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1 Introduction

Buildings account for 30% of global energy consumption and 26% of global energy-related emis-
sions, as per the IEA [15]. Consequently, decarbonizing the building sector has emerged as a critical
challenge in our society’s transition to a low-carbon future. Traditional methods to reduce a build-
ing’s carbon footprint have focused on increasing the penetration of renewable energy sources
in the electric grid or installing distributed renewable systems, such as rooftop solar, directly on
buildings. Other e�orts have focused on electri�cation of gas-based building heating systems or
the use of distributed energy storage systems [16, 24, 27]. While these approaches have proven
e�ective, they come with substantial infrastructure investment costs and only partially address
the broader decarbonization challenge [6].
In contrast to these supply-side methods, a complementary approach is demand-side carbon

footprint optimization, where a building modulates its energy (and carbon) demand over time
to optimize its overall carbon footprint. Since the carbon intensity of electric supply is known
to vary over time—for example, due to intermittent generation from renewables—such demand-
side techniques can schedule �exible building loads or time-shift them to periods of low carbon
intensity, thereby performing the same work at a lower carbon footprint. While carbon-aware
load scheduling in buildings is a relatively new problem, building load scheduling is well-studied
in other contexts.
Scheduling of �exible loads via time shifting has been well studied in other contexts. For exam-

ple, prior e�orts have studied load scheduling techniques to address problems such as peak load
shaving and cost optimizations in the presence of variable electricity pricing [8, 19, 20, 23, 33].
Automated demand-response optimization has also explored delaying or time-shifting loads to re-
duce energy demand during periods of grid stress [2, 6, 34]. More recently, researchers have begun
to explore load scheduling for optimizing carbon footprint of buildings or grid loads [24]. While
prior load scheduling approaches can provide inspiration for optimizing the carbon footprint of
buildings, they cannot be applied directly for two reasons.
First, carbon reduction techniques solely focus on variations in energy’s carbon intensity, mea-

sured in g·CO2eq/kWh; however, it does not account for variations in electricity prices, increasing
the total electricity cost incurredwhile reducing carbon emissions.While usersmaywant to reduce
their buildings’ carbon emissions, they may be unwilling to incur higher electricity bills or may
even want to reduce them. This introduces carbon and cost tradeo�s that have not been addressed
in prior work.
Second, scheduling techniques that rely on time-shifting �exible, low carbon, or low electricity

cost periods can increase user inconvenience since loads, such as laundry cycles or EV charging,
take longer to complete. Reducing user inconvenience by mapping user preferences to delays that
are tolerable is an important aspect of the usability of such techniques. Such carbon-user conve-
nience tradeo�s have also not been explored in prior work.
Motivated by the above challenges, this article presents GreenThrift, a carbon-aware scheduler

for �exible home loads, that utilizes real-time carbon intensity signals from the grid and variable
pricing signals to reduce carbon usage while optimizing cost and meeting user constraints.
Speci�cally, scheduling of �exible building loads in GreenThrift considers a three-way tradeo�
between carbon, energy cost and user constraints. Through careful scheduling in the presence
of real-world constraints, our GreenThrift approach demonstrates that it is possible to achieve
meaningful carbon reductions in residential buildings while also optimizing electricity costs and
reducing user inconvenience from such time-shifting methods. In designing, implementing, and
evaluating GreenThrift, our article makes the following contributions:
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Fig. 1. Carbon intensity across three locations for July 5-7, 2023.

—We present an analysis of the potential con�ict between energy’s carbon intensity and prices
to demonstrate scenarios where reducing carbon emissions may come at the expense of
increasing monthly electricity costs.

—We present GreenThrift Algorithm, a joint optimization approach that can optimize carbon
usage and electric cost while respecting user constraints. We discuss how to embed this
optimization into an online scheduling algorithm that can dynamically time-shift �exible
loads in a building while leaving in�exible loads untouched.

—We evaluate the e�cacy of GreenThrift using real-world carbon intensity and variable elec-
tricity data from di�erent regions of the United States. Our results show that GreenThrift
can replicate the o�ine optimal behavior by retaining 97% of the savings when optimiz-
ing the carbon emissions. Lastly, we show how GreenThrift can balance the con�ict be-
tween carbon and cost and retain 95.3% and 85.5% of the potential carbon and cost savings,
respectively.

2 Background

This section provides background on energy’s carbon intensity and pricing models for residential
consumers. It then explains the role of load shifting in reducing carbon emissions and electricity
bills.

2.1 Carbon Intensity

Carbon intensity refers to the amount of greenhouse gas emissions, measured in g·CO2eq/kWh, per
unit of energy produced. At the grid level, carbon intensity represents a weighted average of the
energy sources. For instance, coal-�red power plants typically have high carbon intensity, whereas
renewable sources like wind and solar have near-zero carbon emissions. The intermittent nature of
renewable energy sources introduces variability in the grid carbon intensity. For example, during
the day, solar energy is abundant, which decreases the contributions of fossil-based sources, while
at night, utilities may rely more on fossil fuel-based generation, increasing the carbon intensity of
the grid.
Figure 1 depicts the three-day carbon intensity in July in Texas, California, and New York. As

shown, the carbon intensity highly varies across locations and time of day as the energy source
changes. For example, California’s carbon intensity is typically low around noon due to its high
dependency on solar energy, while Texas has no noticeable pattern due to its high reliance on
wind energy. In contrast, New York highly depends on Gas and, hence, has a more stable carbon
intensity. In addition, the �gure shows locations where users would typically prefer to run their
load to optimize their carbon emissions and the expected bene�ts of these actions. For instance, in
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Fig. 2. TOU price across three locations for July 5-7, 2023.

