
A preliminary version of this paper appears in the proceedings of Asiacrypt 2024. This is the full
version.

The Concrete Security of Two-Party Computation:

Simple Definitions, and Tight Proofs for PSI and

OPRFs

Mihir Bellare1 Rishabh Ranjan2 Doreen Riepel3 Ali Aldakheel4

September 2024

Abstract

This paper initiates a concrete-security treatment of two-party secure computation. The first
step is to propose, as target, a simple, indistinguishability-based definition that we call InI. This
could be considered a poor choice if it were weaker than standard simulation-based definitions,
but it is not; we show that for functionalities satisfying a condition called invertibility, that
we define and show is met by functionalities of practical interest like PSI and its variants, the
two definitions are equivalent. Based on this, we move forward to study the concrete security
of a canonical OPRF-based construction of PSI, giving a tight proof of InI security of the
constructed PSI protocol based on the security of the OPRF. This leads us to the concrete
security of OPRFs, where we show how different DH-style assumptions on the underlying group
yield proofs of different degrees of tightness, including some that are tight, for the well-known
and efficient 2H-DH OPRF, and thus for the corresponding DH PSI protocol. We then give a
new PSI protocol, called salted-DH PSI, that is as efficient as DH-PSI, yet enjoys tighter proofs.
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1 Introduction

The first wave of research on secure two-party computation (2PC) [56] asked whether this magical-
sounding goal could even be achieved. The focus being feasibility rather than efficiency, results
were given in an asymptotic security framework and reduction tightness was not a concern. We are
now in a second wave, fueled by real-world applications, where the focus is efficient protocols for
particular goals like PSI and OPRFs. We suggest that, in this second wave, we need results in a
concrete security framework, and reductions as tight as possible, so that we can find and pick the
protocols that give the best efficiency for a desired level of proven security.

Contributions in brief. Towards the above, this paper initiates a concrete-security treatment
of 2PC. It has two main parts:

1. Definitional framework. We give and target a new, simple and concrete-security friendly
definition of security for 2PC that we call input indistinguishability (InI). As the name indicates,
it is indistinguishability based. Yet, for functionalities satisfying a condition called invertibility,
that we define and is met by functionalities of practical interest including PSI and friends, we show
that InI is as strong as standard simulation-based definitions. Our definitional framework explicitly
incorporates random oracles and surfaces some subtleties in this regard.

2. Results for PSI and OPRFs. We consider the concrete security of OPRF-based PSI [32], giving
a tight proof of InI security of the constructed PSI protocol based on the security of the starting
OPRF. This motivates studying the concrete security of OPRFs, where we show how different DH-
style assumptions on the underlying group yield proofs of different degrees of tightness, including
some that are tight, for the well-known and efficient 2H-DH OPRF [36], and thus for DH-PSI,
the PSI protocol based on 2H-DH. We follow this with a new protocol, salted DH PSI, for which
we give tighter proofs. Salted DH PSI is essentially as efficient as DH PSI, showing how concrete
security can be improved through protocol changes.

1.1 Setting the stage

The asymptotic setting. Provable security [30, 16] began in an asymptotic framework inherited
from computational complexity theory. To show that a scheme Π meets a target notion of security
T assuming that an underlying problem P (e.g. CDH) is hard, one gives a reduction that takes an
adversary A and builds an adversary A′ such that:

If A is PPT and has non-negligible advantage (success probability) εA(·) in violating T-security
of Π, then A′ is also PPT and has non-negligible advantage εA′(·) in breaking P.

The advantages here are functions of a security parameter k, and such a function is “negligible”
if it goes to zero faster than the reciprocal of any polynomial. Such results help build theoretical
foundations but give implementors no explicit way to pick the security parameter to guarantee a
desired level (e.g. 256 bits) of security.

The concrete setting. In the concrete framework [10], one continues to give a reduction that
takes an adversary A and builds an adversary A′, but now additionally specifying a function B,
called the bound, such that:

If A has running time t, resources R and advantage AdvT
Π(A) in violating T-security of Π, then

A′ has running time about t and advantage ε′ in breaking P such that AdvT
Π(A) ≤ B(ε′,R).

The advantages here are real numbers, not functions. There is no explicit security parameter.
Resources include the number of queries to various oracles in the game defining security. A reduction
is tight if B(ε′,R) = c · ε′ for some small constant c. A typical example of a non-tight reduction is
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B(ε′,R) = q · ε′ where q ∈ R is the number of queries of A to some oracle. Now if an implementor
wants to ensure AdvT

Π(A) ≤ ε for some choices of t, ε,R, they can use the bound to determine ε′

such that ε ≤ B(ε′,R) and then use t, ε′ to make a choice of group or elliptic curve in which to
work. The tighter the reduction, the smaller is ε′ and thus the size of the curve, and the more
efficient is the implemented scheme.

For example, suppose Π1,Π2 are protocols for some goal (say PSI), both proven secure under the
CDH assumption over an underlying elliptic curve group, the first using six modular exponentiations
in the group and second only three. Is Π2 the one to prefer and implement? Not necessarily. The
right comparison is at the same level of concrete security for both, say 128-bits. To provide this,
say that, due to different degrees of tightness in the proofs for the two protocols, we need a 256-bit
curve G256 for Π1 and a 384-bit curve G384 for Π2. Then (since exponentiation is cubic-time) Π2 is
(3/6) · (384/256)3 = 1.6875 times more expensive than Π1, despite using fewer exponentiations in
the group, making Π1 the sounder choice.

Thus, beyond allowing sound choices of parameters, the concrete framework leads to new ques-
tions, such as to seek tighter reductions for existing protocols or to seek new protocols which allow
tight reductions. These kinds of questions (which we will pursue for 2PC) are invisible in the
asymptotic setting.

Concrete security is not new. In provable-security for symmetric cryptography, it is the norm,
and it is widely employed in public-key cryptography and authenticated key-exchange.

Definitional complexity. Our intent is to facilitate and provide concrete security assessments
and improvements for 2PC. The first step is simple, “concrete-security-friendly” definitions. We
start with a broad definitional classification aimed at saying what this means.

Having fixed a target notion T and scheme or protocol Π, our discussions of security above
assumed a simple definitional format in which the advantage AdvT

Π(A) is associated to just the
adversary A, as is true for basic notions like UF-CMA (signatures), PRF-security or indistinguisha-
bility of encryptions. We will call these single-quantifier definitions since the security requirement
is

∀A : AdvT
Π(A) is low.

In a simulation-based definition, however, the advantage AdvT
Π,S(A) is now relative to a simulator

S. The requirement now being

∀A ∃ S : AdvT
Π,S(A) is low or ∃ S ∀A : AdvT

Π,S(A) is low,

we refer to these as double-quantifier definitions. But this double-quantifier structure does not fit
the above-discussed format and complicates concrete-security assessments.

To elaborate, double-quantifier definitions do not preclude giving concrete-security results, and
there are some in the literature. (Examples include [55, Theorem 4] and [36, Theorem 1].) However
it is not clear (at least to us) how to use such results to pick parameters to guarantee a desired level
of security. One issue is that we would expect AdvT

Π,S(A) to be lower for simulators with higher
running time, raising the question of how to interpret this advantage and also making parameter
choice depend on simulator running time. Also complexity grows when (as happens in the first
just-cited result), one simulator is defined in terms of another, making it hard to work in a modular
way.

Concrete-security friendliness is not the only benefit of single-quantifier definitions. Another
is attack-friendliness. To give an attack, we need only give an adversary with high advantage.
In a double-quantifier definition, we would have to prove that the advantage is high relative to
all simulators. Our InI definition in particular facilitates cryptanalysis of 2PC protocols, a topic
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largely unexplored.

2PC. Recall that the setting of secure two-party computation (2PC) considers parties 1, 2 (also
called client and server, respectively) having inputs x1, x2 respectively. A 2-party protocol Π, to
securely compute a functionality F, allows the parties to interact so that at the end they have
outputs y1, y2 respectively, where (y1, y2)← F(x1, x2). Yet, neither party should learn more about
the other party’s input than disclosed by the output they obtain.

This area has traditionally used double-quantifier definitions in an asymptotic framework. But
today the quest is efficient protocols for goals (functionalities) of interest in applications, where (for
reasons given above) a concrete framework is crucial. Leading the way, concrete-security results
for single-quantifier definitions have been given for garbling schemes [8]. However there are many
protocols, for goals including PSI, OPRF and their variants, which target efficiency without concrete
security. We aim to fill this gap.

1.2 Our definitional framework

The highlight of our framework below will be a definition for 2PC security, called InI, that is (1)
single-quantifier and thus both concrete-security friendly and attack-friendly, yet (2) usually no less
powerful than a standard (double-quantifier) simulation-based definition.

SIM and InI. We want to say (in a concrete framework) what it means for a protocol Π to securely
compute a 2PC functionality F. The classical paradigm for 2PC definitions is simulation [43, 19],
so we start there, giving a concretely-rendered definition, called SIM. It defines an advantage
Advsim

F,Π,S(A) for an adversary A relative to a simulator S. As above, this is a double-quantifier
definition but represents an important baseline, in terms of strength and history, that we want to
respect.

Alongside, we give a simple, single-quantifier definition that we call input indistinguishability
(InI). Let F(x1, x2)[i] denote the output given by the functionality to party i. Suppose party 1 is
the “honest” one, meaning the one whose privacy we aim to protect. Party 2, as the adversary A,
supplies a pair of inputs x1,0, x1,1 for party 1 and a single input x2 for itself such that the outputs
y0 = F(x1,0, x2)[2] and y1 = F(x1,1, x2)[2] for itself are the same. A random challenge bit b is chosen,
and now A, given its view (transcript and coins) of the execution of protocol Π on inputs x1,b, x2,
outputs a guess b′. InI asks that its advantage AdvInI

F,Π(A) = 2Pr[b = b′] − 1 is small. A formal
definition is in Section 3.

Relating SIM and InI. We propose to use InI in concrete-security results and parameter choices.
As the reader may note, this would be a poor choice if InI is weaker (provides less security) than
SIM, but we show that, for functionalities of practical interest, this is not the case and in fact the
two are equivalent. To elaborate, Theorem 3.4 says that InI implies SIM (that is, any Π that is
InI-secure is also SIM-secure) as long as the target functionality F satisfies a condition we define
called invertibility. The latter (continuing to assume party 1 is the honest one) asks that, given
x2, y2, it is possible to efficiently find an input x1 for party 1 satisfying F(x1, x2)[2] = y2, assuming
of course such an x1 exists. In the other direction, Theorem 3.2 says that SIM always implies InI.

In Section 3.3, we show that the functionality for PSI is invertible, as are variants of it like for
threshold-PSI and cardinality-PSI [26]. We also show, in Appendix E, invertibility for Oblivious
Transfer (OT) [52] and the Secure Inferencing functionality of [39]. So for all these we may safely
focus on InI, reassured that it is qualitatively just as strong as SIM.

We clarify and caution that it is not the case that InI and SIM are equivalent for all functionali-
ties. Indeed, in Theorem 3.3 we give a counterexample, meaning a (non-invertible) F and a protocol
Π such that Π is SIM-secure, but not InI secure, for F. However, the F,Π here are contrived and

5



SIM-np SIM

InI

Th. 3.1

Th. 3.2 Th. 3.3Th. 3.4
for invertible
functionalities

Figure 1: Relations between the InI, SIM and SIM-np notions of security for a 2PC protocol Π for a
functionality F. Arrows are implications and the barred arrow is a separation.

artificial. Our experience is that natural functionalities of practical interest tend to be invertible
and thus enjoy the equivalence of InI and SIM guaranteed by Theorems 3.2, 3.4.

ROM incorporation and subtleties. The Random Oracle (RO) Model [13] is extensively em-
ployed for practical 2PC but, while used in proofs, the RO is sometimes absent in the definitions.
Our definitions in contrast explicitly and flexibly incorporate random oracles. Protocols name a
space from which their desired RO is then drawn in games defining security. In the default SIM
notion, the RO is programmable by the simulator. We also give a non-programmable RO ver-
sion SIM-np. InI has the attractive, and further simplifying feature that the RO is inherently
non-programmable. (There is no simulator to program it.)

Attending carefully to formalizing the ROM usage in these definitions brought to light a subtle
issue. RO queries could be made not only by the protocol and adversary, but also by the function-
ality. We show, by example, that allowing the simulator to program the answers to functionality
RO queries is problematic and can lead to clearly insecure protocols having a proof of security.
Our SIM definition addresses this, answering functionality queries via an honestly chosen random
function that is then given as oracle to the simulator, who can use it, or not, as it likes, in answering
other RO queries. (See Section 3.1 for details.)

Full relations picture. With that, Figure 1 summarizes the full set of relations between the
notions. An arrow X→ Y is an implication, meaning any Π that is X-secure for F is also Y-secure
for F. A barred arrow X 6→ Y is a separation, meaning there exist F,Π such that Π is X-secure for
F but not Y-secure for F. For invertible F, we note that Theorem 3.4 actually shows InI→ SIM-np,
which implies InI→ SIM because Theorem 3.1 says that SIM-np→ SIM.

The setting. Our definitions and results are in the semi-honest (also called honest-but-curious)
setting, where the parties aim to learn each other’s inputs but are assumed to follow the protocol.
While we want to eventually treat the malicious case, there are several reasons to start with the semi-
honest one. The first is pedagogic; as our work shows, the semi-honest case is hardly trivial, and
jumping to the malicious case without a solid foundation for the semi-honest one felt to us premature
and unsound. The second reason is that many works in the literature [25, 51, 40, 21, 41, 50, 20]
give protocols for the semi-honest setting, and understanding their concrete security is important
for practical reasons. Pragmatic concerns too justify this setting. The gain is efficiency; malicious-
secure protocols are typically more expensive, which may curtail adoption. Meanwhile, with regard
to security, in practice there are forces external to the cryptography that deter malicious behavior.
Parties are often corporations who are subject to laws and bound by contracts with other parties.
Use of subverted (malicious) code risks discovery and exposure. Add to this that the protocol
functionality is already giving these parties the information they want, and malicious behavior
emerges as both low reward and high risk.

1.3 Concrete-Security results for 2PC protocols

We give some general results, and then focus on PSI and OPRFs.
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Many executions versus one. In practice we expect that a protocol Π is executed many times,
on different inputs. Our definitions accordingly allow the adversary to obtain as many execution
transcripts as it likes via queries to an oracle Run. In the concrete setting we are interested in
how adversary advantage degrades as a function of the number qrn of queries to Run. Theorem 3.5
confirms that the hybrid argument works as expected to show that the advantage εInIΠ (qrn) for qrn
queries is at most qrn times the advantage εInIΠ (1) for one query.

In an asymptotic setting, the question would end here, but concretely, it is more of a starting
point, raising the question of whether we can, for particular protocols, avoid the qrn factor loss,
meaning show that εInIΠ (qrn) ≈ εInIΠ (1). The following will show (amongst other things) that the
answer is yes.

PSI from OPRFs, tightly. In Private Set Intersection (PSI) [26], the inputs x1, x2 are sets and

the functionality Fpsi returns their intersection x1 ∩ x2 to the client and nothing to the server. PSI
is used for privacy-respecting solutions in the following domains: ad conversion [35, 34], contact
discovery [44], password or credential monitoring [42, 54, 4, 33], genomics [5], proximity testing [47],
relationship discovery in social networks [45] and detection of sexual misconduct [53]. These appli-
cations motivate PSI protocols with tight proofs.

Towards this, we focus on one simple, canonical way to achieve PSI suggested by Hazay and
Lindell [32], where the PSI protocol Πpsi is built from a protocol Πoprf for an Oblivious Pseudo-
Random Function (OPRF) [46, 25, 38]. Recall that in the latter, the server has a (secret) key K
for a (regular) PRF Q, the client has an input x and the protocol ends with them holding ε and
Q(K,x), respectively. Simulation-based (hence double-quantifier) definitions of security for OPRFs
are given in [55]. We give instead single-quantifier (non-simulation-based) definitions. For client
security (honest party 1), it is simply InI. For server security (honest party 2) we give a simple
pseudo-randomness definition that we call OPRF-PR. Under these assumptions, Theorem 4.2 shows
client and server InI security of Πpsi. The reductions are all tight. This is true regardless of the
number qrn of Πpsi-executions (formally, Run queries of the adversary), meaning the bounds do not
have the multiplicative qrn factor loss of the hybrid argument of Theorem 3.5. Theorem 4.2 also
separately shows correctness of Πpsi, based on the PRF-security of Q. (The actual result is more
general.)

Having thus stepped tightly from OPRFs to PSI, we turn to studying the concrete security of
the former.

Bounds for 2H-DH OPRF and DH-PSI. OPRFs have applications beyond PSI [22, 36, 37, 23],
making their concrete security of interest in its own right. 2H-DH (Two-Hash Diffie-Hellman) [36]
is the de-facto standard OPRF and thus the natural candidate to study.

Jarecki, Kiayias and Krawczyk [36, Theorem 1] prove that 2H-DH achieves a simulation-based
(UC) definition in the ROM, assuming hardness of the One-More Gap Diffie-Hellman (OM-Gap-
DH) problem. This is a strong assumption, giving the adversary a CDH oracle in the One-More
style [11, 17] as well as a DDH oracle in the Gap style [48]. Their result is semi-concrete (a bound
is given but the runtimes of the simulator and constructed adversaries are not), and the bound is
not tight.

We revisit the 2H-DH OPRF and evaluate security under our (single quantifier) definitions,
namely InI for client (party 1) and OPRF-PR for server (party 2), as needed for our application
to PSI above. Theorem 6.1 shows client InI-security unconditionally and with a good bound. Our
discussion focuses on OPRF-PR. We consider a variety of choices for the starting (assumed hard)
problem P in the group G. What we consider interesting is that we can prove security under all
these assumptions, but with different tightness.

The results are given in Theorem 6.2 and summarized in the second column of Figure 2. It
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Problem P
B(ε′, {qro, qn}) B(ε′, {qro, qrn})

2H-DH OPRF DH-PSI Salted DH-PSI

CDH q2roqn · ε
′ q2roqrn · ε

′ qro · ε
′

V-CDH qroqn · ε
′ qroqrn · ε

′ ε′

CDH-MUC qro · ε
′ qro · ε

′ qro · ε
′

V-CDH-MUC ε′ ε′ ε′

DDH ε′ ε′ ε′

Figure 2: Our results for the 2H-DH OPRF and the DH-PSI and Salted DH-PSI protocols.
For different choices of the assumed-hard problem P, the 2nd column shows the bound B(ε′, {qro, qn}) on
the oprf-pr advantage of an adversary A for the 2H-DH OPRF, while the 3rd and 4th columns show the
bound B(ε′, {qro, qrn}) on the ini-advantage of an adversary A for the DH-PSI and Salted DH-PSI protocols,
respectively, in all cases as a function of the advantage ε′ = AdvP

G(A
′) of the constructed adversary A′ in

solving problem P in group G. In the first case, qro, qn are the number of queries A makes to its random and
New oracles, respectively, and in the other cases, qro, qrn are the number of queries A makes to its random
and Run oracles, respectively.

considers an OPRF-PR adversary A making qro queries to its random oracle and performing qn
executions (formally, queries to an oracle called New) of the OPRF protocol. Column 2 of the
table then shows (approximate) bounds on the oprf-pr advantage of A as a function of qro, qn and
the advantage ε′ of a constructed adversary A′ in solving problem P in group G.

Row 1 of the table says that we can prove security already assuming hardness of only the (plain)
CDH problem. But we incur a substantial factor loss in the bound. Now we consider strengthening
the assumption. First, we give the adversary a limited DDH oracle. The resulting assumption,
which we call V-CDH for verifiable CDH, is weaker than either Strong-CDH [1] or Gap-CDH [48].
Row 2 shows that the factor loss in the bound drops. Second, for both CDH and V-CDH, we move
from the single-user setting to the one of multiple users with corruptions. Rows 2, 3 show further
drops in the bound. Finally (row 5) we give a tight reduction from DDH. We refer to Section 2 for
formal definitions of the computational problems and the relations between them, and to Figure 13
for a more precise and complete summary of the results.

Now, let DH-PSI denote the above-discussed PSI protocol when the OPRF is set to the 2H-
DH one. Then, combining the above with Theorem 4.2 gives bounds on the server InI security of
DH-PSI as shown in the 3rd column of Figure 2.

