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ABSTRACT. The non-orientable 4-genus of a knot K in S
3 is defined to be the minimum first

Betti number of a non-orientable surface F smoothly embedded in B
4 so that K bounds F . We

will survey the tools used to compute the non-orientable 4-genus, and use various techniques to
calculate this invariant for non-alternating 11 crossing knots. We also will view obstructions to a
knot bounding a Möbius band given by the double branched cover of S3 branched over K.

1 INTRODUCTION

Knots bounding orientable surfaces, both in S
3 and B

4, have been extensively studied, however
much is still to be learned about the non-orientable surfaces in B

4 bounded by knots. Recently, the
non-orientable 4-genus of torus knots has been computed for all knots T (2, q) and T (3, q) by Allen
[1], and most knots T (4, q) by Binns, Kang, Simone, Truöl, and Sablo! [2, 15]. The non-orientable
4-genus of double twist knots was calculated by Hoste, Shanahan, and Van Cott [6], and knots
with 10 or fewer crossings have also been computed in detail by Ghanbarian, Jabuka, and Kelly
[3, 7], with much focus on alternating knots. This paper aims to shed light on the non-alternating
case and strategies to calculate the non-orientable 4-genus. We will explore various techniques in
finding this invariant, as well as examining obstructions to knots bounding a Möbius band.

For this paper, a knot K is in S
3. The orientable 4-genus of a knot is the minimum genus of an

orientable surface smoothly embedded in the 4-ball that is bounded by K and is denoted g4(K),
and knots with g4(K) = 0 are called slice knots. Following Murakami and Yasuhara in [13], the non-
orientable 4-genus of a knot K, denoted ω4(K), is defined to be the minimum first Betti number of
non-orientable surfaces F smoothly embedded in B

4 bounded by K, that is min{b1(F )⌜εF = K}.
Note that the first Betti number is defined to be b1(F ) = dimH1(F ;Q). We have, by definition,
for any knot K, ω4(K) ≥ 1 where equivalence applies when K bounds a Möbius band. Slice knots
that bound a smooth disk embedded in B

4 have non-orientable 4-genus one, as we may attach a
non-oriented band to such an embedded disk.

Theorem 1.1. For the 185 non-alternating 11 crossing knots,

(a) 121 knots have ω4(K) = 1
(b) 58 knots have ω4(K) = 2
The remaining 6 knots have ω4(K) = 1 or 2.

The paper is organized as follows: Section 2 is the background on knot invariants, double
branched covers, and useful bounds and obstructions for the non-orientable 4-genus. Section 3
is a survey of the techniques used to solve this problem as well as results.
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permitting my use of the Knot Atlas figures [9].
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2 BACKGROUND

We begin by reviewing knot invariants and examining bounds for the non-orientable 4-genus as
well as obstructions to a knot bounding a Möbius band. First, the crossing number of a knot is
denoted n(K) and is the crossing number of a diagram of a knot with the fewest crossings that
could be drawn on the plane to represent the knot. The unknotting number of a knot u(K) is the
minimum number of crossing changes required to transform K into the unknot. Similarly, us(K)
is the minimum number of crossing changes to change K into a slice knot. The 4-dimensional clasp
number, c4(K), is the minimum number of double points of transversely immersed 2-disks in the
4-ball bounded by K [13]. We then have the following triple inequality from Jabuka and Kelly [7]:

g4(K) ≤ c4(K) ≤ us(K) ≤ u(K)
The smooth orientable 4-genus of a knot also o!ers an upper bound for the non-orientable 4-genus

[7]:

ω4(K) ≤ 2g4(K) + 1
Similar to the orientable 4-genus, we obtain an upper bound for the non-orientable 4-genus from

the non-orientable 3-genus of a knot called the crosscap number [10], which is the minimum genus
non-orientable surface a knot bounds in S

3, denoted c(K), so we have ω4(K) ≤ c(K).
Following the notation of Murakami and Yasuhara [12], we define ”4(K) =min{b1(F )⌜εF =K},

or similarly ”4(K) = min{2g4(K),ω4(K)}, and thus ”4(K) ≤ ω4(K). Murakami and Yasuhara
then give us the following proposition [13]:

Proposition 2.1 (Proposition 2.3 in [13]). For any knot K, the following inequalities hold.

