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Recent efforts to numerically simulate compact objects in alternative theories of gravity have largely focused

on the time-evolution equations. Another critical aspect is the construction of constraint-satisfying initial data

with precise control over the properties of the systems under consideration. Here, we augment the extended

conformal thin sandwich framework to construct quasistationary initial data for black hole systems in scalar

Gauss-Bonnet theory and numerically implement it in the open-source SpECTRE code. Despite the resulting

elliptic system being singular at black hole horizons, we demonstrate how to construct numerical solutions that

extend smoothly across the horizon. We obtain quasistationary scalar hair configurations in the test-field limit

for black holes with linear/angular momentum as well as for black hole binaries. For isolated black holes,

we explicitly show that the scalar profile obtained is stationary by evolving the system in time and compare

against previous formulations of scalar Gauss-Bonnet initial data. In the case of the binary, we find that the

scalar hair near the black holes can bemarkedly altered by the presence of the other black hole. The initial data

constructed here enable targeted simulations in scalar Gauss-Bonnet simulationswith reduced initial transients.
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I. INTRODUCTION

Since the first gravitational wave (GW) event from a binary

black hole coalescence, GW150914 [1], the possibility of

testing our current theories of gravity against observational

GW data in the highly dynamical strong-field regime has

become a reality. To date, while general relativity (GR) has

been found to be consistent with current observations [2–6],

strong field tests for theories beyond GR have not yet been as

thorough. In the context of GWs, this is mostly due to the

substantial effort required to compute the detailed predictions

needed to construct complete waveform models encompass-

ing all stages of compact binary coalescence. Crucially,

accurate modeling of the highly nonlinear late-inspiral and

merger stages relies on the ability to perform large-scale

numerical relativity (NR) simulations [7].

In recent years, there has been growing interest in

extending the techniques of NR to alternative theories of

gravity. Such theories are often motivated by open issues

in gravity and cosmology, e.g., to provide a dynamical

explanation to the observed accelerated expansion of the

Universe or to connect GR to a more fundamental theory

of quantum gravity. For scalar tensor theories with two

propagating tensor modes and one scalar mode [8–12],

interactions between the metric and a dynamical scalar may

lead to significant differences in the phenomenology of

compact binaries. For instance, in scalar Gauss-Bonnet

gravity (sGB), the component black holes (BHs) in the

binary may be endowed with scalar hair [13,14] and

energy may be dissipated through radiation channels in

addition to the two GW polarizations of GR.

As is the case for GR, one can attempt to split the field

equations in alternative theories of gravity into two sets of

partial differential equations: a set of hyperbolic evolution

equations, such as the generalized harmonic equations

in GR; and a set of elliptic constraint equations, such

as the Hamiltonian and momentum constraints in GR.

Nevertheless, the mathematical structure of both sets of

equations differs from GR as the additional interactions

contribute to new terms in the principal part. In the strong

field regime, such new terms may alter the hyperbolic/

elliptic character of the equations and even lead to

equations of mixed type [see, e.g., Refs. [15,16] ]. In this

respect, numerical relativity efforts have thus far focused on

finding appropriate formulations for the set of evolution
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equations that allow for stable numerical evolutions. These

newly developed evolution strategies, which include novel

gauges [17], traditional perturbation theory techniques and

proposals based on viscous hydrodynamics [18], and their

numerical implementation, have already produced a num-

ber of successful merger simulations in alternative gravity

theories [see, e.g., Refs. [19–36]; for studies in the test-field

approximation; and the review [37] ].
In this work, we take a step back and focus on the set of

elliptic constraint equations. Many of the current simulations
for compact binary objects in scalar tensor theories either

start off from initial data constructed for GR or use a
superposition of isolated solutions. While such approaches

are practical and useful for first qualitative explorations, they
are not guaranteed to satisfy the full constraint equations of

the extended theory and will in general not be in quasista-
tionary equilibrium. Indeed, constraint-satisfying solutions

can be obtained after an initial transient stage by employing
standard techniques, e.g., by including constraint-damping

terms or by smoothly turning on the additional interactions.
The cost, however, is a loss in control of the initial physical

parameters (e.g., mass, spin, eccentricity) during the relax-
ation stage (which may migrate to different values), as well
as the additional computational resources spent in simulating

this phase. If our aim is to efficiently obtain accurate
waveforms and to adequately cover the parameter space

for the calibration of waveform models, experience with GR
has shown that constructing constraint-satisfying initial data

in quasistationary equilibrium is important.

In GR, the most common way of formulating the

Hamiltonian and momentum constraints as a set of elliptic

equations is the conformal method, where instead of

solving for geometric quantities directly one performs a

conformal decomposition [38]. This is the basis for two of

the most well-known approaches, namely, the conformal

transverse traceless (CTT) [39] and the extended conformal

thin sandwich (XCTS) methods [40,41].

For the case of alternative theories, Kovacs [42] has

recently examined the mathematical properties of the

elliptic systems arising in weakly coupled four-derivative

scalar tensor theories (a class of theories which includes the

sGB theory investigated here) and provides theorems

regarding the well-posedness of the boundary value prob-

lem using extensions of the CTT and XCTS methods.

On the practical side, several authors have constructed

constraint-satisfying initial data for compact binaries in

theories beyond GR. Considering four-derivative scalar

tensor theory, Ref. [43] prescribes an ad hoc scalar field

configuration, solving the constraint equations via a modi-

fication of the CTT approach [44], in which the elliptic

equation for the conformal factor is reinterpreted as an

algebraic one for the mean curvature. While the initial data

constructed in this way is constraint-satisfying, since the

scalar hair configuration is not in quasistationary equilib-

rium, it should be expected to lead to significant transients

during the initial stage of evolution. A similar numerical

approach is taken in Refs. [45,46] to obtain constraint

satisfying initial data for boson star binaries, where the

constraints are solved for free data specified by the super-

position of isolated boson stars. In the context of Damour-

Esposito-Farèse theory [47] for neutron star binaries,

Ref. [48] solved the constraints for the metric alongside

an additional Poisson equation for the scalar field.

