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Delineating the shape of COPII coated membrane

bud

Sanjoy Paula, Anjon Audhyab, and Qiang Cuia,c

This manuscript was compiled on July 15, 2024

Curvature-generating proteins that direct membrane trafficking assemble on the surface of
lipid bilayers to bud transport intermediates, which move protein and lipid cargoes from
one cellular compartment to another. However, it remains unclear what controls the overall
shape of the membrane bud once curvature induction has begun. In vitro experiments
showed that excessive concentrations of the COPII protein Sar1 promoted the formation
of membrane tubules from synthetic vesicles, while COPII-coated transport intermediates
in cells are generally more spherical or lobed in shape. To understand the origin of
these morphological differences, we employ atomistic, coarse-grained (CG), and continuum
mesoscopic simulations of membranes in the presence of multiple curvature-generating
proteins. We first characterize the membrane bending ability of amphipathic peptides derived
from the amino terminus of Sar1, as a function of inter-peptide angle and concentration using
an atomistic bicelle simulation protocol. Then, we employ CG simulations to reveal that
Sec23 and Sec24 control the relative spacing between Sar1 protomers and form the inner-coat
unit through an attachment with Sar1. Finally, using Dynamical Triangulated Surface (DTS)
simulations based on the Helfrich Hamiltonian, we demonstrate that the uniform distribution of
spacer molecules among curvature-generating proteins is crucial to the spherical budding of
the membrane. Overall, our analyses suggest a new role for Sec23, Sec24 and cargo proteins
in COPII mediated membrane budding process in which they act as spacers to preserve
a dispersed arrangement of Sar1 protomers and help determine the overall shape of the
membrane bud.

membrane remodeling | COPII | Helfrich Hamiltonian | protein transport

Introduction

C
Oat Protein complex II (COPII) is a multiprotein molecular machinery that
orchestrates the export of newly synthesized proteins from the Endoplasmic

Reticulum (ER) via membrane-enclosed transport carriers.(1) The complex consists
of various isoforms of Sar1, Sec23, Sec24, Sec13, and Sec31, which are thought
to assemble into a multilayered coat structure on the cytoplasmic face of discrete
ER subdomains known as transitional ER. Sar1 initiates the membrane budding
process when it becomes activated by transitioning from a GDP-bound state
to a GTP-bound state by the guanine nucleotide exchange factor Sec12.(2, 3)
Subsequently, Sar1 together with Sec23-Sec24 heterodimers forms the inner coat
layer(4–6) on the membrane bud, whereas Sec13-Sec31 produces an outer cage-like
layer(7, 8) to complete COPII coat formation. These membrane-bound, cargo
laden carriers generally adopt a spherical or multi-lobed shape that are roughly ≥
50-200 nm in diameter.(9) With the help of Sec16 and members of the TANGO1
family, multiple COPII coated carriers can adopt a ‘beads-on-a-string’ conformation
to accommodate bulky procollagens.(10, 11) However, in-vitro experiments have
demonstrated that Sar1 in the presence of GTP forms an organized lattice structure
on Giant Unilamellar Vesicles (GUVs), resulting in the formation of membrane
tubules.(12, 13) This shape is noticeably di�erent from the structure of COPII-
coated transport carriers found inside living organisms. Further, this indicates that
Sar1 alone cannot produce the spherical shape of a membrane bud. Therefore, the
molecular origin of the shape of COPII coated carriers remains poorly understood.

Regulation of the spatiotemporal accumulation of COPII proteins is crucial to
drive cargo export from the ER. Our recent study highlighted the formation of the
inner-coat layer as the rate-limiting step for the cargo transport process.(14) We
also demonstrated the molecular mechanism of membrane binding and bending
activity of inner coat protein Sar1 in a nucleotide state- and concentration-dependent
manner.(15) Despite these advances, what regulates the shape of membrane buds
induced by COPII needs to be understood in more detail. Conventionally, it
is considered that Sec23(16) functions as a GTPase activating protein (GAP),
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facilitating the hydrolysis of GTP on Sar1, whereas Sec24(17)
is involved in cargo binding. However, in the absence of Sar1,
cargo export persists through the continued action of Sec23-
Sec24 in a phase separated state.(18) These findings suggest
that Sec23-Sec24 complexes may play hitherto unrecognized
roles in the process of membrane budding.

