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Recent efforts to numerically simulate compact objects in alternative theories of gravity have largely focused
on the time-evolution equations. Another critical aspect is the construction of constraint-satisfying initial data
with precise control over the properties of the systems under consideration. Here, we augment the extended
conformal thin sandwich framework to construct quasistationary initial data for black hole systems in scalar
Gauss-Bonnet theory and numerically implement it in the open-source SpECTRE code. Despite the resulting
elliptic system being singular at black hole horizons, we demonstrate how to construct numerical solutions that
extend smoothly across the horizon. We obtain quasistationary scalar hair configurations in the test-field limit
for black holes with linear/angular momentum as well as for black hole binaries. For isolated black holes,
we explicitly show that the scalar profile obtained is stationary by evolving the system in time and compare
against previous formulations of scalar Gauss-Bonnet initial data. In the case of the binary, we find that the
scalar hair near the black holes can be markedly altered by the presence of the other black hole. The initial data
constructed here enable targeted simulations in scalar Gauss-Bonnet simulations with reduced initial transients.
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I. INTRODUCTION

Since the first gravitational wave (GW) event from a binary
black hole coalescence, GW150914 [1], the possibility of
testing our current theories of gravity against observational
GW data in the highly dynamical strong-field regime has
become a reality. To date, while general relativity (GR) has
been found to be consistent with current observations [2—6],
strong field tests for theories beyond GR have not yet been as
thorough. In the context of GWs, this is mostly due to the
substantial effort required to compute the detailed predictions
needed to construct complete waveform models encompass-
ing all stages of compact binary coalescence. Crucially,
accurate modeling of the highly nonlinear late-inspiral and
merger stages relies on the ability to perform large-scale
numerical relativity (NR) simulations [7].

In recent years, there has been growing interest in
extending the techniques of NR to alternative theories of
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gravity. Such theories are often motivated by open issues
in gravity and cosmology, e.g., to provide a dynamical
explanation to the observed accelerated expansion of the
Universe or to connect GR to a more fundamental theory
of quantum gravity. For scalar tensor theories with two
propagating tensor modes and one scalar mode [8—12],
interactions between the metric and a dynamical scalar may
lead to significant differences in the phenomenology of
compact binaries. For instance, in scalar Gauss-Bonnet
gravity (sGB), the component black holes (BHs) in the
binary may be endowed with scalar hair [13,14] and
energy may be dissipated through radiation channels in
addition to the two GW polarizations of GR.

As is the case for GR, one can attempt to split the field
equations in alternative theories of gravity into two sets of
partial differential equations: a set of hyperbolic evolution
equations, such as the generalized harmonic equations
in GR; and a set of elliptic constraint equations, such
as the Hamiltonian and momentum constraints in GR.
Nevertheless, the mathematical structure of both sets of
equations differs from GR as the additional interactions
contribute to new terms in the principal part. In the strong
field regime, such new terms may alter the hyperbolic/
elliptic character of the equations and even lead to
equations of mixed type [see, e.g., Refs. [15,16] ]. In this
respect, numerical relativity efforts have thus far focused on
finding appropriate formulations for the set of evolution
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FIG. 1.

Scalar hair around a black hole binary. Left: opposite sign scalar charges. Right: scalar charges with same sign. This

configuration corresponds to an equal mass, nonspinning binary black hole system in an approximate circular orbit. The sGB coupling
constants are 25 ~3.34M?, £*>{ ~ —31.1M?, where M denotes the mass of either BH, and the BH separation is D =~ 28M.

equations that allow for stable numerical evolutions. These
newly developed evolution strategies, which include novel
gauges [17], traditional perturbation theory techniques and
proposals based on viscous hydrodynamics [18], and their
numerical implementation, have already produced a num-
ber of successful merger simulations in alternative gravity
theories [see, e.g., Refs. [19-36]; for studies in the test-field
approximation; and the review [37]].

In this work, we take a step back and focus on the set of
elliptic constraint equations. Many of the current simulations
for compact binary objects in scalar tensor theories either
start off from initial data constructed for GR or use a
superposition of isolated solutions. While such approaches
are practical and useful for first qualitative explorations, they
are not guaranteed to satisfy the full constraint equations of
the extended theory and will in general not be in quasista-
tionary equilibrium. Indeed, constraint-satisfying solutions
can be obtained after an initial transient stage by employing
standard techniques, e.g., by including constraint-damping
terms or by smoothly turning on the additional interactions.
The cost, however, is a loss in control of the initial physical
parameters (e.g., mass, spin, eccentricity) during the relax-
ation stage (which may migrate to different values), as well
as the additional computational resources spent in simulating
this phase. If our aim is to efficiently obtain accurate
waveforms and to adequately cover the parameter space
for the calibration of waveform models, experience with GR
has shown that constructing constraint-satisfying initial data
in quasistationary equilibrium is important.

In GR, the most common way of formulating the
Hamiltonian and momentum constraints as a set of elliptic
equations is the conformal method, where instead of
solving for geometric quantities directly one performs a
conformal decomposition [38]. This is the basis for two of
the most well-known approaches, namely, the conformal
transverse traceless (CTT) [39] and the extended conformal
thin sandwich (XCTS) methods [40,41].

For the case of alternative theories, Kovacs [42] has
recently examined the mathematical properties of the

elliptic systems arising in weakly coupled four-derivative
scalar tensor theories (a class of theories which includes the
sGB theory investigated here) and provides theorems
regarding the well-posedness of the boundary value prob-
lem using extensions of the CTT and XCTS methods.
On the practical side, several authors have constructed
constraint-satisfying initial data for compact binaries in
theories beyond GR. Considering four-derivative scalar
tensor theory, Ref. [43] prescribes an ad hoc scalar field
configuration, solving the constraint equations via a modi-
fication of the CTT approach [44], in which the elliptic
equation for the conformal factor is reinterpreted as an
algebraic one for the mean curvature. While the initial data
constructed in this way is constraint-satisfying, since the
scalar hair configuration is not in quasistationary equilib-
rium, it should be expected to lead to significant transients
during the initial stage of evolution. A similar numerical
approach is taken in Refs. [45,46] to obtain constraint
satisfying initial data for boson star binaries, where the
constraints are solved for free data specified by the super-
position of isolated boson stars. In the context of Damour-
Esposito-Farese theory [47] for neutron star binaries,
Ref. [48] solved the constraints for the metric alongside
an additional Poisson equation for the scalar field.

