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Abstract

Algorithm Substitution Attacks (ASAs) have traditionally targeted secretly-keyed algorithms
(for example, symmetric encryption or signing) with the goal of undetectably exfiltrating the
underlying key. We initiate work in a new direction, namely ASAs on algorithms that are
public, meaning contain no secret-key material. Examples are hash functions, and verification
algorithms of signature schemes or non-interactive arguments. In what we call a PA-SA (Public-
Algorithm Substitution Attack), the big-brother adversary replaces the public algorithm f with
a subverted algorithm, while retaining a backdoor to the latter. Since there is no secret key
to exfiltrate, one has to ask what a PA-SA aims to do. We answer this with definitions that
consider big-brother’s goal for the PA-SA to be three-fold: it desires utility (it can break an
f -using scheme or application), undetectability (outsiders can’t detect the substitution) and
exclusivity (nobody other than big-brother can exploit the substitution). We start with a general
setting in which f is arbitrary, formalizing strong definitions for the three goals, and then give
a construction of a PA-SA that we prove meets them. We use this to derive, as applications,
PA-SAs on hash functions, signature verification and verification of non-interactive arguments,
exhibiting new and effective ways to subvert these. As a further application of the first two,
we give a PA-SA on X.509 TLS certificates. Our constructions serve to help defenders and
developers identify potential attacks by illustrating how they might be built.

1 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La

Jolla, California 92093, USA. Email: mbellare@ucsd.edu. URL: http://cseweb.ucsd.edu/˜mihir/. Supported in

part by NSF grant CNS-2154272 and KACST.
2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany. Email: riepel@cispa.de. Work

done while at UCSD, supported in part by KACST.
3 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La

Jolla, California 92093, USA. Email: lmshea@ucsd.edu. Supported by NSF grants CNS-2048563, CNS-1513671 and

CNS-2154272.



Contents

1 Introduction 2

2 Preliminaries 6

3 Public-Algorithm Substitution Attacks 7

4 PA-SA construction 10

5 PA-SAs on hash functions 14

6 PA-SAs on non-interactive arguments 16

7 PA-SAs on signature verification 19

8 PA-SAs applied to certificate forgery 22

References 25

A Proof of Theorem 5.1 32

B Proof of Theorem 6.1 34

C Proof of Theorem 7.1 35

1



1 Introduction

The Snowden revelations lead researchers to consider different ways in which cryptography could
be subverted. Algorithm Substitution Attacks (ASAs) [10, 69, 70] emerged as one answer. The
formalism of Bellare, Paterson and Rogaway (BPR) [10] put forth the following template. There
is a prescribed cryptographic algorithm Ak that accesses a secret key k. The adversary (called big-
brother in this setting) substitutes Ak by subverted code Ãk,k̃ that continues to access k but now
aims to undetectably exfiltrate it, for this purpose embedding and using another secret, symmetric
key k̃ that it shares with big-brother.

Secret-algorithm substitution attacks. Conflating k and Ak, we can view the target al-
gorithm Ak as secret. We will accordingly refer to ASAs such as the above as secret-algorithm

substitution attacks (SA-SAs), to emphasize that the algorithm being substituted, namely Ak, is
secret. Big-brother’s goal in a SA-SA is to learn the secret algorithm.

ASAs have now been given or considered for many primitives including symmetric encryption [3,
9, 10, 27, 42], signature schemes [5, 21, 65] and beyond [14, 14, 20, 22, 39, 45, 56–58, 66]. All of these

continue to be SA-SAs, meaning the target algorithm is secret. In the case of symmetric encryption,
for example, the target algorithm is an encryption algorithm that is secret due to embedding the
symmetric key; in the case of signatures, it is a signing algorithm that is secret due to embedding
a secret signing key.

Public-algorithm substitution attacks. This paper initiates work in a new and different
direction, namely what we introduce and call public-algorithm substitution attacks (PA-SAs). Here,
the target algorithm is a public one; examples we will consider include hash functions, verification
algorithms of signature schemes, or verification algorithms of non-interactive arguments (NIAs) like
SNARGs or SNARKs. Our contributions can now be divided into three parts:

1. Definitions. With the target algorithm public, for example a public hash function, there
is no secret to exfiltrate, so one has to ask what an ASA would want to do, and what properties
big-brother would like it to have. We answer these questions with new definitions. Our setting for
these is general, the target being an arbitrary public function f that the PA-SA substitutes with
some f̃ , while retaining a related backdoor e. We require three properties, that we call utility (big-
brother, through e, can make f̃ behave differently from f ), undetectability (outsiders can’t detect
the substitution) and exclusivity (nobody other than big-brother can exploit the substitution).

2. General PA-SA construction. Our definitions are strong, and the first question that
emerges is whether a PA-SA meeting them is even possible. We show that it is, giving a general
construction of a PA-SA on an arbitrary target public function f and proving that it meets our
definitions.

3. Applications. To show that PA-SAs are a realistic threat, we use our general construction
to give PA-SAs in three specific domains of practical interest. (1) The first is that f is a (any)
public hash function, in which case our PA-SA allows the attacker to find structured collisions for
f̃ . We obtain thence a forgery attack on X.509 TLS certificates and an attack on password-based
authentication. (2) In our second application, f is the verification algorithm of a (any) NIA (Non-
Interactive Argument), and the PA-SA allows violation of soundness, for any statement. NIAs are
now seeing many uses, particularly in blockchains and cryptocurrencies, where our PA-SA highlights
a new threat. (3) In our third application, f is the verification algorithm of a (any) signature scheme
and the PA-SA allows signature forgery, for any verification key and any message.

PA-SAs are inspired by work on backdooring of hash functions [35] and machine-learning mod-
els [41] which our framework can capture as special cases that meet some of our requirements.
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Overall, our work shows that PA-SAs are an effective attack vector of which developers and users
should be aware. We now discuss the above in some more detail.

Our definitional framework. The target algorithm f , possibly together with some auxiliary
information ³, is sampled from a family F, as (f , ³)←$ F. Big-brother generates a substitution algo-
rithm f̃ together with an associated exploit algorithm (also called a backdoor) e, via (f̃ , e)←$ F̃(f ),
where F̃, the PA-SA, is an algorithm of big-brother’s own devising. Big-brother now arranges that
a user’s code implementing f is substituted with code implementing f̃ . (This substitution can take
place in a variety of ways, for example via a malicious code update to a cryptographic library. How
exactly it is done is outside our scope.) Applications that expected to use f are now (unknowingly)
using f̃ instead. We formalize three goals for big-brother, as follows:

Utility. Big-brother, through knowledge of the exploit algorithm e, wants to violate security
of an f̃ -using application. Utility captures its ability to do so. While we might consider many
forms of it, the one we choose and formalize is that knowledge of the exploit algorithm e allows
big-brother to find a preimage x, under f̃ , of any output y of its choice. Importantly, x is not an
arbitrary preimage, but one with a structure that big-brother can control; formally, utility ensures
that P(x, u) = true for some u of big-brother’s choice, where P, called the constraint, is a predicate
that parameterizes the definition. Different applications will make different choices of P, through
which our single, parameterized definition will allow a wide range of different applications.

Undetectability. This was a core requirement for SA-SAs [10] and we accordingly require it
for PA-SAs too. The formalization asks that a tester with blackbox access to either f or f̃ should
not be able to tell which of the two it is.

Exclusivity. We consider that big-brother does not want anyone other than itself to be able
to make f̃ behave pathologically. (Big-brother may be a government that, while itself having
subversion capability, wants to ensure other governments do not.) Exclusivity captures this. The
formalization considers an adversary that is given the descriptions of f and f̃ , and oracle access to
the exploit function e, and asks that it still cannot come up with an input x at which f and f̃ differ,
except trivially, meaning through use of its oracle.

Exclusivity implies undetectability. We defined undetectability due to its central and his-
toric presence in SA-SAs, but it turns out that exclusivity is even stronger. Namely, Theorem 3.1
says that exclusivity actually implies undetectability. Thus, for our PA-SAs, we will prove exclu-
sivity and then conclude undetectability via Theorem 3.1.

Our general SbvIt construction. Is it possible to build a PA-SA F̃ on an arbitrary function
family F that meets the three conditions above? We show, through construction, that the answer
is “yes.”

To expand on this, first note that one cannot hope to achieve this for all constraint predicates
P. It is, for example, impossible for the predicate P(x, u) that returns true iff x = u; intuitively, one
needs some “room” in x to exploit. We show how to build an ASA F̃ for any constraint predicate
satisfying a certain condition, that we define and call embeddability. The class of predicates meeting
this condition is large and includes in particular the above-discussed applications.

Our construction is a transform, called “Subvert-It” and denoted SbvIt. It takes (1) the target
function family F (2) a signature scheme S and (3) an embedding function Emb, for the constraint
predicate P, that is compatible with S, F, as we will define in Section 4. It returns a PA-SA
F̃ = SbvIt[F, S, Emb] built from these three components. Proposition 4.1 establishes utility with
respect to P, assuming correctness of S and Emb. Theorem 4.2 establishes exclusivity (and thus
also undetectability) assuming strong unforgeability (suf-cma) of the signature scheme S.

The design of SbvIt extends ideas of [41], who used a signature scheme to backdoor a machine
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learning model. Roughly, an input to f̃ can be parsed as having two parts, the first an “instruction”
to output something the instruction suggests, and the second a candidate signature of the first part.
If the latter verifies under a verification key vk that f̃ has in its code, then f̃ executes the instruction,
outputting whatever the latter decrees, else it returns the result of f on its input. The exploit e
retains the signing key sk corresponding to vk so that e, and only it, can create valid signatures
on instructions, and thus create inputs on which f̃ behaves differently from f . Other entities are
precluded from creating new “bad” inputs, even after having seen ones created by e, due to the
suf-cma security of the signature scheme. See Section 4 for elaboration, including how making this
work requires a condition that we capture in our definition of Emb being compatible with S, F.

PA-SAs on hash functions. Towards our first application, we start with some background.
While algorithm substitution attacks on hash functions have not to our knowledge been discussed
under that name, Fischlin, Janson and Mazaheri (FJM) [35] considered backdooring hash functions.
Let H be the target set of hash functions from which, via h←$ H, one generates an honest hash
function h : {0, 1}∗→ {0, 1}ℓ that is assumed collision-resistant. A backdooring of H can be seen,
like a PA-SA, as specified by an algorithm H̃ that takes an instance h of H and via (h̃, e)←$ H̃(h)
generates a substitution function h̃ : {0, 1}∗ → {0, 1}ℓ as well as a backdoor (or exploitation) func-
tion e. FJM [35] have two requirements that in our language represent utility and exclusivity.
FJM-utility asks that knowledge of e allows big-brother to violate collision resistance (cr) of h̃,
meaning find distinct x1, x2 such that h̃(x1) = h̃(x2). FJM-exclusivity asks that an adversary given
h̃ but not e cannot violate cr of h̃. FJM build a backdooring H̃ of H satisfying their two conditions.
Other works also have backdoored hash functions satisfying these conditions: Albertini, Aumasson,
Eichlseder, Mendel and Schläffer (AAEMS) [2] give such a backdoored version of SHA1, and the
VSH (Very Smooth Hash) algorithm of Contini, Lenstra and Steinfeld [23] achieves FJM-utility
and FJM-exclusivity when viewed as a backdoored hash function.

FJM-utility is however limited; to subvert applications, big-brother needs, not just to be able
to find some collision, but to create one in which the points embed structure, for example, as in
our application, to have the form of a certificate. FJM-exclusivity is also limited, because it could
be that after seeing a big-brother-produced collision, an adversary could violate cr. In Section 5,
we give stronger definitions of utility and exclusivity for the particular case of PA-SAs on hash
functions. We then show how to use our SbvIt transform to achieve them. We will illustrate for
it two applications. One is subversion of password-based authentication, which we discuss at the
end of Section 5, and the other, in Section 8, is X.509 certificate forgery in TLS.

To obtain the two exploits, we make particular choices of the constraint predicates that pa-
rameterize our definition. We then show that these predicates are embeddable, which allows us to
apply our results about SbvIt to obtain the desired conclusions. In particular these applications
rely crucially on our strong, predicate-parameterized definition of utility and are not possible under
the prior definitions and for the prior constructions.