Sar1 inserts its amphipathic amino terminal helix into the
membrane to induce local positive curvature.(15, 19) While
a single Sar1 protein can locally deform the membrane, how
multiple Sar1 molecules sculpt the membrane into distinct
shapes remains unknown. The consequence of multiple
curvature-inducing inclusions on membrane has been shown
to produce a diverse array of morphologies such as tubes,
corkscrew, disc, caveolae etc.(20, 21) In the context of COPII
mediated membrane budding, relevant membrane shapes
are tubules under in vitro conditions and more spherical
under in vivo conditions. To comprehend the topology of the
membrane bud formed by COPII, it is crucial to establish
how the membrane responds to the multiple types of proteins
involved.

In this study, we employ atomistic, coarse-grained, and
continuum mechanics based simulations to elucidate the
molecular mechanism of how the inner coat layer shapes
the membrane bud. Since the amphipathic amino terminal
helix is the curvature-inducing region of Sar1, we arrange
multiple such peptides on the membrane and study their
collective membrane bending activities. First, we compare
the relative bending activities of a GTP bound Sar1 dimer vs.
the amino terminal peptide dimer in the absence of the rest
of the protein using the atomistic bicelle simulation protocol.
Then, we provide a quantitative estimate of the magnitude
of curvature induction as a function of relative orientation of
the amino terminal peptides and their concentration. We also
investigate the membrane binding ability of Sec23 and Sec24
using MARTINI based coarse-grained model. Finally, we
utilize the Dynamic Triangulated Surface (DTS) simulation
framework to explore the relationship between the surface
coverage of Sar1 and the shape of the membrane bud. Taken
together, our model suggests a new role for Sec23, Sec24,
and cargo proteins in COPII mediated membrane budding
process in which they participate as spacers to control the
relative distribution of Sar1 proteins on the lipid bilayer
surface, which is critical for the spherical development of the
membrane bud.

Results

Comparative assessment of the membrane bending activity
of the amino terminal amphipathic helix of Sar1 in the
presence and absence of the rest of the protein. Since
the simulation of a large number of Sar1 protomers on a
lipid membrane is costly at the atomistic level, we first
analyze to what degree the membrane bending activity
of Sar1 can be captured with only the amphipathic helix
in the amino terminus(15). GTP bound Sar1 dimer (h-
GTP dimer) produces significant positive curvature on the
membrane, transforming the flat-shaped bicelle (Fig-1A) into
a highly bent dome-shaped structure (Fig-1C). The height of
phosphate mid-plane changes by ≥ 4 nm as a consequence
of this transition. However, when the amphipathic (Fig-
1D) helices are present alone (arrangement-1) without the
rest of the protein, the magnitude of curvature induction

is dramatically reduced (Fig-1E-F). Although the protein
segment that causes curvature induction is the same for both
cases, we observe a stark contrast in the extent of membrane
bending.

According to the hydrophobic insertion mechanism of
protein induced membrane bending (22), shallow inclusion of
amphipathic helices of proteins is most e�ective for generating
positively curved membrane deformations. Therefore, to ex-
plain the di�erential bending activity of the Sar1 amphipathic
helices, we study the time evolution of the penetration depth
of the peptides into a periodically continuous membrane.
While the h-GTP dimer exhibits 40 % penetration depth
(as defined by Paul et. al.(15)), the amphipathic helix
increases the penetration depth up to 65 % within ≥ 100 ns
when present in isolation (Fig-1G). This deeper membrane
penetration in the absence of the rest of the protein reduces
the magnitude of partitioning of hydrophobic/hydrophilic
residues at the membrane-water interface. While the h-GTP
dimer displays µ ≥ 1 (Eqn. 1 in the SI), the isolated peptides
(arrangement-1) lead to µ significantly less than 1 (Fig-1H).
This indicates that in the absence of the rest of the protein, the
amphipathic helix inserts into the membrane so deeply that
it brings some of its hydrophilic residues into the membrane.
As a result, the inter-leaflet stress, which arises due to the
hydrophobic/hydrophilic partitioning at the membrane water
interface, becomes reduced and therefore does not bend the
membrane significantly.

