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early example of an edge service that delivers various types

of content, such as video and web content, from a distributed

network of edge servers. Analogous to hyperscaler cloud

platforms with a global footprint, large content delivery net-

works (CDNs) use edge platforms comprising hundreds of

thousands of servers distributed across the globe. For ex-

ample, the Akamai CDN comprises approximately 350,000

servers in 134 countries and over 1,300 networks world-

wide [3]. A vast amount of Internet tra�c runs through

CDNs, with the Akamai CDN serving hundreds of billions

of web requests per day in the year 2022 [47] and 56.7% of

the 10000 most popular sites use a CDN [25, 38].

Since data centers account for nearly 3% of global car-

bon emissions, with this �gure set to rise signi�cantly in

the coming decade, the sustainability of cloud platforms has

received signi�cant attention in recent years. Major cloud

providers have announced aggressive goals to become zero

carbon by 2030 [23, 42, 43]. Also, researchers have proposed

numerous techniques, such as incorporating renewable en-

ergy [31, 33] and making operations carbon-aware to reduce

the carbon footprint of cloud platforms. Since global CDNs

rival large-scale cloud platforms in their size and scale, the

sustainability of CDNs is also important, but has seen less

attention. While some early work has emphasized reducing

the energy footprint of CDNs [18, 31, 33, 35], these optimiza-

tions were focused on reducing the energy and operational

cost of these platforms and did not emphasize the problem

of sustainability and the reduction of the carbon footprint

of CDNs. It is worth noting that optimizing a computing

system’s carbon footprint entails more than reducing its en-

ergy use. Doing so involves increasing the use of low-carbon,

or carbon-free, energy which in turn reduces the system’s

carbon emissions [5]. However, carbon optimization tech-

niques developed for cloud platforms do not directly apply to

edge platforms such as Internet-scale CDNs for the following

reasons.

First, many recent approaches for reducing operational

carbon emissions of the cloud target batch workloads,

such as machine learning training and scienti�c applica-

tions [16, 44, 50]. Since the carbon intensity of electricity

supply varies over time, such approaches initially focused

on exploiting these variations through temporal workload

shifting, where the batch workload demand is shifted from

high to low carbon periods to reduce carbon consumption

[19, 20, 50]. Temporal workload shifting is unsuitable for

CDNs since CDN workloads are latency-sensitive interactive

services that must be serviced in real-time. Second, some re-

cent approaches have focused on the spatial shifting of batch

workloads, such as machine learning training to greener

cloud regions [9, 46]. While shifting workloads to a distant

cloud region to reduce carbon emissions is suitable for many

cloud batch workloads with less stringent completion time

requirements, these methods do not directly apply to CDN

workloads since they have strict performance requirements

due to their latency-sensitive nature. Speci�cally, any carbon-

aware CDN optimization must be cognizant of any potential

response time degradation from sending interactive requests

to CDN edge server locations far from the end user. Third,

since CDNs are geographically distributed on a global scale,

they incur signi�cantly di�erent operating costs, in terms of

electricity costs, across regions. Hence, it is imperative that

any carbon-aware optimization not cause an inadvertent

increase in electricity costs, requiring techniques to consider

both carbon and energy costs.

The carbon-aware CDN optimizations presented in the pa-

per are motivated by two insights. First, the carbon intensity

of electricity exhibits spatial variations that can be exploited

by a CDN. This is because energy generation at di�erent

locations uses di�erent mixes of generation sources such as

solar, hydro, wind, and coal, yielding spatial di�erences in

the carbon intensity [10, 49]. Importantly, these variations

should be exploited while also considering spatial di�erences

in electricity prices. Second, CDNs have built-in spatial re-

dundancy to serve the same content to users from several

edge locations. A CDN’s global load balancer uses this spatial

�exibility to serve content to users from the closest suitable

edge location. These two insights motivate using spatial load-

shifting methods to reduce a CDN’s carbon footprint. For

example, if two nearby edge data centers cache the same

content, but one has a lower carbon electricity supply than

the other, then serving users requesting content from the

greener location will incur lower carbon consumption at the

possible expense of a slightly higher user latency. So long

as the latency increase is small, adding such spatial carbon

awareness into the CDNs load balancer remains promising.

