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Abstract: 21 
 22 
Arabidopsis leaf epidermal cells have a wide range of sizes and ploidies, but how large cells are 23 
spatially patterned alongside smaller cells remains unclear. Here, we demonstrate that the same 24 
genetic pathway that creates giant cells in sepals is also responsible for their formation in the leaf 25 
epidermis. In both sepals and leaves, giant cells are scattered among smaller cells; therefore, we 26 
asked whether the spatial arrangement of giant cells is random. By comparing sepal and leaf 27 
epidermises with computationally generated randomized tissues we show that giant cells are 28 
clustered more than is expected by chance. Our cell-autonomous and stochastic computational 29 
model recapitulates the observed giant cell clustering, indicating that clustering emerges as a result 30 
of the cell division pattern. Overall, cell size patterning is developmentally regulated by common 31 
mechanisms in leaves and sepals rather than a simple byproduct of cell growth. 32 
 33 
 34 
Teaser: The spatial pattern of giant cells becomes non-random as the surrounding cells divide.  35 
 36 
Introduction 37 
 38 
During development, initially identical cells differentiate into distinct cell types arranged in 39 
complex spatial patterns. How these patterns are formed is a central question in developmental 40 
biology. The plant epidermis is a suitable system for the study of cellular patterning. Epidermal 41 
cells comprise the outermost cell layer and are easy to view under a microscope and image at 42 
different developmental stages. Unlike in animals, where most tissue differentiation occurs during 43 
embryogenesis, plants continuously form new organs and therefore new epidermises are patterned 44 
throughout their life cycles. The Arabidopsis thaliana (hereafter Arabidopsis) mature leaf blade 45 
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epidermis contains three main cell types: stomatal guard cells, trichomes, and pavement cells (1). 46 
Stomatal guard cells surround stomatal pores through which gas exchange occurs, and trichomes 47 
are large branched hair cells that serve to discourage herbivory, among other functions (2). All 48 
other epidermal cells in the mature leaf blade epidermis (the expanded part of the leaf between the 49 
midrib and the margin) are classified as pavement cells. However, pavement cells are not a 50 
homogeneous group of cells, but rather exhibit a variety of sizes, ploidies, and shapes (3, 4). Much 51 
research has focused on the patterning of stomata (5-7) and trichomes (8, 9), leading to important 52 
insights into how the regulation of intercellular signaling, cell fate specification, the cell cycle, and 53 
polarized cell division orientation give rise to their spatial arrangement. However, the patterning 54 
of pavement cells is understudied. In particular, little is known about how some pavement cells 55 
are specified to become larger and more highly polyploid than others. 56 
 57 
Pavement cell size patterning has been studied in the Arabidopsis sepal. Pavement cells in the 58 
sepal vary in size and ploidy, with some cells reaching up to 800 μm in length (Fig. 1A) and having 59 
ploidies up to 32C (10). These very large pavement cells that have a characteristic highly 60 
anisotropic shape and bulge out of the epidermis have been named ‘giant cells’ (10), and these 61 
form when a cell endoreduplicates early during growth (10). Endoreduplication occurs when a cell 62 
replicates its DNA but does not enter mitosis or divide and instead continues to grow and increases 63 
its ploidy. Once a cell enters endoreduplication, it terminally differentiates and almost never 64 
reenters the mitotic cycle (10). Similar numbers of giant cells form on sepals within an Arabidopsis 65 
plant and among plants, but the precise spatial arrangement of giant cells differs from sepal to 66 
sepal.  67 
 68 
Forward-genetic screens have identified the genes involved in sepal giant cell patterning, and 69 
double mutant analysis has allowed these genes to be ordered within a genetic pathway (10-13) 70 
(Fig. 1). The homeodomain leucine zipper (HD-ZIP) Class IV transcription factor Arabidopsis 71 
thaliana MERISTEM LAYER1 (ATML1) promotes giant cell specification in a dose-dependent 72 
manner (11, 12). Loss of ATML1 function in sepals greatly reduces giant cell number, and 73 
overexpression of ATML1 leads to ectopic giant cell formation (Fig. 1A,C,G) (11, 12). ATML1 74 
protein concentration fluctuates in the protodermal nuclei of developing sepals (12). High 75 
concentrations of ATML1 reached during the G2 phase of the cell cycle are strongly correlated 76 
with giant cell differentiation, consistent with a model in which an ATML1 concentration that 77 
surpasses a threshold in G2 results in giant cell specification, early endoreduplication, and giant 78 
cell differentiation (12). The receptor-like kinase ARABIDOPSIS CRINKLY 4 (ACR4) functions 79 
upstream of ATML1 to promote giant cell formation (11, 12, 14-16) (Fig. 1B,H). Loss of function 80 
of ACR4 leads to a modest reduction in the number of giant cells (11) (Fig. 1A, B). The calpain 81 
protease DEFECTIVE KERNEL (DEK1) and the CDK inhibitor LOSS OF GIANT CELLS 82 
FROM ORGANS (LGO; also known as SIAMESE-RELATED 1, SMR1) function genetically 83 
downstream of ATML1 to promote giant cell formation (12) (Fig. 1H). A hypomorphic mutant 84 
dek1 allele (dek1-4) results in the complete loss of giant cells from sepals (11) (Fig. 1D). Similarly, 85 
sepals from plants homozygous for a loss-of-function mutation in LGO have no giant cells (10, 86 
11) (Fig. 1E), and overexpression of LGO increases giant cell number (11) (Fig. 1F). It is unknown 87 
whether this genetic pathway affects cell size only in the sepal or whether it is also a more general 88 
mechanism of epidermal cell size patterning in other organs.  89 
 90 
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Leaf pavement cell size is affected by the family of CDK inhibitors that includes LGO, known as 91 
the SIAMESE/SIAMESE-RELATED (SIM/SMR) family (17, 18). SMR proteins bind to cyclin 92 
CDK complexes and inhibit their phosphorylation of downstream targets (18). lgo-1 mutants lack 93 
large pavement cells and have a reduction in endoreduplication of the leaf cells as compared with 94 
those of wild type (17, 18). In lgo mutants, pavement cells that should be mature continue to divide 95 
(19). Furthermore, overexpression of the closely related paralog of LGO, SIM, results in larger and 96 
more highly endoreduplicated leaf epidermal pavement cells (17). In sepals, LGO upregulates 97 
defense response gene expression, including glucosinolate biosynthesis genes (20), whereas in 98 
leaves, ATML1 promotes the formation of ER bodies, which contain components of the 99 
glucosinolate system, in large pavement cells (21), suggesting a common role of large cells in 100 
defense response. Whether the same upstream components of the sepal giant cell pathway also 101 
function in leaf cell size patterning has not been thoroughly investigated. One study did compare 102 
pavement cell size in dek1-4 and wild-type cotyledons and found no evidence that the cells differed 103 
in ploidy (22). However, true leaves were not examined. 104 
  105 
In leaves and sepals, it is unknown whether giant cells exhibit a spatially ordered pattern across 106 
the organ, or if instead their spatial arrangement is random. Other epidermal cell types are non-107 
randomly distributed across the leaf tissue. For instance, trichomes do not form in adjacent cells 108 
due to lateral inhibition (via both activator–inhibitor and activator–depletion systems) (9), and 109 
stomata rarely differentiate in adjacent cells due to both lineage-specific division orientation and 110 
intercellular signaling (23). In contrast to stomata and trichomes, sepal giant cells can be in contact 111 
with one another. However, it is unknown whether giant cell contacts are likely to be formed by 112 
chance. Due to their large shapes, quantifying the spatial arrangement of giant cells has remained 113 
challenging, and standard methods for assessing point pattern randomness are not applicable (24-114 
26).  115 
 116 
When a leaf develops, epidermal and mesophyll cell layers grow and differentiate simultaneously. 117 
Coordination between epidermal and mesophyll layer development is apparent because stomata 118 
are positioned preferentially above mesophyll air spaces (27-29) and, in grasses, stomata are 119 
organized in rows along the sides of underlying veins (30, 31). For instance, the peptide 120 
STOMAGEN is produced in the developing mesophyll cell layer and moves to the developing 121 
epidermis to promote specification of stomatal progenitor cells (32). Whether the positioning of 122 
larger pavement cells in Arabidopsis leaves is correlated with specific features of underlying cell 123 
layers, such as vascular bundles, has yet to be investigated. 124 
 125 
Here, we imaged and analyzed large areas of leaves to obtain a holistic understanding of both the 126 
size distributions and the spatial arrangements of epidermal pavement cells in the leaf blade 127 
(excluding midrib and margin cells). We compared pavement cell sizes between wild-type leaves 128 
and leaves of mutants in genes involved in sepal giant cell formation. We discovered that the 129 
genetic pathway that controls sepal giant cell formation also has a broader role in patterning 130 
epidermal pavement cell size in leaves. We quantified the spatial organization of large cells using 131 
simulated randomized tissues and found that large cells tend to cluster together in both mature 132 
leaves and sepals. Using modeling and data analysis, we found that giant cells emerge randomly 133 
in space at early stages of development, but their spatial arrangement becomes non-random over 134 
time due to divisions of the surrounding small cells. Our computational modeling supports the 135 
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notion that a non-random clustered pattern can emerge in a cell-autonomous and stochastic 136 
manner.   137 
 138 
 139 
Results 140 
 141 
Arabidopsis leaves exhibit a large range of cell sizes, similar to sepals 142 
 143 
In sepals, giant cells are easily visible because they are highly elongated (Fig. S1A). Similarly, we 144 
observe large and highly anisotropic cells in cauline leaves that appear similar to sepal giant cells 145 
(Fig. S1B). In rosette leaves, pavement cells of the epidermis are puzzle shaped with lobes and 146 
necks, such that cell size is not readily apparent by eye (Fig. S1C). However, there is heterogeneity 147 
in pavement cell sizes in leaf epidermal tissues (4, 33). Therefore, we wondered to what extent the 148 
distribution of cell sizes observed in sepals, ranging from giant cells to small cells, also occurs in 149 
rosette leaves. We imaged large sections of the blade (excluding midrib and margin cells) of leaf 150 
1 or 2 from wild-type plants expressing a plasma membrane marker (p35S::mCitrine-RCI2A) and 151 
a nuclear marker (pUBQ::H2B-TFP) at 25 days post germination (dpg). At 25 dpg, leaves 1 and 2 152 
of the rosette are fully expanded and mature. Leaves 1 and 2 initiate simultaneously and are 153 
indistinguishable; therefore, we refer to them interchangeably as leaf 1 or 2. We segmented the 154 
epidermal cells of leaves 1 or 2 and sepals on both abaxial (bottom) and adaxial (top) sides using 155 
MorphoGraphX (34, 35) and computed their area (Fig. 2A–D). We observed that on the abaxial 156 
side, the cell size distributions for both sepals and leaves are asymmetric, with long tails 157 
representing large cells (Fig. 2E). However, the larger cells on the abaxial side of the sepals exceed 158 
the average cell size to a greater extent than those in the leaf, resulting in a more extended tail in 159 
the distribution (Fig. 2F). Still, we observed that the cell size range in the leaf and sepal are similar 160 
and the largest cells of the sepal are about the same size as the largest cells of the leaf (Fig. 2A–161 
E). We conclude that Arabidopsis leaves have a diverse range of cell sizes characterized by a long-162 
tailed distribution, similar to the abaxial side of sepals.  163 
 164 
 165 
Large cells are formed on the adaxial side as well as the abaxial side of the leaf 166 
 167 
In sepals, giant cells are restricted to the abaxial (outer) surface (Fig. 2A–B and Fig. S2A–D). We 168 
asked whether there was a difference in cell size between adaxial (top) and abaxial (bottom) 169 
surfaces of the leaf. Large cells of similar size are formed on both the adaxial and abaxial surfaces, 170 
in contrast to the sepal (Fig. 2A–F and Fig. S2A–F). However, we found that the leaf adaxial side 171 
has fewer cells per unit area (leaf replicate 1: 234 cells mm-2 on the abaxial side and 156 cells mm-172 
2 on the adaxial side, leaf replicate 2: 284 cells mm-2 on the abaxial side and 177 cells mm-2 on the 173 
adaxial side) (Fig. 2C–D and Fig. S2E–F); therefore, many cells are slightly more expanded on the 174 
adaxial side (Fig. 2D and Fig. S2F). This difference in cell density is likely attributable to the 175 
greater number of stomata and stomatal lineage cells we observed on the abaxial side compared 176 
with the adaxial side (Fig. 2C–D and Fig. S2E–F). The greater number of stomata and stomatal 177 
lineage cells on the abaxial side is reflected in the increased proportion of very small cells in the 178 
abaxial cell size distribution compared with the adaxial cell size distribution (Fig. 2E). We also 179 
observed that the abaxial cells are more lobed than the adaxial cells (Fig. 2C–D and Fig. S2E–F). 180 
Despite slight differences, the cell size distributions of the abaxial and adaxial sides of the leaf are 181 
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quite similar, particularly in the tails, where both sides exhibit a similar range of larger cells, in 182 
contrast to the sepal, where only the abaxial side has very large cells. 183 
 184 