In addition to the excess penetration of the peptides,
another contributing factor in this context can be the relative
orientation of the peptides on the membrane surface (Fig-
1B). The distribution of the inter-peptide angle (◊) in the
h-GTP dimer is sharply peaked around ≥ 105¶ whereas the
peptides in isolation following arrangement-1 exhibit a broad
distribution of ◊ (Fig-S2A). We further characterize this
orientational dissimilarity by computing the ratio of the end
distances (d1 and d2) of the peptide pair. In the case of a
serial arrangement of the peptides d1/d2 will be 2d where d is
the length of a single helix (≥ 3.5 nm in the case of Sar1), and
in the case of a parallel arrangement, d1/d2 should be 1. The
high value of d1/d2 observed for the h-GTP dimer indicates a
serial-like arrangement of the helix-pair while the significantly
lower value of d1/d2 for the peptides in isolation indicates
rather di�erent arrangements (Fig-1I). To estimate the e�ect
of the inter-helix orientation on the membrane curvature
induction, we perform bicelle simulations in the presence of
two peptides while restraining the inter-peptide angle to be
180¶ (peptide-arrangement-2). The angular restraint is not
observed to enhance the degree of membrane bending (Fig-
1J). Therefore, the relative orientation of the amphipathic
peptides does not significantly impact the membrane bending
activity. This suggests that curvature induction by a large
assembly of the amphipathic peptides can be modeled without
considering specific relative orientation (vide infra).

The magnitude of membrane curvature induction is propor-
tional to the concentration of the embedded peptides. In this
section, we study the impact of the peptide concentration on
the magnitude of membrane curvature induction. From the
previous section, it is clear that two copies of the amphipathic
peptide derived from the h-GTP dimer are unable to generate
significant membrane curvature irrespective of their relative
orientation. With one more amphipathic helix (peptide-
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Fig. 1. Isolated amphipathic regions of Sar1 diminish its capacity to bend the membrane. (A) Top view of h-GTP dimer protein on membrane bicelle. The amphipathic helix is
coloured in purple. The protein is depicted in surface representation with orange colour and the membrane is shown in VDW represntation with silver colour. (B) Arrangement of
the helix-pair (residue 1-23) derived from the amino terminal amphipathic region in h-GTP dimer. End distances of the peptide pair is represented by d1 and d2 and the
inter-peptide angle is ◊(C) Side view of the h-GTP dimer membrane system after ≥ 248 ns simulation revealing a highly bent shaped membrane as a consequence of
high curvature induction. (D) Helical wheel diagram of the amino terminal amphipathic helix of h-GTP Sar1 where different colours represent different residue types (yellow:
hydrophobic, green: polar uncharged, blue: polar acidic and red: polar basic) (E) Top view of the membrane bicelle system with peptide-arrangement-1 (isolated amphipathic
peptide case) (F) Snapshot of the membrane bicelle with peptide-arrangement-1 after 250 ns of simulation. Time evolution of (G) membrane penetration depth and (H) µ (see
Eqn. 1 in the SI) for the h-GTP dimer and peptide-arrangement-1 in the presence of continuous membrane. (I) d1/d2 as a function of time in case of membrane bicelle
simulation in the presence of h-GTP dimer and peptide-arrangment-1. (J) Snapshot of the membrane bicelle system in the presence of peptide-arrangemnt-2 where ◊ is
restrained to 180¶.

arrangement-3) as shown in Fig-2A, the magnitude of
membrane curvature increases from ≥ 0.012 ± 0.0006 nm≠1

(arrangement-1 and 2) to 0.013 ± 0.003 nm≠1 (Fig-2B). With
6 peptides (arrangement-4) distributed around the center
of the bicelle (Fig-2C), we observe strong bending of the
membrane, leading to a vesicular cap like structure (Fig-
2D and S1) similar to that induced by the h-GTP dimer
with a curvature of ≥ 0.025 ± 0.002 nm≠1 Fig-2E). Thus,
the bicelle simulations demonstrate that peptide assemblies
induce membrane curvature in a concentration-dependent
manner. Analysis of inter peptide angles reveals a broad
distribution (50 ≠ 180¶), further confirming the lack of
any strong correlation between membrane bending activity
and inter-peptide orientation (Fig-S2 B-C). As a control
simulation, we study a bicelle system covered with a total
of 18 peptides (Fig-S3). Surprisingly, in this case, we do not
observe any significant membrane bending. By the end of ≥
250 ns of simulation, many peptides are located at the highly
curved edges of the bicelle, and they propagate the stress
induced by hydrophobic insertion throughout the membrane.
As a result, the net inter-leaflet stress is minimal and no
curvature induction is observed.