In this paper, we present new carbon-aware spatial shift-

ing approaches to enhance the sustainability of a global CDN

platform. Our shifting approach utilizes the knowledge of

the demand, carbon intensity, and energy costs to shift CDN

workloads across edge data centers. Speci�cally, we design

optimization-based carbon- and cost-aware approaches to

shift both load and capacity to greener regions while min-

imizing the latency impact on end users. In doing so, our

work asks the following questions: To what extent can the

carbon emissions of an Internet-scale CDN be reduced with

carbon-aware spatial load shifting, and what is the possible

latency increase? How can such load shifting jointly optimize

carbon emissions and operational electricity costs? How can

a CDN redistribute its capacity to greener regions to enhance

the e�cacy of spatial load shifting? Finally, what bene�ts can

the use of local renewable energy bring, and how much load

shifting extend their bene�ts?

To address the above questions, our paper presents CDN-

Shifter that leverages di�erent types of spatial shifting to
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4 CDN-SHIFTER DESIGN AND POLICIES

In this section, we will outline the architecture of CDN-

Shifter. Next, we introduce an optimization approach for

carbon- and cost-aware spatial workload shifting, where we

move the CDN load from green to brown regions. Finally,

we present a capacity-shifting approach that relocates the

provisioned capacity across data centers.

4.1 System Architecture

Figure 6 shows the architecture of CDN-Shifter where users

are grouped based on location. CDN servers are typically

hosted in dedicated, co-located, and public data centers,

where content is replicated according to the expected de-

mand. The CDN global load balancer maps requests to the

nearest CDN where content is available. CDN-Shifter ex-

tends the global load balancer by integrating data from dif-

ferent sources in order to enhance its placement decisions

but does not interfere with the load balancer operations.

CDN-Shifter’s scheduling decisions are integrated into the

global load balancer, where users are mapped to edge data

centers. In addition, CDNs often rely on resource managers,

which are responsible for operating the underlying infras-

tructure. CDN-Shifter extends the resource manager by im-

plementing the resource provisioning decisions. CDN-Shifter

implements three key components:

Information Service: CDN data centers often use a variety

of energy sources, including the local electricity grid and

renewable sources such as solar farms. Our system, CDN-

Shifter, incorporates an Information Service that monitors

carbon emissions and energy prices. The Information Service

relies on weather forecasts to assess the availability of re-

newable energy and computes the expected excess demand,

which will be satis�ed using the local grid. Additionally,

it tracks the real-time carbon emissions and energy prices

from the electricity grid (using services such as Electrici-

tyMaps [10] and real-time energy markets). Lastly, our In-

formation Service forecasts the demand, usage, and capacity

of CDNs to identify opportunities for load shifting.

Load-Shifting: The load-shifting policy operates at a fast

time scale of minutes. It determines how load, based on

users’ locations, is mapped to CDN locations at �ne-grained

granularity (e.g., �ve minutes). One way to implement such

a policy is to iterate over locations where the content is

available and the expected latency is lower than the SLO

(Service-Level Objective) threshold and forward requests to

the CDN with the cheapest energy. However, such a greedy

approach ignores global reductions. In Section 4.2, we formal-

ize the load-shifting optimization problem to minimize total

operational carbon emissions and costs while respecting the

latency and capacity constraints.

Table 1: Load Shi�ing Parameters and Decision Vari-

ables.

Notation Description

# # = {0, 1, ..., =} is a Set of CDN data centers.

38 9C Latency between data centers 8 and 9 at time C .

# X
8C # X

8C ⊆ # Set of data centers with latency 38 9C ≤ X , including 8 .