Fig. 3. Real-time price across three locations for July 5-7, 2023.

California, instead of running appliances early in the morning or later in the evening, users can
shift their loads to noon and reduce their emissions by almost 2×.

2.2 Electricity Prices

Electricity pricing models for residential consumers typically fall into two categories: �at-rate
pricing and dynamic pricing. Flat-rate pricing charges consumers a constant rate per kilowatt-

hour (kWh) regardless of the time of use. While this model is simple and predictable, it does not
re�ect the true cost of electricity generation, which varies throughout the day. Dynamic pricing
models, on the other hand, adjust the cost of electricity based on real-time demand and supply
conditions.
Time-of-Use (TOU) pricing charges higher rates during peak demand periods (on-peak prices)

and lower rates during o�-peak periods (o�-peak prices). Figure 2 depicts the TOU prices for Texas,
California, and New York [7, 11, 28]. As shown, the price di�ers greatly between times of day. For
instance, in New York, peak prices are applied between 8 AM and 12 AM, while in California and
Texas, peak prices are for a few hours. Nonetheless, in all cases, the di�erences between on-peak
and o�-peak highly encourage users to shift their loads, which can result in up to 5.8×, 2.44×, and
14.8× cost savings for Texas, California, and New York, respectively.

Although TOU pricing is the most common approach for residential homes, another approach is
Real-Time Pricing (RTP), which takes this a step further by varying the price of electricity on an
hourly basis, re�ecting the real-time cost of generating and delivering electricity as per the energy
market [10]. Although this pricingmodel can signi�cantly reduce total energy costs, it is often very
dynamic, requiring agile demand-response strategies and higher �exibility. Figure 3 shows the real-
time energy prices across Texas, California, and New York based on their respective Independent
System Operator (ISO), ERCOT, CAISO, and NYISO. As shown, energy prices highly �uctuate,
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Fig. 4. Relation between carbon intensity and TOU prices during July 5-7, 2023, in US, California. The graph

highlights examples of carbon-price conflict and alignments.

highlighting a cost reduction potential of 7×, 3×, and 3× for Texas, California, and New York,
respectively.

2.3 Temporal Load Shi�ing

To exploit variations in energy prices and prices, researchers have proposedmultiple temporal load
techniques that move the consumption away from time slots with high energy prices [8, 19, 20, 23,
33]. Similarly, users have explored the potential of temporal shifting to reduce the carbon emissions
of residential loads [3]. Shifting consumption can be implemented through various mechanisms,
such as scheduling �exible appliances, such as dishwashers or dryers, to run during o�-peak hours.
Another approach is to utilize energy storage systems like batteries by charging the batteries when
energy is cheaper or greener.

2.4 Problem Formulation

Our work considers a house with multiple electricity loads, which we categorize as �exible and
in�exible loads. Flexible loads have temporal �exibility and can be delayed to later times. Examples
of these loads are dishwashers, washing machines, EV charging, and other loads that users do
not typically directly interact with. On the other hand, in�exible loads, such as lights, cookers,
HVAC systems, and refrigerators, cannot be shifted as they require direct user interaction. We
aim at optimizing carbon emissions and costs by scheduling �exible smart appliances to shift their
energy usage to di�erent times by utilizing carbon intensity and cost variations. We assume that
users provide a deadline or a waiting limit that GreenThrift can use in load scheduling. To our
knowledge, we are the �rst work to consider the tradeo� in carbon and cost optimizations in
residential workloads. In Section 3, we highlight the tradeo�s in implementing carbon and cost-
aware load shifting.

3 Motivation and Carbon-Cost Tradeo�s

While exploring variations in the electricity grid’s carbon intensity by shifting appliance usage
from high to low carbon periods can e�ectively reduce emissions, previous research did not con-
sider the correlations between the grid’s carbon intensity and energy prices. In this section, we
utilize real-world carbon intensity and pricing traces to quantify the carbon-cost tradeo�s of tem-
poral load shifting. We note that although we focus on the relation between carbon intensity and
TOU prices, the conclusions also apply to real-time prices.

Figure 4 highlights the relation between energy’s carbon intensity and TOU prices in California
during July 5-7, 2023. The �gure highlights that there is no clear correlation between energy’s
carbon intensity and prices, and they may even strictly oppose each other (see highlighted
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Fig. 5. Demonstrating the conflict when scheduling a washing machine (1 kWh load) with a 24 hrs deadline

across regions and objectives using TOU prices.

periods). Moreover, this relationship is consistent across di�erent electricity grids, with year-long
correlation coe�cients between carbon intensity and TOU prices of 0.17, 0.01, and 0.49 for Texas,
California, and New York, respectively. Although analyzing the reasons behind this con�ict is
beyond the scope of this article, one possible reason is that TOU pricing schemes only focus on
demand patterns, are used to limit grid-level peak usage, and do not consider the energy source.
We devise a simple example to demonstrate the breadth of the con�ict between carbon-aware

and cost-aware temporal shifting. In this example, we consider a washing machine that consumes
1kWh of energy andmust run for an hour.We repeat this experiment for every hour of the year and
schedule the load within the following 24 hours. We utilize two shifting policies: a carbon-aware
policy—which selects the time slot with the lowest carbon intensity—and a cost-aware policy—
which selects the time slot with the lowest price.

