

1 Delineating the shape of COPII coated membrane 2 bud

3 **Sanjoy Paul^a, Anjon Audhya^b, and Qiang Cui^{a,c}**

4 This manuscript was compiled on July 15, 2024

5 **Curvature-generating proteins that direct membrane trafficking assemble on the surface of**
6 **lipid bilayers to bud transport intermediates, which move protein and lipid cargoes from**
7 **one cellular compartment to another. However, it remains unclear what controls the overall**
8 **shape of the membrane bud once curvature induction has begun. In vitro experiments**
9 **showed that excessive concentrations of the COPII protein Sar1 promoted the formation**
10 **of membrane tubules from synthetic vesicles, while COPII-coated transport intermediates**
11 **in cells are generally more spherical or lobed in shape. To understand the origin of**
12 **these morphological differences, we employ atomistic, coarse-grained (CG), and continuum**
13 **mesoscopic simulations of membranes in the presence of multiple curvature-generating**
14 **proteins. We first characterize the membrane bending ability of amphipathic peptides derived**
15 **from the amino terminus of Sar1, as a function of inter-peptide angle and concentration using**
16 **an atomistic bicelle simulation protocol. Then, we employ CG simulations to reveal that**
17 **Sec23 and Sec24 control the relative spacing between Sar1 protomers and form the inner-coat**
18 **unit through an attachment with Sar1. Finally, using Dynamical Triangulated Surface (DTS)**
19 **simulations based on the Helfrich Hamiltonian, we demonstrate that the uniform distribution of**
20 **spacer molecules among curvature-generating proteins is crucial to the spherical budding of**
21 **the membrane. Overall, our analyses suggest a new role for Sec23, Sec24 and cargo proteins**
22 **in COPII mediated membrane budding process in which they act as spacers to preserve**
23 **a dispersed arrangement of Sar1 protomers and help determine the overall shape of the**
24 **membrane bud.**

25 membrane remodeling | COPII | Helfrich Hamiltonian | protein transport

32 Introduction

33 **C**oat Protein complex II (COPII) is a multiprotein molecular machinery that
34 orchestrates the export of newly synthesized proteins from the Endoplasmic
35 Reticulum (ER) via membrane-enclosed transport carriers.⁽¹⁾ The complex consists
36 of various isoforms of Sar1, Sec23, Sec24, Sec13, and Sec31, which are thought
37 to assemble into a multilayered coat structure on the cytoplasmic face of discrete
38 ER subdomains known as transitional ER. Sar1 initiates the membrane budding
39 process when it becomes activated by transitioning from a GDP-bound state
40 to a GTP-bound state by the guanine nucleotide exchange factor Sec12.^(2, 3)
41 Subsequently, Sar1 together with Sec23-Sec24 heterodimers forms the inner coat
42 layer^(4–6) on the membrane bud, whereas Sec13-Sec31 produces an outer cage-like
43 layer^(7, 8) to complete COPII coat formation. These membrane-bound, cargo
44 laden carriers generally adopt a spherical or multi-lobed shape that are roughly ~
45 50–200 nm in diameter.⁽⁹⁾ With the help of Sec16 and members of the TANGO1
46 family, multiple COPII coated carriers can adopt a ‘beads-on-a-string’ conformation
47 to accommodate bulky procollagens.^(10, 11) However, in-vitro experiments have
48 demonstrated that Sar1 in the presence of GTP forms an organized lattice structure
49 on Giant Unilamellar Vesicles (GUVs), resulting in the formation of membrane
50 tubules.^(12, 13) This shape is noticeably different from the structure of COPII-
51 coated transport carriers found inside living organisms. Further, this indicates that
52 Sar1 alone cannot produce the spherical shape of a membrane bud. Therefore, the
53 molecular origin of the shape of COPII coated carriers remains poorly understood.

54 Regulation of the spatiotemporal accumulation of COPII proteins is crucial to
55 drive cargo export from the ER. Our recent study highlighted the formation of the
56 inner-coat layer as the rate-limiting step for the cargo transport process.⁽¹⁴⁾ We
57 also demonstrated the molecular mechanism of membrane binding and bending
58 activity of inner coat protein Sar1 in a nucleotide state- and concentration-dependent
59 manner.⁽¹⁵⁾ Despite these advances, what regulates the shape of membrane buds
60 induced by COPII needs to be understood in more detail. Conventionally, it
61 is considered that Sec23⁽¹⁶⁾ functions as a GTPase activating protein (GAP),

63 **Significance Statement**

64 **Lipid membrane remodeling is crucial to many cellular processes.**
65 **While tremendous progress has been made regarding how proteins**
66 **generate local membrane deformations, such as bending and pore**
67 **formation, it is less well understood how specific global membrane**
68 **deformations are generated by the collective impacts of multiple pro-**
69 **teins. For example, the COPII protein Sar1 leads to membrane tubula-**
70 **tion under in vitro conditions, while together with other COPII compo-**
71 **nents such as Sec23 and Sec24, Sar1 protomers generate spherical**
72 **membrane vesicles. By integrating multi-scale simulations that span**
73 **atomistic and continuum scales, we illustrate how Sec23, Sec24, and**
74 **cargo proteins function as spacers to ensure a diluted membrane sur-**
75 **face coverage of Sar1 protomers which is crucial to the spherical**
76 **budding of the membrane.**

77 **Author affiliations:** ^aDepartment of Chemistry, Boston
78 University, Massachusetts-02215, USA; ^bDepartment
79 of Biomolecular Chemistry, University of Wisconsin-
80 Madison, Wisconsin-53706, USA; ^cDepartments of
81 Physics, and Biomedical Engineering, Boston Univer-
82 sity, Massachusetts-02215, USA

83 S.P., A.A., and Q.C. designed research; S.P. per-
84 formed research; S.P. and Q.C. analyzed data; and
85 S.P., A.A., and Q.C. wrote the paper.

