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As computing demand continues to grow, minimizing its environmental
impact has become crucial. This paper presents a study on carbon-aware
scheduling algorithms, focusing on reducing carbon emissions of delay-
tolerant batch workloads. Inspired by the Follow the Leader strategy, we
introduce a simple yet efficient meta-algorithm, called FTL, that dynam-
ically selects the most efficient scheduling algorithm based on real-time
data and historical performance. Without fine-tuning and parameter opti-
mization, FTL adapts to variability in job lengths, carbon intensity forecasts,
and regional energy characteristics, consistently outperforming traditional
carbon-aware scheduling algorithms. Through extensive experiments using
real-world data traces, FTL achieves 8.2% and 14% improvement in aver-
age carbon footprint reduction over the closest runner-up algorithm and
the carbon-agnostic algorithm, respectively, demonstrating its efficacy in
minimizing carbon emissions across multiple geographical regions. !

CCS Concepts: « Theory of computation — Design and analysis of
algorithms; « Social and professional topics — Sustainability.

Additional Key Words and Phrases: Sustainable computing, data-driven
algorithm, carbon-aware scheduling, temporal shifting

1 INTRODUCTION

The demand for computing has increased exponentially, propelling
energy consumption to unprecedented levels [1]. This surge in
energy use not only exacerbates the carbon footprint associated
with electricity generation but also emphasizes the urgent need
for sustainable computing practices. For instance, computing’s car-
bon footprint has increased by 5% from 2015 to 2020 [13]. Among
various strategies proposed to mitigate these effects, carbon-aware
computing has emerged as a critical research area, where the focus
is on modulating the power consumption of data centers in align-
ment with renewable energy availability and carbon intensity of the
electricity grid. Techniques such as temporal shifting, spatial shift-
ing, resource scaling, and dynamic voltage and frequency scaling
(DVES) have been explored to minimize carbon emissions [3, 6—
8, 10, 11, 18-20]. This paper focuses on carbon-aware temporal
shifting of delay-tolerant batch workloads (e.g., ML training jobs
and MPI simulations), leveraging the variability in energy’s car-
bon intensity by shifting computations from high- to low-carbon
periods.

The effectiveness of temporal shifting strategies hinges on the
ability of scheduling algorithms to adapt to temporal fluctuations
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in carbon intensity. Existing research in this domain has introduced
a variety of algorithms designed to optimize scheduling in response
to these dynamics [10, 11, 15, 18, 20]. However, these algorithms
can perform inconsistently across different operational contexts due
to varying local energy market conditions and the unpredictable
nature of renewable energy sources. This inconsistency presents a
significant challenge: no single configuration of an algorithm, or even
a single algorithm reliably outperforms others in all situations. Each
algorithm’s performance can drastically change with variations in
carbon intensity and job characteristics, making static algorithm
selection strategies suboptimal. We refer to Section 3.2 for detailed
measurement of the performance of different algorithms across
different settings.

Observing that no algorithm is superior to others, in this paper,
and motivated by the emerging topic of data-driven algorithm se-
lection [2, 5, 21], we propose a meta-algorithm, FTL inspired by the
“Follow the Leader” strategy [9] that addresses the variability in
performance of temporal shifting algorithms through an empiri-
cal, data-driven approach. Unlike traditional methods that rely on
static or heuristic-based decision-making, FTL dynamically selects
the most efficient algorithm based on real-time data and histori-
cal performance metrics. It considers various factors, including the
predicted length of jobs, the historical effectiveness of scheduling al-
gorithms within similar operational windows, and carbon intensity
forecasts for specific geographical regions. This approach allows
the scheduler to adaptively choose the most suitable algorithm for
any given situation, enhancing the carbon efficiency of computing
operations.

To develop FTL, we conduct a comprehensive empirical analy-
sis spanning diverse datasets from multiple geographical regions
over three years (2020-2022). By systematically analyzing the perfor-
mance of various scheduling algorithms across different scenarios,
we gather insights into their operational efficacy relative to fluctu-
ating carbon intensity levels. This analysis informs the design of
FTL, which uses a decision-making framework to select the optimal
scheduling algorithm based on a comparative assessment of the
historical performance of scheduling algorithms.