”4(K) ≤ ⌜c4(K) if c4(K) is even

c4(K) + 1 otherwise

ω4(K) ≤ ⌜c4(K) if c4(K) is even and c4(K) ≠ 2
c4(K) + 1 otherwise

Corollary 2.2 (Corollary 2.4 in [13]). For a knot K, if g4(K) = c4(K) ≥ 1, then ”4(K) = ω4(K).
The crossing number of a knot o!ers an upper bound, so we have [12]:

”(K) ≤ ⌝n(K)
2
⌝ and ω4(K) ≤ ⌝n(K)

2
⌝

The signature of a knot ϑ(K) is defined to be the signature of the sum of knot’s Seifert matrix
and its transpose, ϑ(V + V t). The Arf invariant of a knot is denoted Arf(K) and is a concordance
invariant in Z2 which is calculated using the Seifert form of a knot [10]. These two invariants
provide a lower bound for the non-oriented 4-genus of a knot, so we have the following proposition.

Proposition 2.3 (Proposition 2.4 in [3]). Given a knot K, if ϑ(K) + 4Arf(K) ≡ 4 (mod 8), then
ω4(K) ≥ 2.

Double Branched Cover

Recall the definition of the non-orientable 4-genus is ω4(K) =min{b1(F )⌜εF =K} and note that
b1(F ) = dimH1(F,Q). Let K in S

3 bound a connected surface F in B
4 and denote the double

branched cover of B4 branched over F as DF (B4). Gilmer and Livingston proved in [4], Lemma
1, that b2(DF (B4)) = b1(F ). The reasoning here is that the double branched cover of S3 branched
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over K, denoted DK(S3), is a rational homology sphere and H1(DF (B4);Q) = 0. We thus may
use the linking form of DK(S3) to provide information on the intersection form of DF (B4).

We also have that the first homology of DK(S3) is finite, so we have a linking form ϖ, and this
is explored in detail by Murakami and Yasuhara in [13]

ϖ ⌐H1(DK(S3);Z) ×H1(DK(S3);Z)→ Q⌝Z
Given a Goeritz matrix G for K (see Section III for details), we have that G is a relation

matrix for H1(DK(S3);Z) and the linking form ϖ is given by ±G⌐1, where the sign depends on the
orientation of DK(S3) [13]. The double branched cover is a useful tool in obstructing knots from
bounding a Möbius band or a Klein bottle.

Corollary 2.4 (Corollary 3 in [4]). Suppose that H1(DK(S3)) = Zn where n is the product of
primes, all with odd exponent. Then if K bounds a Möbius band in B

4, there is a generator
a ∈H1(DK(S3)) such that ϖ(a, a) = ±1⌝n
Theorem 2.5 (Theorem 4 in [4]). Suppose that H1(DK(S3)) = Zp ⋊Zp where p is prime. Then if
K bounds a punctured Klein bottle in B

4, the discriminant of the linking form is ±1 ∈ F∗p⌝(F∗p)2
Theorem 2.6 (Theorem 11 in [4]). Suppose that H1(DK(S3)) = Zp⋊Zp⋊Zq where q ≡ 1 ∈ F∗p⌝(F∗p)2.
If H1(DK(S3)) is the boundary of a 4-manifold W with second Betti number 2 which has an
indefinite intersection form, then the linking form restricted to Zp⋊Zp ⊂H1(DK(S3)) is metabolic.

3 RESULTS AND TECHNIQUES

There are a total of 185 prime knots that are non-alternating and have 11 crossings, according
to the KnotInfo Database [10]. Of those knots, there are 16 that are smoothly slice and thus have
ω4(K) = 1.
Remark 3.1. There are 16 non-alternating 11 crossing knots that are slice and thus bound a
Möbius band:

11n4, 11n21, 11n37, 11n39, 11n42, 11n49, 11n50, 11n67,

11n73, 11n74, 11n83, 11n97, 11n116, 11n132, 11n139, 11n172

Proposition 3.2. The following knots have ω4(K) = 1:
11n1, 11n3, 11n5, 11n6, 11n7, 11n8, 11n9, 11n11, 11n13, 11n14, 11n15,