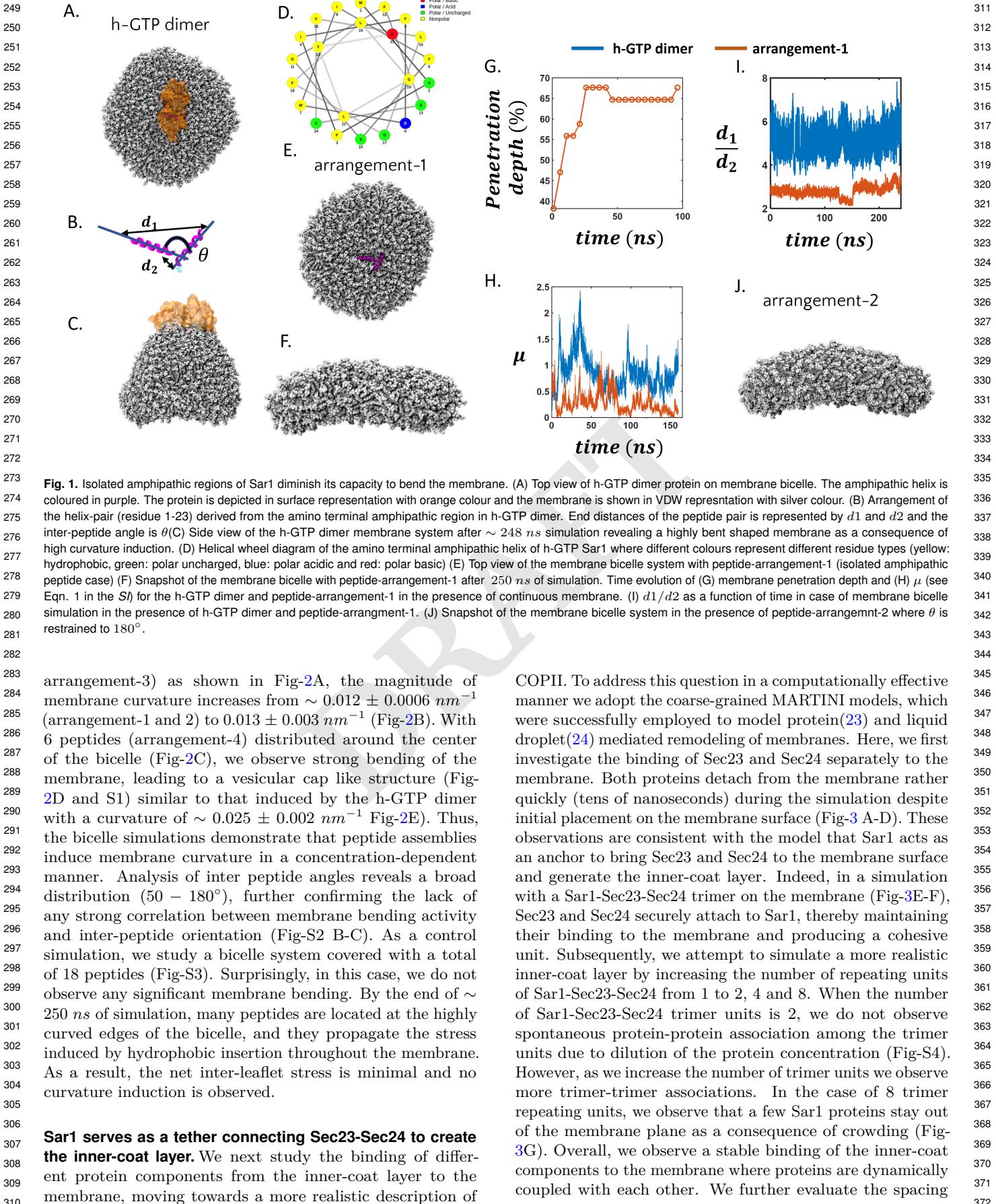
86 The authors declare no competing interest

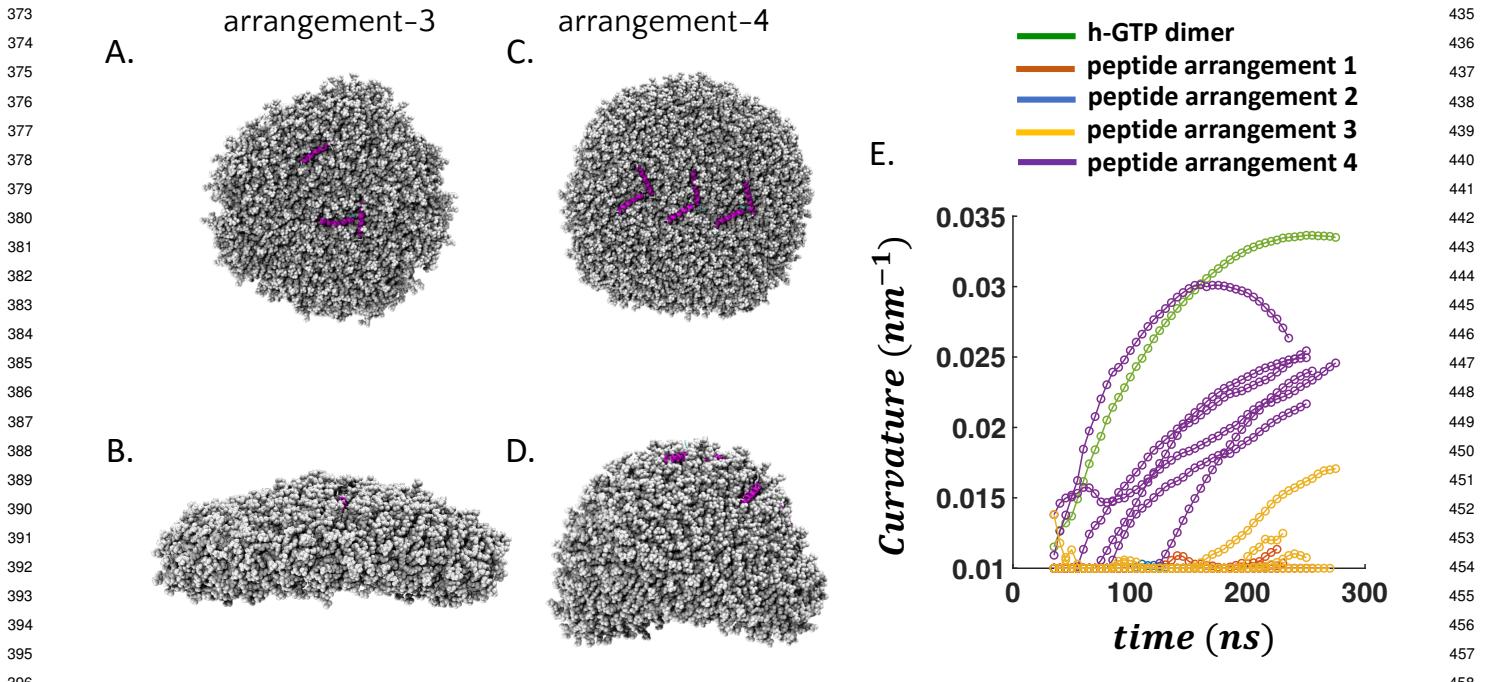
87 ²To whom correspondence should be addressed. E-
88 mail: qiangcui@bu.edu

125 facilitating the hydrolysis of GTP on Sar1, whereas Sec24(17)
126 is involved in cargo binding. However, in the absence of Sar1,
127 cargo export persists through the continued action of Sec23-
128 Sec24 in a phase separated state.(18) These findings suggest
129 that Sec23-Sec24 complexes may play hitherto unrecognized
130 roles in the process of membrane budding.

131 Sar1 inserts its amphipathic amino terminal helix into the
132 membrane to induce local positive curvature.(15, 19) While
133 a single Sar1 protein can locally deform the membrane, how
134 multiple Sar1 molecules sculpt the membrane into distinct
135 shapes remains unknown. The consequence of multiple
136 curvature-inducing inclusions on membrane has been shown
137 to produce a diverse array of morphologies such as tubes,
138 corkscrew, disc, caveolae etc.(20, 21) In the context of COPII
139 mediated membrane budding, relevant membrane shapes
140 are tubules under *in vitro* conditions and more spherical
141 under *in vivo* conditions. To comprehend the topology of the
142 membrane bud formed by COPII, it is crucial to establish
143 how the membrane responds to the multiple types of proteins
144 involved.

