


optimal scheduling algorithm for each job based on historical

performance data of scheduling algorithms and predicted job

length.

(3) Through comprehensive experiments, we show that FTL consis-

tently surpasses individual carbon-aware scheduling algorithms

in reducing carbon emissions across diverse regions and settings.

Speci�cally, FTL achieves 8.2% and 14% average carbon reduc-

tions over the closest runner-up algorithm and carbon-agnostic

scheduling, respectively.

2 PROBLEM STATEMENT

We introduce the temporal shifting problem as the Online Carbon-

Aware Scheduling (OCS) problem, which entails completing a job

of unknown but bounded total length 2 ∈ [2min, 2max] (where 2min
and 2max are known) while minimizing the carbon emissions of

execution. In this setting, a job arrives at the scheduler without a

known length, and the scheduler must make decisions over a set

time frame, from C = 1 to ) , where ) represents the service-level

objective (deadline) for the job’s completion.

At each time slot C , the scheduler receives the current carbon

intensity, denoted as�C (e.g., in gCO2eq./kWh), and decides whether

to execute one unit of the job—or any remaining fraction thereof—or

to pause the execution. This decision is represented by the binary

variable GC , where GC = 1 indicates resuming the job and GC = 0

means pausing it. The carbon emissions associated with operating

at time C are calculated as �C × � × GC
2, where � represents the

energy consumption per unit of time (e.g., in kWh).

The job completion constraint enforces that the job must be com-

pleted by the deadline, i.e.,
∑

C ∈[) ] GC ≥ 2 . Without knowledge of

the remaining job length, an algorithm must assume that at any

time 8 , there are 2max − F8 units left to schedule, where F8 repre-

sents the completed job units up to 8 . This motivates a compulsory

execution strategy when only ) − (2max −F8 ) time slots remain to

avoid violating the job completion constraint.

Furthermore, any change in the allocation decision (pause or

resume) between consecutive time steps incurs additional carbon

emissions due to the energy overhead of checkpointing or restoring

to save or retrieve the job’s state, respectively. The overhead of such

operations depends on the frequency of checkpoint and restore

actions and the energy cost of a single operation. These operations

are in�uenced by the size of the job’s state as discussed in [17]. The

extra emissions from a single checkpoint or restore are quanti�ed

as V × � ×�C , where V is a linear coe�cient indicating the fraction

of a time unit consumed by these operations. We assume that V

is known to the scheduler as it is highly correlated with the job

memory requirements [16].

The o�ine objective of OCS, summarized below, involves mini-

mizing both execution and switching carbon emissions:

2If a job is completed before utilizing the entire time unit, we proportionally
account for the fractional carbon consumption incurred during that period.

OCS : min
{GC }C ∈ [) ]

∑
)

C=1
�C × � × GC

︸                  ︷︷                  ︸

Execution carbon emissions

+
∑

)+1

C=1
V��C |GC − GC−1 |

︸                        ︷︷                        ︸

Switching carbon emissions

(1)

s.t.,
∑

)

C=1
GC ≥ 2,

︸           ︷︷           ︸

Job completion constraint

∀C ∈ [) ] . (2)

In this paper, we focus on the dynamic setting of OCS, where

the actual job length 2 is revealed only upon satisfying the job

completion constraint in Equation 2 (i.e., once the job is �nished).

3 DESIGNING FTLMETA-ALGORITHM

In this section, we �rst review existing algorithms that tackle the

temporal shifting problem. We then explore the variations in perfor-

mance among these algorithms, highlighting the lack of a de�nitive

“best algorithm” for all scenarios. Motivated by this �nding, we

present FTL, a meta-algorithm inspired by the Follow the Leader

strategy [9]. This approach intelligently selects the most suitable

algorithm for each incoming job based on its predicted length, 2̂ ,

ensuring optimal performance tailored to the speci�c conditions of

each job and region.

3.1 Baseline Algorithms

Single Threshold Algorithm: The Single Threshold algorithm,

inspired by theoretical literature on online search [4], employs a

�xed threshold to manage job execution based on carbon intensity.

At each time step C , it checks if the carbon intensity is below a

certain threshold. If the intensity is low enough, the job will run; if

not, it will pause. This approach does not assume any knowledge

of job length information and does not consider the overhead of

switching. We denote variations of this algorithm as ST[?], where

? represents di�erent threshold settings.

