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Abstract—Cloud platforms’ rapid growth raises significant
concerns about their electricity consumption and resulting carbon
emissions. Power capping is a known technique for limiting
the power consumption of data centers where workloads are
hosted. Today’s data center computer clusters co-locate latency-
sensitive web and throughput-oriented batch workloads. When
power capping is necessary, throttling only the batch tasks
without restricting latency-sensitive web workloads is ideal
because guaranteeing low response time for latency-sensitive
workloads is a must due to Service-Level Objectives (SLOs)
requirements. This paper proposes PADS, a hardware-agnostic
workload-aware power capping system. Due to not relying on
any hardware mechanism such as RAPL and DVFS, it can keep
the power consumption of clusters equipped with heterogeneous
architectures such as x86 and ARM below the enforced power
limit while minimizing the impact on latency-sensitive tasks. It
uses an application-performance model of both latency-sensitive
and batch workloads to ensure power safety with controllable
performance. Our power capping technique uses diagonal scaling
and relies on using the control group feature of the Linux
kernel. Our results indicate that PADS is highly effective in
reducing power while respecting the tail latency requirement
of the latency-sensitive workload. Furthermore, compared to
state-of-the-art solutions, PADS demonstrates lower P95 latency,
accompanied by a 90% higher effectiveness in respecting power
limits.

Index Terms—Diagonal Scaling, Power Cap, Demand Re-
sponse, DVFS.

I. INTRODUCTION

The increasing power consumption of data centers is a major

global concern due to its financial and environmental impacts.

Currently, data centers and networking account for nearly

3% of the world’s electricity consumption [1], with forecasts

predicting a threefold increase by the end of this decade [2],

[3]. In order to amortize costs, data center operators must

carefully plan for long-term timeframes when planning new

deployments. As such, they need to consider both the power

delivery infrastructures and the future computational demands.

In addition, many data centers still rely on energy from pol-

luting sources, which generate greenhouse gas emissions and

contribute to climate change [3], [4]. While meeting certain

environmental regulations, operators must also account for the

substantial electricity cost variations necessary to run their

equipment during the lifespan of the data center. Considering

these issues’ importance and contemporary relevance, it is

essential to control and optimize the power consumption of

data centers flexibly.

Data center providers have employed power oversubscrip-

tion to improve efficiency and lower costs. Power budgeting

is a well-known technique for managing the electricity con-

sumption of data centers by capping its computing demand [5].

Since advancements in the design of data centers have sig-

nificantly improved the efficiency of cooling and power dis-

tribution infrastructures, the majority of the electricity used

in modern data centers is consumed by servers. As such,

most techniques implement power budgeting through capping

mechanisms that consolidate, throttle [6], migrate (to and

across different locations), and scale [7] workloads to meet

the power budget limits at the data center level.

Controlling power consumption requires both system and

workload flexibility. This flexibility can be realized in multiple

ways, though most techniques utilize hardware mechanisms

such as Running Average Power Limit (RAPL) [8] and Dy-

namic Voltage and Frequency Scaling (DVFS) [9], as well

as software techniques like power-aware scheduling [10] and

cluster-level power management [11]. Research has under-

scored the limited efficacy in reducing server power con-

sumption across many modern architectures with hardware

mechanisms. Although they provide an application-agnostic

approach to reduce power consumption, the primary limitation

of hardware techniques is that power limits are applied to

entire CPU sockets rather than individual applications. This

results in non-optimal power allocation, especially impacting

multi-tier services distributed across multiple servers. Other

recent research points out that aggressive power optimization

can increase the risk of higher tail latency and degrade

application performance. This is because power optimization

techniques are typically SLO-unaware [7], and workloads tend

to be highly sensitive to dynamic changes in power allocation,

which indirectly affect both performance and power consump-

tion, making the simultaneous control of both parameters a

complex task [8]. Certain techniques assume batch workloads

are best-effort – i.e., utilize every resource available to it –

and can better handle performance variations. For instance,

Thunderbolt [6] uses CPU bandwidth control to prioritize

latency-sensitive workloads by reducing the throughput of

batch workloads, effectively allocating more power to the

former at the expense of the latter.