Contributions: The main contributions of this paper are as follows.

(1) We conduct a detailed analysis of the carbon reduction of a
broad range of carbon-aware scheduling algorithms, considering
various job characteristics and regions. Our findings underscore
the necessity for an adaptive meta-algorithm that can respond
dynamically to changing conditions.

(2) We introduce a meta-algorithm, FTL, inspired by the “Follow
the Leader” strategy. This algorithm intelligently selects the
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optimal scheduling algorithm for each job based on historical
performance data of scheduling algorithms and predicted job
length.

(3) Through comprehensive experiments, we show that FTL consis-
tently surpasses individual carbon-aware scheduling algorithms
in reducing carbon emissions across diverse regions and settings.
Specifically, FTL achieves 8.2% and 14% average carbon reduc-
tions over the closest runner-up algorithm and carbon-agnostic
scheduling, respectively.

2 PROBLEM STATEMENT

We introduce the temporal shifting problem as the Online Carbon-
Aware Scheduling (0CS) problem, which entails completing a job
of unknown but bounded total length ¢ € [cpin, cmax] (Where cqin
and cpax are known) while minimizing the carbon emissions of
execution. In this setting, a job arrives at the scheduler without a
known length, and the scheduler must make decisions over a set
time frame, from ¢ = 1 to T, where T represents the service-level
objective (deadline) for the job’s completion.

At each time slot t, the scheduler receives the current carbon
intensity, denoted as C; (e.g., in gCOzeq./kWh), and decides whether
to execute one unit of the job—or any remaining fraction thereof—or
to pause the execution. This decision is represented by the binary
variable x;, where x; = 1 indicates resuming the job and x; = 0
means pausing it. The carbon emissions associated with operating
at time ¢ are calculated as C; X E X x;2, where E represents the
energy consumption per unit of time (e.g., in kWh).

The job completion constraint enforces that the job must be com-
pleted by the deadline, i.e., X\;e[7] %+ = ¢. Without knowledge of
the remaining job length, an algorithm must assume that at any
time i, there are cpax — w; units left to schedule, where w; repre-
sents the completed job units up to i. This motivates a compulsory
execution strategy when only T — (cmax — w;) time slots remain to
avoid violating the job completion constraint.

Furthermore, any change in the allocation decision (pause or
resume) between consecutive time steps incurs additional carbon
emissions due to the energy overhead of checkpointing or restoring
to save or retrieve the job’s state, respectively. The overhead of such
operations depends on the frequency of checkpoint and restore
actions and the energy cost of a single operation. These operations
are influenced by the size of the job’s state as discussed in [17]. The
extra emissions from a single checkpoint or restore are quantified
as B X E X Ct, where f is a linear coeflicient indicating the fraction
of a time unit consumed by these operations. We assume that f
is known to the scheduler as it is highly correlated with the job
memory requirements [16].

The offline objective of OCS, summarized below, involves mini-
mizing both execution and switching carbon emissions:

%If a job is completed before utilizing the entire time unit, we proportionally
account for the fractional carbon consumption incurred during that period.
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In this paper, we focus on the dynamic setting of 0CS, where
the actual job length ¢ is revealed only upon satisfying the job
completion constraint in Equation 2 (i.e., once the job is finished).

3 DESIGNING FTL META-ALGORITHM

In this section, we first review existing algorithms that tackle the
temporal shifting problem. We then explore the variations in perfor-
mance among these algorithms, highlighting the lack of a definitive
“best algorithm” for all scenarios. Motivated by this finding, we
present FTL, a meta-algorithm inspired by the Follow the Leader
strategy [9]. This approach intelligently selects the most suitable
algorithm for each incoming job based on its predicted length, ¢,
ensuring optimal performance tailored to the specific conditions of
each job and region.

3.1 Baseline Algorithms

Single Threshold Algorithm: The Single Threshold algorithm,
inspired by theoretical literature on online search [4], employs a
fixed threshold to manage job execution based on carbon intensity.
At each time step t, it checks if the carbon intensity is below a
certain threshold. If the intensity is low enough, the job will run; if
not, it will pause. This approach does not assume any knowledge
of job length information and does not consider the overhead of
switching. We denote variations of this algorithm as ST[p], where
p represents different threshold settings.