Double-Threshold Algorithm: Motivated by the Single

Threshold algorithm’s neglect of switching overhead, Lechowicz

et al. [11] present a Double-Threshold algorithm for temporal shift-

ing. This algorithm employs two distinct thresholds—a low and a

high threshold, separated by a margin, U . Its operation involves

two key conditions: if the job was paused at the previous time step,

the carbon intensity must decrease to at least U below the high

threshold, ensuring it is less than or equal to the low threshold

before resuming operation. This strategy ensures that the emissions

incurred from restoring the job are outweighed by the bene�ts of op-

erating at a lower carbon intensity. Conversely, if the job was active

at the previous time step, it will continue to run unless the carbon

intensity climbs to at least U units above the low threshold (i.e., the

high threshold). This approach helps to avoid frequent checkpoint-

ing/restoring and the associated emissions from repeatedly stopping

and restarting the job, minimizing overall carbon consumption. We

denote variations of this algorithm as DT[!,� ], B .C .� −! = U , where

! and � represent di�erent low and high threshold settings.

WaitAWhilePred: This algorithm utilizes predictions of both job

length, denoted 2̂ , and carbon intensity. Upon receiving these fore-

casts, it selects the ⌈2̂⌉ time slots with the lowest predicted carbon

intensities within the given deadline ) . The job is then scheduled
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Table 1. Number of times an algorithm achieves the lowest carbon con-

sumption for medium switching overhead tasks by region (expressed as %)

Algorithm

Region
Ontario California AU-NSW France

DT[40, 60] 18.46% 22.38% 24.15% 14.77%

Carbon-Agnostic 9.92% 4.08% 13.00% 20.62%

ST[35] 11.92% 11.00% 9.92% 9.00%

ST[10] 6.54% 5.62% 8.54% 13.00%

DT[40, 80] 7.46% 11.38% 15.46% 15.08%

other algorithms 45.69% 45.54% 28.92% 27.54%

to execute during these selected slots. The baseline version of this

algorithm, which incorporates knowledge of the actual job length

and carbon intensity forecasts, was proposed in [20].

Carbon-Agnostic: This algorithm employs a greedy approach that

starts executing the job at the time of the submission and contin-

ues uninterrupted until completion, disregarding both current and

future carbon intensities.

Finally, since the actual job length 2 is unknown to the above al-

gorithms, and to ensure meeting the deadline constraint, algorithms

will initiate compulsory execution when the remaining time slots

are less than or equal to the time needed to run the remaining job

length assuming its length is 2max.

3.2 Motivating FTL

The performance of carbon-aware scheduling algorithms is greatly

in�uenced by factors such as job characteristics, switching overhead,

job length, local environmental conditions (e.g., carbon intensity

forecast accuracy), and an electricity grid’s (i.e., a geographical

region) idiosyncratic patterns. For instance, in a setting of jobs

with high switching overhead, algorithms that neglect the switch-

ing overhead (e.g., Single Threshold, WaitAWhilePred) tend to

perform poorly compared to Double-Threshold algorithm that

makes pause/resume decisions based on substantial di�erences in

carbon intensity. Moreover, job length signi�cantly impacts thresh-

old settings for both Single Threshold and Double-Threshold

algorithms. Shorter jobs bene�t from stricter thresholds, which min-

imize their carbon footprint during brief periods of very low carbon

intensity. In contrast, longer jobs with stricter thresholds run the

risk of requiring compulsory execution at the deadline during a

high carbon intensity period. Thus, we parametrize the threshold

values to facilitate a more e�ective carbon awareness.

Additionally, WaitAWhilePred excels when carbon intensity fore-

casts and job length prediction are accurate, especially when switch-

ing overhead is minimal. By greedily selecting low-carbon execution

slots, it naturally recovers a nearly optimal solution. Conversely, the

Carbon-Agnostic algorithm, which executes regardless of carbon

intensity variations, is advantageous in environments with mini-

mal changes in carbon intensity, signi�cant forecast errors, or high

switching overheads.

Table 1 evaluates the performance of the Single Threshold (ST),

Double-Threshold (DT), Carbon-Agnostic, and WaitAWhilePred

algorithms between 2020 and 2022 for jobs with medium switch-

ing overhead and a 10% error in both carbon intensity and job

length forecasts (details of this experimental setup are explained

in Section 4.1). The table reports the percentage of cases where an

algorithm had the lowest carbon consumption.

Focusing on the performance within any given region, it becomes

apparent that no single algorithm consistently outperforms others.

