

THE NON-ORIENTABLE 4-GENUS OF 11 CROSSING NON-ALTERNATING KNOTS

MEGAN FAIRCHILD

ABSTRACT. The non-orientable 4-genus of a knot K in S^3 is defined to be the minimum first Betti number of a non-orientable surface F smoothly embedded in B^4 so that K bounds F . We will survey the tools used to compute the non-orientable 4-genus, and use various techniques to calculate this invariant for non-alternating 11 crossing knots. We also will view obstructions to a knot bounding a Möbius band given by the double branched cover of S^3 branched over K .

1 INTRODUCTION

Knots bounding orientable surfaces, both in S^3 and B^4 , have been extensively studied, however much is still to be learned about the non-orientable surfaces in B^4 bounded by knots. Recently, the non-orientable 4-genus of torus knots has been computed for all knots $T(2, q)$ and $T(3, q)$ by Allen [1], and most knots $T(4, q)$ by Binns, Kang, Simone, Truöl, and Sabloff [2, 15]. The non-orientable 4-genus of double twist knots was calculated by Hoste, Shanahan, and Van Cott [6], and knots with 10 or fewer crossings have also been computed in detail by Ghanbarian, Jabuka, and Kelly [3, 7], with much focus on alternating knots. This paper aims to shed light on the non-alternating case and strategies to calculate the non-orientable 4-genus. We will explore various techniques in finding this invariant, as well as examining obstructions to knots bounding a Möbius band.

For this paper, a knot K is in S^3 . The orientable 4-genus of a knot is the minimum genus of an orientable surface smoothly embedded in the 4-ball that is bounded by K and is denoted $g_4(K)$, and knots with $g_4(K) = 0$ are called slice knots. Following Murakami and Yasuhara in [13], the non-orientable 4-genus of a knot K , denoted $\gamma_4(K)$, is defined to be the minimum first Betti number of non-orientable surfaces F smoothly embedded in B^4 bounded by K , that is $\min\{b_1(F) | \partial F = K\}$. Note that the first Betti number is defined to be $b_1(F) = \dim H_1(F; \mathbb{Q})$. We have, by definition, for any knot K , $\gamma_4(K) \geq 1$ where equivalence applies when K bounds a Möbius band. Slice knots that bound a smooth disk embedded in B^4 have non-orientable 4-genus one, as we may attach a non-oriented band to such an embedded disk.

Theorem 1.1. *For the 185 non-alternating 11 crossing knots,*

- (a) 121 knots have $\gamma_4(K) = 1$
- (b) 58 knots have $\gamma_4(K) = 2$

The remaining 6 knots have $\gamma_4(K) = 1$ or 2.

The paper is organized as follows: Section 2 is the background on knot invariants, double branched covers, and useful bounds and obstructions for the non-orientable 4-genus. Section 3 is a survey of the techniques used to solve this problem as well as results.

Acknowledgements. The author was partially supported by NSF Grant No. DMS-1907654 and NSF RTG Grant No. DMS-2231492. I would like to thank Chuck Livingston, Pat Gilmer, and Slaven Jabuka for helpful conversations and comments. Additional thanks to Dror Bar-Natan for permitting my use of the Knot Atlas figures [9].

2 BACKGROUND

We begin by reviewing knot invariants and examining bounds for the non-orientable 4-genus as well as obstructions to a knot bounding a Möbius band. First, the crossing number of a knot is denoted $n(K)$ and is the crossing number of a diagram of a knot with the fewest crossings that could be drawn on the plane to represent the knot. The unknotting number of a knot $u(K)$ is the minimum number of crossing changes required to transform K into the unknot. Similarly, $u_s(K)$ is the minimum number of crossing changes to change K into a slice knot. The 4-dimensional clasp number, $c_4(K)$, is the minimum number of double points of transversely immersed 2-disks in the 4-ball bounded by K [13]. We then have the following triple inequality from Jabuka and Kelly [7]:

$$g_4(K) \leq c_4(K) \leq u_s(K) \leq u(K)$$

The smooth orientable 4-genus of a knot also offers an upper bound for the non-orientable 4-genus [7]:

$$\gamma_4(K) \leq 2g_4(K) + 1$$

Similar to the orientable 4-genus, we obtain an upper bound for the non-orientable 4-genus from the non-orientable 3-genus of a knot called the *crosscap number* [10], which is the minimum genus non-orientable surface a knot bounds in S^3 , denoted $c(K)$, so we have $\gamma_4(K) \leq c(K)$.

Following the notation of Murakami and Yasuhara [12], we define $\Gamma_4(K) = \min\{b_1(F) | \partial F = K\}$, or similarly $\Gamma_4(K) = \min\{2g_4(K), \gamma_4(K)\}$, and thus $\Gamma_4(K) \leq \gamma_4(K)$. Murakami and Yasuhara then give us the following proposition [13]:

Proposition 2.1 (Proposition 2.3 in [13]). *For any knot K , the following inequalities hold.*

$$\Gamma_4(K) \leq \begin{cases} c_4(K) & \text{if } c_4(K) \text{ is even} \\ c_4(K) + 1 & \text{otherwise} \end{cases}$$

$$\gamma_4(K) \leq \begin{cases} c_4(K) & \text{if } c_4(K) \text{ is even and } c_4(K) \neq 2 \\ c_4(K) + 1 & \text{otherwise} \end{cases}$$

Corollary 2.2 (Corollary 2.4 in [13]). *For a knot K , if $g_4(K) = c_4(K) \geq 1$, then $\Gamma_4(K) = \gamma_4(K)$.*

The crossing number of a knot offers an upper bound, so we have [12]:

$$\Gamma(K) \leq \left\lfloor \frac{n(K)}{2} \right\rfloor \text{ and } \gamma_4(K) \leq \left\lfloor \frac{n(K)}{2} \right\rfloor$$

The signature of a knot $\sigma(K)$ is defined to be the signature of the sum of knot's Seifert matrix and its transpose, $\sigma(V + V^t)$. The Arf invariant of a knot is denoted $\text{Arf}(K)$ and is a concordance invariant in \mathbb{Z}_2 which is calculated using the Seifert form of a knot [10]. These two invariants provide a lower bound for the non-oriented 4-genus of a knot, so we have the following proposition.

Proposition 2.3 (Proposition 2.4 in [3]). *Given a knot K , if $\sigma(K) + 4\text{Arf}(K) \equiv 4 \pmod{8}$, then $\gamma_4(K) \geq 2$.*

Double Branched Cover

Recall the definition of the non-orientable 4-genus is $\gamma_4(K) = \min\{b_1(F) | \partial F = K\}$ and note that $b_1(F) = \dim H_1(F, \mathbb{Q})$. Let K in S^3 bound a connected surface F in B^4 and denote the double branched cover of B^4 branched over F as $D_F(B^4)$. Gilmer and Livingston proved in [4], Lemma 1, that $b_2(D_F(B^4)) = b_1(F)$. The reasoning here is that the double branched cover of S^3 branched

over K , denoted $D_K(S^3)$, is a rational homology sphere and $H_1(D_F(B^4); \mathbb{Q}) = 0$. We thus may use the linking form of $D_K(S^3)$ to provide information on the intersection form of $D_F(B^4)$.

We also have that the first homology of $D_K(S^3)$ is finite, so we have a linking form λ , and this is explored in detail by Murakami and Yasuhara in [13]

$$\lambda : H_1(D_K(S^3); \mathbb{Z}) \times H_1(D_K(S^3); \mathbb{Z}) \rightarrow \mathbb{Q}/\mathbb{Z}$$

Given a Goeritz matrix G for K (see Section III for details), we have that G is a relation matrix for $H_1(D_K(S^3); \mathbb{Z})$ and the linking form λ is given by $\pm G^{-1}$, where the sign depends on the orientation of $D_K(S^3)$ [13]. The double branched cover is a useful tool in obstructing knots from bounding a Möbius band or a Klein bottle.

Corollary 2.4 (Corollary 3 in [4]). *Suppose that $H_1(D_K(S^3)) = \mathbb{Z}_n$ where n is the product of primes, all with odd exponent. Then if K bounds a Möbius band in B^4 , there is a generator $a \in H_1(D_K(S^3))$ such that $\lambda(a, a) = \pm 1/n$*

Theorem 2.5 (Theorem 4 in [4]). *Suppose that $H_1(D_K(S^3)) = \mathbb{Z}_p \oplus \mathbb{Z}_p$ where p is prime. Then if K bounds a punctured Klein bottle in B^4 , the discriminant of the linking form is $\pm 1 \in \mathbb{F}_p^*/(\mathbb{F}_p^*)^2$*

Theorem 2.6 (Theorem 11 in [4]). *Suppose that $H_1(D_K(S^3)) = \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_q$ where $q \equiv 1 \in \mathbb{F}_p^*/(\mathbb{F}_p^*)^2$. If $H_1(D_K(S^3))$ is the boundary of a 4-manifold W with second Betti number 2 which has an indefinite intersection form, then the linking form restricted to $\mathbb{Z}_p \oplus \mathbb{Z}_p \subset H_1(D_K(S^3))$ is metabolic.*

3 RESULTS AND TECHNIQUES

There are a total of 185 prime knots that are non-alternating and have 11 crossings, according to the KnotInfo Database [10]. Of those knots, there are 16 that are smoothly slice and thus have $\gamma_4(K) = 1$.

Remark 3.1. There are 16 non-alternating 11 crossing knots that are slice and thus bound a Möbius band:

$$\begin{aligned} 11n_4, 11n_{21}, 11n_{37}, 11n_{39}, 11n_{42}, 11n_{49}, 11n_{50}, 11n_{67}, \\ 11n_{73}, 11n_{74}, 11n_{83}, 11n_{97}, 11n_{116}, 11n_{132}, 11n_{139}, 11n_{172} \end{aligned}$$

Proposition 3.2. *The following knots have $\gamma_4(K) = 1$:*

$$\begin{aligned} 11n_1, 11n_3, 11n_5, 11n_6, 11n_7, 11n_8, 11n_9, 11n_{11}, 11n_{13}, 11n_{14}, 11n_{15}, \\ 11n_{16}, 11n_{18}, 11n_{19}, 11n_{20}, 11n_{23}, 11n_{24}, 11n_{25}, 11n_{26}, 11n_{27}, 11n_{31}, 11n_{34}, \\ 11n_{36}, 11n_{41}, 11n_{44}, 11n_{45}, 11n_{46}, 11n_{47}, 11n_{52}, 11n_{54}, 11n_{57}, 11n_{58}, 11n_{59}, \\ 11n_{60}, 11n_{62}, 11n_{64}, 11n_{65}, 11n_{66}, 11n_{68}, 11n_{69}, 11n_{70}, 11n_{71}, 11n_{75}, 11n_{76}, \\ 11n_{77}, 11n_{78}, 11n_{79}, 11n_{80}, 11n_{81}, 11n_{82}, 11n_{86}, 11n_{87}, 11n_{88}, 11n_{89}, 11n_{91}, \\ 11n_{93}, 11n_{94}, 11n_{96}, 11n_{102}, 11n_{104}, 11n_{105}, 11n_{106}, 11n_{107}, 11n_{110}, 11n_{111}, \\ 11n_{113}, 11n_{117}, 11n_{118}, 11n_{120}, 11n_{121}, 11n_{122}, 11n_{123}, 11n_{124}, 11n_{126}, 11n_{127}, \\ 11n_{128}, 11n_{129}, 11n_{134}, 11n_{135}, 11n_{136}, 11n_{142}, 11n_{143}, 11n_{145}, 11n_{146}, 11n_{147}, \\ 11n_{148}, 11n_{150}, 11n_{151}, 11n_{152}, 11n_{153}, 11n_{154}, 11n_{157}, 11n_{158}, 11n_{160}, 11n_{162}, \\ 11n_{163}, 11n_{164}, 11n_{167}, 11n_{168}, 11n_{169}, 11n_{170}, 11n_{173}, 11n_{180}, 11n_{181}, 11n_{183} \end{aligned}$$