Double-Threshold Algorithm: Motivated by the Single
Threshold algorithm’s neglect of switching overhead, Lechowicz
etal. [11] present a Double-Threshold algorithm for temporal shift-
ing. This algorithm employs two distinct thresholds—a low and a
high threshold, separated by a margin, a. Its operation involves
two key conditions: if the job was paused at the previous time step,
the carbon intensity must decrease to at least @ below the high
threshold, ensuring it is less than or equal to the low threshold
before resuming operation. This strategy ensures that the emissions
incurred from restoring the job are outweighed by the benefits of op-
erating at a lower carbon intensity. Conversely, if the job was active
at the previous time step, it will continue to run unless the carbon
intensity climbs to at least & units above the low threshold (i.e., the
high threshold). This approach helps to avoid frequent checkpoint-
ing/restoring and the associated emissions from repeatedly stopping
and restarting the job, minimizing overall carbon consumption. We
denote variations of this algorithm as DT[L, H], s.t.H — L = «, where
L and H represent different low and high threshold settings.
WaitAWhilePred: This algorithm utilizes predictions of both job
length, denoted ¢, and carbon intensity. Upon receiving these fore-
casts, it selects the [¢] time slots with the lowest predicted carbon
intensities within the given deadline T. The job is then scheduled
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Table 1. Number of times an algorithm achieves the lowest carbon con-
sumption for medium switching overhead tasks by region (expressed as %)

. Region Ontario | California | AU-NSW | France
Algorithm

DT[40, 60] 18.46% 22.38% 24.15% 14.77%

Carbon-Agnostic 9.92% 4.08% 13.00% 20.62%

ST[35] 11.92% 11.00% 9.92% 9.00%

ST[10] 6.54% 5.62% 8.54% 13.00%

DT[40, 80] 7.46% 11.38% 15.46% 15.08%

other algorithms 45.69% 45.54% 28.92% 27.54%

to execute during these selected slots. The baseline version of this
algorithm, which incorporates knowledge of the actual job length
and carbon intensity forecasts, was proposed in [20].
Carbon-Agnostic: This algorithm employs a greedy approach that
starts executing the job at the time of the submission and contin-
ues uninterrupted until completion, disregarding both current and
future carbon intensities.

Finally, since the actual job length ¢ is unknown to the above al-
gorithms, and to ensure meeting the deadline constraint, algorithms
will initiate compulsory execution when the remaining time slots
are less than or equal to the time needed to run the remaining job
length assuming its length is cpax.

3.2 Motivating FTL

The performance of carbon-aware scheduling algorithms is greatly
influenced by factors such as job characteristics, switching overhead,
job length, local environmental conditions (e.g., carbon intensity
forecast accuracy), and an electricity grid’s (i.e., a geographical
region) idiosyncratic patterns. For instance, in a setting of jobs
with high switching overhead, algorithms that neglect the switch-
ing overhead (e.g., Single Threshold, WaitAWhilePred) tend to
perform poorly compared to Double-Threshold algorithm that
makes pause/resume decisions based on substantial differences in
carbon intensity. Moreover, job length significantly impacts thresh-
old settings for both Single Threshold and Double-Threshold
algorithms. Shorter jobs benefit from stricter thresholds, which min-
imize their carbon footprint during brief periods of very low carbon
intensity. In contrast, longer jobs with stricter thresholds run the
risk of requiring compulsory execution at the deadline during a
high carbon intensity period. Thus, we parametrize the threshold
values to facilitate a more effective carbon awareness.

Additionally, WaitAWhilePred excels when carbon intensity fore-
casts and job length prediction are accurate, especially when switch-
ing overhead is minimal. By greedily selecting low-carbon execution
slots, it naturally recovers a nearly optimal solution. Conversely, the
Carbon-Agnostic algorithm, which executes regardless of carbon
intensity variations, is advantageous in environments with mini-
mal changes in carbon intensity, significant forecast errors, or high
switching overheads.