145 In this study, we employ atomistic, coarse-grained, and
146 continuum mechanics based simulations to elucidate the
147 molecular mechanism of how the inner coat layer shapes
148 the membrane bud. Since the amphipathic amino terminal
149 helix is the curvature-inducing region of Sar1, we arrange
150 multiple such peptides on the membrane and study their
151 collective membrane bending activities. First, we compare
152 the relative bending activities of a GTP bound Sar1 dimer vs.
153 the amino terminal peptide dimer in the absence of the rest
154 of the protein using the atomistic bicelle simulation protocol.
155 Then, we provide a quantitative estimate of the magnitude
156 of curvature induction as a function of relative orientation of
157 the amino terminal peptides and their concentration. We also
158 investigate the membrane binding ability of Sec23 and Sec24
159 using MARTINI based coarse-grained model. Finally, we
160 utilize the Dynamic Triangulated Surface (DTS) simulation
161 framework to explore the relationship between the surface
162 coverage of Sar1 and the shape of the membrane bud. Taken
163 together, our model suggests a new role for Sec23, Sec24,
164 and cargo proteins in COPII mediated membrane budding
165 process in which they participate as spacers to control the
166 relative distribution of Sar1 proteins on the lipid bilayer
167 surface, which is critical for the spherical development of the
168 membrane bud.

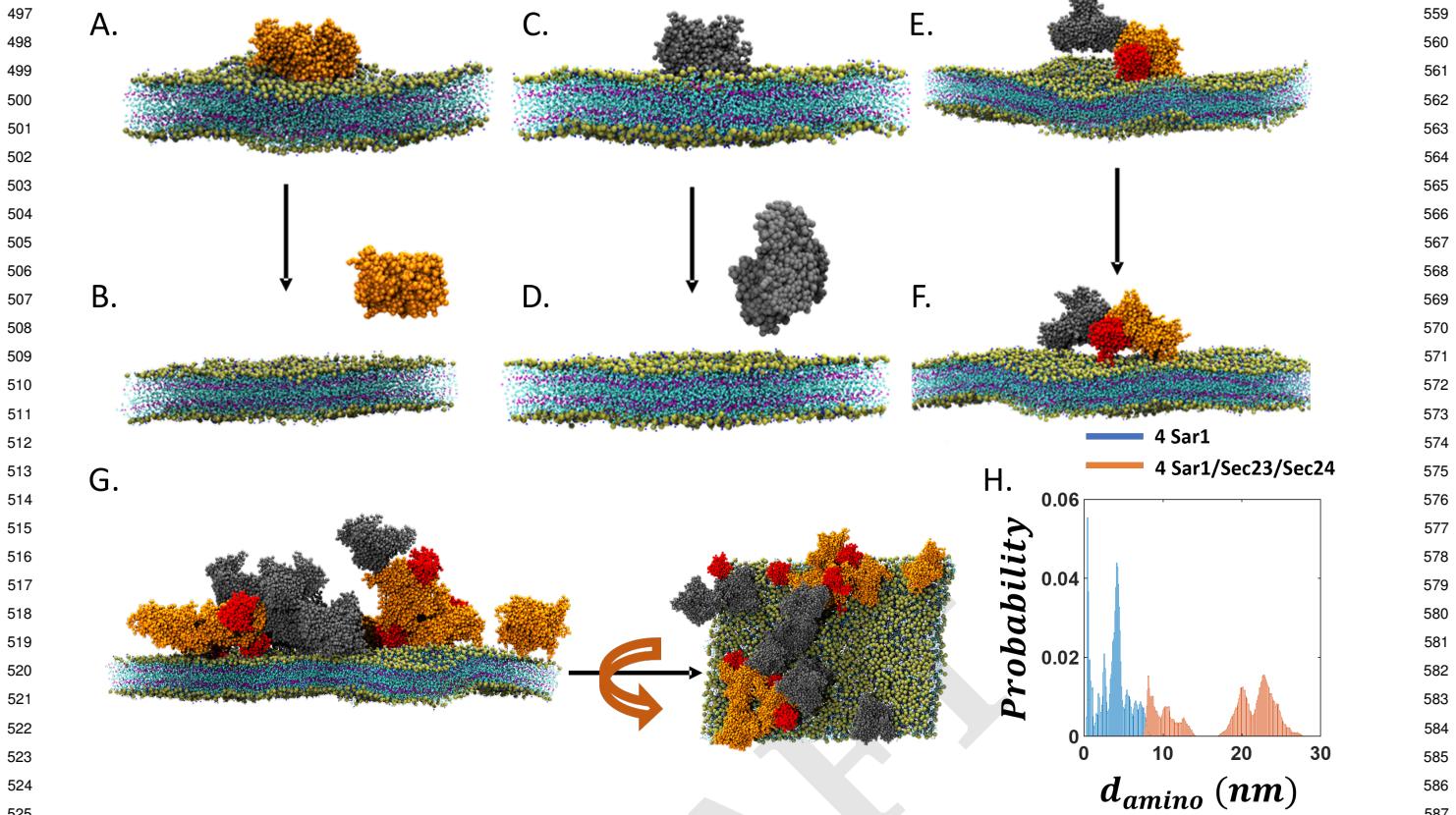

169 **Results**


170 **Comparative assessment of the membrane bending activity**
171 **of the amino terminal amphipathic helix of Sar1 in the**
172 **presence and absence of the rest of the protein.** Since
173 the simulation of a large number of Sar1 protomers on a
174 lipid membrane is costly at the atomistic level, we first
175 analyze to what degree the membrane bending activity
176 of Sar1 can be captured with only the amphipathic helix
177 in the amino terminus(15). GTP bound Sar1 dimer (h-
178 GTP dimer) produces significant positive curvature on the
179 membrane, transforming the flat-shaped bicelle (Fig-1A) into
180 a highly bent dome-shaped structure (Fig-1C). The height of
181 phosphate mid-plane changes by ~ 4 nm as a consequence
182 of this transition. However, when the amphipathic (Fig-
183 1D) helices are present alone (arrangement-1) without
184 the rest of the protein, the magnitude of curvature induction
185 is dramatically reduced (Fig-1E-F). Although the protein
186 segment that causes curvature induction is the same for both
187 cases, we observe a stark contrast in the extent of membrane
188 bending.

189 According to the hydrophobic insertion mechanism of
190 protein induced membrane bending (22), shallow inclusion of
191 amphipathic helices of proteins is most effective for generating
192 positively curved membrane deformations. Therefore, to ex-
193 plain the differential bending activity of the Sar1 amphipathic
194 helices, we study the time evolution of the penetration depth
195 of the peptides into a periodically continuous membrane.
196 While the h-GTP dimer exhibits 40 % penetration depth
197 (as defined by Paul et. al.(15)), the amphipathic helix
198 increases the penetration depth up to 65 % within ~ 100 ns
199 when present in isolation (Fig-1G). This deeper membrane
200 penetration in the absence of the rest of the protein reduces
201 the magnitude of partitioning of hydrophobic/hydrophilic
202 residues at the membrane-water interface. While the h-GTP
203 dimer displays $\mu \sim 1$ (Eqn. 1 in the *SI*), the isolated peptides
204 (arrangement-1) lead to μ significantly less than 1 (Fig-1H).
205 This indicates that in the absence of the rest of the protein, the
206 amphipathic helix inserts into the membrane so deeply that
207 it brings some of its hydrophilic residues into the membrane.
208 As a result, the inter-leaflet stress, which arises due to the
209 hydrophobic/hydrophilic partitioning at the membrane water
210 interface, becomes reduced and therefore does not bend the
211 membrane significantly.