 185 
Cell area correlates with DNA content 186 
 187 
Cell area and ploidy are positively correlated in leaf epidermal cells (4). To validate this correlation 188 
here, we measured DNA content by quantifying total fluorescence of Histone 2B-TFP 189 
(pUBQ::H2B-TFP) within each cell nucleus of the 25-dpg leaf images, which approximates to cell 190 
ploidy. Each nucleus was matched to its corresponding cell by visual inspection. As expected, a 191 
strong linear correlation between DNA content and cell area was observed for both the abaxial 192 
surfaces (R2 = 0.85 and 0.91; n = 2) and the adaxial surfaces (R2 = 0.79 and 0.82; n = 2) (Fig. 2G 193 
and Fig. S2G–H). Therefore, we focus on analyzing cell size, and infer that large cell size indicates 194 
high ploidy. 195 
 196 
We wondered whether cells of similar size on the abaxial and adaxial side of the same leaf also 197 
have a similar DNA content. We found that cells of similar DNA content are larger on the adaxial 198 
side than on the abaxial side (Fig. 2G and Fig. S2G–H), suggesting that adaxial cells have 199 
expanded more than abaxial cells.  200 
 201 
Because the largest sepal cells and the largest leaf cells had approximately the same areas, we 202 
asked whether the DNA content of these cells was also similar. We plotted the total fluorescence 203 
of Histone 2B-TFP of the cells with largest area in both the leaf and sepal (largest cells were 204 
defined as cells with areas exceeding 4308 µm2, which is the average of the 98th percentile cell 205 
areas of the three sepal replicates). We found that the total fluorescence values were very similar 206 
between sepal and leaf, suggesting that these largest cells are similar in ploidy (Fig. 2H).  207 
 208 

 209 
Cell size patterning emerges at the tip and progresses basipetally as the leaf differentiates 210 
 211 
To determine how the cell size pattern emerges in the leaf during development, we imaged both 212 
the adaxial and abaxial surfaces of each leaf at different stages of development from 5 dpg to 9 213 
dpg. After quantifying cell size (Fig. 3A–B and Fig. S3A–B), we observed that from 5 dpg to 9 214 
dpg, cell size increases greatly (Fig. S3), as expected. At day 5, cells throughout the blade are fairly 215 
homogeneous in size, with a few cells starting to expand near the distal tip, and the large cells of 216 
the margin and overlying midrib already apparent (Fig. 3A). Excluding the large margin cells and 217 
cells overlying the midrib, the cell size pattern consisting of large cells interspersed between small 218 
cells progressively develops basipetally from the tip (Fig. 3A–C), whereas at the base the cells 219 
remain uniformly small. The progression of cell size patterning down the leaf is consistent with 220 
the well-established basipetal wavefront of differentiation and cessation of cell division (36). The 221 
cell area distributions (Fig. 3D), excluding margin cells and cells overlying the midrib, showed 222 
that more large cells appear throughout development and the maximal cell size increases (Fig. 3A–223 
B, D) more than the median cell size due to the large number of stomata and small pavement cells 224 
(Fig. 3D). By 9 dpg, cell size has been patterned almost to the base of the leaf (Fig. 3A–B).  225 
 226 
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We next asked whether the wavefront of cell size patterning progresses basipetally at the same rate 227 
on the abaxial and adaxial sides of the leaf. Using images of both the abaxial and adaxial sides of 228 
the same leaf, we plotted the positions of the centers of the largest cells on both sides to 229 
qualitatively study the spatial locations of large cells. For each leaf, the area threshold determined 230 
for large cells was the same for both abaxial and adaxial sides and was taken to be the cell area of 231 
the 98th percentile on the abaxial side. We found that large cells (excluding the cells of the margin 232 
and overlying the midrib) are at the same proximal–distal position on abaxial and adaxial sides 233 
during development (Fig. 3C). These results suggest that the wavefront of patterning and 234 
differentiation is coordinated across the abaxial/adaxial axis of the leaf. 235 
 236 
Although the differentiation wavefront is coordinated across the abaxial/adaxial sides, we 237 
observed that the large cells on the blade on one side frequently did not form directly opposite the 238 
large cells on the blade on the other side (Fig. 3C), with the exception of the large cells of the 239 
margin and those overlying the midrib. This finding suggests that the cell size patterning on each 240 
side is established independently.  241 
 242 
 243 
The sepal giant cell specification pathway also patterns giant cells in leaves 244 
  245 
Because the cell size distributions have similarities in leaves and sepals, we tested whether the 246 
giant cell specification pathway in sepals (Fig. 1H) also functions in the leaf to pattern cell size. 247 
We imaged leaf 1 or 2 at both 9 dpg and 25 dpg from wild type and giant cell pathway mutants. 248 
At 9 dpg, patterning has just extended to the base of the leaf, and the leaf is still small enough that 249 
we could image the whole upper abaxial quadrant to determine the pattern over a large fraction of 250 
the leaf blade (Fig. 4 and Figs. S4, S5). At 25 dpg, the leaf is fully differentiated, fully expanded, 251 
and the pattern is established (Fig. 5 and Figs. S6, S7). We computed cell areas and compared 252 
them across genotypes at each stage. We found that cell size patterning in the leaf is similarly 253 
affected in the mutants at both 9 dpg and 25 dpg as in the mature sepal. Notably, the largest cells 254 
show similar variations in their quantities across genotypes. Similar to the sepal, the size of the 255 
largest cells is moderately reduced in acr4-2 mutants (Figs. 1B, 4B, 4H–J, 5B, 5H–I, K), and more 256 
greatly reduced in atml1-3 mutants (Figs. 1C, 4C, 4H–J, 5C, 5H–I, K). The reduction in large cells 257 
is drastic in dek1-4 and lgo-2 mutant sepals and leaves, resulting in the absence of a long tail in 258 
the cell size distribution (Figs. 1D–E, 4D–E, H–J and 5D–E, H–I, K). For these genotypes, the 259 
number of cells of medium size is also substantially decreased (Figs. 1D–E, 4D–E, I , 5D–E, I). 260 
Conversely, the overexpression of ATML1 (ATML1-OX) or LGO (LGO-OX) leads to an increase 261 
in the size of large cells and in fewer small cells compared to wild type, as in the sepal (Figs. 1F–262 
G, 4F–J, 5F–I, K). 263 
 264 
To quantify the variations in the number of large cells precisely, we quantitatively defined leaf 265 
giant cells on the basis of a cell area threshold. Specifically, we first classified pavement cells and 266 
stomata using a Support Vector Machine (SVM) classifier based on features of cell shape 267 
(Materials and Methods, Fig. S8). Next, a cell size threshold was established in the mature sepal 268 
and in the leaf, at both 9 dpg and 25 dpg, using the atml1-3 mutants, which are known to have very 269 
few giant cells in sepals (Materials and Methods, Fig. 1C and Fig. S8). Those cells in the 9-dpg 270 
and 25-dpg leaves as well as in the sepal that exceeded their associated threshold were categorized 271 
as giant cells (see cell-type classification outcomes in Fig. 6 and Fig. S9). On the basis of this 272 
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definition, we performed a quantitative comparison and statistically compared the number of giant 273 
cells per unit area among genotypes in leaves. Two-sample, two-tailed t-tests showed that in the 274 
9-dpg leaf and the mature leaf, wild-type had significantly more giant cells than lgo-2 (9 dpg: p = 275 
0.002, 25 dpg: p = 0.003), dek1-4 (9 dpg: p = 0.002, 25 dpg: p = 0.002), atml1-3 (9 dpg: p = 0.002, 276 
25 dpg: p = 0.005), and acr4-2 (9 dpg: p = 0.010, 25 dpg: p = 0.044). Conversely, LGO-OX had 277 
significantly more giant cells than wild type (9 dpg: p = 0.001, 25 dpg: p = 0.003). Although no 278 
difference in the number of giant cells per unit area was observed between wild type and ATML1-279 
OX (9 dpg: p = 0.213, 25 dpg: p = 0.75), the fractional area occupied by giant cells was significantly 280 
higher in ATML1-OX (9 dpg: p < 0.005, 25 dpg: p < 0.005).  281 