Although batch workloads have good flexibility in terms of

Service-Level Objectives (SLOs), it is important to prioritize

and minimize the impact that resource allocation causes on
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the tail latency of web workloads. One solution for managing

dynamic web workloads is to use elastic scaling, where re-

sources allocated to the web service are dynamically adjusted

to match workload variations [12]. Although many cloud

providers support elastic scaling [13], [14], [15], methods

tend to overprovision resources because they consider only

a single dimension when scaling, often through horizontal

scaling. The target is to handle the peak workload seen in a

provisioning step and to reduce SLO violations while avoiding

frequent re-provisioning decisions. If variations in workloads

is not effectively captured, this results in over-provisioning

that accounts for forecasting errors. When vertical scaling is

employed, it allows for precise resource provisioning, though

at significantly lower levels, to accommodate unexpected peak

workload demand. This also results in overprovisioning, as

new application replicas consume time to be instantiated,

potentially leading to SLO violations and high power usage

due to the non-proportionality of computing power consump-

tion [16].

The most significant challenges related to server throttling

to implement power budgeting and that requires further in-

vestigation involve power-performance tradeoffs. In addition,

there is still a lack of models describing the relationship

between server configurations and application performance,

together with software techniques necessary for optimizing

multiple co-located applications. To address these issues,

we propose PADS (Power-Aware Diagonal Scaler), a power

budgeting technique that combines horizontal and vertical

scaling—referred to as diagonal scaling—along with an appli-

cation power-performance model to cap the total power con-

sumption of servers while respecting application SLOs. Unlike

prior work that has used diagonal scaling, PADS utilizes ap-

plication information such as workload rate or computational

stage to estimate the precise level of resource bandwidth

to allocate to applications. By leveraging these application

models, we can meet the SLO targets of high-priority web

services and effectively minimize the performance degradation

impact on lower-priority, batch jobs. The key idea of PADS

is that similar CPU bandwidth configurations can result in

different application performances and varying power con-

sumption levels, revealing a new search space to be exploited

in implementing power cap policies. In implementing PADS,

we make the following contributions:

• We showcase the empirical effects of CPU bandwidth

allocation when provisioning resources on power con-

sumption and latency (§II).

• We introduce PADS’s design that combines diagonal

scaling with application power-performance models to

cap the power consumption of servers. Our approach

leverages analytical profiling power and performance

models to jointly meet the workload levels, application

SLOs, and power budgets (§III).

• We implement a prototype of PADS (§IV) and evaluate

it using realistic applications and workloads. Our results

show that power efficiency can reach near-optimal levels

of 89% while avoiding power cap violations. (§V).

• In addition, we showcase PADS’s adaptive properties for

Demand-Response use-cases that can be robust to power

cap changes without violating the limit while achieving

lower response time by 20% compared to baseline.

• We open-source PADS for reproducibility1.

II. BACKGROUND

This section provides background on latency-critical web

services, diagonal scaling techniques, power budgeting and

capping techniques, and the motivation of our system.

A. Interactive Services

Interactive workloads are low latency services that require

user round-trip times – i.e., the time from request submission

to response – to be within certain levels of operation. For

applications such as web apps or mobile apps, the round-

trip performance of requests is directly experienced by an

end user. As such, keeping the latency of requests under

specific target – i.e., SLO requirement – is one of the key

challenges in increasing user satisfaction. Several studies have

shown that high tail latency can significantly increase customer

abandonment rates [17], [18], [19]. For instance, one study

found that even small increases in response times can lead to

a one percent reduction in e-commerce sales [19]. One of the

primary causes of high tail latency is the complexity of modern

software stacks and the resource management of intricate

workflows. Scheduling delays [20], multi-tenancy [21], energy

optimizations [22], and bad resource allocation configura-

tions [17] can all introduce significant and random delays

in request execution, causing requests to be served orders of

magnitude slower than average [20]. To avoid pitfalls when

controlling the response time of latency-sensitive workloads, it

is common to over-provision applications’ resource needs [14].