212 In addition to the excess penetration of the peptides,
213 another contributing factor in this context can be the relative
214 orientation of the peptides on the membrane surface (Fig-
215 1B). The distribution of the inter-peptide angle (θ) in the
216 h-GTP dimer is sharply peaked around $\sim 105^\circ$ whereas the
217 peptides in isolation following arrangement-1 exhibit a broad
218 distribution of θ (Fig-S2A). We further characterize this
219 orientational dissimilarity by computing the ratio of the end
220 distances (d_1 and d_2) of the peptide pair. In the case of a
221 serial arrangement of the peptides d_1/d_2 will be $2d$ where d is
222 the length of a single helix (~ 3.5 nm in the case of Sar1), and
223 in the case of a parallel arrangement, d_1/d_2 should be 1. The
224 high value of d_1/d_2 observed for the h-GTP dimer indicates a
225 serial-like arrangement of the helix-pair while the significantly
226 lower value of d_1/d_2 for the peptides in isolation indicates
227 rather different arrangements (Fig-1I). To estimate the effect
228 of the inter-helix orientation on the membrane curvature
229 induction, we perform bicelle simulations in the presence of
230 two peptides while restraining the inter-peptide angle to be
231 180° (peptide-arrangement-2). The angular restraint is not
232 observed to enhance the degree of membrane bending (Fig-
233 1J). Therefore, the relative orientation of the amphipathic
234 peptides does not significantly impact the membrane bending
235 activity. This suggests that curvature induction by a large
236 assembly of the amphipathic peptides can be modeled without
237 considering specific relative orientation (*vide infra*).

238 **The magnitude of membrane curvature induction is propor-
239 tional to the concentration of the embedded peptides.** In this
240 section, we study the impact of the peptide concentration on
241 the magnitude of membrane curvature induction. From the
242 previous section, it is clear that two copies of the amphipathic
243 peptide derived from the h-GTP dimer are unable to generate
244 significant membrane curvature irrespective of their relative
245 orientation. With one more amphipathic helix (peptide-
246


Fig. 2. Curvature induction on the membrane as a function of peptide concentration. (A) Initial (top) and (B) final (side) snapshots of a tri-peptide assembly (peptide-arrangement-3) on a membrane bicelle after ~ 250 ns simulation (replica-1). (C-D) Initial and final snapshots from replica 1 of peptide arrangement 4. (E) Time evolution of membrane curvature in all the cases of peptide arrangements including multiple replica simulations of peptide arrangement 1,3 and 4 and h-GTP dimer protein. h-GTP dimer protein exhibit highest curvature followed by peptide-arrangement-4. Peptide arrangement 1-2 show lowest curvature induction. Final snapshots of remaining replica simulations are shown in Fig-S1.

between the Sar1 proteins in the presence and absence of Sec23 and Sec24 by measuring the distances (d_{amino}) between their amino-terminal amphipathic segments (Fig-3H). In the absence of Sec23 and Sec24, the Sar1 tetramer exhibits strong inter-protein binding (Fig-S4) resulting in d_{amino} values in the range of 0–10 nm. In the presence of Sec23 and Sec24, d_{amino} increases significantly (~ 8 –30 nm). The role of Sec23–Sec24 as spacers is robust with respect to the initial arrangement of protein configurations (Fig-S5). It is important to note that we consider only the structured part of Sec24 in our simulation. The amino terminal (resid 1–132) of Sec24 is intrinsically disordered and not included in our model; it is expected to further separate Sar1 protomers due to entropic repulsion. Thus, Sec23 and Sec24 serve as spacers in the inner-coat layer to separate Sar1 proteins from one another and prevent them from co-assembling with one another. In addition to Sec23 and Sec24, the bulky cargo proteins that are being packaged may also serve as spacers.(25) In the next section, we explore the consequence of including spacers between the curvature-generating proteins on the shape of the generated membrane bud using DTS simulations. The MARTINI simulations described in this section not only reveal the spacing between the Sar1 protomers in the presence of Sec23 and Sec24 but also provide a basis to establish the connection between the length scales considered in DTS and atomistic simulations. The simulations also reveal that structured regions of Sec23 and Sec24 cannot bind to the membrane and induce curvature. This is an experimentally testable hypothesis that is important to examine in the future

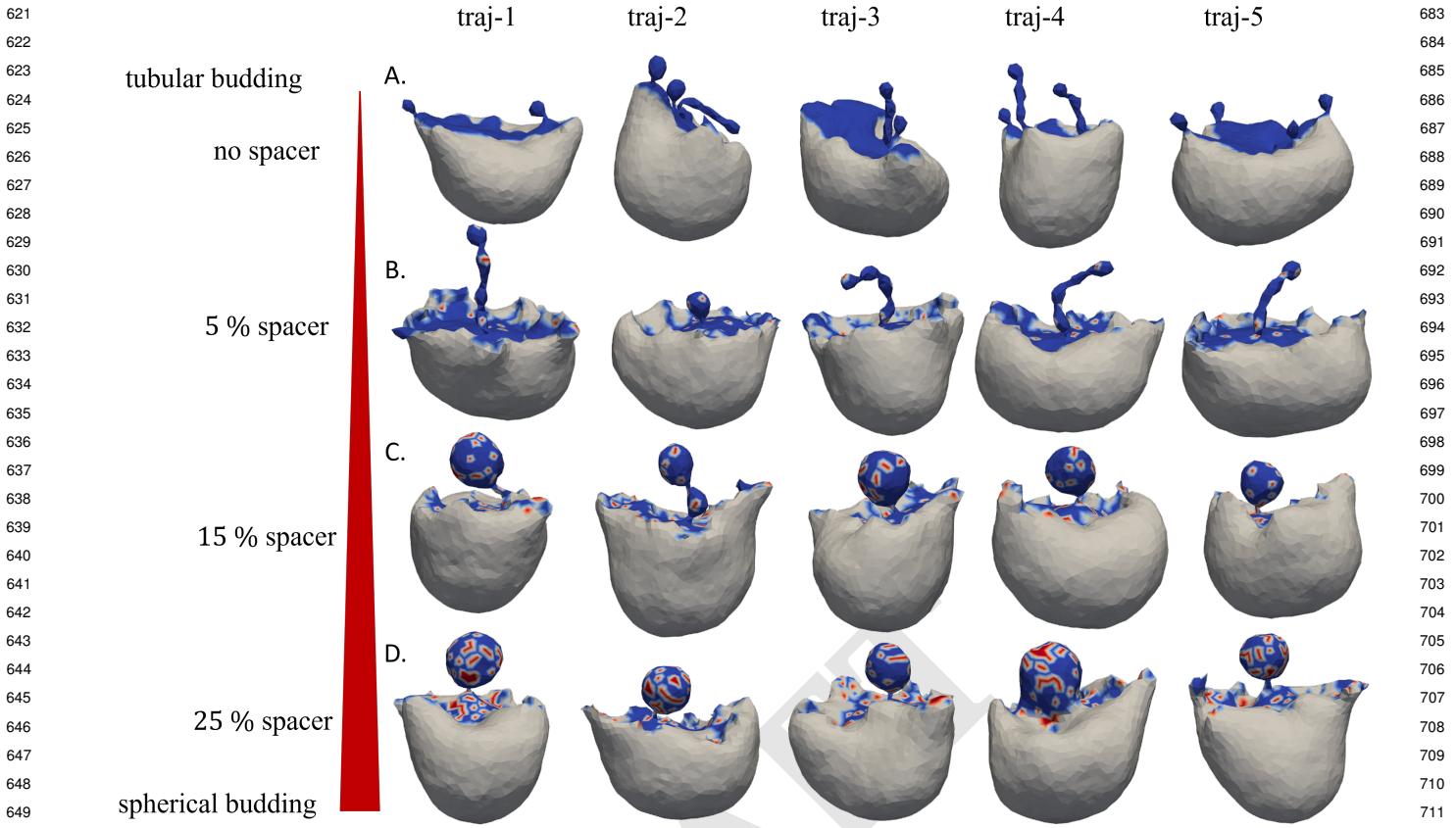
to better define the roles of these proteins in COPII-mediated transport.