;8C Incoming Load to data center 8 at time C .

28C Resource capacity of data center 8 at time C .

%*�8 Power Usage E�ciency at data center 8 .

�8 Energy consumption per unit load at data center 8 .

��8C Data center 8 energy’s carbon intensity at time C .

%8C Data center 8 energy’s price at time C .

U Carbon-Cost balance factor.

_ Latency overhead factor.

!8 9C Load shifted from data cente 8 to data cente 9 .

where 8, 9 ∈ #

Capacity-Shifting: The capacity shifting policy operates

at slower time scales of days or weeks. It determines how

capacity should be opportunistically provisioned at green

CDN locations to maximize the bene�ts of the above load

shifting policy. In Section 4.3, we formalize the capacity-

shifting optimization problem to minimize total operational

carbon emissions and costs while respecting capacity and

demand constraints.

4.2 Carbon-aware Load Shifting

Consider a CDN network with # edge data cente with their

geographic locations. In each time slot (e.g., �ve minutes),

each CDN location receives some load and has a �nite re-

source capacity. We consider time-varying resource capacity

to include server failures and upgrades. To optimize the total

operational carbon emissions, the CDN’s global load bal-

ancer must consider the energy’s carbon intensity and price

to determine how much load to move from one edge data

cente to another to minimize the total operational emissions

while serving the total workload. We model this problem as

a linear optimization problem that needs to be solved by the

global load balancer in each time slot. Table 1 describes the

used input parameters and decision variables.

The objective can be written as a minimization problem

where CDN-Shifter seeks to minimize the total operational

emissions and costs of the entire system at each time step C .

Minimize

#∑

8=1

∑

9∈#X
8C

!8 9C × C8 (1)

C8 = �8 × %*�8 × (U ��8C + (1 − U) %8C )

s.t.
∑

8∈#X
9C

!8 9C ≤ 2 9C , ∀9, C (2)
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∑

9∈#X
8C

!8 9C = ;8C , ∀8, C (3)

!8 9C ≥ 0, ∀8, 9, C (4)

where C8 is the operational carbon emissions and mon-

etary costs at data center 8 . �8 , %*�8 denotes the servers’

and data center’ energy e�ciency. Note that although our

model assumes energy consumption is linear to the load

across data centers, incorporating energy importionality is

straightforward. U ∈ [0, 1] is the carbon-cost balance fac-

tor, where U = 1, yields a carbon-aware load shifting policy,

while U = 0 yields a cost-aware load shifting policy. Observe

that any performance constraint in terms of the maximum

latency that can be used to shift workload and limit the la-

tency increase is captured using # X
8C , which is the feasible

set of nearby locations for each edge data center 8 subject to

a speci�c latency constraint X , where we assume that 38 9C is

time variable to account for daily latency variations. Equa-

tion 2 guarantees that the incoming load to a data center

does not exceed its resource capacity. Equation 3 is the load

conservation constraint, which ensures that the outgoing

load from a data center should equal the initial load from the

data center. This includes the load from a data center to itself

(i.e., the load that stays at a data center). Finally, Equation 4

states that the load transfers should be non-negative.

While the above formulation yields feasible solutions, it

su�ers from one problem: there are multiple ways to set

the load transfers !8 9C to get the same optimal objective,

each of which will result in a di�erent value for the overall

latency increase in the system. Although this problem can

be solved using a two-step lexico-graphic optimization. We

chose to directly augment the objective function with the

latency overhead using a latency overhead penalty factor _,

as follows:

Minimize

#∑

8=1

(
∑

9∈#X
8

!8 9C × C8

︸           ︷︷           ︸

Operational Costs

+ _
∑

9∈#X
8

!8 9C × 38 9

︸              ︷︷              ︸

Latency Penalty

) (5)

Finally, we note that CDN-Shifter solves this optimization

problem every time step, where energy’s carbon intensity

and price, as well as total load and capacity, can be accurately

estimated.

