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Abstract:  

 

Sulfide-based solid electrolytes (SEs) are emerging as compelling materials for all-solid-state 

batteries (ASSBs), primarily due to their high ionic conductivities and robust mechanical stability. 

In particular, glassy SEs (GSEs) comprising mixed Si and P glassformers show promise, thanks to 

their efficient synthesis process and their intrinsic ability to prevent lithium dendrite growth. 

However, to date the complexity of their glassy structures hinders a complete understanding of the 

relationships between their structures and properties. Here, new machine learning force field (ML-

FF) specifically designed for lithium sulfide-based GSEs has been developed. This ML-FF has 

been used to investigate the structural characteristics, mechanical properties, and lithium ionic 

conductivities in binary lithium thiosilicate and lithium thiophosphate GSEs, as well as their 

ternary mixed glassformer (MGF) lithium thiosilicophosphate GSEs. Molecular dynamic (MD) 

simulations using the ML-FF were conducted to explore the glass structures in varying 

compositions, including binary Li2S-SiS2 and Li2S-P2S5, as well as ternary Li2S-SiS2-P2S5. The 

simulations with the ML-FF yielded consistent results in terms of density, elastic modulus, radial 

distribution functions, and neutron structure factors, compared to DFT and experimental work. A 

key focus of this study was to investigate the local environments of Si and P molecular clusters. 

We discovered that most Si atoms in the Li2S-SiS2 GSE are situated in an edge-sharing 

environment, while the Li2S-P2S5 glass contained a minor proportion of edge-sharing P2S6
2- 

environments. In the ternary 60Li2S-32SiS2-8P2S5 glass, the ML-FF predicted similar P 

environments as observed in the binary Li2S-P2S5 glass. Additionally, it indicated the coexistence 

of corner and edge-sharing between PS4 and SiS4 tetrahedra in this ternary composition. 

Concerning lithium ionic conductivity at 300K, all studied glass compositions exhibited similar 

magnitudes and followed the Arrhenius relationship. The 50Li2S-50SiS2 glass displayed the lowest 

conductivity at 2.1 mS/cm, while the 75Li2S-25P2S5 composition exhibited the highest at 3.6 
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mS/cm. The ternary glass showed a conductivity of 2.57 mS/cm, sitting between the two. 

Interestingly, the predicted conductivities were about an order of magnitude higher than 

experimental values for the binary glasses but aligning more closely with that of the ternary glass. 

Moreover, an in-depth analysis of lithium-ion diffusion over the MD trajectory in the ternary glass 

demonstrated a significant correlation between diffusion pathways and the rotational dynamics of 

nearby SiS4 or PS4 tetrahedra. The ML-FF developed in this study shows immense potential as a 

versatile tool for exploring a broad spectrum of solid-state and mixed-former sulfide-based 

electrolytes.  
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1. Introduction 

All-solid-state lithium-ion batteries stand as a revolutionary advancement in energy storage 

technology, offering unprecedented safety benchmarks and energy density metrics [1]. Among the 

various candidates, sulfide-based solid state electrolytes (SSEs) are particularly promising [2]. 

These electrolytes generally fall into three categories: crystalline, glass-ceramic, and glass. The 

glass type, in particular, garners considerable attention due to its lack of grain boundaries, unlike 

its crystalline counterparts [3,4]. This unique characteristic is crucial for inhibiting lithium dendrite 

growth, thereby enhancing battery safety and improving mechanical and thermal properties [5,6]. 

Two main glass solid electrolyte (GSE) systems have dominated research over the years: lithium 

thiophosphate (Li2S+P2S5, LPS) [7–9] and the lithium thiosilicate (Li2S+SiS2, LiSiS) [10–12]. 

However, their practical applications are hindered by synthesis challenges and limited 

compatibility with Li metal anodes.  