Table 1 evaluates the performance of the Single Threshold (ST),
Double-Threshold (DT), Carbon-Agnostic, and WaitAWhilePred
algorithms between 2020 and 2022 for jobs with medium switch-
ing overhead and a 10% error in both carbon intensity and job
length forecasts (details of this experimental setup are explained
in Section 4.1). The table reports the percentage of cases where an
algorithm had the lowest carbon consumption.
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Focusing on the performance within any given region, it becomes
apparent that no single algorithm consistently outperforms others.
For example, in AU-NSW, the leading algorithm, DT[40, 60], is only
superior in ~25% of the instances. Moreover, the rankings of algo-
rithms are not maintained across different regions, highlighting their
sensitivity to local conditions. For instance, in Ontario, DT[40, 60] is
the most effective, achieving 18.46%, whereas, in France, it drops in
preference, with Carbon-Agnostic leading at 20.62%. We further
detail the performance (carbon savings) implications of these al-
gorithms in Section 4.2. This performance fluctuation calls for a
solution that can automatically select the best algorithm for each job,
ensuring both superior and consistent carbon emissions reductions.

3.3 FTL: Meta-Algorithm

To address this challenge of diverse performance orderings in Sec-
tion 3.2, we propose FTL, a meta-algorithm inspired by the Follow
the Leader strategy [9] that can match the performance of the best
algorithm in each situation without requiring, e.g., hand tuning
during deployment. The meta-algorithm we propose considers the
historical performance of a full suite of algorithms to dynamically
select the optimal approach for incoming jobs, considering their
switching overhead and predicted job length. Figure 1 describes the
flow of FTL. For each incoming batch job, FTL searches the database
of various baseline algorithm variants, choosing the algorithm that
has demonstrated the lowest carbon consumption for jobs with sim-
ilar lengths. These comparable jobs are defined by lengths within
the range [¢ — m, ¢ + m]—where m is a margin indicating tolerance
around the predicted length—and possess identical switching over-
head characteristics. Subsequently, to refine its selection process and
enhance future predictions, FTL simulates the remaining baseline
algorithms against the current job to gauge their carbon consump-
tion. This new data is then integrated into the database, ensuring
that FTL’s decision-making continuously evolves and improves with
each job, maintaining updated records of carbon consumption for
all considered algorithms. This dynamic update mechanism ensures
that FTL remains adaptive and precise in optimizing carbon savings
across varying job types and settings.

FTL holds the potential to outperform traditional algorithms.
Firstly, it removes the requirement for manual tuning of algorithm
parameters by automatically adjusting to current conditions using
historical data. Secondly, it can adapt to environmental changes,
such as fluctuations in carbon intensity. This adaptability can be
achieved by assigning greater weights in its decision-making pro-
cess to the algorithms’ carbon consumption for more recent jobs,
ensuring that it remains responsive to recent environmental varia-
tions. Finally, it abstracts the relation between the job length, carbon
intensity variations, and the effect of the algorithm by selecting the
algorithm that behaved the best for similar cases.

4 EXPERIMENTAL RESULTS

In this section, we experimentally evaluate FTL in reducing the car-
bon footprint of interruptible and delay-tolerant batch workloads.
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Fig. 1. FTL Design

4.1

Carbon intensity trace. We use carbon intensity traces from 2020
to 2022 for California, France, Australia-New South Wales (AU-
NSW), Texas, and Ontario from ElectricityMaps [14]. The traces pro-
vide the hourly average intensity values, measured in gCO2eq/kWh.
We select these regions to represent all quartiles of high and low av-
erage carbon intensity and high and low daily variations in carbon
intensity, expressed as the coefficient of variation [19]. We assume
that carbon intensity forecasts are error-prone, where we introduce
uniform random errors to the data, denoted as CI,,, that represents
the mean percentage error added to the trace within the job’s avail-
ability. We evaluated all algorithms against Cl,, of [5%, 10%, 15%,
20%], which represents typical error reported by carbon intensity
forecasts [12].