4.3 Carbon-aware Capacity Shifting

CDNs are composed of physical and virtual resources, and

load shifting, as explained earlier, utilizes the current set

of edge clusters of a CDN network to jointly optimize its

carbon and electricity costs. However, carbon savings are

limited by latency constraints as well as capacity constraints

at the locations with the greenest energy sources. In the

presence of load shifting, some edge locations (e.g., with

Table 2: Capacity Shi�ing Parameters and Decision

Variables.

Notation Description

# # = {0, 1, ..., =} is a Set of CDN data centers.

38 9 Latency between data centers 8 and 9

# X
8 # X

8 ⊆ # Set of data centers with latency 38 9 ≤ X , including 8 .

;8 Average load at data center 8 .

;<0G
8 Peak load at data center 8 .

28 Resource capacity of data center 8 .

k8 k8 ≥ 1 is the capacity expansion factor of data center 8 .

%*�8 Power Usage E�ciency at data center 8 .

�8 Energy consumption per unit load at data center 8 .

��8 Average carbon intensity at data center 8 .

%8 Average energy price at data center 8 .

U Carbon-Cost balance factor.

_ Latency overhead factor.

W Capacity shifting factor.

!8 9 Load Shifted from data center 8 to data center 9 .

�8 9 Moved Capacity from data center 8 to data center 9 .

where 8, 9 ∈ #

high carbon or energy costs) may experience low utiliza-

tion, while green edge locations may become highly utilized,

leaving them unable to accept additional load from other

locations. To address such issues, our work employs capacity

shifting where virtual machine capacity can be intelligently

provisioned in greener, highly utilized regions and depro-

visioned from under-utilized regions to lower overall costs.

Such dynamic provisioning has long been studied for web-

based cloud applications, but those techniques are designed

for a single location, while our approach performs cross-site

provisioning across CDN edge locations. We formulate this

problem as an optimization problem considering future car-

bon intensity and prices, users’ demand, and infrastructure

(e.g., buildings and power) capacity. Table 2 describes the

used input parameters and decision variables. Note that we

implement the capacity migrations based on expected de-

mand and operational costs. The objective can be written as

a minimization problem where CDN-Shifter optimizes the

expected operational costs for an upcoming time horizon.

Minimize

#∑

8=1

∑

9∈#X
8

!8 9 × C8 (6)

C8 = �8 × %*�8 × (U ��8 + (1 − U) %8 )
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s.t.
∑

9∈#X
8

! 98 ≤
∑

9∈#

� 98 , ∀8 (7)

;<0G
8 ≤

∑

9∈#

� 98 , ∀8 (8)

∑

9∈#

!8 9 = ;8 , ∀8 (9)

∑

9∈#

�8 9 = 28 , ∀8 (10)

∑

9∈#

� 98 ≤ k8 28 , ∀8 (11)

!8 9 ,�8 9 ≥ 0 (12)

Similar to the previous section, C8 is the operational costs

to include carbon emissions and monetary costs at data cen-

ter 8 , �8 , %*�8 are server’s and data center’s energy e�ciency.

U ∈ [0, 1] is the carbon-cost balance factor, and # X
8 is used

to enforce latency constraints X . Equation 7 motivates ca-

pacity migration to serve the newly shifted load. Equation 8

ensures that each data center can still serve its peak demand

without load shifting. Equation 9 is the load conservation

constraint, where all load must be met. Equation 10 enforces

capacity conservation, where total resources are maintained.

Equation 11 guarantees that the new data center’s capac-

ity does not surpass the power and infrastructure capacity

limits, where k8 ≥ 1 is the available headroom for expan-

sions at data center 8 . Equation 12 states that the load and

capacity transfers should be non-negative. Finally, to ensure

latency minimization and avoid unnecessary capacity shifts,

we augment Equation 6 with the latency overhead using a la-

tency overhead penalty factor _ and shifting overhead using

a capacity shifting overhead penalty factor W as follows2:

Minimize

#∑

8=1

(
∑

9∈#X
8

!8 9 × C8

︸         ︷︷         ︸

Operational Costs

+ _
∑

9∈#X
8

!8 9 × 38 9

︸             ︷︷             ︸

Latency Penalty

+W
∑

9∈#,9≠8

�8 9

︸        ︷︷        ︸

Shift Penalty

).