Salted DH-PSI. Concrete security raises new questions invisible in the asymptotic setting, in this
case whether there is a different protocol, ideally as efficient as DH-PSI, yet with bounds better
than shown for the latter in Figure 2. We show that the answer is yes, giving in Section 7 what
we call the salted DH-PSI protocol. The bounds, as per Theorem 7.1 and summarized in the last
column of Figure 2, are improved under the CDH and V-CDH assumptions and maintained under
the others. The salting technique we use originates in PSS [14], a modification of the RSA-FDH
signature scheme which improved the bound, for UF-CMA under the RSA assumption, from loose
to tight. We warn that the bounds in the table are approximate; more precise ones can be found
in Figure 15.

1.4 Discussion and further related work

An indistinguishability-style definition for garbling schemes was given in [9], and one for multi-party
computation in [3]. Our InI definition was inspired by, and generalizes, an indistinguishability-based
definition for threshold-PSI from [6]. InI and SIM for 2PC can be seen as analogues of witness-
indistinguishability [24] and zero-knowledge [31], respectively, for proof systems. Another domain

8



in which both indistinguishability-style and simulation-style definitions have been given, related
and used is functional encryption (FE) [18, 49, 12].

What we call single-quantifier and double-quantifier definitions are sometimes referred to as
game-based and simulation-based, respectively. However games are a descriptive language and our
SIM definition is also written as a game, so to avoid confusion we are using a different terminology
that we feel highlights the essential difference, namely the quantifier structure.

There is a divide, in the cryptographic community, between those who speak and use the
language of UC [19], and those who don’t. A consequence has been to exclude a certain, and more
applied part of our community, from 2PC research. Part of the intent of our work is to bridge this
gap. With InI and concrete security, we have cast 2PC in a language and style similar to that used
in practice-oriented work on conventional primitives like encryption, signatures and authenticated
key exchange, primitives that have in particular seen a large quantity of work on proof tightness.
The hope is to draw this segment of the community into 2PC to likewise explore and improve proof
tightness.

In writing our definitions, we have aimed for precision, and attention to detail, at a level that
to us is beyond the norm for the area. This is in part a response to our experience (admittedly
perhaps due to our lack of expertise) of struggling to understand, and finding ambiguous, some
definitions we try to read in the literature. A price paid is notation. Our work could (rightly)
be critiqued as notationally heavy, but we believe the notation is central to greater precision and
reduced ambiguity, and hope that, after some exposure, it ceases to be a significant barrier for a
reader.

2 Preliminaries

Notation. If w is a vector then |w| is its length (the number of coordinates) and w[i] is its i-th
coordinate. The empty (length zero) vector is denoted ε. We say that w is an n-vector if |w| = n.
We let V2S(w) = {w[1], . . . ,w[|w|]} be the set of elements of vector w. Likewise, if S is a set,
then w ← S2V(S) puts its elements into a vector in some canonical order, say lexicographic. We
write w←$ S2V(S) to say that the ordering is random, meaning the entries of w are a random
permutation of the elements of S. We say w is a vector over S if V2S(w) ⊆ S. By S∗ we denote
the set of all finite-length vectors over S.

Strings are identified with vectors over {0, 1}, so that ε denotes the empty string, {0, 1}∗ denotes
the set of all finite-length strings, |Z| denotes the length of a string Z and Z[i] denotes its i-th
bit. By x‖y we denote the concatenation of strings x, y. If x, y are equal-length strings then x⊕y
denotes their bitwise xor.

If X is a finite set, then |X | denotes its size and x←$ X denote picking x uniformly at random
from X . By P(X ) we denote the power set of set X , meaning the set of all subsets of X . For
integers a ≤ b we let [a..b] be shorthand for {a, . . . , b}. We use 1, 0 to indicate the booleans “true”
and “false” respectively, and [[B]] returns 1 if boolean expression B is true and 0 otherwise. We
use ⊥ (bot) as a special symbol to denote rejection, and it is assumed to not be in {0, 1}∗.

We let G
∗ = G \ {1} be the set of non-identity elements of a group G. By 〈g〉 we denote the

set of all powers of g ∈ G, so writing G = 〈g〉 indicates that g is a generator of G. In that case,
dlogG,g(A) ∈ Zp is the discrete logarithm of A ∈ G to base g, where p is the order of G.

Oracle spaces and random oracles. In the random oracle model [13], the domain and range
of the random oracle can depend on the scheme. (The latter term here includes protocols and
functionalities.) Accordingly, we let a scheme S specify a set OS (or S.OS if disambiguation is
needed) of functions, called the oracle space. The game will then pick a function H←$ OS at
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random and provide as random oracle a procedure RO that when queried with X returns H(X).
This approach is flexible. By different choices of the oracle space, one can capture other idealized
models such as the ideal cipher or ideal permutation models. One can also capture a standard
model instantiation of a ROM scheme, by for example setting OS to be a singleton set consisting of
the SHA512 hash function. Finally, if OS is absent or empty, one is in the standard model directly.

Algorithms. Functions (we will not consider uncomputable ones) are identified with deterministic
algorithms. If OS is an oracle space (i.e. a set of functions) then we write A : [OS]×D1×· · ·×Dn → R
to mean that A is an algorithm taking as oracle a function H ∈ OS and taking inputs x1, . . . , xn with
xi ∈ Di for i ∈ [1..n], to return an output y←$ A[H](x1, . . . , xn) ∈ R. We let Out(A[H](x1, . . . , xn))
denote the set of all possible outputs of A on the given inputs. Running time is worst case, which for
an algorithm with access to an oracle means across all possible replies from the oracle. If we want
to make A’s coins (random choices) explicit we may see it as a deterministic algorithm A : [OS] ×
D1×· · ·×Dn×Ω→ R so that y←$ A[H](x1, . . . , xn) is shorthand for picking ω←$ Ω and returning
y ← A[H](x1, . . . , xn;ω). Omitting OS and the H argument return us to the standard model.

Games. We use the code-based game-playing framework of [15]. A game G specifies an Initialize

procedure, further procedures (also called oracles) and a Finalize procedure. In the ROM [13],
which we use throughout, the random oracle appears as a game procedure RO. When game G is
executed with adversary A, first Initialize executes and what it returns is the input to A. Then
A runs and can call oracles other than Initialize,Finalize. When A halts, its output is the input
to Finalize, and the output of the latter is the game output. By Pr[G(A) ⇒ y] we denote the
probability that the execution of game G with adversary A results in the game output being y, and
write just Pr[G(A)] for Pr[G(A)⇒ 1].

Different games may have procedures (oracles) with the same names, and if we need to disam-
biguate, we may write G.O to refer to oracle O of game G. In game pseudocode, integer variables,
set variables, boolean variables and string variables are assumed initialized, respectively, to 0,
the empty set ∅, the boolean 0 and ⊥. Adversaries in games are always assumed to be domain-
respecting, meaning if a query they provide is expected to fall in some scheme-associated set, then
it does. The running time of an adversary by convention is the execution time of the game with
the adversary, so that the time taken by oracles to respond to adversary queries is included. We
write QO(A) to denote the number of queries made to oracle O in the execution of the game with
A. Note that by convention, again, both queries made directly by A and those made by scheme
algorithms are included. In particular, QRO(A) includes the queries made by scheme algorithms
either explicitly to RO or instead directly to the function H underlying RO, in the execution of
the game with A. We say that adversary A2 (playing a game G2) has the same query profile as
adversary A1 (playing a game G1) if the games provide oracles of the same names (even if not same
behavior), and the number of queries to each of these oracles is the same for both adversaries.

For the following, recall that games G,H are identical-until-bad if their code differs only in
statements that follow the setting of flag bad to 1 [15].

Lemma 2.1 [Fundamental Lemma of Game Playing [15]] Let G,H be identical-until-bad games.
Then for any adversary A we have

|Pr[G(A)]− Pr[H(A)]| ≤ Pr[H(A) sets bad] = Pr[G(A) sets bad] .

Concrete security. In this setting, there is no explicit security parameter, and thus no formal
definition of either polynomial time (for an adversary) or negligible (for its advantage). We simply
define advantage functions, and theorems relate them with explicit bounds. Discussions will still
informally use terms like polynomial-time or negligible with the natural interpretations.

10



Game Gprf
Q

Initialize:

1 H←$ Q.OS ; c←$ {0, 1}

New:

2 i← i+ 1 ; ki←$ Q.Keys

CH(i′, x):

3 If not (i′ ≤ i) then return ⊥

4 If T[i′, x] = ⊥ then

5 If c = 1 then T[i′, x]← Q[RO](ki′ , x)

6 Else T[i′, x]←$ R

7 Return T[i′, x]

RO(X):

8 Return H(X)

Finalize(c′):

9 Return [[c = c′]]

2HDH[H](k, x):

1 Y ← H(1, x)k // Y ∈ G

2 y ← H(2, gk, x, Y ) // y ∈ {0, 1}`

3 Return y

F
psi
U (S1, S2): // S1, S2 ⊆ U

1 I ← S1 ∩ S2

2 Return ((I, |S2|), |S1|)

F
oprf
Q

[H](x, k): // V2S(x) ⊆ Q.D and k ∈ Q.Keys

1 For j = 1, . . . , |x| do

2 y[j]← Q[H](k,x[j])

3 Return (y, |x|)

Figure 3: Left: PRF game for function family Q. Right: On the top is the 2HDH function family associated
to group G = 〈g〉 and integer `, and, below it, the PSI functionality over universe U . At the bottom is the
OPRF functionality associated to PRF Q.

Security of function families. A family of functions Q : [OS]×Keys×D→ R takes a key K ∈
Keys and input X ∈ D and, with oracle access to H ∈ OS, returns an output Y ← Q[H](K,X). For
emphasis or disambiguation, we may write Q.OS,Q.Keys,Q.D,Q.R for the different subcomponents
of Q.

A security metric for Q that we will use is PRF security [29] in the multi-user setting [7]. The prf

(pseudorandom function) advantage of adversaryAprf is defined asAdvprf
Q

(Aprf) = 2Pr[Gprf
Q

(Aprf)]−
1 where the game is on the left in Figure 3.

As an example, the top right of Figure 3 shows the 2H-DH function family 2HDH : [OS]×Zp ×
{0, 1}∗ → {0, 1}` underlying the 2H-DH OPRF [36]. It is associated to a group G = 〈g〉 of prime
order p generated by g ∈ G, and an integer ` ≥ 1. Here OS is the set of all functions H such that
H(1, ·) : {0, 1}∗ → G and H(2, ·, ·, ·) : G × {0, 1}∗ × G → {0, 1}`. This function family conceptually
uses two random oracles H(1, ·),H(2, ·, ·, ·) that are packaged into one to respect our formalism. The
following says that 2HDH is PRF-secure in the ROM.

Proposition 2.2 Let G = 〈g〉 be a group of prime order p, and ` ≥ 1 an integer. Let 2HDH be
the associated 2H-DH family of functions as per Figure 3. Let Aprf be an adversary playing game

Gprf
2HDH

. Then

Advprf
2HDH

(Aprf) ≤
(QRO(Aprf) + QNew(Aprf)) ·Q

New(Aprf)

p
.

We omit a formal proof, but the intuition is that, when the challenge bit is 1, outputs of the
challenge oracle are distributed uniformly in R as long as a certain “bad” event does not happen,
the event being either a collision in keys across New queries, or the random oracle being queried
on gki′ for a ki′ picked by New. Thus it suffices to bound the probability of this bad event.

In Section 4, we show that server-side security of any OPRF implies PRF security of the family
of functions underlying the OPRF.
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3 2PC Definitional Framework

We give our core definitions of syntax and security in a concrete setting, and then turn to relations
between definitions. We see the party identities as 1, 2 with 1 being the “client” and 2 being the
“server.”

3.1 Core definitions

Functionalities. A (two-party) functionality describes the function that the parties want to
compute. Formally, it is an algorithm F : [OS]×D1×D2 → R1×R2. The functionalities of practical
interest that we want to treat are deterministic, so for simplicity we restrict attention in this
work to deterministic F, and this is assumed moving forward. We leave treatment of randomized
functionalities to future work. Now, to explain, given as oracle H ∈ OS, and inputs x1 ∈ D1 and
x2 ∈ D2 of parties 1,2 respectively, the functionality returns outputs y1 ∈ R1 and y2 ∈ R2 for parties
1,2, respectively, via (y1, y2)← F[H](x1, x2).

Allowing F to have access to a random oracle is important to capture some OPRFs. As per our
vector notation, for i ∈ {1, 2} we may write F[H](x1, x2)[i] for the i-th component of the 2-vector
F[H](x1, x2).

PSI and OPRF functionalities. The right side of Figure 3 shows two examples. First, the PSI
functionality F

psi
U : P(U)×P(U)→ (P(U)×N)×N is associated to a set U called the universe. This

functionality does not use a random oracle. Party i ∈ {1, 2} has input a set Si ⊆ U . The intersection
I of the two sets is returned to party 1, and both parties are also given set-size information because
protocols tend to leak it.

Second, let Q : [OS] × Keys × D → R be a family of functions. We associate to it the OPRF

functionality F
oprf
Q

: [OS] × D∗ × Keys → R∗ × N. The input of the server (party 2) is a PRF key
k ∈ Keys. The input of the client (party 1) is vector x over D. The functionality computes a
corresponding vector y, over R, of outputs under Q[H](k, ·), that goes to the client. The server gets
the length of x since protocols tend to leak it. In particular if Q = 2HDH is the 2HDH PRF of
Figure 3 then F

oprf
Q

is the 2H-DH OPRF functionality, protocols for which we will analyze. Note
our definition extends the usual ones by allowing the client input to be a vector over D rather than
a single point in D.

Protocols. Party i ∈ {1, 2} has input xi. The parties now use an interactive protocol to interact
towards computing outputs for some target functionality. But what exactly (meaning, mathemat-
ically or definitionally) is a protocol? In UC [19] and Goldreich’s textbooks [27, 28], it is a pair of
interactive TMs. In some parts of the literature (including Lindell’s tutorial [43]) it is not formal-
ized at all. We will give a usable yet rigorous formalization of a protocol as an algorithm that takes
a current state and an incoming message to return an updated state and outgoing message.

Thus, formally, a protocol Π is an algorithm Π : [OS]× {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗. It
may be randomized, and Π : [OS]×{0, 1}∗×{0, 1}∗×Ω→ {0, 1}∗×{0, 1}∗ denotes the underlying
deterministic algorithm with Ω the set of coins. As a function of its current state st ∈ {0, 1}∗,
a received message min ∈ {0, 1}

∗ and its coins ω ∈ Ω, a party computes its outgoing message
mout as well as, for itself, an updated state st, written (st,mout) ← Π[H](st,min;ω). As usual, we
write (st,mout)←$ Π[H](st,min) for picking ω←$ Ω and letting (st,mout) ← Π[H](st,min;ω). A
party’s state records its input as st.in, its output as st.out and its decision to accept or reject as
st.dec ∈ {1, 0}. The interaction consists of nr ∈ N moves (also called rounds). The convention is
that party 1 sends the first message.

Execution traces. A protocol may be (honestly) executed on inputs x1, x2, coins ω1, ω2 ∈ Ω for
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Game Gcorr
F,Π

Initialize:

1 H←$ OS

Run(x1, x2):

2 ω1, ω2←$ Ω ; (τ, st1, st2)← XTΠ[H](x1, x2;ω1, ω2)

3 (y1, y2)← F[H](x1, x2)

4 If (st1.dec = 0) or (st2.dec = 0) then win← 1

5 If (st1.out 6= y1) or (st2.out 6= y2) then win← 1

6 Return win

RO(X):

7 Return H(X)

Finalize:

8 Return win

Figure 4: Game assessing correctness of protocol Π for functionality F.

the parties and access to an oracle H ∈ OS to generate an execution trace (τ, st1, st2)← XTΠ[H](x1,
x2;ω1, ω2). Here τ is a transcript of the interaction, which is the sequence of messages exchanged,
and st1, st2 are the final states of the parties. In detail:

XTΠ[H](x1, x2;ω1, ω2)

st1.in← x1 ; st2.in← x2 ; m0 ← ε ; i← 1
For j = 1, . . . , nr do

(st i,mj)← Π[H](st i,mj−1;ωi) ; i← 3− i
τ ← (m1, . . . ,mnr) ; Return (τ, st1, st2)

As indicated above, the outputs and decisions can be recovered from the final states of the parties.

Correctness. Correctness asks that an honest execution of a protocol computes the target func-
tionality. This is straightforward enough to define for perfect correctness, but we need a clear
definition of imperfect correctness that in particular allows quantifying correctness failure in proto-
cols where it depends on computational assumptions. Accordingly, we treat correctness in detail,
using a game.

Let F : [OS]×D1×D2 → R1×R2 be a functionality and Π a protocol. We assume for simplicity
that the functionality and protocol have the same oracle space, which is wlog. Define the correctness
advantage of adversary Acorr as Advcorr

F,Π (Acorr) = Pr[Gcorr
F,Π (Acorr)] where the game is in Figure 4.

Here the adversary can run the protocol on inputs (x1, x2) of its choice by calling oracle Run. It
wins if either the parties reject or their outputs do not match those of the functionality. Note that
multiple calls to Run are allowed. We say Π is perfectly correct for F if Advcorr

F,Π (Acorr) = 0 for all
Acorr, regardless of the running time and number of oracle queries of Acorr. But having defined this
advantage function allows us to make clear and precise statements about imperfect correctness.
This will allow us to see how the correctness advantage grows with the number of oracle queries in
PSI protocols where correctness depends on computational assumptions.

Security. We will be considering security in the semi-honest or honest-but-curious model where
it is assumed that the corrupt party does not deviate from the protocol but, at the end, given its
view (conversation transcript and its own coins) tries to find information about the other party’s
input. By convention, we will refer to this other party as the honest one.

We start with a new indistinguishability-style definition that we call input indistinguishabil-
ity (InI). This is a single-quantifier definition whose first merit is simplicity relative to the usual
simulation-style (double-quantifier) definitions. Additionally, as discussed in the Introduction, it is
“concrete-security friendly,” meaning allows one to show concrete bounds on adversary advantage
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Game Gini
F,Π,h

Initialize:

1 H←$ OS ; b←$ {0, 1}

Run(x0, x1, x):

2 xh,0 ← x0 ; xh,1 ← x1 ; x3−h,0 ← x ; x3−h,1 ← x

3 (y1,0, y2,0)← F[H](x1,0, x2,0)

4 (y1,1, y2,1)← F[H](x1,1, x2,1)

5 If (y3−h,0 6= y3−h,1) then return ⊥

6 ω1, ω2←$ Ω

7 (τ, st1, st2)← XTΠ[H](x1,b, x2,b;ω1, ω2)

8 Return (τ, ω3−h)

RO(X):

9 Return H(X)

Finalize(b′):

10 Return [[b′ = b]]

Games Gsim-np
F,Π,S,h, G

sim
F,Π,S,h

Initialize:

1 H←$ OS ; b←$ {0, 1} ; stS ← ε

Run(x1, x2):

2 (y1, y2)←$ F[H](x1, x2)

3 If b = 1 then

4 ω1, ω2←$ Ω

5 (τ, st1, st2)← XTΠ[H](x1, x2;ω1, ω2)

6 Else

7 (τ, ω3−h, stS)←$ S[H](run, (x3−h, y3−h), stS)

8 Return (τ, ω3−h)

RO(X):

9 h← H(X)

10 If b = 0 then // Game G
sim
F,Π,S,h

11 (h, stS)←$ S[H](ro, X, stS) // Game G
sim
F,Π,S,h

12 Return h

Finalize(b′):

13 Return [[b′ = b]]

Figure 5: Left: Game defining InI security for protocol Π for functionality F, where h ∈ {1, 2} is the honest
party. Right: Games defining SIM-np (lines 10-11 excluded) and SIM (lines 10-11 included) security for
protocol Π for a functionality F, where h ∈ {1, 2} is the honest party and S is the simulator.

from which parameters providing a desired level of security may be easily determined. Following the
tradition in this area [43, 19], we will also formulate (double-quantifier) simulation-based definitions.
Our definitions explicitly and flexibly incorporate the ROM, based on which our simulation-based
definition comes in two forms: in the first, SIM, the random oracle is programmable by the simu-
lator, and in the second, stronger definition SIM-np, it is not.

In our definitions, an adversary triggers a protocol execution, on inputs of its choice, via a query
to an oracle Run. We allow multiple queries to Run, to capture the real-life expectation of multiple
executions of the protocol on different inputs. This allows us to measure (and then reduce) the
degradation of security as a function of the number of Run calls.