PA-SAs on non-interactive arguments. As a second example, we turn to non-interactive ar-
guments (NIAs). The novel element here, and also in our application to signatures discussed below,
is that the ASA substitutes the (public) verification algorithm rather than the (secret) proving or
signing algorithm.

In the following, we use the notation (v, p)←$ NIA to denote the generation of a verification
algorithm, with the proving algorithm as auxiliary information. The CRS, if any, is hardcoded in
these algorithms. Our PA-SA ÑIA will replace v with a subverted function ṽ for which big-brother
holds an exploit function e that allows violation of soundness. Specifically, the definition of utility
we make and achieve is very strong, asking that e allows the creation of an accepting proof for
any statement which is not in the language corresponding to the NIA. Further, our exclusivity
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definition asks that soundness is maintained relative to any party not having access to e, even if it
has observed forged proofs, created under e, for statements of its choice. In Section 6 we show how
to build such a PA-SA on any NIA by defining a suitable predicate and embedding function and
then applying our SbvIt transform.

Prior work has considered building NIAs that resist CRS subversion [8, 37], namely retain
soundness and/or ZK even in the presence of a malicious CRS. They however do not consider
subversion of the verification algorithm, so our PA-SA would apply to their NIAs as well.

PA-SAs on signature schemes. Finally, we consider subversion of signature schemes. Prior
work has been restricted to SA-SAs, which aim to exfiltrate the signing key by substituting either
the key-generation [26] or signing [5, 65] algorithms. These SA-SA attacks and results, however,
only work and apply when signing is randomized. In practical and standardized schemes, it often
isn’t. For example EdDSA [15], a NIST standard [52] that is the most prominent instantiation of
Schnorr, makes signing deterministic. RFC 6979 [55] and NIST [52] both give deterministic modes
for the otherwise randomized DSA and ECDSA schemes. In all these cases, the prior SA-SAs will
not work. However, our PA-SA will. Indeed, our attacks and results apply to any signature scheme,
including deterministic ones and those with unique signatures. This is made possible by subverting
verification rather than key-generation or signing.

We now provide some more details on the attacker goals; a formal treatment is given in Section 7.
Similar to NIAs, a signature scheme is formalized as an algorithm TS that, via (v, kg, s)←$ TS, gen-
erates a verifying algorithm and corresponding key-generation and signing algorithms, potentially
hardcoding public parameters. A PA-SA on TS is an algorithm T̃S that takes a target verification
algorithm v and outputs a subverted verification algorithm ṽ together with an exploit function e.
Utility might ask that possession of exploit algorithm e allows creation of some forgery, meaning a
message m and a valid signature for it under verification function ṽ for some challenge vk∗. We ask
for a stronger notion of utility, namely that e allows creation of a signature for any target verification

key vk and any target message m, relative to ṽ. Our exclusivity definition is similarly strong, asking
that unforgeability of signatures still holds even with access to an oracle for producing signatures
using e.

Given a (any) signature scheme TS, we define a corresponding predicate and embedding func-
tion. Then we apply our SbvIt transform to obtain a PA-SA on TS that meets our above utility
and exclusivity conditions. As a concrete application, we consider again the certificate forgery ex-
ample. Instead of substituting the hash function, the exploitation function of our signature PA-SA
allows big-brother to create certificates with validating signatures under a subverted verification
algorithm. This is discussed in detail in Section 8.

Related work. “Subversion” is a recurring concern in cryptography. Attacks have been observed
in a variety of settings, including parameter generation in Dual EC [16,60], malicous code changes
in Linux [33], and governmental exceptional access [1]. To situate our investigation of ASAs on
public functions, it is useful to consider different categories in this area of subverted cryptography.

In a first category, code can be maliciously modified from its algorithmic specification. This
has been studied as algorithm substitution attacks [10] and as kleptography [69–71]. Here, an
adversary’s goal is to both modify an algorithm such that it exfiltrates secret information, and to
keep this modification undetected. Our attacks are similar in that they involve a code substitution
step, and a second exploitation step. However, we don’t exfiltrate secret information and instead
target public algorithms. ASAs and kleptography have been studied for symmetric encryption [3,
9, 10, 27], KEMs [20, 45, 56], signatures [5, 65], and protocols [14, 14, 22, 39, 66]. Defenses have
been studied from the perspective of preventing exfiltration [31,51] or other “subversion-resistant”
notions [4,13,57,58]. These include more fine-grained online/offline detectability notions and other
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modes of computation.

Another category of subversion work considers an authority that knows user secret keys. Anamor-
phic cryptography [7, 48, 54] and earlier work on subliminal channels [44, 61, 62] have proposed
defenses to this type of subversion.

A final category, somewhat more related to ASAs, is maliciously designed algorithms or param-
eters. These have been studied for PRGs [28, 30], NIZKs [8], PKE [6], and hash functions [2, 35].
Unlike an ASA, algorithms are assumed to be implemented honestly, and code can be inspected.
Nonetheless, some of the goals and techniques are similar.

Goldwasser, Kim, Vaikuntanathan and Zamir (GKVZ) give a way to insert undetectable back-
doors in a machine learning model [41] using a strongly unforgeable signature scheme. Their clas-
sifier modifies the output of the correct classifier when a signature is correctly parsed and verified.
The non-replicability condition of GKVZ offers an oracle providing backdoored model inputs, which
is similar to what our exclusivity game captures. We note that the predicates and embeddings we
additionally formalize in Section 4 generalize the parsing of GKVZ, and that our techniques for
“general public functions” seem to be quite applicable beyond cryptographic functions.

As a real-world motivation to study ASAs, the xz backdoor was discovered on March 29,
2024 [36]. Current understanding of its cryptographic portion [67] shows interesting similarities
with our PA-SAs, such as the embedding of a signature and attacker-chosen data in a certificate
which triggers alternate execution during certificate validation. The discovery of the xz backdoor
shows that ASAs targeting high levels of utility are a realistic possibility, and motivates research,
such as ours, on this topic.

2 Preliminaries

Notation and terminology. By ε we denote the empty string. By |Z| we denote the length of
a string Z. By x ∥ y we denote the concatenation of strings x, y. If Z is a string, we let Z[a..b] be
the substring of Z between indices a and b, inclusive, or ε if b < a. If S is a finite set, then |S|
denotes it size. We say that a set S is length-closed if, for any x ∈ S it is the case that {0, 1}|x| ¦ S.
(This will be a requirement for certain spaces.)

If X is a finite set, we let x←$ X denote picking an element of X uniformly at random and
assigning it to x. If A is an algorithm, we let y ← A[O1, . . .](x1, . . . ; r) denote running A on
inputs x1, . . . and coins r with oracle access to O1, . . ., and assigning the output to y. We let
y←$ A[O1, . . .](x1, . . .) be the result of picking r at random and computing y ← A[O1, . . .](x1, . . . ; r).
We let OUT(A[O1, . . .](x1, . . .)) denote the set of all possible outputs of A when invoked with inputs
x1, . . . and oracles O1, . . .. Algorithms are randomized unless otherwise indicated. Running time is
worst case, which for an algorithm with access to oracles means across all possible replies from the
oracles.

We will often speak of an algorithm that has, as input or output, other algorithms, conflating
here the algorithms with their descriptions. For this purpose, we can assume some programming
or description language has been fixed. We also conflate deterministic algorithms with functions.

An adversary is an algorithm. We use § (bot) as a special symbol to denote rejection, and it
is assumed to not be in {0, 1}∗. The image of a function f : D→R is the set Im(f) = {f(x) : x ∈
D} ¦ R. We may interchangeably refer to the boolean false and integer 0, or to the boolean true

and integer 1.

Games. We use the code-based game-playing framework of BR [11]. A game G starts with an
optional Init procedure, followed by a non-negative number of additional procedures called oracles,
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Game Gsuf-cma
S

Init:

1 (vk, sk)←$ S.Kg ; Q ← ∅

2 Return vk

Sign(m):

3 Ã←$ S.Sign(sk, m)

4 Q ← Q∪ {(m, Ã)}

5 Return Ã

Fin(m, Ã):

6 If (m, Ã) ∈ Q then return false

7 Return S.Vfy(vk, m, Ã)

Figure 1: Strong unforgeability for a signature scheme S.

and ends with a Fin procedure. Execution of adversary A with game G begins by running Init (if
present) to produce input←$ Init. A is then given input and is run with query access to the game
oracles. When A terminates with some output, execution of game G ends by returning Fin(output).
By Pr[G(A)] we denote the probability that the execution of game G with adversary A results in
Fin(output) being the boolean true.

Different games may have procedures (oracles) with the same names. If we need to disambiguate,
we may write G.O to refer to oracle O of game G. In games, integer variables, set variables, boolean
variables and string variables are assumed initialized, respectively, to 0, the empty set ∅, the boolean
false and §. Tables are initialized with all entries being §. Games may occasionally Require: some
condition, which means that all adversaries must obey this condition. This is used to rule out
trivial wins.

Unforgeability of signatures. A signature scheme S specifies algorithms S.Kg, S.Sign, S.Vfy,
key spaces S.VK, S.SK, and signature length S.sl. Key generation S.Kg produces a verification key
vk ∈ S.VK and signing key sk ∈ S.SK via (vk, sk)←$ S.Kg. Signing takes as input a signing key
sk ∈ S.SK and message m ∈ {0, 1}∗ to return a signature Ã ∈ {0, 1}S.sl via Ã←$ S.Sign(sk, m),
where S.sl ∈ N is a constant signature length. Deterministic algorithm S.Vfy takes as input a
verification key vk ∈ S.VK, message m ∈ {0, 1}∗, and signature Ã ∈ {0, 1}S.sl to return a bit d via
d← S.Vfy(vk, m, Ã).

Correctness of scheme S asks that for all (vk, sk) ∈ OUT(S.Kg), for all m ∈ {0, 1}∗, it holds
that S.Vfy(vk, m, S.Sign(sk, m)) = 1.

The security notion that we will make use of is strong unforgeability. This is captured by game

Gsuf-cma
S of Figure 1. If A is an adversary, we let Advsuf-cma

S (A) = Pr
[

Gsuf-cma
S (A)

]
be its suf-cma

advantage. Strongly unforgeable signatures have been constructed based on bilinear CDH [18],
strong RSA [25,38], and generally from one-way functions [40, Section 6.5].

3 Public-Algorithm Substitution Attacks

We begin with new definitions for algorithm substitution attacks on arbitrary public algorithms.
In Section 4 we will provide a construction satisfying our notions. In the remainder of the paper
we apply this to more specific settings. As our first task, we introduce a generic PA-SA syntax.

Syntax. A family is an algorithm F that, via (f , ³)←$ F, creates an algorithm f : {0, 1}∗→{0, 1}F.ol
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together with auxiliary information ³. Here F.ol ∈ N is an output length associated to F and f is
the “public algorithm” that is the target of subversion.

A generic PA-SA aims to substitute f with f̃ which has certain malicious behavior on particular
inputs, while ensuring that the ability to find such inputs is exclusive to the attacker. Formally,
the PA-SA is an algorithm F̃ which takes f as input to return (f̃ , e)←$ F̃(f), where f̃ is called the
substitution algorithm and e is the exploitation algorithm. Before elaborating on these components,
let us clarify the PA-SA model.

PA-SA model. An attacker who mounts a public-algorithm substitution attack proceeds in two
steps, substitution and exploitation. First, they generate algorithms (f̃ , e)←$ F̃(f ) and replace
a user’s implementation of f with one of f̃ . The exploitation algorithm e remains secret and is
retained by the attacker. Second, in the exploitation step, the attacker may use e to create an
input x for f̃ under which the latter behaves in some way favorable to the attacker. We focus
on a particular and powerful form of this behavior that we will show allows subversion in many
applications. Namely, the attacker has a target output point y and aims to create a preimage of
it, more specifically an x such that f̃ (x) = y, where x is not arbitrary but instead has a form or
content determined by the attacker. When this is done, the user, who has f̃ on their device and
receives x, computes f̃ (x) = y. The interface of this exploitation algorithm is broad, applying to
settings where (1) it is reasonable that the attacker chooses inputs x to send to the user, and (2)
it is useful to an attacker to find preimages of target points — where the target point could even
be 1 or true.