(13)

5 EVALUATION

In this section, we evaluate the potential of spatial load shift-

ing, capacity shifting, and adding solar energy in content

delivery networks (CDNs). In doing so, we answer the fol-

lowing questions:

(1) What is the potential for reducing operational carbon

emissions and costs through spatial load shifting?

(2) What is the breadth of the trade-o� between carbon re-

ductions and operational costs?

2W can also be used as a shifting cost across data centers.

Table 3: The location, number of hosts, and the total

number of sites within that location.

Carbon Intensity Energy Price

Zone Hosts (#) Sites (#) (g·CO2eq/kWh) (¢/kWh)

North America 64.3k 1327 438.90 8.46

Central America 0.2k 29 245.23 27.36

South America 2k 121 169.03 47.93

Europe 31.9k 585 304.24 10.22

Asia 12.7k 486 521.50 11.76

Oceania 2k 114 447.86 16.75

Africa 0.3k 29 713.12 21.08

Worldwide 113k 2691

Table 4: Parameters for generating solar energy traces

using PVWa�s tool [8].

Parameter Value Unit

DC System Size 1 kW

Azimuth 180 (the northern hemisphere) deg

0 (the southern hemisphere) deg

Tilt | latitude | deg

System Losses 14.08 %

Module Type Standard

Array Type Fixed (open rack)

(3) How can capacity shifting further reduce operational

emissions or costs?

(4) How does load shifting amplify the bene�ts of added

renewables?

Next, we outline our real-world datasets, experimental

setup, and evaluation metrics.

5.1 Real-world Datasets

Our evaluation setup uses real-world CDN, carbon intensity,

energy prices, and solar energy traces described below.

CDN Trace. We perform experiments using a month-long

content delivery network (CDN) dataset from the Akamai

CDN provider. The trace contains information about 113:

servers geographically distributed across 2691 locations

worldwide. It provides the number of servers, capacity of

servers, and load information for all the sites at a �ve-minute

granularity. The meta information for each site includes the

site’s latitude, longitude, city, state, and country.

Carbon Intensity Trace. Weuse carbon intensity data from

ElectricityMaps [10]. The traces provide hourly average car-

bon intensity information, measured in grams of carbon

dioxide equivalent per kilowatt-hour (g·CO2eq/kWh), for

123 zones worldwide for 2021.
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Electricity Prices Trace. We aggregate the electricity price

data from multiple sources to include the US Department

of Energy [48] and Ember [11] for 2021. The traces pro-

vide monthly average electricity prices, measured in ¢/kWh,

across di�erent states and countries.

Latency Traces. We utilize latency traces from WonderNet-

work [51] which provides round-trip latency between 250

location between July 19th and 20th, 2020.

Solar Trace. We gather solar energy dataset using the

PVWatts tool from NREL [8]. It consists of hourly solar en-

ergy generation data for a typical meteorological year based

on the selected location. We size an individual solar panel

for 1kW DC power ratings and scale it to estimate the output

of bigger solar panels. Table 4 lists the values of parameters

used for the PVWatts trace. We use the default values for all

the other parameters.

5.2 Experimental Setup

In our experiments, since di�erent data sources’ granulari-

ties and lengths do not match, we implement the following

processing steps:

(1) We repeat the monthly CDN trace for each month to

construct a year-long trace, which enabled us to capture

the e�ects of seasonal variations in carbon intensity and

costs.

(2) We consolidate all data centers inside a region (e.g., a

state or a country) into a larger data center with the

sums of the loads and capacities of the composing data

centers and assign them the same carbon intensity and

cost. This allowed us to solve the linear program and

compute the savings much faster.