11n16, 11n18, 11n19, 11n20, 11n23, 11n24, 11n25, 11n26, 11n27, 11n31, 11n34,

11n36, 11n41, 11n44, 11n45, 11n46, 11n47, 11n52, 11n54, 11n57, 11n58, 11n59,

11n60, 11n62, 11n64, 11n65, 11n66, 11n68, 11n69, 11n70, 11n71, 11n75, 11n76,

11n77, 11n78, 11n79, 11n80, 11n81, 11n82, 11n86, 11n87, 11n88, 11n89, 11n91,

11n93, 11n94, 11n96, 11n102, 11n104, 11n105, 11n106, 11n107, 11n110, 11n111,

11n113, 11n117, 11n118, 11n120, 11n121, 11n122, 11n123, 11n124, 11n126, 11n127,

11n128, 11n129, 11n134, 11n135, 11n136, 11n142, 11n143, 11n145, 11n146, 11n147,

11n148, 11n150, 11n151, 11n152, 11n153, 11n154, 11n157, 11n158, 11n160, 11n162,

11n163, 11n164, 11n167, 11n168, 11n169, 11n170, 11n173, 11n180, 11n181, 11n183
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Proposition 3.3. The following knots have ω4(K) = 2:
11n2, 11n10, 11n12, 11n22, 11n28, 11n29, 11n30, 11n32, 11n33, 11n35,

11n38, 11n43, 11n48, 11n51, 11n53, 11n55, 11n56, 11n61, 11n63, 11n72,

11n84, 11n85, 11n90, 11n92, 11n95, 11n98, 11n99, 11n100, 11n101, 11n103,

11n108, 11n109, 11n112, 11n114, 11n115, 11n119, 11n125, 11n130, 11n131, 11n133,

11n137, 11n138, 11n140, 11n141, 11n144, 11n149, 11n155, 11n156, 11n161, 11n165

11n171, 11n174, 11n175, 11n176, 11n179, 11n182, 11n184, 11n185,

Constraints on Invariants

The knot invariant information for this paper was extracted from Knot Info [10].

Lemma 3.4. If K is a knot satisfying ϑ(K)+4Arf(K) ≡ 4 (mod 8), and c4(K) = 1, then ω4(K) = 2.
The result is clear from Proposition 2.1 and Corollary 2.3. We now examine knots that have

g4(K) = u(K) = 1 (or g4(K) = us(K) = 1 ) and ϑ(K) + 4Arf(K) ≡ 4 (mod 8) to see the following
knots have ω4(K) = 2:

11n12, 11n28, 11n48, 11n53, 11n55, 11n85, 11n100

11n114, 11n115, 11n119, 11n130, 11n156, 11n179, 11n182

All knots listed above satisfy ϑ(K)+ 4Arf(K) ≡ 4 (mod 8). Since they satisfy g4(K) = 1 = u(K)
(or g4(K) = us(K) = 1 ) by the hypothesis, we have c4(K) = 1, and thus by Lemma 3.4 we may
conclude ω4(K) = 2.
Lemma 3.5. Given K is a knot satisfying ϑ(K) + 4Arf(K) ≡ 4 (mod 8), and c4(K) = 2, then
ω4(K) = 2.

By Corollary 2.2, we have ”4(K) = ω4(K), and thus applying Proposition 2.1 we achieve ω4(K) ≤
2. Therefore, ω4(K) = 2. We now observe that the following knots have ω4(K) = 2:

11n2, 11n35, 11n95, 11n103, 11n108, 11n109, 11n144, 11n149, 11n174, 11n175, 11n185

The knots listed above all satisfy ϑ(K) + 4Arf(K) ≡ 4 (mod 8) and thus ω4(K) ≥ 2. Additionally,
these knots all satisfy g4(K) = u(K) = 2, and thus c4(K) = 2.

Non-Oriented Band Moves

The primary method used in calculations was via non-oriented band moves. We begin with an
oriented knot K and an oriented band, [0,1] × [0,1]. Following the conventions of Jabuka and
Kelly [7], we attach the band to K in the sense that the orientation of the band agrees with the
orientation of K on [0,1] × {0} but disagrees on [0,1] × {1}, or vise versa. One then does surgery
along the band. The result of non-orientable band surgery will always be a knot, while the result
after orientable band surgery is a link. Non-orientable band surgery is explored by Moore and
Vazquez in [11] and is called non-coherent band surgery.