We will give a complete picture of the relations between our three definitions. The main
important takeaway is that InI is not weaker than the simulation-based definitions, but equivalent
to SIM-np for functionalities satisfying a condition we define and call invertibility. We show that
it is met by many natural and practical functionalities including PSI, so that, for results, we can
then focus on InI.

For all the following definitions, we let F : [OS] × D1 × D2 → R1 × R2 be the functionality. We
let Π be a protocol for it with Π : [OS]×{0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗. We assume wlog that
the RO spaces of F,Π are the same. (One can always work with an appropriate union of the two
spaces if not.)

InI definition. Input-indistinguishability (InI) is defined via game Gini
F,Π,h in Figure 5. The ini-

advantage of an adversary Aini is then defined by Advini
F,Π,h(Aini) = 2Pr[Gini

F,Π,h(Aini)] − 1. To
explain, here h ∈ {1, 2} is the “honest” party, meaning the adversary is playing the role of party
3 − h and trying to learn something about the honest party’s input. The adversary can query
Run with two choices x0, x1 ∈ Dh of inputs for the honest party and a single choice x ∈ D3−h

for the corrupt party. This results in two pairs of inputs for the functionality. At lines 3-4 the
functionality is evaluated on both pairs. If the resulting outputs y3−h,0 and y3−h,1 for the corrupt
party differ, then the game returns ⊥ at line 5 to avoid trivial distinguishing. Else, the protocol
is run with the honest-party input being determined by the challenge bit b from line 1, and the
resulting conversation transcript and the corrupt party’s coins ω3−h are returned to the adversary.

14



Multiple queries to Run are allowed.

Asymptotically we would say that Π is InI secure for F if for every PPT Aini the function
Advini

F,Π,h(Aini) is negligible, which illustrates how this is a single-quantifier definition. As usual in
the concrete setting there is no formal definition of being “secure;” we give only a formal metric of
security and our results in this concrete setting will relate advantages.

SIM-np definition. Moving to our simulation-based definitions, we start with SIM-np, the non-
programmable ROM one. It is given via game Gsim-np

F,Π,S,h in Figure 5, where S is an algorithm called
the simulator. As before, the game is also parameterized by the identity h ∈ {1, 2} of the honest
party, whose input the adversary Asnp, in the role of the corrupted party 3− h, is trying to learn.
Lines 10-11 are not present in this game. Line 1 picks a random challenge bit b. If b = 1 then we
have the “real” game and if b = 0 the “ideal” game. The adversary can call Run, giving it inputs for
both parties. In response it obtains a conversation transcript τ , and coins ω3−h for the corrupted
party. It can query this oracle as often as it wants. In the real game, the transcript and coins are
determined by running the protocol, while in the ideal game, they are determined by the simulator.
Queries to the random oracle RO are answered via H ∈ OS. The first argument to the simulator is
a keyword indicating the role in which it is being run, and stS is its state. The latter is initialized
at line 1. After that, when the simulator runs (line 7) it takes its current state and returns an
updated state. The state variable stS is maintained by the game. The non-programmability of the
RO is in the fact that the RO oracle simply responds via H and the simulator gets access to the
same H. We let Advsim-np

F,Π,S,h(Asnp) = 2Pr[Gsim-np
F,Π,S,h(Asnp)]−1 be the advantage of an adversary Asnp.

In an asymptotic setting, we would say that Π is SIM-np secure for F and h if there is a PPT S

such that for every PPT Asnp the function Advsim-np
F,Π,S,h(Asnp) is negligible. This illustrates how this

is a double-quantifier definition. As usual, in our concrete setting, theorems (e.g. Theorem 3.2) will
relate advantages.

SIM definition. The programmable ROM version of our simulation-based definition of security,
called SIM, is given via game Gsim

F,Π,S,h in Figure 5. As before, h ∈ {1, 2} is the identity of the
honest party and S is the simulator. Lines 10–11 (now included and the only change from SIM-np)
represent the programming, allowing the simulator to determine the output of oracle RO. We
continue to give the simulator access to an actual random oracle via H, which it can use or ignore
as it wishes. As we will explain below, it is important for the meaningfulness of this definition that
the functionality queries to the random oracle at line 2 are not programmed by, or even visible to,
the simulator. We expect that stS holds the current input-output table of the simulated random
oracle, and whatever RO answers the simulator may need for the lines 7,11 simulations, it can
create and store in stS if they do not already exist there. An adversary Asim again has to find the
correct value of the challenge bit b to win. We let Advsim

F,Π,S,h(Asim) = 2Pr[Gsim
F,Π,S,h(Asim)] − 1 be

its advantage.

Again, in an asymptotic setting, we would say that Π is SIM-secure for F and h if there is a
PPT S such that for every PPT Asim the function Advsim

F,Π,S,h(Asim) is negligible.

A subtle point about SIM. At line 2 in game Gsim
F,Π,S,h (right panel of Figure 5), RO queries of

the functionality F, if any, are answered by an honest random function H. This may not be the first
or obvious choice; why not have these also be answered by the simulator like the answers to other
RO queries in this game? To explain, let us denote by SIM∗ the variant we have just mentioned,
namely it is the same as SIM except that, at line 2, we replace F[H](x1, x2) with F[RO](x1, x2), so
that, when b = 0, the RO queries of F are answered by the simulator at line 11. A self-contained
and formal definition of SIM∗, as well as a more precise and formal rendition of what follows, is in
Appendix A.
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We claim that SIM∗ is an incorrect (unsound) definition for functionalities F that access the
RO. (If F does not access RO, there is no difference between SIM and SIM∗, and both are sound.)
Specifically, our claim is that, if F can access the RO, then obviously insecure protocols can be
shown secure under SIM∗.

As an example, let F = F
oprf
2HDH

be the OPRF functionality (Figure 3) associated to the 2H-DH
PRF 2HDH : [OS]×Zp×{0, 1}

∗ → {0, 1}` (Figure 3). Recall that here OS is the set of all functions
H such that H(1, ·) : {0, 1}∗ → G and H(2, ·, ·, ·) : G×{0, 1}∗×G→ {0, 1}`. Suppose party 1 (client)
has input x ∈ {0, 1}∗ —formally, the 1-vector (x)— while party 2 (server) has input a key k ∈ Zp.
Consider the following protocol Π: (1) Party 1 sends its entire input x to party 2 (2) party 2
computes Y ← H(1, x)k, sends (Y, gk) to party 1, and outputs 1 as its own output, and finally (3)
party 1 computes and outputs y ← H(2, gk, x, Y ).

This protocol should clearly be considered insecure for honest party h = 1 since from the
conversation transcript an adversary learns the entire input x of party 1, which it cannot deduce
given just the functionality output (namely 1) for the corrupted party (namely party 2). Yet, it
is possible to design a successful simulator for Π under SIM∗. Why? At line 2 on the right of
Figure 5, F would query X = (1, x) to RO to compute Y ← H(1, x)k. But this query X is passed
at line 11 to the simulator, who thus directly learns x. It can store x in its state, and can now
easily produce the transcript τ at line 7. Namely, it knows the input k of the corrupted party and
can thus compute Y ← H(1, x)k and return (x, (Y, gk)) as the transcript. So this protocol is SIM∗

secure despite being intuitively insecure. This anomaly goes away with SIM, where now the query
1, x made to H at line 2 is not visible to the simulator.

3.2 Relations between definitions

Simulation-based definitions have been the paradigm in the 2PC area, are well accepted and provide
intuitively strong security, but their double-quantifier nature increases complexity and reduces
concrete-security friendliness. Our single-quantifier InI definition is in contrast simple and concrete-
security friendly, but one must ask if this is at the cost of strength, meaning have we lowered security
relative to the SIM and SIM-np definitions? The main result of this section (Theorem 3.4) says
that usually not: for functionalities satisfying a condition we define, that we call invertibility and
show is met by functionalities of practical interest, InI is just as strong as SIM or SIM-np. In this
way, it provides the “best of both worlds.”

This result emerges as part of a comprehensive picture of relations between the notions that was
summarized in Figure 1. In this section, we give the formal statements and proofs for the results
in that figure, culminating with Theorem 3.4. All our results are in the concrete-security setting.

SIM-np implies SIM.We start by confirming that SIM-np implies SIM, meaning the non-program-
mable ROM definition is stronger than the programmable one. Fix a functionality F and protocol
Π for it. Now, SIM-np security implies there is a SIM-np-simulator S for game Gsim-np

F,Π,S,h. This S

provides a subroutine corresponding to the run role. We want to construct a SIM-simulator for
game Gsim

F,Π,S,h. We do this by making it the same as S except we add a subroutine for the ro
role that, given a query X to the RO, just returns H(X), where H is the RO provided to S. The
advantage of an adversary A across the games is preserved. The following formalizes the result.
The proof is simple and is omitted.

Theorem 3.1 [SIM-np⇒ SIM] Let F be a functionality and Π a protocol for it. Let h ∈ {1, 2} be
the honest party. Given a simulator S defining S[·](run, ·, ·), extend it to also define S[·](ro, ·, ·) by
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Game Gdl
G,g,p

Initialize:

1 x←$ Zp ; Return gx

Finalize(z):

2 Return [[z = x]]

Party 1

Input: x

Output: ε

x
-

Party 2

Input: ε

Output: gx

Figure 6: Left: Discrete log game for group G = 〈g〉 of order p. Right: Protocol Π for Theorem 3.3.

S[H](ro, X, stS) = (H(X), stS). Then for any adversary A we have

Advsim
F,Π,S,h(A) = Advsim-np

F,Π,S,h(A) . (1)

How does this statement show that SIM-np implies SIM? Assume Π is SIM-np-secure for F. Then
there is a PPT SIM-np-simulator S such that Advsim-np

F,Π,S,h(A) is negligible for all PPT A. The

extended S defined by the theorem is a PPT SIM-simulator, and Eq. (1) implies that Advsim
F,Π,S,h(A)

is also negligible for all PPT A, and Π is thus SIM-secure. In terms of reductions, Eq. (1) represents
a trivial one which maps A to itself.

SIM implies InI. The following says that SIM always implies InI. That is, if Π is SIM secure for
F then Π is also InI secure for F. The proof is in Appendix B.

Theorem 3.2 [SIM ⇒ InI] Let F be a functionality and Π a protocol for it. Let h ∈ {1, 2} be the
honest party. Let Aini be an adversary playing game Gini

F,Π,h. Then we can construct an adversary
Asim such that for all simulators S we have

Advini
F,Π,h(Aini) ≤ 2 ·Advsim

F,Π,S,h(Asim) . (2)

Adversary Asim has the same query profile as Aini and about the same running time.

It may seem strange that Eq. (2) holds for all simulators. In particular, how does this show that
SIM implies InI? The answer is that if Π is SIM-secure for F then there is a particular, PPT
simulator S such that Advsim

F,Π,S,h(Asim) is negligible. Now by using S in Eq. (2) we can conclude

that Advind
F,Π,h(Aini) is also negligible, meaning Π is InI-secure for F.

InI does not always imply SIM. We will eventually show that InI implies not only SIM, but
even SIM-np, for a large class of important functionalities. But first we want to caution and
clarify that it does not do so for all functionalities. This is done via a counterexample. That this
counterexample is contrived and artificial only reinforces our view that the implication will hold
for natural functionalities.

Specifically we now give a functionality F, and a protocol Π for it, such that Π is InI-secure
but not SIM-secure. We assume for this the hardness of the discrete logarithm problem in a cyclic
group G. The formalization for the latter is via the DL game Gdl

G,g,p shown in the left panel of
Figure 6. It is associated to group G = 〈g〉 of order p with generator g ∈ G. The advantage of
an adversary Adl playing this game is given by Advdl

G,g,p(Adl) = Pr[Gdl
G,g,p(Adl)]. The proof of the

following is in Appendix C.

Theorem 3.3 [InI 6⇒ SIM in general] Let G = 〈g〉 be a cyclic group of order p. Let F : Zp ×
{ε} → {ε}×G be the functionality defined by F(x, ε) = (ε, gx) for all x ∈ Zp. Let Π be the protocol
for F shown in Figure 6. Then:

1. Π is ini-secure for F: For any adversary Aini playing game Gini
F,Π,1, we have

Advini
F,Π,1(Aini) = 0 . (3)
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2. Π is sim-insecure for F assuming the DL problem is hard: For all simulators S, there exist

adversaries Asim, Adl, playing games Gsim
F,Π,S,1 and Gdl

G,g,p, respectively, such that

Advsim
F,Π,S,1(Asim) = 1−Advdl

G,g,p(Adl) . (4)

Adversary Adl has the same running time as an execution of S in its run role, and Asim runs
in constant time.

Why does Eq. (4) mean that Π is not SIM-secure? Let S be any PPT simulator. Then the Theorem
gives PPT adversaries Asim, Adl such that Eq. (4) holds. But assuming DL is hard, Advdl

G,g,p(Adl)
is negligible, so the equation is saying that Asim has a high (close to 1) advantage, which shows
that Π is not SIM-secure for S. Since S was arbitrary, Π is not SIM-secure.

Below we show that if functionalities satisfy a condition which we call invertibility, then InI⇒
SIM-np. This means, using Theorem 3.1 and Theorem 3.2, that InI is equivalent to SIM for such
functionalities.

Invertibility. We define invertibility for functionalities with respect to the honest-party identity
h ∈ {1, 2}. Let F : [OS] × D1 × D2 → R1 × R2 be a functionality. An algorithm IA : [OS] × D3−h

× R3−h → Dh is called an inverter for F and h if for all H ∈ OS and all (x1, x2) ∈ D1 × D2, the
following always returns 1:

(y1, y2)← F[H](x1, x2) // Get functionality outputs
x′h←$ IA[H](x3−h, y3−h) // Resample an input for honest party
x′3−h ← x3−h // Input unchanged for corrupt party
(y′1, y

′

2)← F[H](x′1, x
′

2) // Get new functionality outputs
Return [[y′3−h = y3−h]] // Require corrupted-party output to be unchanged

Intuitively, consider an entity (this will be the simulator in our usage) who has an input x3−h for
the corrupted party. It also has an output y3−h for the corrupted party, obtained from x3−h and
some (unknown to this entity) input xh for the honest party. Invertibility asks that, given these,
it is possible for our entity to efficiently find an input x′h for the honest party that “explains” the
output obtained by the corrupted party. It need not be that x′h = xh, and similarly need not be
that y′h = yh.

In an asymptotic setting, we would say that a functionality F is invertible for h if there exists
a PPT inverter IA for F and h. In our concrete setting, we will include the running time of IA in
results.

We note that invertibility is an assumption on a functionality, not on a protocol. We also note
that the functionality of Theorem 3.3 is not invertible for honest party 1. Indeed, inverting it
would amount to solving the discrete-logarithm problem. We will see later, however, that practical
functionalities including PSI are invertible.

InI implies SIM-np for invertible functionalities. Let F be a functionality that is invertible
for h ∈ {1, 2}. We show that any protocol that is InI secure for h is SIM-np secure (and thus by
Theorem 3.1 also SIM secure) for h. This is done by exhibiting a simulator S under which the
sim-np-advantage of any adversary Asnp can be shown small by bounding it via the ini-advantage
of another adversary Aini. The assumed inverter IA will be used and run by the simulator, and
then also by Aini. The following formalizes this claim. The proof is in Appendix D.

Theorem 3.4 [InI ⇒ SIM-np for invertible functionalities] Let h ∈ {1, 2} be the honest party. Let
F be a functionality which is invertible for h, using inverter IA. Let Π be a protocol for F. Then
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F
psi
U (S1, S2):

1 I ← S1 ∩ S2

2 Return ((I, |S2|), |S1|)

IApsi
U,2(S1, (I, s2)):

1 S′

2 ← I ; Y ← S1

2 While (|S′

2| < s2) do

3 Pick some d ∈ U \ Y

4 Y ← Y ∪ {d}

5 S′

2 ← S′

2 ∪ {d}

6 Return S′

2

IApsi
U,1(S2, s1):

1 S′

1 ← ∅

2 While (|S′

1| < s1) do

3 Pick some d ∈ U \ S′

1

4 S′

1 ← S′

1 ∪ {d}

5 Return S′

1

F
tpsi
U,t (S1, S2):

1 I ← S1 ∩ S2

2 If |I| < t then return ((⊥, |S2|), |S1|)

3 Return ((I, |S2|), |S1|)

IAtpsi
U,2 (S1, (I, s2)):

1 If I = ⊥ then

2 S′

2 ← ∅

3 While (|S′

2| < s2) do

4 Pick some d ∈ U \ S′

2

5 S′

2 ← S′

2 ∪ {d}

6 Else

7 S′

2←$ IApsi
U,2(S1, (I, s2))

8 Return S′

2

IAtpsi
U,1 (S2, s1):

1 S′

1←$ IApsi
U,1(S2, s1)

2 Return S′

1

F
cpsi
U (S1, S2):

1 I ← S1 ∩ S2

2 Return ((|I|, |S2|), |S1|)

IAcpsi
U,2 (S1, (n, s2)):

1 Pick some I ⊆ S1 with |I| = n

2 S′

2←$ IApsi
U,2(S1, (I, s2))

3 Return S′

2

IAcpsi
U,1 (S2, s1):

1 S′

1←$ IApsi
U,1(S2, s1)

2 Return S′

1

Figure 7: Left: PSI functionality and its inverters. Middle: tPSI functionality and its inverters. Right:
cPSI functionality and its inverters.

there is a simulator S such that the following is true. Let Asnp be any adversary playing game

Gsim-np
F,Π,S,h. Then we can construct an adversary Aini playing game Gini

F,Π,h such that

Advsim-np
F,Π,S,h(Asnp) ≤ Advini

F,Π,h(Aini) . (5)

Adversary Aini has the same query profile as Asnp. Its running time is about that of Asnp. The
running time of S is that of Π plus the time for an execution of IA.

3.3 Invertibility of PSI and friends

Theorem 3.4 says that InI is just as strong as SIM-np as long as the functionality is invertible.
Here we show that PSI [26], as well as a collection of PSI-related functionalities, are all invert-
ible. This means that, for these functionalities, we can target InI without loss of security com-
pared to simulation-based definitions, gaining in this way from the simplicity and concrete-security
friendliness that the former offers compared to the latter. We show invertibility for some more
functionalities in Appendix E.

Extending beyond these examples, we believe that natural functionalities of practical interest
will be invertible. We clarify that we have neither a proof of this claim nor a formalization of what
“natural” or “practical” would mean.

Proceeding, Figure 7 shows three PSI-related functionalities that have arisen in the literature.
Below each are inverters for it, first for honest party 2 and then for honest party 1, demonstrating
invertibility of that functionality for both parties. The set U is the universe. We now discuss these
in turn.

PSI. The PSI functionality F
psi
U : P(U)×P(U)→ (P(U)×N)×N in the first panel is the same as

in Figure 3, repeated for clarity. Here S1, S2 ⊆ U .

The inverter for party 2 takes as input an input set S1 for party 1 and an output (I, s2) for
party 1, where I is the intersection of S1 with some (unknown to the inverter) set S2 of party 2,
and s2 = |S2|. The inverter aims to construct some (any) set S′

2 of size s2 such that S1 ∩ S′

2 = I.
It does this as shown.
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The inverter for party 1 is easier. It gets an input set S2 for party 2 and an output s1 that is
the size of some (unknown to the inverter) set S1 of party 1. It aims to construct some (any) set
S′

1 of size s1, done as shown.

Both inverters are linear time. They are thus efficient as required for invertibility.

Threshold PSI. The threshold-PSI (tPSI) functionality [26] FtpsiU,t : P(U)×P(U)→ ((P(U)∪{⊥})
×N)×N is parameterized, in addition to U , by an integer t ≥ 0 which specifies the threshold that
the cardinality of intersection of S1 and S2 must reach for the intersection to appear in the output
of party 1. Clearly when t = 0, the tPSI functionality is same as the basic PSI functionality.

The inverter for party 2 takes input an input set S1 for party 1 and an output (I, s2) for party 1,
where I is either the intersection of S1 with some (unknown to the inverter) set S2 of party 2 or is
⊥, and s2 = |S2|. In the case that I = ⊥, the inverter picks and returns some (any) set S′

2 of size
s2. If I 6= ⊥, it runs the PSI inverter. The inverter for party 1 is the same as for PSI. The inverters
are again linear time.