Sar1 serves as a tether connecting Sec23-Sec24 to create
the inner-coat layer. We next study the binding of di�er-
ent protein components from the inner-coat layer to the
membrane, moving towards a more realistic description of

COPII. To address this question in a computationally e�ective
manner we adopt the coarse-grained MARTINI models, which
were successfully employed to model protein(23) and liquid
droplet(24) mediated remodeling of membranes. Here, we first
investigate the binding of Sec23 and Sec24 separately to the
membrane. Both proteins detach from the membrane rather
quickly (tens of nanoseconds) during the simulation despite
initial placement on the membrane surface (Fig-3 A-D). These
observations are consistent with the model that Sar1 acts as
an anchor to bring Sec23 and Sec24 to the membrane surface
and generate the inner-coat layer. Indeed, in a simulation
with a Sar1-Sec23-Sec24 trimer on the membrane (Fig-3E-F),
Sec23 and Sec24 securely attach to Sar1, thereby maintaining
their binding to the membrane and producing a cohesive
unit. Subsequently, we attempt to simulate a more realistic
inner-coat layer by increasing the number of repeating units
of Sar1-Sec23-Sec24 from 1 to 2, 4 and 8. When the number
of Sar1-Sec23-Sec24 trimer units is 2, we do not observe
spontaneous protein-protein association among the trimer
units due to dilution of the protein concentration (Fig-S4).
However, as we increase the number of trimer units we observe
more trimer-trimer associations. In the case of 8 trimer
repeating units, we observe that a few Sar1 proteins stay out
of the membrane plane as a consequence of crowding (Fig-
3G). Overall, we observe a stable binding of the inner-coat
components to the membrane where proteins are dynamically
coupled with each other. We further evaluate the spacing
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DRAFT

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

arrangement-3 arrangement-4

peptide arrangement 4

peptide arrangement 1
peptide arrangement 2
peptide arrangement 3

h-GTP dimer 

!"#$	('()

*+
,-
.!
+,
$	(
'#

!"
)

A. 

B. 

C. 

E. 

D. 

0 100 200 300
0.01

0.015

0.02

0.025

0.03

0.035

Fig. 2. Curvature induction on the membrane as a function of peptide concentration. (A) Initial (top) and (B) final (side) snapshots of a tri-peptide assembly (peptide-
arrangement-3) on a membrane bicelle after ≥ 250 ns simulation (replica-1). (C-D) Initial and final snapshots from replica 1 of peptide arrangement 4. (E) Time evolution
of membrane curvature in all the cases of peptide arrangements including multiple replica simulations of peptide arrangement 1,3 and 4 and h-GTP dimer protein. h-GTP
dimer protein exhibit highest curvature followed by peptide-arrangement-4. Peptide arrangement 1-2 show lowest curvature induction. Final snapshots of remaining replica
simulations are shown in Fig-S1.

between the Sar1 proteins in the presence and absence of
Sec23 and Sec24 by measuring the distances (damino) between
their amino-terminal amphipathic segments (Fig-3H). In the
absence of Sec23 and Sec24, the Sar1 tetramer exhibits strong
inter-protein binding (Fig-S4) resulting in damino values in the
range of 0≠10 nm. In the presence of Sec23 and Sec24, damino