The notation for a knot K that has been transformed into a knot K
⋊ by a non-oriented band

move is K
h↢→ K

⋊ where h is either 0, 1, or -1, determined by the number of half twists given to
h with respect to the blackboard framing. These three band moves can be seen in the Figure 3.1.

From left to right, we have
0↢→ is the band move without a twist,

⌐1↢→ is the band move with a

left-handed half twist, and
1↢→ is the band move with a right handed half twist.
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Figure 3.1. Band Moves with h = 0,−1,1 from left to right

Proposition 3.6 (Proposition 2.4 in [7]). If the knots K and K
⋊ are related by a non-oriented

band move, then
ω4(K) ≤ ω4(K ⋊) + 1

If a knot K is related to a slice knot K ⋊ by a non-oriented band move, then ω4(K) = 1.
Proof of Theorem 1.1 part (a). Every knot listed in Proposition 3.2 is either a slice knot or one

non-oriented band move away from a slice knot. See Figure 4.3 - Figure 4.11 for details.

Lemma 3.7. The following knots have ω4(K) = 2:
11n10, 11n12, 11n30, 11n32, 11n43, 11n48, 11n51, 11n55, 11n61, 11n72

11n85, 11n90, 11n98, 11n103, 11n130, 11n133

We now recall Proposition 2.3 and note the knots listed in the above lemma all satisfy ϑ(K) +
4Arf(K) ≡ 4 (mod 8). So we know the above knots have ω4(K) ≥ 2. The above listed knots all are
one non-oriented band move away from a knot K ⋊ so that ω4(K ⋊) = 1 (see Figure 4.12 - Figure 4.15),
thus we conclude ω4(K) = 2.

Linking Form Calculation

We look for a knot K so that ϑ(K) + 4Arf(K) ≡ 0,±2 (mod 8), and thus K does not meet the
obstruction from Proposition 2.3. We calculate the linking form of H1(DK(S3)) to see if K meets
the obstruction from Corollary 2.4. The first thing we do is calculate the Goeritz matrix for K.
We will do an example here, but an interested reader is referred to Gordan and Litherland [5].

To construct the Goeritz matrix, we first make a checkerboard coloring of a knot.

Each white region is labeled Ri and the unbounded region is R0. We then assign a value to
each crossing C, ϱ(C) = ±1, via the figure below, and following the conventions from Gordan and
Litherland [5].

Next, we construct a matrix G
⋊ with the algorithm:

g
⋊(i, j) =

⌝⌝⌝⌝⌞⌝⌝⌝⌞
−⩀ϱ(C) where the sum ranges over all crossings C incident to Ri and Rj , i ≠ j
−⊍

k≠i
g
⋊(i, k) = g⋊(i, i) if i = j

Then, the Goeritz matrix G is obtained from G
⋊ by deleting the 0th row and column. The

determinant of G is an invariant of the knot, and G is a linking matrix for H1(DK(S3)) [5, 13].



6 MEGAN FAIRCHILD

Figure 3.2. Checkerboard coloring for 11n155

Figure 3.3. left: ϱ(C) = 1, right: ϱ(C) = −1
Now, we may calculate the linking form. As previously mentioned, ±G⌐1 represents the linking

form ϖ where ϖ ⌐ H1(DK(S3);Z) ×H1(DK(S3);Z) → Q⌝Z. To continue the example, we have G

and G
⌐1 for the knot 11n155 as:

G =
⌞⌞⌞⌞⌞⌞⌞⌞⌞

3 −1 0 −1−1 5 −1 0
0 −1 0 2−1 0 2 0

⌟⌟⌟⌟⌟⌟⌟⌟⌟
G
⌐1 =
⌞⌞⌞⌞⌞⌞⌞⌞⌞

20
51

2
17

10
51

1
17

2
17

4
17

1
17

2
17

10
51

1
17

5
51

9
17

1
17

2
17

9
17

1
17

⌟⌟⌟⌟⌟⌟⌟⌟⌟
Now we have the linking form ϖ(g, g) = ±20⌝51. Suppose 11n155 bounds a Möbius band. We

wish to find an n ∈ Z so that ϖ(ng,ng) = ±1⌝51. This means ±20⌝51 = ϖ(ng,ng) = n
2
ϖ(g, g) =±20n2⌝51 = ±1⌝51, so 20n2 ≡ ±1 (mod 51). A quick calculation shows this is not possible, and thus

11n155 does not bound a Möbius band.