Cardinality PSI. The cardinality-PSI (cPSI) functionality [26] FcpsiU : P(U)×P(U)→ (N×N)×
N provides the cardinality of the intersection, rather than the intersection itself, in the output for
party 1.

The inverter for party 2 takes input an input set S1 for party 1 and an output (n, s2) for party 1,
where n is the size of the intersection of S1 with some (unknown to the inverter) set S2 of party 2,
and s2 = |S2|. The inverter aims to construct some (any) set S′

2 of size s2 such that |S1 ∩ S′

2| = n.
It does this as shown. The inverter for party 1 is the same as for PSI, and as before the inverters
are linear time.

3.4 General composition result

In practice, a 2PC protocol will be executed many times on different inputs. We want to prove
that this is secure. To that end, we consider general composition and ask whether security for a
single execution security implies security for multiple executions. As one might expect, a simple
hybrid argument does work and the claim below formalizes just that. The proof is in Appendix F.

Theorem 3.5 Let F be a functionality. Let h ∈ {1, 2} be the honest party. Let Π be a protocol for
F. Let Aini be an adversary playing game Gini

F,Π,h. Then we can construct an adversary Bini, also

playing game Gini
F,Π,h but making at most one Run query, such that

Advini
F,Π,h(Aini) ≤ QRun(Aini) ·Advini

F,Π,h(Bini) . (6)

Additionally QRO(Bini) = QRO(Aini) and the running time of Bini is about that of Aini.

Asymptotically, this would end the question, but concretely it is more of a starting point, for
it raises the question of showing security for multiple executions tightly, meaning with the same
bound as for a single execution rather than with the linear degradation of the hybrid argument. In
the following sections we will do this for OPRF and PSI protocols.

4 PSI from OPRFs

In this section, we evaluate the concrete security of the canonical OPRF-based PSI protocol of
Hazay and Lindell [32]. To do this, we first give definitions for OPRFs. Then we prove InI security
of the PSI protocol, based on the security of the underlying OPRF, with a reduction that is tight.
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Game Goprf-pr
Π,Q

Initialize:

1 H←$ OS ; c←$ {0, 1}

New:

2 i← i+ 1 ; ki←$ Q.Keys

TR(i′,x):

3 If not (i′ ≤ i) then return ⊥

4 If (∃ j : T[i′,x[j]] 6= ⊥) then return ⊥

5 ω1, ω2←$ Ω

6 (τ, st1, st2)← XTΠ[RO](x, ki′ ;ω1, ω2)

7 y ← st1.out

8 For j = 1, . . . , |y| do T[i′,x[j]]← y[j]

9 Return (y, τ, ω1)

CH(i′, x):

10 If not (i′ ≤ i) then return ⊥

11 If T[i′, x] = ⊥ then

12 If c = 1 then T[i′, x]← Q[H](ki′ , x)

13 Else T[i′, x]←$ R

14 Return T[i′, x]

RO(X):

15 h← H(X) ; Return h

Finalize(c′):

16 Return [[c = c′]]

Figure 8: OPRF-PR game for pseudo-randomness (server side security) of an OPRF protocol Π. Here Q is
the underlying PRF.

Oblivious Pseudorandom Functions. Let Q : [OS] × Keys × D → R be a family of functions.

The OPRF functionality F
oprf
Q

: [OS]×D∗×Keys→ R∗×N associated to Q was defined in Figure 3.

We say that protocol Π is an OPRF for Q if it computes the functionality F
oprf
Q

with perfect
correctness. (The latter condition can be relaxed but is met by the OPRFs we consider, so we
require it for simplicity.) We say Π is an OPRF if it is an OPRF for some Q.

In an OPRF protocol, the server input is a secret key k ∈ Keys. Conventionally, the client input
would be a point in D, but we generalize this; in our setting the client input is a vector x over D.
The client output is the vector (Q(k,x[1]), . . . ,Q(k,x[|x|])) and the server output is |x|.

OPRF security. Let protocol Π be an OPRF for Q : [OS]×Keys×D→ R. We separately define
OPRF-security of Π for party 1 (client) and party 2 (server).

The client-security definition is simple, namely just InI-security as defined in Section 3. This
says that the server cannot obtain information about the client input. This shows how we can
leverage our definitional framework for OPRFs.

For server-security, we give a very simple definition of pseudorandomness that we call OPRF-PR.
Namely, we take the game defining PRF security of function family Q in Figure 3 and simply add
an oracle that allows the adversary to obtain transcripts of the protocol execution. The resulting
game Goprf-pr

Π,Q is shown in Figure 8. Challenge oracle CH is as in Figure 3. The transcript oracle
TR takes a vector x of client inputs and (line 6) executes the protocol to obtain a conversation
transcript and final states of the parties. From the final states, it extracts the party outputs, and
uses the client outputs to update the table that stores the challenge function. Note that these
entries are always the real ones as computed by the protocol, meaning, if c = 0, the challenge
entries are random but the ones created by the transcript oracle are still real. The advantage of
adversary Aoprf is Advoprf-pr

Π,Q (Aoprf) = 2Pr[Goprf-pr
Π,Q (Aoprf)]− 1.
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PSI Protocol Πpsi

Based on: Function family Q : [OS]× Keys× U → R and OPRF Πoprf for Q
Party 1 input: Set S1 ⊆ U of size s1
Party 2 input: Set S2 ⊆ U of size s2
Oracle: H ∈ OS available to all parties.

1. Party 1 constructs its input vector x← S2V(S1) for the OPRF protocol from the elements of its set S1.

2. Party 2 picks a key k←$ Keys for the PRF Q.

3. The parties run the OPRF Πoprf with the input of party 1 being x and that of party 2 being k. The output of
party 1 is y ∈ R|x|, and that of party 2 is |x| = s1.

4. Party 2 lets Z = {Q[H](k, s) : s ∈ S2 } and z ← S2V(Z). It sends z to party 1.

5. Party 1 constructs intersection set I as I ← {x[i] : 1 ≤ i ≤ s1 and y[i] ∈ V2S(z) }. It also computes |z| = s2.

Party 1 output: Set I ⊆ U and size s2 of S2

Party 2 output: Size s1 of S1.

Figure 9: PSI protocol Πpsi associated to function family Q and OPRF Πoprf for Q.

A definition of pseudorandomness for OPRFs is also given in [55], but it is simulation-based
and thus double-quantifier. Our simpler definition is single-quantifier.

The following says that if Π is a OPRF-PR-secure OPRF for a function family Q, then the
latter is PRF-secure. The proof is trivial and is omitted.

Proposition 4.1 Let protocol Π be an OPRF for function family Q : [OS] × Keys × D → R. Let

Aprf be an adversary playing game Gprf
Q

. Then we can construct an adversary Aoprf playing game

Goprf-pr
Π,Q such that

Advprf
Q

(Aprf) ≤ Advoprf-pr
Π,Q (Aoprf) . (7)

Adversary Aoprf has the same query profile and running time as Aprf , in particular making no TR

queries.

PSI from OPRF. Now that we have security definitions for OPRFs, we analyze the InI security
of the classic OPRF-based protocol from [32]. The protocol, which we denote Πpsi, is shown in
Figure 9. It is associated to a family of functions Q : [OS]× Keys× U → R and an OPRF Πoprf for
Q. The random oracle H ∈ OS is used by Πoprf and Q, both of which are used by Πpsi. The universe
U is the domain of Q. The protocol Πpsi computes the functionality F

psi
U defined in Figure 3. The

following says that OPRF tightly implies PSI, meaning there is a tight reduction from Πoprf to
Πpsi. Note that PRF security of Q, as required by part 1, is not an extra assumption due to
Proposition 4.1. The proof is in Appendix G.

Theorem 4.2 Let U ⊆ {0, 1}∗ be a set (the universe), and F = F
psi
U the associated PSI functional-

ity. Let Πoprf be an OPRF for a family of functions Q : [OS]× Keys× U → R. Let Π = Πpsi be the
PSI protocol built from Q and Πoprf as in Figure 9. Then:

1. Π is correct for F if Q is a PRF: Let Apsi be an adversary playing game Gcorr
F,Π . Then we can

construct an adversary Aprf such that

Advcorr
F,Π (Apsi) ≤ Advprf

Q
(Aprf) +

q
∑

i=1

si,1si,2
|R|

. (8)

Here q = QRun(Apsi) and si,j is the upper bound on the size of party j in the i-th Run query.
Also QNew(Aprf) = q and QCH(Aprf) =

∑q
i=1(si,1 + si,2) and QRO(Aprf) = QRO(Apsi). The

running time of Aprf is about that of Apsi.
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2. Π provides InI client security if Πoprf does: Let Apsi be an adversary playing game Gini
F,Π,1.

Then we can construct an adversary Aoprf playing game Gini
F
oprf
Q

,Πoprf ,1
such that

Advini
F,Π,1(Apsi) ≤ Advini

F
oprf
Q

,Πoprf ,1
(Aoprf) . (9)

Adversary Aoprf makes the same number of Run queries as Apsi, with the vector in each of
length the (common) size of the two client sets in the corresponding query of Apsi. Also,
QRO(Aoprf) ≤ QRO(Apsi) +

∑q
i=1 si,2 where q = QRun(Apsi) and si,2 is the upper bound on the

size of party 2’s set in the i-th Run query. The running time of Aoprf is about that of Apsi.

3. Π provides InI server security if Πoprf is OPRF-PR secure: Let Apsi be an adversary playing

game Gini
F,Π,2. Then we can construct an adversary Aoprf playing game Goprf-pr

Πoprf ,Q
such that

Advini
F,Π,2(Apsi) ≤ 2 ·Advoprf-pr

Πoprf ,Q
(Aoprf) . (10)

Let q = QRun(Apsi). Then QNew(Aoprf) = QTR(Aoprf) = q and QCH(Aoprf) ≤
∑q

i=1 si,2 and
QRO(Aoprf) = QRO(Apsi) where si,2 is an upper bound on the size of party 2’s set(s) in the i-th
Run query of Apsi. The running time of Aoprf is about that of Apsi.

The above tightly bounds the InI security of Πpsi via the OPRF security of Πoprf . So if we can
concretely bound the OPRF security of Πoprf , we can pick parameters to use in practice for Πpsi

to guarantee a desired level of security. Accordingly we now turn to proving security with concrete
bounds for a canonical OPRF.

5 Computational problems over the group

We will show concrete OPRF-PR-security of the 2H-DH OPRF based on the hardness of a variety
of different computational problems over the underlying group. In each case, we will give explicit
bounds on the OPRF-PR-advantage as a function of the advantage in solving the group problem.
These bounds will differ, and the intent is exactly to showcase how the choice of group problem
affects the bound. In this section we define the relevant computational problems and give relations
between them.

The problems. Let G = 〈g〉 be a group of prime order p with generator g. The problems we
consider are CDH,DDH,V-CDH, which are in the single-user setting, multi-user versions CDH-MU,
V-CDH-MU, DDH-MU, and multi-user with corruptions versions CDH-MUC and V-CDH-MUC.
All problems are defined via the games in Figure 10. Throughout Figure 10, writing game names
next to an oracle means that only the named games include the oracle. If there is no annotation,
all the games include that oracle. For xx ∈ {cdh, v-cdh, cdh-mu, v-cdh-mu, cdh-muc, v-cdh-muc}
we define the advantage of an adversary Axx by Advxx

G,g,p(Axx) = Pr[Gxx
G,g,p(Axx)]. For xx ∈

{ddh, ddh-mu} we define the advantage of an adversary Axx byAdvxx
G,g,p(Axx) = 2Pr[Gxx

G,g,p(Axx)]−
1.

Now let us explain. CDH, DDH are the standard computational and decisional Diffie-Hellman
problems. V-CDH is the verifiable computational Diffie-Hellman problem. It asks to solve CDH
for group elements K = gk and B when given access to an oracle DDHO(Z ′) which can check if
Z ′ = Bk. It is similar to the commonly used strong CDH problem from [1]. Compared to that
problem, the DDHO oracle only allows to check the CDH solution (hence we call it verifiable).
This makes the assumption weaker than that of [1] which in turn is weaker than Gap-CDH [48].
But it is sufficient for our results.
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Games Gv-cdh
G,g,p , G

cdh
G,g,p

Initialize:

1 k←$ Zp ; K ← gk ; B←$ G

2 Return (K,B)

DDHO(Z′): // G
v-cdh
G,g,p

3 Return [[Z′ = Bk]]

Finalize(T ):

4 Return [[Z = Bk]]

Games Gcdh-mu
G,g,p , Gv-cdh-mu

G,g,p , Gcdh-muc
G,g,p , Gv-cdh-muc

G,g,p

NewKey:

1 i← i+ 1 ; ki←$ Zp ; Ki ← gki

2 Return Ki

NewBase:

3 j ← j + 1 ; Bj ←$ G

4 Return Bj

DDHO(i′, j′, Z′): // G
v-cdh-mu
G,g,p , Gv-cdh-muc

G,g,p

5 If not (i′ ≤ i) or not (j′ ≤ j) then return ⊥

6 Return [[Z′ = B
k
i′

j′
]]

CDHO(i′, j′): // G
v-cdh-muc
G,g,p , Gcdh-muc

G,g,p

7 If not (i′ ≤ i) or not (j′ ≤ j) then return ⊥

8 S ← S ∪ {(i′, j′)} ; Return B
k
i′

j′

Finalize(i′, j′, Z):

9 If not (i′ ≤ i) or not (j′ ≤ j) then return 0

10 If (i′, j′) ∈ S then return 0

11 Return [[Z = B
k
i′

j′
]]

Game Gddh
G,g,p

Initialize:

1 k←$ Zp ; K ← gk ; B←$ G

2 Z1 ← Bk ; Z0←$ G \ {Z1} ; c←$ {0, 1}

3 Return (K,B,Zc)

Finalize(c′):

4 Return [[c = c′]]

Game Gddh-mu
G,g,p

Initialize:

1 c←$ {0, 1}

NewKey:

2 i← i+ 1 ; ki←$ Zp ; Ki ← gki

3 Return Ki

NewBase:

4 j ← j + 1 ; Bj ←$ G

5 Return Bj

CH(i′, j′):

6 If not (i′ ≤ i) or not (j′ ≤ j) then return ⊥

7 If T[i′, j′] = ⊥

8 If c = 1 then T[i′, j′]← B
k
i′

j′

9 Else T[i′, j′]←$ G

10 Return T[i′, j′]

Finalize(c′):

11 Return [[c = c′]]

Figure 10: Here G is a group with prime order p and generator g. Left: Games for the CDH and V-CDH
problems (top) and CDH-MU, V-CDH-MU, CDH-MUC and V-CDH-MUC problems (bottom). The DDHO

oracle is only present in games Gv-cdh
G,g,p , G

v-cdh-mu
G,g,p and Gv-cdh-muc

G,g,p . The CDHO oracle is only present in games

Gcdh-muc
G,g,p and Gv-cdh-muc

G,g,p . Right: Game for the DDH problem (top) and the DDH-MU problem (bottom).

CDH, DDH, V-CDH are in the single-user setting. CDH-MU, DDH-MU, V-CDH-MU are
multi-user extensions of them, and CDH-MUC,V-CDH-MUC extend CDH-MU,V-CDH-MU, re-
spectively, to allow corruptions. The game for DDH-MU is given on the right part of Figure 10.
It is defined as an interactive game which will be useful for our proofs. It samples a random bit
c and then provides the adversary access to oracles NewKey, NewBase and CH. (The names
reflect their usage in our security proofs, i.e., group elements output by NewKey can be viewed
as OPRF keys and those output by NewBase will be used as random oracle outputs.) The ith

query to NewKey and jth query to NewBase returns a random group element Ki = gki and Bj ,
respectively. For a pair of indices (i′, j′), the CH oracle outputs either B

ki′
j′ or a random group

element, where the same challenge bit c is used across all queries. The table T records these queries
to avoid trivial wins via repeated queries.

The other problems are given on the left part of Figure 10. Starting with the CDH multi-
user problem (CDH-MU), we can construct games for other problems by giving additional power
(through oracles or lesser restrictions) to the adversaries and thereby strengthening the assump-
tion (or making the problem easier). The NewKey and NewBase oracles are as above. The
CDH-MU problem asks to find B

ki′
j′ for any pair (i′, j′). The game for the V-CDH multi-user

problem (V-CDH-MU) additionally allows access to an oracle DDHO(i′, j′, Z) which checks if

(Z = B
ki′
j′ ). For problems CDH-MUC and V-CDH-MUC, where C stands for “Corruption”, the

respective game additionally gives the adversary an oracle CDHO which can be queried for a pair
of indices (i′, j′) and returns the CDH solution for that pair. These problems are similar (but
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Problem P
Oracles available for adversaries

DDHO CDHO

CDH-MU × ×

V-CDH-MU X ×

CDH-MUC × X

V-CDH-MUC X X

V-CDH-MUC CDH-MUC

V-CDH-MU CDH-MUDDH-MU

V-CDH CDHDDH

(Th. 5.1)

qnk · qnb

(Th. 5.1)

qnk · qnb
(Th. 5.2)

Figure 11: Top: Summary of oracles available to adversaries when playing the game GP
G
. Bottom: Diagram

showing relations between the assumptions. The arrows represent implications. Here qnk = QNewKey(A) and
qnb = QNewBase(A) where A is playing the game GP

G,g,p for P ∈ {V-CDH-MUC,CDH-MUC}.

weaker) than the One-More CDH problem that has appeared in the context of OPRFs and PSI.
We prevent trivial wins using the set S that records CDHO queries.

The table at the top of Figure 11 is intended to clarify the problems by showing which oracles
are available to the adversary in which case.

Relations between problems. We will prove security of the 2H-DH OPRF directly under some
assumptions and get bounds under others via relations between the assumptions. Figure 11 shows a
diagram of the relations. Here “P1 → P2” is an implication, and means that, if P1 is hard in group G

then P2 is also hard in G. If an arrow is annotated with a value, for example qnk ·qnb, it means the re-
duction looses this factor. If there is no annotation, the reduction is tight. Some of the implications
are trivial and easy to see, for example, V-CDH-MUC→ CDH-MUC and CDH-MUC→ CDH-MU.
Standard re-randomization allows us to tightly obtain DDH → DDH-MU, CDH → CDH-MU and
V-CDH → V-CDH-MU. The reductions V-CDH → V-CDH-MUC and CDH → CDH-MUC as
well as DDH → V-CDH-MUC are more interesting. The first two are captured by the following
theorem, whose proof is in Appendix H.

Theorem 5.1 Let G = 〈g〉 be a group with prime order p. Let Av and A be adversaries playing the
Gv-cdh-muc

G,g,p game and the Gcdh-muc
G,g,p game, respectively. Then we can construct adversaries Av-cdh

and Acdh playing the Gv-cdh
G,g,p and Gcdh

G,g,p games, respectively, such that

Advv-cdh-muc
G,g,p (Av) ≤ QNewKey(Av) ·Q

NewBase(Av) ·Advv-cdh
G,g,p (Av-cdh) , (11)

Advcdh-muc
G,g,p (A) ≤ QNewKey(A) ·QNewBase(A) ·Advcdh

G,g,p(Acdh) . (12)

The running time of Av-cdh is about that of Av plus the time for (QNewKey(Av) +QNewBase(Av) +
QCDHO(Av) + QDDHO(Av)) group exponentiations, and the running time of Acdh is about that of
A plus the time for (QNewKey(A) + QNewBase(A) + QCDHO(A)) group exponentiations.

Curiously, we can show DDH→ V-CDH-MUC with a tight reduction. This is captured by the
following, whose proof is in Appendix I.
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Party 1

Input: x

For j = 1, . . . , |x| do

r[j]←$ Z
∗

p ; b[j]← H(1, x)r[j]

For j = 1, . . . , |x| do

u[j]← z[j]1/r[j]

y[j]← H(2, gk,x[j],u[j])

Output: y

b
-

gk, z
�

Party 2

Input: k

For j = 1, . . . , |b| do
z[j]← b[j]k

Output: |b|

Figure 12: 2H-DH OPRF protocol Π2HDH.

Theorem 5.2 Let G = 〈g〉 be a group with prime order p. Let Av be an adversary playing the
Gv-cdh-muc

G,g,p game. Then we can construct an adversary Addh playing the Gddh
G,g,p game such that

Advv-cdh-muc
G,g,p (Av) ≤ Advddh

G,g,p(Addh) +
QDDHO(Av) + 1

p
. (13)

The running time of Addh is about that of Av plus the time for at most (QNewKey(Av) + 2 ·
QNewBase(Av) + 2 ·QCDHO(Av) + 2 ·QDDHO(Av)) group exponentiations.