B. Resource Scaling

Managing the performance within a data center depends

primarily on allocating resources and power to applications.

While statically over-provisioning resources can mitigate tail

latency, it’s not a financially sustainable approach, especially

for services with millions of users. Thus, cloud data centers

continuously seek cost-efficient techniques to maintain low

tail latency despite dynamic request patterns. Auto-scaling is

a key technique to reduce the wastage of resources. Several

factors related to the auto-scaling mechanism can impact

the performance of cloud services. One critical factor is the

configuration of CPU utilization thresholds, which governs

the activation of auto-scaling policies for adding or removing

resources. Another essential consideration is the scaling step

size, representing the number of instances configured during

each provisioning process to accommodate workload spikes.

Significant research efforts have been dedicated to examining

various aspects, including investigations into vertical and hor-

izontal resource scaling [6], and the tradeoffs between power

1The code available at: https://github.com/umassos/PADS
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and performance in systems operating under power constraints

or aiming to reduce overall footprint.

C. Power Budgeting

The exponential trends in energy needs have generated

growing scrutiny regarding the energy consumption of data-

centers. Consequently, numerous cloud providers and data cen-

ter operators have heightened their focus on fostering energy-

efficient and sustainable practices such as power budgeting,

where server power capping has emerged as a key solution.

Power capping is used to limit a server’s power consumption

to stay within a specific power budget. This approach allows

data center operators to reduce peak power consumption at the

cost of potential performance degradation for hosted applica-

tions. Traditionally, Dynamic Voltage and Frequency Scaling

(DVFS) is used to reduce CPU power consumption by lower-

ing the voltage and frequency. Recently, RAPL [23] has been

proposed as an alternative that enables direct control over the

power consumption of a server’s CPU and memory. Extensive

research has explored the implementation of power capping

through resource scaling – both vertically and horizontally

–, as well as through optimizations involving the trade-offs

between power allocation and application performance [6].

Performance degradation often occurs when the power con-

sumption of servers is throttled. The extent of performance

degradation varies between applications and also depends on

the workload experienced at the throttling time. Additionally,

different workloads may hold varying levels of importance

to the data center operator, who prioritizes certain groups of

applications when power budget is insufficient to run servers at

full capacity. Schedule mechanisms can use operating system

tooling to regulate the amount of processing power applica-

tions access from available system resources. For instance,

the Linux cgroups [24] feature can be used to limit and

prioritize certain groups of processes running in a server

while controlling the CPU bandwidth they have. In addition,

it can vertically scale a process by dynamically scaling the

resources applications can access. Surprisingly, there has been

relatively limited exploration into the interactions between

scaling parameters, specifically the simultaneous coordination

of vertical and horizontal resource allocation and scaling with

power allocation and application performance.

D. Motivation

The key insight of our research is that resource bandwidth

can lead to application underperformance and increased power

consumption, even when allocations are equivalent. Con-

versely, power budgeting mechanisms used by cloud providers

are typically agnostic to the application workload, with caps

enforced through resource profiling that may result in budget

violations (§V). This creates an opportunity to optimize power

budgeting by using resource bandwidth mechanisms that in-

tegrate application performance and power models to jointly

minimize performance degradation and meet datacenter, and

workload SLOs.

Fig. 1: Power consumption of a compute intensive workload

across equivalent nominal resource bandwidths (CPU quota)

and different resources (cores). Increasing CPU bandwidth

does not necessarily lead to higher power consumption.