increases significantly (≥ 8-30 nm). The role of Sec23-Sec24
as spacers is robust with respect to the initial arrangement
of protein configurations (Fig-S5). It is important to note
that we consider only the structured part of Sec24 in our
simulation. The amino terminal (resid 1-132) of Sec24 is
intrinsically disordered and not included in our model; it is
expected to further separate Sar1 protomers due to entropic
repulsion. Thus, Sec23 and Sec24 serve as spacers in the
inner-coat layer to separate Sar1 proteins from one another
and prevent them from co-assembling with one another. In
addition to Sec23 and Sec24, the bulky cargo proteins that
are being packaged may also serve as spacers.(25) In the
next section, we explore the consequence of including spacers
between the curvature-generating proteins on the shape of
the generated membrane bud using DTS simulations. The
MARTINI simulations described in this section not only reveal
the spacing between the Sar1 protomers in the presence
of Sec23 and Sec24 but also provide a basis to establish
the connection between the length scales considered in DTS
and atomistic simulations. The simulations also reveal that
structured regions of Sec23 and Sec24 cannot bind to the
membrane and induce curvature. This is an experimentally
testable hypothesis that is important to examine in the future

to better define the roles of these proteins in COPII-mediated
transport.

The effect of spacers on the shape of the membrane bud.
Here, we describe how the spatial arrangement of curvature-
generating proteins impacts the shape of the induced mem-
brane bud employing the DTS simulation protocol. DTS simu-
lations have been previously used to study the transformation
of a membrane vesicle into tubes, discs, and other shapes when
curvature induction takes place anisotropically.(20, 26, 27)
With a flat membrane patch under constant tension, isotropic
curvature-inducing inclusions have been shown to produce
pearled tubule-like budding when the surface coverage of
the proteins exceeds a certain threshold value.(28, 29) Using
the atomistic bicelle simulations, we observe that isotropic
curvature induction is the key characteristic in the case
of Sar1-mediated membrane remodeling where the relative
orientation of its amphipathic helices does not a�ect the
magnitude of curvature induction. Results from the previous
section also suggest that Sec23 and Sec24 maintain the
spatial separation of Sar1 proteins. Based on these findings,
we develop a mesoscopic model of the inner coat layer on
a triangulated membrane mesh where protein-containing
vertices (blue region) have positive intrinsic curvatures (c0 =
1.0 d≠1) isotropically coupled to the Helfrich term. These
curvature-inducing vertices represent Sar1 protomers while
other vertices represent the membrane (c0 = 0 d≠1). In this
case, we observe tubular budding of the membrane with one
or multiple tubules (Fig-4A). This condition resembles that
in in vitro GUVs coated with Sar1, where tubular budding is
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Fig. 3. Simulating the inner coat layer using MARTINI based description. Initial (t = 0) and final (t ≥ 2 µs) snapshots of (A-B) Sec23 (C-D) Sec24 and (E-F) Sar1-Sec23-Sec24
trimer in the presence of membrane. Protein coloured in red indicates Sar1 wheres Sec23 and Sec24 are depicted as orange and grey colour respectively. Sec23 and Sec24
individually fail to maintain a stable attachment with the membrane but with the help of Sar1 it remain bound to the membrane surface. (G) Top and side view of the 8 repeating
units of Sar1-Sec23-Sec24 trimer. (H) Probability distribution of damino estimated from the simulations of Sar1 tetramer in the absence of Sec23 and Sec24 (cyan) and 4
trimer repeating units of Sar1-Sec23-Sec24 (brown).

commonly observed(12). A fraction of the protein containing
vertices turns into a tubular shape while the rest remains flat
surrounding the tubular region.

Next, to model the presence of Sec23 and Sec24, we include
spacers (red) uniformly distributed in the protein-containing
region. With 5% spacer, we observe a pearled tubule-like
shape of the membrane bud (Fig-4B). The spacers occupy
both tubular and flat protein-containing vertices. Due to
the incorporation of spacers, only one tubule is generated
in 4 trajectories and a small spherical budding is observed
in traj-2. Upon increasing the fraction of spacers from 5
% to 15 %, the shape of the membrane bud becomes more
spherical in nature (Fig-4C). A spherical shape is observed
in almost all cases of membrane buds with a constricted
neck. Only in the case of traj-2, a doubly pearled tubule is
generated. Further increasing the spacer content to 25 %
leads to a perfectly spherical membrane bud (Fig-4D). Thus,
increasing the concentration of spacers alters tubular budding
into a more spherical budding. When spacer content exceeds
a certain threshold the membrane budding no longer takes
place. While 50 % spacer leads to a reduced size of the buds,
75% spacer does not lead to any budding during the MC
simulations (Fig-S8). This is consistent with an earlier study
where the curvature generating proteins were observed to fail

to generate membrane buds when the surface coverage on
the membrane is below a threshold value.(28)