In terms of compatibility, Kennedy et al. [13] have pointed out that in SiS2-based GSEs, SiS2 

and Li react to form Si and Li2S. Further reactions between Si and Li can produce Li-Si alloys, 

potentially degrading the performance of SiS2-based GSEs. Regarding synthesis challenges, the 

high vapor pressure of P2S5 [13,14] makes the LPS glass more suitable for synthesis through ball 

milling rather than the melt-quench method. Introducing a second glass former can mitigate 

vaporization issues and improve glass-forming ability. For instance, adding another glass former 

has been shown to enhance the Li metal stability of SiS2-based glasses [13,14]. Kennedy et al. 

synthesized 60Li2S-40[xSiS2-(100-x)P2S5] GSEs and found that the composition 60Li2S-32SiS2-

8P2S5 exhibits the highest conductivity of 0.7 mS/cm at 25°C [13]. Additionally, Zhao et al. 

synthesized various glass compositions, including 60Li2S-32SiS2-8P2S5, an oxy-sulfide GSE of 

67Li2S-33(80SiS2-20P2O5), and a LiPON-doped oxy-sulfide GSE [14]. Their studies revealed that 

the incorporation of oxygen and nitrogen into the GSE lowers its conductivity but raises the critical 

current density (CCD) to 1.76 mA/cm2, these authors attributed this increased stability to the 

formation of protective bridging oxygen (BO) atoms at the Si sites [14]. 

SSEs have experienced significant advancements in design and understanding, thanks, in part,  

to the use of computational modeling and simulations. Techniques like density functional theory 

(DFT), reverse Monte Carlo (RMC), molecular dynamics (MD) with classical force fields, and ab-
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initio molecular dynamics (AIMD) simulations are instrumental in unraveling the atomistic 

mechanisms underlying structural properties and diffusion processes in SSEs, deepening our 

knowledge of their intrinsic properties  [3]. RMC, a cost-effective computational method, has 

been utilized to model Li2S-SiS2 and Li2S-P2S5 glass structures [11,15], effectively mimicking 

experimental structures. However, RMC methods do not provide insights into dynamic 

properties such as ionic conductivity. MD techniques, on the other hand, have been applied to 

explore the dynamic properties of SSEs. Baba et al. used melt-quench in their MD studies to 

model LPS GSEs, estimating their ionic conductivities to be around 10-5 S/cm at 25 oC. Ohkubo 

et al. employed artificial intelligence MD (AIMD) to investigate the Li-ion conduction 

mechanism in 70Li2S-30P2S5 glass and Li7P3S11 crystal [16], noting tetrahedra rotation-

assistedn Li+ ion migration ocurred only in the glass phase. Sadowski et al. systematically 

examined the stability and conductivity of LPS glass, including the effects of various quench 

parameters on its properties [17]. However, the high cost and computational intensity of DFT 

and AIMD simulations limit their application to small systems and short time scales, potentially 

constraining the study of ergodic yet non-equilibrium structures in glassy phases and 

dynamics [18].  

To overcome these limitations, Ariga et al. developed a classical force field of COMPASS 

Class II forms for both amorphous and crystalline of Li2S-P2S5 [19], exploring their structures 

and conductivity properties. They predicted a highest conductivity of 5.3 × 10-2 S/cm in Li7P3S11 

crystals, while 67Li2S–33P2S5 glass exhibited the lowest at 7.5 × 10-3 S/cm, consistent with 

experimental findings. Poitras et al. a Buckingham-type force field to study the local atomic 

structures of Li2S-SiS2 in both glassy and crystalline phases [20], with the force field accurately 

predicting structure factors and radial distribution functions (RDF) compared to experimental 

results.  

Despite these advancements, studying multicomponent systems like Li2S-SiS2-P2S5 remains 

challenging  [3], particularly due to the complexity in training, learning, and developing  

effective parameters for classical force fields, given the intricate interactions and charge 

polarization in these systems. Recently, machine learning force fields (ML-FFs) [21] have 

emerged, offering DFT-level accuracy with significantly reduced computational demands. For 

instance, Xu et al. developed an ML-FF for Li7P3S11 and conducted a pioneering 1-microsecond 
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simulation [22], revealing the rotation of corner-sharing PS4
3- units and its detrimental impact on 

Li-ion diffusion. Similarly, Huang et al. used another ML-FF to quantify Li-ion diffusion in 

various Li10GeP2S12-type compositions [23]. These recent studies indicated the potential precision 

and efficiency of ML-FFs in probing the structural and transport properties of SSEs at the atomic 

level. 