The effect of spacers on the shape of the membrane bud.

Here, we describe how the spatial arrangement of curvature-generating proteins impacts the shape of the induced membrane bud employing the DTS simulation protocol. DTS simulations have been previously used to study the transformation of a membrane vesicle into tubes, discs, and other shapes when curvature induction takes place anisotropically.(20, 26, 27) With a flat membrane patch under constant tension, isotropic curvature-inducing inclusions have been shown to produce pearly tubule-like budding when the surface coverage of the proteins exceeds a certain threshold value.(28, 29) Using the atomistic bicelle simulations, we observe that isotropic curvature induction is the key characteristic in the case of Sar1-mediated membrane remodeling where the relative orientation of its amphipathic helices does not affect the magnitude of curvature induction. Results from the previous section also suggest that Sec23 and Sec24 maintain the spatial separation of Sar1 proteins. Based on these findings, we develop a mesoscopic model of the inner coat layer on a triangulated membrane mesh where protein-containing vertices (blue region) have positive intrinsic curvatures ($c_0 = 1.0$ d⁻¹) isotropically coupled to the Helfrich term. These curvature-inducing vertices represent Sar1 protomers while other vertices represent the membrane ($c_0 = 0$ d⁻¹). In this case, we observe tubular budding of the membrane with one or multiple tubules (Fig-4A). This condition resembles that in *in vitro* GUVs coated with Sar1, where tubular budding is

Fig. 3. Simulating the inner coat layer using MARTINI based description. Initial ($t = 0$) and final ($t \sim 2 \mu s$) snapshots of (A-B) Sec23 (C-D) Sec24 and (E-F) Sar1-Sec23-Sec24 trimer in the presence of membrane. Protein coloured in red indicates Sar1 whereas Sec23 and Sec24 are depicted as orange and grey colour respectively. Sec23 and Sec24 individually fail to maintain a stable attachment with the membrane but with the help of Sar1 it remain bound to the membrane surface. (G) Top and side view of the 8 repeating units of Sar1-Sec23-Sec24 trimer. (H) Probability distribution of d_{amino} estimated from the simulations of Sar1 tetramer in the absence of Sec23 and Sec24 (cyan) and 4 trimer repeating units of Sar1-Sec23-Sec24 (brown).

commonly observed(12). A fraction of the protein containing vertices turns into a tubular shape while the rest remains flat surrounding the tubular region.


Next, to model the presence of Sec23 and Sec24, we include spacers (red) uniformly distributed in the protein-containing region. With 5% spacer, we observe a pearly tubule-like shape of the membrane bud (Fig-4B). The spacers occupy both tubular and flat protein-containing vertices. Due to the incorporation of spacers, only one tubule is generated in 4 trajectories and a small spherical budding is observed in traj-2. Upon increasing the fraction of spacers from 5 % to 15 %, the shape of the membrane bud becomes more spherical in nature (Fig-4C). A spherical shape is observed in almost all cases of membrane buds with a constricted neck. Only in the case of traj-2, a doubly pearly tubule is generated. Further increasing the spacer content to 25 % leads to a perfectly spherical membrane bud (Fig-4D). Thus, increasing the concentration of spacers alters tubular budding into a more spherical budding. When spacer content exceeds a certain threshold the membrane budding no longer takes place. While 50 % spacer leads to a reduced size of the buds, 75% spacer does not lead to any budding during the MC simulations (Fig-S8). This is consistent with an earlier study where the curvature generating proteins were observed to fail

to generate membrane buds when the surface coverage on the membrane is below a threshold value.(28)

In the absence of volume and area compressibility, membrane budding is accompanied by intense deformation of the overall shape because of the propagation of the stress due to the fluid nature of the membrane (Fig-S9). In this case, a larger number of spacers also yields a more spherical membrane bud. To generate membrane budding, uniform distribution of the spacers is crucial. When the spacers are clustered together we do not observe prominent buds (Fig-S10). We also study the effect of anisotropic curvature induction on the shape of membrane budding (Fig-S11). With $c_{||} = 1 d^{-1}$, $c_{\perp} = 0 d^{-1}$ and $k_{||} = \kappa_B$, the membrane buds in a tubular fashion. If we turn on c_{\perp} , multiple branched spheres are generated under a strong coupling limit ($k_{||/\perp} = \kappa_B$). Increasing the value of $c_{||/\perp}$ results in a flat shaped budding, which is not consistent with that observed in case of COPII in cells.

Discussion

This work demonstrates the relationship between the insertion of several amphipathic helices and the creation of specific membrane shapes. This kind of remodeling of the membrane is particularly important in the context of membrane budding

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
651 **Fig. 4.** Monte Carlo simulations of triangulated membrane mesh where 20 % vertices are occupied by proteins. The shape of the membrane mesh after 5×10^5 MC steps in 5 parallel runs in the presence of (A) no spacer (B) 5 % (C) 15 % (D) 25 % spacers. Blue regions represent protein and the spacers are depicted with red. The thickness of the red bar is proportional to the number of spacers. The white region is the protein-free membrane surface facing a volume (K_V) and area (K_A) compressibility of $10 \kappa_B$.

655 triggered by protein coat assemblies.(30) Here, we specifically
656 focus on the case of COPII-mediated membrane budding. Our
657 previous study(15) unraveled a detailed molecular picture of
658 the membrane curvature generation by Sar1, which is known
659 to initiate the COPII-mediated protein trafficking. This study
660 goes beyond the description based on Sar1 and examines the
661 impact of including other inner-coat proteins, Sec23 and
662 Sec24, on the morphology of the membrane budding process.
663 Our findings demonstrate that when Sar1 is densely organized
664 without other COPII proteins, it leads to tubular membrane
665 budding. However, when Sec23 and Sec24 are added, they
666 do not directly contribute to the curvature induction but
667 regulate the surface coverage of Sar1, resulting in a more
668 spherical shape of the bud. Therefore, our results suggest an
669 additional role for Sec23, Sec24, and cargo proteins during
670 COPII transport carrier formation, where they regulate
671 the spacing between Sar1 proteins and thereby facilitate
672 the formation of spherical membrane carriers. This is also
673 supported by recent cryo-EM derived structures showing that
674 Sar1-Sec23-Sec24 trimer units appear as randomly oriented
675 patches on vesicles(25) in contrast to uniformly distributed
676 lattices found on the membrane tubules (5). The amino
677 terminal intrinsically disordered region (IDR) of Sec24, which
678 is not considered in this study, is composed of 70 hydrophilic
679 (13 of which are charged) and 62 hydrophobic residues. It is
680 unclear whether this IDR region helps Sec24 attach to the
681 membrane. However, our simulations indicate that Sec23 and
682

683 the structured region of Sec24 require Sar1 to maintain their
684 stable attachment with the membrane and thereby form the
685 inner-coat layer. According to our previous studies (15, 19),
686 Sar1 binds to the membrane in both GDP and GTP bound
687 states, but only creates positive membrane curvature in the
688 GTP bound state. Therefore, Sar1 together with Sec23 and
689 Sec24 are able to be associated with the membrane prior
690 to any curvature induction. Afterwards, Sec12 exchanges
691 GDP bound to Sar1 with GTP, which triggers Sar1 to
692 induce curvature on the membrane. However, due to the
693 presence of Sec23, Sec24 and cargo proteins, Sar1 protomers
694 remain scattered on the membrane surface with disordered
695 orientations, leading to spherical budding of the membrane.