This paper develops and implements a method to

construct constraint-satisfying initial data where the scalar

field is in equilibrium. We focus on the decoupling limit

(i.e., the scalar does not back-react onto the metric) of

scalar Gauss-Bonnet gravity in vacuum

S½gab;Ψ�≡
Z

d4x
ffiffiffiffiffiffi

−g
p �

R

2κ
−
1

2
∇aΨ∇

a
Ψþ l

2fðΨÞG
�

;

ð1Þ

where κ ≡ 8πG, l denotes the coupling constant,

g ¼ detðgabÞ is the determinant of the metric gab, and Ψ

is the scalar field. To obtain spontaneously scalarized

BHs [49–51], we choose the free function fðΨÞ as [52]

FIG. 1. Scalar hair around a black hole binary. Left: opposite sign scalar charges. Right: scalar charges with same sign. This

configuration corresponds to an equal mass, nonspinning binary black hole system in an approximate circular orbit. The sGB coupling

constants are l2η ≃ 3.34M2, l2ζ ≃ −31.1M2, where M denotes the mass of either BH, and the BH separation is D ≃ 28M.
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fðΨÞ≡ η

8
Ψ

2 þ ζ

16
Ψ

4: ð2Þ

This function couples Ψ to the Gauss-Bonnet scalar

G≡ RabcdR
abcd − 4RabR

ab þ R2; ð3Þ

which is in turn defined in terms of the Riemann tensor

Rabcd, the Ricci tensor Rab, and the Ricci scalar R.
Following Ref. [42], we revisit the conditions for

obtaining quasistationary configurations for the scalar hair

around isolated and binary black holes. We argue that, in

the initial data slice, one must impose a vanishing scalar

“momentum” defined in terms of the directional derivative

along an approximate Killing vector of the spacetime—as

opposed to the directional derivative along the normal to

the foliation as in Ref. [42]. The adapted coordinates from

the background spacetime given by a solution to the XCTS

equations naturally yield the required approximate Killing

vector. Imposing the appropriate momentum condition on

the scalar equation, we derive a singular boundary-value

problem for BH spacetimes.

We demonstrate that this singular boundary-value prob-

lem can be solved without an inner boundary condition

in the spectral elliptic solver of the open-source SpECTRE

code [53]. We thus obtain quasistationary hair for both

single and binary black hole spacetimes, as illustrated in

Fig. 1. Moreover, for the case of single BHs, we further

evolve the obtained configuration to confirm that the

solution is indeed quasistationary and does not lead to

large transients, and compare against the prescription given

in Ref. [42].

This paper is organized as follows. Section II recalls

basic aspects of sGB theory and of the XCTS method. In

Sec. III, we revisit different formulations for the scalar

equation and define a scheme that imposes quasiequili-

brium on the scalar hair. We further discuss the singular

boundary value problem and describe our numerical

implementation to solve for single BHs. Section IV show-

cases the different single BH systems that we can access

with both the 1D and 3D code, and demonstrates the

stationarity of the solutions obtained via direct evolution.

Section V constructs initial data for binary black holes

with scalar hair. We first deal with conceptual issues

regarding scalar configurations on arbitrarily large spatial

domains and then proceed to present our solutions for

quasistationary scalar hair. We summarize and discuss our

results in Sec. VI. Throughout this paper, we use geometric

units such that G ¼ c ¼ 1 and ð−þþþÞ signature. Early
alphabet letters fa; b; cg represent 4-dimensional space-

time indices, while middle alphabet letters fi; j; kg corre-

spond to 3-dimensional spatial indices.

II. THEORY

Variation of the action of scalar Gauss-Bonnet theory

[Eq. (1)] yields a scalar equation

□Ψ ¼ −l2f0ðΨÞG ð4Þ

and a tensor equation

Rab ¼ Hab½gcd;Ψ�; ð5Þ

where Hab½gcd;Ψ� contains up to second derivatives of gab
and Ψ—see, e.g., Ref. [54] for the full expression. In the

decoupling limit of the theory (i.e., when Ψ is considered a

test field), the right-hand-side of Eq. (5) vanishes,

Hab½gcd;Ψ�≡ 0.

A. Spontaneous scalarization

Stationary BH solutions of Eqs. (4) and (5) are often

nonunique. When f0ð0Þ ¼ 0, as for our choice of fðΨÞ, a
GR solution with Ψ≡ 0 trivially solves Eqs. (4) and (5).

However, GR solutions can be energetically disfavored for

a large enough coupling parameter l2η≳ 0. This can be

seen [55] by expanding around Ψ≡ 0 to derive an

equation describing the scalar perturbations around the

GR solution,

ð□ −m2

Ψ;effÞδΨ ¼ 0; ð6Þ

where m2

Ψ;eff ≡ −l2ηG plays the role of an effective,

spatially varying mass term. If m2

Ψ;eff is negative enough,

due to either high curvature or very large spins [56,57],

GR solutions in sGB may become dynamically unstable,

and will spontaneously scalarize to yield a second set of

solutions with nonvanishing scalar hair [49–51,58].

Therefore, BHs in sGB theory are characterized by their

mass, spin, and an additional scalar charge parameter q,

defined by the asymptotic behavior of the scalar as

Ψðr → ∞Þ ¼ Ψ∞ þ qM2

r
þO

�

1

r2

�

; ð7Þ

whereΨ∞ is the asymptotic value of the scalar field andM

is the mass of the BH. Given theΨ → −Ψ symmetry of the

theory described by Eqs. (1) and (2), any hairy solutions

will have a corresponding equivalent solution related by

Ψ → −Ψ, and which is characterized by a scalar charge of

equal magnitude and opposite sign.

B. The XCTS formulation

In the decoupling limit, the constraint equations arising

from Eq. (5) are the usual Hamiltonian and momentum

constraints of GR. To obtain them, we perform a (3þ 1)-

decomposition of the metric,

ds2 ¼ gabdx
adxb

¼ −α2dt2 þ γijðβidtþ dxiÞðβjdtþ dxjÞ; ð8Þ

QUASISTATIONARY HAIR FOR BINARY BLACK HOLE … PHYS. REV. D 111, 024061 (2025)

024061-3



where α is the lapse, βi ¼ γijβj is the shift, and γij is

the spatial metric (with inverse γij). The constraints in

vacuum read [7]

ð3ÞRþ K2 − KijK
ij ¼ 0; ð9aÞ

DjðKij − γijKÞ ¼ 0; ð9bÞ

where ð3ÞR denotes the Ricci scalar of γij and Dj is the

3-dimensional covariant derivative compatible with γij.

Finally, Kab ≡ −ð1=2ÞLnγab denotes the extrinsic curva-

ture, with trace K, where the Lie derivative is taken along

the future-pointing unit normal to the foliation, na.
We further decompose the spatial metric as

γij ¼ ψ4γ̄ij; ð10Þ

where ψ > 0 is the conformal factor and γ̄ij is the

conformal spatial metric, which we are free to specify.