Figure 5 presents the carbon savings (Figure 5(a)) and cost savings (Figure 5(b)) of the carbon-
aware and cost-aware policies compared to starting the load immediately across three regions
while considering the TOU prices. As shown, carbon-aware temporal shifting can result in more
than 50% carbon savings. In contrast, cost-aware temporal shifting can result in more than 20%
cost savings, depending on the variations in energy’s carbon and price. More importantly, the
�gure demonstrates how strictly following a cost-aware policy increases carbon emissions, and
likewise, following a carbon-aware policy increases the cost. Moreover, the �gure highlights how
the nuances of the relationship between energy’s prices and carbon intensity a�ect the con�ict.
For instance, following a carbon-aware scheduler in New York still introduces cost savings, while
in California, carbon-aware scheduling increases the total cost.

Key takeaways: The con�ict between energy’s carbon intensity and prices motivates multi-criteria

temporal shifting strategies that consider variations in carbon intensity and pricing structures.

4 GreenThri� Design

In this section, we outline the design of GreenThrift, our carbon- and cost-aware home automation
software, and highlight key components needed for its functions. Then, we present our o�ine
problem formulation and a scheduling algorithm that considers realistic knowledge assumptions.
Lastly, we list an illustrative example of the typical behavior of GreenThrift across scenarios.

4.1 System Architecture

Figure 6 shows the system architecture of GreenThrift where �exible appliances (washing
machines, dishwashers, etc.) are scheduled in a carbon- and cost-aware manner. GreenThrift
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Fig. 6. GreenThri� system architecture.

scheduling decisions depend on many factors, such as carbon intensity, cost, and user preferences,
and can be integrated easily into current home automation systems. To schedule �exible home
appliances in a carbon- and cost-aware manner, GreenThrift utilizes the following components:

Carbon Information Service. GreenThrift bases its decision on average carbon intensity, which
can be realized through third-party integrations with carbon services such as Electricity Maps [9],
and CarbonCast [18]. These services provide �ne-grained real-time and carbon intensity forecasts
at an hour-granularity.

Price Information Service. GreenThrift also relies on electricity prices (e.g., TOU or real-time
prices). TOU prices are �xed as part of the contracts with the utility company and usually remain
constant; hence, it is straightforward to consider in GreenThrift. On the other hand, real-time
prices are variable and require monitoring and predicting local energy markets. Because TOU is
the most commonly used pricing scheme, our evaluations will mainly focus on TOU. However, we
demonstrate the applicability of our approach and tradeo�s when considering real-time prices in
Section 5.6.

Load Prediction. To make safe scheduling decisions, GreenThrift needs information about the
expected electricity demand for the upcoming hours. This includes knowledge of the in�exible
power load to ensure that scheduling decisions adhere to the maximum capacity of the circuit
breaker. Additionally, GreenThrift needs to know the periodicity of the �exible loads to ensure
that they are completed before the arrival of the new load.

User Interfaces. As in typical home automation systems, in GreenThrift, the user con�gures his
preferences (e.g., the allowed delay per appliance). GreenThrift interface highlights the possible
bene�ts of di�erent scheduling decisions, such as allowed shifting periods and delays. The user
then selects the appliance-speci�c �exibility based on their preferences.

Scheduling Policy. Lastly, GreenThrift combines the forecasts, user con�gurations, and current
�exible loads to compute a carbon- and cost-aware schedule. In this case, the schedule computes
the start time of each appliance, where we assume that loads must run to completion. Although
some loads (e.g., batteries or EVs) can be interrupted, we limit ourselves to such use cases.

The following section presents the problem formulation and a scheduling algorithm that ac-
knowledges the impracticalities of the o�ine formulation.

4.2 Problem Formulation

This section formalizes the problem of carbon- and cost-aware load scheduling. We consider a
house with N �exible appliances, Li loads for appliance i : i ∈ N . We divide the scheduling period
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Table 1. GreenThri� Parameters and Decision Variables

Notation Description

N N = {0, 1, . . . ,n} is the set of appliances.
Li Li is the set of loads for appliance i : i ∈ N .
ei, j Energy consumption per slot of the jth load of appliance i .
pi, j Peak power consumption of the jth load of appliance i .
li, j Length of the jth load of appliance i .
ai, j Arrival time of the jth load of appliance i .
di, j Deadline for the jth load of appliance i .1

Pt Price of electricity at time t .
Ct Carbon intensity at time t .
α Carbon weight parameter.
β Cost weight parameter.
It In�exible load power consumption at time t .
Bmax Breaker peak load.

si, j,t load j of appliance i starts at time t .
xi, j,t load j of appliance i is running at time t .