Proposition 3.3. *The following knots have $\gamma_4(K) = 2$:*

$$\begin{aligned}
& 11n_2, 11n_{10}, 11n_{12}, 11n_{22}, 11n_{28}, 11n_{29}, 11n_{30}, 11n_{32}, 11n_{33}, 11n_{35}, \\
& 11n_{38}, 11n_{43}, 11n_{48}, 11n_{51}, 11n_{53}, 11n_{55}, 11n_{56}, 11n_{61}, 11n_{63}, 11n_{72}, \\
& 11n_{84}, 11n_{85}, 11n_{90}, 11n_{92}, 11n_{95}, 11n_{98}, 11n_{99}, 11n_{100}, 11n_{101}, 11n_{103}, \\
& 11n_{108}, 11n_{109}, 11n_{112}, 11n_{114}, 11n_{115}, 11n_{119}, 11n_{125}, 11n_{130}, 11n_{131}, 11n_{133}, \\
& 11n_{137}, 11n_{138}, 11n_{140}, 11n_{141}, 11n_{144}, 11n_{149}, 11n_{155}, 11n_{156}, 11n_{161}, 11n_{165} \\
& 11n_{171}, 11n_{174}, 11n_{175}, 11n_{176}, 11n_{179}, 11n_{182}, 11n_{184}, 11n_{185},
\end{aligned}$$

Constraints on Invariants

The knot invariant information for this paper was extracted from Knot Info [10].

Lemma 3.4. *If K is a knot satisfying $\sigma(K) + 4\text{Arf}(K) \equiv 4 \pmod{8}$, and $c_4(K) = 1$, then $\gamma_4(K) = 2$.*

The result is clear from Proposition 2.1 and Corollary 2.3. We now examine knots that have $g_4(K) = u(K) = 1$ (or $g_4(K) = u_s(K) = 1$) and $\sigma(K) + 4\text{Arf}(K) \equiv 4 \pmod{8}$ to see the following knots have $\gamma_4(K) = 2$:

$$\begin{aligned}
& 11n_{12}, 11n_{28}, 11n_{48}, 11n_{53}, 11n_{55}, 11n_{85}, 11n_{100} \\
& 11n_{114}, 11n_{115}, 11n_{119}, 11n_{130}, 11n_{156}, 11n_{179}, 11n_{182}
\end{aligned}$$

All knots listed above satisfy $\sigma(K) + 4\text{Arf}(K) \equiv 4 \pmod{8}$. Since they satisfy $g_4(K) = 1 = u(K)$ (or $g_4(K) = u_s(K) = 1$) by the hypothesis, we have $c_4(K) = 1$, and thus by Lemma 3.4 we may conclude $\gamma_4(K) = 2$.

Lemma 3.5. *Given K is a knot satisfying $\sigma(K) + 4\text{Arf}(K) \equiv 4 \pmod{8}$, and $c_4(K) = 2$, then $\gamma_4(K) = 2$.*

By Corollary 2.2, we have $\Gamma_4(K) = \gamma_4(K)$, and thus applying Proposition 2.1 we achieve $\gamma_4(K) \leq 2$. Therefore, $\gamma_4(K) = 2$. We now observe that the following knots have $\gamma_4(K) = 2$:

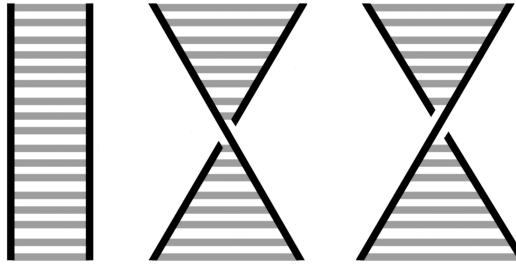
$$11n_2, 11n_{35}, 11n_{95}, 11n_{103}, 11n_{108}, 11n_{109}, 11n_{144}, 11n_{149}, 11n_{174}, 11n_{175}, 11n_{185}$$

The knots listed above all satisfy $\sigma(K) + 4\text{Arf}(K) \equiv 4 \pmod{8}$ and thus $\gamma_4(K) \geq 2$. Additionally, these knots all satisfy $g_4(K) = u(K) = 2$, and thus $c_4(K) = 2$.

Non-Oriented Band Moves

The primary method used in calculations was via non-oriented band moves. We begin with an oriented knot K and an oriented band, $[0, 1] \times [0, 1]$. Following the conventions of Jabuka and Kelly [7], we attach the band to K in the sense that the orientation of the band agrees with the orientation of K on $[0, 1] \times \{0\}$ but disagrees on $[0, 1] \times \{1\}$, or vice versa. One then does surgery along the band. The result of non-orientable band surgery will always be a knot, while the result after *orientable* band surgery is a link. Non-orientable band surgery is explored by Moore and Vazquez in [11] and is called *non-coherent band surgery*.

The notation for a knot K that has been transformed into a knot K' by a non-oriented band move is $K \xrightarrow{h} K'$ where h is either 0, 1, or -1, determined by the number of half twists given to h with respect to the blackboard framing. These three band moves can be seen in the Figure 3.1. From left to right, we have $\xrightarrow{0}$ is the band move without a twist, $\xrightarrow{-1}$ is the band move with a left-handed half twist, and $\xrightarrow{1}$ is the band move with a right handed half twist.

FIGURE 3.1. Band Moves with $h = 0, -1, 1$ from left to right

Proposition 3.6 (Proposition 2.4 in [7]). *If the knots K and K' are related by a non-oriented band move, then*

$$\gamma_4(K) \leq \gamma_4(K') + 1$$

If a knot K is related to a slice knot K' by a non-oriented band move, then $\gamma_4(K) = 1$.

Proof of Theorem 1.1 part (a). Every knot listed in Proposition 3.2 is either a slice knot or one non-oriented band move away from a slice knot. See Figure 4.3 - Figure 4.11 for details.

Lemma 3.7. *The following knots have $\gamma_4(K) = 2$:*

$$\begin{aligned} 11n_{10}, 11n_{12}, 11n_{30}, 11n_{32}, 11n_{43}, 11n_{48}, 11n_{51}, 11n_{55}, 11n_{61}, 11n_{72} \\ 11n_{85}, 11n_{90}, 11n_{98}, 11n_{103}, 11n_{130}, 11n_{133} \end{aligned}$$

We now recall Proposition 2.3 and note the knots listed in the above lemma all satisfy $\sigma(K) + 4\text{Arf}(K) \equiv 4 \pmod{8}$. So we know the above knots have $\gamma_4(K) \geq 2$. The above listed knots all are one non-oriented band move away from a knot K' so that $\gamma_4(K') = 1$ (see Figure 4.12 - Figure 4.15), thus we conclude $\gamma_4(K) = 2$.

Linking Form Calculation

We look for a knot K so that $\sigma(K) + 4\text{Arf}(K) \equiv 0, \pm 2 \pmod{8}$, and thus K does not meet the obstruction from Proposition 2.3. We calculate the linking form of $H_1(D_K(S^3))$ to see if K meets the obstruction from Corollary 2.4. The first thing we do is calculate the Goeritz matrix for K . We will do an example here, but an interested reader is referred to Gordan and Litherland [5].

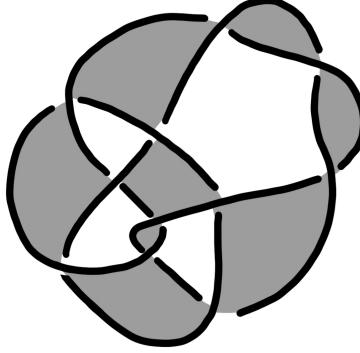
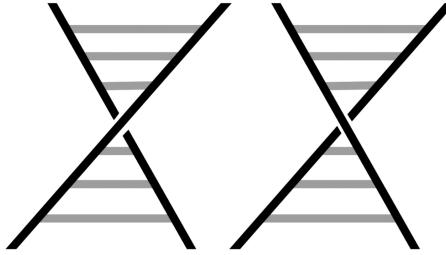
To construct the Goeritz matrix, we first make a checkerboard coloring of a knot.

Each white region is labeled R_i and the unbounded region is R_0 . We then assign a value to each crossing C , $\eta(C) = \pm 1$, via the figure below, and following the conventions from Gordan and Litherland [5].

Next, we construct a matrix G' with the algorithm:

$$g'(i, j) = \begin{cases} -\sum \eta(C) & \text{where the sum ranges over all crossings } C \text{ incident to } R_i \text{ and } R_j, i \neq j \\ -\sum_{k \neq i} g'(i, k) = g'(i, i) & \text{if } i = j \end{cases}$$

Then, the Goeritz matrix G is obtained from G' by deleting the 0^{th} row and column. The determinant of G is an invariant of the knot, and G is a linking matrix for $H_1(D_K(S^3))$ [5, 13].

FIGURE 3.2. Checkerboard coloring for $11n_{155}$ FIGURE 3.3. left: $\eta(C) = 1$, right: $\eta(C) = -1$

Now, we may calculate the linking form. As previously mentioned, $\pm G^{-1}$ represents the linking form λ where $\lambda : H_1(D_K(S^3); \mathbb{Z}) \times H_1(D_K(S^3); \mathbb{Z}) \rightarrow \mathbb{Q}/\mathbb{Z}$. To continue the example, we have G and G^{-1} for the knot $11n_{155}$ as:

$$G = \begin{bmatrix} 3 & -1 & 0 & -1 \\ -1 & 5 & -1 & 0 \\ 0 & -1 & 0 & 2 \\ -1 & 0 & 2 & 0 \end{bmatrix} \quad G^{-1} = \begin{bmatrix} \frac{20}{51} & \frac{2}{17} & \frac{10}{51} & \frac{1}{17} \\ \frac{2}{17} & \frac{4}{17} & \frac{1}{5} & \frac{2}{9} \\ \frac{10}{51} & \frac{1}{17} & \frac{17}{5} & \frac{9}{17} \\ \frac{1}{17} & \frac{2}{17} & \frac{9}{17} & \frac{1}{17} \end{bmatrix}$$

Now we have the linking form $\lambda(g, g) = \pm 20/51$. Suppose $11n_{155}$ bounds a Möbius band. We wish to find an $n \in \mathbb{Z}$ so that $\lambda(ng, ng) = \pm 1/51$. This means $\pm 20/51 = \lambda(ng, ng) = n^2 \lambda(g, g) = \pm 20n^2/51 = \pm 1/51$, so $20n^2 \equiv \pm 1 \pmod{51}$. A quick calculation shows this is not possible, and thus $11n_{155}$ does not bound a Möbius band.