What is the auxiliary information ³? At a high level, this includes information that is associated
to f and available in the world, but is not necessarily needed by the attacker. In particular, ³ may
aid honest parties in detecting whether f has been substituted by f̃ . It is not always relevant
or needed; we will see, for example, that ³ is empty for hash functions (where only one public
algorithm is generated) but it will be non-empty in our applications to non-interactive arguments
and signatures (where multiple algorithms are co-generated).

Constraint predicates. As above, the attacker aims, using the exploit algorithm, to create some
structured x satisfying f̃ (x) = y. The desired structure depends on the application. Constraint
predicates are how we formalize and capture this. Our definitions will be parameterized by a
predicate, and we will then aim to build PA-SAs for as large as possible a class of predicates.

Formally, a constraint predicate is a function P : {0, 1}∗×{0, 1}∗→{true, false}. The second input
is called the constraint-parameter. A variety of predicates may be desirable. Predicate P(x, u) could
capture whether x is a valid X.509 certificate containing information u; this is considered in more
detail in Section 8. A predicate could capture whether x can be parsed as human-readable text or
otherwise does not “look suspicious.” Increasingly useful predicates will come with implementation
challenges beyond mounting a PA-SA, but the ones we will describe in Section 4 are already potent.

Utility. The utility of F̃ is measured with respect to a constraint predicate P. We say that F̃

achieves P-utility, if for every f output by F, every constraint-parameter u ∈ {0, 1}∗ and every
y ∈ {0, 1}F.ol, if (f̃ , e)←$ F̃(f ) and if x←$ e(u, y), then we have (1) f̃ (x) = y and (2) P(x, u) = 1.
In other words, e allows one to compute a preimage of any target output, where the preimage also
satisfies the constraint predicate. In the following section we discuss predicates in more detail. At
a high level, this utility definition relative to a predicate allows one to specify fine-grained notions
of successful attacks, beyond only finding some preimage.

Exclusivity. The exploit algorithm allows its possessor to create inputs on which f̃ and f might
differ. Exclusivity requires that the exploit algorithm is necessary for this. The formalization, via
the exclusivity game Gexc

F,F̃,P
of Figure 2, is strong. Via oracle GetPmg, the adversary A can choose
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Game Gexc

F,̃F,P

Init:

1 (f , ³)←$ F ; (̃f , e)←$ F̃(f )

2 X ← ∅

3 Return (f , f̃ , ³)

GetPmg(u, y):

4 x←$ e(u, y) ; X ← X ∪ {x}

5 Return x

Fin(x∗):

6 Return ( x∗ /∈ X and f (x∗) ̸= f̃ (x∗) )

Game Gdet

F,̃F,P

Init:

1 (f , ³)←$ F ; (̃f , e)←$ F̃(f )

2 b←$ {0, 1}

3 Return ε

Eval(x):

4 y0 ← f (x) ; y1 ← f̃ (x)

5 Return yb

Fin(b′):

6 Return (b = b′)

Figure 2: Exclusivity (left) and detectability (right) of a PA-SA F̃ on f . While detectability is
blackbox, exclusivity returns the functions (f , f̃ ) and auxiliary information ³ to the adversary.

inputs on which to see outputs of the exploit algorithm. To win, it must produce an input x∗ which

was not generated by GetPmg, yet on which f̃ and f differ. We let Advexc

F,F̃,P
(A) = Pr

[
Gexc

F,F̃,P
(A)

]

be the exclusivity advantage of A.

We will see exclusivity applied to more specific settings in later sections, but for now, we remark
that a PA-SA is only useful if the substituted algorithm f̃ differs from f on some inputs (else f

could be attacked directly). Exclusivity asks that is hard for anyone other than the PA-SA attacker
to find these inputs which produce different behavior.

Undetectability. Undetectability is a core requirement in ASAs [10]. Here we formulate it
in our setting of PA-SAs. The game is on the right side of Figure 2. If A is an adversary, we let

Advdet

F,F̃,P
(A) = 2·Pr

[
Gdet

F,F̃,P
(A)

]
−1 be its (un)detectability advantage. As with prior formulations,

the definition is of blackbox undetectability, meaning the adversary is not given the functions f , f̃

themselves, but only access to an oracle for them, the definition asking that such access not allow
the adversary to distinguish the two.

We define undetectability since, as indicated above, it is the norm for ASAs, but in fact the
following says that our new exclusivity notion implies undetectability. This allows us to focus,
moving forward, on the stronger exclusivity notion.

Theorem 3.1 Let F be a family and F̃ a PA-SA on F relative to a predicate P. Given an adversary

A against the undetectability of F̃ we can build an adversary A′ such that

Advdet

F,F̃,P
(A) f 2 ·Advexc

F,F̃,P
(A′) . (1)

A′ makes no GetPmg queries. The running time of A′ is close to that of A.

Proof of Theorem 3.1: Consider game G0 of Figure 3 which is exactly the detectability game,
except that it additionally checks whether y0 equals y1 for queries to Eval and sets flag bad if they
are not the same. The output, however, is not modified, so

Advdet

F,F̃,P
(A) = 2 · Pr [ G0(A) ]− 1 .

We now turn to G1. Games G0, G1 are identical-until-bad, so by the Fundamental Lemma of Game

9



Games G0, G1

Init:

1 (f , ³)←$ F ; (̃f , e)←$ F̃(f )

2 b←$ {0, 1}

3 Return ε

Eval(x):

4 y0 ← f (x) ; y1 ← f̃ (x)

5 If y0 ̸= y1 then bad← true ; Return §

6 Return yb

Fin(b′):

7 Return (b = b′)

Adversary A′(f , f̃ , ³):

1 b←$ {0, 1}

2 b′ ← A[Eval]()

Oracle Eval(x):

3 y0 ← f (x) ; y1 ← f̃ (x)

4 If y0 ̸= y1 then Fin(x)

5 Return yb

Figure 3: Games G0, G1 (left) and adversary A′ (right) for the proof of Theorem 3.1. G1 contains
the boxed code and G0 does not.

Playing [11] we have

Pr [ G0(A) ] = Pr [ G1(A) ] + (Pr [ G0(A) ]− Pr [ G1(A) ])

f Pr [ G1(A) ] + Pr [ G1(A) sets bad ] .

We construct adversary A′ on the right side of Figure 3. A′ gets as input algorithms f and f̃ , and
can simulate the detectability game in a straightforward way by picking its own challenge bit. Since
A′ does not ask any GetPmg queries, then if bad is set in G1, A′ has found a winning output in
the exclusivity game. We have

Pr [ G1(A) sets bad ] f Advexc

F,F̃,P
(A′) .

Finally note that Pr [ G1(A) ] = 1/2 since the outputs of Eval are independent of the challenge bit.
Collecting the probabilities proves Eq. (1).

4 PA-SA construction

Embeddings. We first introduce message embeddings as a way to realize constraint predicates
in our PA-SA construction. A message embedding for constraint predicate P is a function Emb :
Emb.ES×{0, 1}∗→{0, 1}∗, where Emb.ES is a set (the “embedding space”) that must be specified
and depends on the intended predicate. There is also an inverse EmbInv : {0, 1}∗ → (Emb.ES ×
{0, 1}∗) ∪ {§} such that (1) for all (z, u) ∈ Emb.ES × {0, 1}∗, if x ← Emb(z, u) then P(x, u) = 1
and EmbInv(x) = (z, u), and (2) EmbInv(x) = § for all x /∈ Im(Emb). We say that Emb is a correct

embedding function for predicate P if these two properties are satisfied. In other words, Emb is a
bijection from Emb.ES× {0, 1}∗ to Im(Emb) with inverse EmbInv.

Two illustrative examples are prefix and suffix embeddings. Suppose one wants to find a preim-
age x of output y, with the constraint that x begins with prefix u, or ends with suffix u. For a prefix
embedding, let n ∈ N and Embn

pfx.ES = {0, 1}n. Then the predicate Pn
pfx and embedding function

Embn
pfx are given on the left side of Figure 4. Similarly, for suffixes, let Embn

sfx.ES = {0, 1}n, with
the predicate Pn

sfx and embedding function Embn
sfx on the right side of Figure 4. The choice of n

here is important: it will matter for the feasibility of designing an effective PA-SA in some settings.
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Pn

pfx(x, u):

1 If (|x| ̸= |u|+ n) then return false

2 Return (x[1..|u|] = u)

Embn

pfx(z, u):

3 Return u ∥ z

EmbInvn

pfx(x):

4 If (|x| < n) then return §

5 z ← x[(|x| − n + 1)..|x|]

6 u← x[1..(|x| − n)]

7 Return (z, u)

Pn

sfx(x, u):

1 If (|x| ̸= |u|+ n) then return false

2 Return (x[(|x| − |u|+ 1)..|x|] = u)

Embn

sfx(z, u):

3 Return z ∥u

EmbInvn

sfx(x):

4 If (|x| < n) then return §

5 z ← x[1..n]

6 u← x[(n + 1)..|x|]

7 Return (z, u)

Figure 4: Practical examples of predicates and embedding functions: a prefix embedding (left) and
suffix embedding (right). The embedding space is Embn

pfx.ES = Embn
sfx.ES = {0, 1}n for a fixed n.

F̃0(f ):

1 bd←$ {0, 1}k ; t← g(bd)

2 Define as below:

f̃t : {0, 1}∗ → {0, 1}F.ol

ebd : {0, 1}∗ × {0, 1}F.ol → {0, 1}∗

3 Return (̃ft, ebd)

f̃t(x):

4 If (|x| = k + F.ol) then

5 bd ′ ← x[1..k]

6 If (g(bd ′) = t) then return x[(k + 1)..|x|]

7 Else return f(x)

ebd(u, y):

8 // In this warmup, u is ignored

9 Require: y ∈ {0, 1}F.ol

10 x← bd ∥ y

11 Return x

F̃(f ):

1 (vk, sk)←$ S.Kg

2 Define as below:

f̃vk : {0, 1}∗ → {0, 1}F.ol

esk : {0, 1}∗ × {0, 1}F.ol → {0, 1}∗

3 Return (̃fvk , esk)

f̃vk(x):

4 w ← EmbInv(x)

5 If (w = §) then return f (x)

6 (y ∥Ã, u)← w

7 If S.Vfy(vk, (y, u), Ã) then return y

8 Else return f (x)

esk(u, y):

9 Require: y ∈ {0, 1}F.ol

10 Ã←$ S.Sign(sk, (y, u))

11 x← Emb(y ∥Ã, u)

12 Return x

Figure 5: Left: Warmup construction of a PA-SA F̃0 using a one-way function g. Right: Con-
struction of a PA-SA F̃, relative to predicate P with associated embedding function Emb, using a
signature scheme S. In this figure, subscripts denote hardcoded information (t, bd, vk, sk). In the
future these may be omitted from subscripts for brevity.

Warmup construction. We begin with a basic construction of a PA-SA. This is essentially a
generalization of the construction of FJM [35, Section 7.1] which targets backdoored hash functions.
More specifically, we build a PA-SA algorithm F̃0 for an algorithm instance f using a one-way
function g : {0, 1}k→{0, 1}ℓ. F̃0 is specified on the left of Figure 5. To an entity with ebd , finding
a preimage of target y is simple: bd ∥ y is a preimage because the trigger (g(bd ′) = t) passes in f̃t,
which then returns y. As we now explain, however, this construction falls short of our requirements.

F̃0 satisfies P-utility for the predicate P(x, u) = 1 for all x, u. This is quite weak, saying
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effectively that, while big-brother can find a preimage x of a given y, it has no control over x and
no ability to structure x in a favorable way. Our construction instead will provide P-utility for a
large class of predicates P.

In terms of exclusivity, t is public but finding bd remains hard to find assuming g is one-
way. However, this does not hold if a preimage produced by ebd is observed. Thus our notion of
exclusivity is not satisfied, but blackbox undetectability is. We omit a formal analysis as we will
next consider a construction which does meet all of our notions.

Our construction. We now give a construction meeting all our requirements. Let S be an suf-
cma signature scheme and let F be a family of algorithms. We say that message embedding function
Emb : Emb.ES × {0, 1}∗→{0, 1}∗ is compatible with S, F if Emb.ES = {0, 1}F.ol+S.sl. That is, the
embedding information consists of an output of an algorithm in F and a signature. Our transform
SbvIt associates to S, F, and an Emb compatible to S, F a PA-SA algorithm F̃ = SbvIt[F, S, Emb]
which is defined on the right side of Figure 5.