where, i ∈ N , j ∈ Li , and t ∈ [1, T ].

into T discrete intervals of equal length (e.g., one hour) from 1 to T . Table 1 describes the system
inputs and utilized decision variables. We formulate the problem as a minimization Integer linear
programming (ILP) problem as follows:

min
∑

i ∈N

∑

j ∈Li

∑

t ∈T

ei, j × xi, j,t × (α Ct + β Pt ) (1)

s.t.
di, j∑

t=ai, j

si, j,t = 1 ∀i,∀j (2)

∑

t

xi, j,t = li, j ∀i,∀j (3)

∑

j ∈Li

xi, j,t ≤ 1 ∀i,∀j,∀t (4)

xi, j,t ≤

t∑

t ′=t−li, j+1

si, j,t ′ ∀i,∀j,∀t (5)

∑

i

∑

j

pi, jxi, j,t + It ≤ Bmax ∀t (6)

s,x ∈ {0, 1} . (7)

As shown, the optimization tries to schedule workloads to optimize a parameterized cost func-
tion where α ∈ [0, 1] is the weight of carbon emissions and β ∈ [0, 1] is the weight of electric
prices, and is subject to multiple constraints. Equation (2) guarantees that the job only starts once

1Note that the deadline is computed per load, depending on the load’s arrival time, the next load on the same appliance,
load length, and the users’ con�guration.
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ALGORITHM 1: GreenThrift Algorithm

Input: Appliances N , Loads L, New Load L, In�ex Load Î, Carbon Intensity Ĉ, Energy Price P̂, Breaker
peak load Bmax, α , β .
Output: Load start times S .

1: if LL .i ! = ϕ then � A load exist for this appliance.
2: di,1 ← li,1 � Schedule for now.
3: end if

4: L.d ← min(L.λ,L.w) + L.l

5: L.append(L)

6: S ← Solve Optimization(N ,L, Î, Ĉ, P̂,Bmax,α , β)
7: return S

and within the allowed time, i.e., respect the deadline. Equation (3) is the load length constraint,
while Equation (4) guarantees that only one load is utilizing the appliances. Equation (5) is the
non-interruptibility constraint, where loads must run to completion once started. The constraint
in Equation (6) ensures that the peak power consumption of �exible and in�exible loads is within
the allowed circuit breaker capacity. Finally, Equation (7) states that the decision variables are
binary.

4.3 GreenThri� Algorithm

The problem formulation above relies on detailed knowledge of the electric loads and system ca-
pacities. Although some details are known, such as the circuit breaker capacity, or can easily be
forecasted, such as energy’s carbon intensity [9, 32], some information is burdensome or cannot
be known. For instance, in contrast to the carbon intensity that typically follows a diurnal pat-
tern, the real-time electricity prices are much more variable, resulting in higher prediction errors.
Another example is in�exible load prediction, which is usually dynamic and can change abruptly.
Lastly, in cases where the carbon intensity or future loads are not predictable, GreenThrift can
utilize threshold-based approaches [17]; however, evaluating the e�ectiveness of such approaches
is beyond the scope of this article.
To address these challenges, GreenThrift monitors for the arrival of new loads and the quality

of its predictors at each time step. GreenThrift then follows an iterative scheduling behavior that
dynamically schedules electricity loads when a new load is scheduled or whenever GreenThrift
detects an abrupt change in prediction accuracy. In addition, new load arrivals may cause Green-
Thrift Algorithm to violate some of the scheduling constraints, e.g., a new load may arrive before
the current load �nishes. Our GreenThrift algorithm makes iterative and incremental modi�ca-
tions to the computed schedule to address such issues. Our experimental evaluation quanti�es the
impact of these decisions in Section 5.6.
Algorithm 1 lists the GreenThrift Algorithm, where the input contains current loads L, new

load L, and predictions such as carbon intensity and in�exible loads. The algorithm also takes
the system parameters and con�gurations. The GreenThrift Algorithm is also executed when
the current in�exible load power demand changes beyond the expected range, even if there
is no new load. In this case, GreenThrift Algorithm recomputes the schedules for the current
appliances. First, when a new load arrives, the algorithm forces the scheduler to start all currently
scheduled loads for the corresponding appliance that have not yet begun. The algorithm then
computes the deadline of the new load by considering the expected duration between loads λ,
the maximum allowed waiting time w , which the users con�gure, and the load length l .2 The

2Note that we assume that appliances’ power consumption and duration are known, as they are typically static.
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Fig. 7. An illustrative example of GreenThri� behavior across carbon-prices scenarios.

algorithm then computes the schedule using the optimization approach from Equations (1)–(7)
based on the forecasted inputs. Lastly, the algorithm returns the schedule that should be followed
by GreenThrift. Thus, by optimizing the schedule as new information becomes available, our
algorithm e�ectively balances the goals of minimizing carbon emissions, reducing costs, and
adhering to peak demand constraints, even in a dynamic and uncertain environment.