Results

Theorem 3.8 (Theorem 2 in [4]). *Let K in S^3 be a knot. The linking form $(H_1(D_K(S^3)), \lambda)$ splits as a direct sum $(G_1, \lambda_1) \oplus (G_2, \lambda_2)$ where (G_2, λ_2) is metabolic and (G_1, λ_1) has a presentation of rank $\lambda_1(F)$.*

Lemma 3.9. *Let K in S^3 be a knot and suppose that $H_1(D_K(S^3)) = \mathbb{Z}_{p^2q}$ where p is prime and q is a product of primes, all with odd exponent. Then if K bounds a Möbius band in B^4 , there is a generator $a \in H_1(D_K(S^3))$ such that either $\lambda(a, a) = \pm 1/p^2q$ or $\lambda(a, a) = \pm 1/q$.*

Proof. As we see in Theorem 3.8, $(H_1(D_K(S^3)), \lambda)$ splits as a direct sum $(G_1, \lambda_1) \oplus (G_2, \lambda_2)$ where (G_2, λ_2) is metabolic and λ_1 is presented by the linking matrix of $D_K(S^3)$, which has a presentation

of rank one. As q is square-free, we have that \mathbb{Z}_q is completely contained (as a subgroup) in G_1 . Then either \mathbb{Z}_{p^2} is completely contained in G_2 , which implies it is metabolic, or \mathbb{Z}_{p^2} is contained in G_1 .

If \mathbb{Z}_{p^2} is completely contained in G_2 , then there exists a subgroup H of \mathbb{Z}_{p^2} so that $|H|^2 = p^2$ and $\lambda(g, g') = 0$ for any $g, g' \in H$, since λ_2 is metabolic. Then, as λ_1 must have a presentation of rank one, we have that the presentation matrix must be of the form $(\pm|G_1|) = (\pm q)$. Therefore, the linking form λ_1 on G_1 is given by $\pm 1/q$.

If \mathbb{Z}_{p^2} is completely contained in G_1 , a similar argument shows λ_1 is given by $\pm 1/q$ \square

The following knots:

$11n_{22}, 11n_{29}, 11n_{33}, 11n_{56}, 11n_{84}, 11n_{92}, 11n_{101}, 11n_{112}, 11n_{125}, 11n_{131}, 11n_{138}, 11n_{155}, 11n_{176}, 11n_{184}$

have the respective linking forms:

$$\frac{42}{55}, \frac{14}{51}, \frac{22}{51}, \frac{12}{35}, \frac{18}{35}, \frac{2}{15}, \frac{19}{39}, \frac{53}{55}, \frac{61}{63}, \frac{39}{67}, \frac{13}{15}, \frac{20}{51}, \frac{11}{63}, \frac{2}{87}$$

All of the 14 linking forms listed above satisfy the obstruction from Corollary 2.4 and Lemma 3.9. Additionally, all of these knots have an non-orientable band move to a knot K' where $\gamma_4(K') = 1$ (Figures 4.12 - 4.15). Thus, each of these knots has non-orientable 4-genus equal to 2.

Knot Floer Homology

Ozsváth, Stipsicz, and Szabó explored non-orientable knot floer homology and how the Upsilon invariant provides lower bounds for the non-orientable 4-genus [14]. Given K is a knot, denote $\Upsilon_K(1)$ as $v(K)$ (lower case Upsilon), and then we have:

$$\left| v(K) - \frac{\sigma(K)}{2} \right| \leq \gamma_4(K)$$

However, if K is not an L-space knot, this invariant is rather difficult to compute. Additionally, we have from [14] that for an alternating (or quasi-alternating) knot K ,

$$v(K) = \frac{\sigma(K)}{2}$$

For the 185 non-alternating 11-crossing knots, only 3 are not quasi-alternating. Of those 3, two are slice and one is not. This is thus not a useful lower bound for the knots being considered in this paper. However, this is a useful invariant for torus knots, demonstrated in detail by Binns, Kang, Simone, and Truöl in [2]. Additionally, Allen explored a geography problem where the Upsilon invariant was wonderfully utilized in [1].

4 SPECIAL CASES

Lemma 4.1. *The knot $11n_{38}$ does not bound a Möbius band.*

The knot $11n_{38}$ has $H_1(D_K(S^3)) = \mathbb{Z}_3$ and thus the linking form is represented by the 1×1 matrix [1/3]. This is clear, as the non-zero elements of \mathbb{Z}_3 are 1 and -1. Then, if K bounds a Möbius band F in B^4 , we have $b(F) = b(D_F(B^4)) = 1$ and $D_F(B^4)$ is negative definite [4]. From Theorem 3 in [5], we have that the intersection form on $H_2(D_F(B^4))$ is represented by the linking

matrix on $H_1(D_K(S^3))$, which can be viewed from the entries in the Goeritz matrix. The Goeritz matrix G is a 4×4 matrix that is indefinite, and when diagonalized, $G = SJS^{-1}$, the matrix J is also indefinite. We may suppose that there exists a presentation matrix that represents the linking form, and by checking the diagonal entries on $-G^{-1}$, we have that $1/3$ represents the form. This implies the manifold is positive definite, which is a contradiction. Thus, $11n_{38}$ does not bound a Möbius band. We then have that there is a non-orientable band move from $11n_{38}$ to the trefoil knot, which has $\gamma_4(3_1) = 1$, therefore we may conclude that $\gamma_4(11n_{38}) = 2$. The figure below was obtained from Knot Atlas [9].

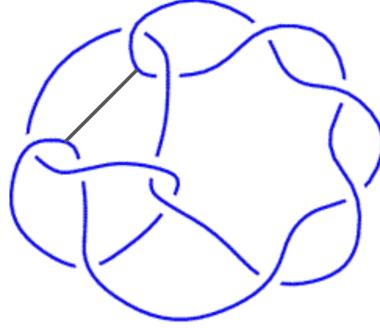


FIGURE 4.1. A non-oriented band move from $11n_{38} \xrightarrow{0} 3_1$

We thus have a combination of Lemmas 3.4, 3.5, and 4.1, Proposition 3.6, and Theorem 3.8 showing Proposition 3.3 is true, thus proving part (b) of Theorem 1.1.

Lemma 4.2. *The knots $11n_{17}$, $11n_{40}$, $11n_{159}$, $11n_{166}$, $11n_{177}$ and $11n_{178}$ all have $\gamma_4(K) = 1$ or 2.*

We have the following table:

Knot	linking form	definiteness of $D_F(B^4)$	4-genus
$11n_{17}$	$1/47$	positive	1
$11n_{40}$	$-1/79$	negative	1
$11n_{159}$	$1/71$	positive	1
$11n_{166}$	$1/59$	positive	1
$11n_{177}$	$1/83$	positive	1
$11n_{178}$	$-1/95$	negative	1

Proof. Denote K as a knot listed in Lemma 4.2. We first examine the knot signature and Arf invariant to see $\sigma(K) + 4\text{Arf}(K) \equiv \pm 2 \pmod{8}$. Thus, no obstruction arises from Proposition 2.3, so we may only conclude $\gamma_4(K) \geq 1$. We then move on to examining the linking form of K . Note that the determinant of K , $d = \det(K)$, is either a prime number or a product of exactly 2 prime numbers. As $d = |H_1(D_K(S^3))|$, we cannot have a splitting of $H_1(D_K(S^3))$ into $G_1 \oplus G_2$ where

G_2 is metabolic, since d is square free. We thus see that the linking form λ for each knot is of the form $\pm 1/d$. We also compare the linking form of the knot to the definiteness of $D_F(B^4)$. The sign of the 4-manifold $D_F(B^4)$ corresponds to the sign of the quadratic form [4], thus the linking form, and we see that our signs are corresponding for the linking form and definiteness of $D_F(B^4)$. Additionally, each knot is one band move away from a knot K' so that $\gamma_4(K') = 1$, see Figure 4.2, and thus $\gamma_4(K) \leq 2$. We thus cannot find an obstruction to these knots bounding a Möbius band, but also cannot find the desired band move to a slice knot. Therefore, $\gamma_4(K) \leq 2$ for the knots in Lemma 4.2. \square

This concludes the proof for Theorem 1.1.

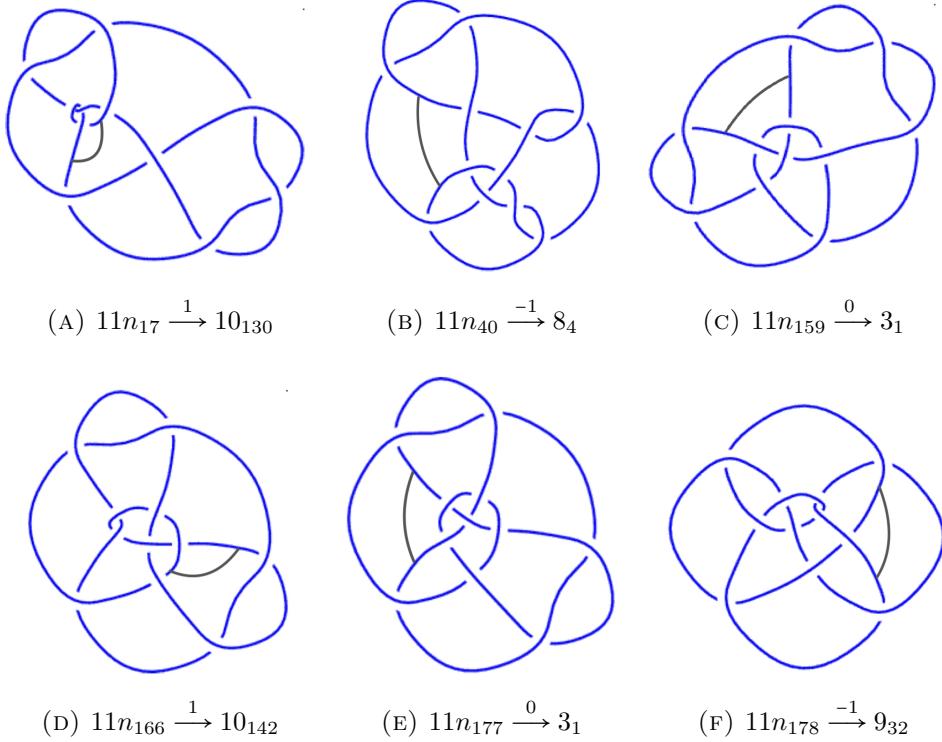


FIGURE 4.2. Non-oriented band moves from the knots $11n_{17}, 11n_{40}, 11n_{159}, 11n_{166}, 11n_{177}$, and $11n_{178}$ to knots with non-orientable genus 1.