The XCTS formalism [40,41] is centered around specifying

certain free data and their time derivatives. Specifically,

the conformal metric γ̄ij and K are free data, as well as

∂tγ̄ij ≡ ūij and ∂tK. It is useful to decompose the extrinsic

curvature as

Kij ¼ 1

3
γijK þ ψ−10Āij ð11Þ

with

Āij ¼ 1

2ᾱ
½ðL̄βÞij − ūij�: ð12Þ

Here, ᾱ ¼ ψ−6α is the conformal lapse function, and the

conformal longitudinal operator is defined as

ðL̄βÞij ¼ 2D̄ðiβjÞ −
2

3
γ̄ijD̄kβ

k; ð13Þ

where D̄i denotes the covariant derivative operator com-

patible with the conformal metric γ̄ij.

The final XCTS equations are then obtained from

Eqs. (9) and from the evolution equation for K, and are

given by [41]

D̄2ψ −
1

8
ψ ð3ÞR̄ −

1

12
ψ5K2 þ 1

8
ψ−7ĀijĀ

ij ¼ 0; ð14aÞ

D̄i

�

1

ᾱ
½ðL̄βÞij − ūij�

�

−
2

3
ψ6D̄jK ¼ 0; ð14bÞ

D̄2ðαψÞ − αψ

�

7

8
ψ−8ĀijĀ

ij þ 5

12
ψ4K2 þ 1

8

ð3ÞR̄

�

þ ψ5ð∂tK þ βiD̄iKÞ ¼ 0; ð14cÞ

where ð3ÞR̄ is the spatial conformal Ricci scalar. In the XCTS

formalism, the notion of quasistationary equilibrium can be

imposed [59] by demanding that the conformal metric and

trace of the extrinsic curvature remain unchanged along

infinitesimally separated spatial slices, i.e.,

ūij ¼ 0; ð15Þ

∂tK ¼ 0: ð16Þ

Combined with appropriate boundary conditions [see

Ref. [59] for details], the XCTS system [Eqs. (14)] is then

solved for fψ ; αψ ; βig, thus providing not only a solution to
the constraint equations (9), but also a coordinate system

adapted to the symmetry along the approximate Killing

vector

ta∂a ¼ ðαna þ βaÞ∂a ¼ ∂t: ð17Þ

In Sec. III, we will extend this property to the scalar

equation in sGB theory.

III. QUASISTATIONARY SCALAR HAIR

In this section, we revisit the scalar equation Eq. (4) and

consider different strategies to include it in the XCTS

scheme. The aim is to obtain solutions for the metric and

the scalar hair of the BH in a general 3-dimensional space

without symmetry. We further describe our numerical

implementation, which will also be applicable to the more

general case of BH binaries treated in Sec. V.

A. Spherical symmetry

We first consider a spherically symmetric BH in horizon-

penetrating Kerr-Schild coordinates

ds2 ¼ −

�

1 −
2M

r

�

dt2 þ 4M

r
dtdr

þ
�

1þ 2M

r

�

dr2 þ r2dΩ2; ð18Þ

with dΩ2 ¼ dθ2 þ sin2ðθÞdϕ2. Under the assumption

that the scalar field is time-independent, Eq. (4) yields

�

1 −
2M

r

�

∂
2
rΨ −

2ðM − rÞ
r2

∂rΨ ¼ −
48M2

r6
f0ðΨÞ; ð19Þ

where G ¼ 48M2=r6 and where M is the mass of the BH.

We will be looking for solutions of Eq. (19) with asymp-

totic behavior (7) by imposing
1

1
While one can easily place the outer boundary rmax at spatial

infinity in the spherically symmetric case, we impose the condition
(20) to connect with the 3D-implementation in Sec. IVA.
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½r∂rΨþΨ − Ψ∞�r→∞ ¼ 0; ð20Þ

with Ψ∞ ¼ 0.

This is our first encounter with a singular boundary

value problem. Notice that Eq. (19) is singular at the BH

horizon rh ¼ 2M, where the factor in front of the highest-

derivative operator vanishes. Despite this observation,

Eq. (19) can be easily solved via the shooting method

[60]. Regularity of Ψ at the horizon can be imposed by

expanding Ψ as an analytic series around rh. The solutions
satisfying Eq. (20) can then be found by numerically

integrating outward starting from rh þ ϵ and performing

a line search in the unknown value Ψjrh at the inner

boundary.

In order to prepare for our later 3D solutions, we shall

take a different approach, and solve Eq. (19) on a domain

that extends through the horizon into the interior region.

Utilizing a spectral method, we represent Ψ as a series in

Chebychev polynomials TiðxÞ,

ΨðxÞ ¼
X

N

i¼0

ΨðiÞTiðxÞ; ð21Þ

where the argument x∈ ½−1; 1� is related to radius r by the

transformation x ¼ A=ðr − BÞ þ C for suitable constants

A, B, and C. To cover r∈ ½rmin; rmax�, we set A ¼
ðrmin þ rmax þ 2CÞ=ðrmax − rminÞ, B ¼ rmax − Armax þ
C − AC, and leave C as a specifiable constant to adjust

the distribution of resolution throughout the interval.

We choose a spatial grid fxigNi¼0
defined by the nodes

(or zeros) of TiðxÞ, and compute spatial derivatives of Ψ

analytically from Eq. (21). Using a Newton-Raphson

scheme, we iteratively solve the scalar equation by expand-

ing Ψ → Ψþ δΨ and linearizing Eq. (19). We obtain

�

1−
2M

r

�

∂
2
rδΨ

ðKÞ−
2ðM− rÞ

r2
∂rδΨ

ðKÞþ 48M2

r6
f00ðΨðKÞÞδΨðKÞ ¼−

�

1−
2M

r

�

∂
2
rΨ

ðKÞþ 2ðM− rÞ
r2

∂rΨ
ðKÞ−

48M2

r6
f0ðΨðKÞÞ;

ð22Þ

where, at a given iteration step K, the improved solution is

given by

Ψ
ðKþ1Þ ¼ Ψ

ðKÞ þ δΨðKÞ: ð23Þ

For a solution interval crossing the horizon, i.e.,

rmin < rh < rmax, we impose boundary conditions of the

form (20) only at the outer boundary. We do not impose

regularity across the entire domain (in particular, at a

singular boundary at r ¼ rh) via boundary conditions, as

it is already built into the spectral expansion (21) since all

Chebychev polynomials are regular. We implement this

algorithm in Python, and for each iteration step K we solve

the discretized version of Eq. (22) via explicit matrix

inversion using NumPy. An exemplary solution of

Eq. (19) is shown as the blue line in Fig. 2, where we

set rmin ¼ 1.9M and rmax ¼ 1010M.