For example, in AU-NSW, the leading algorithm, DT[40, 60], is only

superior in ∼25% of the instances. Moreover, the rankings of algo-

rithms are notmaintained across di�erent regions, highlighting their

sensitivity to local conditions. For instance, in Ontario, DT[40, 60] is

the most e�ective, achieving 18.46%, whereas, in France, it drops in

preference, with Carbon-Agnostic leading at 20.62%. We further

detail the performance (carbon savings) implications of these al-

gorithms in Section 4.2. This performance �uctuation calls for a

solution that can automatically select the best algorithm for each job,

ensuring both superior and consistent carbon emissions reductions.

3.3 FTL: Meta-Algorithm

To address this challenge of diverse performance orderings in Sec-

tion 3.2, we propose FTL, a meta-algorithm inspired by the Follow

the Leader strategy [9] that can match the performance of the best

algorithm in each situation without requiring, e.g., hand tuning

during deployment. The meta-algorithm we propose considers the

historical performance of a full suite of algorithms to dynamically

select the optimal approach for incoming jobs, considering their

switching overhead and predicted job length. Figure 1 describes the

�ow of FTL. For each incoming batch job, FTL searches the database

of various baseline algorithm variants, choosing the algorithm that

has demonstrated the lowest carbon consumption for jobs with sim-

ilar lengths. These comparable jobs are de�ned by lengths within

the range [2̂ −<, 2̂ +<]—where< is a margin indicating tolerance

around the predicted length—and possess identical switching over-

head characteristics. Subsequently, to re�ne its selection process and

enhance future predictions, FTL simulates the remaining baseline

algorithms against the current job to gauge their carbon consump-

tion. This new data is then integrated into the database, ensuring

that FTL’s decision-making continuously evolves and improves with

each job, maintaining updated records of carbon consumption for

all considered algorithms. This dynamic update mechanism ensures

that FTL remains adaptive and precise in optimizing carbon savings

across varying job types and settings.

FTL holds the potential to outperform traditional algorithms.

Firstly, it removes the requirement for manual tuning of algorithm

parameters by automatically adjusting to current conditions using

historical data. Secondly, it can adapt to environmental changes,

such as �uctuations in carbon intensity. This adaptability can be

achieved by assigning greater weights in its decision-making pro-

cess to the algorithms’ carbon consumption for more recent jobs,

ensuring that it remains responsive to recent environmental varia-

tions. Finally, it abstracts the relation between the job length, carbon

intensity variations, and the e�ect of the algorithm by selecting the

algorithm that behaved the best for similar cases.

4 EXPERIMENTAL RESULTS

In this section, we experimentally evaluate FTL in reducing the car-

bon footprint of interruptible and delay-tolerant batch workloads.
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robust carbon savings even with heightened switching overhead. Fur-

thermore, the �gure shows that as the overhead increases, the Double-

Threshold algorithm, DT[40, 60], surpasses the Single Threshold, ST,

and WaitAWhilePred algorithms.

Key Takeaways: Switching overhead increase limits the possible

carbon savings. Nonetheless, FTL maintains its superior performance.

E�ect of Deadline: As the deadline () ) increases, it provides the

algorithms with higher �exibility to pause or resume and achieve

higher carbon savings. In Figure 4c, we explore the impact of extending

the deadline () ) from 24 to 96 hours in France, with ��4AA = 5% and

�4AA = 10%. We selected the top �ve algorithms that demonstrated the

highest carbon savings at ) = 48 hours. Notably, at ) = 24 hours, all

algorithms exhibit zero carbon savings akin to the Carbon-Agnostic

approach. This occurs because, upon submission, algorithms are un-

aware of the actual job length. Thus, they assume that the maximum

possible remaining job time (2max) is left, and since the deadline is

also equal to 2max () = 2max = 24 hours), all the algorithms must

start compulsory execution immediately. As anticipated, increasing

the deadline leads to enhanced carbon savings across all deadlines,

with FTL consistently achieving the highest savings.

Key Takeaways: Increasing the deadline () ) allows for higher carbon

savings. Again FTL consistently outperforms its peers.

5 CONCLUSION

In conclusion, this paper presents FTL, a data-driven meta-algorithm

that enhances carbon-aware scheduling in computing environments.

Through extensive testing, we have shown that FTL outperforms tradi-

tional algorithms by adapting to real-time data and historical trends.

By aligning job length predictions with historical performance, FTL

achieves 8.2% and 14% average carbon reductions over the closest

runner-up algorithm and carbon-agnostic scheduling across all regions,

respectively. Future research will involve designing meta-algorithms

for other scheduling modalities, such as scaling, where prediction errors

highly impede carbon savings.
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