Results

Theorem 3.8 (Theorem 2 in [4]). Let K in S
3 be a knot. The linking form (H1(DK(S3),ϖ) splits

as a direct sum (G1,ϖ1)⋊ (G2,ϖ2) where (G2,ϖ2) is metabolic and (G1,ϖ1) has a presentation of
rank ϖ1(F ).
Lemma 3.9. Let K in S

3 be a knot and suppose that H1(DK(S3)) = Zp2q where p is prime and q
is a product of primes, all with odd exponent. Then if K bounds a Möbius band in B

4, there is a
generator a ∈H1(DK(S3)) such that either ϖ(a, a) = ±1⌝p2q or ϖ(a, a) = ±1⌝q.
Proof. As we see in Theorem 3.8, (H1(DK(S3)),ϖ) splits as a direct sum (G1,ϖ1)⋊(G2,ϖ2) where(G2,ϖ2) is metabolic and ϖ1 is presented by the linking matrix of DK(S3), which has a presentation
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of rank one. As q is square-free, we have that Zq is completely contained (as a subgroup) in G1.
Then either Zp2 is completely contained in G2, which implies it is metabolic, or Zp2 is contained in
G1.

If Zp2 is completely contained in G2, then there exists a subgroup H of Zp2 so that ⌜H ⌜2 = p
2

and ϖ(g, g⋊) = 0 for any g, g
⋊ ∈ H, since ϖ2 is metabolic. Then, as ϖ1 must have a presentation of

rank one, we have that the presentation matrix must be of the form (±⌜G1⌜) = (±q). Therefore, the
linking form ϖ1 on G1 is given by ±1⌝q.

If Zp2 is completely contained in G1, a similar argument shows ϖ1 is given by ±1⌝q ↭

The following knots:

11n22, 11n29, 11n33, 11n56, 11n84, 11n92, 11n101, 11n112, 11n125, 11n131, 11n138, 11n155,

11n176, 11n184

have the respective linking forms:

42

55
,

14

51
,

22

51
,

12

35
,

18

35
,

2

15
,

19

39
,

53

55
,

61

63
,

39

67
,

13

15
,

20

51
,

11

63
,

2

87

All of the 14 linking forms listed above satisfy the obstruction from Corollary 2.4 and Lemma 3.9.
Additionally, all of these knots have an non-orientable band move to a knot K ⋊ where ω4(K ⋊) = 1
(Figures 4.12 -4.15). Thus, each of these knots has non-orientable 4-genus equal to 2.

Knot Floer Homology

Ozsváth, Stipsicz, and Szabó explored non-orientable knot floer homology and how the Upsilon
invariant provides lower bounds for the non-orientable 4-genus [14]. Given K is a knot, denote
#K(1) as ς(K) (lower case Upsilon), and then we have:

⌟ς(K) − ϑ(K)
2
⌟ ≤ ω4(K)

However, if K is not an L-space knot, this invariant is rather di$cult to compute. Additionally,
we have from [14] that for an alternating (or quasi-alternating) knot K,

ς(K) = ϑ(K)
2

For the 185 non-alternating 11-crossing knots, only 3 are not quasi-alternating. Of those 3, two
are slice and one is not. This is thus not a useful lower bound for the knots being considered in this
paper. However, this is a useful invariant for torus knots, demonstrated in detail by Binns, Kang,
Simone, and Truöl in [2]. Additionally, Allen explored a geography problem where the Upsilon
invariant was wonderfully utilized in [1].

4 SPECIAL CASES

Lemma 4.1. The knot 11n38 does not bound a Möbius band.

The knot 11n38 has H1(DK(S3)) = Z3 and thus the linking form is represented by the 1 × 1
matrix [1⌝3]. This is clear, as the non-zero elements of Z3 are 1 and -1. Then, if K bounds a
Möbius band F in B

4, we have b(F ) = b(DF (B4)) = 1 and DF (B4) is negative definite [4]. From
Theorem 3 in [5], we have that the intersection form on H2(DF (B4))) is represented by the linking



8 MEGAN FAIRCHILD

matrix on H1(DK(S3)), which can be viewed from the entries in the Goeritz matrix. The Goeritz
matrix G is a 4 × 4 matrix that is indefinite, and when diagonalized, G = SJS⌐1, the matrix J is
also indefinite. We may suppose that there exists a presentation matrix that represents the linking
form, and by checking the diagonal entries on −G⌐1, we have that 1⌝3 represents the form. This
implies the manifold is positive definite, which is a contradiction. Thus, 11n38 does not bound a
Möbius band. We then have that there is a non-orientable band move from 11n38 to the trefoil
knot, which has ω4(31) = 1, therefore we may conclude that ω4(11n38) = 2. The figure below was
obtained from Knot Atlas [9].