B. 3D normal formulation “∂n = 0”

To solve for scalar hair in a general 3-dimensional space,

Ref. [42] requires the “momentum”

Π≡ −na∂aΨ ð24Þ

to vanish everywhere on the initial spatial slice at t ¼ 0, i.e.,

Πjt¼0 ≡ 0. The scalar equation (4) then becomes

∂iðγij∂jΨÞ þ γij∂jΨð∂i ln αþ Γ
k
kiÞ ¼ −l2f0ðΨÞG; ð25Þ

where Γk
ij is the 3-dimensional spatial Christoffel symbol

with respect to γij. Equation (25) is both elliptic and

regular everywhere. In Ref. [42], the inner boundary Sin is
placed on the apparent horizon of the BH and is supple-

mented with boundary conditions at both inner and outer

boundaries,

ŝi∂iΨjSin ¼ 0; ð26Þ

lim
r→∞

Ψ ¼ Ψ∞; ð27Þ

FIG. 2. Radial profile of the scalar field around a nonrotating

BH. The curves correspond to different formulations used for

obtaining Ψ. We set l2η=M2 ¼ 6, l2ζ=M2 ¼ −60. The vertical

gray line indicates the location of the horizon.
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where ŝi is the unit outward normal vector to the BH

horizon(s). For computational domains extending inside

the apparent horizon, we instead impose a constant

Dirichlet boundary condition (i.e., ΨjSin ¼ const.), chosen

such that ŝi∂iΨ ¼ 0 on each apparent horizon. On a finite

spatial domain, and assuming an asymptotic decay of

the scalar of the form of Eq. (7), we replace the outer

boundary condition with [c.f. Eq. (20)] a Robin type

boundary condition

ðrŝi∂iΨþ Ψ − Ψ∞ÞjSout ¼ 0; ð28Þ

where ŝi is now the unit outward normal vector to the

outer spherical boundary Sout. We set Ψ∞ ≡ 0. We shall

refer to this as the “∂n ¼ 0” formulation.

1. Caveats of the normal formulation

While the ∂n ¼ 0 formulation provides a readily solvable

elliptic system, the most common use case for the XCTS

formulation is the calculation of quasiequilibrium initial

conditions. Unfortunately, the normal formulation will not

generically lead to stationary spacetimes. Consider, for

example, the case of a Schwarzschild BH in Kerr-Schild

coordinates [Eq. (18)]. The timelike Killing vector ξ of the

spacetime is

ξa ¼ ta ¼ αna þ βa: ð29Þ

Assuming that the momentum Π is initially zero, the initial

time derivative of the scalar field Ψ is

tc∂cΨ ¼ αnc∂cΨþ βi∂iΨ ¼ βi∂iΨ: ð30Þ

Therefore, whenever βi ≠ 0 and ∂iΨ ≠ 0, LξΨ will not

vanish. For our example, LξΨ ¼ βr∂rΨ ¼ 2M=ðrþ
2MÞ∂rΨ ≠ 0 and the scalar hair obtained will not be

stationary. Indeed, solving the spherically symmetric

version of Eq. (25) in our 1D code, we find a profile

different from the ∂t ¼ 0 solution constructed in Sec. III A.

This profile is also shown in Fig. 2.

Finally, we note that the inner boundary condition

[Eq. (26)] is inconsistent with stationarity. Indeed, if Ψ

is regular at the horizon, then it can be expanded as a series

about rh of the form

ΨðrÞ ¼
X

∞

n¼0

ΨðiÞðr − rhÞn: ð31Þ

SolvingEq. (19) order-by-order perturbatively inΔr¼ r−rh,
we obtain that

∂rΨjrh ¼ Ψð1Þ ¼ −
3

8M3
l2ðηΨð0Þ þ ζΨ3

ð0ÞÞ; ð32Þ

which is nonzero in general, contradicting Eq. (26).

C. 3D approximate Killing formulation “∂t = 0”

Motivated by the existence of a symmetry along a Killing

vector, we present a new procedure for extending the XCTS

formulation to sGB gravity, which we refer to as the

“∂t ¼ 0” formulation. The main assumption will now be

that the “momentum” with respect to the (approximate)

Killing vector ξa, given by

P≡ LξΨ; ð33Þ

vanishes on the initial slice.

From the previous discussion, for a stationary GR black

hole in coordinates adapted to the symmetry, as well as for

solutions of the XCTS equations, the Killing vector

corresponds to ξ ¼ ∂t. By imposing P ¼ ∂tΨ≡ 0, Eq. (4)

becomes

∂iðMij
∂jΨÞ þ ð∂i ln αþ Γ

k
kiÞMij

∂jΨ ¼ −l2f0ðΨÞG; ð34Þ

where

M
ij ≡ γij − α−2βiβj: ð35Þ

Equation (34) is the 3D generalization of Eq. (19). In the

spirit of quasiequilibrium, we have also set ∂tα ¼ 0 and

∂tβ
i ¼ 0 in the derivation of Eq. (34). We note that these

simplifications could be relaxed and their values can be set

according to a desired gauge choice.

The principal part of Eq. (34) is M
ij
∂i∂jΨ. The singu-

larity at rh in the 1D formulation [Eq. (19)] now corre-

sponds to the situation where

detMjSh ¼ 0; ð36Þ

i.e., when (at least) one of the eigenvalues of Mij vanishes

at the apparent horizon Sh.M is singular on the BH horizon

in general. For a stationary BH in time-independent

coordinates, the time vector on the horizon must be parallel

to the horizon generators as argued in Ref. [59], which

implies that on the horizon βiŝi ¼ α, where ŝi is the

outward-pointing spatial unit normal to the horizon.

Using this equality, it follows that ŝiM
ijŝj ¼ 0.

As for the spherically symmetric example above, our

approach will be to rely on the inherent smoothness of

spectral expansions to single out solutions of Eq. (34) that

smoothly pass through the horizon. Regularity at the

horizon reduces the number of possible solutions, and so

we will not impose a boundary condition at the excision

surface in the interior of the horizon. We note that Lau et al.

[61,62] encountered the same principal part as Eq. (34) in

the context of IMEX evolutions on curved backgrounds.

Reference [61] in particular contains an analysis of the

singular boundary value problem. We impose the boundary
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condition (28) at the outer boundary, where again we set

Ψ∞ ≡ 0. Note that, in spherical symmetry, using γij, α, and

βi corresponding to that of the Kerr-Schild metric, this

formulation reduces to Eq. (19).

D. 3D numerical implementation

To solve the nonlinear Eqs. (25) and (34) in 3 dimen-

sions, we employ the spectral elliptic solver [63] of the

open-source SpECTRE code [53]. SpECTRE employs a dis-

continuous Galerkin discretization scheme, where the

domain is decomposed into elements, each a topological

d-dimensional cube. These elements do not overlap but

share boundaries. Boundary conditions on each element

(both external boundary conditions, as well interelement

boundaries) are encoded through fluxes. We refer the reader

to Refs. [63,64] for more details about the mathematical

formulation and numerical implementation.