696 Membrane active amphipathic peptides are known to insert
697 and can lead to pore formation.(31, 32) The C-terminal
698 amphipathic helices of complexin have been shown to produce
699 a stable pore in the lipid bilayer when the number of
700 peptides reaches 12.(33) There are just seven hydrophilic
701 residues out of 23 in the amino terminal helix of Sar1.
702 We observe that the amphipathic peptides derived from
703 Sar1 are embedded horizontally to the membrane plane
704 without stretching across despite containing a large amount
705 of hydrophobic residues. The spontaneous transition of
706 a membrane bicelle to a vesicular intermediate triggered
707 by curvature generating protein has been demonstrated
708 previously using the MARTINI model.(34) Here, we establish
709 the dependence of the concentration of amphipathic peptide
710 on the membrane curvature.

745 on the magnitude of curvature induction on membrane bicelle
746 (Fig-2). We also reveal that the relative membrane sculpting
747 efficiency of amphipathic peptides decreases in the absence
748 of the entire protein segment. In the case of BAR(35, 36)
749 domains and the ESCRT machinery(37), proteins form an
750 intrinsically curved filament, which is key to the process of
751 membrane bending by these proteins. On the contrary, the
752 lack of dependency of the membrane curvature induction on
753 the inter-peptide angle indicates that the curvature induction
754 is isotropic in the case of COPII. Our DTS simulations also
755 reveal that isotropic curvature induction on the protein-bound
756 vertices is essential to producing spherical membrane bud at
757 optimal spacer concentration.

758 The conventional mechanism of cargo transport through
759 COPII-coated membrane vesicles has been challenged by
760 two recent experiments.(38–40) These results suggest that
761 COPII localizes at the neck of the membrane bud, defining
762 a boundary between ER and ER-Golgi intermediate com-
763 partments (ERGIC). Further, the inhibition of Sar1 reduced
764 the recruitment of Sec23 on the ER membrane and thus
765 disrupted the formation of a proper COPII assembly.(39)
766 Our MARTINI based simulations also support this finding by
767 showing that Sar1 recruits Sec23-Sec24 to form the inner-coat
768 layer. However, the mechanism by which such a ring-shaped
769 COPII collar can produce a membrane bud remains unclear.

770 In summary, we offer a mechanistic overview of the
771 complex interplay between multiple proteins from COPII
772 family in regulating the shape of the coated membrane
773 surface. We cover a broad range of length scales by
774 employing atomistic, MARTINI, and Helfrich Hamiltonian
775 based mesoscale simulations to establish the role of spacer
776 proteins in producing spherical membrane buds. Our
777 atomistic simulations indicate that the membrane penetration
778 depth of the amphipathic helices increase significantly in
779 the absence of the rest of the protein segment (Fig-1 G).
780 This can be tested experimentally by fluorescence quenching
781 based assays as described in(19) where one can monitor the
782 fluorescence quenching of a Trp residue within the amino
783 terminal amphipathic helix by quenchers present at various
784 depths of the membrane. Based on our simulations, we
785 also predict that Sar1 in the presence of Sec23 and Sec24
786 sculpt spherical/lobe shaped budding rather than tubules
787 on GUVs, which can also be investigated experimentally. In
788 our study we focus on the inner-coat proteins Sar1, Sec23,
789 and Sec24, which are considered to be the key players in
790 the membrane budding process at the subdomains of ER. In
791 addition to the inner-coat layer, Sec13 and Sec31 form the
792 outer-coat layer, which has a cage-like structure and promotes
793 vesicle fission.(41) It is not clear whether the highly bent
794 outer-coat layer also contributes to the curvature induction
795 and membrane budding process. An intriguing possibility is
796 that interactions between the inner and outer coat protein
797 facilitate appropriate spacing between Sar1 protomers to
798 drive the budding of spherical transport carriers. Although
799 our approach of modeling the inner-coat layer is sufficient to
800 explain the shapes of remodeled membranes in both *in vitro*
801 and *in vivo* conditions, it is important in the next step to
802 directly consider the roles of Sec13 and Sec31 in this process.

Materials and Methods

807 We perform simulations at three different length scales which
808 are atomistic, coarse-grained, and mesoscopic (See Table-S1 for
809 the summary of MD simulations conducted). First, we assess the
810 membrane penetration depth of the Sar1 amphipathic helices by
811 performing atomistic simulations using a continuous membrane
812 bilayer. We follow the protocol described in Paul et. al. (15) to
813 perform the atomistic membrane simulations. The h-GTP dimer
814 model of Sar1 is first introduced into an atomistic lipid bilayer
815 ($10\text{nm} \times 10\text{nm}$) containing 66 % DOPC, 21 % DOPE, 8 % DOPS,
816 and 5 % DOPA; that is, a 13 % anionic membrane. We ignore
817 the remaining protein and solvent and only take into account
818 the amino-terminal amphipathic helix (residue 1-23) embedded
819 in the membrane bilayer. The system is then re-solved and re-
820 ionized to maintain the physiological (0.15 M) salt concentration
821 and to make the system charge-neutral. Following minimization
822 and equilibration, NPT simulations are carried out for 160 ns
823 with the Nosé-Hoover thermostat and Parrinello-Rahman barostat
824 (semiisotropic pressure coupling) to control the temperature and
825 pressure of the system. All simulations are performed using
826 GROMACS(42, 43) version 2018.3 and the CHARMM36m(44)
827 force field with the TIP3P explicit solvent model. We estimate
828 the magnitude of the partitioning of the hydrophobic/hydrophilic
829 residues of the amphipathic helices at the membrane-water interface
830 by a quantity μ (see SI text for definition).

831 Next, we perform simulations with the membrane bicelle
832 for $\sim 250\text{ ns}$ to evaluate the extent of membrane bending by
833 these amphipathic helices. We model the bicelle system by
834 replicating the continuous membrane system along $+X : -X$
835 and $+Y : -Y$ directions using the gmx genbox utility followed
836 by the deletion of membrane segments near the edges to break
837 the membrane continuity along X and Y (see SI text and Paul
838 et. al. (15) for details). To demonstrate the statistical robustness
839 of our membrane bicelle simulation strategy, we conduct six
840 independent replica simulations for peptide arrangement 4, four
841 for peptide arrangement 3, and three for peptide arrangement
842 1. All simulations began with identical starting coordinates but
843 had different starting velocities. VMD version 1.9.3(45) is used for
844 visualization and analysis. The helical wheel diagram is constructed
845 using NetWheels(46).