6 Security of 2H-DH OPRF

We have shown (Theorem 4.2) that PSI can be built tightly from an OPRF. Now we turn to seeing
how tightly we can build OPRFs based on algebraic assumptions. For this purpose we consider 2H-
DH [36], a leading and very efficient OPRF. We will showcase how its security can be proven under
different algebraic assumptions with different degrees of tightness. We note that the 2H-DH OPRF
has many applications beyond PSI [22, 36, 37, 23], making our results about it of independent
interest.

2H-DH OPRF. We fix a group G = 〈g〉 of prime order p with generator g. We also fix an integer
` ≥ 1. Recall that we associated to G, ` the family of functions 2HDH : [OS] × Zp × {0, 1}

∗ →
{0, 1}` shown in Figure 3. It uses a random oracle H ∈ OS which specifies two sub-functions:
H(1, ·) : {0, 1}∗ → G and H(2, ·, ·, ·) : G×G× {0, 1}∗ ×G→ {0, 1}`. Succinctly, 2HDH[RO](k, x) =

H(2, gk, x,H(1, x)k). The 2H-DH protocol is shown in Figure 12. It realizes the functionality F
oprf
2HDH

with perfect correctness. The client (party 1) has input a vector x over {0, 1}∗, and the server has
input a key k ∈ Zp for 2HDH. The vector r holds the blinding factors.

InI security for the client. We first want to show InI security of the Π2HDH OPRF protocol
for an honest client (party 1). In our concrete setting, we aim to give a concrete bound on the
ini-advantage of adversary Aini. This turns out to need a bit of care. The first thought may be that
the advantage is unconditionally zero, regardless of the running time or number of oracle queries of
the adversary, because the randomness of the blinding factors means that the entries of the vector
b are random and independent group elements. However, if RO(1, x) = 1 is the identity element
of the group, then b = RO(1, x)r = 1 is also the identity for all r ∈ Z

∗

p, and is not uniformly
distributed. Otherwise, RO(1, x) is a generator, and b is uniformly distributed. (But over G∗, not
G.) The advantage thus depends on whether or not there is, in the execution of Aini with the game,
some query x to RO(1, ·) that returns 1. The probability of this depends on the number of RO

queries made, either directly by Aini or by the protocol in the execution of the game with Aini.
Recall that by our conventions, QRO(Aini) counts both. This term now enters the bound, which
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Problem P B(ε′, {qro, qn, qtr})
Number of queries

NewKey NewBase DDHO CDHO

CDH 2 · (q2roqn · ε
′ + αc) – – – –

V-CDH 2 · (qroqn · ε
′ + αc) – – qro –

CDH-MUC 2 · (qro · ε
′ + αc) qn qro – qtr · `tr

V-CDH-MUC 2 · (ε′ + αc) qn qro qro qtr · `tr

DDH 2 · (ε′ + αd) – – – –

Figure 13: Our results showing OPRF-PR security of the 2H-DH OPRF. For different choices
of the assumed-hard problem P, we show the bound B(ε′, {qro, qn, qtr}) on the advantage of an OPRF-PR
adversary A as a function of the advantage ε′ = AdvP

G(A
′) of the constructed adversary A′ in solving problem

P in group G. We also show the query profile of A′. Here qro = QRO(A), qn = QNew(A), qtr = QTR(A),
αc = (qro · qrn)/p, αd = (qro · qrn + qro + 1)/p and `tr is the maximum length of vectors queried to TR.
Adversaries A,A′ have about the same running time. A dash (–) means that the oracle is not present for P.

in particular means security is not unconditional after all. (To guarantee a low advantage via the
Theorem, one must assume QRO(Aini) is sufficiently less than p.) The proof of the following is in
Appendix J.

Theorem 6.1 Let G = 〈g〉 be a group with prime order p, and ` ≥ 1 an integer. Let 2HDH be the
associated 2H-DH family of functions as per Figure 3. Let Π2HDH be the associated 2H-DH OPRF
protocol as per Figure 12 and let F = F

oprf
2HDH

be the OPRF functionality that Π2HDH computes. Let
Aini be an adversary playing game Gini

F,Π2HDH,1
. Then

Advini
F,Π2HDH,1(Aini) ≤

QRO(Aini)

p
. (14)

We note that if we set the range of H(1, ·) to G
∗ rather than G then the above advantage would

be always zero. However, we would then incur other terms in security bounds, so we have stayed
with the more conventional choice.

OPRF-PR security for the server. We bound the adversary advantage via the advantage to
solve the different problems from Section 5 on the underlying group G = 〈g〉, showcasing how
the bounds change across these problems. The proof of the following is in Appendix K. Figure 13
summarizes the bounds, and the resource usage of the constructed adversaries, and is a more precise
version of column 2 of Figure 2.

Theorem 6.2 Let G = 〈g〉 be a group with prime order p, and ` ≥ 1 an integer. Let 2HDH

be the associated 2H-DH family of functions as per Figure 3. Let Π2HDH be the associated 2H-
DH OPRF protocol as per Figure 12. Let Aoprf be an adversary playing game Goprf-pr

Π2HDH,2HDH
, and

let xx ∈ {ddh, cdh, v-cdh, cdh-muc, v-cdh-muc}. Then we can construct an adversary Axx playing
game Gxx

G,g,p such that

Advoprf-pr
Π2HDH,2HDH

(Aoprf) ≤ 2 · µxx(qro, qn) ·Advxx
G,g,p(Axx)

+
2 · δxx(qro, qn)

p
, (15)
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where qn = QNew(Aoprf) and qro = QRO(Aoprf). Further

µxx(qro, qn) =























q2roqn if xx = cdh

qroqn if xx = v-cdh

qro if xx = cdh-muc

1 if xx ∈ {v-cdh-muc, ddh}

(16)

and

δxx(qro, qn) =

{

qro · qn if xx ∈ {cdh, v-cdh, cdh-muc, v-cdh-muc}

qro · qn + qro + 1 if xx = ddh

with resources

QNewKey(Acdh-muc) = QNewKey(Av-cdh-muc) = QNew(Aoprf)

QNewBase(Acdh-muc) = QNewBase(Av-cdh-muc) ≤ QRO(Aoprf) ,

QCDHO(Acdh-muc) = QCDHO(Av-cdh-muc) ≤ `tr ·Q
TR(Aoprf) ,

QDDHO(Av-cdh) = QDDHO(Av-cdh-muc) ≤ QRO(Aoprf) ,

where `tr is the maximum length of vectors queried to the TR oracle and the running times of
all adversaries are about that of Aoprf , except that Acdh and Av-cdh additionally perform at most
QNew(Aoprf)+QRO(Aoprf)+ `tr ·Q

TR(Aoprf) group exponentiations and Addh additionally performs
at most QNew(Aoprf) + 2 ·QRO(Aoprf) + 2 · `tr ·Q

TR(Aoprf) group exponentiations.

Note that the factor QNewBase(A) from the relations in Figure 11 translates to QRO(A) in Theo-
rem 6.2. The bound for DDH follows from combining Eq. (16) and Theorem 5.2.

With these results on the security of Π2HDH and Theorem 4.2, we can show concrete bounds
on the InI security of the DH-PSI protocol. (By the latter we mean the PSI protocol in Figure 9
when using Π2HDH as the underlying OPRF.) In Figure 15 we depict our bounds, and the resource
usage of the corresponding adversaries, for DH-PSI. This is a more precise and complete version of
column 3 in Figure 2.

7 The Salted-DH PSI Protocol

We give a new PSI protocol. It has a proof with a tight reduction to the V-CDH (and hence also
DDH) assumption and achieves better bounds for the CDH assumption than the previous protocol.
Yet it has essentially the same computational cost as the OPRF-PSI when the OPRF is 2H-DH.
The communication cost is more by just a constant (256 bits in practice) that does not depend on
the sizes of the sets in the protocol.

The protocol is presented in Figure 14. We have fixed a group G of prime order p. The
protocol is parameterized by a salt length sl and a hash-output length hl . (The latter only impacts
correctness, not security.) Compared to 2H-DH based PSI, the increase in computational is just
that the parties need to hash slightly longer strings, which has negligible cost relative to the cost
of the group exponentiations, which is the same in both protocols. Communication increases by
just sl , irrespective of the sizes of the sets involved.

The following Theorem establishes correctness and security of the protocol. The main claim is
the third, showing security for the server based only on the V-CDH assumption. The added term is
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Salted-DH PSI Protocol Πsalt-psi

Parameters: Salt length sl , hash length hl , group G of prime order p with generator g
Party 1 input: Set S1 ⊆ {0, 1}

∗ of size s1
Party 2 input: Set S2 ⊆ {0, 1}

∗ of size s2
Oracles: H1 : {0, 1}

sl ×G→ G and H2 : {0, 1}
sl ×G× {0, 1}∗ ×G→ {0, 1}hl

1. Party 1 casts the items in its set S1 as a vector x1 ← S2V(S1) of length s1. It picks a salt η←$ {0, 1}sl and
picks blinding exponents r1, . . . , rs1 ←$ Z

∗
p. It then sets a1[i] ← H1(η,x1[i])

ri for i = 1, . . . , s1. It sends (η,a1) to
Party 2.

2. Party 2 picks a key k←$ Zp and computes K ← gk. It lets b[i] ← a1[i]
k for i = 1, . . . , |a1|. It randomly

permutes the items in its set S2 to get a vector x2←$ S2V(S2) of length s2. It lets c[i] ← H1(η,x2[i])
k and

a2[i] ← H2(η,K,x2[i], c[i]) for i = 1, . . . , s2. It sends (K, b,a2) to Party 1. It then halts with s1 = |a1| as its
protocol output.

3. Party 1 constructs intersection set I via

For all i = 1, . . . , s1 do
ti ← r−1

i mod p ; d[i]← b[i]ti // d[i] = H1(η,x1[i])
k

If H2(η,K,x1[i],d[i]) ∈ V2S(a2) then I ← I ∪ {x1[i]}.

It outputs I as the intersection of S1 and S2, and halts.

Figure 14: Salted DH PSI protocol Πsalt-psi.

easily made negligible by picking a non-trivial salt length; in practice, sl = 256 will do. The result
is that the reduction is tight. The proof is in Appendix L.

Theorem 7.1 Let G be a group of prime order p with generator g. Let hl , sl ≥ 0 be integers.
Let Π = Πsalt-psi be the associated PSI protocol as per Figure 14. Let F be the PSI functionality
over universe {0, 1}∗. Below, M denotes an upper bound on the sum, across all Run queries of
adversaries Acorr and Aini, of the sizes of the sets in these queries.

1. Correctness: Let Acorr be an adversary playing game Gcorr
F,Π . Then

Advcorr
F,Π (Acorr) ≤M2/2hl . (17)

2. Security for the client: Let Aini be an adversarial server, meaning an adversary playing game

Gini
F,Π,1. Then

Advini
F,Π,1(Aini) ≤

QRO(Aini)

p
. (18)

3. Security for the server: Let Aini be an adversarial client, meaning an adversary playing game

Gini
F,Π,2. Then we can construct an adversary Axx playing game Gxx

G,g,p such that

Advini
F,Π,2(Aini) ≤ 2 · µxx(qro) ·Advxx

G,g,p(Axx)

+
2 · qrn(qrn + qro)

2sl
+

2 · δxx(qro)

p
. (19)

where qrn = QRun(Aini) and qro = QRO(Aini). Further

µxx(qro) =

{

qro if xx ∈ {cdh, cdh-muc}

1 if xx ∈ {v-cdh, v-cdh-muc, ddh}
(20)

and

δxx(qro) =

{

0 if xx ∈ {cdh, v-cdh, cdh-muc, v-cdh-muc}

qro + 1 if xx = ddh
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Protocol Π Problem P B(ε′, {qro, qrn})
Number of queries

NewKey NewBase DDHO CDHO

2H-DH PSI

CDH 4 · (q2roqrn · ε
′+αc) – – – –

V-CDH 4 · (qroqrn · ε
′+αc) – – qro –

CDH-MUC 4 · (qro · ε
′ + αc) qrn qro – M

V-CDH-MUC 4 · (ε′ + αc) qrn qro qro M

DDH 4 · (ε′ + αd) – – – –

Salted DH PSI

CDH 2 · (qro · ε
′ + βc) – – – –

V-CDH 2 · (ε′ + βc) – – qro –

CDH-MUC 2 · (qro · ε
′ + βc) 1 1 – 0

V-CDH-MUC 2 · (ε′ + βc) 1 1 qro 0

DDH 2 · (ε′ + βd) – – – –

Figure 15: Our results for PSI. We compare our results for the classical DH-PSI protocol with those for
our new Salted DH PSI protocol. For different choices of the assumed-hard problem P, we show the bound
B(ε′, {qro, qrn}) on the advantage of an adversary A in game Gini

F,Π,2 as a function of the advantage ε′ =

AdvP
G(A

′) of the constructed adversary A′ in solving problem P in group G. We also show the query profile
of A′. Here, qro = QRO(A) and qrn = QRun(A). We have set αc = (qro · qrn)/p and αd = (qro · qrn+ qro+1)/p.
With sl being the salt length in the Salted DH PSI protocol we have also set βc = qrn · (qrn + qro) · 2

−sl and
βd = qrn · (qrn+ qro) ·2

−sl +(qro+1)/p. By M we denote an upper bound on the sum, across all Run queries
of adversary A, of the sizes of the sets in these queries. Adversaries A and A′ have about the same running
time. A dash (–) means that the oracle is not present for P.

with resources

QNewKey(Acdh-muc) = QNewKey(Av-cdh-muc) = 1

QNewBase(Acdh-muc) = QNewBase(Av-cdh-muc) = 1 ,

QCDHO(Acdh-muc) = QCDHO(Av-cdh-muc) = 0 ,

QDDHO(Av-cdh) = QDDHO(Av-cdh-muc) ≤ QRO(Aini) .

The running times of Av-cdh-muc and Acdh-muc are about that of Aini. The adversaries Av-cdh

and Av-cdh perform an additional QRun(Aini)+M +QRO(Aini) group exponentiations and Addh

performs an additional QRun(Aini) + 2 ·M + 2 ·QRO(Aini) group exponentiations.
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Game Gsim∗

F,Π,S,h

Initialize:

1 H←$ OS ; b←$ {0, 1} ; stS ← ε

Run(x1, x2):

2 (y1, y2)←$ F[RO](x1, x2)

3 If b = 1 then

4 ω1, ω2←$ Ω

5 (τ, st1, st2)← XTΠ[H](x1, x2;ω1, ω2)

6 Else

7 (τ, ω3−h, stS)←$ S[H](run, (x3−h, y3−h), stS)

8 Return τ, ω3−h

RO(X):

9 h← H(X)

10 If b = 0 then

11 (h, stS)←$ S[H](ro, X, stS)

12 Return h

Finalize(b′):

13 Return [[b′ = b]]

Party 1

Input: x ∈ {0, 1}∗

Output: H(2, gk, x, Y )

x
-

Y, gk
�

Party 2

Input: k ∈ Zp

Y ← H(1, x)k

Output: 1

Figure 16: Top: Game defining SIM∗ security for protocol Π for functionality F, where h ∈ {1, 2} is the

honest party and S is the simulator. Bottom: The “bad” protocol Π realizing the functionality F
oprf
2HDH

.
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A The subtle point about SIM: Unsoundness of SIM∗

In Section 3.1 we discussed a subtlety in how one defines simulation-based security in the programmable-
ROM. The general understanding and intent of the definition is that random-oracle queries are
answered by the simulator. The subtlety is that, while this is fine for queries made by the adver-
sary and protocol, it is not fine for queries made by the functionality. (Accordingly, functionality
queries to the RO are answered honestly in our SIM game of Figure 1.) Here we treat the example
showing this in more detail.

The SIM∗ definition. We start by specifying the definition that we see as the first and natural
choice yet will show is incorrect. We call it SIM∗. The game Gsim∗

F,Π,S,h is shown in Fig 16. The only

change from the Gsim
F,Π,S,h game is that, at line 2, the oracle provided to the functionality F is RO,

not H. So when the challenge bit b is 0, the RO queries of the functionality will be answered by
the simulator, just like all other RO queries. For a protocol Π, functionality F, simulator S and
honest party h ∈ {1, 2} we let Advsim∗

F,Π,S,h(Asim∗) = 2Pr[Gsim∗

F,Π,S,h(Asim∗)] − 1 be the advantage of
an adversary Asim∗ .
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The bad protocol. Let G = 〈g〉 be a group of prime order p with generator g. Let 2HDH : [OS]×

Zp×{0, 1}
∗ → {0, 1}` be the 2H-DH PRF associated to G and ` ≥ 1 as per Figure 3. Let F = F

oprf
2HDH

then be the OPRF functionality associated to 2HDH as per Figure 3. The input to the client is in
general a vector over {0, 1}∗, but we will need to consider only a single input x ∈ {0, 1}∗, and see

the functionality thus as F
oprf
2HDH

[H](x, k) = (H(2, gk, x,H(1, x)k), 1). (The output of party 2 is the

length of the vector, here 1.) Consider the protocol Π, shown in Figure 16, which realizes the Foprf
2HDH

functionality. Party 1 sends its input x in the clear and party 2 uses it to calculate Y ← H(1, x)k.
Party 2 then sends Y, gk to party 1 and outputs 1. Finally, party 1 calculates H(2, gk, x, Y ) as its
output. Since party 1 sends its input in the clear, Π clearly does not provide input privacy for
party 1 and should be deemed insecure. However, in the following theorem we show that Π is SIM∗

secure for Foprf
2HDH

and honest party h = 1.

Theorem A.1 Let G, `, 2HDH,F = F
oprf
2HDH

be as above, and let Π be the protocol of Figure 16 that
computes F. We can construct a linear-time simulator S such that for all adversaries Asim∗ playing
game Gsim∗

F,Π,S,1 we have:

Advsim∗

F,Π,S,1(Asim∗) = 0 . (21)

We note that Π is not SIM-secure, meaning our SIM definition correctly excludes it.

Proof of Theorem A.1: We first specify how S operates in its ro role, meaning when answering
RO queries. Here it has an input X for H, and takes its current state stS, and does the following:

S[H](ro, X, stS) :

1. (n,X ′)← X // Parse X in this way
2. If (n = 1) then stS ← X ′ // Store X ′ in the state
3. Return H(X)

Now let us explain. We know that X has the form (n,X ′) with n ∈ {1, 2}. If n = 1 then the
simulator stores X ′, which will be a string, in its state. The reply to the RO query is, regardless,
always given honestly, via the function H to which S has oracle access.

Queries to RO, that are answered as above when b = 0, will come from the adversary, the protocol,
and also the functionality at line 2. The simulator is answering them honestly, and simply remem-
bering the most recent query to H(1, ·). (The salient point is that at the time line 7 is executed,
this query will have been from line 2.) Now we define how the simulator operates in its run role.
Its input here is (k, 1) —key k and output 1 from the functionality— and state stS. It does the
following:

S[H](run, (k, 1), stS) :

1. x← stS // Recover string x ∈ {0, 1}∗ stored in the state
2. Y ← H(1, x)k ; τ ← (x, (Y, gk))
3. Return (τ, ε)

Suppose adversary Asim∗ queries Run with inputs x, k. At line 2 of the game the functionality F

is evaluated on these inputs. As per its definition, it would query the random oracle RO first with
input (1, x) to get an output Z and next with input (2, gk, x, Zk). Let b be the challenge bit of the
game. If b = 0 the RO queries made by the functionality would be answered by S running in its ro
role. So it would store x in its state.
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Note that the game calls S in run mode right after F queries RO oracle at line 2. Hence, the last
input that S stores in its state would always be the input of party 1 for which it needs to generate
the transcript. As it has inputs for both parties, S just follows Π to accurately construct a transcript
which is then distributed identically to the one that Π outputs. So Advsim∗

F,Π,S,1(Asim∗) = 0.

B Proof of Theorem 3.2

Proof of Theorem 3.2: Let S be any simulator. Adversary Asim is playing game Gsim
F,Π,S,h.

Adversary Asim picks a challenge bit c←$ {0, 1} and runs Aini. When Aini makes query Gini
F,Π,h.