This paper develops and implements a method to
construct constraint-satisfying initial data where the scalar
field is in equilibrium. We focus on the decoupling limit
(i.e., the scalar does not back-react onto the metric) of
scalar Gauss-Bonnet gravity in vacuum

S[galﬂ‘l‘] = / d4x\/:§ [;;K_%valpvalp + fzf(lp)g s
(1)

where k =8nG, ¢ denotes the coupling constant,
g = det(g,;) is the determinant of the metric g,,, and ¥
is the scalar field. To obtain spontaneously scalarized
BHs [49-51], we choose the free function f(¥) as [52]

024061-2



QUASISTATIONARY HAIR FOR BINARY BLACK HOLE ...

PHYS. REV. D 111, 024061 (2025)

¢

_n
f(lP)=§lP2+E

P, (2)
This function couples ¥ to the Gauss-Bonnet scalar
g = RabcdRade - 4RabRab + R2’ (3)

which is in turn defined in terms of the Riemann tensor
R,pcq> the Ricci tensor R, and the Ricci scalar R.

Following Ref. [42], we revisit the conditions for
obtaining quasistationary configurations for the scalar hair
around isolated and binary black holes. We argue that, in
the initial data slice, one must impose a vanishing scalar
“momentum” defined in terms of the directional derivative
along an approximate Killing vector of the spacetime—as
opposed to the directional derivative along the normal to
the foliation as in Ref. [42]. The adapted coordinates from
the background spacetime given by a solution to the XCTS
equations naturally yield the required approximate Killing
vector. Imposing the appropriate momentum condition on
the scalar equation, we derive a singular boundary-value
problem for BH spacetimes.

We demonstrate that this singular boundary-value prob-
lem can be solved without an inner boundary condition
in the spectral elliptic solver of the open-source SpECTRE
code [53]. We thus obtain quasistationary hair for both
single and binary black hole spacetimes, as illustrated in
Fig. 1. Moreover, for the case of single BHs, we further
evolve the obtained configuration to confirm that the
solution is indeed quasistationary and does not lead to
large transients, and compare against the prescription given
in Ref. [42].

This paper is organized as follows. Section II recalls
basic aspects of sGB theory and of the XCTS method. In
Sec. III, we revisit different formulations for the scalar
equation and define a scheme that imposes quasiequili-
brium on the scalar hair. We further discuss the singular
boundary value problem and describe our numerical
implementation to solve for single BHs. Section IV show-
cases the different single BH systems that we can access
with both the 1D and 3D code, and demonstrates the
stationarity of the solutions obtained via direct evolution.

Section V constructs initial data for binary black holes
with scalar hair. We first deal with conceptual issues
regarding scalar configurations on arbitrarily large spatial
domains and then proceed to present our solutions for
quasistationary scalar hair. We summarize and discuss our
results in Sec. VI. Throughout this paper, we use geometric
units such that G = ¢ = 1 and (— + ++) signature. Early
alphabet letters {a, b, c} represent 4-dimensional space-
time indices, while middle alphabet letters {i, j, k} corre-
spond to 3-dimensional spatial indices.

II. THEORY

Variation of the action of scalar Gauss-Bonnet theory
[Eq. (1)] yields a scalar equation

O¥ = —22f (V)G (4)
and a tensor equation

Ruy = Hab[gcd’\P]’ (5)

where H (9.4, ] contains up to second derivatives of g,
and W—see, e.g., Ref. [54] for the full expression. In the
decoupling limit of the theory (i.e., when ¥ is considered a
test field), the right-hand-side of Eq. (5) vanishes,
Hab [gcd9 LP] =0.

A. Spontaneous scalarization

Stationary BH solutions of Eqs. (4) and (5) are often
nonunique. When f’(0) = 0, as for our choice of f(¥), a
GR solution with ¥ = 0 trivially solves Eqs. (4) and (5).
However, GR solutions can be energetically disfavored for
a large enough coupling parameter #25 > 0. This can be
seen [55] by expanding around ¥ =0 to derive an
equation describing the scalar perturbations around the
GR solution,

L- m\zp,eff)éq’ =0, (6)

where mgp’cﬁc = —¢?nG plays the role of an effective,
spatially varying mass term. If m.zl,’eff is negative enough,
due to either high curvature or very large spins [56,57],
GR solutions in sGB may become dynamically unstable,
and will spontaneously scalarize to yield a second set of
solutions with nonvanishing scalar hair [49-51,58].
Therefore, BHs in sGB theory are characterized by their
mass, spin, and an additional scalar charge parameter ¢,
defined by the asymptotic behavior of the scalar as

2
‘P(r—>oo):‘1"oo+ﬂ+0<i2>, (7)
r r

where W, is the asymptotic value of the scalar field and M
is the mass of the BH. Given the ¥ — —¥ symmetry of the
theory described by Eqgs. (1) and (2), any hairy solutions
will have a corresponding equivalent solution related by
¥ — —W¥, and which is characterized by a scalar charge of
equal magnitude and opposite sign.

B. The XCTS formulation

In the decoupling limit, the constraint equations arising
from Eq. (5) are the usual Hamiltonian and momentum
constraints of GR. To obtain them, we perform a (3 + 1)-
decomposition of the metric,

ds® = g,,dx"dx?
= —a?d® +y;;(B'dt + dx') (pdt + dxT),  (8)
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where a is the lapse, ' = y"p; is the shift, and y;; is
the spatial metric (with inverse y”/). The constraints in
vacuum read [7]

GR+K*>—K;;K'V =0, (9a)
D;(K' —yiK) =0, (9b)

where )R denotes the Ricci scalar of vij and D; is the
3-dimensional covariant derivative compatible with y;;.
Finally, K,, = —(1/2)L,y,, denotes the extrinsic curva-
ture, with trace K, where the Lie derivative is taken along
the future-pointing unit normal to the foliation, n“.