846 Afterwards, to demonstrate the effect of Sec23 and Sec24 on the
847 relative spacing between Sar1 proteins on the membrane surface,
848 we perform coarse-grained simulations using the MARTINI 3 model
849 with Sar1 (Fig- S3-S4) and multiple units of the Sar1-Sec23-Sec24
850 trimer on a lipid bilayer. We convert the atomistic models of Sar1-
851 Sec23-Sec24 (PDB code: 6GNI(5)) trimer into MARTINI3.0(47)
852 model using martinize2(48) with the elastic bond force constant
853 of 1300 kJ/mol/nm² and a decay factor 0.8. After building the
854 MARTINI model of the proteins, we construct a $\sim 40\text{ nm} \times 30\text{ nm}$
855 membrane bilayer with 87 % DOPC and 13 % DOPS lipid
856 molecules and place the protein molecules on top using the insane
857 tool. Then, we add water beads and Na^+/Cl^- to neutralize
858 the system and maintain a physiological salt concentration. The
859 simulation box size is $\sim 40\text{ nm} \times 30\text{ nm} \times 30\text{ nm}$. After energy
860 minimization and short equilibration, a $\sim 2 - 5\text{ }\mu\text{s}$ production run
861 is carried out with the equilibrated configuration. In this step,
862 V-rescale thermostat and Parrinello-Rahman barostat are used
863 with the same τ_P . The time step in the MARTINI simulations is
864 20 fs.

865 Finally, we carry out the Monte Carlo (MC) simulation of the
866 Dynamic Triangulated Surface (DTS) model following the strategy
867 described by Ramakrishnan et. al.(21, 49) In this simulation the
868 membrane dynamics is governed by the Helfrich Hamiltonian at
869 the mesoscopic length scale where the membrane is considered as
870 a surface discretized by triangles (see SI for more details). The
871 presence of curvature-inducing proteins is represented by vertices
872 that have intrinsic non-zero curvatures. Here, instead of using the
873 formalism developed by Ramakrishnan et al., we utilize isotropic
874 curvature induction as discussed by Pezeshkian et. al.(28). Vertex
875 movement and link flips are considered as the MC moves. We
876 allow nematic exchange between protein (blue) and spacers (red)

925 while no nematic exchange is allowed between membrane and
 926 protein/spacer. A total of 5×10^5 MC steps are carried out. For
 927 comparison, we also perform DTS simulations using anisotropic
 928 curvature induction condition. The total number of vertices in the
 929 membrane vesicle is 2030, 20% of which are occupied by proteins
 930 (Sar1). Among the protein-containing vertices, we place spacers
 931 representing Sec23/Sec24 with varying amounts (5–75 %). We
 932 use paraview(50) to visualize the membrane in the form of the
 933 triangulated mesh where surface representation is selected and the
 934 colour scheme is based on the phases of the vertices. Non-protein
 935 containing vertices (grey) belong to phase 2 whereas proteins
 936 (blue) and spacers (red) containing vertices belong to phase 1 and
 937 3 respectively.

938 **ACKNOWLEDGMENTS.** The work is supported in part by
 939 the NSF grant to QC (CHE-2154804). This work used Delta

940
 941 1. H Hughes, DJ Stephens, Assembly, organization, and function of the copii coat. *Histochem. cell biology* **129**, 129–151 (2008).
 942 2. C d'Enfert, LJ Wuestehube, T Lila, R Schekman, Sec12p-dependent membrane binding of
 943 the small gtp-binding protein sar1p promotes formation of transport vesicles from the er. *J. Cell Biol.* **114**, 663–670 (1991).
 944

945 at the National Center for Supercomputing Application (NCSA)
 946 through allocation MCB110014 from the Advanced Cyberinfrastructure
 947 Coordination Ecosystem: Services & Support (AC-
 948 CESS) program(51), which is supported by National Science
 949 Foundation grants #2138259, #2138286, #2138307, #2137603,
 950 and #2138296. A part of the computational work was per-
 951 formed on the Shared Computing Cluster which is administered
 952 by Boston University's Research Computing Services (URL:
 953 www.bu.edu/tech/support/research/). We thank Dr. Ramakrishnan
 954 Natesan for the discussion regarding the mesoscale model of
 955 membranes. We also thank Dr. Xiao-Han Li for useful comments
 956 on the manuscript. This manuscript was posted on a preprint
 957 server: <https://doi.org/10.1101/2024.02.13.580145>.
 958
 959 **Data availability.** Scripts for analyzing atomistic and CG MD
 960 trajectories and the codes for DTS simulations are freely available
 961 at : <https://github.com/Sanjoy-Paul/membrane-budding/>.
 962
 963 3. MC Lee, et al., Sar1p n-terminal helix initiates membrane curvature and completes the
 964 fission of a copii vesicle. *Cell* **122**, 605–617 (2005).
 965 4. X Bi, RA Corpina, J Goldberg, Structure of the sec23/24–sar1 pre-budding complex of the
 966 copii vesicle coat. *Nature* **419**, 271–277 (2002).
 967 5. J Hutchings, V Stancheva, EA Miller, G Zanetti, Subtomogram averaging of copii assemblies
 968 reveals how coat organization dictates membrane shape. *Nat. Commun.* **9**, 1–8 (2018).
 969 6. DA Shaywitz, PJ Espenshade, RE Gimeno, CA Kaiser, Copii subunit interactions in the
 970 assembly of the vesicle coat. *J. Biol. Chem.* **272**, 25413–25416 (1997).
 971 7. X Bi, JD Mancias, J Goldberg, Insights into copii coat nucleation from the structure of
 972 sec23* sar1 complexed with the active fragment of sec31. *Dev. cell* **13**, 635–645 (2007).
 973 8. J Hutchings, et al., Structure of the complete, membrane-assembled copii coat reveals a
 974 complex interaction network. *Nat. communications* **12**, 2034 (2021).
 975 9. K Matsuoka, et al., Copii-coated vesicle formation reconstituted with purified coat proteins
 976 and chemically defined liposomes. *Cell* **93**, 263–275 (1998).
 977 10. I Raote, et al., Tango1 builds a machine for collagen export by recruiting and spatially
 978 organizing copii, tethers and membranes. *Elife* **7**, e32723 (2018).
 979 11. I Raote, et al., A physical mechanism of tango1-mediated bulky cargo export. *Elife* **9**,
 980 e59426 (2020).
 981 12. KR Long, et al., Sar1 assembly regulates membrane constriction and er export. *J. Cell Biol.*
 982 **190**, 115–128 (2010).
 983 13. H Hariri, N Bhattacharya, K Johnson, AJ Noble, SM Stagg, Insights into the mechanisms of
 984 membrane curvature and vesicle scission by the small gtpase sar1 in the early secretory
 985 pathway. *J. molecular biology* **426**, 3811–3826 (2014).
 986 14. W Kasberg, P Luong, KA Swift, A Audhya, Nutrient deprivation alters the rate of copii
 987 subunit recruitment at er subdomains to tune secretory protein transport. *Nat. Commun.* **14**,
 988 8140 (2023).
 989 15. S Paul, A Audhya, Q Cui, Molecular mechanism of gtp binding-and dimerization-induced
 990 enhancement of sar1-mediated membrane remodeling. *Proc. Natl. Acad. Sci.* **120**,
 991 e2212513120 (2023).
 992 16. T Yoshihisa, C Barlowe, R Schekman, Requirement for a gtpase-activating protein in vesicle
 993 budding from the endoplasmic reticulum. *Science* **259**, 1466–1468 (1993).
 994 17. MW Wendeler, JP Paccaud, HP Hauri, Role of sec24 isoforms in selective export of
 995 membrane proteins from the endoplasmic reticulum. *EMBO reports* **8**, 258–264 (2007).
 996 18. W Kasberg, et al., The sar1 gtpase is dispensable for copii-dependent cargo export from the
 997 er. *Cell Reports* **42** (2023).
 998 19. MG Hanna, et al., Sar1 gtpase activity is regulated by membrane curvature. *J. Biol. Chem.*
 999 **291**, 1014–1027 (2016).
 1000 20. N Ramakrishnan, JH Ipsen, PS Kumar, Role of discinations in determining the morphology
 1001 of deformable fluid interfaces. *Soft Matter* **8**, 3058–3061 (2012).
 1002 21. N Ramakrishnan, PS Kumar, R Radhakrishnan, Mesoscale computational studies of
 1003 membrane bilayer remodeling by curvature-inducing proteins. *Phys. reports* **543**, 1–60
 1004 (2014).
 1005 22. F Campelo, HT McMahon, MM Kozlov, The hydrophobic insertion mechanism of membrane
 1006 curvature generation by proteins. *Biophys. journal* **95**, 2325–2339 (2008).
 1007 23. T Mandal, SE Spagnolie, A Audhya, Q Cui, Protein-induced membrane curvature in
 1008 coarse-grained simulations. *Biophys. J.* **120**, 3211–3221 (2021).
 1009 24. S Mondal, Q Cui, Coacervation of poly-electrolytes in the presence of lipid bilayers: mutual
 1010 alteration of structure and morphology. *Chem. Sci.* **13**, 7933–7946 (2022).
 1011 25. E Pyle, G Zanetti, Cryo-electron tomography reveals how copii assembles on
 1012 cargo-containing membranes. *bioRxiv* pp. 2024–01 (2024).
 1013 26. N Ramakrishnan, PS Kumar, JH Ipsen, Membrane-mediated aggregation of
 1014 curvature-inducing nematogens and membrane tubulation. *Biophys. journal* **104**,
 1015 1018–1028 (2013).
 1016 27. G Kumar, N Ramakrishnan, A Sain, Tubulation pattern of membrane vesicles coated with
 1017 biofilaments. *Phys. Rev. E* **99**, 022414 (2019).
 1018 28. W Pezeshkian, JH Ipsen, Fluctuations and conformational stability of a membrane patch
 1019 with curvature inducing inclusions. *Soft matter* **15**, 9974–9981 (2019).
 1020 29. W Pezeshkian, JH Ipsen, Mesoscale simulation of biomembranes with freuds. *Nat.*
 1021 *Commun.* **15**, 548 (2024).
 1022