Concordance

Given K and J two concordant knots, it is well known that $g_4(K) = g_4(J)$ and easy to see that $\gamma_4(K) = \gamma_4(J)$. Thus one may wonder if studying concordance of knots may help us solve this non-orientable 4-genus problem. For the six remaining knots, their concordance genus is known [10], however the knots to which they are concordant is still unknown.

Question 4.3. Is $11n_{40}$ concordant to 10_{57} ?

10_{57} is a wonderful candidate for concordance to $11n_{40}$, just by a simple analysis of their invariants [10]. If the answer to Question 4.3 is yes, then the knot $11n_{40}$ has $\gamma_4(11n_{40}) = 1$.

Conjecture 4.4. The knots $11n_{17}$, $11n_{159}$, $11n_{166}$, $11n_{177}$, and $11n_{178}$ are not concordant to any knot with 11 or fewer crossings. Moreover, $11n_{17}$, $11n_{159}$, and $11n_{166}$ are not concordant to any knot with 12 or fewer crossings.

It should be noted that Kearny has found the concordance genus of 11-crossing knots in [8], as well as specific concordances from 11-crossing knots to knots of lower crossings.

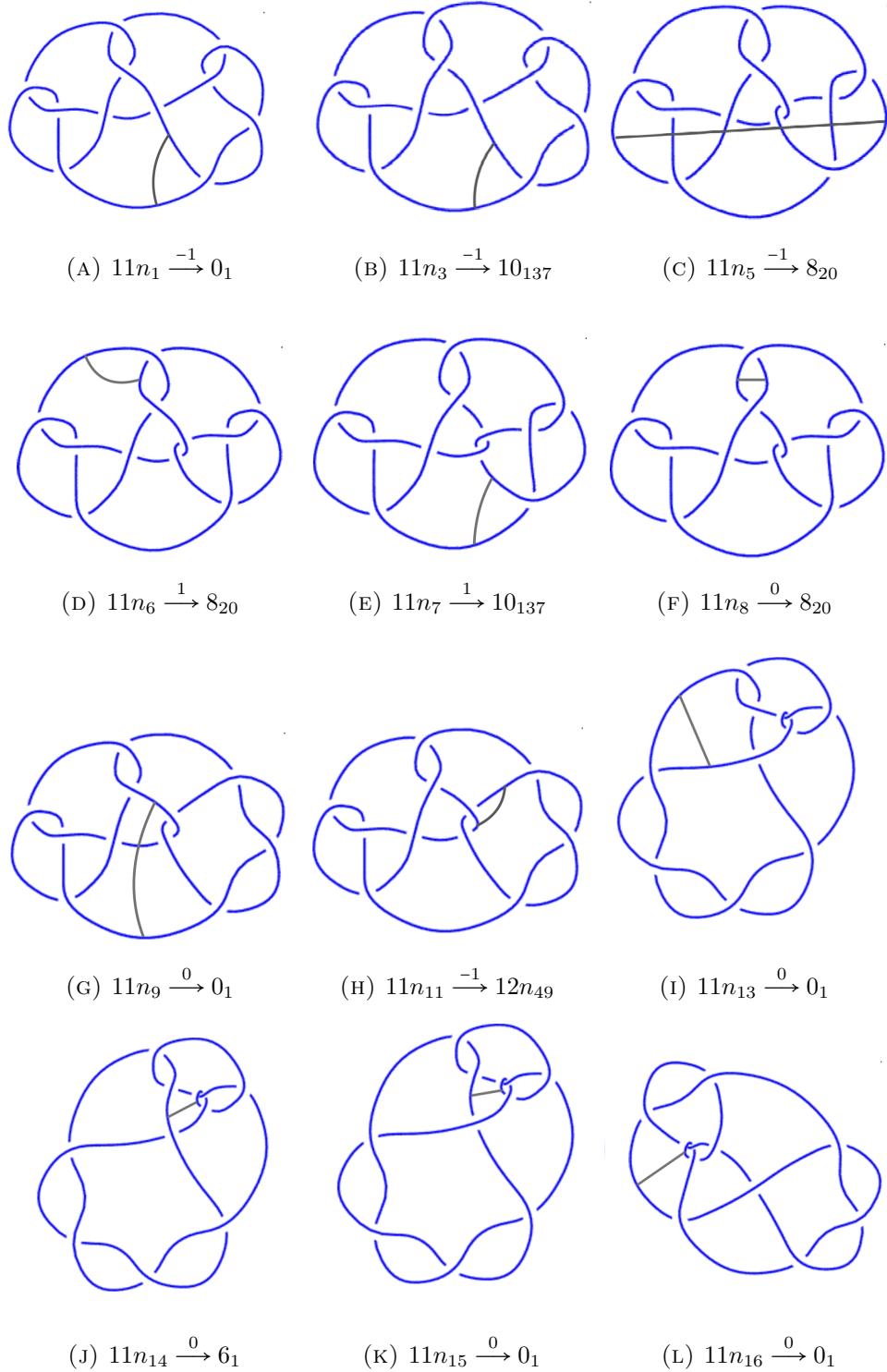


FIGURE 4.3. Non-oriented band moves from the knots $11n_1, 11n_3, 11n_5, 11n_6, 11n_7, 11n_8, 11n_9, 11n_{11}, 11n_{13}, 11n_{14}, 11n_{15}$, and $11n_{16}$ to smoothly slice knots.

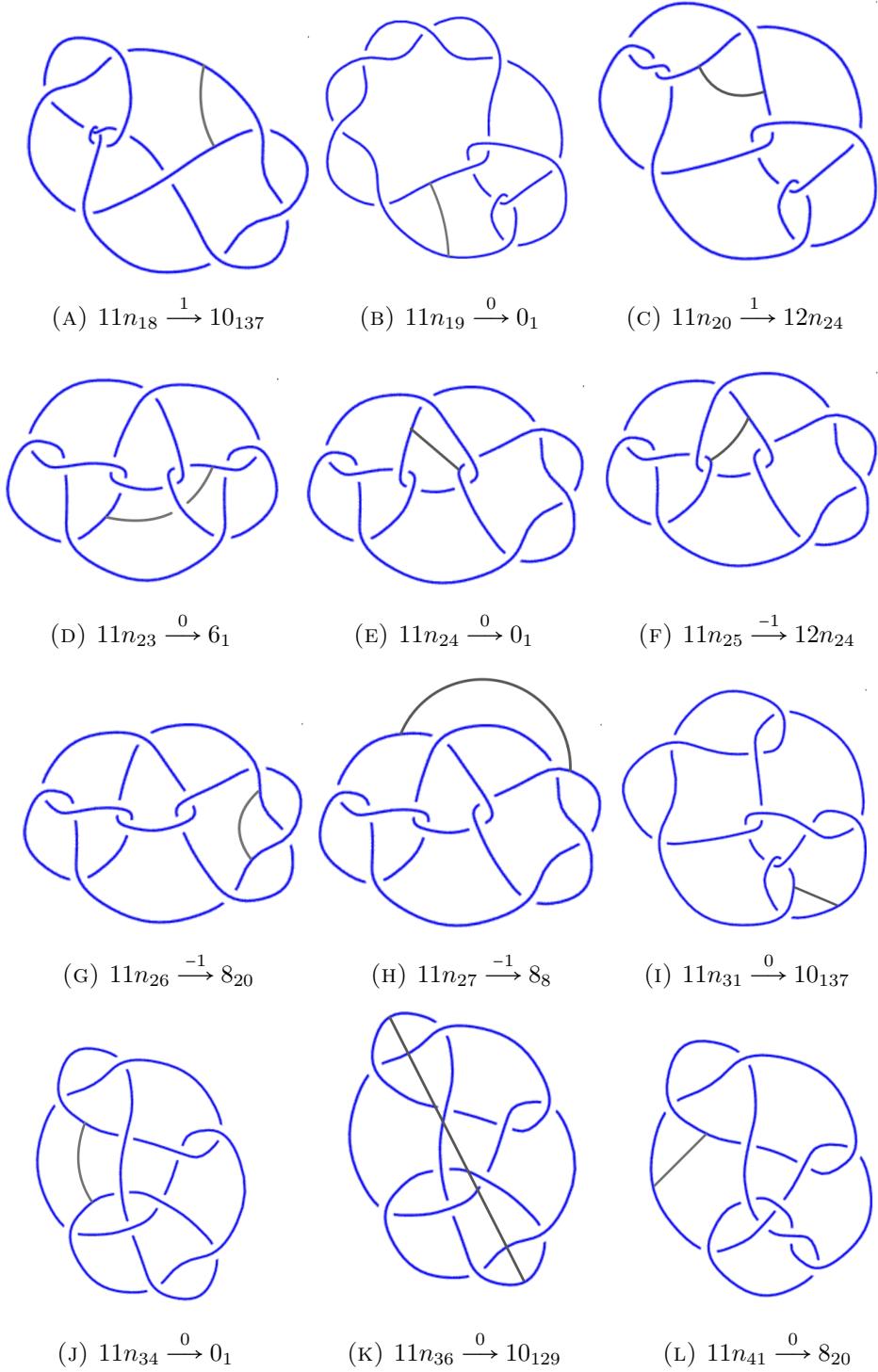


FIGURE 4.4. Non-oriented band moves from the knots $11n_{18}, 11n_{19}, 11n_{20}, 11n_{23}, 11n_{24}, 11n_{25}, 11n_{26}, 11n_{27}, 11n_{31}, 11n_{34}, 11n_{36}$, and $11n_{41}$ to smoothly slice knots.