We further decompose the spatial metric as

vii = w7, (10)

where w >0 is the conformal factor and ;; is the
conformal spatial metric, which we are free to specify.
The XCTS formalism [40,41] is centered around specifying
certain free data and their time derivatives. Specifically,
the conformal metric 7;; and K are free data, as well as
0,7ij = u;; and 9,K. It is useful to decompose the extrinsic
curvature as

o1 .
Ki = §},ljl{_‘_w—loAu (11)
with
A = (L) - ) (12)
2a

Here, @ = yw%a is the conformal lapse function, and the
conformal longitudinal operator is defined as

(L) =2Dp) ~ 279D, (13)

where D; denotes the covariant derivative operator com-
patible with the conformal metric ;;.

The final XCTS equations are then obtained from
Egs. (9) and from the evolution equation for K, and are
given by [41]

_ 1 1 1
D ——yPR ——y K2 + -y 7A;;AV = 14
=gV BV K T gvTAy 0, (l4a)
S U N R
Di| L)Y —u'] | 5w D/K =0,  (14b)
a
D (ay) — ay ( Ly3A,A0 + Sy K 4+ LR
gr i 12 8
+y°(0,K + f'D;K) =0, (14c)

where ()R is the spatial conformal Ricci scalar. In the XCTS
formalism, the notion of quasistationary equilibrium can be
imposed [59] by demanding that the conformal metric and
trace of the extrinsic curvature remain unchanged along
infinitesimally separated spatial slices, i.e.,

ii;; =0, (15)
9,K = 0. (16)

Combined with appropriate boundary conditions [see
Ref. [59] for details], the XCTS system [Egs. (14)] is then
solved for {, ay, '}, thus providing not only a solution to
the constraint equations (9), but also a coordinate system
adapted to the symmetry along the approximate Killing
vector

t“d, = (an® + p*)o, = 0,. (17)

In Sec. III, we will extend this property to the scalar
equation in sGB theory.

III. QUASISTATIONARY SCALAR HAIR

In this section, we revisit the scalar equation Eq. (4) and
consider different strategies to include it in the XCTS
scheme. The aim is to obtain solutions for the metric and
the scalar hair of the BH in a general 3-dimensional space
without symmetry. We further describe our numerical
implementation, which will also be applicable to the more
general case of BH binaries treated in Sec. V.

A. Spherical symmetry

We first consider a spherically symmetric BH in horizon-
penetrating Kerr-Schild coordinates

2M 4M
ds®> = —(l ——> dr* +—drdr
r r
2M
+ <1 +)dr2 + r2dQ?, (18)
r

with dQ? = d#” + sin®(0)d¢*. Under the assumption
that the scalar field is time-independent, Eq. (4) yields

(1-2) 20020

r rz }"6

where G = 48M?/r® and where M is the mass of the BH.
We will be looking for solutions of Eq. (19) with asymp-
totic behavior (7) by imposing'

'"While one can easily place the outer boundary 7, at spatial
infinity in the spherically symmetric case, we impose the condition
(20) to connect with the 3D-implementation in Sec. [VA.
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[ro, % +¥-W_],_.. =0, (20)

r—oo
with ¥, = 0.

This is our first encounter with a singular boundary
value problem. Notice that Eq. (19) is singular at the BH
horizon r;, = 2M, where the factor in front of the highest-
derivative operator vanishes. Despite this observation,
Eq. (19) can be easily solved via the shooting method
[60]. Regularity of W at the horizon can be imposed by
expanding W as an analytic series around r,. The solutions
satisfying Eq. (20) can then be found by numerically
integrating outward starting from rj, 4+ ¢ and performing
a line search in the unknown value V|, at the inner
boundary.

In order to prepare for our later 3D solutions, we shall
take a different approach, and solve Eq. (19) on a domain
that extends through the horizon into the interior region.
|

r r o

_ 2
<1 - 2_M> 269K — Z(Mizr)aryy(l() 4 48 (PN 5PEK)

where, at a given iteration step K, the improved solution is
given by

PEHD — k) 1 sp(K), (23)

For a solution interval crossing the horizon, i.e.,
Fmin < 7n < T'max>» W€ impose boundary conditions of the
form (20) only at the outer boundary. We do not impose
regularity across the entire domain (in particular, at a
singular boundary at r = r,) via boundary conditions, as

0.3

0.2
=
0.1
0.075 1 G 8 10
r/M

FIG. 2. Radial profile of the scalar field around a nonrotating
BH. The curves correspond to different formulations used for
obtaining W. We set £%n/M?* = 6, £>{/M?* = —60. The vertical
gray line indicates the location of the horizon.

Utilizing a spectral method, we represent W as a series in
Chebychev polynomials T;(x),

N
W(x) =) ¥y Ti(x), (1)
=0

1

where the argument x € [—1, 1] is related to radius r by the
transformation x = A/(r — B) + C for suitable constants
A, B, and C. To cover r€[rpin, max)s W€ set A =
(rmin+rmax+2C)/(rmax_rmin)’ B = rmax_Armax+
C — AC, and leave C as a specifiable constant to adjust
the distribution of resolution throughout the interval.
We choose a spatial grid {x;}?, defined by the nodes
(or zeros) of T;(x), and compute spatial derivatives of ¥
analytically from Eq. (21). Using a Newton-Raphson
scheme, we iteratively solve the scalar equation by expand-
ing ¥ — ¥ + 0¥ and linearizing Eq. (19). We obtain

r r o

_ 2
— _<1 _2_M> 2Pk +2(M72r)ar\p(i<) _ s F1(PE),

(22)

[
it is already built into the spectral expansion (21) since all
Chebychev polynomials are regular. We implement this
algorithm in Python, and for each iteration step K we solve
the discretized version of Eq. (22) via explicit matrix
inversion using NumPy. An exemplary solution of
Eq. (19) is shown as the blue line in Fig. 2, where we
set 7y = 1.9M and rp, = 101°M.