In the absence of volume and area compressibility, mem-
brane budding is accompanied by intense deformation of
the overall shape because of the propagation of the stress
due to the fluid nature of the membrane (Fig-S9). In this
case, a larger number of spacers also yields a more spherical
membrane bud. To generate membrane budding, uniform
distribution of the spacers is crucial. When the spacers
are clustered together we do not observe prominent buds
(Fig-S10). We also study the e�ect of anisotropic curvature
induction on the shape of membrane budding (Fig-S11). With
c|| = 1 d≠1, cÎ = 0 d≠1 and kÎ = ŸB, the membrane buds
in a tubular fashion. If we turn on c‹, multiple branched
spheres are generated under a strong coupling limit (kÎ/‹
= ŸB). Increasing the value of cÎ/‹ results in a flat shaped
budding, which is not consistent with that observed in case
of COPII in cells.

Discussion

This work demonstrates the relationship between the insertion
of several amphipathic helices and the creation of specific
membrane shapes. This kind of remodeling of the membrane
is particularly important in the context of membrane budding
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Fig. 4. Monte Carlo simulations of triangulated membrane mesh where 20 % vertices are occupied by proteins. The shape of the membrane mesh after 5 ◊ 105 MC steps in 5
parallel runs in the presence of (A) no spacer (B) 5 % (C) 15 % (D) 25 % spacers. Blue regions represent protein and the spacers are depicted with red. The thickness of the
red bar is proportional to the number of spacers. The white region is the protein-free membrane surface facing a volume (KV ) and area (KA) compressibility of 10 ŸB .

triggered by protein coat assemblies.(30) Here, we specifically
focus on the case of COPII-mediated membrane budding. Our
previous study(15) unraveled a detailed molecular picture of
the membrane curvature generation by Sar1, which is known
to initiate the COPII-mediated protein tra�cking. This study
goes beyond the description based on Sar1 and examines the
impact of including other inner-coat proteins, Sec23 and
Sec24, on the morphology of the membrane budding process.
Our findings demonstrate that when Sar1 is densely organized
without other COPII proteins, it leads to tubular membrane
budding. However, when Sec23 and Sec24 are added, they
do not directly contribute to the curvature induction but
regulate the surface coverage of Sar1, resulting in a more
spherical shape of the bud. Therefore, our results suggest an
additional role for Sec23, Sec24, and cargo proteins during
COPII transport carrier formation, where they regulate
the spacing between Sar1 proteins and thereby facilitate
the formation of spherical membrane carriers. This is also
supported by recent cryo-EM derived structures showing that
Sar1-Sec23-Sec24 trimer units appear as randomly oriented
patches on vesicles(25) in contrast to uniformly distributed
lattices found on the membrane tubules (5). The amino
terminal intrinsically disordered region (IDR) of Sec24, which
is not considered in this study, is composed of 70 hydrophilic
(13 of which are charged) and 62 hydrophobic residues. It is
unclear whether this IDR region helps Sec24 attach to the
membrane. However, our simulations indicate that Sec23 and

the structured region of Sec24 require Sar1 to maintain their
stable attachment with the membrane and thereby form the
inner-coat layer. According to our previous studies (15, 19),
Sar1 binds to the membrane in both GDP and GTP bound
states, but only creates positive membrane curvature in the
GTP bound state. Therefore, Sar1 together with Sec23 and
Sec24 are able to be associated with the membrane prior
to any curvature induction. Afterwards, Sec12 exchanges
GDP bound to Sar1 with GTP, which triggers Sar1 to
induce curvature on the membrane. However, due to the
presence of Sec23, Sec24 and cargo proteins, Sar1 protomers
remain scattered on the membrane surface with disordered
orientations, leading to spherical budding of the membrane.