 282 
Collectively, the similarities in the variation between the number of giant cells in the leaf and the 283 
sepal indicates that the sepal giant cell specification pathway also regulates the formation of giant 284 
cells in leaves. 285 
  286 
 287 
Giant cell mutants affect the entire cell size distribution 288 
 289 
We observed that not only are giant cells affected in these mutants, but the entire cell-size 290 
distribution is also affected. For example, the number of medium-sized cells in lgo-2 and dek1-4 291 
is reduced in addition to the number of giant cells (Figs. 4H–J and 5H–I, K) and, correspondingly, 292 
the number of small cells is increased in these mutants. To statistically analyze the difference in 293 
cell size distributions, we conducted a principal coordinate analysis based on the Wasserstein 294 
distances between cell size distributions (termed Wasserstein distance plot in this study), which 295 
showed the difference between leaf samples according to their cell size distributions on a 2-296 
dimensional plane (Figs. 4K, 5J and S10, see Materials and Methods). In this plot, samples 297 
clustered according to genotype, indicating that genotype controls cell size distribution. We 298 
observed a progressive increase in the number of giant cells along the first principal coordinate V1 299 
from lgo-2 mutants to ATML1-OX and LGO-OX (Fig. 4K and 5J). ATML1-OX and LGO-OX were 300 
distant from each other in this plot, which might partly reflect the fact that LGO-OX has more giant 301 
cells, whereas ATML1-OX has fewer but larger giant cells. When we created the combined 302 
Wasserstein distance plot with both the 9-dpg and 25-dpg leaves (normalized to an average cell 303 
size of 1), the samples continued to group according to genotype rather than developmental stage, 304 
further supporting that these genes affected the cell size distribution by 9 dpg (Fig. 5L). Thus, we 305 
conclude that these genes affect the entire cell size distribution.   306 
 307 
However, some differences in the cell size distribution are apparent between 9-dpg and mature 25-308 
dpg leaves. Firstly, at 9 dpg, dek1-4 and lgo-2 mutants are very similar; however, in the fully 309 
mature 25-dpg leaves, the lgo-2 cell size range is notably smaller than that in the dek1-4 mutant 310 
(Figs. 4D–E, H–I and 5D–E, H–I), suggesting that lgo-2 cells continue to divide after 9 dpg. In 311 
addition, the small cells in lgo-2 mutants were more uniform in size than all of the other genotypes 312 
because the typical small stomatal lineage cells that encircle the stomata in mature leaves were 313 
fewer in lgo-2 (Figs. 4E, H–I, and 5E, H–I). This altered cell size distribution relates to the previous 314 
finding that LGO affects pavement cell differentiation in these stomatal lineage ground cells and 315 
that cells undergo division for a longer time in the absence of LGO (19). Secondly, although at 9 316 
dpg the LGO-OX giant cells were slightly smaller than the ATML1-OX giant cells, at 25 dpg, the 317 
LGO-OX giant cells were nearly equivalent in size to ATML1-OX giant cells (Figs. 4F–I and 5F–318 
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I). In addition, we observed that more pavement cells were larger in LGO-OX, whereas only a few 319 
cells became giant in ATML1-OX (Figs. 4F–G, I, 5F–G, I, 6B and Fig. S9). ATML1-OX leaves had 320 
a few connected giant cells separating large islands of small cells, whereas LGO-OX leaves showed 321 
more giant cells interspersed among smaller clusters of small cells (Figs. 4F–G, 5F–G, 6B and Fig. 322 
S9). These phenotypic differences might reflect inherent differences in ATML1 and LGO activities 323 
or the fact that ATML1 and LGO overexpression transgenes are under the control of different 324 
promoters that might have differences in activity at different developmental stages.  325 
 326 
 327 
Relationship between the size and shape of cells and organs 328 
 329 
In plants, compensation is the process by which the presence of fewer or more cells is accompanied 330 
by a change in cell size, which maintains a constant organ size (37). Likewise, we observed 331 
compensation in our leaf giant cell mutants (Fig. S11). Mature leaves of the mutants acr4-2, atml1-332 
3, dek1-4 and lgo-2, which have fewer giant cells and more small pavement cells, are similar in 333 
size to wild-type leaves (Fig. S11I–M, P). However, ATML1-OX and LGO-OX mature leaves, 334 
which have much larger cells (see e.g. Fig. 5F–G), are smaller than wild-type (Fig. S11N–P). 335 
Therefore, only partial compensation for having fewer cells by having larger cells is observed in 336 
ATML1-OX and LGO-OX plants.. 337 
 338 
Additionally, ATML1-OX leaves are narrower than those of wild type and LGO-OX (Fig. S11A, 339 
F, G, I, N, O). We also observed that giant cells are more directionally elongated in ATML1-OX 340 
than in other genotypes (Figs. 4F–G, 5F–G and Figs. S4F–G, S5F–G, S6F–G, S7G–H), reflecting 341 
the elongated shape of the leaf. This suggests the existence of a relationship between giant cell 342 
shape and leaf morphology. Likewise, wild-type cauline leaves are both narrower and more 343 
elongated than wild-type rosette leaves, and also have more anisotropic elongated giant cells than 344 
in rosette leaves (Fig. S1). This observation supports the idea that cell shape reflects the anisotropy 345 
of the growing tissue (33). 346 
 347 
 348 
Spatial patterning of giant cells within the leaf blade 349 
 350 
In wild-type plants, giant cells vary in position from sepal to sepal and from leaf to leaf (10-12). 351 
An open question has been whether the spatial organization of giant cells is random, or whether 352 
there is an underlying order. Classically, many specialized cell types such as stomata and trichomes 353 
are spaced such that they are not in direct contact to one another (23, 38). Giant cells are frequently 354 
adjacent to each other and, therefore, it is clear that there is not a strong lateral inhibition between 355 
them. We set out to determine firstly whether giant cell position is correlated with underlying 356 
vasculature and secondly, how giant cells are spatially positioned relative to one another. 357 
 358 
Giant cells are not preferentially positioned overlying the vasculature 359 
 360 
We wondered whether giant cell positioning was correlated with the position of leaf vasculature 361 
for two reasons. Firstly, we observed that large, highly endoreduplicated cells overlie the midrib 362 
of the leaf, extending all the way to the leaf tip (Fig. S12A). We wondered whether giant cells 363 
might be similarly preferentially located over the other veins. Secondly, we observed that large, 364 
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highly endoreduplicated cells often appear to “peel” away from the midrib, as if following vascular 365 
branches (Fig. S12A). This phenomenon is most common in ATML1-OX leaves (Fig. S12C–F). 366 
To investigate whether giant cells overlie veins, we traced the veins from the original confocal 367 
image onto the heat map of cell area for a 9-dpg wild-type half leaf and four ATML1-OX half 368 
leaves. We found that many giant cells did not overlie the vasculature (Fig. S12B–F). Specifically, 369 
we noted that the points where giant cells peel off the midrib often do not align with where veins 370 
extend from the midrib. Furthermore, the orientation of giant cells do not follow the direction of 371 
the veins (Fig. S12B–F). Instead, veins in ATML1-OX plants frequently pass through patches of 372 
small cells (Fig. S12C–F). We conclude that vascular and giant cell patterns are not obviously 373 
correlated. 374 
 375 
Giant cells are clustered more often than expected by chance  376 

 377 

A cell-autonomous and stochastic mechanism has been proposed to explain giant cell formation in 378 
the sepal (12). However, it remains unknown whether giant cells are randomly arranged within the 379 
tissue. To statistically assess the randomness of the pattern, we needed a random reference (or null 380 
model) to compare with our experimental replicates. Previous studies addressing this problem 381 
considered cells as points (26, 39), or used a regular hexagonal grid to build a null model (40). In 382 
our case, these assumptions are not applicable due to the complexity of giant cell shapes and the 383 
heterogeneity of cell shapes and sizes that affect cellular arrangements (41). Therefore, we used 384 
the dmSET image-based method (41, 42) to generate randomized tissues from the segmented 385 
images (Fig. 7A–B and Fig. S13). In the randomized images, cell positions were randomly 386 
shuffled, but cell sizes and shapes of the original tissues were preserved (Fig. S14, Materials and 387 
Methods). We generated 400 randomized tissues for each biological replicate segmentation of both 388 
the wild-type sepal and 25-dpg leaf. Subsequently, observables, such as the mean number of giant 389 
cell neighbors per giant cell, which captures the amount of contacts between giant cells, were 390 
computed in the experimental data (i.e., segmentation data in Fig. 7B) and compared with those 391 
computed in the corresponding randomized tissues (Fig. 7A). The histogram of values calculated 392 
from the randomized tissue replicates formed a null distribution, which indicates the values 393 
expected by chance if giant cells were placed randomly. Comparison of the real biological data 394 
with this null distribution allowed us to statistically test the randomness of the observable (Fig. 395 
7A). 396 

We performed this analysis on our experimental data of wild-type 25-dpg leaves and mature sepals 397 
(Materials and Methods). When considering the six pooled replicates of leaves or sepals, the mean 398 
number of giant cell neighbors per giant cell was greater than in the randomized tissues, and the 399 
null hypothesis could be rejected (p < 0.05) (Fig. 7C). This result shows the presence of clustering 400 
among giant cells both in the leaf and the sepal. In addition, the analysis of the distribution of the 401 
number of giant cell neighbors for all giant cells (Fig. 7D) revealed that it was less probable to find 402 
isolated giant cells, and more probable to find giant cells in contact with two or more other giant 403 
cells compared with what was expected by chance. Notably, the distributions of the number of 404 
giant cell neighbors in the leaf and in the sepal (Fig. 7D) presented a similar shape, highlighting 405 
similarities in the spatial patterns of giant cells between both tissues. The non-random pattern of 406 
giant cells was also supported by the analysis of other observables (Fig. S15). In summary, these 407 
results suggest the existence of a non-random mechanism that favors contacts between giant cells 408 
during the patterning process.  409 
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 410 

Different cell sizes are organized into different spatial patterns 411 

To investigate whether the clustered pattern is exclusive to giant cells, we applied the same analysis 412 
to distinct sub-populations of pavement cells in the leaf tissues. Four populations of pavement cells 413 
were defined: giant cells (Fig. 8A–C), middle-sized cells (Fig. 8D–F), small cells (Fig. 8G–I), and 414 
a population of randomly selected pavement cells of any size (Fig. 8J–L). The number of cells in 415 
each category was determined such that the total cell area of the cell population was approximately 416 
equal to the area occupied by the giant cells. In contrast to the clustered pattern of giant cells (Fig. 417 
8A–C), middle-sized pavement cells exhibited a more random organization (Fig. 8D–F; the null 418 
hypothesis could not be rejected, with p = 0.195), closer to the random arrangement found in 419 
randomly selected pavement cells (Fig. 8J–L). Conversely, small pavement cells showed a 420 
clustered organization (Fig. 8G–I), because the mean number of neighbors between small 421 
pavement cells significantly exceeded the value observed in the randomized tissues. Notably, these 422 
small cells were clustered around the stomata, and their spatial arrangement is probably a 423 
consequence of the stomatal patterning process. Overall, these analyses highlight a relationship 424 
between pavement cell size and cell spatial organization within the tissue. Furthermore, these 425 
findings underscore the distinctive clustered arrangement of giant cells in comparison to middle-426 
sized and randomly selected pavement cells. 427 

 428 
A cell-autonomous stochastic model can recapitulate giant cell clustering 429 

To investigate how giant cell clustering emerges during leaf and sepal epidermal development, we 430 
wondered whether the existing cell-autonomous and stochastic model for giant cell specification 431 
in sepals (12) could also recapitulate the clustered feature of the giant cell pattern. In this 432 
multicellular computational model, the concentration of ATML1 stochastically fluctuates, is 433 
regulated by a self-catalytic feedback loop, and in turn, ATML1 regulates the expression of a 434 
downstream cell-cycle regulator target (Fig. 9A). At the end of a cell cycle, a cell either divides or 435 
endoreduplicates if the ATML1 target exceeds a specific threshold during the G2 phase. We used 436 
the proposed model (12) to investigate the resulting spatial organization of giant cells in simulated 437 
tissues (Fig. 9A–B; see Materials and Methods for further details).  438 

To assess the randomness of the simulated giant cell pattern, we applied the same method as in the 439 
experimental images (Fig. 7A) to images of the final simulation time point (Fig. 9B–C). Giant cells 440 
were also defined by a size threshold, which was established such that all cells of ploidy 16C or 441 
above were considered to be giant (Materials and Methods). The analysis was repeated for several 442 
initial conditions to increase the statistical robustness of the analysis. We observed that the mean 443 
number of giant cell neighbors per giant cell was greater than expected if giant cells were randomly 444 
distributed (p < 0.05, see Fig. 9D), showing that the current cell-autonomous model can also 445 
produce a clustered giant cell pattern. Furthermore, the distribution of the number of giant cell 446 
neighbors per giant cell (Fig. 9E) was similar to the distribution observed in the experimental 447 
sepals (Fig. 7D, bottom). This raises the question of what mechanisms are responsible for cell 448 
clustering in a cell-autonomous, multicellular model of dividing cells. 449 