Job characteristics. We select 6500 job arrival times from 2020 to
2022, spaced 5 hours apart, to evaluate carbon footprint reduction
across seasons and times of day. Each job arrives independently
with a length, ¢, uniformly sampled within the range of [1, 24]
hours. We assume that the actual job length is unknown to the
scheduler; rather, an inaccurate job length prediction, denoted as
¢, is provided. To incorporate the job length prediction error, we
model a predictor that yields a job length estimate within the range
[c = Jerr X ¢, €+ Jerr X c], where Jer, is the percentage error in job
length predictions. In addition, we assume that jobs are interruptible,
where the job’s state can be checkpointed and restored. We evaluate
the performance by assuming that each job has a checkpoint/restore
overhead of 1 minute (low), 5 minutes (medium), or 10 minutes
(high), and each time unit is 1 hour. These durations represent the
time required to complete a single checkpoint or resume operation.
Finally, we evaluate each algorithm’s carbon savings across different
deadlines (T) for each job, including [24, 48, 72, 96] hours. Unless
otherwise mentioned, we use a deadline of 48 hours.

Baseline Algorithms Configuration. To address the diverse char-
acteristics of jobs, such as length and overhead, that significantly
influence the performance of different scheduling algorithms, we
construct a suite of baseline algorithms. These algorithms utilize
predictions of carbon intensity till the deadline 7.

Experimental Setup

(1) Single Threshold: We have developed a suite of Single
Threshold (ST) algorithm variants, each defined by a threshold
from percentiles [10, 15, 20, 25, 30, 35, 40] of predicted carbon
intensity for the next T hours post-job submission. Each variant
is labeled as ST[p], where p represents the chosen percentile
threshold.
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(2) Double Threshold: We have a set of Double-Threshold(DT) al-
gorithms denoted as DT[L, H|(H > L), where H and L represent
the high and low thresholds, respectively. The thresholds are
selected from the predicted carbon intensity percentiles for the
next T hours as the job is submitted, with H € {20, 40, 60, 80}
and L € {10, 20, 30,40} percentiles.

WaitAWhilePred and Carbon-Agnostic are also included as base-
line algorithms. WaitAWhilePred leverages both job length predic-
tion and carbon intensity forecasts to optimize scheduling, whereas
Carbon-Agnostic adopts a strategy of continuous operation ir-
respective of carbon intensity predictions, focusing solely on job
completion.

Evaluation Metric. We assess each algorithm’s performance by
comparing its carbon consumption to the Carbon-Agnostic algo-
rithm. This is quantified using the carbon savings percentage (CS%):
_ (AgnosticTALG

Agnostic

gorithm’s carbon efficiency relative to a baseline where carbon

intensity is disregarded.

CS%ALG ) X 100. This metric measures each al-

4.2 Evaluating FTL

The carbon footprint of scheduling algorithms can vary significantly
based on regional characteristics, particularly the variability and
average carbon intensity. Figure 2 illustrates the top five algorithms
in each region that achieved the highest average carbon savings
percentage across all jobs. In these comparisons, the error margins
for carbon intensity (Cl,) and job length (Jo,») predictions are set
to 5% and 10%, respectively. As shown in Figure 2, our proposed FTL
algorithm consistently outperforms other algorithms. For instance,
in Ontario (Figure 2a), FTL achieves an 8% improvement over the
best algorithm, ST[35], while in AU-NSW (Figure 2c), FTL obtain
a 13% improvement over the best algorithm, DT [40, 60]. Finally,
we note that across all regions, FTL consistently outperforms the
closest runner-up, DT [40, 60], by 8.2%, achieving 14% carbon savings
compared to running in a carbon-agnostic manner.

Figure 3 evaluates the algorithms’ performance from a different
perspective, focusing on the 10th percentile carbon savings rather
than the average. The five algorithms with the highest savings at this
percentile are investigated in each region. The negative savings ob-
served for the algorithms are a result of their compulsory execution,
due to the unknown actual job length. Interestingly, the algorithms’
relative performance differs when comparing the average and 10th
percentile metrics. For example, in Ontario, the Single Threshold
algorithm, ST [35], is the closest runner-up based on average carbon
savings (Figure 2a) but drops to fourth place when considering the
10th percentile carbon savings (Figure 3a). In contrast, FTL not only
consistently achieves the highest average carbon savings across
all regions but also exhibits robustness by consistently ranking in
the top three algorithms for 10! percentile carbon savings. This
demonstrates FTL’s ability to perform well in both typical and more
challenging scenarios.