B. 3D normal formulation “0, =0

To solve for scalar hair in a general 3-dimensional space,
Ref. [42] requires the “momentum”

=-n,¥ (24)

to vanish everywhere on the initial spatial slice at r = 0, i.e.,
I1|,_, = 0. The scalar equation (4) then becomes

where Fffj is the 3-dimensional spatial Christoffel symbol
with respect to y;;. Equation (25) is both elliptic and
regular everywhere. In Ref. [42], the inner boundary S§j,, is
placed on the apparent horizon of the BH and is supple-
mented with boundary conditions at both inner and outer
boundaries,

305, =0, (26)

mV =¥, (27)

r—o0
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where §' is the unit outward normal vector to the BH
horizon(s). For computational domains extending inside
the apparent horizon, we instead impose a constant
Dirichlet boundary condition (i.e., |5 = const.), chosen
such that §79;% = 0 on each apparent horizon. On a finite
spatial domain, and assuming an asymptotic decay of
the scalar of the form of Eq. (7), we replace the outer
boundary condition with [c.f. Eq. (20)] a Robin type
boundary condition

(r3'o Y + ¥ — %)/

out = 0’ (28)
where 3’ is now the unit outward normal vector to the
outer spherical boundary S,,. We set ¥, = 0. We shall
refer to this as the “d, = 0” formulation.

1. Caveats of the normal formulation

While the 9, = 0 formulation provides a readily solvable
elliptic system, the most common use case for the XCTS
formulation is the calculation of quasiequilibrium initial
conditions. Unfortunately, the normal formulation will not
generically lead to stationary spacetimes. Consider, for
example, the case of a Schwarzschild BH in Kerr-Schild
coordinates [Eq. (18)]. The timelike Killing vector £ of the
spacetime is

& =1" =an” + p°. (29)

Assuming that the momentum I1 is initially zero, the initial
time derivative of the scalar field W is

90, = an‘o, ¥ + fi0,¥ = o, . (30)

Therefore, whenever #/ # 0 and 9,% # 0, £§‘P will not
vanish. For our example, L:¥ = p"0,¥ =2M/(r+
2M)0,¥ # 0 and the scalar hair obtained will not be
stationary. Indeed, solving the spherically symmetric
version of Eq. (25) in our 1D code, we find a profile
different from the d, = 0 solution constructed in Sec. III A.
This profile is also shown in Fig. 2.

Finally, we note that the inner boundary condition
[Eq. (26)] is inconsistent with stationarity. Indeed, if ¥
is regular at the horizon, then it can be expanded as a series
about r;, of the form

P(r) :i‘l’ (r—rp)". (31)

n=0

Solving Eq. (19) order-by-order perturbatively in Ar =r—ry,
we obtain that

3
=Y = -5 20Y

0,%
SM>

0 +C¥y). (32)

which is nonzero in general, contradicting Eq. (26).

C. 3D approximate Killing formulation “0, =0

Motivated by the existence of a symmetry along a Killing
vector, we present a new procedure for extending the XCTS
formulation to sGB gravity, which we refer to as the
“0, = 0” formulation. The main assumption will now be
that the “momentum” with respect to the (approximate)
Killing vector &%, given by

P=L."Y, (33)

vanishes on the initial slice.

From the previous discussion, for a stationary GR black
hole in coordinates adapted to the symmetry, as well as for
solutions of the XCTS equations, the Killing vector
corresponds to £ = d,. By imposing P = 0,%¥ =0, Eq. (4)
becomes

where
MY =yl — a2, (35)

Equation (34) is the 3D generalization of Eq. (19). In the
spirit of quasiequilibrium, we have also set d,a = 0 and
0, = 0 in the derivation of Eq. (34). We note that these
simplifications could be relaxed and their values can be set
according to a desired gauge choice.

The principal part of Eq. (34) is M"9,0,%. The singu-
larity at r;, in the 1D formulation [Eq. (19)] now corre-
sponds to the situation where

detM]s, =0, (36)

i.e., when (at least) one of the eigenvalues of M"/ vanishes
at the apparent horizon S),. M is singular on the BH horizon
in general. For a stationary BH in time-independent
coordinates, the time vector on the horizon must be parallel
to the horizon generators as argued in Ref. [59], which
implies that on the horizon f'§; = a, where 3; is the
outward-pointing spatial unit normal to the horizon.
Using this equality, it follows that §;M"§; = 0.

As for the spherically symmetric example above, our
approach will be to rely on the inherent smoothness of
spectral expansions to single out solutions of Eq. (34) that
smoothly pass through the horizon. Regularity at the
horizon reduces the number of possible solutions, and so
we will not impose a boundary condition at the excision
surface in the interior of the horizon. We note that Lau et al.
[61,62] encountered the same principal part as Eq. (34) in
the context of IMEX evolutions on curved backgrounds.
Reference [61] in particular contains an analysis of the
singular boundary value problem. We impose the boundary
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condition (28) at the outer boundary, where again we set
¥, = 0. Note that, in spherical symmetry, using y, @, and
B corresponding to that of the Kerr-Schild metric, this
formulation reduces to Eq. (19).

D. 3D numerical implementation

To solve the nonlinear Egs. (25) and (34) in 3 dimen-
sions, we employ the spectral elliptic solver [63] of the
open-source SpECTRE code [53]. SpECTRE employs a dis-
continuous Galerkin discretization scheme, where the
domain is decomposed into elements, each a topological
d-dimensional cube. These elements do not overlap but
share boundaries. Boundary conditions on each element
(both external boundary conditions, as well interelement
boundaries) are encoded through fluxes. We refer the reader
to Refs. [63,64] for more details about the mathematical
formulation and numerical implementation.

For our present study of Egs. (25) and (34) in the
decoupling limit, G is known and nonlinearities enter only
through f'(¥). Since the full linearization of these equa-
tions in W is straightforward, we solve them by utilizing the
Newton-Raphson algorithm within SpECTRE.