 450 
Cell division contributes to the clustering of giant cells 451 
 452 
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To understand how the giant cell clustering behavior emerges in our computational model, we 453 
analyzed how the cellular spatial pattern changes over time. We hypothesize that the initial giant 454 
cell pattern arises randomly in space, due to the stochastic nature of ATML1 concentration 455 
fluctuations that trigger endoreduplication, but as non-giant cells continue to divide, giant cells 456 
become more clustered in fully grown tissue. To test this hypothesis in our simulations, we selected 457 
the first-arising giant cells and quantified their spatial organization both at an early time point and 458 
at the end of the simulation (Fig. 10A and Fig. S16). We found that the first giant cells to appear 459 
were indeed more randomly distributed at the initial time point, where the null hypothesis could 460 
not be rejected (p = 0.185, Fig. 10B), whereas they were clustered at the final time point (p < 0.05, 461 
Fig. 10B). Indeed, although the giant cell contacts were preserved over time in the segmentation 462 
(red bar in Fig. 10B), we observed a shift in the null distribution of the mean number of giant 463 
neighbors per giant cell between the initial and the final time point (Fig. 10B). This reflects the 464 
fact that as new cells arise from division, the number of potential cellular configurations (i.e., the 465 
number of possible spatial cellular arrangements) increases, which  decreases the probability of 466 
observing giant cell clusters by chance.  467 
 468 
To investigate the emergence of the giant cell spatial pattern over time in real tissues, we used 469 
time-lapse data of developing sepals (43), where cells were tracked over time, and we similarly 470 
quantified the patterns of the first-arising giant cells at the first available time point (sepal at stage 471 
4, 24 h time point) and a later one (sepal at stage 9, 120-h time point; see Materials and Methods) 472 
(Fig. 10C and Fig. S16). Similar to the simulations, we observed that giant cells were more 473 
randomly distributed in younger sepals and were more clustered in the more developed sepals (Fig. 474 
10D). This analysis indicates that the stochastic and cell-autonomous model is a plausible model 475 
to explain the spatial organization of giant cells. Specifically, it shows that cell clustering can 476 
emerge in a growing tissue without the need for cell–cell communication but instead as a result of 477 
cell divisions of non-giant cells, which alter the spatial pattern of giant cells over time. 478 
 479 
 480 
Discussion 481 
 482 
We investigated pavement cell size patterning in the Arabidopsis leaf epidermis. We found that 483 
the same genetic pathway that controls giant cell formation in sepals also controls cell size and 484 
giant cell formation in the leaf. Specifically, the receptor-like kinase ACR4, the transcription factor 485 
ATML1, the calpain protease DEK1, and the CDK inhibitor LGO are important for the formation 486 
of leaf giant cells. Just as in the sepal, overexpression of LGO results in an increased number of 487 
giant cells and overexpression of ATML1 leads to a larger area occupied by giant cells. Although 488 
giant cells are only present on the abaxial epidermis of sepals, they are present on both the abaxial 489 
and adaxial surfaces of leaves. We found that during leaf development, the basipetal wavefront of 490 
cell expansion is coordinated between abaxial and adaxial sides, with giant cells present at the 491 
same distance from the tip on both sides of the developing leaf. We observed that giant cells are 492 
scattered across the surface, sometimes in contact with one another, in both leaves and sepals. Our 493 
analysis demonstrated that giant cells are more likely to be in contact than expected by chance in 494 
both organs. Furthermore, their spatial arrangement exhibited similarities between the leaf and the 495 
sepal. The division and endoreduplication pattern of cells in a stochastic model of ATML1 496 
fluctuations was sufficient to produce this clustered pattern. Thus, we have demonstrated that the 497 
same cell size patterning mechanism is present in sepals and leaves, and the division pattern itself 498 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.26.605215doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.26.605215
http://creativecommons.org/licenses/by/4.0/