Figure 4.1. A non-oriented band move from 11n38
0↢→ 31

We thus have a combination of Lemmas 3.4, 3.5, and 4.1, Proposition 3.6, and Theorem 3.8
showing Proposition 3.3 is true, thus proving part (b) of Theorem 1.1.

Lemma 4.2. The knots 11n17, 11n40, 11n159, 11n166, 11n177 and 11n178 all have ω4(K) = 1 or
2.

We have the following table:

Knot linking form definiteness of DF (B4) 4-genus

11n17 1⌝47 positive 1

11n40 −1⌝79 negative 1

11n159 1⌝71 positive 1

11n166 1⌝59 positive 1

11n177 1⌝83 positive 1

11n178 −1⌝95 negative 1

Proof. Denote K as a knot listed in Lemma 4.2. We first examine the knot signature and Arf
invariant to see ϑ(K) + 4Arf(K) ≡ ±2 (mod 8). Thus, no obstruction arises from Proposition 2.3,
so we may only conclude ω4(K) ≥ 1. We then move on to examining the linking form of K. Note
that the determinant of K, d = det(K), is either a prime number or a product of exactly 2 prime
numbers. As d = ⌜H1(DK(S3))⌜, we cannot have a splitting of H1(DK(S3)) into G1 ⋊G2 where
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G2 is metabolic, since d is square free. We thus see that the linking form ϖ for each knot is of
the form ±1⌝d. We also compare the linking form of the knot to the definitness of DF (B4). The
sign of the 4-manifold DF (B4) corresponds to the sign of the quadratic form [4], thus the linking
form, and we see that our signs are corresponding for the linking form and definiteness of DF (B4).
Additionally, each knot is one band move away from a knot K ⋊ so that ω4(K ⋊) = 1, see Figure 4.2,
and thus ω4(K) ≤ 2. We thus cannot find an obstruction to these knots bounding a Möbius band,
but also cannot find the desired band move to a slice knot. Therefore, ω4(K) ≤ 2 for the knots in
Lemma 4.2. ↭

This concludes the proof for Theorem 1.1.

(a) 11n17
1↢→ 10130 (b) 11n40

⌐1↢→ 84 (c) 11n159
0↢→ 31

(d) 11n166
1↢→ 10142 (e) 11n177

0↢→ 31 (f) 11n178
⌐1↢→ 932

Figure 4.2. Non-oriented band moves from the knots 11n17,11n40,11n159,

11n166,11n177, and 11n178 to knots with non-orientable genus 1.
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Concordance

Given K and J two concordant knots, it is well known that g4(K) = g4(J) and easy to see that
ω4(K) = ω4(J). Thus one may wonder if studying concordance of knots may help us solve this
non-orientable 4-genus problem. For the six remaining knots, their concordance genus is known
[10], however the knots to which they are concordant is still unknown.

Question 4.3. Is 11n40 concordant to 1057?

1057 is a wonderful candidate for concordance to 11n40, just by a simple analysis of their invariants
[10]. If the answer to Question 4.3 is yes, then the knot 11n40 has ω4(11n40) = 1.
Conjecture 4.4. The knots 11n17, 11n159, 11n166, 11n177, and 11n178 are not concordant to any
knot with 11 or fewer crossings. Moreover, 11n17, 11n159, and 11n166 are not concordant to any
knot with 12 or fewer crossings.