4.4 GreenThri� in Action

To illustrate the behavior of GreenThrift, we construct two examples of the relation between
the electricity grid’s time-varying carbon intensity and price, which is typically dynamic, as
explained earlier. In both examples, we consider two appliances: A dishwasher and a wash-
ing machine, ready at 9 AM and 11 AM, respectively. Figure 7 lists the two cases where the
�rst case (see Figure 7(a)) shows the availability of a slot where carbon and price are low
(around noon). In this situation, GreenThrift is not subjected to the carbon-price tradeo�, and
it simply can select the time slot where both are low, achieving maximum carbon and cost
savings. In contrast, in the second scenario (see Figure 7(b)), carbon intensity and price are
not aligned, where users must choose between optimizing for cost or carbon. However, we
show that it may be possible to balance the system by �nding a compromise between reduc-
ing costs and carbon emissions by selecting values for α and β . In the next section, we eval-
uate the tradeo�s between carbon and cost and show the e�ect of the weight factors on the
results.

5 Evaluation

In this section, we evaluate the performance of GreenThrift in terms of carbon and cost savings.
We start by evaluating the performance of the proposed approach across di�erent objectives and
scenarios. Next, we illustrate how GreenThrift under di�erent carbon/price dynamics and traces.
We then perform a sensitivity analysis of the user’s settings. Lastly, we discuss the generalizability
and limitations of our approach.

5.1 Experimental Setup

This section describes the real-world traces used to simulate realistic scenarios and assess Green-
Thrift’s performance.

Carbon Intensity Traces. We utilize carbon intensity traces from ElectricityMaps [9]. The traces
provide hourly average carbon intensity information, measured in grams of carbon dioxide equiv-
alent per kilowatt-hour (g·CO2eq/kWh). We utilize carbon intensity for California, Texas, and New
York. To emulate the forecast errors, we introduce a uniformly random error to carbon intensity
data, denoted as Ĉer r , where err is the mean of added percentage error.
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Fig. 8. Carbon savings for di�erent scenarios and assumptions in California, USA.

Electricity Prices Traces. In addition to carbon intensity traces, we utilized electricity price traces
for California, Texas, and New York. We utilize TOU and RTP data from utility providers [7, 11, 28],
and real-time energy prices from EnergyOnline, a service that provides historical real-time energy
prices [10]. We base most of our experiments on the TOU data, which is typically the most com-
mon pricing model for houses in the US. Nonetheless, since some states allow residential homes to
directly participate in the energy market [26], in Section 5.6, we show the performance of Green-
Thrift when using real-time prices. Similar to carbon forecasts, we introduce a uniformly random
error to real-time price data, denoted as P̂er r , where err is the mean of added percentage error.

Residential Load Traces. We use energy consumption traces from households across multiple
open datasets(e.g., UMass Smart∗ dataset [1]). These traces contain various types of loads, including
both �exible (e.g., washingmachines and dishwashers) and in�exible (e.g., lights, refrigerators, and
HVAC) loads, allowing us to simulate di�erent load-shifting policies.

Experimental Se�ings. We utilize three main variations of GreenThrift by setting the values of
alpha and beta: a carbon-aware policy (alpha = 1,beta = 0), a cost-aware policy (alpha =

0,beta = 1), and a balance policy (alpha = 0.001,beta = 1). In addition, we evaluate the perfor-
mance of GreenThrift in two load shifting scenarios, an overnight load shifting and 24 hrs load
shifting. The overnight is a minimum disruption approach that only shifts overnight workloads
(loads are submitted after 6 PM) and ensures they �nish before 8:00 AM. In contrast, the 24 hrs

scheduling approach allows all workloads to be moved for 24 hrs in the future. Unless otherwise
stated, we use carbon intensity traces without errors and report carbon and cost savings from
�exible loads. We set the peak constraints for individual houses equal to the peak reported in the
original trace. Finally, we implement GreenThrift load shifting policies using Google OR-Tools [25]
across di�erent scenarios and policies and use 1hr time step t .

5.2 Carbon-aware Load Shi�ing

This section evaluates the carbon savings achieved by GreenThrift over a year using di�erent
knowledge assumptions and scenarios. Figure 8 compares the carbon savings of GreenThrift to
the o�ine optimal under the 24 hrs and overnight experimental scenarios. The �gure shows that
the carbon savings potential for the 24 hrs approach is much higher than that of the overnight
approach, achieving up to 35.7% and 6.3% for the two scenarios, respectively. This is because the
carbon intensity in California is typically lowest during the day, a period that cannot be utilized
when workloads are only shifted overnight.

Moreover, the �gure highlights the performance similarly of GreenThrift, which depends on
realistic knowledge assumptions, with the o�ine optimal where it achieves carbon savings of 34.7%
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Fig. 9. Average savings when employing carbon-aware, cost-aware, and balance scheduling across schedul-

ing scenarios in California, USA.

and 6.8% for the 24 hrs and overnight scheduling scenarios, respectively. Note that the heuristic
achieves slightly higher carbon savings in the overnight scenario, as it frequently violates the
deadline constraints by not �nishing the loads before the new load arrives, forcing early morning
loads to be slightly shifted.

Key takeaways: Carbon-aware load shifting can reduce over 35% of carbon emissions from �exible

residential workloads. GreenThrift can replicate the o�ine optimal behavior and retain 97% of the

carbon savings.