Run(x0, x1, x), adversary Asim does the following:

1. x3−h,0 ← x ; x3−h,1 ← x ; xh,0 ← x0 ; xh,1 ← x1
2. (y1,0, y2,0)← F[RO](x1,0, x2,0) ; (y1,1, y2,1)← F[RO](x1,1, x2,1)
3. If (y3−h,0 6= y3−h,1) then return ⊥
4. (τ, ω3−h)←$ Gsim

F,Π,S,h.Run(x1,c, x2,c)

5. Return (τ, ω3−h)

Above, at line 2, RO denotes Gsim
F,Π,S,h.RO, the random oracle provided to Asim by its own game.

When Aini queries Gini
F,Π,h.RO(X), adversary Asim returns Y ← Gsim

F,Π,S,h.RO(X) to Aini as the
reply. Eventually Aini halts with output guess c′ ∈ {0, 1}. Adversary Asim lets b′ ← [[c′ = c]] and
returns b′ as its own output. For the analysis, let b denote the challenge bit chosen at line 1 on the
right of Figure 5. We observe that

Pr
[

b′ = 1 | b = 1
]

= Pr
[

Gini
F,Π,h(Aini)

]

=
1

2
+

1

2
·Advini

F,Π,h(Aini) .

Now when b = 0, the input provided to the simulator at line 7 on the right of Figure 5 is
x3−h,c, y3−h,c. But x3−h,c = x (line 1 above) and y3−h,0 = y3−h,1 (due to line 3 above) so what is
provided to the simulator does not depend on c. Hence

Pr
[

b′ = 1 | b = 0
]

=
1

2
.

Thus

Advsim
F,Π,S,h(Asim) = Pr

[

b′ = 1 | b = 1
]

− Pr
[

b′ = 1 | b = 0
]

=
1

2
+

1

2
·Advini

F,Π,h(Aini)−
1

2
=

1

2
·Advini

F,Π,h(Aini) ,

which yields Eq. (2).

C Proof of Theorem 3.3

Proof of Theorem 3.3: In protocol Π shown on the right side of Figure 6, party 1 sends its
input x in the clear to party 2. Party 2 then calculates its output as gx. As we can see Π correctly
realizes the functionality F.

Now any adversary Aini, playing game Gini
F,Π,1, needs to find two values x0, x1 ∈ Zp such that

gx0 = gx1 to go past the check at line 5 in the left panel of Figure 5. Since g is a generator for G,
this can only happen if x0 = x1. So either Aini sends the same inputs for the honest party or it
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gets ⊥ as output from its Gini
F,Π,1.Run oracle queries. In both cases it gets no information about

the challenge bit. Therefore, we have Pr[Gini
F,Π,1(Aini)] = 1/2, which gives Advini

F,Π,1(Aini) = 0. This
establishes Eq. (3) and proves the first part of the theorem.

For the second part, we define adversary Asim, playing game Gsim
F,Π,S,1, as follows. It picks x←$ Zp

and makes a Run(x, ε) query to get a transcript τ . If τ = x, it sets b′ ← 1 else b′ ← 0. It then
returns b′ as its guess for the challenge bit b of game Gsim

F,Π,S,1. Since the transcript created by Π

would be x, we have

Pr
[

b′ = 1 | b = 1
]

= 1 .

When b = 0, the transcript τ is produced by the simulator S given gx but not x. Now the idea
is that either τ = x, in which case we will be able to solve the DL problem via Adl, or τ 6= x,
in which case Asim will correctly determine the challenge bit. To formalize this and complete the
proof, we construct adversary Adl, playing game Gdl

G,g,p, as follows. It gets input X = gx ∈ G. It
lets (τ, ε, stS)←$ S(run, (ε,X), ε), meaning it runs the simulator in its run role, with input ε and
output X for the corrupted party, and ε as simulator state, to get back transcript τ , coins ε and
updated state stS. It then returns τ as its output for game Gdl

G,g,p. Clearly, Adl wins if τ = x. Thus

Pr
[

b′ = 1 | b = 0
]

= Advdl
G,g,p(Adl) .

Thus

Advsim
F,Π,S,1(Asim) = Pr

[

b′ = 1 | b = 1
]

− Pr
[

b′ = 1 | b = 0
]

= 1−Advdl
G,g,p(Adl) ,

which is Eq. (4).

D Proof of Theorem 3.4

Proof of Theorem 3.4: We define simulator S, starting with its run role. Here it receives input
(x3−h, y3−h) and its current state stS, and has access to an oracle H ∈ OS. It does the following:

S[H](run, (x3−h, y3−h), stS) :

1. x′h←$ IA[H](x3−h, y3−h) ; ω1, ω2←$ Ω ; x′3−h ← x3−h

2. (τ, st1, st2)← XTΠ[H](x
′

1, x
′

2;ω1, ω2)
3. Return (τ, ω3−h, stS)

That is, S honestly executes the protocol using its provided input for the corrupted party and an
input x′h for the honest party that is obtained via the inverter. It returns the transcript, and coins
for the corrupted party. Since S is for the SIM-np game, it has no ro role, so the above completes
its description. Its running time is dominated by the time to run IA and to execute Π.

Given adversary Asnp playing game Gsim-np
F,Π,S,h, we construct adversary Aini playing game Gini

F,Π,h as

follows. Adversary Aini runs adversary Asnp. When Asnp makes a query Gsim-np
F,Π,S,h.Run(x1, x2),

adversary Aini does the following:

1. (y1, y2)← F[H](x1, x2)
2. x′h←$ IA[H](x3−h, y3−h) ; x

′

3−h ← x3−h

3. (τ, ω)← Gini
F,Π,h.Run(x′h, xh, x3−h)
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4. Return (τ, ω) to Asnp as the answer to its query

When Asnp queries Gsim-np
F,Π,S,h.RO(X), adversary Aini lets Y ← Gini

F,Π,h.RO(X) and returns Y to Asnp.
Finally, Asnp outputs a bit b′ and Aini returns the same bit. Let b be the challenge bit of game
Gini

F,Π,h. When b = 1, the call to oracle Gini
F,Π,h.Run(x′h, xh, x3−h) gives the output of running Π on

inputs x1, x2, which is what Asnp would receive in the real game from Gsim-np
F,Π,S,h.Run(x1, x2). In the

other case when b = 0, the call to oracle Gini
F,Π,h.Run(x′h, xh, x3−h) gives the output of running Π

on inputs x′1, x
′

2, which is what Asnp would receive in the ideal game from Gsim-np
F,Π,S,h.Run(x1, x2) due

to the way S works in its run role. With these observations we get

Pr[Gini
F,Π,h(Aini)] = Pr[Gsim-np

F,Π,S,h(Asnp)] ,

and thus

Advsim-np
F,Π,S,h(Asnp) = Advini

F,Π,h(Aini) ,

which yields Eq. (5). Note that Aini runs Asnp and uses IA but running time is maintained because
S also runs IA and our convention is that we measure the time for the execution of the game with
the adversary.

E More Invertible Functionalities

In Section 3.3 we showed that the PSI functionality and its variants are invertible. Here we show
some more functionalities with practical importance that are invertible. In particular, we show
invertibility for the widely used Oblivious Transfer (OT) [52] functionality and a simpler version
of secure inferencing functionality for neural networks as described in [39].

OT functionality. The 1-out-of-n OT functionality Fotn : {1, . . . , n} × ({0, 1}∗)n → {0, 1}∗ × {ε}
is evaluated for inputs (c,x) where c ∈ {1, . . . , n} and x ∈ ({0, 1}∗)n as Fotn (c,x) = (x[c], ε). The
idea is that party 1 holds a value representing an index and party 2 holds a vector of elements in
{0, 1}∗. The functionality allows party 1 to get the value indexed by its input from party 2.

Inverters for OT. To show invertibility of OT functionality we present the inverter IAot
n,h for

honest party h ∈ {1, 2} in the left part of Figure 17.

The inverter IAot
n,1 gets as inputs the input of party 2 to Fotn which is a vector x and the output

of party 2 from Fotn which is always ε irrespective of the input of party 1. Therefore, the inverter can
return any value from the set {1, . . . , n} to be a correct inverter which is what is done in Figure 17
(which returns 1).

When h = 2 we have the inverter IAot
n,2 which gets an index c ∈ {1, . . . , n} and a string

y ∈ {0, 1}∗ as input where y = Fotn (c,x)[1] for some x which is the input of party 2 unknown to
party 1. For the inverter to be correct, it suffices that it returns a vector x′ with x′[c] = y. This is
what is done in IAot

n,2 which returns a vector with all elements as y.

Clearly, both the inverters are efficient.

We use matrices below for which we use the following notation. If X is an n by m matrix then
we let |X| = (n,m). By X[i][j] we denote the entry in row i ∈ [1..n] and column j ∈ [1..m]. We
denote the n-by-m zero matrix by 0n×m. By (c)n we denote the n-vector all of whose entries are c.

Secure Inferencing functionality. Let n,m be natural numbers. We define a simple neural
network inferencing function, Qnn : Rn×R

n×m → (R+)m. The function Qnn takes as input a vector
x ∈ R

n which acts as input to the neural network and a matrix T ∈ R
n×m describing the weights of
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IAot
n,1(x, ε):

1 Return 1

IAot
n,2(c, y):

1 Return [y]n

IAnn
1 (T, ε):

1 (n,m)← |T|

2 Return [1]n

IAnn
2 (x,y):

1 n← |x| ; m← |y| ; T← 0
n×m

2 For i = 1, . . . ,m do

3 T[i][i]← y[i]× (x[i])−1

4 Return T

Figure 17: Left: Inverter for OT functionality for h = 1. Right: Inverter for Fcnn functionality for h = 2.

a single layer fully connected neural network. It computes the output of neural network inferencing
as Qnn(x,T) = ReLU∗(x×T). Here, the neural network uses the Rectified Linear Units (ReLU) [2]
function, ReLU: R → R

+, which on input x ∈ R is evaluated as ReLU(x) = max(0, x) to provide
non-linearity. By ReLU∗ : Rn → (R+)n we denote the function which given a vector performs
element-wise ReLU operation to generate the output vector. The two-party functionality for secure
inferencing of a single layer fully connected neural network is given as Fnn : Rn×R

n×m → (R+)m×
{ε} which on inputs x from party 1 (client) and T from party 2 (server) is evaluated as Fnn(x,T) =
(Qnn(x,T), ε).

Inverters for Fnn. The inverter IAnn
h for Fnn functionality and honest party h ∈ {1, 2} are shown

in the right part of Figure 17.
For h = 1, the inverter IAnn

1 just has to return any vector x ∈ R
n as the output of party 2 is

always ε. It gets the dimension n from its input T ∈ R
n×m which is the input of party 2.

For h = 2, the inverter IAnn
2 gets as inputs the input of party 1 to Fnn which is a vector x ∈ R

n

and the output for party 1 which is a vector y ∈ R
n such that for some matrix T ∈ R

n×m (unknown
to party 1), y = Fnn(x,T)[1]. The inverter needs to output a matrix T′ such that Fnn(x,T′)[1] = y.
It first gets n and m from x,y and then constructs a diagonal matrix T′ such that x × T′ = y

which makes it a correct inverter.
While the inverters seem efficient, one must be wary of working with elements in R and an

appropriate finite field must be chosen so that the elements can be represented efficiently.

F Proof of Theorem 3.5

Proof of Theorem 3.5: Let b be the bit initialized in Gini
F,Π,h and q = QRun(Aini). We will use

hybrids H0
F,Π,h, . . . , H

q
F,Π,h where H i

F,Π,h is as shown in Figure 18. In H i
F,Π,h, the first i queries to

the Run(x0, x1, x) oracle are answered with the transcript of executing the protocol with honest
party input as x0. The rest use x1 as the input for honest party. The adversarial party input is
always set to x. Thus, for adversary Aini which makes q queries to the Run oracle of Gini

F,Π,h the

hybrid H0
F,Π,h behaves the same as Gini

F,Π,h with b = 0 and Hq
F,Π,h behaves as Gini

F,Π,h with b = 1. Let

b′ be the output of Aini when playing the game Gini
F,Π,h. This gives us

Pr
[

b′ = 1 | b = 1
]

= Pr[Hq
F,Π,h(Aini)] ,

Pr
[

b′ = 1 | b = 0
]

= Pr[H0
F,Π,h(Aini)] .

Adversary Bini is playing the game Gini
F,Π,h and can only make a single query to Run oracle. It

starts by selecting an integer i←$ {1, . . . , q} and initializing c← 0. It then runs Aini which is also
playing the game Gini

F,Π,h and which makes q queries to its Run oracle. When Aini makes a query
Run(x0, x1, x), Bini does the following:
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Game Hi
F,Π,h

Initialize:

1 c← 0 ; H←$ OS

Run(x0, x1, x):

2 c← c+ 1

3 x3−h,0 ← x ; x3−h,1 ← x ; xh,0 ← x0 ; xh,1 ← x1

4 (y1,0, y2,0)← F[H](x1,0, x2,0) ; (y1,1, y2,1)← F[H](x1,1, x2,1)

5 If (y3−h,0 6= y3−h,1) then return ⊥

6 ω1, ω2←$ Ω

7 If (c ≤ i) then (τ, st1, st2)← XTΠ[H](x1,0, x2,0;ω1, ω2)

8 Else (τ, st1, st2)← XTΠ[H](x1,1, x2,1;ω1, ω2)

9 Return (τ, ω3−h)

RO(X):

10 Return H(X)

Figure 18: Hybrid Hi
F,Π,h for the hybrid argument used to proof Theorem 3.5

1. c← c+ 1
2. x3−h,0 ← x ; x3−h,1 ← x ; xh,0 ← x0 ; xh,1 ← x1
3. (y1,0, y2,0)← F[RO](x1,0, x2,0)
4. (y1,1, y2,1)← F[RO](x1,1, x2,1)
5. If (y3−h,0 6= y3−h,1) then return ⊥
6. ω1, ω2←$ Ω
7. If (c < i) then (τ, st1, st2)← XTΠ[RO](x1,0, x2,0;ω1, ω2)
8. Else If (c = i) then (τ, ω3−h)← Run(x0, x1, x)
9. Else (τ, st1, st2)← XTΠ[RO](x1,1, x2,1;ω1, ω2)
10. Return (τ, ω3−h)

Here, RO,Run oracles are the Gini
F,Π,h.RO and Gini

F,Π,h.Run oracles respectively that Bini has access
to in its game. In the above, whenever (c < i), x0 is used as honest party input to generate the
output of Run oracle query by executing the protocol. And whenever (c > i) the x1 is used as
honest party input. When (c = i), adversary Bini queries its G

ini
F,Π,h.Run oracle to answer the query.

When Aini queries the RO(X) oracle, adversary Bini forwards it to its own RO(X). Finally, Bini

returns the bit returned by Aini. Let b′ be the bit initialized in the Gini
F,Π,h game. From the above

we can see that when b′ = 1, Bini simulates the hybrid H i
F,Π,h for some 1 ≤ i ≤ q. And in the other

case when b′ = 0, Bini simulates the hybrid H i−1
F,Π,h. Let b be the bit returned by Bini. Since Bini

randomly selects i, we have

Pr
[

b = 1 | b′ = 1
]

=
1

q
·

q
∑

i=1

Pr[H i
F,Π,h(Aini)] ,

Pr
[

b = 1 | b′ = 0
]

=
1

q
·

q
∑

i=1

Pr[H i−1
F,Π,h(Aini)] .
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This gives us

Advini
F,Π,h(Bini) = Pr

[

b = 1 | b′ = 1
]

− Pr
[

b = 1 | b′ = 0
]

=
1

q

(

q
∑

i=1

Pr[H i
F,Π,h(Aini)]−

q
∑

i=1

Pr[H i−1
F,Π,h(Aini)]

)

=
1

q

(

Pr[Hq
F,Π,h(Aini)]− Pr[H0

F,Π,h(Aini)]
)

,

which is

Advini
F,Π,h(Bini) =

1

q
·Advini

F,Π,h(Aini) ,

Advini
F,Π,h(Aini) = q ·Advini

F,Π,h(Bini) ,

which is Eq. (6).

G Proof of Theorem 4.2

Proof of Theorem 4.2: We start with the correctness of Π in realizing F. For that, we construct
an adversary Aprf playing game Gprf

Q
using the given adversary Apsi playing game Gcorr

F,Π . Adversary
Aprf initializes i← 0,win← 0 and runs Apsi. It answers RO oracle queries from Apsi using its own
RO oracle. To process a Run(S1, S2) query from Apsi, adversary Arcr does the following

1. New ; i← i+ 1
2. For each x ∈ S1 do
3. Z ← Z ∪ {CH(i, x)}
4. For each x ∈ S2 do
5. If CH(i, x) ∈ Y then I ← I ∪ {x}
6. win← [[I 6= (S1 ∩ S2)]] ; Return win

Finally, when Apsi completes, Aprf returns the bit b′ ← [[win = 1]]. Let b be the challenge bit in

the game Gprf
Q

.

As mentioned before, for simplicity, our definition requires perfect correctness of Πoprf . And so, if
CH oracle query outputs are real values (b = 1), adversary Aprf correctly simulates the Run oracle
for Apsi. We get Pr [ b′ = 1 | b = 0 ] = Advcorr

F,Π (Apsi) .

When b = 0, the values for CH oracle query outputs are picked randomly from R. Therefore, the
win flag is set only if across all Run queries the same value is picked for some element in S1\(S1∩S2)
and some element in S2. This gives us

Pr
[

b′ = 1 | b = 0
]

≤

q
∑

i=1

si,1si,2
|R|

.

Combining the above, we get

Advprf
Q

(Aprf) ≥ Advcorr
F,Π (Apsi)−

q
∑

i=1

si,1si,2
|R|

,
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which is Eq. (8).

We now show client security for Π. Using the given adversary Apsi playing game Gini
F,Π,1 we con-

struct an adversary Aoprf playing game Gini
F
oprf
Q

,Πoprf ,1
. In the following, Run and RO denote the

oracles available to Aoprf in its game. Adversary Aoprf starts by running Apsi. When Apsi queries
Gini

F,Π,1.Run(S1,0, S1,1, S2), adversary Aoprf does the following

1. If (F(S1,0, S2)[2] 6= F(S1,1, S2)[2]) then return ⊥
2. k←$ Keys ; x0 ← S2V(S1,0) ; x1 ← S2V(S1,1)
3. (τ, ω)← Run(x0,x1, k)
4. Z ← ∅
5. For each x ∈ S2 do
6. Z ← Z ∪ Q[RO](k, x)
8. Return ((τ, S2V(Z)), (k, ω))

When Apsi queries G
ini
F,Π,1.RO(X), adversary Aoprf makes queries y ← RO(X) and responds with y.

Finally, adversary Aoprf outputs the bit that Apsi outputs. In the above, Aoprf creates the transcript
of execution of Π on the inputs provided by Apsi. Adversary Aoprf selects the key k for Q that is
supposed to be selected by the server in Π. It then uses k and the inputs for the client provided
by Apsi to make its Run oracle query. This returns the transcript for the Πoprf execution on one
of S1,0, S1,1 determined by the challenge bit of Gini

F
oprf
Q

,Πoprf ,1
. Consequently, this also determines

the challenge bit for Apsi. To complete the transcript for Π, adversary Aoprf constructs the set
Z = {Q[RO](k, x) : x ∈ S2 }. Since Apsi and Aoprf are trying to guess the same challenge bit, we
have Eq. (9).