Figure 1 illustrates the power consumption of a compute-

intensive workload [25] running in a 16 cores server. For each

core assignment (in number of cores), we assign a Linux

cgroup’s CPU quota (in ms), reporting the average power

consumption (W) for each combination. We can make two key

observations. First, for each CPU quota, the power consump-

tion ranks across the different core assignments are different.

This means that power consumption not only depends on the

number of cores it uses, but also on the CPU time each

core has. For example, while the 12-core assignment (right-

arrow) consistently has the lowest power consumption across

all CPU quotas, the 6, 8, and 10-core assignments repeatedly

change ranks, with up to 5× power consumption variations

between the lowest (18W) and largest (65W) CPU-quotas.

Second, increases in core allocation do not necessarily result in

increased in power consumption. For instance, an increase in

30% in CPU quota bandwidth results in 20% increase in power

consumption for the 8-core assignments (circles) while having

negligible effects on the 10-core assignment (left-arrows). This

means that improvements in application performance may

be achieved while keeping the resulting power consumption

constant. These observations show that power budget strategies

that employ auto-scaling techniques should not only consider

simple core-scaling techniques, but also the processing time

since it directly affects application end performance.

Key Insight. Applications’ power consumption does not

necessarily align with resource bandwidth allocation. Un-

like simple auto-scaling techniques, power budgeting mech-

anisms that integrate application power and performance

models through diagonal scaling can enhance power con-

sumption optimization tradeoffs by up to 5× while main-

taining equivalent levels of SLOs.

III. SYSTEM DESIGN

A. System Overview

PADS is a power budgeting system for data centers that im-

plements power capping employing diagonal scaling alongside
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application profiles to devise power-performance models and

enabling it to explore a wider range of resource provisioning

options that can simultaneously maintain the data center’s total

power consumption within budget and meet application SLOs.

PADS includes three phases. First, the performance and

power models are devised based on application profile data,

similar to how it is presented in §II. We use first-order regres-

sion [26] to build accurate models. Latency sensitive services

are profiled according to the impact their different workload

levels have on resource utilization, which are then mapped to

power consumption. Conversely, batch applications are pro-

filed by submitting them to various resource quotas, mapping

them to both workload throughput and power consumption2.

Second, once the analytical power-performance models are

devised, PADS searches sets of CPU bandwidth and resource

assignment combinations that reduce power consumption be-

low the power budget. In this operation, PADS ensures that

the picked combination satisfies power and performance con-

straints for all applications. Although multiple policies could

be evaluated when choosing which combination to apply, here,

we greedily sort the final set by combinations that minimize

the performance degradation of batch workloads. Finally, once

the final power-performance combination is devised, PADS

applies diagonal scaling by dynamically adjusting number of

cores along with their CPU bandwidth times. To minimize

uncertainty in CPU performance and fluctuations in response

times due to reduced power levels, the PADS utilizes a config-

urable buffer to adjust the total data center power budget. This

enables a safety net for priority workloads that are sensitive

to changes in resource and power allocations.

B. Algorithm Design

Algorithm 1 details how PADS decides how resource scaling

happens for each applications while keeping the total power

consumption under an enforced power cap. The algorithm

accepts two inputs and uses two system-wide available data.

The first input is the power change. It denotes the dif-

ference between the system’s power cap and active power

consumption. The second input is application classes. Cloud

datacenters host multiple applications and pack them into the

same server as much as possible for efficiency. However,

each application has different performance requirements. Thus,

certain applications are prioritized in using resources. For

example, latency-sensitive web applications might be given a

priority in utilizing more resources than batch applications due

to their strict responsiveness requirements to users. Therefore,

it is essential to put applications into different priority classes

so that when PADS takes an action, it does not hurt the

performance of high-priority class applications. Rather, PADS

revokes resources from the less priority applications. The

first system-wide available data is the information on CPU

utilization of applications. PADS uses this information to

meet SLO requirements of applications, if any. Here, we

note that we put applications with SLO requirements into

2Our power regression models achieve accuracy over 90%.