Key Takeaways:

FTL outperforms the closest runner-up by 8.2% on average across
all regions, resulting in 14% carbon savings compared to running in a
carbon-agnostic fashion.
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4.3 Evaluating Effect of Parameters on FTL

Effect of Carbon Intensity Forecast Error: The efficacy of algo-
rithms in minimizing carbon emissions relies on the accuracy of future
carbon intensity forecasts within the job’s deadline. For threshold-based
algorithms, these predictions inform the threshold settings, whereas
WaitAWhilePred directly uses predictions to decide when to run or
pause the job. However, as the margin of error in these predictions
increases, so does the potential for suboptimal decision-making, lead-
ing to diminished carbon savings. In Figure 4a, we study the impact
of Clerr on the average carbon savings of algorithms in France, with
Jerr = 10% over all jobs. We focus on the top five algorithms with the
highest carbon savings at Clerr = 0%, extending the carbon forecast
error to 20%. As shown, although average carbon savings decrease with
increases in Clgrr, FTL maintains its lead, underlining its robustness.
In contrast, algorithms such as WaitAWhilePred and DT[20, 60] are
significantly influenced.
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Key Takeaways: Rising errors in carbon intensity forecasts typically
impair the performance of carbon-aware scheduling algorithms; how-
ever, FTL s adaptive design continues to demonstrate superior carbon
savings, showcasing its robustness against prediction uncertainties.

Effect of Switching Overhead: The carbon efficiency of schedul-
ing algorithms is markedly affected by overheads associated with
Jjob checkpointing and restoring. Algorithms that do not account for
switching overhead tend to consume more carbon, especially when
these overheads are significant. As the switching overhead increases,
the carbon savings offered by all algorithms decrease due to the extra
carbon expended during state transitions. In Figure 4b, we examine the
influence of switching overhead in a setting with job length prediction
error (Jerr) set at 10% and carbon intensity forecast error (Clerr) at 5%,
using France’s carbon intensity trace. The figure presents the top five
algorithms that had the highest carbon savings for low-overhead jobs
and plots their average carbon savings percentage as the switching
overhead increases. Notably, FTL maintains its lead, demonstrating
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robust carbon savings even with heightened switching overhead. Fur-
thermore, the figure shows that as the overhead increases, the Double-
Threshold algorithm, DT[40, 60], surpasses the Single Threshold, ST,
and WaitAWhilePred algorithms.

Key Takeaways: Switching overhead increase limits the possible
carbon savings. Nonetheless, FTL maintains its superior performance.

Effect of Deadline: As the deadline (T) increases, it provides the
algorithms with higher flexibility to pause or resume and achieve
higher carbon savings. In Figure 4c, we explore the impact of extending
the deadline (T) from 24 to 96 hours in France, with Cleyr = 5% and
Jerr = 10%. We selected the top five algorithms that demonstrated the
highest carbon savings at T = 48 hours. Notably, at T = 24 hours, all
algorithms exhibit zero carbon savings akin to the Carbon-Agnostic
approach. This occurs because, upon submission, algorithms are un-
aware of the actual job length. Thus, they assume that the maximum
possible remaining job time (cmayx) is left, and since the deadline is
also equal to cpax (T = cmax = 24 hours), all the algorithms must
start compulsory execution immediately. As anticipated, increasing
the deadline leads to enhanced carbon savings across all deadlines,
with FTL consistently achieving the highest savings.

Key Takeaways: Increasing the deadline (T) allows for higher carbon
savings. Again FTL consistently outperforms its peers.

5 CONCLUSION

In conclusion, this paper presents FTL, a data-driven meta-algorithm
that enhances carbon-aware scheduling in computing environments.
Through extensive testing, we have shown that FTL outperforms tradi-
tional algorithms by adapting to real-time data and historical trends.
By aligning job length predictions with historical performance, FTL
achieves 8.2% and 14% average carbon reductions over the closest
runner-up algorithm and carbon-agnostic scheduling across all regions,
respectively. Future research will involve designing meta-algorithms
for other scheduling modalities, such as scaling, where prediction errors
highly impede carbon savings.
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