Next we look at server security for Π. We construct adversary Aoprf playing game Goprf-pr
Πoprf ,Q

using

the given adversary Apsi which is playing game Gini
F,Π,2. It starts by selecting a bit c←$ {0, 1}

and initializing i ← 0. It then runs Apsi. When Apsi makes a query Gini
F,Π,2.RO(X), adversary

Aoprf makes the query Goprf-pr
Πoprf ,Q

.RO(X) and responds with the output. When Apsi makes a query

Run(S2,0, S2,1, S1), adversary Aoprf does the following:

1. If (F(S1, S2,0)[1] 6= F(S1, S2,1)[1]) then return ⊥
2. New ; i← i+ 1 ; x1 ← S2V(S1)
3. (y, τ, ω)← TR(i,x1) ; Z ← ∅
4. For j = 1, . . . , |x1| do
5. If x1[j] ∈ S2,c then Z ← Z ∪ {y[j]}
6. For each x ∈ S2,c \ S1 do
7. y ← CH(i, x) ; Z ← Z ∪ {y}
8. Return ((τ, S2V(Z)), ω)

In the above, Aoprf is creating the transcript of running Π with S1, S2,c as the inputs of the parties.
It uses its New oracle to initialize a new key. For the elements in the client’s input set S1, it
generates the transcript of executing Πoprf using the TR oracle. This also provides the evaluations
of Q[RO](k, ·) on elements in S1 in the vector y, where k represents the key generated inside New.
It generates the set Z = {Q[RO](k, x) : x ∈ S2,c } by using y for elements in S2,c ∩ S1 and its CH

oracle for other values in S2,c.
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Let c′ be the output from Apsi. Finally, Aoprf lets b
′ ← [[c = c′]] and returns b′ as its own guess for

the challenge bit b selected in its own game, meaning game Goprf-pr
Πoprf ,Q

. If the CH oracle returns the
output of evaluating Q, then from the above we can see that Aoprf returns a correct transcript of
executing Π with the inputs S1, S2,c for the parties. Thus, we get

Pr
[

b′ = 1 | b = 1
]

= Pr[Gini
F,Π,2(Apsi)] .

On the other hand, if the CH oracle returns random values, Apsi is provided with a transcript
in which the output of OPRF evaluations on S2,c are random values from R. Since this does not
provide any information on c and all the other steps are independent of c, the adversary Apsi can
only guess the bit c. This gives

Pr
[

b′ = 1 | b = 0
]

=
1

2
.

From the above we get,

Advoprf-pr
Πoprf ,Q

(Aoprf) = Pr
[

b′ = 1 | b = 1
]

− Pr
[

b′ = 1 | b = 0
]

= Pr[Gini
F,Π,2(Apsi)]−

1

2
=

1

2
·Advini

F,Π,2(Apsi) ,

which gives us Eq. (10).

H Proof of Theorem 5.1

Proof of Theorem 5.1: We show that we can construct an adversary Av-cdh from Av such
that Eq. (11) holds. Let qnk = QNewKey(Av) and qnb = QNewBase(Av). Adversary Av-cdh which
is playing the Gv-cdh

G,g,p game uses Av which is playing the Gv-cdh-muc
G,g,p game. Av-cdh gets as input a

challenge (K∗, B∗). First Av-cdh selects an integer i∗ uniformly at random from {1, . . . , qnk} and an
integer j∗ uniformly at random from {1, . . . , qnb}. It also sets i← 0 and j ← 0. When Av makes a
query to its NewKey oracle, Av-cdh does the following:

1. i← i+ 1
2. If (i = i∗) then return K∗

3. ki←$ Zp ; Ki ← gki

4. Return Ki

When Av makes a query to NewBase, Av-cdh proceeds similar, incrementing j and picking bj ←$

Zp to return Bj ← gbj or B∗ if j = j∗. When Av-cdh makes a query to the CDHO(i′, j′), then
Av-cdh does the following:

1. If not (i′ ≤ i) or not (j′ ≤ j) then output ⊥
2. If (i′ = i∗) and (j′ = j∗) then abort

3. If (i′ 6= i∗) then return B
ki′
j′

4. Return K
bj′

i′

Note that Av-cdh can reply to all queries except when i′ = i∗ and j′ = j∗ in which case it will abort.
When Av queries the Gv-cdh-muc

G,g,p .DDHO(i′, j′, Z) and i′ = i∗ and j′ = j∗, Av-cdh queries its own
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oracle Gv-cdh
G,g,p .DDHO(Z) and forwards the response. Otherwise it can use one of the secrets ki′ or

bj′ as above.

Finally, Av outputs (i′, j′, Z ′) as its solution. Let E be the event that i′ = i∗ and j′ = j∗, in which
case Av-cdh stops with output Z ′. Otherwise, it aborts. Then we have

Pr[Gv-cdh
G,g,p (Av-cdh)] = Pr[Gv-cdh-muc

G,g,p (Av) ∩ E]

= Pr[Gv-cdh-muc
G,g,p (Av)] · Pr[E]

≥ Pr[Gv-cdh-muc
G,g,p (Av)] ·

1

qnkqnb
.

This gives us

Advv-cdh-muc
G,g,p (Av) ≤ qnkqnb ·Advv-cdh

G,g,p (Av-cdh) ,

which is Eq. (11). Observe that we can prove Eq. (12) in the same way, omitting the DDHO.

To bound the running time, note that Av-cdh performs one exponentiation for each of Av’s oracle
queries, unless the query involves i∗ or j∗.

I Proof of Theorem 5.2

Proof of Theorem 5.2: We use the fact that DDH ⇒ DDH-MU with a tight reduction by
a standard re-randomization argument. We construct an adversary Addh-mu that plays in game
Gddh-mu

G,g,p and uses an adversary Av playing in game Gv-cdh-muc
G,g,p . Adversary Addh-mu responds to

oracle queries as follows. When Av queries Gv-cdh-muc
G,g,p .NewKey or Gv-cdh-muc

G,g,p .NewBase, Addh-mu

simply calls its own oracles and forwards the group elements Ki and Bj , respectively. When Av

queries its CDHO(i′, j′) oracle, Addh-mu queries CH(i′, j′) to get a DDH challenge Zi′,j′ and gives
it to Av. Similarly, when Av queries its DDHO(i′, j′, Z ′) and Addh-mu has not yet asked for Zi′,j′ ,
it does this first and then replies with [[Zi′,j′ = Z ′]]. Finally, Av will output a solution (i′, j′, Z ′).
Again, if Addh-mu has not asked its CH oracle yet, it will do so. Then if [[Zi′,j′ = Z ′]], Addh-mu

stops with 1 (“real”). Otherwise, it stops with 0 (“random”).

Let c be the challenge bit used in game Gddh-mu
G,g,p . To analyze the advantage of Addh-mu, we observe

that if c = 1, then Addh-mu perfectly simulates Gv-cdh-muc
G,g,p for Av and it wins whenever Av wins.

We get

Pr[Addh-mu ⇒ 1 | c = 1] = Pr[Gcdh-muc
G,g,p (Av)] .

If c = 0, then Addh-mu outputs random group elements to Av and also uses those to answer DDHO

queries. We analyze the probability that Addh-mu nevertheless outputs 1. This will happen if Av

queries the DDHO oracle on one of the random group elements Zi′,j′ for any pair (i′, j′) for which
it has not previously queried the CDHO. Due to the latter, such a Zi′,j′ is independent of Av’s
view. Thus, for each query, the probability is 1/p. If no such query happens, this may for the final
output of Av. Therefore, we get

Pr[Addh-mu ⇒ 1 | c = 0] ≤
QDDHO(Av) + 1

p
,
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Putting the above together gives us

Advddh-mu
G,g,p (Addh-mu) = Pr[Addh-mu ⇒ 1 | c = 1]− Pr[Addh-mu ⇒ 1 | c = 0]

≥ Pr[Gcdh-muc
G,g,p (Av)]−

QDDHO(Av) + 1

p
,

which is Eq. (13) in Theorem 5.2.

J Proof of Theorem 6.1

Proof of Theorem 6.1: Each Run query of Aini consists of a pair x0,x1 of equal-length vectors
over {0, 1}∗, and a key k ∈ Zp for 2HDH. Let x0,i,x1,i be the vectors in the i-th query. Let S be
the union, over all c ∈ {0, 1} and i ∈ {1, . . . ,QRun(Aini)}, of the sets V2S(xc,i). Let BD be the
event that there is an x ∈ S with RO(1, x) = 1 being the identity element of the group G. If this
bad event does not happen, then w = RO(1, x) ∈ G

∗ is a generator for all x ∈ S, and thus wr is
uniformly distributed over G

∗ when r←$ Z
∗

p. So if the bad event does not happen, the adversary
has zero advantage. Its advantage is thus bounded above by the probability of BD. This is at most
the probability that the execution of the game with Aini makes a RO(1, ·) query that returns 1.
Recalling that QRO(Aini) counts both the queries made directly by Aini and the ones made by the
protocol in the execution of the game with Aini, the probability of BD is at most QRO(Aini).

K Proof of Theorem 6.2

Proof of Theorem 6.2: We prove OPRF-PR security of 2HDH with different bounds, depending
on which problem we use. We will first give a tight reduction from V-CDH-MUC. After that
we show how to modify it for CDH-MUC, which incurs a loss linear in the number of random
oracle queries. The bounds for V-CDH, CDH and DDH then follow from the relations proven in
Theorems 5.1 and 5.2.

Proof for xx = v-cdh-muc. We will use the games G0, G1 and G2 shown in Figure 19, where
the boxed code is only included in G0 and line 32 is only included in G0 and G1. In all games,
the RO oracle runs the method H1 when queried with signature (1, ·) and H2 when queried with
signature (2, ·, ·, ·). The H1 method returns a random element from G and H2 returns a random
element from {0, 1}`. This is the same as what the random oracle for 2HDH does. In all games
the TR is the same. When queried on input (i′,x), it generates the transcript τ = (b, z, gki′ )
with b[j′] = H1(x[j

′])r[j
′], z[j′] = H1(x[j

′])ki′r[j
′] for key ki′ , j

′ ∈ {1, . . . , |x|} and r[j′]←$ Z
∗

p. It

generates the output y with y[j′] = H2(g
ki′ ,x[j′],H1(x[j

′])ki′ ), and returns (y, τ, r). This is same

as TR oracle in Goprf-pr
Π2HDH,2HDH

. The game further uses a set CK to store keys queried to H2 and sets
a flag bad1 if the New oracle picks a key that was previously queried to H2. If bad1 is set, then the
CH will compute the output for c = 1 honestly using H2. Otherwise, it will pick a fresh random
value which it stores in a table T. If H2 is later queried on the respective input, we set a flag bad2
and return the random value stored in T. Therefore, G0 proceeds exactly as Goprf-pr

Π2HDH,2HDH
and we

have

Pr[Goprf-pr
Π2HDH,2HDH

(Aoprf)] = Pr[G0(Aoprf)] . (22)
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In G1 we drop the boxed code, but we keep line 32 for now. Essentially, this step ensures that the
final reduction will work and that the adversary does not query the random oracle before the key is
picked. Games G0,G1 are identical-until-bad1, so by the Fundamental Lemma of Game Playing [15]
we have

Pr[G0(Aoprf)] = Pr[G1(Aoprf)] + Pr[G0(Aoprf)]− Pr[G1(Aoprf)] (23)

≤ Pr[G1(Aoprf)] + Pr[G1(Aoprf) sets bad1] . (24)

Since the keys are chosen uniformly at random from Zp, we can show that the probability that bad1
is set is low. More specifically, since there are QNew(Aoprf) keys and QRO(Aoprf) random oracle
queries, we can upper bound the probability by

Pr[G1(Aoprf) sets bad1] ≤
QNew(Aoprf) ·Q

RO(Aoprf)

p
(25)

Finally, in 2 we also drop line 32. Since G1 and G2 only differ in the code after flag bad2 is set, the
Fundamental Lemma of Game Playing [15] gives us

Pr[G1(Aoprf)] = Pr[G2(Aoprf)] + Pr[G1(Aoprf)]− Pr[G2(Aoprf)] (26)

≤ Pr[G2(Aoprf)] + Pr[G2(Aoprf) sets bad2] . (27)

First, we argue that

Pr[G2(Aoprf)] =
1

2
, (28)

which can be justified by observing that the adversary’s view is independent of the challenge bit c.
This is because CH outputs uniformly random values from {0, 1}` independent of c and the table
T is not used in H2.

Finally, we bound the probability of bad2 being set. For this we give an adversary Av-cdh-muc playing
the Gv-cdh-muc

G,g,p game using the adversary Aoprf which is playing game G2. We show Av-cdh-muc on

the left of Figure 20. Whenever Aoprf sets the bad2 flag in G2, Av-cdh-muc wins the G
v-cdh-muc
G,g,p game.

Av-cdh-muc uses an additional table TCH to map input strings x to indices j′. On the jth query to
RO(1, ·), it queries its own CH and assigns j to TCH[x]. This is necessary to call oracles CDHO,
DDHO and Finalize on the correct inputs. We get

Pr[G2(Aoprf) sets bad2] ≤ Advv-cdh-muc
G,g,p (Av-cdh-muc) , (29)

Note that

QNewKey(Av-cdh-muc) = QNew(Aoprf)

QNewBase(Av-cdh-muc) ≤ QRO(Aoprf)

QDDHO(Av-cdh-muc) ≤ QRO(Aoprf)

QCDHO(Av-cdh-muc) ≤ |x1|+ · · · |xqtr | ,

where qtr = QTR(Aoprf) and |xj | is the length of the vector from the j-th TR query.

We now put the above equations together to conclude. For brevity, we let gi = Pr[Gi(Aoprf)];

ε = Advoprf-pr
Π2HDH,2HDH

(Aoprf); ε
′ = Advv-cdh-muc

G,g,p (Av-cdh-muc); δ = (QNew(Aoprf) ·Q
RO(Aoprf))/p. Then
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Game G0 , G1, G2

Initialize:

1 c← {0, 1} ; Return ε

New:

2 i← i+ 1 ; ki←$ Zp

3 If gki ∈ CK then bad1 ← 1

4 Return ε

TR(i′,x):

5 If not (i′ ≤ i) then return ⊥

6 If (∃ j′ : T[i′,x[j′]] 6= ⊥) then return ⊥

7 r, b,u,y, z ← ∅

8 For j′ = 1, . . . , |x| do

9 If HT1[x[j
′]] = ⊥ then m← RO(1,x[j′])

10 r[j′]←$ Z
∗

p ; b[j′]← HT1[x[j
′]]r[j

′] ; z[j′]← b[j′]ki′

11 u[j′]← HT1[x[j
′]]ki′ ; y[j′]← RO(2, (gki′ ,x[j′],u[j′]))

12 T[i′,x[j′]]← y[j′]

13 τ ← (b, z, gki′ )

14 Return (y, τ, r)

CH(i′, x):

15 If not (i′ ≤ i) then return ⊥

16 If T[i′, x] = ⊥ then

17 If c = 1 then

18 S ← S ∪ {(i′, x)} ; z←$ {0, 1}`

19 If bad1 then z ← RO(2, (gki′ , x,RO(1, x)ki′ ))

20 T[i′, x]← z

21 Else T[i′, x]←$ {0, 1}`

22 Return T[i′, x]

RO(X):

23 (b, x)← X

24 If (b = 1) then x← x ; Return H1(x)

25 If (b = 2) then (P, x, u)← x ; Return H2(P, x, u)

H1(x):

26 If HT1[x] = ⊥ then HT1[x]←$ G

27 Return HT1[x]

H2(P, x, u):

28 If HT2[P, x, u] = ⊥ then

29 CK ← CK ∪ {P}

30 If (∃i′ s.t. P = gki′ ) and ((i′, x) ∈ S) and (u = HT1[x]
k
i′ ) then

31 bad2 ← true

32 Return T[i′, x] // G0, G1

33 HT2[P, x, u]←$ {0, 1}`

34 Return HT2[P, x, u]

Finalize(c′):

35 Return [[c′ = c]]

Figure 19: Games used for the analysis in proof of Theorem 6.2. The boxed code is only included in G0.
Line 32 is only included in G0 and G1.

from Eq. (22) through Eq. (29), we get

ε = 2g0 − 1 = 2(g0 − g1) + (2g1 − 1) ≤ 2δ + (2g1 − 1)

= 2δ + 2(g1 − g2) + (2g2 − 1) = 2δ + 2ε′ + (2(1/2)− 1) = 2δ + 2ε′

which is the bound for xx = v-cdh-muc.

Proof for xx = cdh-muc. We use the same games G0, G1 and G2 described in Figure 19 and
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used in the previous analysis. From combing Eq. (22) through Eq. (28), we get

Advoprf-pr
Π2HDH,2HDH

(Aoprf) ≤ 2Pr[G2(Aoprf) sets bad2] +
2QNew(Aoprf) ·Q

RO(Aoprf)

p
.

Here we want to bound bad2 differently, namely via an adversary Acdh-muc playing the Gcdh-muc
G,g,p

game. Let q = QRO(Aoprf). On the right of Figure 20 we give Acdh-muc which uses adversary Aoprf

playing the game Goprf-pr
Π2HDH,2HDH

. On Initialize, adversary Acdh-muc selects j∗←$ {1, . . . , q} and
initializes t ← 0. It simulates the TR and CH oracles as well as the H1 method as the adversary
Av-cdh-muc constructed in Theorem 6.2. The value of t is incremented by 1 in every RO query.
When RO oracle is queried with input (2, P, x, u) and the H2 method is called, then the simulation
differs from the previous proof because Acdh-muc does not have a DDHO oracle. Instead, when
(t = j∗) and P corresponds to a key Ki′ output by Acdh-muc’s NewKey oracle and TCH[x] 6= ⊥,
then H2 calls Finalize for (i′,TCH[x], u). Recall that if RO(1, x) has been queried, then TCH[x]
stores some index j′ for which Acdh-muc hopes to solve CDH. Otherwise it returns z←$ {0, 1}`.

Let E be the event that the j∗th RO query that Aoprf makes is indeed of the form (gki′ , x,HT1[x]
ki′ )

for some i′ ≤ i and x previously used in a CH query. We get

Pr[G2(Aoprf) sets bad2 ∩ E] ≤ Advcdh-muc
G,g,p (Acdh-muc) .

By using that Pr[G2(Aoprf) sets bad2 ∩ E] = Pr [ E | G2(Aoprf) sets bad2 ] · Pr[G2(Aoprf) sets bad2]
and Pr [ E | G2(Aoprf) sets bad2 ] ≥ 1/q, we get

Pr[G2(Aoprf) sets bad2] ≤ q ·Advcdh-muc
G,g,p (Acdh-muc) ,

which yields the bound for xx = cdh-muc. Finally, note that

QNewKey(Acdh-muc) = QNew(Aoprf)

QNewBase(Acdh-muc) ≤ QRO(Aoprf)

QCDHO(Acdh-muc) ≤ |x1|+ · · · |xqtr | ,

where qtr = QTR(Aoprf) and |xj | is the length of the vector from the j-th TR query.

Proof for xx = v-cdh. We use the result from xx = v-cdh-muc and combine it with Eq. (11)
from Theorem 5.1. The bound follows by observing that the number of NewKey and NewBase

queries translate to the number of New and RO queries, respectively.

Proof for xx = cdh. Here we use the result from xx = cdh-muc and combine it with Eq. (12)
from Theorem 5.1. Similar to the previous case, the bound follows by observing that the number
of NewKey and NewBase queries translate to the number of New and RO queries, respectively.

Proof for xx = ddh. We use the result from xx = v-cdh-muc and combine it with Theorem 5.2.
This gives a tight bound based on the DDH problem assuming that the additional term is negligible,
which is the case for standard group sizes such as log(p) = 256.