Note that we assume a correct embedding function Emb for predicate P. These have been given
for common predicates in Figure 4, and can be given for a large class of predicates including ones
sufficient for the applications we will give in later sections. But it may not be the case that every
predicate has a correct embedding function, or that every embedding function is compatible with
S, F.

Our use of an suf-cma signature scheme follows [41], but predicates and embeddings are new
and our construction is more general than theirs. The inclusion of this signature verification in f̃vk

(line 7 on the right side of Figure 5) also raises a question of timing-based detectability. This has
always been a question and possibility with ASAs, and has been outside the formal models. For
example, the SA-SA of [9] uses rejection sampling, so subverted encryption is slower than regular.
Timing-based detection remains possible in our construction but there are mitigating elements in
the applications we consider. Hash functions (Section 5) are often used within more time-consuming
applications (such as certificate validation as in Section 8) so the overall change in time could be
small. Similarly, for signatures (Section 7), the overhead and original cost are close.

In the remainder of this section, we show that F̃ produced by transform SbvIt[F, S, Emb] achieves
P-utility as long as S, Emb are correct (Proposition 4.1) and achieves exclusivity as long as S is suf-
cma (Theorem 4.2). The bottom line of this result is that effective PA-SAs are possible to construct
from standard building blocks, for useful constraints.

Proposition 4.1 Let S be a signature scheme, F a family, and Emb an embedding function for

predicate P which is compatible with S, F. Let F̃ = SbvIt[F, S, Emb]. If S is a correct signature

scheme and Emb is a correct embedding function for predicate P, then F̃ achieves P-utility.

Proof of Proposition 4.1: Consider any (f , ³) ∈ OUT(F), (f̃vk , esk) ∈ OUT(F̃(f)), u ∈ {0, 1}∗,
and y ∈ {0, 1}F.ol. The algorithm esk , on inputs u and y, returns x ← Emb((y ∥Ã), u) where
Ã←$ S.Sign(sk, (y, u)). Property (1) of utility requires that f̃ (x) = y. Let us consider f̃vk(x) of
our construction. On lines 4,5, since x ∈ Im(Emb), w ̸= §. If Emb, EmbInv satisfy our notion of
a correct embedding, w is recovered as ((y ∥Ã), u). That is, EmbInv(Emb((y ∥Ã), u)) = ((y ∥Ã), u).
Next, the signature verification on line 7 runs S.Vfy(vk, (y, u), Ã) where Ã←$ S.Sign(sk, (y, u)). This
passes as long as S is a correct signature scheme, and f̃vk(x) thus returns y on line 7.

Property (2) of utility asks that P(x, u) = 1. This is proven by line 11, where x← Emb((y ∥Ã), u).
Correctness of the embedding function Emb for predicate P implies that P(x, u) = 1.
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Games G0, G1

Init:

1 (f , ³)←$ F ; (vk, sk)←$ S.Kg

2 Define f̃vk and esk as in Fig. 5 (using vk, sk chosen above)

3 X ← ∅

4 Return (f , f̃vk , ³)

GetPmg(u, y):

5 Ã←$ S.Sign(sk, (y, u)) ; x← Emb((y ∥Ã), u)

6 X ← X ∪ {x}

7 Return x

Fin(x∗):

8 If x∗ ∈ X then return false

9 y′ ← f (x∗) ; w ← EmbInv(x∗)

10 If (w ̸= §) then

11 ((y ∥Ã), u)← w

12 If S.Vfy(vk, (y, u), Ã) then

13 bad← true ; Return false

14 Else: y ← y′

15 Else: y ← y′

16 Return (y′ ̸= y)

Figure 6: Games G0, G1 for the proof of Theorem 4.2. G1 contains the boxed code and G0 does
not.

Adversary AS(vk):

1 (f , ³)←$ F ; X ← ∅

2 Define f̃vk as in Fig. 5 (using vk provided as input)

3 x∗ ← A[GetPmgS](f , f̃vk , ³)

4 w ← EmbInv(x∗)

5 If (w ̸= §) then

6 ((y ∥Ã), u)← w

7 If S.Vfy(vk, (y, u), Ã) then

8 Return ((y, u), Ã)

Oracle GetPmgS(u, y):

9 Ã ← Sign((y, u))

10 x← Emb((y ∥Ã), u) ; X ← X ∪ {x}

11 Return x

Figure 7: Adversary AS for the proof of Theorem 4.2.

Theorem 4.2 Let S be a signature scheme, F a family, and Emb a correct embedding function for

predicate P which is compatible with S, F. Let F̃ = SbvIt[F, S, Emb]. Given an adversary A against

the exclusivity of F̃ we can build an adversary AS such that

Advexc

F,F̃,P
(A) f Advsuf-cma

S (AS) . (2)

If A makes q GetPmg queries, then AS makes q Sign queries. The running time of AS is close

to that of A.
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Proof of Theorem 4.2: Consider game G0 of Figure 6. We claim that

Advexc

F,F̃,P
(A) = Pr [ G0(A) ] . (3)

To justify Eq. (3), we claim that the Fin(x∗) return value is the same in G0 as it is in Gexc

F,F̃,P
. (The

Init and GetPmg oracles are identical, instantiated with scheme F̃.) To begin with, the check
made in line 8 is identical. Now consider y and y′ of G0. G0 sets y′ = f (x∗). Further, lines 9-15 of
G0 correspond to lines 4-7 of f̃vk in Figure 5. That is, y = y′ = f (x∗) if there is no valid parsing of
w nor verified signature. Otherwise, y is as output by EmbInv. Hence, the final check in line 16 of
G0 is identical to that of the exclusivity game. This proves Eq. (3).

We now turn to G1. Games G0, G1 are identical-until-bad, so by the Fundamental Lemma of Game
Playing [11] we have

Pr [ G0(A) ] = Pr [ G1(A) ] + (Pr [ G0(A) ]− Pr [ G1(A) ])

f Pr [ G1(A) ] + Pr [ G1(A) sets bad ] .

It is easy to see that Pr [ G1(A) ] = 0. This is because either the game will return false in line 13,
or it will set y to y′ in which case line 16 will return false.

It remains to bound the difference between G0 and G1. For this, we construct an adversary AS and
claim that

Pr [ G1(A) sets bad ] f Advsuf-cma
S (AS) . (4)

This will complete the proof of Eq. (2) and the theorem statement.

We now explain adversary AS, which is in game Gsuf-cma
S and runs A as specified in Figure 7. Note

that AS can define f̃vk using vk which it receives as input and f which it chooses by itself. Further,
it simulates A’s GetPmg oracle using its own Sign oracle.

If bad is set in G1, then the message-signature pair ((y, u), Ã) that was parsed from w ← EmbInv(x∗)
has passed verification. We also know that bad is only set when x∗ /∈ X due to the check in line 8
of G1. Since the embedding is correct and deterministic, ((y, u), Ã) was not used in the simulation
of the signing oracle and is a winning output in game Gsuf-cma

S (AS). This completes the proof of
Eq. (4).

Note that AS makes one Sign query for each of A’s GetPmgS queries, proving the running time
in the theorem statement.

5 PA-SAs on hash functions

We now turn to applying our general definitions and transform to hash functions. To our knowledge,
ASAs have not been studied for hash functions. However, related work has considered other forms
of subversion, which we briefly summarize.

Backdoored hash functions consist of malicious hash function designs or parameter selection,
and have been considered by [2, 35], with the former giving an explicit construction of maliciously
designed SHA1 parameters. Implementations of hash functions (or random oracles) have been
studied from a kleptographic perspective [12, 59] and from a proof-techniques perspective as pro-
grammable hash functions [43]. “Subverted hash functions” also brings to mind asymmetric notions
including chameleon hash functions [29,47], trapdoor hash functions [32], and provably secure hash
functions (with a trapdoor) [23]. These latter works build hash functions with trapdoor properties
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Game Gcr
H

Init:

1 h←$ H ; Return h

Fin(x1, x2):

2 Return ( x1 ̸= x2 and h(x1) = h(x2) )

Game Gcfe

H,H̃,P

Init:

1 h←$ H ; (h̃, e)←$ H̃(h)

2 X ← ∅

3 Return (h, h̃)

GetPmg(u, y):

4 x←$ e(u, y) ; X ← X ∪ {x}

5 Return x

Fin(x1, x2):

6 Return ( (x1 ̸= x2) and (h̃(x1) = h̃(x2))

and (x1 /∈ X ) and (x2 /∈ X ) )

Figure 8: Left: Collision resistance (cr) for a family of hash functions. Right: Collision-finding
exclusivity (cfe) of a PA-SA on hash functions.

for constructive applications, and the interface differs from standard hash functions.

Syntax. We now proceed to PA-SAs on hash functions. A hash function family is simply a family
of functions H with empty auxiliary information, and we may write h←$ H in place of (h, ∅)←$ H

to generate a particular hash function h : {0, 1}∗→{0, 1}H.ol. The latter will be the public algorithm
that is the target of the subversion. Following the syntax from Section 3, a PA-SA on H is specified
by an algorithm H̃ that takes an instance h of H and via (h̃, e)←$ H̃(h) generates a substitution
function h̃ : {0, 1}∗ → {0, 1}H.ol and an exploitation function e.

Hash function utility. Recall that effectiveness of a PA-SA calls for utility and exclusivity. A
hash function family is simply a family of functions, and we can directly apply the general utility
definition of Section 3. In particular, for a constraint predicate P, utility requires that the exploit
algorithm e be able to compute a preimage of any target hash, where the preimage also satisfies the
constraint predicate. When it comes to exclusivity, hash functions do introduce a domain-specific
security target (collision resistance) so we next give a domain-specific exclusivity definition.

CFE exclusivity. We define exclusivity for H̃ via game Gcfe

H,H̃,P
of Figure 8, where “cfe” denotes

collision-finding exclusivity. If A is an adversary, we let Advcfe

H,H̃,P
(A) = Pr

[
Gcfe

H,H̃,P
(A)

]
be its

cfe advantage. This cfe notion requires that h̃ remains collision-resistant, but the difference from
standard cr is the addition of the GetPmg oracle, which allows an adversary to view preimages that
have been produced by the exploit algorithm. These are subject to adversary-chosen constraint-
parameters u. An adversary A wins game Gcfe

H,H̃,P
if it produces any nontrivial collision, meaning,

it cannot have asked for a preimage. The addition of this oracle can be viewed as a formalization
of “backdoor key exposure” as raised by [35].

General exclusivity+CR =⇒ CFE. Although cfe exclusivity is specific to hash functions, it
remains related to the general exclusivity notion of Section 3. In particular, if hash function family
H is cr and a PA-SA H̃ achieves general exclusivity, then the below theorem says that it also
achieves cfe exclusivity. (If H were not cr, then collisions could be found by anyone, even without
the substitution.) We give the proof in Appendix A.

Theorem 5.1 Let H be a family of hash functions, and H̃ a PA-SA algorithm for H with respect to
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a predicate P. Let A be an adversary against the cfe exclusivity of H̃. Then we can build adversaries

A
H̃

, AH such that

Advcfe

H,H̃,P
(A) f Advexc

H,H̃,P
(A

H̃
) + Advcr

H (AH) , (5)

where A
H̃

makes the same number of GetPmg queries as A. The running times of AS, AH are

close to that of A.

Construction. The above result lets us construct a PA-SA on hash functions using our transform
described in the previous section. Briefly, it achieves utility because the hash function and general
notions are equivalent, and it achieves cfe exclusivity due to Theorem 5.1 above, if the target hash
function is collision-resistant. We formally state this below.

Proposition 5.2 Let S be a signature scheme, H a family of hash functions, and Emb an embedding

function for predicate P which is compatible with S, H. Let H̃ = SbvIt[H, S, Emb]. If S and Emb

are correct, then H̃ achieves utility for P.

Utility follows directly from Proposition 4.1 by observing that utility for PA-SAs on hash functions
is defined exactly as for general functions. Compatible embedding functions are, for example, the
prefix and suffix embedding from Figure 4 or the certificate embedding in Section 8.