Membrane active amphipathic peptides are known to insert
and can lead to pore formation.(31, 32) The C-terminal
amphipathic helices of complexin have been shown to produce
a stable pore in the lipid bilayer when the number of
peptides reaches 12.(33) There are just seven hydrophilic
residues out of 23 in the amino terminal helix of Sar1.
We observe that the amphipathic peptides derived from
Sar1 are embedded horizontally to the membrane plane
without stretching across despite containing a large amount
of hydrophobic residues. The spontaneous transition of
a membrane bicelle to a vesicular intermediate triggered
by curvature generating protein has been demonstrated
previously using the MARTINI model.(34) Here, we establish
the dependence of the concentration of amphipathic peptide
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on the magnitude of curvature induction on membrane bicelle
(Fig-2). We also reveal that the relative membrane sculpting
e�ciency of amphipathic peptides decreases in the absence
of the entire protein segment. In the case of BAR(35, 36)
domains and the ESCRT machinery(37), proteins form an
intrinsically curved filament, which is key to the process of
membrane bending by these proteins. On the contrary, the
lack of dependency of the membrane curvature induction on
the inter-peptide angle indicates that the curvature induction
is isotropic in the case of COPII. Our DTS simulations also
reveal that isotropic curvature induction on the protein-bound
vertices is essential to producing spherical membrane bud at
optimal spacer concentration.

The conventional mechanism of cargo transport through
COPII-coated membrane vesicles has been challenged by
two recent experiments.(38–40) These results suggest that
COPII localizes at the neck of the membrane bud, defining
a boundary between ER and ER-Golgi intermediate com-
partments (ERGIC). Further, the inhibition of Sar1 reduced
the recruitment of Sec23 on the ER membrane and thus
disrupted the formation of a proper COPII assembly.(39)
Our MARTINI based simulations also support this finding by
showing that Sar1 recruits Sec23-Sec24 to form the inner-coat
layer. However, the mechanism by which such a ring-shaped
COPII collar can produce a membrane bud remains unclear.

In summary, we o�er a mechanistic overview of the
complex interplay between multiple proteins from COPII
family in regulating the shape of the coated membrane
surface. We cover a broad range of length scales by
employing atomistic, MARTINI, and Helfrich Hamiltonian
based mesoscale simulations to establish the role of spacer
proteins in producing spherical membrane buds. Our
atomistic simulations indicate that the membrane penetration
depth of the amphipathic helices increase significantly in
the absence of the rest of the protein segment (Fig-1 G).
This can be tested experimentally by fluorescence quenching
based assays as described in(19) where one can monitor the
fluorescence quenching of a Trp residue within the amino
terminal amphipathic helix by quenchers present at various
depths of the membrane. Based on our simulations, we
also predict that Sar1 in the presence of Sec23 and Sec24
sculpt spherical/lobe shaped budding rather than tubules
on GUVs, which can also be investigated experimentally. In
our study we focus on the inner-coat proteins Sar1, Sec23,
and Sec24, which are considered to be the key players in
the membrane budding process at the subdomains of ER. In
addition to the inner-coat layer, Sec13 and Sec31 form the
outer-coat layer, which has a cage-like structure and promotes
vesicle fission.(41) It is not clear whether the highly bent
outer-coat layer also contributes to the curvature induction
and membrane budding process. An intriguing possibility is
that interactions between the inner and outer coat protein
facilitate appropriate spacing between Sar1 protomers to
drive the budding of spherical transport carriers. Although
our approach of modeling the inner-coat layer is su�cient to
explain the shapes of remodeled membranes in both in vitro
and in vivo conditions, it is important in the next step to
directly consider the roles of Sec13 and Sec31 in this process.

Materials and Methods

We perform simulations at three di�erent length scales which
are atomistic, coarse-grained, and mesoscopic (See Table-S1 for
the summary of MD simulations conducted). First, we assess the
membrane penetration depth of the Sar1 amphipathic helices by
performing atomistic simulations using a continuous membrane
bilayer. We follow the protocol described in Paul et. al. (15) to
perform the atomistic membrane simulations. The h-GTP dimer
model of Sar1 is first introduced into an atomistic lipid bilayer
(10nm ◊ 10nm) containing 66 % DOPC, 21 % DOPE, 8 % DOPS,
and 5 % DOPA; that is, a 13 % anionic membrane. We ignore
the remaining protein and solvent and only take into account
the amino-terminal amphipathic helix (residue 1-23) embedded
in the membrane bilayer. The system is then re-solved and re-
ionized to maintain the physiological (0.15 M) salt concentration
and to make the system charge-neutral. Following minimization
and equilibration, NPT simulations are carried out for 160 ns
with the Nosé-Hoover thermostat and Parinello-Rahman barostat
(semiisotropic pressure coupling) to control the temperature and
pressure of the system. All simulations are performed using
GROMACS(42, 43) version 2018.3 and the CHARMM36m(44)
force field with the TIP3P explicit solvent model. We estimate
the magnitude of the partitioning of the hydrophobic/hydrophilic
residues of the amphipathic helices at the membrane-water interface
by a quantity µ (see SI text for definition).

