, and executing com-
putations directly where data is stored, resulting in notable
performance enhancements [3]–[5]. The backbone of most
IMC architectures lies in memristive crossbar arrays, which
leverage resistive memory technologies like resistive random-
access memory (RRAM) [6] and magnetoresistive random-
access memory (MRAM) [7]. These arrays enable matrix-
vector multiplication operations in the analog domain, using
fundamental circuit principles such as Ohm’s Law and Kir-
choff’s Current Law [8], [9].

Despite the aforementioned advancements, prior research
has shown that deploying ML models that are pre-trained
and optimized using digital von Neumann architectures, such
as CPU and GPU, on an analog IMC architecture does
not consistently yield comparable performance [10]. Several
factors contribute to this, including limited numerical precision
of memristive devices [11], as well as circuit imperfections
such as the interconnect parasitic [12], and device-to-device
and cycle-to-cycle variations [13]. The in-circuit training [14]
is introduced as a mechanism to address the deployment chal-
lenges by bringing the IMC circuits within the loop of training
and allowing the ML models to learn the circuit imperfections.

However, this method may face limited applicability due to
the endurance constraints of memristive devices [15]. These
devices can lose their storage capability after a certain number
of repeated write operations.

Another strategy involves utilizing IMC hardware simula-
tors like Neurosim [16], MNSIM [17], and IMAC-Sim [18] to
emulate the characteristics of IMC circuits and the mapping
strategies for deploying ML models on an IMC chip. This
method, which we termed pre-silicon optimization, involves
adjusting circuit and device level parameters to achieve spe-
cific objectives. One advantage of this approach is its holistic
exploration of both IMC circuit and neural architecture param-
eters. However, pre-silicon optimization methods [19]–[22] are
primarily intended for chip manufacturers to make early design
decisions before chip fabrication.

Our paper focuses on another mechanism, termed post-
silicon optimization1, which integrates hardware deployment
into the optimization loop but only adjusts neural architecture
parameters related to the ML model while keeping hardware
parameters fixed. This approach utilizes hardware measure-
ments such as accuracy, latency, and energy to formulate a
multi-objective fitness function (FF). The neural architecture
search (NAS) algorithm leverages this fitness function to
develop models that can perform effectively despite IMC
circuit limitations, without modifying the circuit itself. While
our paper does not employ physical hardware implementation
of IMC circuits, the proposed methodologies can be readily
applied to optimize and deploy various ML models on IMC
architectures.

II. ANALOG IMC ARCHITECTURE BACKGROUND

Figure 4 demonstrates the hierarchical structure of the
In-Memory Computing (IMC) architecture [17]. The IMC
architecture consists of multiple IMC banks, the global buffer,
the global accumulator, and the IMC controller as shown in
Fig. 4a. The IMC controller receives the status updates from
the CPU and controls the data movement between DRAM
and the IMC banks. Global buffer and global accumulator are
necessary for the elementwise-sum operation to implement the
skip-connections in ML models like ResNet [23]. Inside an
IMC bank, arrays of tiles are connected using a network-on-
chip structure. Inside a tile, there are multiple processing ele-

1The term “post-silicon” does not imply the necessity of physical hardware
for optimization. Instead, it emphasizes optimizing parameters that can be
adjusted after hardware fabrication.
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Fig. 1: (a) The analog IMC architecture with multiple IMC banks each of which includes several interconnected IMC tiles [17].
(b) The IMC tile consists of a network of tightly coupled processing elements (PEs). (c) The structure of the IMC processing
element that includes memristive crossbars in its core.

Fig. 2: The proposed NAS methodology for multi-objective
optimization of ML workloads deployed on analog IMC
architectures.

ments (PE) and a pooling module along with input and output
buffers as shown in Fig. 4b. The PE blocks contain crossbars
of resistive memory devices such as RRAM and the peripheral
circuits. Peripheral circuits vary based on analog and digital
IMC. Figure 4c shows the internal structure of an analog
PE. Analog IMC requires analog-to-digital converter (ADC)
and digital-to-analog converter (DAC) blocks as peripheral
circuits, while digital IMC requires digital computational
units, shift-and-add circuits, and sense amplifiers. Crossbars
perform matrix-vector multiplication (MVM) operations in
either analog or digital domains. In the analog IMC, which
is the architecture utilized in this paper, the weight kernels
are expanded into a vector and loaded onto the columns of the
crossbars. The input feature map is also expanded into a vector

and provided as inputs to the crossbar. The crossbar performs
the MVM operation using fundamental circuit principles in
parallel and in O(1) time complexity.

III. THE PROPOSED NAS METHODOLOGY

In this paper, we present a novel neural architecture search
(NAS) approach for multi-objective optimization of the ML
workloads deployed on analog IMC architectures. The high-
level description of the proposed methodology is illustrated in
Fig. 2. We employ the Hyperopt library [24] to handle the NAS
process. Hyperopt [24] is a Python library designed for au-
tomated hyperparameter tuning, employing various sequential
model-based optimization techniques, also known as Bayesian
optimization. The search process is an iterative process that is
repeated for a certain number of iterations set by the user,
and the best model is selected based on a pre-defined fitness
function (FF).