Corollary 5.3 Let S be a signature scheme, H a family of hash functions, and Emb a correct

embedding function for predicate P which is compatible with S, H. Let H̃ = SbvIt[H, S, Emb]. Given

an adversary A against the cfe exclusivity of H̃ we can build adversaries AS, AH such that

Advcfe

H,H̃,P
(A) f Advsuf-cma

S (AS) + Advcr
H (AH) . (6)

If A makes q GetPmg queries, then AS makes q Sign queries. The running times of AS, AH are

close to that of A.

This corollary follows from Theorems 4.2 and 5.1.

Applications. As discussed in the Introduction, we give two applications for PA-SAs on hash
functions. We discuss certificate forgery in Section 8. Here, we give an application to breaking
password-based authentication.

Suppose a server stores a user password pwd along with a random salt s as y = h(pwd ∥ s),
as specified by PBKDF1 in PKCS#5 [46]. When someone tries to log in with password pwd ′ the
server checks whether h(pwd ′ ∥ s) = y. Now suppose a PA-SA is mounted with respect to the suffix
predicate, so that (h̃, e)←$ H̃(h) and h̃ replaces h. Using e, the attacker can find x←$ e(s, y) such
that x = pwd ′′ ∥ s and h̃(x) = y. Thus someone in possession of e can effectively log in as any user,
by submitting pwd ′′ as their password. Note that this example requires a notion of a predicate and
constraint parameter (the salt).

6 PA-SAs on non-interactive arguments

Our second application of PA-SAs is subversion of non-interactive arguments (or proofs) including
SNARKs or SNARGs. We accomplish this by setting the target public algorithm to be the verifi-
cation algorithm of the system and applying our general PA-SA results of Section 4. Our attack
will allow violation of soundness. Non-interactive arguments (NIAs) have seen widespread usage
in blockchains and cryptocurrencies, where attackers may have significant financial motivation to
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Game Gsnd
NIA

Init:

1 (v, p)←$ NIA

2 Return (v, p)

Fin(ϕ∗, Ã∗):

3 Return ( ϕ∗ /∈ LR and v((ϕ∗, Ã∗)) = 1 )

Game G
pfe

NIA,ÑIA

Init:

1 (v, p)←$ NIA ; (ṽ, e)←$ ÑIA(v)

2 X ← ∅

3 Return (v, ṽ, p)

Sim(ϕ′):

4 (ϕ, Ã)←$ e(ϕ′, 1) ; X ← X ∪ {ϕ}

5 Return Ã

Fin(ϕ∗, Ã∗):

6 If (ϕ∗ ∈ X or ϕ∗ ∈ LR) then return false

7 Return ( ṽ((ϕ∗, Ã∗)) = 1 )

Figure 9: Left: Soundness (snd) for a non-interactive argument NIA. Right: Proof-finding exclu-
sivity (pfe) of a PA-SA ÑIA on NIA.

create false proofs that would be accepted as allowed by our PA-SA. We remark that verification is
a common algorithm in many schemes and primitives beyond NIAs, and our generic PA-SA applies
to these as well.

In a related vein, BFS [8, 37] consider subversion of NIAs through the attacker planting a
malicious CRS, giving defenses in the form of NIAs that resist such attacks. Our work, in contrast,
considers subversion of the verification algorithm, and is focused on attacks. ASAs have also
been considered on proof-of-work components by [66], and defenses against exfiltration have been
considered by [19]. Defenses specifically for verification programs were studied by [34]; they however
target only random and accidental implementation errors.

NIA definitions. Recall that in an NIA, a prover who holds a statement ϕ and a witness É for
a given polynomial-time-decidable relation R wants to convince a verifier that ϕ is true; that is,
(ϕ, É) ∈ R. Usually, both parties have access to a common reference string (CRS). We use, for
such an NIA, a somewhat unconventional syntax that fits NIAs into the framework of Section 3
and allows application of our Section 4 results. Namely, an NIA is a family of functions NIA which,
via (v, p)←$ NIA, generates a verifying algorithm v and a proving algorithm p. For our purposes,
the target of the PA-SA is v while p is included in the auxiliary information because it is associated
to, and may contain information about, v. The output length NIA.ol of NIA is simply 1, meaning
v : {0, 1}∗ → {0, 1}. Also associated to NIA is a proof length NIA.pl ∈ N.

To explain, a CRS, if used, would be chosen by NIA and hardcoded in both algorithms, so
that it does not appear explicitly in the syntax. Now, the proving algorithm takes a statement
ϕ ∈ {0, 1}∗ and witness É to produce a proof Ã←$ p(ϕ, É). Verification takes a statement ϕ and
candidate proof Ã ∈ {0, 1}∗ to deterministically produce a bit d ∈ {0, 1} via d← v((ϕ, Ã)).

We denote by LR the language corresponding to R, namely LR = { ϕ : ∃É ( (ϕ, É) ∈ R ) }. On
the left side of Figure 9 we give a game to define soundness for NIA. If A is an adversary, we let

Advsnd
NIA(A) = Pr

[
Gsnd

NIA(A)
]

be its snd advantage.

Now as per Section 3, a PA-SA on NIA is specified by an algorithm ÑIA which produces
(ṽ, e)←$ ÑIA(v).

NIA utility. The canonical goal of a malicious prover is a forgery of a false statement; we use
this as the utility goal of a PA-SA, viewing forgery as finding preimages of 1 under ṽ. For utility of
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Ppf(x, ϕ′): // u = ϕ′

1 (ϕ, Ã)← x

2 Return (ϕ = ϕ′)

Embℓ

pf(z, ϕ′): // u = ϕ′, z ∈ {0, 1}ℓ+1

3 y ∥Ã ← z // |y| = 1

4 Ã ← Ã

5 x← (ϕ′, Ã)

6 Return x

EmbInvℓ

pf(x):

7 (ϕ, Ã)← x

8 If |Ã| ̸= ℓ then return §

9 Ã ← Ã

10 Return (1 ∥Ã, ϕ)

ÑIA(v):

1 (vk, sk)←$ S.Kg

2 Define as below:

ṽ : {0, 1}∗ → {0, 1}

e : {0, 1}∗ × {0, 1} → {0, 1}∗

3 Return (ṽ, e)

ṽ(x):

4 (1 ∥Ã, ϕ)← EmbInvS.sl
pf (x)

5 If S.Vfy(vk, (1, ϕ), Ã) then return 1

6 Else return v(x)

e(ϕ′, y): // u = ϕ′

7 Require: y = 1

8 Ã←$ S.Sign(sk, (1, ϕ′))

9 x← EmbS.sl
pf (1 ∥Ã, ϕ′)

10 Return x

Figure 10: Left: Predicate Ppf capturing utility (“proof finding”) of a PA-SA on non-interactive ar-
guments, and an embedding Embℓ

pf : {0, 1}ℓ+1×{0, 1}∗ → {0, 1}∗. Right: Our PA-SA construction,

applied to NIA, S, and EmbS.sl
pf .

a PA-SA on an NIA, we ask for something very strong: the attacker, via the exploit algorithm e,
should be able to forge a proof for any statement. Luckily, this can be captured in our predicate-
based general formulation of utility. We give a predicate Ppf (“proof finding”) in Figure 10 which
precisely captures the condition that an arbitrary statement of choice can be proved. For an input
x = (ϕ, Ã) and constraint-parameter u = ϕ′, the predicate Ppf(x, u) returns true iff ϕ = ϕ′.

PFE exclusivity. A PA-SA asks for exclusivity in addition to utility. We define exclusivity
via the pfe (“proof-finding exclusivity”) game in Figure 9. Note that the pfe game is essentially
the soundness game with the addition of the exploit-finding Sim oracle. This echoes cfe of the
prior section where we added an exploit-finding GetPmg oracle to the usual cr game. If A is an

adversary, we let Adv
pfe

NIA,ÑIA
(A) = Pr

[
G

pfe

NIA,ÑIA
(A)

]
be its pfe advantage. Recall that for general

algorithms and hash functions, exclusivity is also parameterized by the predicate P; however for
NIAs we assume the fixed predicate Ppf above.

General exclusivity+SND =⇒ PFE. Proof-finding exclusivity remains related to general ex-

clusivity of Section 3. If the target NIA is sound and a PA-SA ÑIA achieves general exclusivity,
then it in fact achieves pfe exclusivity. We state this in the theorem below and give the proof in
Appendix B.

Theorem 6.1 Let NIA be an NIA, and ÑIA a PA-SA algorithm for NIA with respect to predicate

Ppf . Given an adversary A against the pfe exclusivity of ÑIA we can build adversaries A
ÑIA

, ANIA

such that

Adv
pfe

NIA,ÑIA
(A) f Advexc

NIA,ÑIA,Ppf

(A
ÑIA

) + Advsnd
NIA(ANIA) . (7)

If A makes q Sim queries then A
ÑIA

makes q GetPmg queries. The running times of A
ÑIA

, ANIA

are close to that of A.
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Construction. To apply our general result we first need to give a correct embedding function
for Ppf . The embedding Embℓ

pf : Embℓ
pf .ES × {0, 1}∗ → {0, 1}∗ is parameterized by an integer ℓ

and has embedding space Embℓ
pf .ES = {0, 1}ℓ+1. It is shown in Figure 10, along with its inverse.

Let us check that it is correct for Ppf . Suppose x ← Embℓ
pf(z, ϕ′). Then x = (ϕ′, Ã) and hence

Ppf(x, ϕ′) = 1 as required.
To apply our general result, we pick a SUF signature scheme S and now need the embedding func-

tion Embℓ
pf : {0, 1}ℓ+1×{0, 1}∗ → {0, 1}∗ to be compatible with S, NIA, which is accomplished by set-

ting ℓ = S.sl. Then we can apply our transform from Section 4 to get ÑIA = SbvIt[NIA, S, EmbS.sl
pf ].

In the following, we show utility and pfe exclusivity of this ÑIA. The latter (Corollary 6.3) is a
corollary of Theorems 6.1 and 4.2.

Proposition 6.2 Let S be a signature scheme, NIA a target NIA and ÑIA = SbvIt[NIA, S, EmbS.sl
pf ].

If S is correct, then ÑIA achieves utility for Ppf .

Proof of Proposition 6.2: We need to show that for every v output by NIA and every constraint-
parameter (here, statement) ϕ′ ∈ {0, 1}∗, if (ṽ, e)←$ ÑIA(v) and if x←$ e(ϕ′, 1), then we have (1)
ṽ(x) = 1 and (2) Ppf(x, ϕ′) = 1.

Let us start with (2). As defined in Figure 10, e(ϕ′, 1) returns x = EmbS.sl
pf (1 ∥Ã, ϕ′). Now

Ppf(x, ϕ′) = true since ϕ′ is in fact the statement within x.

Next we turn to (1). This is ensured by lines 4,5 of ṽ in Figure 10. On this embedded x, line 4
parses ((1 ∥Ã), ϕ′) ← EmbInvS.sl

pf (x), where ϕ′ is recovered by correctness of the embedding. Now
line 5 computes S.Vfy(vk, (1, ϕ′), Ã) which passes because, as produced on line 8, Ã is a signature
on (1, ϕ′) using scheme S. Verification thus returns 1 on line 5, meaning that ṽ(x) = 1.

Corollary 6.3 Let S be a signature scheme, NIA a target NIA and ÑIA = SbvIt[NIA, S, EmbS.sl
pf ].

Given an adversary A against the pfe exclusivity of ÑIA we can build adversaries AS, ANIA such

that

Adv
pfe

NIA,ÑIA
(A) f Advsuf-cma

S (AS) + Advsnd
NIA(ANIA) . (8)

If A makes q queries to Sim, then AS makes q Sign queries. The running times of AS, ANIA are

close to that of A.

We finally remark that embeddings other than EmbS.sl
pf may be correct and compatible with NIA, S.

Our embedding simply uses a signature in place of an input proof (implicitly relying on S.sl f NIA.pl)
but more concealed or clever embeddings could be designed.