 12 

contributes to a final non-random spatial pattern. We conclude that the process of 499 
endoreduplication is developmentally regulated rather than simply a byproduct of cell growth.   500 
 501 
Many patterning systems rely on cell–cell communication to generate proper spacing (7, 44), and 502 
the emergence of clustered patterns in certain cell types is often attributed to cell–cell 503 
communication mechanisms in static tissues (41, 45, 46). However, giant cell specification occurs 504 
within the context of tissue growth and cell division. Therefore, it is important to consider the 505 
influence of these dynamic factors as well. We revisited our previous cell-autonomous model for 506 
giant cell specification in which ATML1 stochastically fluctuates, and confirmed that giant cell 507 
clustering could arise in that model as a result of cell division, without the need for cell–cell 508 
communication. To understand how clustering emerges, we tracked giant cells from their initial 509 
emergence both in our modeled tissue and in published experimental time-lapse data of growing 510 
sepals (43), and analyzed the evolution of their spatial pattern over time. This analysis suggested 511 
that the giant cell pattern initially arises randomly in space in the primordium and becomes more 512 
clustered in the fully grown tissue. Therefore, the decrease in the randomness of the giant cell 513 
pattern over time appears to be caused by the division of surrounding cells, including dividing 514 
stomata lineage cells. Nevertheless, in a proliferating tissue, other mechanisms might operate at 515 
the same time that result in giant cell clustering. For instance, correlative effects on cells belonging 516 
to the same lineage (e.g., sister or even cousin cells (47)) might influence cell fate decisions. 517 
Experimental data at a higher temporal resolution will be necessary to provide evidence to test this 518 
hypothesis. Ultimately, further experimental and theoretical studies are needed to determine the 519 
relative importance of cell–cell communication and cell proliferation in leading to giant cell 520 
clustering. 521 
 522 
In the past, researchers have attempted to increase organ size by increasing cell size by promoting 523 
endoreduplication, but these efforts have not been successful (48). This is because compensation 524 
occurs, in which smaller cell size is accompanied by an increase in cell number, so that organ size 525 
is relatively conserved (49, 50). Consistent with this, we observed that leaf 1 or 2 of wild type, 526 
atml1-3, and lgo-2 plants are approximately the same size at maturity. Furthermore, instead of 527 
having larger leaves, the ATML1-OX and LGO-OX genotypes that have larger cells actually have 528 
slightly smaller leaves than the wild type at maturity. These observations are consistent with what 529 
is observed for sepals, because ATML1-OX and LGO-OX sepals are slightly smaller than wild-type 530 
sepals (10, 49). We have previously shown that mitotic division substitutes for endoreduplication 531 
to compensate and maintain organ size in mutants lacking giant cells (10). Our images suggest that 532 
this mechanism also operates in leaves. 533 
 534 
Although giant cell number does not greatly influence organ size, organ shape is altered in sepals 535 
and leaves. ATML1-OX and LGO-OX sepals are narrower than those of wild type and curve 536 
outward, so that the bud opens prematurely (11). We speculate that the anisotropy of sepal giant 537 
cells drives the change in sepal shape. In ATML1-OX leaves, where giant cells are highly 538 
anisotropic, we observe a similar change in leaf shape, in which ATML1-OX leaf 1 and 2 are more 539 
pointed and oblong compared with the rounded wild-type leaf 1 and 2. By contrast, giant cells in 540 
LGO-OX leaves are isotropic and are more similar to wild-type giant cells, and LGO-OX leaves 541 
are more rounded. Our results suggest that ATML1 is sufficient to induce anisotropic cell growth, 542 
whereas LGO is not. Tang et al. (2023) have shown that the change in shape between rounded 543 
juvenile rosette leaves and more elongated adult rosette leaves is accompanied by the appearance 544 
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of highly anisotropic giant cells at the leaf base (51). However, they showed that loss of these 545 
directional, elongated giant cells does not change adult rosette leaf shape; the adult rosette leaf 7 546 
remains elongated in lgo-2 leaves where giant cells are not present (51). Thus, the relationship 547 
between giant cell shape, anisotropic growth, and organ shape is complex. Further work at the 548 
single cell level will be needed to elucidate the influence of giant cells on the shapes of different 549 
tissues.  550 
 551 
Despite the similarities between cell size patterning in leaves and sepals, subtle differences also 552 
exist. Firstly, the distribution of epidermal cell sizes in the leaf is broader than in the sepal where 553 
cells are fairly uniformly small except for a scattering of giant cells (Fig. 2E). Secondly, leaves 554 
have giant cells on both abaxial and adaxial blades, whereas sepals have giant cells only on the 555 
abaxial side and not on the adaxial side that faces the petals. The petal blade does not have giant 556 
cells on either abaxial or adaxial sides (52); thus, sepals might be an organ whose identity is 557 
transitional between vegetative and floral organs (53). We observe a similar phase change in the 558 
anisotropy of giant cells. Rosette leaf giant cells are puzzle shaped and relatively isotropic. Later 559 
in the plant life cycle, giant cells in cauline leaves begin to be more anisotropic along the proximal–560 
distal axis and start to resemble sepal giant cells. This supports the hypothesis that cauline leaves 561 
represent an intermediate state between rosette leaves and sepals (54). Finally, sepal giant cells are 562 
highly anisotropic along the proximal–distal axis. Although sepals and leaves have notable yet 563 
subtle differences in cell size, cell size patterning is regulated by the same developmental pathway 564 
in both organs. 565 
 566 
The genetic pathway that regulates giant cell specification has been co-opted from the epidermal 567 
specification pathway, which is a developmental pathway necessary for epidermal and thus plant 568 
development (14, 55, 56). Without proper epidermal specification, the plant embryo will not 569 
progress past the globular stage of development (55-57). The fact that this fundamental epidermal 570 
developmental pathway also patterns giant cells illustrates a common theme in development, 571 
namely, that regulatory proteins are commonly reused for more than one developmental process 572 
(58). 573 
 574 
Taken together, our analysis and theoretical work on patterning during tissue growth highlights 575 
that unexpected effects can occur and that these are difficult to infer from the canonical view of 576 
pattern formation arising in a static tissue. In this instance, an initially random pattern of giant cells 577 
becomes non-random as the surrounding cells divide. Thus, the effects of cell proliferation might 578 
also be important to determine the spatial distribution of specialized cell types in other tissues.  579 
 580 
Materials and Methods 581 
 582 
Plant growth conditions 583 
 584 
All seeds were sown on LM111 soil in pots and were stratified in the 585 
dark for 3 days at 4°C. The pots were then transferred to Percival plant 586 
growth chambers set to 60% humidity, 22°C temperature, and 24-h light 587 
provided by Philips 800 Series 32-Watt fluorescent bulbs (f32t8/tl841) 588 
(∼100 μmol m−2 s−1). Days post germination (dpg) were counted from the time the pots were 589 
transferred to plant growth chambers.  590 
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 591 
Cloning fluorescent nuclear markers 592 
 593 
To create a teal fluorescent nuclear (TFP) marker ubiquitously expressed under the UBIQUITIN 594 
10 promoter (pUBQ10::H2B-TFP; pAR393), an H2B-TFP fusion with an AAAPAAAAA linker 595 
was generated by PCR. TFP was amplified by PCR with primers oAR440 (5′-gct gcc gct cca gct 596 
gca gct gcc gct ATG GTT TCT AAG GGA GAA GAA ACT ACT ATG-3′) and oAR438 (5′-cct 597 
cga gtc aCT TAT AAA GTT CAT CCA TAC CAT CAG TAG-3′). The lower-case letters in the 598 
primer sequences represent linkers, restriction sites, and cloning sequences that were added to the 599 
gene sequences. H2B was PCR amplified with oAR369 (5′-CAC CGG ATC CAC AAT GGC 600 
GAA GGC AGA TAA G-3′) and oAR439 (5′-agc ggc agc tgc agc tgg agc ggc agc AGA ACT 601 
CGT AAA CTT CGT AAC CGC CTT AG-3′). Sequences encoding H2B-TFP were fused via 602 
overlapping PCR with oAR369 and oAR438 primers. The H2B-TFP PCR product was cloned into 603 
pENTR D TOPO to create the pAR198 entry clone. H2B-TFP was recombined into pUB-Dest 604 
with LR Clonase II according to the manufacturer’s instructions to generate pUBQ10::H2B-TFP 605 
(pAR393). pAR393 was transformed into Arabidopsis Col-0 plants expressing the pLH13 606 
p35S::mCitrine-RCI2A yellow fluorescent plasma membrane marker (49) via Agrobacterium 607 
tumefaciens (strain GV3101)-mediated floral dipping (59) and selection with glufosinate-608 
ammonium (“Basta” Neta Scientific OAK-044851-25g).  609 
 610 
Generation of mutant plant lines containing fluorescent plasma membrane and nuclear markers for 611 
imaging 612 
 613 
Mutant alleles and overexpression transgenes were crossed to plants expressing fluorescent cell-614 
membrane and nuclear markers to obtain plants for imaging. The following mutant alleles were 615 
used: acr4-2, atml1-3, dek1-4, and lgo-2. In addition, two lines overexpressing either ATML1 616 
(pPDF1::FLAG-ATML1) or LGO (pATML1::LGO) in a Col-0 background were used. All of these 617 
alleles/transgenes are in the Columbia-0 (Col-0) accession. acr4-2 (SAIL_240_B04) contains a T-618 
DNA insertion in the codon of the second of seven 39-amino acid repeats of the beta propeller 619 
extracellular domain, which is upstream of the transmembrane domain and the kinase domain and 620 
is therefore presumed to be loss-of-function allele. The acr4-2 mutant was obtained from Gwyneth 621 
Ingram (14), who obtained it from Syngenta (60). The atml1-3 allele is a T-DNA insertion in the 622 
homeodomain and is a loss-of-function mutant (11). The atml1-3 was obtained from the 623 
Arabidopsis Biological Resource Center (ABRC; accession number SALK_033408) (11). The 624 
dek1-4 allele contains a point mutation that changes a conserved arginine to a cysteine within 625 
calpain domain III (ABRC accession CS68904) (11). Complete loss of function of DEK1 is lethal 626 
(55); therefore, dek1-4 must retain some function. The dek1-4 phenotype is recessive and therefore, 627 
dek1-4 is likely hypomorphic (11). The dek1-4 mutant was originally isolated in the Landsberg 628 
erecta accession and was subsequently back-crossed twice into Col-0 (12). lgo-2 contains a T-629 
DNA insertion within the coding sequence of the gene and is a loss-of-function allele (10). lgo-2 630 
was obtained from the ABRC (accession number SALK_033905 and is available as a homozygous 631 
mutant as accession CS69160). pPDF1::FLAG-ATML1 (ATML1-OX) was obtained from Gwyneth 632 
Ingram (61). pATML1::LGO (LGO-OX) has been deposited for distribution at ABRC under 633 
accession CS69162 (11, 49). acr4-2, atml1-3, dek1-4, lgo-2, pPDF1::FLAG-ATML1, and 634 
pATML1::LGO were each crossed to plants expressing both a p35S::mCitrine-RCI2A fluorescent 635 
plasma membrane marker (pLH13) and a pUBQ::H2B-TFP fluorescent nuclear marker (pAR393). 636 
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The F2 progeny were genotyped for acr4-2, atml1-3, dek1-4, and lgo-2 (primer sequences in Table 637 
S1) and lines were isolated that were homozygous for these alleles and that also expressed both 638 
pUBQ::H2B-TFP and p35S::mCitrine-RCI2A. We could not obtain atml1-3 homozygous plants 639 
that also contained the p35S::mCitrine-RCI2A transgene after crossing, which was probably 640 
because the ATML1 gene was linked to the insertion site of the p35S::mCitrine-RCI2A transgene. 641 
To obtain plants expressing p35S::mCitrine-RCI2A in a homozygous atml1-3 background, the 642 
plasmid containing p35S::mCitrine-RCI2A was transformed into atml1-3 homozygous plants with 643 
pUBQ::H2B-TFP through Agrobacterium tumefaciens (strain GV3101)-mediated floral dipping 644 
(59). A T1 line was chosen that strongly expressed the mCitrine membrane signal and this line 645 
was used for future experiments. For the overexpression transgenes pPDF1::FLAG-ATML1 and 646 
pATML1::LGO, seeds were collected from F2 plants and F3 plants were genotyped for 647 
pPDF1::FLAG-ATML1 or pATML1::LGO (Table S1). Those F2 plants that produced only F3 648 
plants having pPDF1::FLAG-ATML1 or pATML1::LGO were isolated as homozygous for 649 
pPDF1::FLAG-ATML1 or pATML1::LGO, respectively. Those lines with pPDF1::FLAG-ATML1 650 
or pATML1::LGO homozygous and that expressed both pUBQ::H2B-TFP and p35S::mCitrine-651 
RCI2A were used for imaging. 652 
 653 
Sample preparation for imaging 654 
 655 
Leaves and sepals were mounted in 0.001% (v/v) Triton for imaging. Leaves were imaged between 656 
two coverslips, and sepals were imaged on a slide with a coverslip. Curvy leaves were cut with a 657 
razor blade to ensure they could be placed flat under the coverslip. Samples were imaged 658 
immediately after preparation. Sepals were imaged at stage 14 (62). 659 
 660 
Imaging with confocal microscopy 661 
 662 
A ZEISS LSM 710 Axio Examiner confocal microscope with a W Plan-Apochromat 20×/1.0 DIC 663 
D-0.17 M27 75 mm water-immersion objective lens was used to image leaf 1 or 2 of the 664 
Arabidopsis rosette and mature (stage 14) sepals. A 458 nm laser was used to excite pUBQ::H2B-665 
TFP (collection range 463–600 nm) and a 514 nm laser was used to excite p35S::mCitrine-RCI2A 666 
(collection range 519–645 nm). Images were captured with a 1× zoom. The gain and laser power 667 
varied slightly between images to accommodate slight differences in signal intensity between 668 
samples. Each image was composed of several tiles. The dimensions of each voxel were 0.415 µm 669 
(x) by 0.415 µm (y) by 1 µm (z). 670 
 671 
For the images of abaxial and adaxial faces of the same organ (two leaf replicates and three sepal 672 
replicates; Fig. 2 and Fig. S3), the 458-nm laser power and gain used for imaging pUBQ::H2B-673 
TFP were adjusted so that the TFP signal was below saturation and was then held constant for all 674 
images.    675 
 676 
Leaf areas were calculated from confocal images of entire leaves taken using a 2.5× objective for 677 
each 9-dpg and 25-dpg leaf replicate.  678 
  679 
Image processing 680 
 681 
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Tiles were stitched in the horizontal direction by ZEISS stitching software (overlap of 5% and 682 
threshold of 0.7) and in the vertical direction with MorphoGraphX (34, 35) using the process 683 
“Stacks/Multistack/Merge Stacks” (parameters: method = max; interpolation = linear). Assembled 684 
images were saved as MorphoGraphX stack files. A surface mesh was created in MorphoGraphX 685 
from each image to perform segmentation and analysis on the epidermis. First, extraneous parts of 686 
the image were removed with the Voxel Edit tool. (Such extraneous parts of the image include 687 
trichomes on the adaxial images and pollen grains/nematode eggs on some leaf images.) Then, an 688 
image was subjected to Gaussian Blur using the process "Stack/Filter/Gaussian Blur Stack" 689 
(parameters: x = 2; y = 2; z = 2). Next, the tissue surface was identified with the process 690 
“Stack/Morphology/Edge Detect” (parameters: threshold varied between 2,300–7,000 according 691 
to individual image brightness; multiplier = 2.0; adapt factor = 0.3; fill value = 30,000). These 692 
steps extracted a surface of the leaf. The process “Stack/Morphology/Fill Holes” was applied to 693 
some images when holes were apparent in the surface (parameters: x-radius = 20; y-radius = 20; 694 
threshold = 10,000; depth = 0; fill value = 30,000). This surface was then used to generate a mesh 695 
with the process “Mesh/Creation/Marching Cube Surface” (parameters: cube size = 5 μm; 696 
threshold = 20,000). The mesh was smoothed with “Mesh/Structure/Smooth mesh” (parameters: 697 
number of passes varied between 20–45; Walls Only = no). The mesh obtained was then 698 
subdivided with the process “Mesh/Structure/Subdivide” either once or twice depending on its 699 
size. In order to obtain the cell membrane signal on the surface, the process “Meshes/Signal/Project 700 
Signal” (parameters: min/max distances ranged between 5–15 μm; MinSig = 0.0; MaxSig = 701 
60,000) was used to project the p35S::mCitrine-RCI2A plasma membrane marker original signal 702 
onto the mesh at an optimal depth. The depth range yielding the clearest cell membrane signals 703 
with minimal distortion was selected. To perform cell segmentation, each individual cell in the 704 
leaf was first manually identified with a cell label marking (seed). Using these seeds, watershed 705 
segmentation was performed using the process “Meshes/Segmentation/Watershed Segmentation”. 706 
Adjacent pairs of stomatal guard cells were segmented together to form a single cell, which was 707 
called stomata. Errors in segmentation were identified and corrected by removing the label for 708 
those cells and reseeding. The Heat Map processes computed the cell area and other morphological 709 
cell features as well as the position of every cell. The cell area data was exported into a data table 710 
file for each image. In addition, other cellular shape features were computed and exported into a 711 
data table for the cell type classification (Materials and Methods: cell type classification). 712 
 713 
To analyze the nuclear signal from images of leaves expressing pUBQ::H2B-TFP, vertical 714 
stitching of tiles (already horizontally stitched with Zeiss stitching software) was performed in 715 
MorphoGraphX (max method and linear interpolation). Because the TFP reporter was expressed 716 
under the UBIQUITIN 10 promoter, TFP was localized in nuclei of the mesophyll cells in addition 717 
to cells of the epidermis. Mesophyll nuclei were removed with the Voxel Edit tool. Nuclei were 718 
identified as being from the mesophyll by lining up the nuclear signal images with their 719 
corresponding membrane signal images and comparing the nuclei within the bounds of each 720 
epidermal cell membrane. When compared with an epidermal cell nucleus, mesophyll cell nuclei 721 
were often dimmer and lower down and therefore, excess nuclei were removed according to these 722 
criteria so that each epidermal cell had one nucleus. When it was ambiguous which of two nuclei 723 
in a single cell was from the mesophyll or epidermis, both nuclei were removed and excluded from 724 
the analysis. Segmentation of the nuclei was performed in MorphoGraphX so that the total signal 725 
could be calculated for each nucleus. To do so, the confocal image was first subjected to 726 
“Stack/Filters/Brighten Darken” (parameter: 1). Next, a gaussian blur was performed using 727 
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“Stack/Filters/Gaussian Blur” (parameters: x = 1, y = 1, z = 1), followed by a binarization with the 728 
process “Stack/Filters/Binarize” (parameters: threshold = 2,000), which functioned to select pixels 729 
above a threshold value to identify the edges of each nucleus. A lower threshold value was chosen 730 
so that we could identify the entire nuclei even for dim nuclei. The Voxel edit tool was used to 731 
separate nuclei that inflated into one another. We then created a mesh from the binarized image 732 
using the process “Mesh/Creation. Marching Cubes 3D” (parameters: cube size = 1, min voxel = 733 
0, smooth passes = 3, label = 0). To ensure that the mesh covered all fluorescence of each nucleus, 734 
we expanded the mesh using “Mesh/Structure/Shrink Mesh” with a negative value (parameter: 735 
distance = -1). Individual nuclei were manually seeded and then the watershed segmentation was 736 
performed with the process “Mesh/Segmentation/Watershed Segmentation” to identify each 737 
nucleus. The Heat Map function calculated the total H2B-TFP fluorescence within each nucleus, 738 
as a representation of DNA content. To study correlations between total nuclear H2B-TFP signal 739 
and cell size, individual cells from cell area meshes were matched with their constituent nuclei 740 
from nuclear signal meshes using MorphoGraphX parent tracking. For the leaf replicates, total 741 
nuclear H2B-TFP signal was calculated for as many cells as possible from both the abaxial and 742 
adaxial sides. For the sepal replicates, total nuclear H2B-TFP signal was calculated only on the 743 
abaxial side and only for the largest cells. 744 
 745 
To create the heat maps overlaid with vasculature in Fig. S12, confocal images of leaves expressing 746 
p35S::mCitrine-RCI2A were used to create surfaces and were segmented as described above to 747 
create cell area heat maps. The mCitrine-RCI2A confocal images were found to have signal in the 748 
vasculature, so that the trajectories of veins could be traced in images from the abaxial surface of 749 
the image, one can see. The mCitrine-RCI2A confocal images were transformed around the z-axis 750 
in MorphoGraphX. For each leaf, the cell area heat map and the mCitrine-RCI2A confocal image 751 
transformed around the z-axis were aligned in MorphoGraphX and PNG screen captures were 752 
taken of each. These PNGs were then loaded into Adobe Illustrator and the veins were traced in 753 
white onto the heat maps.  754 
 755 
Please note that wild-type 25 dpg leaf replicates 1, 3, and 4, lgo-2 25 dpg leaf replicates 1 and 2, 756 
and LGO-OX replicates 1, 2, and 3 were used in for an independent analysis of cell shape 757 
(specifically lobeyness) in (63).  758 
 759 
 760 
Statistical Analysis 761 
  762 
To analyze the relationship between total nuclear H2B-TFP signal (DNA content) and cell area for 763 
the leaves in Fig. 2 and Fig. S2, linear regressions were performed on R statistical software 764 
(https://www.r-project.org/). To compare the total nuclear H2B-TFP signal (DNA content) of the 765 
cells of largest area between sepals and leaves, the cell area at the 98th percentile was calculated 766 
for each of the three abaxial sepal replicates and these three cell areas were averaged for an area 767 
threshold of 4,308 µm2. Cell area versus total nuclear H2B-TFP signal (DNA content) was plotted 768 
for cells above this 4,308 µm2 area threshold for the abaxial sepals and the abaxial and adaxial 769 
leaves. 770 
 771 
To compare positions of the largest cells on the abaxial and adaxial sides of each leaf at different 772 
stages of development (Fig. 3), the abaxial and adaxial images were aligned in MorphoGraphX. 773 
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Then, cell area heat maps were created and the x and y coordinates of the center of each cell were 774 
calculated (Fig. 3C). Cell area thresholds for each leaf were determined from the 98th percentile 775 
cell area of the abaxial side, and the positions of cells above these area thresholds were plotted for 776 
the abaxial and adaxial images of each leaf. 777 
 778 
R statistical software was used to analyze the cell size distributions and create the violin plots and 779 
Wasserstein plots. To create the Wasserstein plots, a Wasserstein test was performed between each 780 
pair of replicate distributions. A test statistic (also known as Wasserstein distance) and p-values 781 
were returned for every test. The p-values are listed in Fig. S10A–B. Classical multidimensional 782 
scaling was performed to create a 2D coordinate for each replicate distribution based on the 783 
Wasserstein distances, and points from these coordinates were plotted. To ensure that the distances 784 
between 2D points adequately reflected the Wasserstein distances among replicate distributions, 785 
we plotted the Wasserstein distances against the Euclidean distances between points (Fig. S10C–786 
D). The linear relationships between Wasserstein distances and Euclidean distances showed that 787 
the 2D graph accurately represents the differences between distributions. 788 
 789 
To create the Wasserstein plot of the combined 9-dpg and 25-dpg cell area data, cell areas of each 790 
replicate were normalized by the mean cell area for that replicate. In this way, each replicate has a 791 
mean of 1. This eliminated the difference in the values of the cell size between the 9-dpg and 25-792 
dpg leaves, such that the variances of the cell areas can be compared rather than the absolute sizes. 793 
 794 
To statistically compare the differences in the number of giant cells across genotypes in the leaf at 795 
9 dpg and at 25 dpg, two-sample, two-tailed t-tests that assumed equal variance were performed 796 
on the number of giant cells per segmented area between wild type and the different genotypes. 797 
Similarly, two-sample, two-tailed t-tests were performed to compare leaf sizes across genotypes 798 
(Fig. S11). 799 
 800 
To statistically assess the randomness of the cellular patterns, see section “Statistical analysis of 801 
the cellular patterns” below. 802 
 803 
Cell type classification 804 