5.3 Balancing the Tradeo�s

As highlighted in Section 3, strictly following the carbon- or a cost-aware schedule often yields
undesirable e�ects. Figure 9 shows a single house’s carbon and cost savings when employing dif-
ferent scheduling objectives across di�erent scenarios in California. Figure 9(a) highlights the
carbon and cost savings and their tradeo�s. For instance, following a carbon-aware schedule
(α = 1, β = 0) can yield up to 34.7% carbon savings. However, it increases the cost of running
the �exible load by 5.7%. On the other hand, following the cost-aware schedule (α = 0, β = 1)
yields up 9.5% cost savings while losing 96.2% of the possible carbon savings. Finally, the �gure
shows that using the balance policy can allow us to co-optimize the carbon emissions and cost and
retain 95.3% and 85.5% of the potential carbon and cost savings, respectively. Figure 9(b) shows
the behavior of the three policies, where the balance policy can retain 98% and 100% of the pos-
sible gains. Nonetheless, in contrast to Figure 9(a), the carbon-aware policy does not yield cost
increases, as pushing the workloads to later periods always pushes it away from on-peak price
periods.
Figure 10 provides additional insights into how these load-shifting policies impact load distribu-

tion throughout the day in a single home from Figure 9(a). Figure 10(a) shows the original demand
and highlights the di�erence between �exible and in�exible load. As shown in the original sched-
ule, most �exible loads (e.g., dishwashers) occur later in the evening, when the cost is low, which
limits the possibilities of cost savings (see Figure 9). Figure 10(b) shows how the carbon-aware
scheduler moves workloads around noon, when carbon intensity is typically the lowest, while
Figure 10(c) pushes the demand away from the peak period, which normally moves the load later
in the evening, without introducing many changes. Lastly, Figure 10(d) shows how the balance
policy seeks a middle ground, distributing loads across lower carbon and cost periods. Although
the result resembles carbon-aware, it avoids the on-peak TOU period at 5 PM. Finally, we note that
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Fig. 10. Average Energy consumption across policies from Figure 9(a).

Fig. 11. Average carbon savings and cost savings using balance se�ings across scenarios in three di�erent

regions.

load shifting does not a�ect expected peak demand, as in�exible loads dominate the energy con-
sumption. In Section 5.5, we show that this conclusion applies when considering multiple houses.

Key takeaways: GreenThrift can balance the con�ict between carbon and cost and retain 95.3% and

85.5% of the potential carbon and cost savings, respectively. Since in�exible loads dominate energy

consumption, shifting �exible loads does not increase peak demand.

5.4 Carbon-Price Dynamics

In this section, we evaluate GreenThrift across multiple carbon-price dynamics. Figure 11 shows
the carbon and cost savings achieved using the balance policy across scheduling scenarios in Cal-
ifornia, Texas, and New York. The results highlight the impact of the electricity pricing structures
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Fig. 12. Carbon and cost savings across seasons using balance se�ings in the 24 hrs scenario, in California.

and carbon intensity pro�les on the potential savings and the e�ectiveness of load-shifting poli-
cies. For instance, GreenThrift can achieve 17%, 11%, and 5% for California, Texas, and New York,
respectively, when considering the 24 hrs scenario, which is correlated with the variability of each
trace [14]. However, the high reliance on wind energy in Texas, which is typically more available
at night, allows the 6 AM to 8 PM policy to retain more than 50% of the carbon savings. At the
same time, GreenThrift can achieve 22%, 14%, and 16% cost savings for California, Texas, and New
York, respectively, when considering the 24 hrs scenario. The �gure also highlights the role of the
variability in carbon and cost savings. For example, New York has a gap in the price di�erence
with 25 ¢/kWh o�-peak price and 61 ¢/kWh on-peak price during summer, which impacts its cost
savings compared to other regions.
Figure 12 further analyzes the behavior of GreenThrift and highlights the carbon and cost sav-

ings for di�erent seasons across policies in California. As shown, both the potential savings and
the con�ict di�er across seasons. For instance, in Spring, where carbon intensity is typically more
variable in California, the GreenThrift reduces carbon emissions by up 21.8% and cost by up 26.5%.
Nonetheless, the �gure highlights that Spring has a bigger carbon-cost con�ict than other seasons.

Key takeaways: Carbon intensity and price dynamics, which change across seasons, dictate the pos-

sible savings and con�ict.

5.5 Demand Dynamics

Next, we depict the performance of GreenThrift across di�erent houses, representing customers’
behaviors. Figure 13 illustrates the carbon and cost savings across multiple houses in California,
New York, and Austin. The data shows signi�cant variability in savings within each region, high-
lighting how di�erences in household loads and appliance usage patterns can lead to diverse out-
comes. For instance, in California, houses can achieve up to 33.1% carbon savings and up to 37%
cost savings. At the same time, some houses only achieve 6.6% carbon savings or only 8.1% cost
savings.
To understand the reason behind variations, Figures 14 and 15 show the demand pattern of two

houses in California before and after load shifting. As shown in the �rst house (see Figure 14(a)), the
demand is typically higher at on-peak and high carbon intensity periods. Thus, load shifts highly
in�uence the demand pattern (see Figure 14(b)), resulting in carbon and cost savings of 25.6% and
36.9%, respectively. On the other hand, Figure 15 demonstrates a scenario where the majority of
the load already occurs during o�-peak and low-carbon periods. This results in minimal changes
in the demand pattern, leading to only 7.6% and 15.6% reductions in carbon and cost, respectively.
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Fig. 13. Carbon savings and cost savings from multiple houses in di�erent regions using the balance policy.