For our present study of Eqs. (25) and (34) in the

decoupling limit, G is known and nonlinearities enter only

through f0ðΨÞ. Since the full linearization of these equa-

tions in Ψ is straightforward, we solve them by utilizing the

Newton-Raphson algorithm within SpECTRE.

In general, in the fully-coupled system [Hab ≠ 0 in

Eq. (5)], additional terms enter the original XCTS equa-

tions and the full linearization strategy described above

becomes impractical: first, because one would need to

linearize in both the scalar and metric variables; and

second, because such nonlinearities are very specific to

the concrete theory. Indeed, in the case of sGB, these arise

from the intricate structure of both G and Hab, which

depend on (up to second-order derivatives of) the scalar

and metric variables. To avoid a large implementation

burden, and explore possible strategies for future work,

we also implement a straightforward over-relaxation

scheme, which can easily be extended to other theories.

Note that a similar relaxation scheme was recently

employed in Ref. [43].

Our relaxation scheme constructs increasingly accurate

approximants Ψ
ðKÞ, K ¼ 1; 2;…, to the solution, where

in each iteration K the nonlinearity is calculated from

earlier iterations. Specifically, for the scalar equation (34),

we solve

∂iðMij
∂jΨ

ðKÞÞþM
ij
∂jΨ

ðKÞð∂i lnαþΓ
k
kiÞ ¼−l2f0ðUðKÞÞG;

ð37Þ

with

UðKÞ ¼ εΨðK−1Þ þ ð1 − εÞUðK−1Þ; K ≥ 1;

Uð0Þ ¼ Ψ
ð0Þ; K ¼ 0: ð38Þ

Here ε∈ ½0; 1� is a damping parameter, Ψð0Þ is the initial

guess, and an analogous expression holds for Eq. (25).

Upon discretization, at each iteration K, a linear problem

of the form

Ay ¼ b ð39Þ

is solved for y ¼ fΨðKÞðxiÞg, with xi being the nodal

points of the spectral basis consisting of tensor products of

Legendre polynomials. Here, b is a fixed source term

which only depends on quantities of the previous iteration

K − 1. Boundary conditions are imposed through the

discontinuous Galerkin fluxes, ensuring that the matrix

A is invertible. Since the Legendre polynomials are finite

and regular within each element, regularity across the

horizon is guaranteed so long as the horizon does not

coincide with element boundaries. The scheme (37) is

iterated until the residual of Eqs. (34) or (25) is suffi-

ciently small. For all solves presented here, we use a

tolerance of 10−10.

To further demonstrate the well-posed nature of the

elliptic equation (34), in Fig. 3, we plot the eigenvalues of

the submatrix of A in an element crossing the horizon of

the BH. All eigenvalues are nonzero, indicating the matrix

is invertible. Furthermore, all eigenvalues have positive real

parts, indicating this matrix should be amenable to standard

iterative linear solvers. The real parts of the eigenvalues

span ∼3 orders of magnitude, indicating that the matrix is

moderately well-conditioned, and numerically we are able

to invert the linear system without problems.

IV. RESULTS: SINGLE BLACK HOLES

A. 3D code in spherical symmetry

We will now apply the formalism and code developed

above to spacetimes with a single black hole. We start with

FIG. 3. Behavior of elliptic problem at the horizon. Eigenvalues

of the linearized discretized operator of Eq. (34) for a discon-

tinuous Galerkin element that crosses the horizon. The eigen-

values all have a positive real part and span ∼3 orders of

magnitude, showing that the matrix is invertible and moderately

well-conditioned.
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spherical symmetry, where we solve the scalar equation for

coupling constants l2η ¼ 6M2 and ζ ¼ −10η within the

“∂t ¼ 0” formulation [Eq. (34)], in both the 1D and 3D

code (the 1D result is shown in Fig. 2). Figure 4 showcases

the convergence of our numerical implementation of the 3D

initial data. The figure shows the convergence with iteration

number of the full Newton-Raphson scheme and the

relaxation scheme (37). While the full Newton-Raphson

scheme converges more quickly, the relaxation scheme also

works reliably and reasonably efficiently.

Turning to the accuracy of these spherically symmetric

numerical solutions, we compare our 3D SpECTRE imple-

mentation with the 1D Python code presented in Sec. III A.

We solve the scalar equation and compute the value of the

scalar field at the horizon. Figure 5 shows the difference

between the two codes as a function of the resolution in the

3D code. We find that the 3D code converges to the same

answer exponentially, and achieves an accuracy of better

than 10−9.

B. 3D code without symmetries

We now consider a genuinely nonsymmetric 3-

dimensional configuration: a black hole with spin

a=M ¼ 0.8 along the z-axis, boosted to velocity v ¼ 0.5

in the direction of the x-axis. The background spacetime is

given in Cartesian Kerr-Schild coordinates x ¼ ðx; y; zÞ as

gab ¼ ηab þ 2Hlalb: ð40Þ

Here ηab ¼ diagð−1; 1; 1; 1Þ is the Minkowski metric, and

the scalar function H and one-form la (which satisfies

lc∂cla ¼ lc∇cla ¼ 0) are given by

H≡
Mρ3

ρ4 þ a2z2
; ð41Þ

la ≡

�

1;
ρxþ ay

ρ2 þ a2
;
ρy − ax

ρ2 þ a2
;
z

ρ

�

; ð42Þ

with ρ implicitly defined through ρ2ðx2 þ y2Þ þ ðρ2 þ
a2Þz2 ¼ ρ2ðρ2 þ a2Þ, and M and a being the BH mass

and spin parameter, respectively.

The background Eq. (40) is boosted by applying the

appropriate Lorentz boost to the coordinates xa and the null
vector la. We apply a Galilean transformation to the shift,

i.e., βi → βi þ vi, where vi is the boost velocity of the BH,

to obtain stationary coordinates.

We now solve Eq. (34) on this background with the same

coupling constants as above, l2η ¼ 6M2 and ζ ¼ −10η.

Our numerical scheme successfully solves the singular

boundary value problem even in this more complex

configuration, although Fig. 4 shows an increase in the

number of relaxation/nonlinear iterations.

The left panel of Fig. 6 shows the spatial dependence of

the calculated scalar field Ψ in the xy-plane. The coupling
parameters are the same as above, while the BH has

dimensionless spin a=M ¼ 0.8 and a boost velocity of

v ¼ 0.5 in the x-direction. The scalar field is largest near

the black hole and falls off at large distance. The boost

manifests itself as a length contraction along the direction

of the velocity, which can be seen by the shape of the

contour lines. As a guide to the eye, a dashed ellipse in the

left panel of Fig. 6 is plotted with the correct Lorentz

contraction for v ¼ 0.5.