In general, in the fully-coupled system [H,, #0 in
Eq. (5)], additional terms enter the original XCTS equa-
tions and the full linearization strategy described above
becomes impractical: first, because one would need to
linearize in both the scalar and metric variables; and
second, because such nonlinearities are very specific to
the concrete theory. Indeed, in the case of sGB, these arise
from the intricate structure of both G and H,,, which
depend on (up to second-order derivatives of) the scalar
and metric variables. To avoid a large implementation
burden, and explore possible strategies for future work,
we also implement a straightforward over-relaxation
scheme, which can easily be extended to other theories.
Note that a similar relaxation scheme was recently
employed in Ref. [43].

Our relaxation scheme constructs increasingly accurate
approximants ‘P(K), K =1,2,..., to the solution, where
in each iteration K the nonlinearity is calculated from
earlier iterations. Specifically, for the scalar equation (34),
we solve

di(MiJ'aj‘P(K)> + Mijajlp(K) (@i Ina+T%) =—22f(UK)g,

(37)
with
UK = e§E-D) 1 (1 —g) UK=Y, K>1,
U — po), K=0. (38

Here e €0, 1] is a damping parameter, (%) is the initial
guess, and an analogous expression holds for Eq. (25).

06 =~ .

0.4r .

0.2r .

< i ]
E 0.0

—0.21 .

—0.4¢ .

—0.6¢ , , S ]

107! 10° 10!
FIG. 3. Behavior of elliptic problem at the horizon. Eigenvalues

of the linearized discretized operator of Eq. (34) for a discon-
tinuous Galerkin element that crosses the horizon. The eigen-
values all have a positive real part and span ~3 orders of
magnitude, showing that the matrix is invertible and moderately
well-conditioned.

Upon discretization, at each iteration K, a linear problem
of the form

Ay =b (39)

is solved for y = {¥®)(x;)}, with x; being the nodal
points of the spectral basis consisting of tensor products of
Legendre polynomials. Here, b is a fixed source term
which only depends on quantities of the previous iteration
K — 1. Boundary conditions are imposed through the
discontinuous Galerkin fluxes, ensuring that the matrix
A is invertible. Since the Legendre polynomials are finite
and regular within each element, regularity across the
horizon is guaranteed so long as the horizon does not
coincide with element boundaries. The scheme (37) is
iterated until the residual of Eqs. (34) or (25) is suffi-
ciently small. For all solves presented here, we use a
tolerance of 10710,

To further demonstrate the well-posed nature of the
elliptic equation (34), in Fig. 3, we plot the eigenvalues of
the submatrix of A in an element crossing the horizon of
the BH. All eigenvalues are nonzero, indicating the matrix
is invertible. Furthermore, all eigenvalues have positive real
parts, indicating this matrix should be amenable to standard
iterative linear solvers. The real parts of the eigenvalues
span ~3 orders of magnitude, indicating that the matrix is
moderately well-conditioned, and numerically we are able
to invert the linear system without problems.

IV. RESULTS: SINGLE BLACK HOLES

A. 3D code in spherical symmetry

We will now apply the formalism and code developed
above to spacetimes with a single black hole. We start with
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‘ a/M=0,v=0
10-3+ a/M =0.8,v=05
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=]
=
Cq?
1077,
10—9,

0 20 40 60 80
Nonlinear Iterations

FIG. 4. Performance of iterative numerical scheme. Residual at
each nonlinear iteration for a solve on a nonrotating BH back-
ground, as well as a boosted, rotating BH background. In both
cases we set £2y/M? = 6, £>¢/M? = —60, and in the latter the
BH has a speed of v = 0.5 in the x-direction, and dimensionless
spin of a/M = 0.8 in the z-direction. The dashed lines indicate
the same solves, but using the full linearization and a Newton-
Raphson algorithm, for comparison.

spherical symmetry, where we solve the scalar equation for
coupling constants £y = 6M? and ¢ = —10y within the
“0, = 0” formulation [Eq. (34)], in both the 1D and 3D
code (the 1D result is shown in Fig. 2). Figure 4 showcases
the convergence of our numerical implementation of the 3D
initial data. The figure shows the convergence with iteration
number of the full Newton-Raphson scheme and the
relaxation scheme (37). While the full Newton-Raphson
scheme converges more quickly, the relaxation scheme also
works reliably and reasonably efficiently.

Turning to the accuracy of these spherically symmetric
numerical solutions, we compare our 3D SpECTRE imple-
mentation with the 1D Python code presented in Sec. III A.
We solve the scalar equation and compute the value of the
scalar field at the horizon. Figure 5 shows the difference
between the two codes as a function of the resolution in the
3D code. We find that the 3D code converges to the same
answer exponentially, and achieves an accuracy of better
than 107°.

B. 3D code without symmetries

We now consider a genuinely nonsymmetric 3-
dimensional configuration: a black hole with spin
a/M = 0.8 along the z-axis, boosted to velocity v = 0.5
in the direction of the x-axis. The background spacetime is
given in Cartesian Kerr-Schild coordinates x = (x,y, z) as

9ab = Nap + 2Hlalb' (40)
Here 7,, = diag(—1,1, 1, 1) is the Minkowski metric, and

the scalar function ‘H and one-form [/, (which satisfies
1°0.1, = I°V_l, = 0) are given by

o Vo — 5,
1073,
1075,
1077,
1079,
2 1 6 s 10 12
p
FIG. 5. Comparison 1D vs 3D code for a scalarized Schwarzs-

child BH. Plotted is the absolute difference between the value of
the scalar field ¥ at the horizon between the 1D code and 3D
code, for varying polynomial order p in the 3D code. The
solution ¥ is plotted in Fig. 2.

Mp?
H= T (41)
px+ay py—ax z
l, = 1’ ) s s 42
’ < pPtat pta p) )

with p implicitly defined through p?(x? +y?) + (p* +
a*)z? = p*(p* +d?), and M and a being the BH mass
and spin parameter, respectively.

The background Eq. (40) is boosted by applying the
appropriate Lorentz boost to the coordinates x and the null
vector /,. We apply a Galilean transformation to the shift,
ie., ' — B+ v, where v is the boost velocity of the BH,
to obtain stationary coordinates.