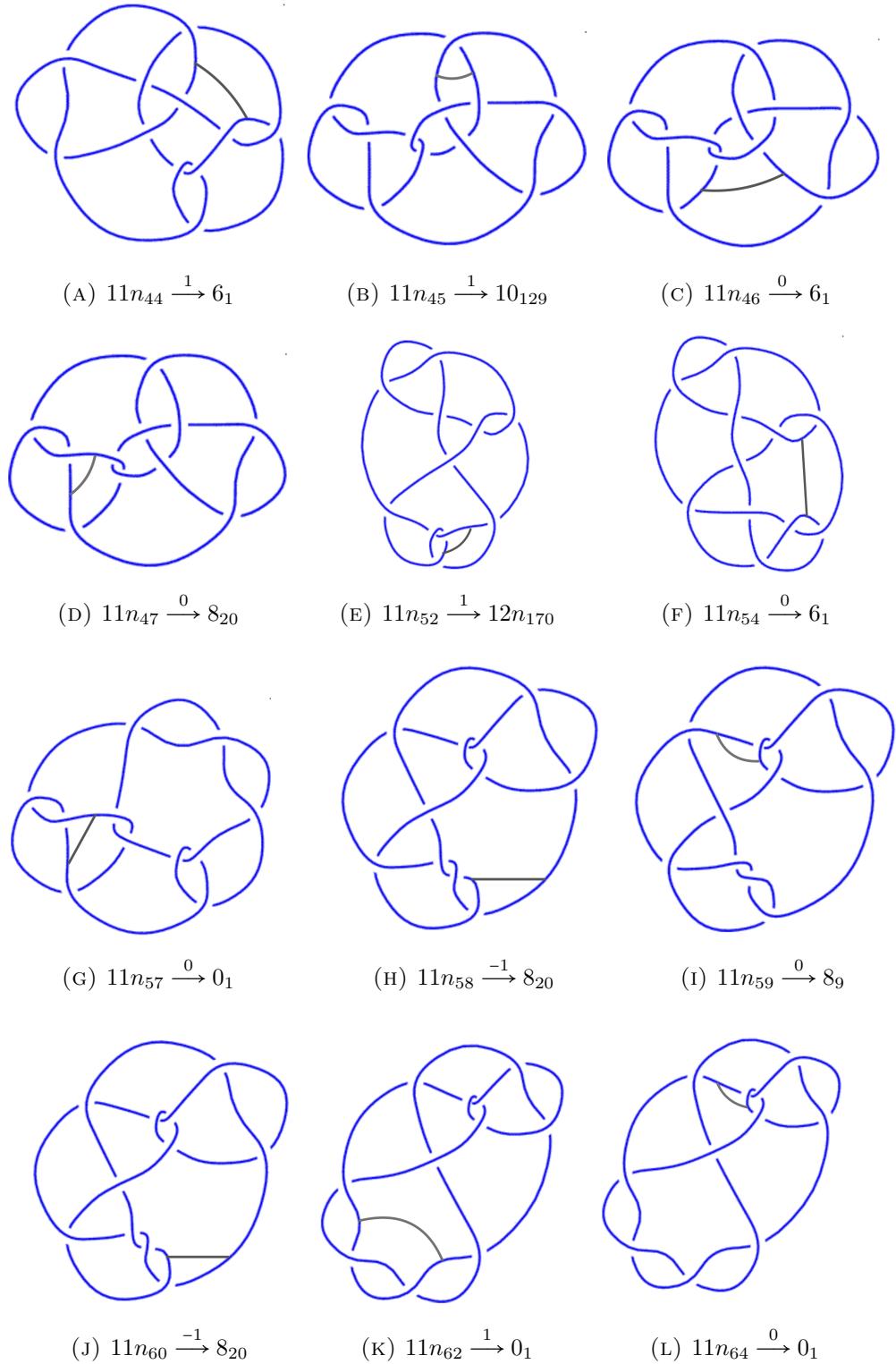


FIGURE 4.5. Non-oriented band moves from the knots $11n_{44}, 11n_{45}, 11n_{46}, 11n_{47}, 11n_{52}, 11n_{54}, 11n_{57}, 11n_{58}, 11n_{59}, 11n_{60}, 11n_{62}$, and $11n_{64}$ to smoothly slice knots.

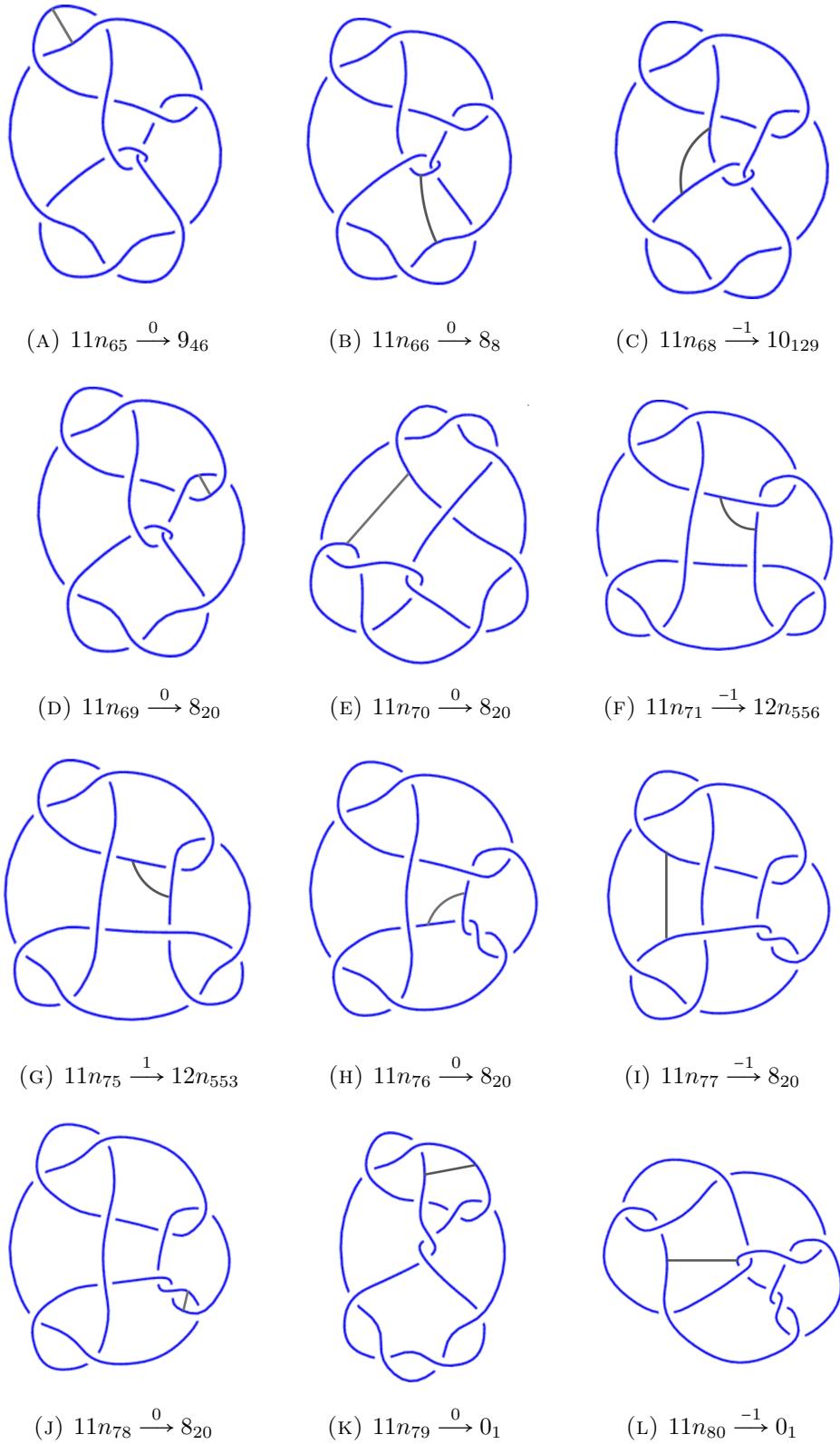


FIGURE 4.6. Non-oriented band moves from the knots $11n_{65}, 11n_{66}, 11n_{68}, 11n_{69}, 11n_{70}, 11n_{71}, 11n_{75}, 11n_{76}, 11n_{77}, 11n_{78}, 11n_{79}$, and $11n_{80}$ to smoothly slice knots.

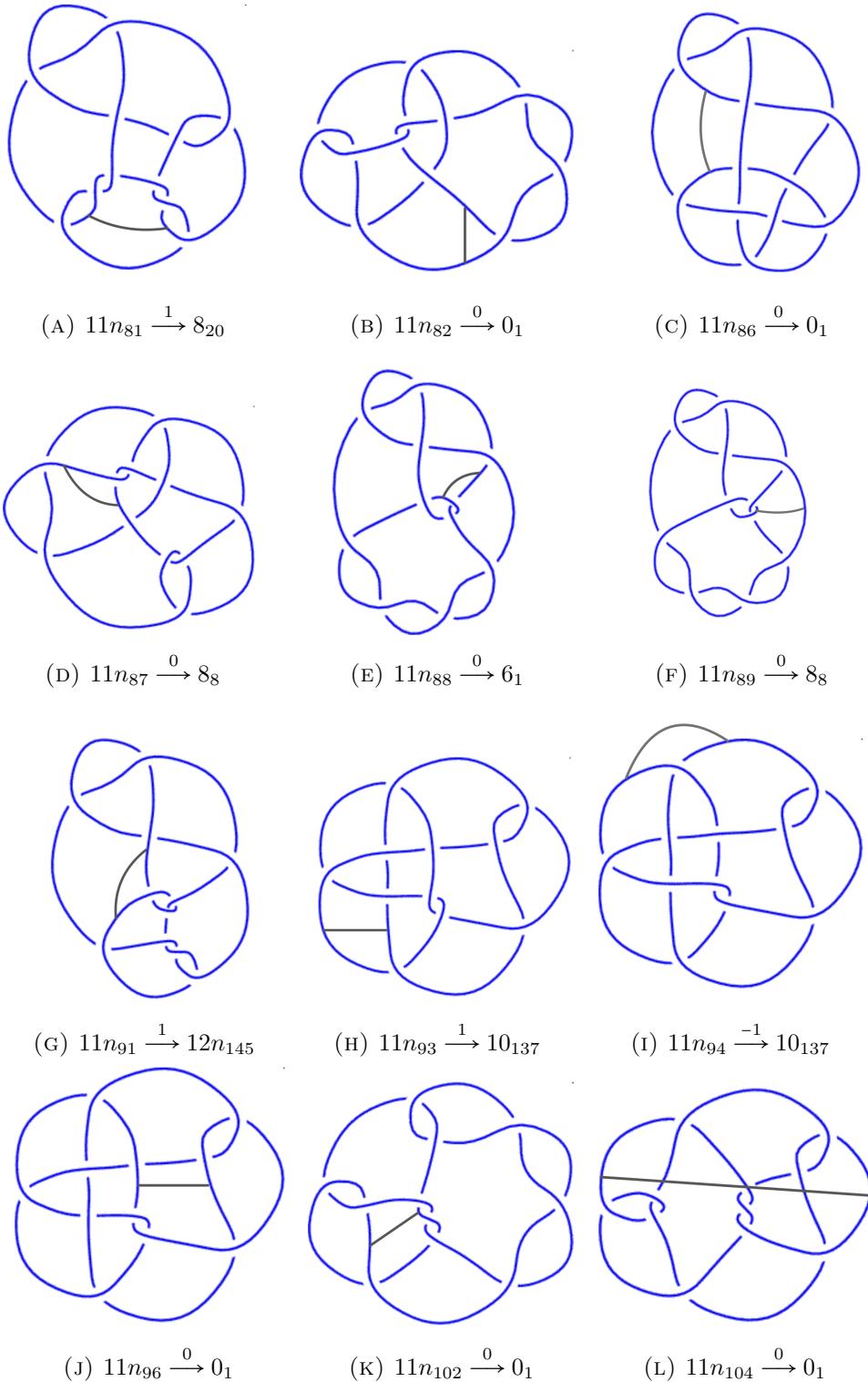


FIGURE 4.7. Non-oriented band moves from the knots $11n_{81}, 11n_{82}, 11n_{86}, 11n_{87}, 11n_{88}, 11n_{89}, 11n_{91}, 11n_{93}, 11n_{94}, 11n_{96}, 11n_{102}$, and $11n_{104}$ to smoothly slice knots.