The right panel of Fig. 6 presents two different con-

vergence tests for the scalar field values on the dashed

ellipse of the left panel. First, we compare the values along

FIG. 4. Performance of iterative numerical scheme. Residual at

each nonlinear iteration for a solve on a nonrotating BH back-

ground, as well as a boosted, rotating BH background. In both

cases we set l2η=M2 ¼ 6, l2ζ=M2 ¼ −60, and in the latter the

BH has a speed of v ¼ 0.5 in the x-direction, and dimensionless

spin of a=M ¼ 0.8 in the z-direction. The dashed lines indicate

the same solves, but using the full linearization and a Newton-

Raphson algorithm, for comparison.

FIG. 5. Comparison 1D vs 3D code for a scalarized Schwarzs-

child BH. Plotted is the absolute difference between the value of

the scalar field Ψ at the horizon between the 1D code and 3D

code, for varying polynomial order p in the 3D code. The

solution Ψ is plotted in Fig. 2.
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the ellipse at polynomial resolution p to those obtained in

our highest resolution solution with pmax ¼ 14. We plot

this difference vs p and find exponential convergence.

Second, because the boost direction and the spin direction

are orthogonal, we expect the scalar field to be constant on

the dashed ellipse in the left panel. We test this expectation

by computing at each resolution p the variance of Ψ along

the ellipse and plot it vs p in the right panel. We find that

this variance decays exponentially to zero with increasing

resolution p.
As a final test for single BH spacetimes, we demonstrate

that our code is also capable of obtaining scalar profiles

resulting from spin-induced scalarization [56,57]. For black

holes rotating rapidly enough, the Gauss-Bonnet scalar G

can change sign near the poles of the BH. This allows

us to choose a negative coupling η < 0 to source the

scalar field in such regions—note that, for η < 0,

a nonrotating BH would not acquire scalar hair as

mΨ;eff > 0 everywhere. The left panel of Fig. 7 shows

one such profile obtained with the “∂t ¼ 0” formulation,

with l2η=M2 ¼ −40 and ζ ¼ −10η, and a=M ¼ 0.8. We

use this system to perform a further test of the uniqueness

of solutions obtained using this formulation: we perform

two scalar field solves for which we vary the Boyer-

Lindquist radius rBL of the inner excision surface inside

the BH horizon. The right panel of Fig. 7 compares these

solutions along the z-axis, with the lower panel showing

the relative difference between two. This deviation is

within the truncation error of the numerical solutions,

further supporting our claim that the solution is fully

determined without specifying a boundary condition at

the inner excision surface.

C. Evolution of scalar field initial data

Finally, we evolve the 3D initial data sets in the

decoupling limit. We evolve single BH initial data within

SpECTRE with the code described in Ref. [65]. For initial

data corresponding to the approximate Killing formulation

(Sec. III C), we complete the initial data set by computing

the momentum Π [Eq. (24)] as

Πjt¼0 ¼ α−1βi∂iΨ; ð43Þ

while for the “∂n ¼ 0” formulation we set Πjt¼0 ¼ 0,

consistent with the assumptions of this formulation. The

evolution equations are discretized with a discontinuous

Galerkin scheme employing a numerical upwind flux [66].

Time evolution is carried out by means of a fourth-order

Adams-Bashforth time-stepper with local adaptive time-

stepping [67], and we apply a weak exponential filter on all

evolved fields at each time step [68]. For the evolution of

the metric variables, we use a generalized harmonic system

[69] with analytic gauge-source function Hc ¼ ð4Þ
Γ
c,

where ð4Þ
Γ
c ¼ gabð4ÞΓc

ab is a contraction of the 4-dimen-

sional Christoffel symbol computed from Eq. (40). The

spatial domain consists of a series of concentric spherical

shells with outer boundary located at R=M ¼ 500. A region

inside the BH is excised, and the inner boundary conforms

to the shape of the apparent horizon.

Figure 8 shows the time derivative of the scalar

profile for early parts of the evolution. With increasing

initial data resolution (larger p), the initial dynamics for the

“∂t ¼ 0” formulation decreases, whereas for the “∂n ¼ 0”

case it remains large. This behavior confirms our earlier

FIG. 6. Scalar field for a boosted, rotating BH. The background metric corresponds to a BH with spin a=M ¼ 0.8 (in the z-direction),

boosted with v ¼ 0.5 in the x-direction, for coupling parameters l2η=M2 ¼ 6 and ζ ¼ −10η. Left: contour plot of the scalar field Ψ in

the xy-plane. The black disk at the center represents the inner excision region, while the dashed ellipse is used for the convergence plot

on the right. Right: convergence test. The orange line shows the L2-norm of the difference between each resolution and highest

resolution (p ¼ 14) on the dashed ellipse. The blue line demonstrates that the solution is constant on the dashed ellipse by plotting the

L2-norm of the difference of the scalar field around the ellipse compared to the average value on it.
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findings: only the ∂t ¼ 0 formulation in Eq. (26) yields

time-independent scalar field configurations.

V. BINARY BLACK HOLE HAIR

In this section, we present quasistationary hair configu-

rations for black hole binaries using the “∂t ¼ 0” formu-

lation described in Sec. III C.

A. Background spacetime

For binary BHs, we obtain numerical background

solutions by solving the XCTS system of equations in

SpECTRE for a binary black hole system. We choose the

conformal metric γ̄ij and extrinsic curvature Kij as super-

posed Kerr-Schild data [70–72] and solve the XCTS

equations with the code presented in Ref. [63]. The

numerical solution is then imported into our scalar field

solver.

To avoid rank-4 tensors, the Gauss-Bonnet invariant G

is computed (in vacuum) from the background metric in

terms of the electric Eij and magnetic Bij parts of the

Weyl scalar as

G ¼ 8ðEijE
ij − BijB

ijÞ: ð44Þ

We refer the reader to Ref. [34] for the definitions of these

quantities.

B. Light cylinder

For a BH binary, with orbital frequency Ω ¼ Ωẑ, we can

decompose the shift into

β ¼ Ω × rþ βðexcÞ; ð45Þ

where the first term describes the corotation of the

coordinates with the binary and βðexcÞ is the shift

excess [63] solved for in the XCTS equations. Because

Ω × r grows without bound for large r, and because βðexcÞ is
finite, the shift can achieve magnitudes jβj≳ 1. As the shift

appears in the principal part of Eq. (34), the superluminal

coordinate velocity leads to a change in character

of Eq. (34) from elliptic to hyperbolic. To illustrate

this more clearly, note that γij and α asymptote to the

Kronecker delta δij and 1, respectively. Writing the shift

FIG. 7. Spin-induced scalar profile. The background metric corresponds to a BH with spin a=M ¼ 0.8, with coupling parameters

l
2η=M2 ¼ −40 and ζ ¼ −10η. Left: contour plot of the scalar field Ψ in the yz-plane. The black disk at the center represents the inner

excision region, while the dotted line indicates the BH horizon. The dashed line is used for the test in the right panel. Right: test of the

impact of inner excision surface radius on scalar profile. Plotted are two scalar field solves, where the Boyer-Lindquist radius rBL of the
inner exicision surface is varied. The bottom panel shows the relative difference between the two profiles.