To automatically distinguish stomata from pavement cells, a supervised classification algorithm 805 
was used based on cell shape features (Fig. S8). Cell shape features were computed from each 806 
2.5D mesh using the MorphoGraphX process “Mesh/Heat Map/Analysis/Cell Analysis 2D” and 807 
were extracted with “Mesh/Attributes/Save as CSV” into a data table. Three distinct training 808 
datasets were created using a single wild-type replicate – one for the sepal, one for the leaf at 25 809 
dpg and one for the leaf at 9 dpg. To get the different training datasets, we manually selected some 810 
pavement cells and stomata and labeled them as different cell types, ran the classification processes 811 
available within MorphoGraphX, and manually corrected the cells that were wrongly identified. 812 
These training datasets were then used to train a supervised learning algorithm (Support Vector 813 
Machine quadratic) using the Classification App in MATLAB (R2019b, 814 
https://www.mathworks.com). The following cellular shape features were selected to train the 815 
classifier in the 25-dpg leaf: area, average radius, length of the major axis, maximum radius, 816 
perimeter, circularity, lobeyness (ratio of the cell perimeter over that of its convex hull), and 817 
rectangularity (ratio of the cell area over the area of the minimum bounding rectangle in the cell). 818 
For the sepal, the aspect ratio and the length of the minor axis were also taken into account. For 819 
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the 9-dpg leaf, where the variety of cell types was more complex, three cell types were defined 820 
(pavement cell, meristemoid and stomata) and meristemoid and stomata were combined in the 821 
post-processing script. The shape features used to train the classifier were area, average radius, 822 
minimum radius, perimeter, circularity, lobeyness, and visibility stomata (it counts the proportion 823 
of straight lines that connects the cell outline without passing through a cell boundary, as described 824 
in (64)). To automatically predict cell types in all replicates, a developed Matlab script containing 825 
the trained classifier and a post-classifier filter, which corrects for potentially wrong predictions 826 
on the basis of known shape criteria, was applied. Manual corrections were finally performed, in 827 
which misclassified cells were re-labeled with its correct cell type. 828 

Giant cells were defined by a cell-size threshold (Fig. S8). Because a few giant cells were expected 829 
in atml1-3 mutants, atml1-3 mutants were used as a reference to build this threshold. Fewer than 830 
0.7% of the pavement cells were considered to be giant cells in atml1-3 tissues, which was 831 
supported through visual observation in the sepal. Consequently, the giant cell size threshold was 832 
set as that corresponding to the average between the 99.3rd percentile cell size value with the cell 833 
size value immediately above it in the distribution, taking into account the data of three atml1-3 834 
pooled replicates. For consistency, the same method was applied to the sepal, and to 9-dpg and 25-835 
dpg leaves, which gave three different threshold values (sepal: 5,290 µm2, leaf 9 dpg: 2,570 µm2, 836 
leaf 25 dpg: 14,160 µm2). The percentiles were only calculated on rectangular sections (omitting 837 
cells at the outline of the organs) of the sepal to maintain consistency across different organs. 838 
Classification output examples in different genotypes are shown in Fig. 6 and Figs. S8, S9. 839 

Randomization of the experimental images 840 

To assess the randomness of the cellular patterns, it was essential to establish a random reference, 841 
or null model, against which the observed pattern could be compared. To produce the required 842 
random reference, the image-based method dmSET (41, 42) was applied to generate 400 synthetic 843 
random equivalent tissues from each segmented image. Cell positions and orientations were 844 
randomly shuffled into new images (named randomizations), while preserving individual 845 
approximate cell shapes and sizes (Fig. S14). Only the incomplete cells at the border of the images 846 
were fixed. This approach avoids potential biases arising from the heterogeneity of cell sizes and 847 
shapes in the tissues, which affect the number of neighboring cells. We ensured that cellular 848 
properties, and more specifically cell area and cell circularity (4𝜋× area/(perimeter)2), were 849 
approximately conserved in the randomized tissues (Fig. S14; the Pearson coefficient was > 0.98 850 
for cell area correlation and was close to 0.90 for cell circularity correlation). In the sepal 851 
randomized tissues, cell orientations were constrained between -𝜋/6 and +𝜋/6 compared with their 852 
initial orientation, to maintain the anisotropy of the tissue. A custom-made Matlab script was 853 
subsequently applied to both original and randomized images to correct errors introduced by the 854 
dmSET method and to compute cell shape properties and cellular network information that was 855 
used to quantify the cellular pattern. 856 
  857 

Before randomizing the different sepal and leaf replicate images (Fig. 7, and Figs. S13, S17, S18), 858 
each 2.5D mesh was first converted into a 2D pixel image using the process “Stack/Mesh 859 
Interaction/Mesh To Image” (with a pixel size of 1μm) in MorphoGraphX. Subsequently, a square 860 
crop (in the leaf) or rectangular crop (in the sepal) that maximized the tissue section was performed 861 
in the segmented images. These 2D segmented images were then randomized using the dmSET 862 
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method. 863 
 864 

To study the change in the giant cell spatial pattern over time, published time-lapse sepal data were 865 
used (43) that were randomized at two different time points (sepal at stage 4: 24 h, and at stage 8: 866 
96 h). Cell segmentation and cell lineage tracking were already performed in (43). Using 867 
MorphoGraphX, sepal cells were manually selected at the later time point, and the exact 868 
corresponding mother cells at the first time point were established using the lineage tracking 869 
analysis from (43). In order to quantify the spatial pattern of the same giant cells at two different 870 
time points, giant cells at both stages were defined as the pavement cells that did not divide during 871 
this period of time. This approach allowed the comparison of the change in tissue organization 872 
consistently at two different time points. Then, the 2.5D meshes were projected into 2D images. 873 
These images were subsequently randomized using the dmSET method. Here, to facilitate the 874 
study of the same giant cells over time, the images were not cropped and the entire studied tissue 875 
was randomized, including the cells at the edges. To achieve this, the background region, located 876 
outside the tissue of interest, was considered as a single cell that remained fixed in the randomized 877 
tissues. Examples of randomizations are shown in Fig. S16C–D. Three different sepal replicates 878 
were used for these analyses of the time-lapse data. 879 