This concludes the proof of Theorem 6.2.
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Adversary Av-cdh-muc

. Run Aoprf , responding to its oracle queries as follows:

New:

1 i← i+ 1 ; Ki ← G
v-cdh-muc
G,g,p .NewKey ; Return ε

TR(i′,x):

2 If not (i′ ≤ i) then return ⊥

3 If (∃ j′ : T[i′,x[j′]] 6= ⊥) then return ⊥

4 r, b,u,y, z ← ∅

5 For j′ = 1, . . . , |x| do

6 If HT1[x[j
′]] = ⊥ then m← RO(1,x[j′])

7 r[j′]←$ Z
∗

p

8 b[j′]← HT1[x[j
′]]r[j

′]

9 z[j′]← G
v-cdh-muc
G,g,p .CDHO(i′,TCH[x[j

′]])

10 y[j′]←$ {0, 1}`

11 T[i′,x[j′]]← y[j′]

12 τ ← (b, z,Ki′)

13 Return (y, τ, r)

CH(i′, x):

14 If not (i′ ≤ i) then return ⊥

15 If T[i′, x] = ⊥ then

16 S ← S ∪ {(i′, x)}

17 T[i′, x]←$ {0, 1}`

18 Return T[i′, x]

RO(X ′):

19 (b, x)← X ′

20 If (b = 1) then x← x ; Return H1(x)

21 If (b = 2) then (P, x, u)← x ; Return H2(P, x, u)

H1(x):

22 If HT1[x] = ⊥ then

23 j ← j + 1 ; TCH[x]← j

24 HT1[x]← G
v-cdh-muc
G,g,p .NewBase

25 Return HT1[x]

H2(P, x, u):

26 If HT2[P, x, u] = ⊥ then

27 If (∃i′ s.t. P = Ki′) and ((i′, x) ∈ S)

and (Gv-cdh-muc
G,g,p .DDHO(i′,TCH[x], u))) then

28 G
v-cdh-muc
G,g,p .Finalize(i′,TCH[x], u)

29 HT2[P, x, u]←$ {0, 1}`

30 Return HT2[P, x, u]

Adversary Acdh-muc

. Run Aoprf , responding to its oracle queries as follows:

Initialize:

1 j∗←$ {1, . . . , q} ; t← 0 ; Return ε

New:

2 i← i+ 1 ; Ki ← G
cdh-muc
G,g,p .NewKey ; Return ε

TR(i′,x):

3 If not (i′ ≤ i) then return ⊥

4 If (∃ j′ : T[i′,x[j′]] 6= ⊥) then return ⊥

5 r, b,u,y, z ← ∅

6 For j′ = 1, . . . , |x| do

7 If HT1[x[j
′]] = ⊥ then m← RO(1,x[j′])

8 r[j′]←$ Z
∗

p

9 b[j′]← HT1[x[j
′]]r[j

′]

10 z[j′]← G
cdh-muc
G,g,p .CDHO(i′,TCH[x[j

′]])

11 y[j′]←$ {0, 1}`

12 T[i′,x[j′]]← y[j′]

13 τ ← (b, z,Ki′)

14 Return (y, τ, r)

CH(i′, x):

15 If not (i′ ≤ i) then return ⊥

16 If T[i′, x] = ⊥ then

17 S ← S ∪ {(i′, x)}

18 T[i′, x]←$ {0, 1}`

19 Return T[i′, x]

RO(X ′):

20 (b, x)← X ′ ; t← t+ 1

21 If (b = 1) then x← x ; Return H1(x)

22 If (b = 2) then (P, x, u)← x ; Return H2(P, x, u)

H1(x):

23 If HT1[x] = ⊥ then

24 j ← j + 1 ; TCH[x]← j

25 HT1[x]← G
cdh-muc
G,g,p .NewBase

26 Return HT1[x]

H2(P, x, u):

27 If HT2[P, x, u] = ⊥ then

28 If (t = j∗) and (∃i′ s.t. P = gki′ ) then

29 G
cdh-muc
G,g,p .Finalize(i′, j∗, u)

30 HT2[P, x, u]←$ {0, 1}`

31 Return HT2[P, x, u]

Figure 20: Left: Adversary Av-cdh-muc playing Gv-cdh-muc
G,g,p using Aoprf which is playing the OPRF-PR game.

Right: Adversary Acdh-muc playing Gcdh-muc
G,g,q using Aoprf which is playing the OPRF-PR game.

L Proof of Theorem 7.1

Proof of Theorem 7.1: Starting with correctness, a violation of it can only occur if there are i, j
such that x1[i] 6= x2[j] but H2(η,K,x1[i],d[i]) = H2(η,K,x2[j], c[j]), meaning there is a collision
for H2 for some η ∈ {0, 1}sl and K ∈ G. To bound the collision probability, suppose that the sizes
of the two sets in the adversary’s i-th Run query are si,1, si,2, respectively. Then

Advcorr
F,Π (Acorr) ≤

∑

i

si,1 · si,2
2hl

≤
M2

2hl
,

which is Eq. (17).

We turn to client security which is almost identical to that of 2HDH. The only difference is that
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Game G0 , G1

Initialize:

1 b←$ {0, 1}

Run(S1, S2,0, S2,1):

2 η←$ {0, 1}sl ; k←$ Zp ; K ← gk ; E[K]← k ; s1 ← |S1| ; x1 ← S2V(S1)

3 I ← S1 ∩ S2,0 ; s2 ← |S2,0| // By assumption we also have I = S1 ∩ S2,1 and s2 = |S2,1|

4 If η ∈ Cη then bad1 ← 1

5 For i = 1, . . . , s1 do

6 y←$ Zp ; Y ← gy ; ri←$ Z
∗

p ; b[i]← Kyri ; f(x1[i])← Ky

7 If bad1 then Y ← RO(1, η,x1[i]) ; b[i]← Y kri ; f(x1[i])← Y k

8 HT1[η,x[i]]← Y ; a1[i]← Y ri

9 For all x ∈ (S2,0 ∪ S2,1) \ S1 do

10 RO(1, (η, x))

11 Pick a random bijection π : [1..s2]→ S2,b

12 For i = 1, . . . , s2 do

13 x← π(i) ; a2[i]←$ {0, 1}hl

14 If bad1 then L← HT1[η, x]
k ; a2[i]← RO(2, (η,K, x, L))

15 If x ∈ S1 then a2[i]← RO(2, (η,K, x, f(x)))

16 Else T[η,K, x]← a2[i]

17 τ ← ((η,a1), (K, b,a2)) ; Return (τ, (r1, . . . , rs1))

RO(l,X):

18 If (HTl[X] = ⊥) then

19 If (l = 1) then (η, x)← X ; HT1[η, x]←$ G ; Cη ← Cη ∪ {η}

20 Else

21 (η,K, x, L)← X ; HT2[X]←$ {0, 1}hl ; Cη ← Cη ∪ {η}

22 If (T[η,K, x] 6= ⊥) and (L = HT1[η, x]
E[K]) then

23 bad2 ← 1 ; HT2[X]← T[η,K, x]

24 Return HTl[X]

Finalize(b′):

25 Return [[b′ = b]]

Figure 21: Games G0,G1 for the proof of Theorem 7.1. Game G0 includes the boxed code and G1 does not.

the client sends values of the form X = H1(η, x)
r. Let’s think of η, x as fixed and known to the

adversary. Using the same argument as in the proof of Theorem 6.1 given in Appendix J, let BD be
the event that there is an x in the union of all client sets used in Run queries such that RO(1, η, x) is
the identity element of the group G. If this bad event does not happen, then w = RO(1, η, x) ∈ G

∗

is a generator for all x ∈ S, and thus wr is uniformly distributed over G∗ when r←$ Z
∗

p. Eq. (18)

follows by observing that the probability of BD is at most QRO(Aini), where Q
RO(Aini) counts both

the queries made directly by Aini and the ones made by the protocol in the execution of the game
with Aini.

We now turn to the main claim, namely server security. As the theorem statement says, we will show
different bounds on server security depending on the problem that is considered for the underlying
group G.

Proof for xx ∈ {v-cdh, v-cdh-muc}. To make it simpler we show the reduction by creating an
adversary Av-cdh-mu playing the V-CDH-MU game using Aini and then use V-CDH→ V-CDH-MU
and V-CDH-MUC→ V-CDH-MU to get the bounds claimed in Eq. (20). The idea is to start with
a game that is the same as Gini

F,Π,2, but already incorporates conceptual changes to prepare for the
reduction, and then move to a game where the adversary’s view is independent of the challenge bit.

Let q = QRun(Aini). Consider the games G0,G1 of Figure 21, where G0 contains the boxed code
and G1 does not. Our first claim is that G0 captures the InI game, meaning

Pr[Gini
F,Πpsi,2(Aini)] = Pr[G0(Aini)] . (30)
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Let us explain and justify this. Throughout, for l ∈ {1, 2}, table HTl[·] holds the value of Hl[·].
We create the games to allow NewKey outputs to be embedded as the keys used in Run oracle
responses. Similarly, NewBase outputs will be embedded as the responses of H1[η, x], but only for
those pairs (η, x), where x is not in the client set for any Run oracle query. The set Cη stores all
the salt values that have been queried to the random oracle. We will use this set to identify when
programming the random oracle will fail.

Responses to the different Run queries use independent keys. This is done by picking a key at
random at line 2. A random salt η is also chosen at line 2. However, if the salt has already
appeared in any random oracle query, then a flag bad1 is set in line 4. Now the game creates
a1, b,a2 for the transcript. For the latter two, the protocol would use the server key, here k.
The intent of the game is to not use k so that later K = gk can play the role of the NewKey

output. The vectors a1 and b need to be created using the elements in the client set. Thus, for
these the game simply picks an exponent y and sets HT1[η,x1[i]] = gy. This allows it to compute
H1(η,x1[i])

k as Ky which it needs to create b. However, this programming is not possible if a
query RO(1, (η,x1[i])) was made prior to this Run oracle query. This is where the salt will come
in, ensuring (as we will show later) that this bad event has low probability. For now, at line 6,
the game optimistically picks y and creates Y = gy as the intended value of HT1[η,x1[i]]. If the
bad1 flag has been previously set to true, then the boxed code reverts the optimistic choices to the
correct ones, for this purpose using k directly. The result is that, whether or not bad1 was set, a1

and b are correctly created in G0.

The next step is to form a2 correctly while facilitating the embedding of NewBase oracle outputs.
This is done via a combination of programming in Run and RO oracles. The loop at line 9 ensures
that all elements in either of the server sets but not in the client set have the table entry HT1[η, x]
filled with a random group element (later used for NewBase challenges). To properly create a2,
one must also randomly permute the elements of the server set as in the protocol. The game does
this by explicitly picking π at line 11 based on which it creates a2 entries in the loop at line 12. If
the bad1 flag was previously set, then the boxed code of the game computes the entries of a2 by
using k and querying the random oracle directly. It does the same for x that are in the client set
since all the inputs for the random oracle query can be computed without k. Otherwise, a random
value from appropriate range is picked at line 13 and stored in an additional table T. This is done
so that later when a RO(2, (η, gk, x, L)) query is made such that L = H1(η, x)

k, the same response
can be given. This is done at line 23, where we also set a flag bad2. For now, this ensures that a2

is consistent with H2 and completes our justification of Eq. (30).

Game G1 simply drops the boxed code. The benefit from this is that it does not use k except
for checking the condition at line 22. We will exploit this later. Note that we will first drop the
code after bad1 and in the next step we will look at bad2. For now, we note that games G0,G1 are
identical-until-bad1, so by the Fundamental Lemma of Game Playing [15] we have

Pr[G0(Aini)] = Pr[G1(Aini)] + Pr[G0(Aini)]− Pr[G1(Aini)] (31)

≤ Pr[G1(Aini)] + Pr[G1(Aini) sets bad1] . (32)

The probability that game G1 sets bad1 is at most the probability that η, as chosen at line 2, arose
in a prior RO query, which is at most (QRO(Aini) + QRun(Aini)) · 2

−sl . Taking the union bound
over all Run queries, we get

Pr[G1(Aini) sets bad1] ≤
QRun(Aini) ·Q

RO(Aini) + (QRun(Aini))
2

2sl
. (33)

51



Game G2 , G3

Initialize:

1 b←$ {0, 1}

Run(S1, S2,0, S2,1):

2 η←$ {0, 1}sl ; k←$ Zp ; K ← gk ; E[K]← k ; s1 ← |S1| ; x1 ← S2V(S1)

3 I ← S1 ∩ S2,0 ; s2 ← |S2,0| // By assumption we also have I = S1 ∩ S2,1 and s2 = |S2,1|

4 For i = 1, . . . , s1 do

5 y←$ Zp ; Y ← gy ; ri←$ Z
∗

p ; b[i]← Kyri ; f(x1[i])← Ky

6 HT1[η,x[i]]← Y ; a1[i]← Y ri

7 For all x ∈ (S2,0 ∪ S2,1) \ S1 do

8 RO(1, (η, x))

9 Pick a random bijection π : [1..s2]→ S2,b

10 For i = 1, . . . , s2 do

11 x← π(i)

12 If x ∈ S1 then a2[i]← RO(2, (η,K, x, f(x)))

13 Else a2[i]←$ {0, 1}hl ; T[η,K, x]← a2[i]

14 τ ← ((η,a1), (K, b,a2)) ; Return (τ, (r1, . . . , rs1))

RO(l,X):

15 If (HTl[X] = ⊥) then

16 If (l = 1) then (η, x)← X ; HT1[η, x]←$ G ; Cη ← Cη ∪ {η}

17 Else

18 (η,K, x, L)← X ; HT2[X]←$ {0, 1}hl ; Cη ← Cη ∪ {η}

19 If (T[η,K, x] 6= ⊥) and (L = HT1[η, x]
E[K]) then

20 bad2 ← 1 ; HT2[X]← T[η,K, x]

21 Return HTl[X]

Finalize(b′):

22 Return [[b′ = b]]

Figure 22: Games G2,G3 for the proof of Theorem 7.1. Game G2 includes the boxed code and G3 does not.

We now consider the games G2 and G3 in Figure 22, where the former includes the boxed code and
the latter does not. We claim that

Pr[G2(Aini)] = Pr[G1(Aini)] , (34)

which follows directly by observing that G2 is obtained from G1 by dropping unused code.

Finally, in G3 we also drop the code after bad2. The two games are identical-until-bad2 and by the
Fundamental Lemma of Game Playing [15] we have

Pr[G2(Aini)] = Pr[G3(Aini)] + Pr[G2(Aini)]− Pr[G3(Aini)] (35)

≤ Pr[G3(Aini)] + Pr[G3(Aini) sets bad2] . (36)

We bound Pr[G3(Aini) sets bad2] using the advantage of an adversary Av-cdh-mu playing the game
Gv-cdh-mu

G,g,p . To this end, we construct the Av-cdh-mu using Aini. The adversary Av-cdh-mu picks a
random bit b, initializes values i, i∗, j, j∗ with 0 and Z with ⊥ and runs Aini. It answers oracle
queries from Aini using the same code as in the Run and RO oracles of G3 except some minor
differences which we highlight. In line 2 instead of randomly picking k and then computing K = gk,
adversary Av-cdh-mu just makes a query as K ← NewKey to get a random key. Note that since
we are trying to simulate G3, we don’t need k. The value i is incremented every time a NewKey

oracle call is made and Av-cdh-mu maintains a table T1 to track the value i corresponding to a K.

The next difference comes at line 16 where instead of picking the group element for HT1[η, x], the
adversary Av-cdh-mu calls NewBase oracle and uses the output. At this point j is incremented and
a table T2 is used to track this j corresponding to (η, x).

The last difference is in line 19. Here the checks are performed differently, although with the same
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goal. Using (η,K, x, L) ← X, adversary Av-cdh-mu gets i′ ← T1[K] and j′ ← T2[(η, x)]. Then if
i′, j′ are not ⊥ it queries DDHO(i′, j′, L) to complete all the checks needed in line 19. If successful,
it stores i∗ ← i′, j∗ ← j′ and Z ← L.

Finally, when Aini completes, Av-cdh-mu returns (i∗, j∗, Z). It is easy to see that if G3(Aini) sets bad2
then Aini wins its game. This gives us

Pr[G3(Aini) sets bad2] ≤ Advv-cdh-mu
G,g,p (Av-cdh-mu) .

Using V-CDH→ V-CDH-MU and V-CDH-MUC→ V-CDH-MU, we get

Pr[G3(Aini) sets bad2] ≤ Advv-cdh
G,g,p (Av-cdh) ,

Pr[G3(Aini) sets bad2] ≤ Advv-cdh-muc
G,g,p (Av-cdh-muc)

where Av-cdh and Av-cdh-muc are adversaries playing the games Gv-cdh
G,g,p and Gv-cdh-muc

G,g,p respectively.

The running time for Av-cdh increases by at most (QRun(Aini) +M +QRO(Aini)) group exponenti-
ations while it remains the same as Av-cdh-mu for Av-cdh-muc.

Our final claim is that Aini has no advantage in predicting the bit b in the game G3, namely that

Pr[G3(Aini)] =
1

2
. (37)

We justify this claim using the following observation. The bit b is used to determine which server
set (S2,0 or S2,1) to use to construct a2. This, in turn, means that any information about b that
the adversary gets needs to come from a2 entries for elements x /∈ I. For any such element, a2

entry is always a uniformly random value from {0, 1}hl . This means adversary gets no information
about b, which gives us Eq. (37).

We now put the above equations together to conclude. For brevity, in the following, we let
gi = Pr[Gi(Aini)]; ε = Advini

F,Πpsi,2(Aini); ε′ ∈ {Advv-cdh
G,g,p (Av-cdh),Advv-cdh-muc

G,g,p (Av-cdh-muc)}; δ =

QRun(Aini) · (Q
RO(Aini) + QRun(Aini)) · 2

−sl . Then from the above we have

ε = 2g0 − 1 = 2(g0 − g1) + (2g1 − 1) ≤ 2δ + (2g2 − 1) (38)

= 2δ + 2(g2 − g3) + (2g3 − 1) = 2δ + 2ε′ + (2(1/2)− 1) = 2δ + 2ε′ (39)

which are the bounds for xx ∈ {v-cdh, v-cdh-muc}.

Proof for xx = ddh. Using Theorem 5.2 and the above result for xx = v-cdh-muc, we get the
claimed bound for xx = ddh.

Proof for xx ∈ {cdh, cdh-muc}. Again, to make things easier, we construct an adversary Acdh-mu

playing the CDH-MU game using Aini. Then, using CDH → CDH-MU and CDH-MUC →
CDH-MU we arrive at the claimed results. We will use the games G0,G1,G2 and G3 from above
for the analysis. The idea is similar as before. Using Eq. (30) through Eq. (37), we get

Pr[Gini
F,Πpsi,2(Aini)] ≤

QRun(Aini) ·Q
RO(Aini) + (QRun(Aini))

2

2sl
+ Pr[G3(Aini) sets bad2] +

1

2
. (40)

Now we construct Acdh-mu using Aini. This will allow us to bound the probability of Aini setting
bad2 in G3 using the advantage of Acdh-mu in winning Gcdh-mu

G,g,p . Let q = QH(Aini). Adversary
Acdh-mu works similar to Av-cdh-mu from above with some differences arising due to the absence of
DDHO oracle. We highlight the differences. Along with the values b, i, i∗, j, j∗ and Z, Acdh-mu also
picks a value c∗←$ {1, . . . , q} and initializes another c ← 0. The value c is incremented in every
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RO oracle query made by Aini. When RO(`,X) query turns (c = c∗) along with having (` = 2) and
the input (η,K, x, L) ← X such that T1[K] 6= ⊥ and T2[(η, x)] 6= ⊥, Acdh-mu makes i∗ ← T1[K],
j∗ ← T2[(η, x)] and Z ← L. Finally, when Aini completes Acdh-mu returns (i∗, j∗, Z).

Let E be the event that the c∗-th RO oracle query made by Aini passes the conditions in line 19
(which would ensure Acdh-mu wins) of G3. Then we have

Pr[G3(Aini) sets bad2 ∩ E] ≤ Advcdh-mu
G,g,p (Acdh-mu)

Pr[G3(Aini) sets bad2] · Pr [ E | G3(Aini) sets bad2 ] ≤ Advcdh-mu
G,g,p (Acdh-mu) .

If G3(Aini) sets bad2, Aini makes at least one RO oracle query which passes the conditions in line 19.
This means Pr [ E | G3(Aini) sets bad2 ] ≥ 1/q. And so we get

Pr[G3(Aini) sets bad2] ≤ q ·Advcdh-mu
G,g,p (Acdh-mu) .

Using CDH→ CDH-MU, this gives us

Pr[G3(Aini) sets bad2] ≤ q ·Advcdh
G,g,p(Acdh) , (41)

for an adversary Acdh playing the game Gcdh
G,g,p. The running time of Acdh increases by at most

(QRun(Aini) + M + QRO(Aini)) group exponentiations. And using CDH-MUC → CDH-MU, the
above gives us

Pr[G3(Aini) sets bad2] ≤ q ·Advcdh-muc
G,g,p (Acdh-muc) , (42)

for an adversary Acdh playing the game Gcdh
G,g,p with the same running time as Acdh-mu.

Using Eq. (40) and Eq. (41), we get

Pr[Gini
F,Πpsi,2(Aini)] ≤ q ·Advcdh

G,g,p(Acdh) +
QRun(Aini) ·Q

RO(Aini) + (QRun(Aini))
2

2sl
+

1

2

Advini
F,Πpsi,2(Aini) ≤ 2q ·Advcdh

G,g,p(Acdh) + 2 ·
QRun(Aini) ·Q

RO(Aini) + (QRun(Aini))
2

2sl
,

which is the bound for xx = cdh. And similarly using Eq. (40) and Eq. (42) we get,

Advini
F,Πpsi,2(Aini) ≤ 2q ·Advcdh-muc

G,g,p (Acdh-muc) + 2 ·
QRun(Aini) ·Q

RO(Aini) + (QRun(Aini))
2

2sl
,

which is the bound for xx = cdh-muc.
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