Fig. 14. Flexible demand in a house with high carbon and cost savings in California.

Fig. 15. Flexible demand in a house with low carbon and cost savings in California.

Moreover, as highlighted earlier, the savings in Texas and New York are much more limited,
where houses achieve a maximum of 15.9% and 33.7% carbon and cost savings and a maximum
of 10% and 26.1% carbon and cost savings, for Texas and New York, respectively. Nonetheless,
houses exhibit similar variability. Lastly, it’s important to note that, on average, most locations
o�er greater cost savings than carbon savings. This is because the ratio between low and high
prices is usually higher than between low and high carbon intensity.
Finally, to analyze the impact of load shifting on overall energy demand, we combine demand

from �exible and in�exible loads across households. Figures 16 and 17 depict the average daily
energy consumption when combining the load of all the houses in California and New York, re-
spectively. Figure 16(a) and (b) compares the original demand, where the peak typically happens
around 6 PM, with the load after shifting. As shown, GreenThrift reduces the peak demand by
3.1%, as it shifts the load to an o�-peak period. Similarly, in New York (See Figure 17(a) and (b)),
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Fig. 16. Accumulated average flexible and inflexible load at the transformer level in California.

Fig. 17. Accumulated average flexible and inflexible load at the transformer level in New York.

GreenThrift is capable of reducing peak demand by 15%. As explained earlier, the reason for this
is that in�exible loads dominate total consumption, and moving �exible loads is less likely to in-
crease the peak. At the same time, since the electricity price is typically high at peak load times,
shifting workloads in a cost-aware manner also shifts �exible loads away from peak demand slots.

Key takeaways: The potential carbon and cost reductions from GreenThrift are signi�cantly in�u-

enced by demand patterns. The bene�ts of GreenThrift increase when demand is not aligned with

periods of low carbon intensity and prices. Additionally, GreenThrift aims to lower energy costs by

shifting loads to o�-peak times, thereby reducing overall peak demand.

5.6 Sensitivity Analysis

Using Real-time Prices: Although TOU is the most common dynamic pricing scheme, some loca-
tions allow users to participate directly in the energy market and pay according to real-time prices.
Figure 18 shows the behavior of GreenThrift across scheduling objectives, using the same trace
as in Figure 9 while allowing loads to be shifted for 24 hrs. Similar to TOU prices, optimizing for
a single objective often leads to a bias in the decisions. However, we highlight that in contrast to
using TOU pricing, real-time prices allowed the house to save up 45% compared to 9.5% that was
saved in Figure 9. Moreover, the �gure illustrates that the tradeo� is less pronounced where all
objectives result in similar carbon and cost savings.

Impact of extended deadline: To illustrate the relationship between extended deadlines and
savings, we evaluate the behavior of GreenThrift under di�erent deadlines. Figure 19 depicts this
relation when using the balance policy in California. As shown in contrast to earlier work [14],
extending the deadline does not always yield higher savings. For example, in California, extending
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Fig. 18. Carbon and cost savings when using RTP for a single house in California across policies.

Fig. 19. Carbon and cost savings when employing the balance policy for a single house in California.

the deadline beyond 24 hrs decreases the carbon savings, while extending the deadline beyond
12 hrs decreases the cost savings. This is because when a new load arrives on an appliance with
a scheduled load, GreenThrift Algorithm immediately starts the scheduled load, aside from the
carbon intensity and cost. The �gure also highlights that this behavior is seen across locations,
but the magnitude of the change depends on the load and the electricity grid’s carbon and price
characteristics. Lastly, it highlights how selecting the proper deadline and understanding the load
dynamics is vital to maximizing the bene�ts of GreenThrift.

Carbon Intensity Error: Although researchers have shown that carbon intensity forecasts are of-
ten very accurate [18, 32], forecasting errors are still possible. Figure 20 evaluates the performance
of GreenThrift when considering carbon forecast errors, which we emulate by adding uniform er-
rors, as explained in Section 5.1. As shown, the e�ect of errors barely changes the performance of
GreenThrift, highlighting the robustness of our scheduling approaches. For instance, even when
adding 30% carbon intensity errors, the carbon savings are reduced by only 2%.

E�ect of α and β . GreenThrift typically uses a weighted average of the energy’s carbon intensity
and price. In this subsection, we explore the sensitivity of our load-shifting policies to di�erent
values of carbon weight parameter α and cost weight parameter β in terms of carbon and cost
savings. Figure 21 shows the e�ect of α and β on the carbon emissions and savings. As expected,
the values of α and β highly in�uence the carbon and cost savings. For example, when α = β or
α > β , GreenThrift behaves as a carbon-aware system as the magnitude of the carbon intensity is
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Fig. 20. E�ect of Carbon Forecast Errors in California,

using the balance policy.