993 30. JC Stachowiak, FM Brodsky, EA Miller, A cost–benefit analysis of the physical mechanisms
994 of membrane curvature. *Nat. cell biology* **15**, 1019–1027 (2013). 1055

995 31. I Kabelka, R Vácha, Advances in molecular understanding of α -helical membrane-active
996 peptides. *Accounts Chem. Res.* **54**, 2196–2204 (2021). 1056

997 32. JP Ullmschneider, MB Ullmschneider, Molecular dynamics simulations are redefining our
998 view of peptides interacting with biological membranes. *Accounts chemical research* **51**,
1106–1116 (2018). 1057

999 33. KC Courtney, et al., The complexin c-terminal amphipathic helix stabilizes the fusion pore
1000 open state by sculpting membranes. *Nat. structural & molecular biology* **29**, 97–107 (2022). 1058

1000 34. RM Bhaskara, et al., Curvature induction and membrane remodeling by fam134b reticulon
1001 homology domain assist selective er-phagy. *Nat. communications* **10**, 2370 (2019). 1059

1001 35. A Arkhipov, Y Yin, K Schulten, Four-scale description of membrane sculpting by bar
1002 domains. *Biophys. J.* **95**, 2806–2821 (2008). 1060

1002 36. A Arkhipov, Y Yin, K Schulten, Membrane-bending mechanism of amphiphysin n-bar
1003 domains. *Biophys. J.* **97**, 2727–2735 (2009). 1061

1004 37. T Mandal, W Lough, SE Spagnolie, A Audhya, Q Cui, Molecular simulation of mechanical
1005 properties and membrane activities of the escrt-iii complexes. *Biophys. J.* **118**, 1333–1343
(2020). 1062

1006 38. O Shomron, et al., Copii collar defines the boundary between er and er exit site and does
1007 not coat cargo containers. *J. Cell Biol.* **220**, e201907224 (2021). 1063

1008 39. AV Weigel, et al., Er-to-golgi protein delivery through an interwoven, tubular network
extending from er. *Cell* **184**, 2412–2429 (2021). 1064

1009 40. Y Malis, K Hirschberg, C Kaether, Hanging the coat on a collar: Same function but different
1010 localization and mechanism for copii. *BioEssays* **44**, 2200064 (2022). 1065

1011 41. G Zanetti, KB Pahuja, S Studer, S Shim, R Schekman, Copii and the regulation of protein
1012 sorting in mammals. *Nat. cell biology* **14**, 20–28 (2012). 1066

1013 42. MJ Abraham, et al., Gromacs: High performance molecular simulations through multi-level
parallelism from laptops to supercomputers. *SoftwareX* **1**, 19–25 (2015). 1067

1014 43. HJ Berendsen, D van der Spoel, R van Drunen, Gromacs: A message-passing parallel
1015 molecular dynamics implementation. *Comput. Phys. Commun.* **91**, 43–56 (1995). 1068

1016 44. J Huang, et al., Charmm36m: an improved force field for folded and intrinsically disordered
proteins. *Nat. Methods* **14**, 71–73 (2017). 1069

1017 45. W Humphrey, A Dalke, K Schulten, Vmd: visual molecular dynamics. *J. molecular graphics*
1018 **14**, 33–38 (1996). 1070

1019 46. AR Mol, MS Castro, W Fontes, Netwheels: A web application to create high quality peptide
helical wheel and net projections. *BioRxiv* p. 416347 (2018). 1071

1020 47. PC Souza, et al., Martini 3: a general purpose force field for coarse-grained molecular
1021 dynamics. *Nat. methods* **18**, 382–388 (2021). 1072

1021 48. PC Kroon, et al., Martini2 and vermouth: Unified framework for topology generation.
arXiv preprint arXiv:2212.01191 (2022). 1073

1022 49. N Ramakrishnan, PS Kumar, JH Ipsen, Monte carlo simulations of fluid vesicles with
1023 in-plane orientational ordering. *Phys. Rev. E* **81**, 041922 (2010). 1074

1024 50. J Ahrens, B Geveci, C Law, C Hansen, C Johnson, 36-paraview: An end-user tool for
large-data visualization. *The visualization handbook* **717**, 50038–1 (2005). 1075

1025 51. TJ Boerner, S Deems, TR Furlani, SJ Knuth, J Towns, ACCESS: Advancing innovation:
1026 NSF's advanced cyberinfrastructure coordination ecosystem: Services & support. in
Practice and Experience in Advanced Research Computing (PEARC 23). (2023). 1076

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116