(3) We assume that the latency between the clients and their

original destinations in the Akamai trace has negligible

latency, which enables us to focus on the latency over-

heads from load shifting.

(4) We assume that data does not change for traces with

limited granularity. For example, in the US and Europe,

hourly carbon intensity traces are available. At the same

time, only monthly energy prices are available. Lastly,

we only had a single value for the entire year for some

locations in Africa and Asia.

(5) For regions with missing latency data, we use average

latency from regions with similar distances from [51].

We implement CDN-Shifter load shifting and capacity

shifting policies using Google OR-Tools [36] across di�erent

settings. In our load-shifting experiments, we feed our pa-

rameters to the solver at a �ve-minute step. In contrast, we

use average quantities within all traces in capacity-shifting

experiments. We note that in all experiments, we use latency

overhead factor _ and capacity shifting factor W of 0.1 and

0.01, respectively. Finally, we evaluate the e�ect of added

renewable energy based on total yearly consumption, where

we scale the DC system size to match the entire annual con-

sumption in the data center where it is installed.

5.3 Evaluation Metrics

We use three metrics to quantify the bene�ts and overheads

of load and capacity shifting.

Carbon Savings (%). The percentage reduction in opera-

tional carbon emissions after spatial load shifting compared

to the baseline of no workload migration. We note that nega-

tive carbon savings denote cases where emissions increased.

Cost Savings (%). The percentage reduction in operational

monetary costs after spatial load shifting compared to the

baseline of no workload migration. We note that negative

cost savings denote cases where monetary costs increased.

Latency Increase (ms). The increase in latency after spa-

tial load shifting compared to the baseline of no workload

migration.

5.4 E�ect of Spatial Load Shifting

We start by evaluating the potential of spatial load-shifting

within the status quo of the content delivery network, i.e.,

without capacity shifting or adding renewable. The poten-

tial of spatial load shifting depends on three factors: The

availability of spare capacity in the network to migrate your

workload around, the variations in the carbon intensity and

energy prices of various geographically distributed CDN

sites, and the latency overheads that users can tolerate. We

start by evaluating carbon-aware or cost-aware load shifting

individually, and then we look at the trade-o�s and methods

to co-optimize all operational costs.

5.4.1 Carbon-aware Load Shifting.

The diversity in carbon intensity across edge data cen-

ters demonstrates the potential of carbon savings by mov-

ing workload from high-carbon locations to low-carbon

ones. Figure 7 depicts the carbon savings and latency in-

creases when applying carbon-aware load shifting (by using

U = 1 in Equation 5) within the USA and Europe. We eval-

uate the carbon savings under di�erent latency constraints

between 10ms and 100ms. We also add a scenario where the

load can be migrated anywhere by removing the latency con-

straints (i.e., # X
8 = # ). As shown, small increases in latency

limit yields signi�cant carbon savings. For instance, a 30ms

limit yields 15.9%, 42.6%, and 29.1% savings across the US,

Europe, and worldwide, respectively.

Figure 7 also highlights the potential savings across the

US (see Figure 7a) and Europe (see Figure 7b), where carbon-

aware load shifting is able to produce more carbon savings
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moving them to locations with greener energy and o�ering

them at discounted prices [27].

Limitations of CDN-Shifter. The use of spatial load shift-

ing can signi�cantly reduce carbon emissions. However, our

approach has limitations. Firstly, we assumed that the re-

quired content is available at the new location. This assump-

tion is based on the extensive scale of CDN networks and

their ability to distribute popular content quickly, but we

did not explicitly consider the associated overheads. Sec-

ondly, we assumed that all requests are uniform and subject

to the same latency constraints. However, it is feasible to

enhance our model to accommodate di�erent request types

and latency requirements, and we leave such evaluation to

future work. Thirdly, we only considered emissions and costs

from energy consumption by edge data centers. However,

data transmission has nonnegligible energy consumption

and costs. Lastly, we did not consider the cost of incorpo-

rating renewable energy sources and methods to optimize

this process, a complementary issue that has been studied

elsewhere [17, 18].