Fig. 21. Changes in carbon and cost savings

across di�erent values of α and β in a single house

in California.

much higher. However, when β > α , the system behaves di�erently based on the ratio between
alpha and beta. For example, when β � α , it behaves as a cost-aware, while if β ≈ α , it still
behaves as a carbon-aware. Finally, we note that we found many values for α and β that can bring
GreenThrift to a balance; we highlight a few of them in the �gure.

Key takeaways: Although GreenThrift con�gurations and quality of inputs signi�cantly impact the

possible carbon and cost savings, the con�guration space is easy to navigate, and in case of forecast

errors, GreenThrift can retain most bene�ts.

5.7 Discussion

We have shown the bene�ts of GreenThrift in minimizing carbon and costs by exploiting the
temporal �exibility in residential loads. Next, we highlight other bene�ts of the proposed methods
and their limitations.

Generalizability of GreenThri�. In this work, we showed the bene�ts of GreenThrift in reducing
carbon emissions and the cost of residential �exible loads. However, �exible loads only represent
a small fraction of the total load. However, GreenThrift load-shifting policies can be leveraged to
implement holistic reductions using batteries and rooftop solar panels. In this case, each house
can compute its own energy carbon intensity and prices and shift load according to cheap and
green energy availability. Evaluating the usage of batteries and solar energy and addressing the
challenges and tradeo�s in this case is part of our future work.

Limitations. Although load shifting can signi�cantly reduce carbon emissions and costs, Green-
Thrift makes assumptions that must be addressed in real-world deployments. First, in this work,
we assume no dependency between loads. However, in reality, there is some causality between
loads. For example, the washer must �nish before the dryer, and should complete its cycle when
the user is nearby to manually unload and load the machines.
Although these relations can be modeled, they require further user involvement to con�gure

multiple loads simultaneously. Second, our experiments assume that load time and power con-
sumption are �xed and known beforehand. Although this is true for most appliances, some smart
appliances have automatic modes that change their behavior with the state. For example, some
dryers stop when the load gets dry enough, which requires further pro�ling of household work-
loads. Moreover, our experiments assume knowledge of �exible loads demand, which may not be
true, and require insights on the typical users’ behavior. Lastly, althoughwe show that GreenThrift
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typically reduces the peak, this was an artifact of our traces, where �exible loads are a minority.
Although this is true for most residential buildings, houses with many �exible loads may lead to
increases in their peak demand.

6 Related Work

Load shifting is a commonly used technique to manage residential electricity demand. It helps to
lower costs, reduce peak consumption, and decrease overall carbon emissions [13]. Researchers
have employed load shifting to cut down on energy expenses by shifting electricity usage away
from peak demand periods when electricity is typically more expensive [8, 12, 19, 20, 23]. For exam-
ple, the authors of [23] proposed a scheduling technique for �exible loads to minimize electricity
costs while maintaining user comfort. In [20], the authors used batteries to lower all loads’ energy
costs by charging a battery when energy prices are low and using the stored energy when prices
are high. Lastly, the authors of [12] analyzed the challenges in the broad deployment of demand-
response techniques. In contrast to these single-objective approaches, GreenThrift focuses on si-
multaneously optimizing costs and carbon emissions.
Moreover, researchers have demonstrated that load shifting not only helps in cost optimiza-

tion but also aids in reducing peak demand. For example, [34] conducted simulations to an-
alyze the advantages of load shifting for �exible loads in lowering the peak-to-average ratio.
Additionally, [4] [5] illustrated how cooperative load shifting can reduce grid-wide peaks. Fur-
thermore, researchers have also explored the bene�ts of house-wide load shifting in reducing
peak demands. For example, in [2], researchers have utilized load shifting for background loads
(e.g., an HVAC unit) to decrease the peak demand while considering users’ comfort. In contrast,
in [20, 22, 31], authors explored how batteries can help reduce load peaks. Although in Green-
Thrift, we only focus on �exible loads, peak reduction was not a direct objective. We have demon-
strated that cost considerations typically move loads away from peak demand slots, decreasing the
average cost.
Researchers have also studied ways to reduce the carbon emissions produced by residential

energy usage. For instance, [21, 33] have demonstrated that using local renewable energy sources
can replace some of the energy obtained from the grid with carbon-free renewable energy, leading
to lower emissions and costs. Furthermore, the authors of [3, 29, 30] analyzed the potential of
load shifting in directly reducing carbon emissions by exploiting temporal variability of energy’s
carbon intensity. In GreenThrift, we consider grids where energy’s cost and carbon intensity are
variable, unlike other approaches that only consider variations in either.

7 Conclusion

In this article, we analyzed the potential of temporal load shifting of �exible loads to decrease
carbon emissions and costs in residential houses. We proposed GreenThrift, an optimization tech-
nique that automatically computes schedules based on user con�gurations and preferences while
considering the tradeo�s between energy’s carbon intensity and prices. Our results from trace-
driven simulations based on real-world traces show that our approach can replicate the o�ine
optimal behavior by retaining 97% of the savings when optimizing carbon emissions. Moreover,
we show how GreenThrift can balance the con�ict between carbon and cost and retain 95.3% and
85.5% of the potential carbon and cost savings, respectively. In future work, we will analyze the
applicability of our load-shifting techniques and the breadth of the carbon-cost tradeo�s in the
presence of local renewables and energy storage.
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