Algorithm 1: Find Resource Change

Input: power change, app classes

Data: app cpu utils, workload level

Output: resource change

1 resource change ← ∅

2 residual power ← power change

3 foreach class ∈ app classes do

4 foreach app ∈ class do

5 if residual power > 0 then

6 candidates, nominees ← ∅, ∅

7 candidates ← candidates∪

power_to_cpu_resource(power change

|class|
)

8 foreach cand ∈ candidates do

9 new cpu util ←

compute_cpu_util( appcpu usage,

cand)

10 eval result ←

eval_cpu_utils(new cpu util,

app cpu utils, workload level)

11 if (eval result) then

12 residual power ←

residual power − (power change

|class|
)

13 nominees ← nominees∪

app_perf_model(cand)

14 resource change ←

resource change ∪ min(nominees)

15 return resource change

the highest application classes to exclude these applications

from resource deflation. Moreover, PADS uses workload level

change information that is specific to latency-sensitive web

applications. Making PADS proactive by utilizing workload

change information improves its decision-making process.

Our algorithm follows classical MAPE loop structure [27].

In the Monitor and Analysis phase, we collect system-

wide power consumption information and compare it with

the system-wide applied power cap. After that, we move

to Planning phase to decide what actions should be taken

to keep the power consumption under the cap continuously

(Algorithm 1). Here, we have two cases: we reduce the given

CPU cores and CPU quota from the applications starting from

the lowest-priority application classes if the system power

consumption exceeds the cap. Otherwise, we add resources to

the applications starting from the lowest-priority application

classes. In both cases, our algorithm behaves applications

placed in the same class uniformly distributed. For example,

suppose the power change is X Watts, and there is n number

of applications in the application class. In this case, we

change CPU cores along with their CPU bandwidth such that

the selected resource combination accounts for X
n

Watts per

application according to the application power model. Here,
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Fig. 2: Architecture of PADS. Arrows going outwards from

the circle on nodes show resource changes of applications.

PADS might have multiple CPU core and quota combinations.

Thus, we keep all these combinations in candidates set (line

7). Among these candidates, we filter the ones whose effect on

overall CPU utilization does not make the applications with

SLO violate their performance requirements (lines 8-11). After

that, PADS computes and compares the performance effects

of chosen candidates on the application and picks the one

with the least performance impact (lines 13-14). Here, PADS

also ensures that the selected candidate does not lower the

application’s resource under its minimum limit to guarantee

that application stays responsive. Our system switches to

Execute step as a final step. In this step, planned resource

changes are applied to each application accordingly.

IV. ARCHITECTURE AND IMPLEMENTATION

In this section, we describe the architecture and implemen-

tation of PADS. The prototype of PADS is developed with

approximately 1.3KLOC of Python.

Figure 2 shows how PADS’s major components interact

with each other. When it makes a decision and subsequently

takes action to keep the total power consumption below the

power limit, it considers the outcomes of its decisions on

the performance of latency-sensitive applications. Thus, PADS

is an application performance-aware power capping system.

Next, we describe each of the major components of PADS.

Manager. The manager runs on a group of dedicated nodes,

monitors data from the agents under their control, and makes

power-capping decisions.

Agent. The agent is a lightweight program running on every

node in the cluster. It executes CPU resource decisions made

by the manager.

PADS manager reads power measurements from the ePDU

using a Simple Network Management Protocol (SNMP) every

second. Similarly, it reads the performance metric of the

latency-sensitive web application, i.e., 95th response time,

every second. We were down to a 1-second resolution due

to the criticality of frequently monitoring power consumption

and application performance. This small monitoring interval

Fig. 3: Wikipedia workload trace for evaluation.

allows PADS to make more stabilized and quicker power-

capping decisions. When the manager decides on a new CPU

core and quota of applications, the power consumption limits

are also considered. After the decision is made, it sends

this information to agents running on each node. The agent

is responsible for setting the given resource limits by the

manager. It applies the resource changes by using the Linux

cgroup feature. This feature limits the application from using

all resources except whatever is given to itself. The agent

also provides the manager crucial telemetry data about the

applications, such as CPU utilization. For communicating, the

manager and agent communicate via gRPC calls [28].