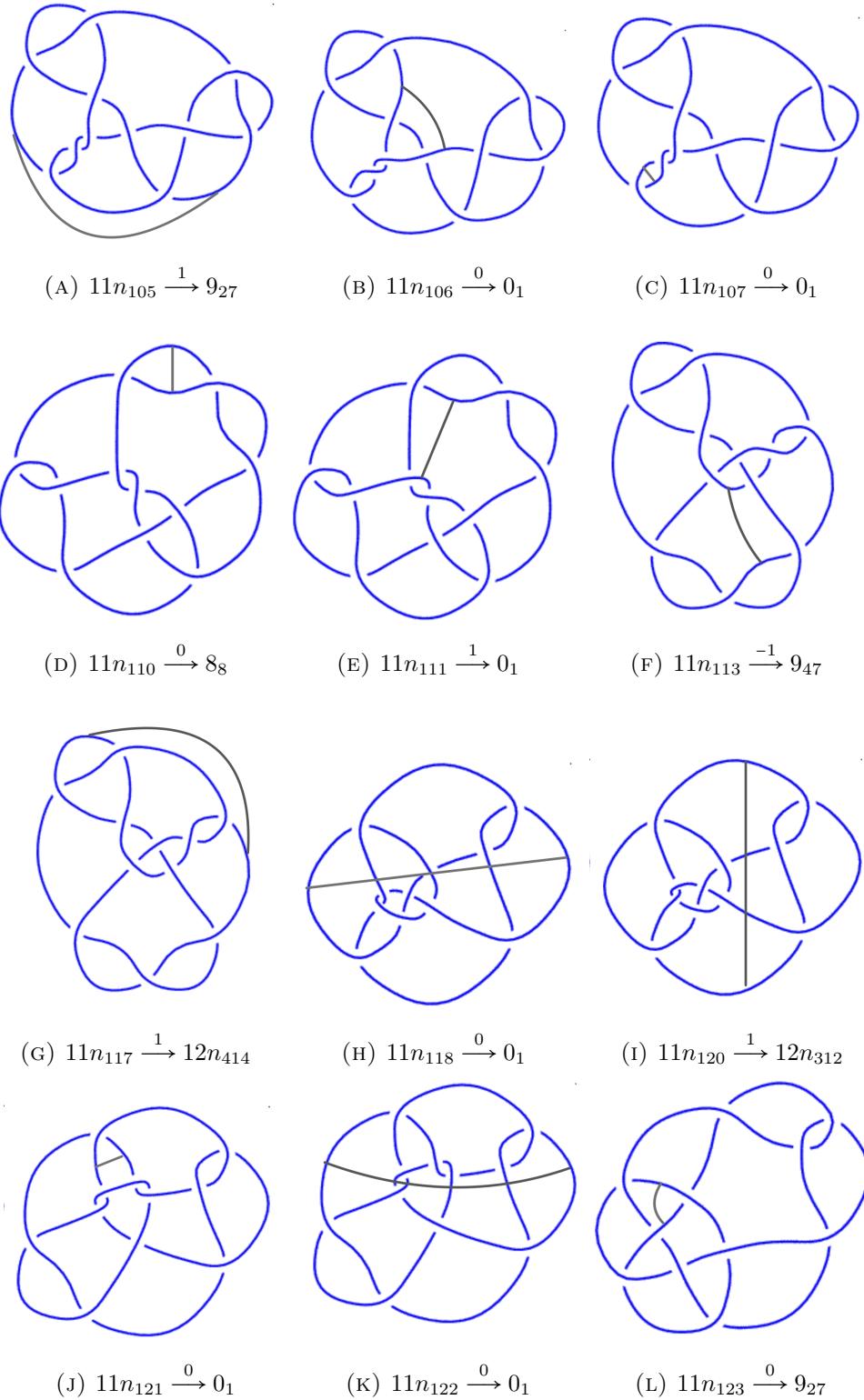


FIGURE 4.8. Non-oriented band moves from the knots $11n_{105}, 11n_{106}, 11n_{107}, 11n_{110}, 11n_{111}, 11n_{113}, 11n_{117}, 11n_{118}, 11n_{120}, 11n_{121}, 11n_{122}$, and $11n_{123}$ to smoothly slice knots.

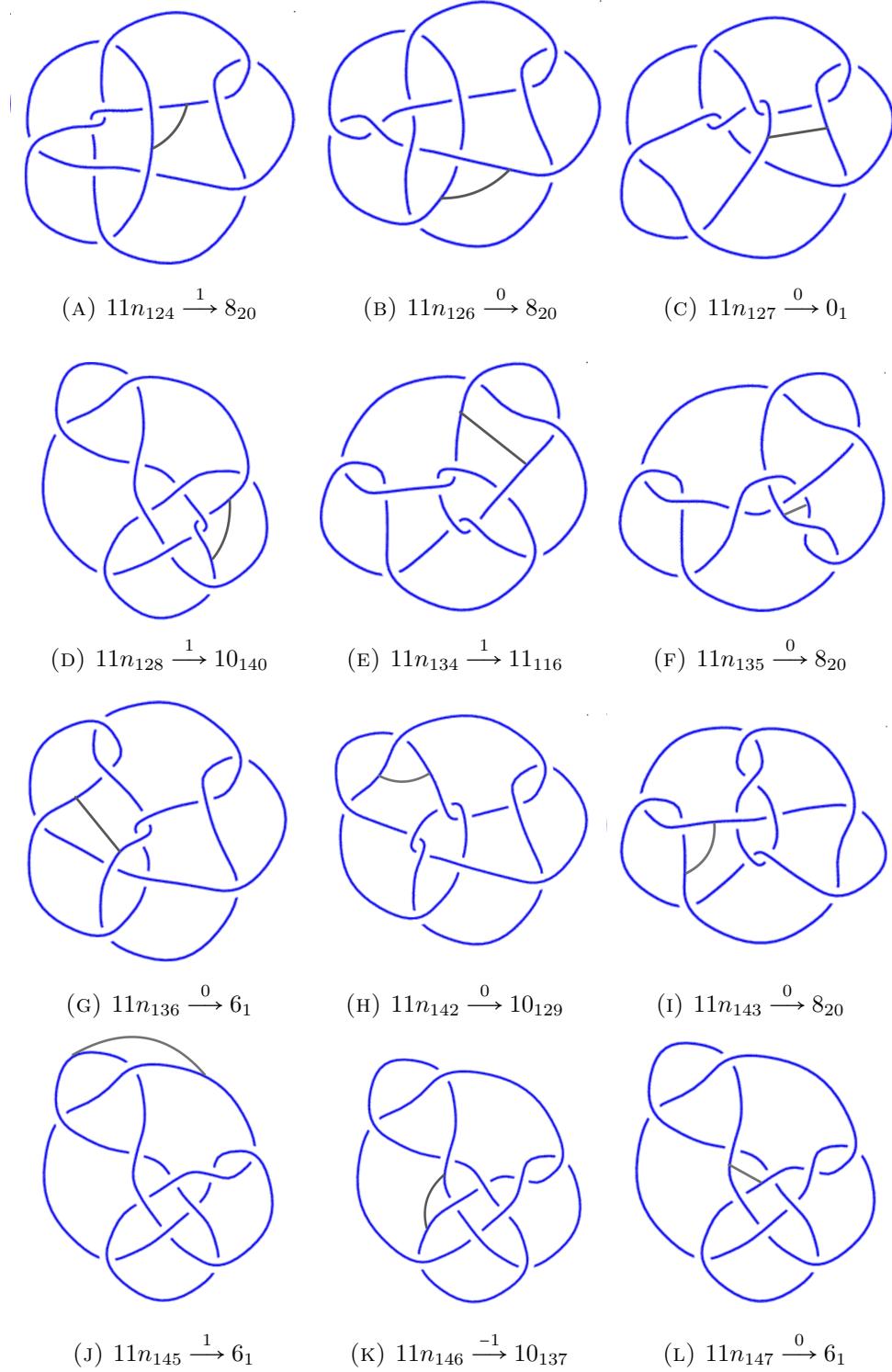


FIGURE 4.9. Non-oriented band moves from the knots $11n_{124}, 11n_{126}, 11n_{127}, 11n_{128}, 11n_{134}, 11n_{135}, 11n_{136}, 11n_{142}, 11n_{143}, 11n_{145}, 11n_{146}$, and $11n_{147}$ to smoothly slice knots.

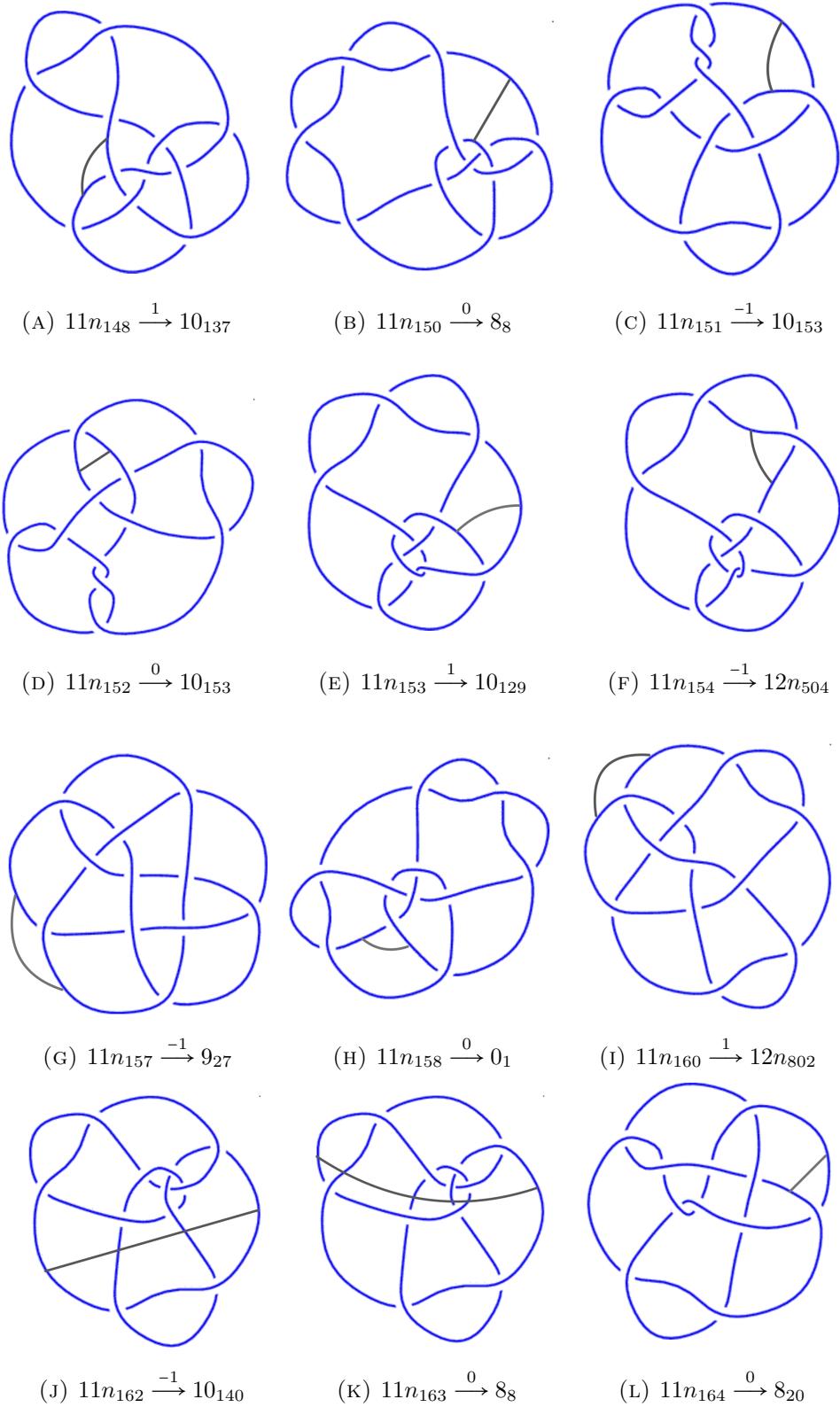


FIGURE 4.10. Non-oriented band moves from the knots $11n_{148}, 11n_{150}, 11n_{151}, 11n_{152}, 11n_{153}, 11n_{154}, 11n_{157}, 11n_{158}, 11n_{160}, 11n_{162}, 11n_{163}$, and $11n_{164}$ to smoothly slice knots.