7 PA-SAs on signature verification

In this section, we continue our attacks on verification, this time for the application of signatures.
Prior work has been restricted to signature SA-SAs, where key-generation [26] or when signing [5,
65] are substituted. In particular, these are limited to randomized algorithms with the goal of
exfiltrating the signing key. We next introduce PA-SAs with verification as the target public
algorithm; these PA-SAs work even on schemes that are deterministic or have unique signatures,
in contrast to the above-cited works.

Syntax. We use a signature syntax similar to the prior section on NIAs. Let TS be a (target)
signature scheme. Following the signature syntax used in prior sections, the scheme consists of
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three algorithms TS.Kg, TS.Sign, TS.Vfy. We will abbreviate these as kg = TS.Kg, s = TS.Sign, v =
TS.Vfy. (Note that we are also distinguishing between TS which is the target of attack, and
signature scheme S which was used in our Section 4 construction.) Now this syntax fits within our
general PA-SA framework of Section 3 as follows.

By (v, kg, s)←$ TS we “generate” the algorithms of TS; this could be entirely deterministic,
or public parameters like a generator could be selected here. The verification algorithm v is the
target of the attack. For this scenario, the auxiliary information includes key-generation algorithm
kg and signing algorithm s, since these are related to and may contain information about v. That
is, ³ = {kg, s} for a PA-SA on v.

The key-generation algorithm produces per-user keys via (vk, sk)←$ kg. Signing algorithm
s takes as input a signing key sk ∈ TS.SK and message m ∈ {0, 1}∗ to produce a signature
Ã ∈ {0, 1}TS.sl where TS.sl ∈ N is the fixed signature length. Verification algorithm v then takes
as input a verification key vk ∈ TS.VK, a message m ∈ {0, 1}∗ and a signature Ã ∈ {0, 1}TS.sl to
produce a bit d ∈ {0, 1}; we write d← v((vk, m, Ã)). The output length (of verification) is simply
TS.ol = 1.

Following our convention, a PA-SA on TS is now specified by an algorithm T̃S which produces
(ṽ, e)←$ T̃S(v).

Signature utility. The usual goal of a signature attacker is forgery. As in our NIA notion, we
view forgery as finding preimages of 1 under ṽ, so that we may apply our general utility definition.
We ask for very strong utility for a PA-SA on signatures: the attacker, via the exploit algorithm
e, should be able to forge a signature for any verification key and for any message. As with NIAs,
this can be captured in our predicate formulation of utility by specifying a particular signature
predicate. We give Pff (“forgery finding”) in Figure 12 which captures the condition that an
arbitrary verification key and message of choice can be validated. For an input x = (vk, m, ÃTS)
and constraint-parameter u = (vk ′, m′), the predicate Pff(x, u) returns true iff vk = vk ′ and m = m′.

FFE exclusivity. We define signature-specific exclusivity via the ffe (“forgery-finding exclusiv-
ity”) game in Figure 11. Note that the ffe game is essentially the uf-cma game with the addition
of the exploit-finding ESign oracle, following the examples of the prior two applications. If A is

an adversary, we let Advffe

TS,T̃S
(A) = Pr

[
Gffe

TS,T̃S
(A)

]
be its ffe advantage. This is with respect to

the fixed predicate Pff which is omitted from the subscript.

General exclusivity+UFCMA =⇒ FFE. Forgery-finding exclusivity is related to general ex-

clusivity of Section 3. If the target signature scheme TS is uf-cma and a PA-SA T̃S achieves general
exclusivity, then it in fact achieves ffe exclusivity. We state this in the theorem below and give the
proof in Appendix C.

Theorem 7.1 Let TS be a signature scheme, and T̃S a PA-SA algorithm for TS with respect to

predicate Pff . Given an adversary A against the ffe exclusivity of T̃S we can build adversaries

A
T̃S

, ATS such that

Advffe

TS,T̃S
(A) f Advexc

TS,T̃S,Pff

(A
T̃S

) + Advuf-cma
TS (ATS) . (9)

If A makes qs Sign queries and qe ESign queries then A
T̃S

makes qe GetPmg queries and ATS

makes qs Sign queries. The running times of A
T̃S

, ATS are close to that of A.

Construction. Now we turn to constructing a PA-SA on signature verification using our transform
of Section 4. To do so, we first need to provide a correct embedding function for Pff . The embedding
Embℓ

ff : Embℓ
ff .ES× TS.VK× {0, 1}∗ → {0, 1}∗ is parameterized by an integer ℓ and has embedding
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Game Guf-cma
TS

Init:

1 (v, kg, s)←$ TS

2 (vk∗, sk∗)←$ kg ; Q ← ∅

3 Return (v, vk∗, {kg, s})

Sign(m):

4 Ã←$ s(sk∗, m) ; Q ← Q∪ {m}

5 Return Ã

Fin(m∗, Ã∗):

6 Return ( m∗ /∈ Q

and v((vk∗, m∗, Ã∗)) = 1 )

Game Gffe

TS,T̃S

Init:

1 (v, kg, s)←$ TS ; (ṽ, e)←$ T̃S(v)

2 (vk∗, sk∗)←$ kg ; X ← ∅

3 Return (v, ṽ, vk∗, {kg, s})

ESign(vk′, m′):

4 (vk, m, Ã)←$ e((vk′, m′), 1) ; X ← X ∪ {(vk, m)}

5 Return Ã

Sign(m):

6 Ã←$ s(sk∗, m) ; X ← X ∪ {(vk∗, m)}

7 Return Ã

Fin(m∗, Ã∗):

8 Return ( (vk∗, m∗) /∈ X and ṽ((vk∗, m∗, Ã∗)) = 1 )

Figure 11: Left: The uf-cma game. Right: Forgery-finding exclusivity (ffe) of a PA-SA on
signature verification.

Pff(x, (vk′, m′)): // u = (vk ′, m′)

1 (vk, m, ÃTS)← x

2 Return ( vk = vk′ and m = m′ )

Embℓ

ff(z, (vk′, m′)): // u = (vk ′, m′), z ∈ {0, 1}ℓ+1

3 y ∥ÃS ← z // |y| = 1

4 ÃTS ← ÃS

5 x← (vk′, m′, ÃTS)

6 Return x

EmbInvℓ

ff(x):

7 (vk, m, ÃTS)← x

8 If |ÃTS| ̸= ℓ then return §

9 ÃS ← ÃTS

10 Return (1 ∥ÃS, (vk, m))

T̃S(v):

1 (ṽk, s̃k)←$ S.Kg

2 Define as below:

ṽ : {0, 1}∗ → {0, 1}

e : {0, 1}∗ × {0, 1} → {0, 1}∗

3 Return (ṽ, e)

ṽ(x):

4 (1 ∥ÃS, (vk, m))← EmbInvS.sl
ff (x)

5 If S.Vfy(ṽk, (1, vk, m), ÃS) then return 1

6 Else return v(x)

e((vk′, m′), y): // u = (vk ′, m′)

7 Require: y = 1

8 ÃS←$ S.Sign(s̃k, (1, vk′, m′))

9 x← EmbS.sl
ff (1 ∥ÃS, (vk′, m′))

10 Return x

Figure 12: Left: Predicate Pff capturing utility (“forgery finding”) of a PA-SA on signatures, and
an embedding Embℓ

ff : {0, 1}ℓ+1 × TS.VK × {0, 1}∗ → {0, 1}∗. Right: Our PA-SA construction,
applied to TS, S, and EmbS.sl

ff .

space Embℓ
ff .ES = {0, 1}ℓ+1. It is given on the left of Figure 12, along with its inverse. To see that

it is correct for Pff , let x← Embℓ
ff(z, (vk ′, m′)). Then x = (vk ′, m′, Ã) and thus Pff(x, (vk ′, m′)) = 1

as needed.

To apply our transform and general result, we select a SUF signature scheme S. We ensure
that Embℓ

ff is compatible with S, TS by setting ℓ = S.sl. Then we apply our transform of Section 4
to get T̃S = SbvIt[TS, S, EmbS.sl

ff ]. Note that our embedding implicitly assumes S.sl f TS.sl. Our
embedding is simplest when S = TS as all exploit-produced signatures are simply usual signatures
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under the target scheme TS. Nonetheless, different embeddings may be correct and compatible
with S, TS.

The following proposition shows utility of this T̃S, and the corollary (following from Theo-
rems 7.1 and 4.2) shows ffe exclusivity. Note that in our construction and proofs, we refer to a
few sets of keys. We let (ṽk, s̃k) refer to keys hardcoded in the algorithms ṽ, e. We let (vk∗, sk∗)
denote challenge keys in uf-cma-style games, and we let vk, vk ′ denote exploiter-chosen parts of
constraint-parameters.

Proposition 7.2 Let S be a signature scheme, TS a target signature scheme and T̃S = SbvIt[TS,
S, EmbS.sl

ff ]. If S is correct, then T̃S achieves utility for Pff .

Proof of Proposition 7.2: We need to show that for every v output by TS and every constraint-
parameter (here, verification key and message) (vk ′, m′) ∈ TS.VK × {0, 1}∗, if (ṽ, e)←$ T̃S(v) and
if x←$ e((vk ′, m′), 1), then we have (1) ṽ(x) = 1 and (2) Pff(x, (vk ′, m′)) = 1.

We begin with (2). The exploit algorithm, as defined on the right of Figure 12, takes input
e((vk ′, m′), 1) to return x = EmbS.sl

ff (1 ∥ÃS, (vk ′, m′)). Now Pff(x, (vk ′, m′)) = true since vk ′ and m′

are in fact the verification key and message within x.

Next we prove (1). As x is produced by the exploit algorithm, it is constructed as x = EmbS.sl
ff (1 ∥ÃS,

(vk ′, m′)) where ÃS is a signature on message (1, vk ′, m′) under scheme S. Now let us look at ṽ(x).
As on lines 4,5 of Figure 12, (1 ∥ÃS, (vk ′, m′)) is recovered from the inverse embedding (which is
correct, as argued above). Now line 5 checks S.Vfy(ṽk, (1, vk ′, m′), ÃS) which passes if S is a correct
signature scheme, since ÃS is a signature on (1, vk ′, m′). Verification thus returns 1 on line 5,
meaning that ṽ(x) = 1.

Corollary 7.3 Let S be a signature scheme, TS a target signature scheme and T̃S = SbvIt[TS,
S, EmbS.sl

ff ]. Given an adversary A against the ffe exclusivity of T̃S we can build adversaries AS, ATS

such that

Advffe

TS,T̃S
(A) f Advsuf-cma

S (AS) + Advuf-cma
TS (ATS) . (10)

If A makes qs Sign queries and qe ESign queries then AS makes qe Sign queries and ATS makes

qs Sign queries. The running times of AS, ATS are close to that of A.

Extensions and applications. Like hashing, signature verification has applications in certificate-
based authentication, which we discuss in the following section. In contrast to hashing and NIAs,
signatures have per-user keys, which raises a multi-user question. We have presented single-user
definitions in this section but one can consider multi-user uf-cma and ffe. Our results extend to this
case, notably because the exploiter-chosen vk ′ is included in the signature produced by the exploit
algorithm. Therefore an exploit for a particular vk ′

1 cannot be reused for a different vk ′
2.

8 PA-SAs applied to certificate forgery

In this section we discuss certificate forgery as a possible target of PA-SAs. Both hash functions
and signature verification, as covered in Sections 5 and 7, are components of certificates as used
in public-key infrastructure. Do PA-SAs in our predicate-based formalization allow for realistic
certificate attacks? Yes; we explain how in this section.
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Validate(C, aux):

1 First, perform expiry, revocation, and other checks.

2 Extract vkca from (C, aux)

3 Extract (h, v) from C.alg

4 y ← h(C.data)

5 Return v((vkca, y, C.sig))

PA-SA on h changes line 4:

6 y ← h̃(C.data)

PA-SA on v changes line 5:

7 Return ṽ((vkca, y, C.sig))

Figure 13: Validation of an X.509 certificate, simplified. Recall that v(·) = Sca.Vfy(·).

Certificate-based authentication. First let us recall how certificates are used. The usual
realization of public-key infrastructure uses X.509 certificates and certificate authorities. For sim-
plicity, suppose there is one CA operating with signature scheme Sca and hash function h ∈ Hca.
Let (vkca, skca) be the verification and signing keys of the CA; in our PA-SA syntax the signature
verification algorithm is v = Sca.Vfy. All users of the PKI have implementations of h and v (along
with vkca) on their devices.