V. EXPERIMENTAL SETUP AND EVALUATION

In this section, we first describe the setup for our exper-

iments, including the real-world applications and workload

traces. Next, we evaluate our PADS in respecting the given

power cap limit while maintaining the 95th response time

performance metric of latency-sensitive application. Then, we

compare PADS against Thunderbolt, one of the state-of-the-art

power capping systems. In all results, we normalize the power

consumption to the highest power consumed when power is

not restricted.

A. Experimental Setup

Testbed Setup. Our testbed includes Dell PowerEdge R440

server running Ubuntu 20.04 LTS. The server has a two-socket

Intel Xeon Silver CPU, 8 cores each, 2.10GHz, and 64GB of

memory. We disable hyperthreading and turbo boost because

they affect the comparisons, regardless of the approach used.

Moreover, we enable the performance governor of CPUFreq

driver [29]. We deploy our applications inside of the LXC

container. As a power meter, we use CyberLink Switched

Metered-by-Outlet PDU [30]. This power meter provides

outlet-level power monitoring in real time.

Applications. We use two application classes: high-priority

and low-priority. We put a latency-sensitive cloud application:

MediaWiki [31] into the high-priority class, while batch-

application: BLAST [25] into the other one. We co-locate

them when we deploy. MediaWiki is an open-source wiki

software platform that hosts a replica of Wikipedia. It is a

traditional LAMP stack software. We use the pre-built version

of the German Wikipedia, which comprises 10 GB of content.

We use the HAProxy load balancer for the latency-sensitive

application to collect application arrival rate and response

time data. We use BLAST as a batch application. It is a
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Fig. 4: PADS mechanism. Power consumption is limited while

considering p95 latency.

bioinformatics program for finding regions of local similarity

between nucleotides of DNA and/or RNA sequences or amino-

acid sequences of proteins.

Workloads. In our experimental setup, we use Mediawiki real-

world workload trace [32]. shown in Figure 3. We scaled

traces by considering the serving capacity of our setup. When

submitting these workloads, we issued requests using an open-

loop system model [33], which creates a new request whether

a response to previous requests is received. We use the

httpmon workload generator [34] to emulate users accessing

applications.

Metric Collection. We characterize the response time of

a Mediawiki request as the time length from the moment

the request is dispatched to the moment the request output

response is received. Here, we specifically focus on the CPU

request processing time. In other words, we do not consider

the requests’ network latency. We collect Mediawiki’s P95

response times at 1-second granularity.

B. Validation

Our first set of experiments aims to validate and show how

PADS can maintain the P95 response time below the target

while keeping the power consumption under the power cap.

Results. In this experiment, we sampled and used the

workload shown in Figure 3. Figure 4 depicts results for

PADS under this workload. We empirically set the target

SLO response time as 250 ms, the power cap as 92% of the

maximum power consumption under an unrestricted environ-

ment, and measured the 95th response time of the MediaWiki

application. Moreover, we show how PADS changes CPU

cores and quota resources allocated to the BLAST application.

According to results, PADS achieves zero power cap violation

and an average of 150ms P95 latency, well below the SLO

target due to accurate Mediawiki workload predictions and

CPU core and quota allocations. Overall, PADS effectively

applies a power-capping mechanism jointly with performance

awareness to respect power cap and performance targets.

(a) Power Cap Violation (b) Mediawiki Response Time

Fig. 5: PADS versus Thunderbolt: x on (a) shows no violation.