FIG. 8. Evolution of initial data for a nonrotating BH. L2-norm

over the entire domain of the time derivative of Ψ for initial data

generated via the “∂n ¼ 0” formulation (dashed curves) and the

“∂t ¼ 0” formulation (solid curves) for varying grid resolution p.
Physical system is the same as that in Fig. 2.
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as β ¼ ð−Ωy;Ωx; 0Þ, the three eigenvalues of the matrix

M
ij [Eq. (35)] are

λ1;2 ¼ 1 and λ3 ¼ 1 − Ω
2ðx2 þ y2Þ: ð46Þ

For cylindrical radius ϱ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

< 1=jΩj, all eigen-
values are positive and Eq. (34) is elliptic. Instead, for

ϱ ≥ 1=jΩj, Eq. (34) is either parabolic or hyperbolic. The

boundary

ϱLC ≡
1

jΩj ð47Þ

is called the light cylinder—see, e.g., Ref. [73].

These considerations are indeed relevant in practice for

solving for binary BHs: numerically, we find that if the

outer boundary of the domain is within the light cylinder,

the numerical solver converges, whereas, if it is beyond the

light cylinder, the solver does not converge. We conclude

that for Eq. (34) with nonzero orbital velocity on a large

domain our numerical methods are no longer guaranteed to

be effective.

To restore ellipticity of Eq. (34), we introduce a spherical

roll-off function on the terms involving the shift. That is, we

replace Eq. (34) by

∂ið½γij − FðrÞα−2βiβj�∂jΨÞ
þ ½γij − FðrÞα−2βiβj�∂jΨð∂i ln αþ Γ

k
kiÞ ¼ −l2f0ðΨÞG:

ð48Þ

The roll-off function

FðrÞ≡ 1

2
f1 − tanh ½μðr − rroll-offÞ�g ð49Þ

depends on shape parameters μ and rroll−off , which adjust

the width and location of the roll-off, respectively. With a

roll-off inside the light cylinder, our numerical solver

converges without problems.

Because the rolled-off shift terms are primarily in

angular directions [cf. Eq. (45)], we expect that the

inclusion of FðrÞ will lead to some loss of angular structure

beyond the roll-off radius. Since the rolled-off region is

placed relatively far from the binary, we expect a marginal

impact from this on the dynamics. To quantify the impact of

the roll-off, we solve Eq. (48) for different values of rroll-off .
Figure 9 shows the variation of the scalar field at repre-

sentative points near and far from the BHs: the origin

(where Ψ ≃ 0.0536), a point very near to a BH horizon

(where Ψ ≃ 0.1097) and a point in the far zone (where

Ψ ≃ 0.0026). The solutions are obtained with a numerical

accuracy of ∼10−8, corresponding to p ¼ 7 of the con-

vergence test we discuss next. Even in the far-field, where

FðrÞ ¼ 0, the fractional change in Ψ is less than 10−3; near

the black holes, the fractional change is below 10−5.

Therefore, we believe that the inclusion of the roll-off

factor should have a very limited effect on the dynamics.

C. Scalar hair around binary black holes

Finally, in Fig. 1, we present the scalar profile induced by

a binary black hole system. The black holes are both

nonspinning, with mass M, and are in an approximately

quasicircular configuration with Ω ≃ 0.0082=M, placing

the light cylinder at ρLC ≃ 122M. The coupling constants

were chosen as l2η=M2 ¼ 3.34 and l2ζ=M2 ¼ −31.1.

Both solutions displayed in Fig. 1 are solutions to the

same boundary-value problem [Eq. (34) with boundary

condition (28)] on an identical background geometry. This

illustrates the nonuniqueness of solutions to this nonlinear

problem; in fact, two more solutions can be obtained by

Ψ → −Ψ. Which solution is obtained can be controlled by

the choice of initial guess Ψð0Þ for the relaxation scheme

described in Sec. III D. In order to obtain the solution with

like charges, we chose our initial guess as a superposition

of two A=r profiles centered on each BH. To obtain the

solution with opposite sign charges, we flip the sign of one

of the A=r terms in the initial guess. The scheme is not

sensitive to the precise coefficients A in the 1=r profiles.

Figure 10 demonstrates the numerical convergence of

the solution with like charges. We compute solutions on

computational domains where we vary the polynomial

order p in each element. We interpolate each solution to

a set of 450 randomly selected points across the entire

domain, and compute the root-mean-square difference

across these points between solutions at resolution p with

the highest resolution solution (p ¼ 10). The result is

FIG. 9. Impact of roll-off. We consider δΨ≡ ΨðxÞrroll-off −
ΨðxÞrroll-off≃141M for binary BH solutions with different rroll-off .

Different lines correspond to comparison at different regions of

the computational domain. The binary considered is the same as

that in the right panel of Fig. 1, with the black holes placed at

ð�8; 0; 0Þ.
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shown in Fig. 10, exhibiting exponential convergence of

the scalar field profile for increasing resolution.

In a BH binary, the scalar hair near each BH is affected

by the presence of the other. As a result of this interaction,

the scalar configuration near each BH will differ from that

of an isolated BH. To quantify this effect, we calculate the

average value of the scalar field hΨiAH across one of the BH

horizons. Figure 11 plots the value of hΨiAH for an equal

mass nonspinning BH binary, where the BHs are initially at

rest, for various values of the sGB coupling parameters. For

comparison, we also show hΨiAH around a BH in isolation.

For larger couplings, we see that the influence of the

opposite BH is smaller (typically a 1% difference).

However, as we approach the existence threshold for

scalarized solutions (dashed vertical line), the horizon

average of the scalar field in the binary deviates further

from that of an isolated BH.

Finally, moving toward more generic binary systems,

Fig. 12 shows the scalar profile induced by a mass-ratio 2

system. We use the same roll-off shape parameters as in

Fig. 1. If one were to consider both BHs as isolated/

infinitely far away, only the smaller (left) BH would

support a nonzero stable scalar profile, whereas the larger

BH (right) would not be scalarized. However, the inter-

action between the two BHs leads to the larger BH also

acquiring a scalar field. Figures 11 and 12 are a clear

demonstration of scenarios where solving the augmented

XCTS system (with the “∂t ¼ 0” formulation) will lead to

significantly different physics from the superposition of

individual isolated solutions.