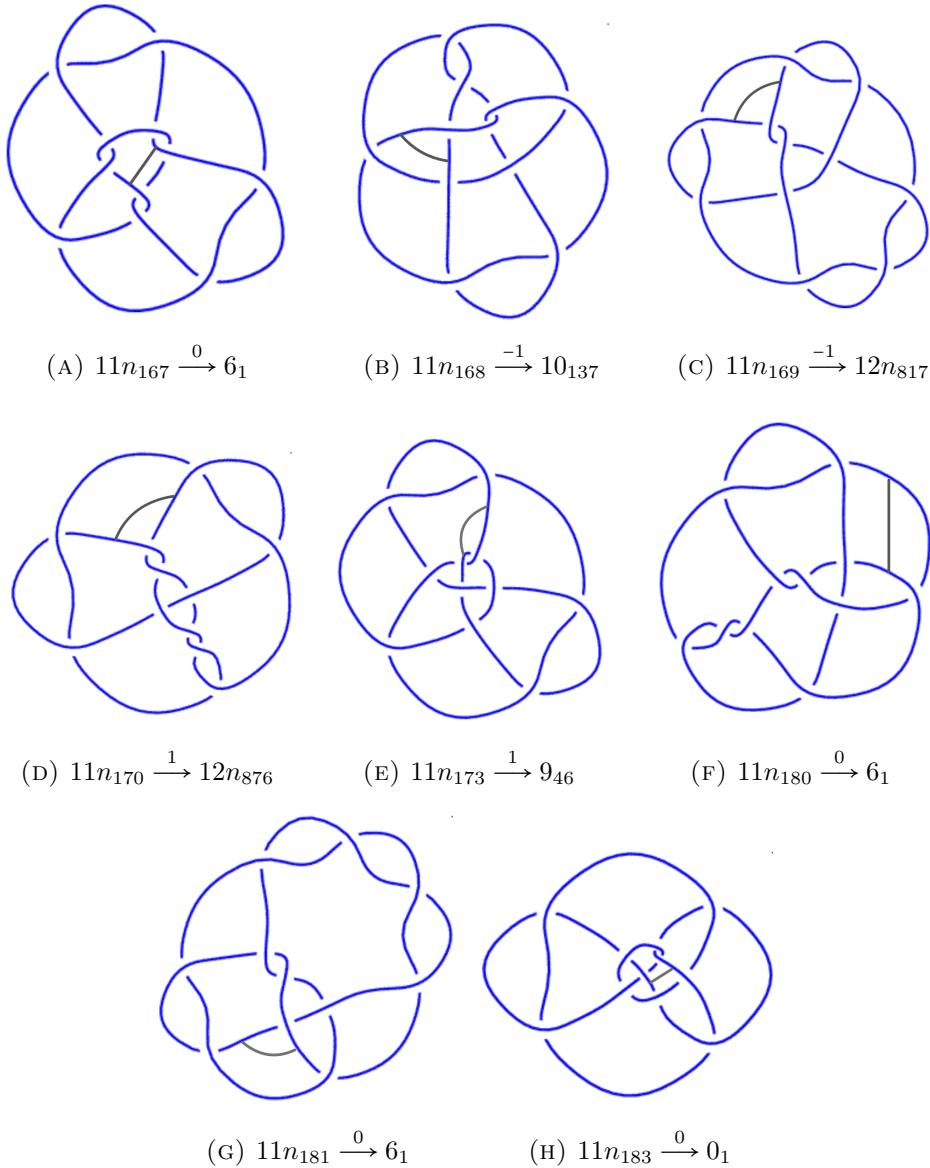


FIGURE 4.11. Non-oriented band moves from the knots $11n_{167}, 11n_{168}, 11n_{169}, 11n_{170}, 11n_{173}, 11n_{180}, 11n_{181}$, and $11n_{183}$ to smoothly slice knots.

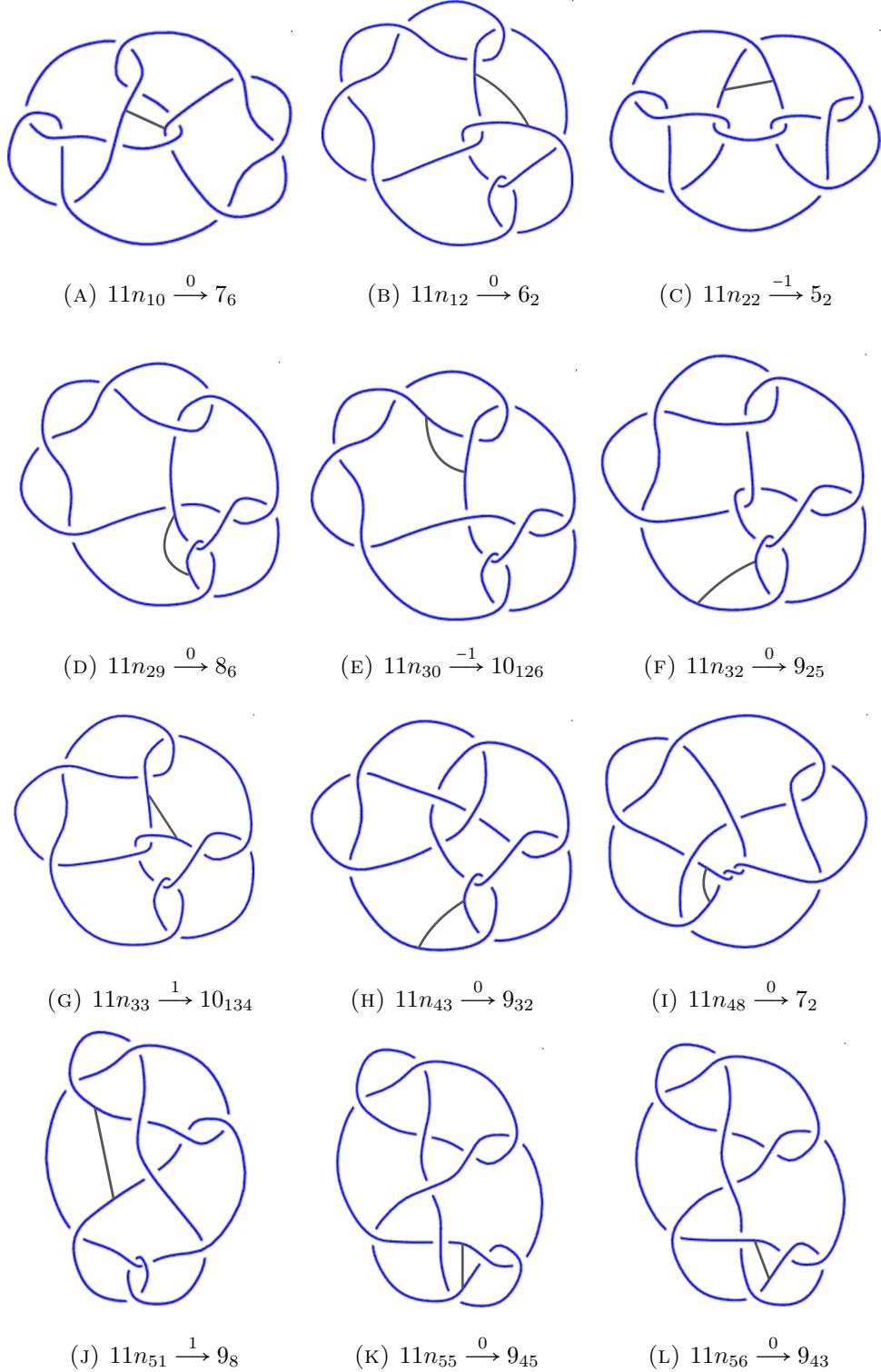


FIGURE 4.12. Non-oriented band moves from the knots $11n_{10}, 11n_{12}, 11n_{22}, 11n_{29}, 11n_{30}, 11n_{32}, 11n_{33}, 11n_{43}, 11n_{48}, 11n_{51}, 11n_{55}$, and $11n_{56}$ to knots with non-orientable genus 1.