As specified in RFC 5280 [24], a certificate C consists of a sequence of key-value pairs. The
important fields for our application are:

• C.data , consisting of the certificate’s identifying, validity and other data. At a minimum,
this specifies the CA who signed the certificate and includes information to recover vkca.

• C.alg , the name of the signature algorithm, such as “PKCS #1 SHA-256 With RSA En-
cryption.” This yields algorithms h and v.

• C.sig , a signature on message C.data, using the algorithm specified in C.alg and the CA’s
signing key skca.

Issuance of a certificate takes as input data′ and auxiliary information csr (representing a certificate
signing request) to produce either §, or a signed certificate C containing data′. Deterministic
validation of a certificate takes as input a certificate C and auxiliary information aux (representing
a certificate chain, and local store of root certificates) to produce a bit d ∈ {0, 1}.

In our discussion, we are more interested in validation (the public algorithm) than issuance (the
secretly-keyed algorithm). At a high level, Validate proceeds as in Figure 13. Validate itself can be
treated as a public algorithm to which our general framework applies, but we here discuss PA-SAs
on the hash function h or signature verification v.

PA-SA on signature verification. We first discuss the simpler case, when signature verifica-
tion is attacked. Let (ṽ, e)←$ S̃ca(v) for a PA-SA S̃ca on the CA’s signature scheme. As in Figure 13,
an attacker substitutes v with ṽ on a user’s device. Recall that signature PA-SA utility means that
for any verification key vk and message m, one can use e(u = (vk, m), 1) to find a signature Ã under
which ṽ((vk, m, Ã)) = 1. For impersonation one selects vk = vkca.

To mount a certificate attack, one chooses arbitrary certificate data data∗ and computes m∗ =
h(data∗). Then the exploit algorithm allows computation of sig∗ ← e((vkca, m∗), 1) such that
ṽ((vkca, m∗, sig∗)) = 1. The full certificate C∗ may be put together with the chosen data∗, alg∗

specifying the usual h and v, and signature sig∗. Now line 7 of Figure 13 passes and the certificate
is accepted. This enables, for example, impersonation by choosing any vkca to claim in data∗. One
needs only to instantiate S̃ca = SbvIt[Sca, S, Embff ] with a signature scheme such that S.sl f Sca.sl
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Pcert(x = data∗, u = data′):

1 If ((data∗.f = data′.f) for all fields f except fh, fÃ) then return true

2 Else return false

Embcert((y ∥Ã), u = data′):

3 For all fields f, do: data∗.f← data′.f

4 data∗.fh ← y ; data∗.fÃ ← Ã

5 Return data∗

EmbInvcert(x = data∗):

6 y ← data∗.fh ; Ã ← data∗.fÃ

7 data′.f← data∗.f for all fields f except fh, fÃ

8 Return ((y ∥Ã), data′)

Certificate forgery using H̃ca:

9 (h̃, e)←$ H̃ca(h)

10 Choose a target honest certificate C with hash y.

11 Choose any data′ which specifies the same issuer CA and vkca as C.

12 data∗←$ e(u = data′, y)

13 C∗.data← data∗

14 C∗.alg specifies (h, v)

15 C∗.sig← C.sig

16 Return C∗

Figure 14: Above: Predicate Pcert which captures whether data∗ embeds all of the data from
chosen data′. Embedding Embcert is a embedding function for this predicate. Below: How a
PA-SA on hash function h allows the attacker to forge almost arbitrary certificates. We use f to
denote any X.509 data field name. Field labels fh, fÃ are fixed.

so that the results of Section 7 apply.

PA-SA on the hash function. Next we discuss a PA-SA on the hash function, for which the
main task is deciding on an embedding to use. Recall that utility of a PA-SA on a hash function
is with respect to a particular predicate, and our construction assumes a compatible embedding
function for that predicate. We will call these Pcert and Embcert, respectively, and define them
shortly. For now, let H̃ca = SbvIt[Hca, S, Embcert] given a signature scheme S with short signatures.
Let (h̃, e)←$ H̃ca(h). As in Figure 13, an attacker substitutes h with h̃ on a user’s device.

Now, certificate forgery proceeds by choosing a target certificate C with hash y for which a CA
signature is already known; thus the signature may be reused on any C∗ whose data also hashes to
y. Unlike for the signature case above, we cannot ask for arbitrary certificate data to hash to y.
However, we can ask that for arbitrary data′, the attacker can find data∗ which hashes to y and
is close to data′. This “close to” is captured by the predicate and embedding function. We give
one possible Pcert and Embcert in Figure 14. In brief, data∗ contains all the same fields as data′,
and two additional fields fh, fÃ. One may also design other ways to embed (Hca.ol + S.sl) bits in a
certificate. The steps of the forgery are written in more detail in Figure 14 and we give an explicit
example in Figure 15.

Remarks on other PKI attacks. Although we consider the PA-SA setting, we note that a
variety of work has already studied the repercussions of PKI allowing weak hash functions, in
particular MD5 [49,50,64,68,72]. At Eurocrypt 2007 [63], Stevens, Lenstra, and de Weger presented
two X.509 certificates with the same MD5 hash value and thus signature. The two certificates were
produced at the same time, and the cost was estimated to be “2 months real time” [63]. In the
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PA-SA model, an attacker wants to forge (almost) arbitrary certificates, at arbitrary times, and to
do so easily.

There are a few remarks to add about our PA-SAs here. First, observe that the hash function
exploit operates as data∗←$ e(u = data′, y) where there is some restriction on the vkca in data′

(there must be an existing public certificate and signature under vkca). The signature exploit
operates as sig∗ ← e(u = (vkca, m∗), 1) where vkca is totally arbitrary. Second, in both, vkca is
included in the constraint-parameter u, meaning that an exploit-produced signature depends on
vkca and could not be reused for a different vk ′

ca.

Example certificate embedding. In Figure 15 we give an explicit example of our embedding
Embcert, as used in a PA-SA on the PKI hash function. Suppose we have selected target hash y =
680f8b1123be39f4451430d6267a8159033034403ce0df1abdf11c105031d719. This corresponds to
a public certificate C with a valid signature C.sig where C.alg specifies “PKCS #1 SHA-256 With
RSA Encryption.” The aim is now to construct C∗ ̸= C with the same hash y; thus the signature
on C can be reused.

A PA-SA attacker does the following. Suppose they intend to use H̃ca = SbvIt[Hca, S, Embcert]
where Hca is SHA256, S is ECDSA over secp256k1, and the embedding is as in Figure 14. (A
shorter signature scheme like BLS [17] may be even less noticeable to embed, but ECDSA is easily
used in OpenSSL [53].)

The forgery proceeds as follows. First, the substitution is generated via (h̃, e)←$ H̃ca(h), which
in particular means generating (ṽk, s̃k) for ECDSA. (Recall that ṽk is hardcoded in h̃ while s̃k is
hardcoded in e.) We select:

ṽk = 04d0722759460447f1719ac66a1734054651f7c557a96166583d686

ad405ca9b6f5fe47a7e425a8722edfa13be606fcbe4053ecacb27f2

b0bc3dd1e83152c9a8a3 .

Next data′ is chosen, which is the certificate data to be contained in the forgery. For this example,
we suppose that the attacker is aiming to forge arbitrary data′. They use e to find a preimage
data∗ of target hash y, where the constraint is that data∗ is “close to” data′. Concretely, data∗

adds two additional fields. In the first, data∗.fh = y. In the second, data∗.fÃ = Ã, where
Ã←$ S.Sign(s̃k, (y, data′)). For our chosen data and y, we find

Ã = 304502202b978f95a853dfa2d2574ff9980a4351e7d6c9c4fcc0529

d636c750fdf4c16a8022100efbb50c105df2a4766cfa94910d3a190

19656ff5dbdeed8948eb7570089e12d5 .

Now the forgery is ready to be put together: it includes data∗, signature C.sig, and algorithm
specification “PKCS #1 SHA-256 With RSA Encryption” (where h = SHA256 is substituted by h̃
on the user’s device.) This is shown in Figure 15.
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Certificate C∗:

1 Data:

2 Version: 3 (0x2)

3 Serial Number: ...

4 Signature Algorithm: PKCS #1 SHA-256 With RSA Encryption

5 Issuer: C.Issuer

6 Validity

7 Not Before: Jan 1 08:00:00 2024 GMT

8 Not After: Dec 1 08:00:00 2024 GMT

9 Subject: O = Big Brother, CN = *.bigbrother.com

10 Subject Public Key Info: ...

11 X509v3 extensions:

12 X509v3 Basic Constraints: critical

13 CA: TRUE

14 fh: 680f8b1123be39f4451430d6267a8159033034403ce0df1abdf11c105031d719

15 fÃ: 304502202b978f95a853dfa2d2574ff9...56ff5dbdeed8948eb7570089e12d5

16 Signature Algorithm: PKCS #1 SHA-256 With RSA Encryption

17 C.sig

Figure 15: A certificate forgery for a PA-SA on h; we want h̃(C∗.data) = h̃(C.data) = h(C.data) so
that an honest signature on C can be reused for forgery C∗. The highlighted lines are the overhead
in constructing the hash collision; that is, these are determined by C or cannot be arbitrarily chosen.
The remainder of the certificate may be arbitrarily set by the PA-SA attacker. On a user’s device,
h is replaced by h̃.
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Games G0, G1 , G2

Init:

1 h←$ H ; (h̃, e)←$ H̃(h) ; X ← ∅

2 Return (h, h̃)

GetPmg(u, y):

3 x←$ e(u, y) ; X ← X ∪ {x}

4 Return x

Fin(x1, x2):

5 If (x1 = x2) then return false

6 If (x1 ∈ X ) ( (x2 ∈ X ) then return false

7 If h̃(x1) ̸= h(x1) ( h̃(x2) ̸= h(x2) then bad← true ; return false

8 y1 ← h̃(x1) ; y2 ← h̃(x2)

9 y1 ← h(x1) ; y2 ← h(x2) // Game G2

10 Return (y1 = y2)

Figure 16: Games G0, G1, G2 for the proof of Theorem 5.1. G1, G2 contain the boxed code and G0

does not. Line 9 is only present in G2.

Adversary A
H̃
(h, h̃, ∅):

1 X ← ∅

2 (x1, x2)← A[GetPmg
H̃
](h, h̃)

3 If (x1 = x2) then return §

4 If (x1 ∈ X ) ( (x2 ∈ X ) then return §

5 If h̃(x1) ̸= h(x1) then return x1

6 If h̃(x2) ̸= h(x2) then return x2

Oracle GetPmg
H̃
(u, y):

7 x← GetPmg((y, u))

8 X ← X ∪ {x} ; Return x

Adversary AH(h):

1 (h̃, e)←$ H̃(h) ; X ← ∅

2 (x1, x2)← A[GetPmgH](h, h̃)

3 Return (x1, x2)

Oracle GetPmgH(u, y):

4 x←$ e(u, y) ; X ← X ∪ {x}

5 Return x

Figure 17: Adversaries A
H̃

(left) and AH (right) for the proof of Theorem 5.1.

A Proof of Theorem 5.1

Proof of Theorem 5.1: Consider game G0 of Figure 16. It is easy to see that this game is
exactly the cfe game. We already include line 7 which sets a flag bad, but in G0 this has no effect
on the final output. Hence,

Adv
cfe

H,H̃,P
(A) = Pr [ G0(A) ] .

We next turn to game G1 which outputs false whenever bad is set. Therefore, games G0, G1 are
identical-until-bad and by the Fundamental Lemma of Game Playing [11] we have

Pr [ G0(A) ] = Pr [ G1(A) ] + (Pr [ G0(A) ]− Pr [ G1(A) ])

f Pr [ G1(A) ] + Pr [ G1(A) sets bad ] .