It should be noted that Kearny has found the concordance genus of 11-crossing knots in [8], as
well as specific concordances from 11-crossing knots to knots of lower crossings.
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(a) 11n1
⌐1↢→ 01 (b) 11n3

⌐1↢→ 10137 (c) 11n5
⌐1↢→ 820

(d) 11n6
1↢→ 820 (e) 11n7

1↢→ 10137 (f) 11n8
0↢→ 820

(g) 11n9
0↢→ 01 (h) 11n11

⌐1↢→ 12n49 (i) 11n13
0↢→ 01

(j) 11n14
0↢→ 61 (k) 11n15

0↢→ 01 (l) 11n16
0↢→ 01

Figure 4.3. Non-oriented band moves from the knots 11n1,11n3,11n5,

11n6,11n7,11n8,11n9,11n11,11n13,11n14,11n15, and 11n16 to smoothly slice knots.
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(a) 11n18
1↢→ 10137 (b) 11n19

0↢→ 01 (c) 11n20
1↢→ 12n24

(d) 11n23
0↢→ 61 (e) 11n24

0↢→ 01 (f) 11n25
⌐1↢→ 12n24

(g) 11n26
⌐1↢→ 820 (h) 11n27

⌐1↢→ 88 (i) 11n31
0↢→ 10137

(j) 11n34
0↢→ 01 (k) 11n36

0↢→ 10129 (l) 11n41
0↢→ 820

Figure 4.4. Non-oriented band moves from the knots 11n18,11n19,11n20,

11n23,11n24,11n25,11n26,11n27,11n31,11n34,11n36, and 11n41 to smoothly slice
knots.
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(a) 11n44
1↢→ 61 (b) 11n45

1↢→ 10129 (c) 11n46
0↢→ 61

(d) 11n47
0↢→ 820 (e) 11n52

1↢→ 12n170 (f) 11n54
0↢→ 61

(g) 11n57
0↢→ 01 (h) 11n58

⌐1↢→ 820 (i) 11n59
0↢→ 89

(j) 11n60
⌐1↢→ 820 (k) 11n62

1↢→ 01 (l) 11n64
0↢→ 01

Figure 4.5. Non-oriented band moves from the knots 11n44,11n45,11n46,

11n47,11n52,11n54,11n57,11n58,11n59,11n60,11n62, and 11n64 to smoothly slice
knots.
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(a) 11n65
0↢→ 946 (b) 11n66

0↢→ 88 (c) 11n68
⌐1↢→ 10129

(d) 11n69
0↢→ 820 (e) 11n70

0↢→ 820 (f) 11n71
⌐1↢→ 12n556

(g) 11n75
1↢→ 12n553 (h) 11n76

0↢→ 820 (i) 11n77
⌐1↢→ 820

(j) 11n78
0↢→ 820 (k) 11n79

0↢→ 01 (l) 11n80
⌐1↢→ 01

Figure 4.6. Non-oriented band moves from the knots 11n65,11n66,11n68,

11n69,11n70,11n71,11n75,11n76,11n77,11n78,11n79, and 11n80 to smoothly slice
knots.
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(a) 11n81
1↢→ 820 (b) 11n82

0↢→ 01 (c) 11n86
0↢→ 01

(d) 11n87
0↢→ 88 (e) 11n88

0↢→ 61 (f) 11n89
0↢→ 88

(g) 11n91
1↢→ 12n145 (h) 11n93

1↢→ 10137 (i) 11n94
⌐1↢→ 10137

(j) 11n96
0↢→ 01 (k) 11n102

0↢→ 01 (l) 11n104
0↢→ 01

Figure 4.7. Non-oriented band moves from the knots 11n81,11n82,11n86,

11n87,11n88,11n89,11n91,11n93,11n94,11n96,11n102, and 11n104 to smoothly slice
knots.
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(a) 11n105
1↢→ 927 (b) 11n106

0↢→ 01 (c) 11n107
0↢→ 01

(d) 11n110
0↢→ 88 (e) 11n111

1↢→ 01 (f) 11n113
⌐1↢→ 947

(g) 11n117
1↢→ 12n414 (h) 11n118

0↢→ 01 (i) 11n120
1↢→ 12n312

(j) 11n121
0↢→ 01 (k) 11n122

0↢→ 01 (l) 11n123
0↢→ 927

Figure 4.8. Non-oriented band moves from the knots 11n105,11n106,11n107,

11n110,11n111,11n113,11n117,11n118,11n120,11n121,11n122, and 11n123

to smoothly slice knots.
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(a) 11n124
1↢→ 820 (b) 11n126