We now solve Eq. (34) on this background with the same
coupling constants as above, £y = 6M?* and ¢ = —10y.
Our numerical scheme successfully solves the singular
boundary value problem even in this more complex
configuration, although Fig. 4 shows an increase in the
number of relaxation/nonlinear iterations.

The left panel of Fig. 6 shows the spatial dependence of
the calculated scalar field ¥ in the xy-plane. The coupling
parameters are the same as above, while the BH has
dimensionless spin a/M = 0.8 and a boost velocity of
v = 0.5 in the x-direction. The scalar field is largest near
the black hole and falls off at large distance. The boost
manifests itself as a length contraction along the direction
of the velocity, which can be seen by the shape of the
contour lines. As a guide to the eye, a dashed ellipse in the
left panel of Fig. 6 is plotted with the correct Lorentz
contraction for v = 0.5.

The right panel of Fig. 6 presents two different con-
vergence tests for the scalar field values on the dashed
ellipse of the left panel. First, we compare the values along
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10
0.3
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\ 0.2
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0.1
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x/M
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10-4F to p=14
A --#--- Variation of W

10—6,

10—8,

FIG. 6. Scalar field for a boosted, rotating BH. The background metric corresponds to a BH with spin /M = 0.8 (in the z-direction),
boosted with v = 0.5 in the x-direction, for coupling parameters #%5/M?> = 6 and { = —10#. Left: contour plot of the scalar field ¥ in
the xy-plane. The black disk at the center represents the inner excision region, while the dashed ellipse is used for the convergence plot
on the right. Right: convergence test. The orange line shows the L,-norm of the difference between each resolution and highest
resolution (p = 14) on the dashed ellipse. The blue line demonstrates that the solution is constant on the dashed ellipse by plotting the
L,-norm of the difference of the scalar field around the ellipse compared to the average value on it.

the ellipse at polynomial resolution p to those obtained in
our highest resolution solution with p... = 14. We plot
this difference vs p and find exponential convergence.
Second, because the boost direction and the spin direction
are orthogonal, we expect the scalar field to be constant on
the dashed ellipse in the left panel. We test this expectation
by computing at each resolution p the variance of ¥ along
the ellipse and plot it vs p in the right panel. We find that
this variance decays exponentially to zero with increasing
resolution p.

As a final test for single BH spacetimes, we demonstrate
that our code is also capable of obtaining scalar profiles
resulting from spin-induced scalarization [56,57]. For black
holes rotating rapidly enough, the Gauss-Bonnet scalar G
can change sign near the poles of the BH. This allows
us to choose a negative coupling n < 0 to source the
scalar field in such regions—note that, for 5 <0,
a nonrotating BH would not acquire scalar hair as
my or > 0 everywhere. The left panel of Fig. 7 shows
one such profile obtained with the “d, = 0” formulation,
with £27/M? = —40 and { = —105, and a/M = 0.8. We
use this system to perform a further test of the uniqueness
of solutions obtained using this formulation: we perform
two scalar field solves for which we vary the Boyer-
Lindquist radius rg;, of the inner excision surface inside
the BH horizon. The right panel of Fig. 7 compares these
solutions along the z-axis, with the lower panel showing
the relative difference between two. This deviation is
within the truncation error of the numerical solutions,
further supporting our claim that the solution is fully
determined without specifying a boundary condition at
the inner excision surface.

C. Evolution of scalar field initial data

Finally, we evolve the 3D initial data sets in the
decoupling limit. We evolve single BH initial data within
SpECTRE with the code described in Ref. [65]. For initial
data corresponding to the approximate Killing formulation
(Sec. III C), we complete the initial data set by computing
the momentum IT [Eq. (24)] as

O,y = a™'p'o;¥, (43)

while for the “0, =0” formulation we set II|,_, =0,
consistent with the assumptions of this formulation. The
evolution equations are discretized with a discontinuous
Galerkin scheme employing a numerical upwind flux [66].
Time evolution is carried out by means of a fourth-order
Adams-Bashforth time-stepper with local adaptive time-
stepping [67], and we apply a weak exponential filter on all
evolved fields at each time step [68]. For the evolution of
the metric variables, we use a generalized harmonic system
[69] with analytic gauge-source function H¢ = ()T,
where T¢ = g?(T¢, is a contraction of the 4-dimen-
sional Christoffel symbol computed from Eq. (40). The
spatial domain consists of a series of concentric spherical
shells with outer boundary located at R/M = 500. A region
inside the BH is excised, and the inner boundary conforms
to the shape of the apparent horizon.

Figure 8 shows the time derivative of the scalar
profile for early parts of the evolution. With increasing
initial data resolution (larger p), the initial dynamics for the
“0, = 0” formulation decreases, whereas for the “0, = 0”
case it remains large. This behavior confirms our earlier
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FIG. 7. Spin-induced scalar profile. The background metric corresponds to a BH with spin a/M = 0.8, with coupling parameters
2/ M?* = —40 and ¢ = —10y. Left: contour plot of the scalar field P in the yz-plane. The black disk at the center represents the inner
excision region, while the dotted line indicates the BH horizon. The dashed line is used for the test in the right panel. Right: test of the
impact of inner excision surface radius on scalar profile. Plotted are two scalar field solves, where the Boyer-Lindquist radius rgy, of the
inner exicision surface is varied. The bottom panel shows the relative difference between the two profiles.

— p=8 - 0,=0
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FIG. 8. Evolution of initial data for a nonrotating BH. L,-norm

over the entire domain of the time derivative of ¥ for initial data
generated via the “0,, = 0” formulation (dashed curves) and the
“d, = 0” formulation (solid curves) for varying grid resolution p.
Physical system is the same as that in Fig. 2.

findings: only the d, = 0 formulation in Eq. (26) yields
time-independent scalar field configurations.

V. BINARY BLACK HOLE HAIR

In this section, we present quasistationary hair configu-
rations for black hole binaries using the “0, = 0” formu-
lation described in Sec. III C.