Next, we perform simulations with the membrane bicelle
for ≥ 250 ns to evaluate the extent of membrane bending by
these amphipathic helices. We model the bicelle system by
replicating the continuous membrane system along +X : ≠X
and +Y : ≠Y directions using the gmx genbox utility followed
by the deletion of membrane segments near the edges to break
the membrane continuity along X and Y (see SI text and Paul
et. al. (15) for details). To demonstrate the statistical robustness
of our membrane bicelle simulation strategy, we conduct six
independent replica simulations for peptide arrangement 4, four
for peptide arrangement 3, and three for peptide arrangement
1. All simulations began with identical starting coordinates but
had di�erent starting velocities. VMD version 1.9.3(45) is used for
visualization and analysis. The helical wheel diagram is constructed
using NetWheels(46).

Afterwards, to demonstrate the e�ect of Sec23 and Sec24 on the
relative spacing between Sar1 proteins on the membrane surface,
we perform coarse-grained simulations using the MARTINI 3 model
with Sar1 (Fig- S3-S4) and multiple units of the Sar1-Sec23-Sec24
trimer on a lipid bilayer. We convert the atomistic models of Sar1-
Sec23-Sec24 (PDB code: 6GNI(5)) trimer into MARTINI3.0(47)
model using martinize2(48) with the elastic bond force constant
of 1300 kJ/mol/nm2 and a decay factor 0.8. After building the
MARTINI model of the proteins, we construct a ≥ 40 nm ◊ 30
nm membrane bilayer with 87 % DOPC and 13 % DOPS lipid
molecules and place the protein molecules on top using the insane
tool. Then, we add water beads and Na+/Cl≠ to neutralize
the system and maintain a physiological salt concentration. The
simulation box size is ≥ 40 nm ◊ 30 nm ◊ 30 nm. After energy
minimization and short equilibration, a ≥ 2 ≠ 5 µs production run
is carried out with the equilibrated configuration. In this step,
V-rescale thermostat and Parrienllo-Rahman barostat are used
with the same ·P . The time step in the MARTINI simulations is
20 fs.

Finally, we carry out the Monte Carlo (MC) simulation of the
Dynamic Triangulated Surface (DTS) model following the strategy
described by Ramakrishnan et. al.(21, 49) In this simulation the
membrane dynamics is governed by the Helfrich Hamiltonian at
the mesoscopic length scale where the membrane is considered as
a surface discretized by triangles (see SI for more details). The
presence of curvature-inducing proteins is represented by vertices
that have intrinsic non-zero curvatures. Here, instead of using the
formalism developed by Ramakrishnan et al., we utilize isotropic
curvature induction as discussed by Pezeshkian et. al.(28). Vertex
movement and link flips are considered as the MC moves. We
allow nematic exchange between protein (blue) and spacers (red)
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while no nematic exchange is allowed between membrane and
protein/spacer. A total of 5 ◊ 105 MC steps are carried out. For
comparison, we also perform DTS simulations using anisotropic
curvature induction condition. The total number of vertices in the
membrane vesicle is 2030, 20% of which are occupied by proteins
(Sar1). Among the protein-containing vertices, we place spacers
representing Sec23/Sec24 with varying amounts (5-75 %). We
use paraview(50) to visualize the membrane in the form of the
triangulated mesh where surface representation is selected and the
colour scheme is based on the phases of the vertices. Non-protein
containing vertices (grey) belong to phase 2 whereas proteins
(blue) and spacers (red) containing vertices belong to phase 1 and
3 respectively.
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