0↢→ 820 (c) 11n127
0↢→ 01

(d) 11n128
1↢→ 10140 (e) 11n134

1↢→ 11116 (f) 11n135
0↢→ 820

(g) 11n136
0↢→ 61 (h) 11n142

0↢→ 10129 (i) 11n143
0↢→ 820

(j) 11n145
1↢→ 61 (k) 11n146

⌐1↢→ 10137 (l) 11n147
0↢→ 61

Figure 4.9. Non-oriented band moves from the knots 11n124,11n126,11n127,

11n128,11n134,11n135,11n136,11n142,11n143,11n145,11n146, and 11n147

to smoothly slice knots.
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(a) 11n148
1↢→ 10137 (b) 11n150

0↢→ 88 (c) 11n151
⌐1↢→ 10153

(d) 11n152
0↢→ 10153 (e) 11n153

1↢→ 10129 (f) 11n154
⌐1↢→ 12n504

(g) 11n157
⌐1↢→ 927 (h) 11n158

0↢→ 01 (i) 11n160
1↢→ 12n802

(j) 11n162
⌐1↢→ 10140 (k) 11n163

0↢→ 88 (l) 11n164
0↢→ 820

Figure 4.10. Non-oriented band moves from the knots 11n148,11n150,11n151,

11n152,11n153,11n154,11n157,11n158,11n160,11n162,11n163, and 11n164

to smoothly slice knots.
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(a) 11n167
0↢→ 61 (b) 11n168

⌐1↢→ 10137 (c) 11n169
⌐1↢→ 12n817

(d) 11n170
1↢→ 12n876 (e) 11n173

1↢→ 946 (f) 11n180
0↢→ 61

(g) 11n181
0↢→ 61 (h) 11n183

0↢→ 01

Figure 4.11. Non-oriented band moves from the knots 11n167,11n168,11n169,

11n170,11n173,11n180,11n181, and 11n183 to smoothly slice knots.
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(a) 11n10
0↢→ 76 (b) 11n12

0↢→ 62 (c) 11n22
⌐1↢→ 52

(d) 11n29
0↢→ 86 (e) 11n30

⌐1↢→ 10126 (f) 11n32
0↢→ 925

(g) 11n33
1↢→ 10134 (h) 11n43

0↢→ 932 (i) 11n48
0↢→ 72

(j) 11n51
1↢→ 98 (k) 11n55

0↢→ 945 (l) 11n56
0↢→ 943

Figure 4.12. Non-oriented band moves from the knots 11n10,11n12,11n22,

11n29,11n30,11n32,11n33,11n43,11n48,11n51,11n55, and 11n56 to knots with non-
orientable genus 1.
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(a) 11n61
0↢→ 62 (b) 11n63

1↢→ 10131 (c) 11n72
0↢→ 928

(d) 11n84
⌐1↢→ 944 (e) 11n85

0↢→ 52 (f) 11n90
1↢→ 10147

(g) 11n92
1↢→ 98 (h) 11n98

0↢→ 86 (i) 11n99
1↢→ 10148

(j) 11n101
0↢→ 62 (k) 11n103

0↢→ 945 (l) 11n112
0↢→ 86

Figure 4.13. Non-oriented band moves from the knots 11n61,11n63,11n72,

11n84,11n85,11n90,11n92,11n98,11n99,11n101,11n103, and 11n112 to knots with
non- orientable genus 1.
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(a) 11n125
0↢→ 814 (b) 11n130

0↢→ 87 (c) 11n131
0↢→ 814

(d) 11n133
0↢→ 10165 (e) 11n137

0↢→ 10131 (f) 11n138
1↢→ 10139

(g) 11n140
⌐1↢→ 10144 (h) 11n141

⌐1↢→ 10126 (i) 11n155
0↢→ 31

(j) 11n161
⌐1↢→ 62 (k) 11n165

0↢→ 11n46 (l) 11n171
1↢→ 10144

Figure 4.14. Non-oriented band moves from the knots 11n125,11n130,11n131,

11n133,11n137,11n138,11n140,11n141,11n155,11n161,11n165, and 11n171

to knots with non- orientable genus 1.
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(a) 11n176
⌐1↢→ 810 (b) 11n179

0↢→ 814 (c) 11n184
0↢→ 62

Figure 4.15. Non-oriented band moves from the knots 11n176,11n179, and
11n184 to knots with non-orientable genus 1.
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