C. Comparison with State-of-the-Art

We implement and evaluate Thunderbolt [6] for comparison.

It is a reactive power capping system that employs an off-

the-shelf Linux CPU bandwidth mechanism to throttle batch

applications by changing their quota limits when total power

consumption exceeds a given power limit.

Thunderbolt maintains two capping thresholds, each with a

multiplier. In our experiment, we used the same parameters

presented in the Thunderbolt paper. In addition, we set the

complete unthrottling duration to 10 seconds. This means

Thunderbolt gives 10% of resources back to the BLAST

application every second if the system is in the unthrottling

stage.

Results. Figure 5 presents the power cap violation and latency

results for PADS and Thunderbolt. As shown in Figure 5(a),

the higher power availability across all policies enables lower

power cap violations. As the power cap targets reduce, the

impacts of using application model information to make de-

cisions are more noticeable, negatively affecting Thunderbolt

but PADS. Since Thunderbolt does not use any application

information, such as workload changes of the Mediawiki ap-

plication, its reaction features do not take the required actions

promptly to avoid power cap violations. Noticeably, PADS

avoided more than 90% power cap violations for the string

power capping setting. Figure 5(b) shows the response time

distribution across different power cap settings. Overall, as the

power cap gets relaxed, response time distribution increases

across both systems because they give more resources to the

BLAST application, and this puts pressure on the Mediawiki,

but PADS still performs better up to 20% and keeping response

time under 250ms. This is because of PADS’ better control

over response time variability, resulting in more predictable

performance.

Key Takeaway. Despite excluding latency-sensitive appli-

cations from throttling for power reduction reasons, power-

capping mechanisms still tend to degrade their performance

while enforcing power limits. Thus, application information

should be integrated into the power-capping system to have

a more control on performance.

D. Use-case: Demand-Response (DR)

Demand-response (DR) programs aim to address stability

challenges by incentivizing power consumers to regulate their

19

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on May 19,2025 at 19:51:17 UTC from IEEE Xplore.  Restrictions apply. 



(a) Electricity Prices (b) Power Cap Values

(c) Power Cap Violation (d) Mediawiki Response Time

Fig. 6: Power cap violation and Mediawiki performance under

demand-response use case.

consumption within predetermined timescales. By participat-

ing in these programs, consumers, such as datacenters, can

lower their energy expenses and contribute to grid stability

and sustainability. However, significant challenges, such as

hefty economic penalties due to power management errors,

can arise when operating under limited and fluctuating power

availability. [35].

In this experiment, we evaluate how PADS and Thunderbolt

work under dynamic power cap changes. We use electricity

price data for two different regions located in Europe, shown

in Figure 6(a) [36]. We generated power cap data shown

in Figure 6(b) from the electricity price graph by taking an

inverse proportion of the prices and normalizing between the

strict and relaxed power cap settings. In this use-case scenario,

the datacenter adjusts its maximum power usage in real time.

It wants to use less electricity when the price is high and vice

versa. For this reason, we see from Figure 6(b) that when

the electricity price is high, the power cap value is lower, and

when the price is low, the power cap value is higher. We expect

Region-I to be more challenging than Region-II because of the

variability in changes.

Results. Figures 6(c) and (d) depicts the results of power

cap violation and response time of Mediawiki application for

PADS and Thunderbolt. For the Region-I, PADS achieves 75%

less power violation than Thunderbolt, while it doesn’t have

any violation for the Region-II. Across all regions, PADS

achieves 10% to 15% better response time than Thunderbolt.

Key Takeaway. Power capping systems should be resistant

to changes in power cap over time. PADS shows robustness

to the changes while it respects the performance require-

ment of the latency-sensitive applications.