We have integrated Hyperopt with PyTorch and MNSIM 2.0
[17] frameworks to perform the multi-objective optimization.
In each iteration, Hyperopt automatically selects a model
configuration from the search space and uses PyTorch and
MNSIM to obtain the model accuracy as well as the IMC
hardware performance metrics such as latency and energy.
These metrics are combined to form multi-objective FF such
as accuracy/latency or accuracy/energy.

Before beginning the optimization, we should first create the
search space. Here, we focus on convolutional neural networks
(CNNs) as representative ML workloads. We design three
distinct building blocks: (1) the VGG block with sub-sampling,
(2) the modified VGG block (MVGG) without sub-sampling,
and (3) the ResNet block (RES). As shown in Fig. 3a, the
VGG block with sub-sampling consists of two consecutive
convolutional layers with a kernel size of 3× 3. The number
of kernels (k) is determined during the optimization phase.
Following these layers, a ReLU activation function and a 2×2
max-pooling layer are applied. In the MVGG block depicted in
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Fig. 4: The network configuration. R ReLU, D Dropout, S Softmax.

Fig. 3b, we remove the sub-sampling block. This decision is
made to leverage the inherent properties of the VGG block
without downsizing the feature map dimensions within the
network. The RES block, depicted in Fig. 3c, consists of
two consecutive convolutional layers, each configured with k
kernels and a 3× 3 kernel size. Following each convolutional
layer, a batch normalization layer is applied, with a ReLU
activation function positioned between them. On the residual
connection side, there is a convolutional layer with k kernels,
each having a size of 1×1. Similar to VGG blocks, the number
of kernels is determined during the optimization phase. The
outputs from both the convolutional layers and the residual
connection are combined, and then a ReLU function is applied.

The overall structure of the CNN models created in this
paper is illustrated in Fig. 4, incorporating the aforementioned
building blocks. We include several adjustable parameters to
optimize the networks. As outlined in Table I, the parameters
available for tuning are (1) the number of blocks (Block) can
vary between 3 and 8, allowing for different network depths;
(2) the type of each block (BT ) can be any of the three
building blocks, including VGG with sub-sampling (V GG),
modified VGG without sub-sampling (MVGG), and ResNet
block (RES); (3) the number of kernels (K) for each block
ranging from 16 to 256. After the flatten layer, the number
of layers and neurons in the fully connected layers remain

TABLE I: Network configuration settings

Parameters Description Options
Block No. of blocks in the network 3-8
BT The block type Res, VGG, MVGG
K No. of kernels in each conv layer 16, 32, 64, 128, 256

fixed. These configurable parameters collectively define a
search space comprising over 641 million unique network
configurations.

IV. RESULTS

To validate the effectiveness of our proposed method, we
conduct comprehensive experiments utilizing three distinct
datasets: (1) the American Sign Language (ASL) Alphabet
Dataset [25], featuring static images for hand gesture classifi-
cation across 24 letters (excluding motion-dependent J and Z);
(2) the Extended Cohn-Kanade (CK+) Dataset [26], containing
593 video sequences to evaluate facial expression recognition
as subjects transition between neutral and seven distinct emo-
tions; and (3) CIFAR-10 [27], a well-known dataset in the
computer vision field for assessing object recognition capabil-
ities with 60,000 color images across 10 classes. To attain
the multi-objective optimization, we run our method with
three different fitness functions- accuracy, accuracy/latency,
and accuracy/energy, which ensures a holistic view of the



(a) (b) (c)

Fig. 5: Distribution of NAS outputs for ASL dataset (The best model is marked by ⋆) (a) distribution of accuracy when
FF = accuracy (b) distribution of accuracy vs latency when FF = accuracy/latency (c) distribution of accuracy vs energy
when FF = accuracy/energy.
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Fig. 6: Distribution of NAS outputs for CK+ dataset (The best model is marked by ⋆) (a) distribution of accuracy when
FF = accuracy (b) distribution of accuracy vs latency when FF = accuracy/latency (c) distribution of accuracy vs energy
when FF = accuracy/energy.

(a) (b) (c)

Fig. 7: Distribution of NAS outputs for CIFAR-10 dataset (The best model is marked by ⋆) (a) distribution of accuracy when
FF = accuracy (b) distribution of accuracy vs latency when FF = accuracy/latency (c) distribution of accuracy vs energy
when FF = accuracy/energy.

method’s performance, encompassing both its classification
accuracy and operational efficiency across a variety of visual
recognition tasks.