6 RELATED WORK

Earlier work on load shifting have focused on either re-

ducing operational costs [14, 18, 28, 29, 33, 35, 37, 38], re-

ducing energy consumption [31, 32, 40], or carbon emis-

sions [14, 18, 28, 29]. For example, Mathew et al. [33] and

Goiri et al. [14] utilize the �exibility of delay-tolerant batch

workloads to execute them when renewable energy is avail-

able or when grid-supplied energy is cheaper. In contrast to

temporal shifting, which does not suit the latency require-

ments of interactive workloads, spatial load shifting has seen

more popularity in reducing operational costs and emissions.

For instance, Qureshi et al. [37] showed how the di�erences

in energy prices across states could be used to decrease total

operational costs. Moreover, several authors have explored

methods to reduce energy consumption and operational

costs. For instance, Mathew et al. [31] explored methods

to power down idle servers to save energy while adhering to

Service Level Availability (SLA) constraints. Lastly, several

authors have explored renewable energy’s role in reducing

carbon emissions in addition to cost and energy savings. For

instance, Liu et al. [29] have explored how renewable-aware

load shifting can reduce carbon emissions and operational

costs.

Previous work on renewable-aware load shifting often

assumes that grid-supplied energy is always brown or �xed.

However, more recent research has highlighted the diversity

in energy’s carbon intensity across locations and times [9, 19–

21, 30, 45, 46]. For example, Dodge et al. [9] have utilized

spatial load shifting to decrease carbon emissions of AI work-

loads while respecting SLA constraints. In contrast to earlier

work, we consider the three-way trade-o� between load

shifting and implemented large-scale evaluations of spatial

load shifting to highlight the potential of such techniques.

Perhaps the most relevant work was done by Gao et al. [12],

where they highlighted the trade-o�. However, they focused

on data placement and load shifting, and their evaluation

assumed �xed carbon intensity and costs. In contrast, we

evaluate the impact of real-time carbon intensity variations.

Additionally, we consider new methods to further reduce

emissions and costs, such as capacity shifting and adding

local renewables.

In addition to load shifting, previous research has consid-

ered the e�ect of resource planning decisions, where cloud

or CDN providers can select regions for their new resources

based on energy’s cost or carbon intensity [13, 24, 26, 39].

In contrast to previous research, we focus on scenarios that

do not require adding new resources by redistributing them.

Finally, in addition to load shifting, that magni�es the bene-

�ts of the added renewables. Researchers have explored the

utilization of batteries to save excess energy and use it when

renewable energy is not available or insu�cient [14, 35]. In

this work, we only consider load shifting. Mixing batteries

and load-shifting and evaluating how it a�ects the three-way

carbon, cost, and latency trade-o� is left for future research.

7 CONCLUSIONS

In this paper, we studied the potential for using spatial work-

load shifting using geographic load and capacity shifting to

reduce the carbon emissions and energy costs of large-scale

CDNs. We formulate these problems as optimization prob-

lems, considering the three-way trade-o� between carbon

emissions, cost, and latency while adhering to capacity con-

straints. We evaluate the proposed method using real-world

CDN workloads, carbon intensity, and energy prices from

various electricity grids. Our results show the potential of

load shifting in decarbonizing CDNs. Speci�cally, we show

that increasing the latency by 60ms can reduce carbon emis-

sions by up to 35.5%, 78.6%, and 61.7% across the US, Europe,

and worldwide, respectively. In addition, we show that ca-

pacity shifting can increase carbon savings by up to 61.2%.

Finally, we analyze the bene�ts of spatial shifting and show

that it increases carbon savings from added solar energy by

68% and 130% in the US and Europe, respectively.
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