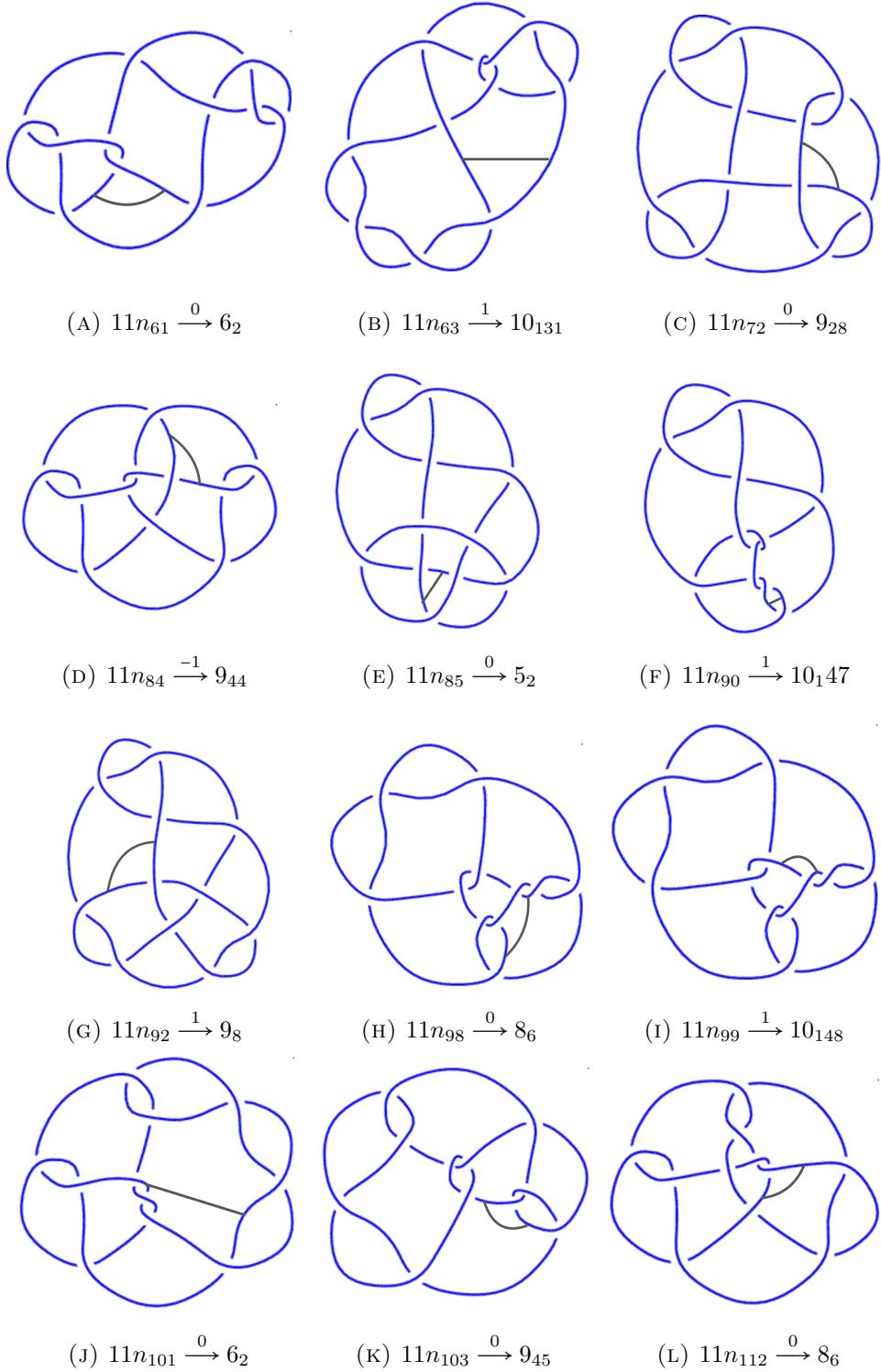


FIGURE 4.13. Non-oriented band moves from the knots $11n_{61}, 11n_{63}, 11n_{72}, 11n_{84}, 11n_{85}, 11n_{90}, 11n_{92}, 11n_{98}, 11n_{99}, 11n_{101}, 11n_{103}$, and $11n_{112}$ to knots with non-orientable genus 1.

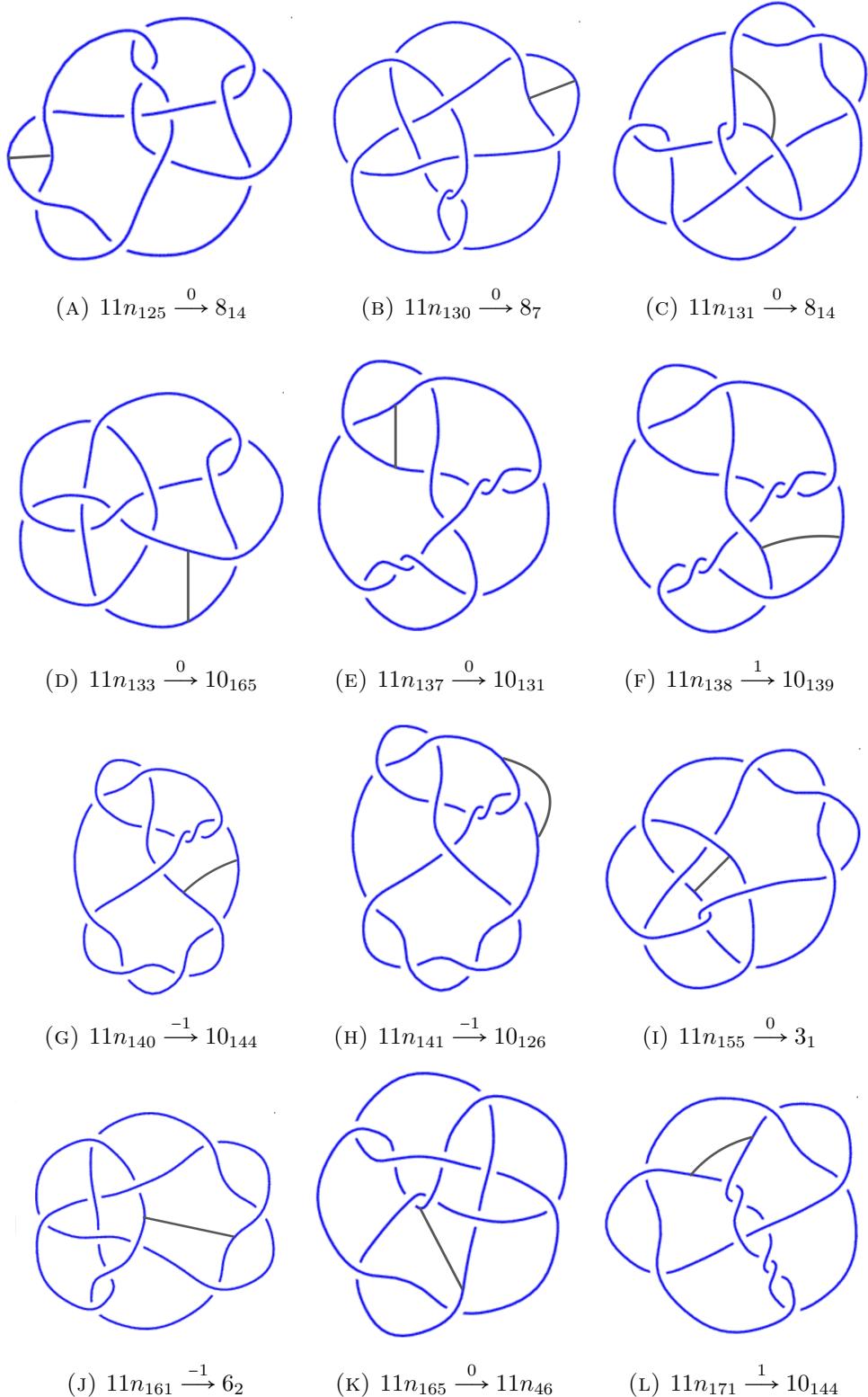


FIGURE 4.14. Non-oriented band moves from the knots $11n_{125}, 11n_{130}, 11n_{131}, 11n_{133}, 11n_{137}, 11n_{138}, 11n_{140}, 11n_{141}, 11n_{155}, 11n_{161}, 11n_{165}$, and $11n_{171}$ to knots with non-orientable genus 1.

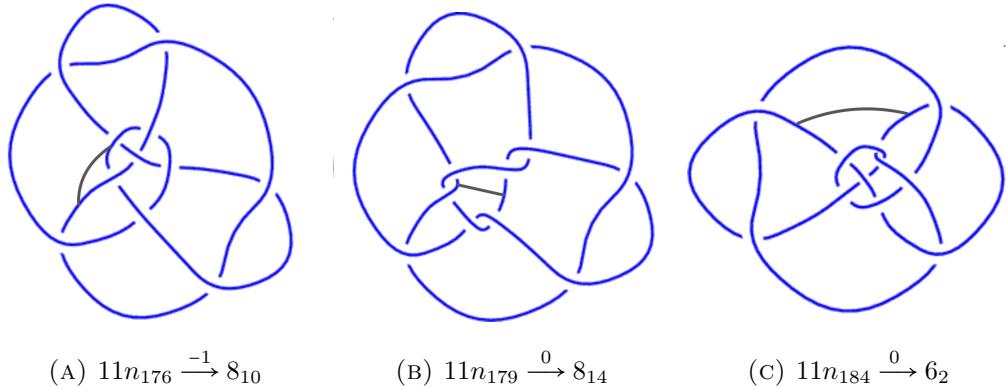


FIGURE 4.15. Non-oriented band moves from the knots $11n_{176}$, $11n_{179}$, and $11n_{184}$ to knots with non-orientable genus 1.

References

- [1] Samantha Allen. Nonorientable surfaces bounded by knots: a geography problem. *New York J. Math.*, 29:1038–1059, 2023.
- [2] Fraser Binns, Sungkyung Kang, Jonathan Simone, and Paula Truöl. On the nonorientable four-ball genus of torus knots. *arXiv preprint arXiv:2109.09187*, 2021.
- [3] Nakisa Ghanbarian. The non-orientable 4-genus for knots with 10 crossings. *J. Knot Theory Ramifications*, 31(5):Paper No. 2250034, 46, 2022.
- [4] Patrick M. Gilmer and Charles Livingston. The nonorientable 4-genus of knots. *J. Lond. Math. Soc. (2)*, 84(3):559–577, 2011.
- [5] C. McA. Gordon and R. A. Litherland. On the signature of a link. *Invent. Math.*, 47(1):53–69, 1978.
- [6] Jim Hoste, Patrick D. Shanahan, and Cornelia A. Van Cott. On the nonorientable 4-genus of double twist knots. *J. Knot Theory Ramifications*, 32(5):Paper No. 2350036, 30, 2023.
- [7] Stanislav Jabuka and Tynan Kelly. The nonorientable 4-genus for knots with 8 or 9 crossings. *Algebr. Geom. Topol.*, 18(3):1823–1856, 2018.
- [8] M. Kate Kearney. The concordance genus of 11-crossing knots. *J. Knot Theory Ramifications*, 22(13):1350077, 17, 2013.
- [9] The Knot Atlas. URL: http://katlas.org/wiki/The_Hoste-Thistlethwaite_Table_of_11_Crossing_Knots, February 2024.
- [10] Charles Livingston and Allison H. Moore. Knotinfo: Table of knot invariants. URL: <http://knotinfo.math.indiana.edu>, January 2024.
- [11] Allison H. Moore and Mariel Vazquez. A note on band surgery and the signature of a knot. *Bull. Lond. Math. Soc.*, 52(6):1191–1208, 2020.
- [12] Hitoshi Murakami and Akira Yasuhara. Crosscap number of a knot. *Pacific J. Math.*, 171(1):261–273, 1995.
- [13] Hitoshi Murakami and Akira Yasuhara. Four-genus and four-dimensional clasp number of a knot. *Proc. Amer. Math. Soc.*, 128(12):3693–3699, 2000.
- [14] Peter S. Ozsváth, András I. Stipsicz, and Zoltán Szabó. Unoriented knot Floer homology and the unoriented four-ball genus. *Int. Math. Res. Not. IMRN*, (17):5137–5181, 2017.
- [15] Joshua M. Sabloff. On a refinement of the non-orientable 4-genus of torus knots. *Proc. Amer. Math. Soc. Ser. B*, 10:242–251, 2023.

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY

Email address: mfarr17@lsu.edu