


ence request, with the goal of minimizing network latency

while leveraging the superior hardware available at the edge

server. Each approach can be implemented using various

combinations of hardware, presenting distinct trade-offs, with

their applicability depending on the specific requirements of

the task at hand.

Beyond static collaboration configurations, dynamic con-

ditions in resource-constrained edge networks must also be

carefully considered when designing collaborative inference

applications. Specifically, external dynamics, such as attacks

on sensing nodes, network disruptions, and DDoS attacks,

are prevalent in the adversarial environments of IoBTs and

may disrupt operations and degrade overall performance [17].

Additionally, internal dynamics, including thermal conditions

and battery levels of sensing nodes, can also affect system

performance. Therefore, collaborative inference applications

must be designed to be robust and adaptive to address these

challenges.

This paper explores collaborative inference strategies that

execute inference on a single ML model and their various

implementations. We categorize these strategies into two main

classes: intra-component collaboration, which involves the

collaboration of processing units within a single network

component, and inter-component collaboration, which in-

volves collaboration across multiple network components. For

each class, we discuss potential implementation approaches

and present preliminary results to demonstrate their benefits.

Additionally, we examine the challenges of dynamics in

resource-constrained networks that may impact system per-

formance. In summary, we make the following contributions:

• We discuss different forms of single-model collaborative

inference strategies and categorize them into two main

classes (Section III).

• We present preliminary results to support the practicality

of the strategies (Section IV).

• We discuss challenges associated with the dynamics in

resource-constrained edge networks (Section V) and outline

directions for future work (Section VI).

II. BACKGROUND

This section presents background on edge-based IoT appli-

cations, commonly used hardware accelerators, and collabo-

rative inference techniques.

A. Edge-based IoT Applications

In IoT applications, sensing nodes collect raw data that

must be processed to extract meaningful insights. Machine

learning (ML) inference is a key technique used in this pro-

cess, which involves passing input data through a trained neu-

ral network to generate predictions. For example, a surveil-

lance camera captures an image and requires image classi-

fication to identify objects within the frame. Since sensing

nodes are often resource-constrained, they typically offload

computationally intensive ML inference tasks to nearby edge

servers, which may introduce high network latency. However,

if a sensing node is equipped with a hardware accelerator,

it can perform the computation locally and only transmit the

results to the remote server, thereby reducing network latency

and improving overall efficiency.

B. Hardware Accelerators

A wide range of hardware accelerators with small form

factors have been developed to speed up machine learning

inference workloads on the edge. Table I highlights the

characteristics of several commonly deployed accelerators,

spanning from low-end to high-end options. Specifically, the

Intel Movidius Myriad X Vision Processing Unit (VPU) is

designed to accelerate vision-based applications and CNN

inference. Google Edge Tensor Processing Unit (TPU) op-

timizes ML inference with the Tensorflow-lite framework on

the edge. Nvidia Jetson Nano, TX2, Orin Nano, and Orin NX

are all tailored for AI workloads, delivering accelerated GPU

performance for tasks such as deep learning and computer

vision. These accelerators are engineered to operate within

low power budgets, making them suitable for devices with

constrained power availability, such as low-end Raspberry

Pi-class nodes. All network components can deploy an ac-

celerator to boost the processing capabilities. Not only can

end devices (e.g., sensing nodes) leverage accelerators to

achieve near-server-level performance in certain applications,

but edge servers can also utilize these accelerators to optimize

performance and manage increased workloads.

C. Collaborative Inference

Collaborative inference has recently gained significant at-

tention in both academia [7]–[14], [16] and the industry [15].

It involves utilizing multiple processing units in the edge

network to execute inference requests, and the collaboration

can be realized in two forms: single-model collaboration and

multi-model collaboration. In single-model collaboration, a

model is partitioned into multiple segments, each processed

by different network components. Conversely, multi-model

collaboration utilizes inputs from various sensors to jointly

complete an inference task, leveraging diverse data sources

to enhance overall accuracy and performance. Additionally,

collaboration can occur across different network topologies,

such as a device interacting with multiple edge servers in a

broadcast manner, peer-to-peer interactions between devices,

or a client-server model between devices and edge servers. In

this paper, we focus on single-model collaboration approaches

that employ the client-server model. We focus on collabo-

ration approaches that take the ML model as a black box

and do not require modifying the neural network structure.

Techniques such as integrating collaborative inference with

model quantization [11], [13], [15] or employing multi-exit

deep neural networks [10], [16] are beyond the scope of this

paper.

III. COLLABORATIVE INFERENCE APPROACHES

Single-model collaborative inference strategies can be cate-

gorized into two main classes: intra-component collaboration,

which involves the collaboration of processing units within









adversaries may intentionally overload edge servers by in-

jecting excessive workloads. Also, events such as a passing

vehicle may simultaneously trigger multiple sensing nodes

in the same area, causing a spike in offloaded inference

requests to the nearby edge server. This indicates that ap-

plications must account for the dynamic nature of server

loads to optimize performance, and balancing the workload

across network components is crucial to maintaining efficient

inference processing.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we explored two primary classes of single-

model collaborative inference strategies and presented possi-

ble implementations of each class. We demonstrated the ben-

efits of the strategies through proof-of-concept experiments

and identified challenges posed by dynamic conditions in

resource-constrained edge networks.

To unlock the full potential of collaborative inference,

future research may focus on developing adaptive techniques

that improve system resilience in dynamic environments. A

promising direction is to create mechanisms that dynamically

adjust workload distribution and resource allocation based on

real-time network performance metrics, ensuring efficiency

even under fluctuating network conditions. To address thermal

and power challenges, future research can focus on dynamic

model selection techniques that select the model to collaborate

and fine-tune the collaborative inference strategy based on

real-time thermal and power levels. Additionally, incorporat-

ing redundancy and error correction techniques will be es-

sential for managing node and network failures. Furthermore,

dynamic techniques for reconfiguring the data fusion topology

and analytics workflow to prioritize more reliable sensors

should be developed to mitigate the effects of adversarial

inputs and environmental variability. Lastly, collaboration in

different network topologies, such as broadcast and peer-

to-peer configurations, should be investigated to evaluate

potential performance gains.
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