Let us now take a closer look at the event defined in line 7. The game outputs false when the
output of h̃ and h differs on either x1 or x2 which is exactly captured by the exclusivity of H̃. That
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Games G0, G1

Init:

1 (v, p)←$ NIA ; (ṽ, e)←$ ÑIA(v)

2 Xx ← ∅ ; Xs ← ∅

3 Return (v, ṽ, p)

Sim(ϕ′):

4 x←$ e(ϕ′, 1) ; (ϕ, Ã)← x

5 Xx ← Xx ∪ {x} ; Xs ← Xs ∪ {ϕ}

6 Return Ã

Fin(ϕ∗, Ã∗):

7 If ϕ∗ ∈ Xs then return false

8 If ϕ∗ ∈ LR then return false

9 If ( v((ϕ∗, Ã∗)) = 0 and ṽ((ϕ∗, Ã∗)) = 1 ) then bad← true ; return false

10 Return ṽ((ϕ∗, Ã∗))

Figure 18: Games G0, G1 for the proof of Theorem 6.1. G1 contains the boxed code and G0 does
not.

is, we can construct an adversary A
H̃

for which

Pr [ G1(A) sets bad ] f Adv
exc

H,H̃,P
(A

H̃
) . (11)

Adversary A
H̃

is in game G
exc

H,H̃,P
and runs A as specified on the left side of Figure 17. A

H̃
simulates

A’s preimage oracle using its own preimage oracle. Suppose now that bad ← true on line 7 of G1.
Then A has output x1, x2 such that h̃(xi) ̸= h(xi) for at least one i ∈ {1, 2}, while both are not
in X , meaning have not been the output of a query to GetPmg. Hence, A

H̃
has found a winning

output x∗ ∈ {x1, x2} in the exclusivity game. This proves Eq. (11).

We next turn to game G2, where the assignment in line 8 is replaced by the one in line 9. More
specifically, y1 and y2 are now computed using h instead of using h̃. We claim that

Pr [ G2(A) ] = Pr [ G1(A) ] . (12)

To justify Eq. (12), we observe that whenever the outputs of h and h̃ for inputs x1 or x2 differ, the
game has already returned false. Hence, we have h(xi) = h̃(xi) for both i ∈ {1, 2}.

Finally, we claim that

Pr [ G2(A) ] f Adv
cr
H (AH) . (13)

We construct adversary AH in game G
cr
H as specified on the right side of Figure 17. A’s view is

that of game G2; initialization and GetPmgH return the same responses as in G2. Now, if G2(A)
returns true, and since the boxed code is executed in G2, then it must be that y1 = y2 and thus
h(x1) = h(x2). This is precisely the winning condition of AH’s game G

cr
H and proves Eq. (13). AH

maintains running time close to that of A.
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Adversary A
ÑIA

(v, ṽ, ³ = {p}):

1 Xx ← ∅ ; Xs ← ∅

2 (ϕ∗, Ã∗)← A[Sim
ÑIA

](v, ṽ, p)

3 x∗ ← (ϕ∗, Ã∗) ; Return x∗

Oracle Sim
ÑIA

(ϕ′):

4 x← GetPmg(ϕ′, 1) ; Xx ← Xx ∪ {x}

5 (ϕ, Ã)← x ; Xs ← Xs ∪ {ϕ}

6 Return Ã

Adversary ANIA(v, p):

1 (ṽ, e)←$ ÑIA(v) ; Xs ← ∅

2 (ϕ∗, Ã∗)← A[SimNIA](v, ṽ, p)

3 Return (ϕ∗, Ã∗)

Oracle SimNIA(ϕ′):

4 (ϕ, Ã)←$ e(ϕ′, 1) ; Xs ← Xs ∪ {ϕ}

5 Return Ã

Figure 19: Adversaries A
ÑIA

(left) and ANIA (right) for the proof of Theorem 6.1.

B Proof of Theorem 6.1

Proof of Theorem 6.1: Consider game G0 of Figure 18. We rewrite the winning condition by
splitting it into three checks. We already include line 9 which sets a flag bad. We have

Adv
pfe

NIA,ÑIA
(A) = Pr [ G0(A) ] .

We next turn to game G1 which outputs false whenever bad is set; that is, when ṽ((ϕ∗, Ã∗)) is true,
but v((ϕ∗, Ã∗)) is not. Therefore, games G0, G1 are identical-until-bad and we have

Pr [ G0(A) ] = Pr [ G1(A) ] + (Pr [ G0(A) ]− Pr [ G1(A) ])

f Pr [ G1(A) ] + Pr [ G1(A) sets bad ] .

We now construct adversaries A
ÑIA

, ANIA such that the following two equations hold:

Pr [ G1(A) sets bad ] f Adv
exc

NIA,ÑIA,Ppf

(A
ÑIA

) (14)

Pr [ G1(A) ] f Adv
snd
NIA(ANIA) , (15)

which will complete the proof of Eq. (7) in the theorem statement.

We begin with A
ÑIA

which is in game G
exc

NIA,ÑIA,Ppf

and operates according to the description in

Figure 19. A
ÑIA

runs A, responding to oracle queries via Sim
ÑIA

. These follow the responses in
game G1, with A

ÑIA
running its own GetPmg oracle on line 4. These queries to its own oracle are

tracked as inputs in set Xx. Now suppose that bad is set in G1.

Then ϕ∗ /∈ Xs, v((ϕ∗, Ã∗)) = 0 and ṽ((ϕ∗, Ã∗)) = 1. In particular, ϕ∗ /∈ Xs implies that (ϕ∗, Ã∗) /∈ Xx.
Now x∗ = (ϕ∗, Ã∗) is precisely an input on which v, ṽ differ, where x∗ was never produced by the
GetPmg oracle. This is the winning condition for adversary A

ÑIA
in game G

exc

NIA,ÑIA,Ppf

, proving

Eq. (14).

We next turn to adversary ANIA which is in game G
snd
NIA and is depicted on the right side of Figure 19.

A’s view is that of game G1; initialization and SimNIA return the same responses as in G1. Now, if
G1(A) returns true, and since the boxed code is executed in G1, the same conditions are satisfied
as in G

snd
NIA. Hence A returns a winning output which proves Eq. (15).

We conclude the proof by observing that A
ÑIA

and ANIA maintain running times close to that of
A.
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Games G0, G1

Init:

1 (v, kg, s)←$ TS ; (ṽ, e)←$ T̃S(v)

2 (vk∗, sk∗)←$ kg ; Xx ← ∅ ; Xm ← ∅

3 Return (v, ṽ, vk∗, {kg, s})

ESign(vk′, m′):

4 x←$ e((vk′, m′), 1) ; (vk, m, Ã)← x

5 Xx ← Xx ∪ {x} ; Xm ← Xm ∪ {(vk, m)}

6 Return Ã

Sign(m):

7 Ã←$ s(sk∗, m) ; Xm ← Xm ∪ {(vk∗, m)}

8 Return Ã

Fin(m∗, Ã∗):

9 If (vk∗, m∗) ∈ Xm then return false

10 If ( v((vk∗, m∗, Ã∗)) = 0 and ṽ((vk∗, m∗, Ã∗)) = 1 ) then bad← true ; return false

11 Return ṽ((vk∗, m∗, Ã∗))

Figure 20: Games G0, G1 for the proof of Theorem 7.1. G1 contains the boxed code and G0 does
not.

Adversary A
T̃S

(v, ṽ, ³ = {kg, s}):

1 (vk∗, sk∗)←$ kg ; Xx ← ∅ ; Xm ← ∅

2 (m∗, Ã∗)← A[ESign
T̃S

,Sign
T̃S

](v, ṽ, vk∗, {kg, s})

3 x∗ ← (vk∗, m∗, Ã∗) ; Return x∗

Oracle ESign
T̃S

(vk′, m′):

4 x← GetPmg((vk′, m′), 1) ; Xx ← Xx ∪ {x}

5 (vk, m, Ã)← x ; Xm ← Xm ∪ {(vk, m)}

6 Return Ã

Oracle Sign
T̃S

(m):

7 Ã←$ s(sk∗, m) ; Xm ← Xm ∪ {(vk∗, m)}

8 Return Ã

Adversary ATS(v, vk∗, {kg, s}):

1 (ṽ, e)←$ T̃S(v) ; Xm ← ∅

2 (m∗, Ã∗)← A[ESignTS,SignTS](v, ṽ, vk∗, {kg, s})

3 Return (m∗, Ã∗)

Oracle ESignTS(vk′, m′):

4 (vk, m, Ã)←$ e((vk′, m′), 1) ; Xm ← Xm∪{(vk, m)}

5 Return Ã

Oracle SignTS(m):

6 Ã ← Sign(m) ; Xm ← Xm ∪ {(vk∗, m)}

7 Return Ã

Figure 21: Adversaries A
T̃S

(left) and ATS (right) for the proof of Theorem 7.1.

C Proof of Theorem 7.1

Proof of Theorem 7.1: Consider game G0 of Figure 20. The winning condition of the ffe game is
contained on lines 9,11 of G0 while the boxed code on line 10 is excluded. Otherwise G0 is identical
to the ffe game so that

Adv
ffe

TS,T̃S
(A) = Pr [ G0(A) ] .

Now let us look at game G1 and line 10. G1 outputs false whenever the bad flag on line 10 is
set. This happens when ṽ((vk∗, m∗, Ã∗)) is true, but v((vk∗, m∗, Ã∗)) is not. Games G0, G1 are
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identical-until-bad and we have

Pr [ G0(A) ] = Pr [ G1(A) ] + (Pr [ G0(A) ]− Pr [ G1(A) ])

f Pr [ G1(A) ] + Pr [ G1(A) sets bad ] .

We next construct adversaries A
T̃S

, ATS such that the following two equations hold:

Pr [ G1(A) sets bad ] f Adv
exc

TS,T̃S,Pff

(A
T̃S

) (16)

Pr [ G1(A) ] f Adv
uf-cma
TS (ATS) , (17)

which will complete the proof of Eq. (9) in the theorem statement.

We give adversary A
T̃S

in the left panel of Figure 21. A
T̃S

is in game G
exc

TS,T̃S,Pff

and runs A,

responding to oracle queries according to ESign
T̃S

and Sign
T̃S

. In particular, A
T̃S

uses its own
GetPmg oracle on line 4 to respond to ESign queries. With the key-generation and signing
algorithms kg, s provided as auxiliary information, A

T̃S
selects its own challenge (vk∗, sk∗) and

responds to A’s Sign queries appropriately. The set Xm tracks verification keys and messages
appearing in queries, matching X in the ffe game, while the set Xx tracks values x produced by the
GetPmg oracle. Now suppose that bad is set in G1.

Then (vk∗, m∗) /∈ Xm, v((vk∗, m∗, Ã∗)) = 0 and ṽ((vk∗, m∗, Ã∗)) = 1. Since (vk∗, m∗) /∈ Xm it
follows that (vk∗, m∗, Ã∗) /∈ Xx. Therefore x∗ = (vk∗, m∗, Ã∗) is exactly an input on which v, ṽ

differ, where x∗ was never produced by the GetPmg oracle. This is A
T̃S

’s winning condition in
game G

exc

TS,T̃S,Pff

, which proves Eq. (16).

Now consider adversary ATS on the right panel of Figure 21. ATS is in game G
uf-cma
TS and runs A,

responding to oracle queries via ESignTS and SignTS. On line 6, ATS calls its own Sign oracle
to respond to A’s SignTS queries. Thus the view of A is game G1. Now G1(A) returns true only
when (vk∗, m∗) /∈ Xm, ṽ((vk∗, m∗, Ã∗)) = 1, and v((vk∗, m∗, Ã∗)) = 1, where the latter follows from
the fact that line 10 must not have returned false. Recall that the uf-cma winning condition checks
whether m∗ ∈ Q, where Q tracks all Sign queries. If (vk∗, m∗) /∈ Xm then necessarily m∗ /∈ Q. The
uf-cma winning condition finally checks whether v((vk∗, m∗, Ã∗)) = 1 which, as above, is included
in the winning condition of game G1. Thus if A wins G1 then ATS wins its uf-cma game. This
proves Eq. (17).

We conclude the proof by noting that A
T̃S

makes qe GetPmg queries while ATS makes qs Sign

queries, and both maintain running times close to that of A.

36


	Introduction
	Preliminaries
	Public-Algorithm Substitution Attacks
	PA-SA construction
	PA-SAs on hash functions
	PA-SAs on non-interactive arguments
	PA-SAs on signature verification
	PA-SAs applied to certificate forgery
	References
	Proof of Theorem 5.1
	Proof of Theorem 6.1
	Proof of Theorem 7.1