“Segmentation” and “Randomization” images appearing in figures such as Fig. 7B were generated 880 
with Python. 881 
 882 
Statistical analysis of the cellular patterns 883 

By comparing a spatial observable in the cellular network of the actual segmentation with the 884 
corresponding observable in the cellular networks of the 400 generated randomized tissues, 885 
whether the considered observable is likely to be observed by chance can be statistically tested 886 
(41). Hence, the use of this method on observables measuring distances or contacts between the 887 
studied cells allows the assessment of whether the arrangement of the cells within the tissue is 888 
random, clustered or dispersed (Fig. 7A). 889 

To quantify the patterns, a custom-made Python script was used to extract pertinent observables 890 
(i.e., spatial quantities) from the cellular network, which used the NetworkX Python library 891 
(https://networkx.org/). In this manuscript, we mainly focused on the number of giant cell 892 
neighbors per giant cell to quantify the number of local contacts between giant cells. Other 893 
observables have been quantified, such as the minimum shortest path between giant cells, and the 894 
number of giant cells in a cluster (Fig. S15). When dealing with cropped images, giant cells (or 895 
any cell population studied, see in Fig. 8) at the border of the image were not considered in the 896 
analysis.  897 

The number of giant cell neighbors was extracted for every giant cell, and the mean number of 898 
giant cell neighbors per giant cell across all giant cells was computed within each experimental 899 
replicate. Similarly to the methodology described by the authors of the dmSET method (41), the 900 
mean value extracted from the segmentation image was compared with the approximated null 901 
distribution formed by the 400 mean values extracted from the randomized images. We first 902 
performed the analysis on each replicate independently (Figs. S17 and S18). As the cell size 903 
distributions in the different replicates showed similarities across replicates (Figs. 5 and Figs. S6, 904 
S7 and S10), replicates were pooled to increase the sample size and statistical power. Six image 905 
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replicates were used for both the leaf and sepal wild-type (Fig. 7), and three replicates were used 906 
for the wild-type sepal time-lapsed images (Fig. 10). To test the null hypothesis assessing the 907 
randomness of the observed metric, a p-value p was obtained as the ratio of the number of random 908 
images (defined here as one random image resulting from pooling one random image per replicate) 909 
displaying the same or a more extreme value than the one obtained in the segmentation replicates 910 
(one-sided test). If the value fell within the null distribution with an associated high p-value (p > 911 
0.05), the null hypothesis could not be rejected, indicating that the observed quantity could likely 912 
be expected by chance. 913 

In addition, the distribution of the number of giant cell neighbors for all giant cells from the pooled 914 
experimental replicates was studied, which provided more insights into their spatial organization. 915 
This was compared qualitatively with the distribution expected in a random tissue, extracted from 916 
the 400 randomized tissues of all replicates. In addition, the distributions of the minimum shortest 917 
path between giant cells and of the number of giant cells in a giant cell cluster were examined (Fig. 918 
S15). 919 
 920 
All plots derived from these analyses were performed with Python, with the use of the matplotlib 921 
(https://matplotlib.org/) and seaborn (https://seaborn.pydata.org/) packages.   922 
 923 
Mathematical model for giant cell fate commitment and numerical simulations 924 
 925 
To simulate the giant cell fate decisions, our published stochastic and cell-autonomous 926 
multicellular model in a growing tissue was used (12). In that model, the transcription factor 927 
ATML1 stochastically fluctuates and drives the expression of its target LGO. In the simulated 928 
growing tissue, cells divide using a timer with some stochasticity. When the timer of a cell reaches 929 
a threshold ΘC,S, cells undergo the S-phase, and therefore cells transition from being diploid (2C) 930 
to tetraploid (4C). By default, cells that reach a second and higher timer threshold ΘC,D will 931 
undergo division. However, those cells that have reached a certain LGO concentration threshold 932 
ΘT after undergoing the S-phase will not divide and are maintained in an endoreduplication cycle, 933 
which increases their ploidy.  934 
 935 
The dynamics of the ATML1, LGO and Timer concentration in cell i, denoted by [ATML1]i, 936 
[Target]i and [Timer]i respectively, follow the chemical Langevin equations (65) given by 937 
 938 
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 946 
where PX is the basal production rate for the X variable (where X is either A for ATML1, T for 947 
Target concentration or C for Timer concentration), VX is the prefactor of the ATML1-dependent 948 
production rate for the X variable, KX is the ATML1 concentration at which the ATML1-dependent 949 
production rate has its half-maximal value, nX is the Hill coefficient, and GX is the linear 950 
degradation rate for the X variable. εi(t) is a normalized cell area, εi(t) = E0Ei(t), where E0 is an 951 
effective cell area, and Ei(t) is the area of cell i in arbitrary units. ηXi is a random Gaussian variable 952 
with zero mean that fulfills 〈ηXi(t)ηX’j(t’)〉= δ(t-t’)δXX’δij, where i and j are cell indices, X 953 
and X’ the modeled variables, δXX’ and δij are Kronecker deltas and δ(t-t’) is the Dirac delta 954 
function. 955 
 956 
Upon cell division, the Timer was reset. To implement the resetting, the following rule was applied 957 
at each time step: 958 
 959 
𝑇𝑖𝑚𝑒𝑟-(𝑡) → {𝑈- 	𝑖𝑓		𝑇𝑖𝑚𝑒𝑟-(𝑡) ≥ 𝛩9,:; 	𝑇𝑖𝑚𝑒𝑟-(𝑡)			otherwise}, (4) 960 

where Ui is a uniform randomly distributed number in the interval [0, 0.5) and ΘC,D is the cell 961 
division threshold for the Timer. 962 
 963 
The multicellular template on which the simulations were run and initial conditions were the same 964 
as in (12). Initial conditions for ATML1 and Target were randomly uniformly distributed in the 965 
interval of [0,1) and [0,0.1), respectively. The Timer initial conditions were set in correlation with 966 
the cell areas in the initial template with some stochasticity, as performed in (12). The differences 967 
between the used initial conditions were just in the ATML1, Target and Timer initial cellular 968 
values, determined by different random numbers.  969 
 970 
Tissue growth and division were also implemented as in (12). The multicellular tissue grows 971 
anisotropically, to emulate the patterning process in the sepal. After each simulation step, dilution 972 
effects due to growth in the modeled variables were taken into account. Cells divided using the 973 
shortest path rule together with the constraint of having the division plane through the center of 974 
mass of the cell. 975 
 976 
Numerical simulations were performed with Tissue software (13, 66), and the integration was 977 
performed using an Îto interpretation of the Langevin equations with a Heun algorithm (67). 978 
Integration was performed with a time step dt = 0.1, and simulations were stopped at time 135. 979 
Parameter values for the simulations are given in Table S2. The outcome of the simulation in Fig. 980 
9B was displayed using Paraview software (https://www.paraview.org/). 981 
 982 
We recently proposed a more detailed model of the ATML1 regulatory network to study how giant 983 
cell specification and cell fate maintenance depends on VLCFA (13), which is still a stochastic 984 
and cell-autonomous model. Here, however, for the sake of simplicity, and the intention of using 985 
a minimal, stochastic and cell-autonomous phenomenological model, the former ATML1 model 986 
was used (12).  987 
 988 
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Randomizations of the outcomes from the numerical simulations 989 
 990 
To assess the randomness of the giant cell pattern in the numerical simulations (Fig. 9), the same 991 
method was employed as that used for the experimental images. Although randomizations of the 992 
tissues were performed similarly (see the “Randomization of the experimental images” section 993 
above), a Python script was developed to display the output of the simulation as a multi-labeled 994 
image, where each cell was colored with a different label. These images could therefore be 995 
randomized using the dmSET method (42). To compare the simulated giant cell pattern (Fig. 9B) 996 
to the giant cell pattern found in the experimental mature sepals (Fig. 7B), the output image was 997 
cropped using the maximal rectangle in the tissue, and giant cells were also defined by a size 998 
threshold, ensuring that all cells with a ploidy of 16C or higher were categorized as giant cells 999 
(Fig. 9C). The few 8C cells that exceeded this threshold were also considered as giant cells. 1000 
 1001 
To study the change in the giant cell spatial pattern over time (Fig. 10), the same simulations were 1002 
used, but only the first-arising giant cells (cells that stopped dividing after time t = 55 of the 1003 
simulations) were studied. The same method was used to assess the randomness of the cellular 1004 
patterns on these giant cells both at time t = 55 and time t = 135. Here, instead of cropping the 1005 
image, the whole tissue was randomized (using the dmSET method), including the cells at the 1006 
edges, such that exactly the same giant cells were considered at both time points. Examples of 1007 
randomizations are shown in Fig. S16A–B. The analysis was performed over five simulation 1008 
replicates, with different cellular random initial conditions. 1009 
 1010 
Related “Segmentation” and “Randomization” images appearing in figures such as Fig. 9B were 1011 
generated with Python. 1012 
 1013 
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Figure 1 
 

 
 
Fig. 1. The genetic pathway that regulates giant cell development in sepals. (A–G) Cell area heat 
maps in μm2 of the abaxial (outer) surface of a stage 14 adult sepal of (A) wild type, (B) acr4-2, (C) 
atml1-3, (D) dek1-4, (E) lgo-2, (F) LGO-OX (pATML1::LGO) and (G) ATML1-OX (pPDF1::FLAG-
ATML1). Scale bar represents 100 µm. (H) The ordering of genes into a genetic pathway according to 
double-mutant phenotypic analysis. 
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Figure 2  
 

 
 
Fig. 2. Abaxial and adaxial cell size distribution in the wild-type leaf and sepal epidermis; size 
correlates with DNA content. (A–D) Cell area heat maps in µm2 of (A) abaxial surface of wild-type 
sepal, (B) adaxial surface of wild-type sepal, (C) abaxial surface of 25-dpg wild-type leaf 1 or 2 (D) 
adaxial surface of 25-dpg wild-type leaf 1 or 2. Scale bars represent 100 µm. (E–F) Violin and strip plots 
of (E) cell areas and (F) cell areas normalized by the average cell area of abaxial and adaxial sides of 25-
dpg wild-type leaves (two pooled replicates) and adult wild-type sepals (three pooled replicates). (G) 
Adaxial side (green) and abaxial side (purple) of 25 dpg-leaf cell area versus DNA content as measured 
by H2B-TFP total nuclear fluorescence, with R2 = 0.85 for the abaxial side and R2 = 0.82 for the adaxial 
side (one of two replicates). (H) Cell area of the largest cells (area > 4,308 µm2) versus DNA content as 
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measured by H2B-TFP total nuclear fluorescence in both the abaxial and adaxial side of the 25-dpg leaf 
(red) and in the abaxial side of the adult sepal (blue). See Fig. S2 for replicates.  
 