VI. CONCLUSION

This paper addresses the problem of constructing qua-

sistationary initial data for black hole systems with scalar

hair in scalar Gauss-Bonnet gravity. We build upon the

extended conformal thin sandwich approach in GR to

propose a new formulation in which quasistationary equi-

librium of BH scalar hair is imposed. The new system

introduces an additional equation for the scalar field

obtained by requiring that the scalar gradient along the

(approximate) time-like Killing vector of the spacetime

vanishes. The initial data obtained in this way represents

an improvement with respect to the relaxation approach,

commonly used in the existing literature, in which the

FIG. 10. Convergence for binary BH system. The system is the

same as the right panel of Fig. 1. Here jΨp − Ψ10j corresponds to
a root-mean-square difference taken over 450 randomly selected

points across the entire domain.

FIG. 11. Relative difference of the scalar field between single

BH and binary BH solves. hΨiAH indicates the average of the

scalar field over the apparent horizon. The dashed line indicates

the point at which, for single BH solves, no stable nonzero scalar

hair profiles exist. The other BH is at a distance of 30.8M, with

both BHs initially at rest. We fix ζ ¼ −10η.

FIG. 12. Scalar hair for a mass ratio 2 black hole binary. Both

black holes are nonspinning, with unequal mass M1 ¼ 2M2 and

coupling constants fl2η=M2

1
¼ 2; ζ ¼ −10ηg, at initial separa-

tion D=ðM1 þM2Þ ≃ 15.4, in an approximately quasicircular

configuration.
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scalar is allowed to develop (from an initial perturbation/

guess) during the initial phase of time evolution.

We show that the additional scalar equation, while being

singular at black hole horizons, is readily solvable with

spectral methods. We numerically implement the system in

the decoupling (test-field) limit both in spherical symmetry,

using a 1D Python code, as well as for generic spacetimes,

using the elliptic solver [63] in the open-source numerical

relativity code SpECTRE [53]. As a comparison, we also

implement the formulation of Kovacs [42], and compare

scalar profiles for single black hole spacetimes. Through

direct evolution we show that our new formulation indeed

leads to stationary scalar hair, as opposed to scalar profiles

constructed with the formulation of Ref. [42] that show

initial transients. Following this, we demonstrate that our

3D implementation performs robustly away from spherical

symmetry, including boosted and/or rotating isolated black

holes, as well as for binary black hole systems.

For binary systems, a further complication arises. Since

the scalar solve is performed in the orbital comoving frame,

for which the coordinate velocities grow linearly with

radius, there is a second surface close to the light cylinder

where the equations become singular. We overcome this

issue by deforming the equations with a roll-off factor that

regularizes the singular term in the far zone. We show that

the error introduced can approach truncation error near the

black holes, while nearing 0.1% in the far zone (where the

scalar field is smaller). It should be noted that, even for

constraint-satisfying initial data in GR, evolutions typically

take roughly one light-crossing time for the correct gravi-

tational wave content to be present in the far-zone. Since we

expect the analogue of this to occur for the scalar radiation,

it is more important to ensure that near the black holes the

system is as close to equilibrium as achievable to reduce

initial transients in the black holes parameters and trajec-

tories. Further, we have shown that, close to the scalar

hair existence threshold, the quasistationary configuration

for the binary is significantly affected by interaction of

individual components—see Fig. 11.

While we have focused on scalar Gauss-Bonnet gravity,

many technicalities encountered here will be common to

other theories with additional scalar degrees of freedom,

since quasistationarity of any additional fields can still be

imposed with respect to the timelike Killing vector of the

spacetime, and because the singular behavior of the

principal part of the scalar equation is dictated solely by

the standard kinetic term, − 1

2
∇aΨ∇

a
Ψ, in the action. For

instance, singular behavior of the principal part was found

in the elliptic system specifying black hole initial data in

damped harmonic gauge [74]. We also note that a formu-

lation reminiscent of the one proposed here has been given

in Ref. [45] in the context of binary boson stars systems. In

that case, however, quasistationarity as it is imposed here

cannot be imposed on the phase of the complex field, and

no singular behavior is expected close to the binary due to

the lower compactness of boson stars.

While we have only implemented the new formulation in

the decoupling limit, the next step is to allow the scalar field

to backreact on the metric. Even though this significantly

alters the complexity of the equations, we believe that such

modifications should introduce little additional technical

difficulty. Specifically, given the effectiveness of the over-

relaxation scheme for the scalar equation, the same

approach will be taken in future work to solve the fully-

coupled XCTS system. It seems straightforward to treat the

new interaction terms as fixed source terms during each

relaxation iteration and, indeed, already a similar technique

was applied in Ref. [43] to solve the metric sector of the

constraint equations given a fixed scalar profile.

Our implementation already allows us to perform

numerical relativity simulations with reduced transients

and more precise control over the system being simulated.

This opens up the possibility of more precise numerical

experiments within this theory, as well as more detailed

parameter space studies.
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[29] L. Aresté Saló, S. E. Brady, K. Clough, D. Doneva, T.

Evstafyeva, P. Figueras, T. França, L. Rossi, and S. Yao,

J. Open Source Software 9, 6369 (2024).

[30] R. Cayuso, P. Figueras, T. França, and L. Lehner, Phys. Rev.

Lett. 131, 111403 (2023).

[31] A. Held and H. Lim, Phys. Rev. D 108, 104025 (2023).

[32] H.-J. Kuan, A. T.-L. Lam, D. D. Doneva, S. S. Yazadjiev, M.

Shibata, and K. Kiuchi, Phys. Rev. D 108, 063033 (2023).

[33] M. Corman, L. Lehner, W. E. East, and G. Dideron, Phys.

Rev. D 110, 084048 (2024).

[34] M. Okounkova, L. C. Stein, M. A. Scheel, and D. A.

Hemberger, Phys. Rev. D 96, 044020 (2017).

[35] H. O. Silva, H. Witek, M. Elley, and N. Yunes, Phys. Rev.

Lett. 127, 031101 (2021).

[36] M. Elley, H. O. Silva, H. Witek, and N. Yunes, Phys. Rev. D

106, 044018 (2022).

[37] J. L. Ripley, Int. J. Mod. Phys. D 31, 2230017 (2022).

[38] G. B. Cook, Living Rev. Relativity 3, 5 (2000).

[39] N. O’Murchadha and J. W. York, Phys. Rev. D 10, 428

(1974).

[40] J. W. York, Jr., Phys. Rev. Lett. 82, 1350 (1999).

[41] H. P. Pfeiffer and J. W. York, Jr., Phys. Rev. D 67, 044022

(2003).

[42] A. D. Kovacs, arXiv:2103.06895.
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