VI. RELATED WORK

Power capping is a technique to guarantee power con-

sumption does not exceed the user-defined bound [37]. [38]

compared the effectiveness of various power capping mecha-

nisms, including DVFS and RAPL. Dynamo [39] is a power

management system that uses a three-band algorithm for power

capping and uncapping decisions and Intel RAPL to en-

force the given power limit. CapMaestro [40] manages power

oversubscription by proposing a global priority-aware algo-

rithm to protect high-priority workloads from power throttling

while maintaining a minimum performance guarantee for low-

priority workloads. Thunderbolt [6] is the other power capping

system that throttles the CPU shares of throughput-oriented

workloads using Linux cgroup features to stay within the

specified power budget while ensuring that latency-sensitive

tasks remain unaffected. Microsoft also designs a workload-

aware power capping system [10] for the Azure platform em-

ploying per-core DVFS and RAPL mechanisms. PARM [41]

is an adaptive resource allocation framework under a power

capping system. Its difference from PADS is that it re-allocates

resources to preserve SLO under the cap. That is, a separate

system already does power capping on top of PARM. [42]

uses the DVFS boosting technique at scale to quickly and

safely expand the computational capacity by providing addi-

tional power capacity in an oversubscribed environment.

VII. CONCLUSION

This paper proposes an application performance-aware

power capping system that integrates horizontal and vertical

scaling ideas, PADS. We call it diagonal scaling. We designed

our system to keep the power consumption of the system under

power limit while adhering to the application performance

– e.g., 95th percentile latency (P95). To achieve this goal,

PADS incorporates the application power-performance models

into power cap decisions to dynamically allocate CPU core

and quotas in response to power consumption and workload

fluctuations of the latency-sensitive web application. In partic-

ular, we combine the analytical power-performance model of

batch applications and the workload rates of latency-sensitive

web applications to make power capping decisions. Finally,

we prototype and evaluate our system against a state-of-the-

art power capping system under real-world workloads and

applications. Our findings indicate that PADS can achieve

power to optimal levels, reaching up to 89%, besides avoiding

power limit exceedings. Moreover, compared to state-of-the-

art solutions, PADS attains lower, controllable P95 latency

without power cap violations. Finally, PADS is robust in

avoiding power cap violations and controlling p95 latency

under scenarios like power cap dynamic change.
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“Alpaca: Application performance aware server power capping,” in 2018

IEEE International conference on autonomic computing (ICAC). IEEE,
2018, pp. 41–50.

[6] S. Li, X. Wang, F. Kalim, X. Zhang, S. A. Jyothi, K. Grover,
V. Kontorinis, N. Narodytska, O. Legunsen, S. Kodakara et al.,
“Thunderbolt:{Throughput-Optimized},{Quality-of-Service-Aware}
power capping at scale,” in 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 20), 2020, pp. 1241–1255.

[7] M. Savasci, A. Souza, L. Wu, D. Irwin, A. Ali-Eldin, and P. Shenoy,
“Slo-power: Slo and power-aware elastic scaling for web services,” in
24th IEEE/ACM international Symposium on Cluster, Cloud and Internet

Computing (CCGrid 24), 2024.

[8] M. Savasci, A. Ali-Eldin, J. Eker, A. Robertsson, and P. Shenoy, “Ddpc:
Automated data-driven power-performance controller design on-the-fly
for latency-sensitive web services,” in Proceedings of the ACM Web

Conference 2023, 2023, pp. 3067–3076.

[9] L. Zhou, L. N. Bhuyan, and K. Ramakrishnan, “Gemini: Learning
to manage cpu power for latency-critical search engines,” in 2020

53rd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO). IEEE, 2020, pp. 637–349.

[10] A. G. Kumbhare, R. Azimi, I. Manousakis, A. Bonde, F. Frujeri,
N. Mahalingam, P. A. Misra, S. A. Javadi, B. Schroeder, M. Fontoura
et al., “{Prediction-Based} power oversubscription in cloud platforms,”
in 2021 USENIX Annual Technical Conference (USENIX ATC 21), 2021,
pp. 473–487.
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