A. Background spacetime

For binary BHs, we obtain numerical background
solutions by solving the XCTS system of equations in

SpECTRE for a binary black hole system. We choose the
conformal metric j;; and extrinsic curvature K;; as super-
posed Kerr-Schild data [70-72] and solve the XCTS
equations with the code presented in Ref. [63]. The
numerical solution is then imported into our scalar field
solver.

To avoid rank-4 tensors, the Gauss-Bonnet invariant G
is computed (in vacuum) from the background metric in
terms of the electric E;; and magnetic B;; parts of the
Weyl scalar as

G = 8(E;;E" — B;;BY). (44)
We refer the reader to Ref. [34] for the definitions of these
quantities.

B. Light cylinder

For a BH binary, with orbital frequency Q = QZ, we can
decompose the shift into
ﬁzgxr+ﬂ(exc)v (45)
where the first term describes the corotation of the
coordinates with the binary and ) is the shift
excess [63] solved for in the XCTS equations. Because
Q x r grows without bound for large r, and because fcc) is
finite, the shift can achieve magnitudes || = 1. As the shift
appears in the principal part of Eq. (34), the superluminal
coordinate velocity leads to a change in character
of Eq. (34) from elliptic to hyperbolic. To illustrate
this more clearly, note that y”/ and a asymptote to the
Kronecker delta 8" and 1, respectively. Writing the shift
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as f = (—Qy, Qx,0), the three eigenvalues of the matrix
M [Eq. (35)] are

Mo=1 and 1y =1-Q(x>+y?).  (46)
For cylindrical radius ¢ = /x> +y* < 1/]Q|, all eigen-
values are positive and Eq. (34) is elliptic. Instead, for

0 > 1/|Q|, Eq. (34) is either parabolic or hyperbolic. The
boundary

= 47
QLc |Q| ( )

is called the light cylinder—see, e.g., Ref. [73].

These considerations are indeed relevant in practice for
solving for binary BHs: numerically, we find that if the
outer boundary of the domain is within the light cylinder,
the numerical solver converges, whereas, if it is beyond the
light cylinder, the solver does not converge. We conclude
that for Eq. (34) with nonzero orbital velocity on a large
domain our numerical methods are no longer guaranteed to
be effective.

To restore ellipticity of Eq. (34), we introduce a spherical
roll-off function on the terms involving the shift. That is, we
replace Eq. (34) by

0;([r" — F(r)ap'(3']0,¥)
+ [y = F(r)a2p'p/]0,¥(9; Ina + T'};) = =2 f(¥)G.
(48)

The roll-off function

F(r) =5 {1 = tanh [u(r — rronof) ]} (49)

N =

depends on shape parameters y and r,_orr, Which adjust
the width and location of the roll-off, respectively. With a
roll-off inside the light cylinder, our numerical solver
converges without problems.

Because the rolled-off shift terms are primarily in
angular directions [cf. Eq. (45)], we expect that the
inclusion of F(r) will lead to some loss of angular structure
beyond the roll-off radius. Since the rolled-off region is
placed relatively far from the binary, we expect a marginal
impact from this on the dynamics. To quantify the impact of
the roll-off, we solve Eq. (48) for different values of r,_of;-
Figure 9 shows the variation of the scalar field at repre-
sentative points near and far from the BHs: the origin
(where ¥ ~0.0536), a point very near to a BH horizon
(where ¥ ~(0.1097) and a point in the far zone (where
¥ ~ 0.0026). The solutions are obtained with a numerical
accuracy of ~1078, corresponding to p =7 of the con-
vergence test we discuss next. Even in the far-field, where
F(r) = 0, the fractional change in ¥ is less than 1073; near

1073 -
- Origin x = (0,0,0)
10-4L < Near BH x = (10,0, 0)
- Far zone x = (200, 0,0)
1075 L
2
— 1076 L
1077 L
1078E
20 10 60 80 100 120
Tl‘Ol]fO[I‘/M

FIG. 9. Impact of roll-off. We consider 6% =Y¥(x), -
W(x),  i~141n for binary BH solutions with different ryoy.ogy-
Different lines correspond to comparison at different regions of
the computational domain. The binary considered is the same as
that in the right panel of Fig. 1, with the black holes placed at
(£8,0,0).

the black holes, the fractional change is below 1075,
Therefore, we believe that the inclusion of the roll-off
factor should have a very limited effect on the dynamics.

C. Scalar hair around binary black holes

Finally, in Fig. 1, we present the scalar profile induced by
a binary black hole system. The black holes are both
nonspinning, with mass M, and are in an approximately
quasicircular configuration with Q ~0.0082/M, placing
the light cylinder at p;c ~ 122M. The coupling constants
were chosen as #2n/M?* = 3.34 and £*>{/M? = -31.1.

Both solutions displayed in Fig. 1 are solutions to the
same boundary-value problem [Eq. (34) with boundary
condition (28)] on an identical background geometry. This
illustrates the nonuniqueness of solutions to this nonlinear
problem; in fact, two more solutions can be obtained by
Y — —W¥. Which solution is obtained can be controlled by
the choice of initial guess W) for the relaxation scheme
described in Sec. III D. In order to obtain the solution with
like charges, we chose our initial guess as a superposition
of two A/r profiles centered on each BH. To obtain the
solution with opposite sign charges, we flip the sign of one
of the A/r terms in the initial guess. The scheme is not
sensitive to the precise coefficients A in the 1/r profiles.

Figure 10 demonstrates the numerical convergence of
the solution with like charges. We compute solutions on
computational domains where we vary the polynomial
order p in each element. We interpolate each solution to
a set of 450 randomly selected points across the entire
domain, and compute the root-mean-square difference
across these points between solutions at resolution p with
the highest resolution solution (p = 10). The result is
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p

FIG. 10. Convergence for binary BH system. The system is the
same as the right panel of Fig. 1. Here [¥, — ¥,| corresponds to
a root-mean-square difference taken over 450 randomly selected
points across the entire domain.

shown in Fig. 10, exhibiting exponential convergence of
the scalar field profile for increasing resolution.