Figure 5, 6 and 7 show the distribution of NAS outputs
for ASL, CK+ and CIFAR-10 datasets, respectively. For the
ASL and CK+ datasets, we train 100 distinct models for the
optimization of each of the fitness functions and identify the
model with the best values of the fitness functions. As the
outputs do not have much improvements after around 50 model
evaluations, we train 50 models for the CIFAR-10 dataset to
save simulation time. Table II lists the model descriptions
that are identified as the best model in terms of different
fitness functions. When the accuracy fitness function is used,
the proposed method tends to identify deeper models which
leads to higher accuracy due to better generalization in a

higher number of layers. The identified models also have a
higher number of kernels, which provides a higher number
of convolutional filters to allow learning more features. As an
instance, for the CIFAR-10 dataset, the best model with the
accuracy fitness function picks as many as 6 blocks, which
shows 90.24% accuracy, with 15 ms latency and 6.7 mJ energy
consumption. Two of the blocks have a kernel size of 256,
which was set as the highest number of kernels possible for a
block in our search space.

With the accuracy/latency FF, the proposed method tends to
identify shallower models and less number of kernels which
leads to less computation cycle and less latency. The energy
consumption also reduces at the same time due to less data
movement on the IMC chip and the accuracy drops due to
fewer features and less generalization of the features. For the



TABLE II: Best model architecture identified by the proposed NAS method for various datasets and fitness functions. Accuracy,
Latency, and Energy metrics are denoted by Acc, Lt, and En, respectively.

FF Dataset Best Model Architecture Accuracy Latency Energy

A
cc

BT1/K1 BT2/K2 BT3/K3 BT4/K4 BT5/K5 BT6/K6 (ms) (mJ)

ASL MVGG/32 RES/16 VGG/128 VGG/128 RES/128 RES/64 99.98% 4.8 1.01

CK+ RES/16 VGG/16 VGG/16 VGG/64 MVGG/64 - 99.49% 4.22 0.273

CIFAR RES/128 MVGG/32 VGG/256 RES/32 VGG/128 RES/256 90.24% 15 6.7

A
cc
/
L
t

ASL MVGG/16 VGG/16 RES/16 - - - 99.41% 0.78 0.07

CK+ VGG/16 VGG/64 VGG/128 - - - 97.97% 2.1 0.37

CIFAR VGG/32 VGG/32 RES/32 - - - 84.07% 1.62 0.158

A
cc
/
E
n

ASL VGG/16 VGG/16 VGG/64 - - - 99.27% 0.72 0.048

CK+ VGG/16 VGG/16 MVGG/64 MVGG/16 - - 89.34% 2.04 0.15

CIFAR VGG/32 VGG/32 VGG/64 VGG/128 VGG/128 - 83.33% 1.71 0.183

CIFAR-10 dataset with accuracy/latency fitness function, the
identified model uses only three blocks having only 32 kernels
each, which shows latency improvement to 1.62 ms and energy
reduction to 0.158 mJ, but the accuracy drops to 84.07%.

The accuracy/energy fitness function tends to identify shal-
low models and avoids the RES blocks. A possible reason for
avoiding the RES blocks might be the usage of the global
accumulator to implement the skip-connections in the IMC
architecture, which leads to more data transfer and higher
energy consumption. With accuracy/energy fitness function on
the CIFAR-10 dataset, a 5-block model is picked where none
of the blocks are RES blocks. The model shows as low
as 0.183 mJ energy consumption, with an accuracy drop to
83.33% and a latency of 1.71 ms. It is noticeable that putting
the same weights to accuracy and other hardware metrics leads
to significant drops in accuracy in some of the datasets such as
CIFAR-10 and CK+ with accuracy/energy fitness function. One
potential solution is to increase the exponent of the accuracy
metric in the fitness function such as accuracyn

/energy where
n > 1. We also observe that for none of the datasets and fitness
functions, models with 7 or 8 blocks are selected although it
was a possibility in the search space. It is possible that those
blocks would be used for more challenging datasets with more
complex features.

V. CONCLUSION

In this paper, we explored multi-objective neural architec-
ture search for efficient deployment of CNNs in analog in-
memory computing (IMC) architectures. We constructed a
search space using various building blocks inspired by the
convolution layers in VGG and ResNet models. We utilized
multi-objective fitness functions combining network accuracy
with hardware performance metrics such as latency and energy.
Using Bayesian optimization, we explored the search space
over three different image classification datasets to identify
the best model based on the suggested fitness functions,
which revealed some interesting nuances. The exploration

with the accuracy fitness function identified deeper models
with a higher number of kernels as optimal solutions. When
the hardware evaluation metrics are incorporated into the
fitness function, such as accuracy/latency and accuracy/energy,
shallower models with a lower number of kernels are selected.
Moreover, our observations exhibit that the optimization algo-
rithm avoids using RES blocks with skip connection in the
network architecture when energy is incorporated into the
fitness function. This can be associated with the particular
specification of the analog IMC architecture which uses a
global accumulator to handle the skip connections.
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