  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.26.605215doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.26.605215
http://creativecommons.org/licenses/by/4.0/


Figure 3 
 

 
 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.26.605215doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.26.605215
http://creativecommons.org/licenses/by/4.0/


Fig. 3. Cell size patterning occurs as a basipetal wave simultaneously on the adaxial and abaxial 
sides of the leaf. (A–B) Cell area heat maps in µm2 of leaf 1 or 2 at different stages of development on 
(A) the abaxial side and on (B) the adaxial side at 5 dpg, 6 dpg, 7 dpg, 8 dpg and 9 dpg (half leaf). 
Unsegmented regions on adaxial leaves correspond to trichomes, which were not considered in this 
analysis. Each stage is associated with a distinct heat map color range. Scale bars represent 50 µm at 5 
dpg and 6 dpg, and 100 µm at 7 dpg, 8 dpg and 9 dpg. (C) Spatial positions of large cells (those above 
an area threshold, see below) on the abaxial (purple points) and adaxial (green points) sides of the same 
leaf at 6 dpg, 7 dpg, 8 dpg and 9 dpg. Area thresholds for each leaf were determined from the 98th 
percentile cell area of the abaxial side. (D) Violin and strip plots of cell areas in µm2 on abaxial and 
adaxial sides of leaves at different developmental stages, excluding margin and midrib cells. Abaxial and 
adaxial sides are from the same leaf. See also Fig. S3 for the leaves shown to scale.  
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Figure 4 
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Fig. 4. The sepal giant cell specification pathway also patterns cell size in 9-dpg leaves. (A–G) Cell 
area heat maps in µm2 of the upper abaxial quadrant of leaf 1 or 2 at 9 dpg for the genotypes: (A) wild 
type, (B) acr4-2, (C) atml1-3, (D) dek1-4, (E) lgo-2, (F) LGO-OX (pATML1::LGO) and (G) ATML1-OX 
(pPDF1::FLAG-ATML1). Scale bar represents 100 µm. (H, I) Violin plots of cell area densities on a 
linear scale (H) and on a log10 scale (I). Cells were in the upper quadrants of leaf 1 or 2 for three replicates 
of each genotype. (J) The same data as in (H) and (I) but displayed as a dot plot, with all replicates per 
genotype pooled, revealing giant cells as the large cell outliers. (K) 2D Wasserstein distance plot for 9-
dpg replicates. Cell area heat maps of other replicates are shown in Figs. S4 and S5. The Wasserstein 
statistical tests among replicates are shown in Fig. S10. Areas of midrib cells (large cells overlying the 
midrib to the tip of the leaf) and margin cells were removed in (H–K) so that only leaf blade cells were 
compared.  
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Figure 5 
 

 
 
Fig. 5. The sepal giant cell specification pathway also patterns cell size in 25-dpg mature leaves. 
(A–G) Cell area heat maps in µm2 of a 25-dpg leaf 1 or 2 area approximately midway between the midrib 
and margin and between tip and base on the abaxial side for the genotypes: (A) wild type (B) acr4-2, (C) 
atml1-3, (D) dek1-4, (E) lgo-2, (F) LGO-OX (pATML1::LGO), (G) ATML1-OX (pPDF1::FLAG-
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ATML1). Scale bar represents 100 µm. (H–I) Violin plots of cell area densities on a linear scale (H) and 
on a log10 scale (I) for abaxial sections of leaf 1 or 2 for four replicates of each wild type and three 
replicates of other genotypes. (J) Wasserstein distances for 25-dpg replicates displayed as Euclidean 
distances embedded in 2D. (K) The same data as in (H) and (I) but displayed as a dot plot, with all 
replicates pooled per genotype, revealing giant cells as the large cell outliers. Stomata were removed in 
(H–K) so that only leaf blade pavement cells were compared. (L) Wasserstein tests were performed for 
all replicates of both 9 dpg (with stomata) and 25 dpg (without stomata) and the Wasserstein distances 
plot is displayed. For comparison, cell area distributions of 9-dpg leaves and 25-dpg leaves were 
normalized to have averages of 1. The 25-dpg replicates are indicated by circular dots and 9-dpg 
replicates by triangular dots. Cell area heat maps of other replicates are shown in Figs. S4–S7. 
Wasserstein statistical tests among replicates are shown in Fig. S10. Dataset F was also used for an 
independent analysis in Trozzi et al., 2023.  
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Figure 6 
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Fig. 6. Cell type classification in the leaf and sepal. (A–B) Segmented meshes of one replicate for each 
genotype after cell type classification in the mature sepal (A) and the mature leaf (B). Cells are colored 
with their corresponding cell type: pavement cells (in green), stomata (in blue) and giant cells (in 
magenta). Stomata and pavement cells were first classified using a trained classification algorithm based 
on cell shape features. Giant cells were defined as the largest cells, using a size threshold based on atml1-
3 mutants (see Materials and Methods). Scale bars represent 200 µm. See also Figs. S8 and S9. 
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Figure 7 
 

 
 
Fig. 7. Giant cells are more clustered than expected by chance both in the wild-type leaf and sepal. 
(A) Scheme summarizing the method used to assess the randomness of the cellular patterns. Each 
segmentation is computationally randomized using the dmSET method into 400 randomized tissues 
where cell positions (and orientation in the case of the leaf) have been randomly shuffled (see Materials 
and Methods). To statistically assess the extent to which the segmented image shows a random giant cell 
pattern, a quantitative observable (middle) extracted from the segmentation is compared with the same 
observable computed in all randomized tissues, forming the estimated 'null distribution' (right). (B) 
Example of a representative segmentation of a wild-type leaf 25 dpg (top left) and a wild-type sepal 
(bottom left) and one of their randomized tissue (randomization) images (right). (C) Mean number of 
giant cell neighbors per giant cell in leaves (top) and sepals (bottom). The value extracted from the 
segmentations (in red) was statistically tested against all the values extracted from the 400 pooled 
randomizations (in gray). The mean number of giant cell neighbors per giant cell is higher than expected 
by chance by the null distribution, and the null hypothesis can be rejected (p-value < 0.05), indicating 
that giant cells are clustered. (D) Distributions of the number of giant cell neighbors for all giant cells 
found in all replicates of segmentations (in red) and randomizations (in gray) in leaves (top) and sepals 
(bottom). In the segmentations, fewer isolated giant cells are present than expected by chance, and more 
giant cells are in contact with more than one other giant cell, highlighting the tendency of giant cells to 
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form clusters. Total number of giant cells counted (excluding giant cells at the image border) in the 
analysis: n = 68 (leaf, segmentations), n = 68 × 400 (leaf, randomizations), n = 74 (sepal, segmentations), 
n = 74 × 400 (sepal, randomizations). See also Figs. S13, S14, S15, S17 and S18. 
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Figure 8 
 

 
 
Fig. 8. Different cell sizes display different spatial patterns in the wild-type leaf. The method used 
to assess the randomness of the giant cell patterns (Fig. 7) was applied here on different pavement cell 
size populations within the mature 25-dpg leaf: (A–C) giant, (D–F) mid-size (around 5,000 µm2), (G–I) 
small (smallest pavement cells), and (J–L) random (randomly selected pavement cells). (A, D, G, J) 
Example of representative segmentation of a 25-dpg wild-type leaf (left) and one of its corresponding 
randomized tissue randomization (right), where cell locations have been computationally shuffled. Cells 
colored in magenta represent the cells within the studied pavement cell size population. (B, E, H, K) 
Mean number of cell neighbors per cell within the same size population. The value extracted in 
segmentations (in red) was statistically compared with the 400 values extracted from the randomizations 
(in gray). (B) The mean number of giant cell neighbors per giant cell is higher than expected by chance 
(p < 0.05), indicating that giant cells are clustered. Same data as in Fig. 7C, top. (E) Middle-size cells 
are less clustered than giant cells and more randomly organized (the null hypothesis cannot be rejected, 
p = 0.195). (H) The mean number of small cell neighbors per small cell is significantly higher than in 
the randomized tissues (p < 0.05), highlighting that small cells form clusters. (K) As expected, the 
randomly selected pavement cells (with area > 2,000 µm2) show a value that falls right in the center of 
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the null distribution (p = 0.445). (C, F, I, L) Distributions of the number of cell neighbors belonging to 
the studied cell population per cell of that population in the segmentations (in red) and the randomizations 
(in gray). All six replicates were pooled to increase the statistical power of the tests. Total number of 
cells in cell populations counted in the analysis: n = 68 (giant cells, segmentations), n = 68 × 400 (giant 
cells, randomizations), n = 199 (middle-size cells, segmentations), n = 199 × 400 (middle-size cells, 
randomizations), n = 639 (small cells, segmentations), n = 639 × 400 (small cells, randomizations), n = 
162 (random cells, segmentations), n = 162 × 400 (random cells, randomizations).  
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Figure 9 
 

 
 
Fig. 9. A cell-autonomous stochastic model can recapitulate giant cells clustering. (A) Cartoon of 
the computational model for giant cell patterning. ATML1 activates a target (LGO), which, if above a 
certain threshold and during the G2 cell-cycle phase, prevents cell division and instead drives the entry 
into endoreduplication and giant cell formation. (B) Simulation snapshots of the simulated growing sepal, 
at three different time points. Color codes indicate the cell ploidy levels. Scale bars represent the same 
size in arbitrary units. (C) A rectangular section of the simulation output is then used to quantify the giant 
cell pattern. “Segmentation” refers to one simulation output (left) and “Randomization” to one 
randomization of the simulated output (right). Giant cells, labeled in magenta, were defined by a size 
threshold (see Material and Methods). (D) Mean number of giant cell neighbors per giant cell in the 
simulations (called segmentation in red) and in its randomizations (in gray). The mean number of giant 
cell neighbors per giant cell is higher than expected by chance (p < 0.05), indicating a clustered pattern 
of giant cells, as in the experimental sepal replicates (Fig. 7C). (E) Distribution of the number of giant 
cell neighbors per giant cell, demonstrating that it is more likely to find giant cells in contact with at least 
two other giant cells in our simulations compared with the randomized simulated outputs, as in the 
experimental sepal replicates (Fig. 7D). Five simulation outputs with five different initial conditions were 
performed and combined for the analysis. Total number of giant cells (excluding giant cells at the image 
border) counted in the analysis: n = 42 (segmentations), n = 42 × 400 (randomizations). 
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Figure 10 
 

 
 
Fig. 10. The giant cell spatial pattern arises randomly and becomes clustered over time. (A, C) 
Segmented images of (A) a simulated tissue and (C) a real sepal at two different time points, referred to 
as ‘initial time’ and ‘final time’. Small cells are labeled in green and giant cells in pink. Giant cells are 
defined as the cells that did not divide from the initial time point. (A) Numerical simulation output at t = 
55 and t = 135. (C) Time-lapse sepal epidermis images at stage 4 and stage 9. (B, D) Statistical assessment 
of the randomness of the giant cell pattern (comparing the “segmentations” in red with the randomized 
tissues in gray) at initial time (left) and final time point (right) in (B) the simulations and (D) the real 
tissues. The shift in the null distribution over developmental time means that the initially random 
distribution of giant cells becomes non-random during development. At the initial time point, the null 
hypothesis could not be rejected (giant cells are randomly distributed, with p = 0.185 in simulations and 
p = 0.295 in experimental data). At the final time point, the mean giant neighbors per giant cell became 
significantly greater than expected by chance (p < 0.05). All five replicates (in simulations) and three 
replicates (in experimental data) were pooled. Total number of giant cells counted in the analysis: n = 83 
(simulations, segmentations), n = 83 × 400 (simulations, randomizations), n = 49 (experimental data, 
segmentations), n = 14 × 400 (experimental data, randomizations). Dataset in C was also used for an 
independent analysis in Hervieux et al. 2016. See randomization snapshots related to this figure in Fig. 
S16. 
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