In a BH binary, the scalar hair near each BH is affected
by the presence of the other. As a result of this interaction,
the scalar configuration near each BH will differ from that
of an isolated BH. To quantify this effect, we calculate the
average value of the scalar field (¥) ,;y across one of the BH
horizons. Figure 11 plots the value of (¥),y for an equal
mass nonspinning BH binary, where the BHs are initially at
rest, for various values of the sGB coupling parameters. For
comparison, we also show (¥) ,;; around a BH in isolation.
For larger couplings, we see that the influence of the
opposite BH is smaller (typically a 1% difference).

0.301
0.251
0.20F
jasi
=
= 0.15F
0.101
—e— Like Charge
0.05F —o— Isolated 1
—e— Opposite Charge
0.00t . . L ]
4 6 8 10
£2n/M2
FIG. 11. Relative difference of the scalar field between single

BH and binary BH solves. (P),y indicates the average of the
scalar field over the apparent horizon. The dashed line indicates
the point at which, for single BH solves, no stable nonzero scalar
hair profiles exist. The other BH is at a distance of 30.8M, with
both BHs initially at rest. We fix { = —10#.

FIG. 12.  Scalar hair for a mass ratio 2 black hole binary. Both
black holes are nonspinning, with unequal mass M; = 2M, and
coupling constants {£%n/M? = 2,{ = —10x}, at initial separa-
tion D/(M, + M,) ~15.4, in an approximately quasicircular
configuration.

However, as we approach the existence threshold for
scalarized solutions (dashed vertical line), the horizon
average of the scalar field in the binary deviates further
from that of an isolated BH.

Finally, moving toward more generic binary systems,
Fig. 12 shows the scalar profile induced by a mass-ratio 2
system. We use the same roll-off shape parameters as in
Fig. 1. If one were to consider both BHs as isolated/
infinitely far away, only the smaller (left) BH would
support a nonzero stable scalar profile, whereas the larger
BH (right) would not be scalarized. However, the inter-
action between the two BHs leads to the larger BH also
acquiring a scalar field. Figures 11 and 12 are a clear
demonstration of scenarios where solving the augmented
XCTS system (with the “0, = 0” formulation) will lead to
significantly different physics from the superposition of
individual isolated solutions.

VI. CONCLUSION

This paper addresses the problem of constructing qua-
sistationary initial data for black hole systems with scalar
hair in scalar Gauss-Bonnet gravity. We build upon the
extended conformal thin sandwich approach in GR to
propose a new formulation in which quasistationary equi-
librium of BH scalar hair is imposed. The new system
introduces an additional equation for the scalar field
obtained by requiring that the scalar gradient along the
(approximate) time-like Killing vector of the spacetime
vanishes. The initial data obtained in this way represents
an improvement with respect to the relaxation approach,
commonly used in the existing literature, in which the
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scalar is allowed to develop (from an initial perturbation/
guess) during the initial phase of time evolution.

We show that the additional scalar equation, while being
singular at black hole horizons, is readily solvable with
spectral methods. We numerically implement the system in
the decoupling (test-field) limit both in spherical symmetry,
using a 1D Python code, as well as for generic spacetimes,
using the elliptic solver [63] in the open-source numerical
relativity code SpECTRE [53]. As a comparison, we also
implement the formulation of Kovacs [42], and compare
scalar profiles for single black hole spacetimes. Through
direct evolution we show that our new formulation indeed
leads to stationary scalar hair, as opposed to scalar profiles
constructed with the formulation of Ref. [42] that show
initial transients. Following this, we demonstrate that our
3D implementation performs robustly away from spherical
symmetry, including boosted and/or rotating isolated black
holes, as well as for binary black hole systems.

For binary systems, a further complication arises. Since
the scalar solve is performed in the orbital comoving frame,
for which the coordinate velocities grow linearly with
radius, there is a second surface close to the light cylinder
where the equations become singular. We overcome this
issue by deforming the equations with a roll-off factor that
regularizes the singular term in the far zone. We show that
the error introduced can approach truncation error near the
black holes, while nearing 0.1% in the far zone (where the
scalar field is smaller). It should be noted that, even for
constraint-satisfying initial data in GR, evolutions typically
take roughly one light-crossing time for the correct gravi-
tational wave content to be present in the far-zone. Since we
expect the analogue of this to occur for the scalar radiation,
it is more important to ensure that near the black holes the
system is as close to equilibrium as achievable to reduce
initial transients in the black holes parameters and trajec-
tories. Further, we have shown that, close to the scalar
hair existence threshold, the quasistationary configuration
for the binary is significantly affected by interaction of
individual components—see Fig. 11.

While we have focused on scalar Gauss-Bonnet gravity,
many technicalities encountered here will be common to
other theories with additional scalar degrees of freedom,
since quasistationarity of any additional fields can still be
imposed with respect to the timelike Killing vector of the

spacetime, and because the singular behavior of the
principal part of the scalar equation is dictated solely by
the standard kinetic term, —%Va‘PV"‘I‘, in the action. For
instance, singular behavior of the principal part was found
in the elliptic system specifying black hole initial data in
damped harmonic gauge [74]. We also note that a formu-
lation reminiscent of the one proposed here has been given
in Ref. [45] in the context of binary boson stars systems. In
that case, however, quasistationarity as it is imposed here
cannot be imposed on the phase of the complex field, and
no singular behavior is expected close to the binary due to
the lower compactness of boson stars.

While we have only implemented the new formulation in
the decoupling limit, the next step is to allow the scalar field
to backreact on the metric. Even though this significantly
alters the complexity of the equations, we believe that such
modifications should introduce little additional technical
difficulty. Specifically, given the effectiveness of the over-
relaxation scheme for the scalar equation, the same
approach will be taken in future work to solve the fully-
coupled XCTS system. It seems straightforward to treat the
new interaction terms as fixed source terms during each
relaxation iteration and, indeed, already a similar technique
was applied in Ref. [43] to solve the metric sector of the
constraint equations given a fixed scalar profile.

Our implementation already allows us to perform
numerical relativity simulations with reduced transients
and more precise control over the system being simulated.
This opens up the possibility of more precise numerical
experiments within this theory, as well as more detailed
parameter space studies.
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