In the present study, we have developed an accurate ML-FF based on extensive DFT data to 

investigate the structural properties and Li ion conductivities in Li-Si-P-S GSEs. Initially, the  ML-

FF was validated by comparing energies and forces with those from DFT calculations. The ML-

FF was then employed to generate glass structures through melt-quench methods, focusing on 

compositions like 50Li2S-50SiS2, 67Li2S-33P2S5, 70Li2S-30P2S5, 75Li2S-25P2S5, and 60Li2S-

32SiS2-8P2S5, those that have been reported on in the literature and therefore those for which 

experimental data are avaialable. The computed densities of these glasses, lattice parameters of 

crystalline materials, and elastic moduli demonstrated remarkable consistency between ML-FF 

and DFT predictions, aligning well with experimental measurements. Further, we used our ML-

FF to analyze the short-range order (SRO), primarily the first coordination shell of the glass former 

of various LiPS and LiSiS glassy phases s P and Si, at 300 K, as well as the Li ion conductivities 

in them at different temperatures. The radial distribution functions (RDFs), structure factors, and 

populations of SRO units in all five glass compositions showed good agreement with experimental 

data and findings from other computational studies. Additionally, we calculated the rotation of 

SiS4 and PS4 tetrahedra around the lithium diffusion path in ternary 60Li2S-32SiS2-8P2S5 glass at 

300 K, uncovering a correlation between anion rotation and lithium diffusion. 

2.2 Computational Methodology 

2.1 Density functional theory simulations 

In this study, density functional theory (DFT) simulations were conducted to gather data 

(energy, atomic force, and virial stress) essential for training the machine learning force field (ML-

FF). The detailed methodology for developing the ML-FF is discussed in the following section. 

TheVienna Ab initio Simulation Package [24–26] (VASP) was employed with a plane wave basis 

set to label structures in the ML-FF training process. The pseudopotentials were generated using 
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the Projector Augmented Wave (PAW) method, treating 1s2 for Li, and 1s22s22p6 for Si, P, and 

S as core electrons, respectively. The electronic exchange-correction functionals were 

computed using the PBEsol functional [27], with an energy cutoff of 500 eV for the plane wave 

basis set. In reciprocal space, a K points mesh based on the Monkhorst-Pack grid approach with 

0.5 Å-1 spacing was applied. The electronic self-consistent field (SCF) calculations were 

terminated with an energy convergence criterion of 10-5 eV, ensuring excellent convergence for 

energy, force, and structures. 

2.2 Development of machine learning force field 

The efficacy of an ML-FF largely depends on the quality and diversity of its training data. 

For a robust and efficient ML-FF development, the Deep Potential Generator (DP-GEN) was 

employed on a concurrent learning framework [28,29]. This framework enhances the model's 

representativeness by continually incorporating DFT data of atomic structures that significantly 

deviate from accurate DFT results, a method known as labeling. By assessing the maximum 

force deviation (𝜎𝜎𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚) among a suite of parallel-trained models, it can be determined whether 

an atomic configuration should be added to the dataset. Configurations with small deviations 

(𝜎𝜎𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 <  𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 ) are deemed less beneficial for learning, while those deviating excessively 

( 𝜎𝜎𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 >  𝜎𝜎ℎ𝑖𝑖𝑖𝑖ℎ ) may stray too far from relevant physical trajectories. Therefore, only 

configurations between σlow and σhigh are considered as candidates for the training set. For the 

amorphous systems studied, σlow and σhigh were adjusted to 0.2 and 0.4 eV/Å, respectively.  

The initial phase of the DP-GEN training began with a selection of binary, ternary, and 

quaternary crystalline structures, including Li2S, SiS2, P2S5, Li2SiS3, Li4P2S6, β-Li3PS4, γ-

Li3PS4, Li7P3S11, Li7PS6, and Li10SiP2S12. The atomic structures of these phases were obtained 

from the Materials Project [30] and werethen distorted to generate the initial training set. The 

set was expanded through MD simulations using iteratively generated ML-FFs under 

isothermal–isobaric (NPT) and canonical (NVT) ensembles, with pressure ranging from 0 to 

100 bar and temperature from 200 to 2000 K. To adequately represent amorphous phases, 

various amorphous structures were introduced into the training dataset. These structures were 

generated either by melting and quenching crystalline materials at 1500 K and 300 K, 

respectively, or by creating randomly packed structures with PACKMOL [31]. The packed 
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amorphous structures from PACKMOL, created from fundamental units such as PS4, P2S6, SiS2, 

etc., were optimized using the initial ML-FF for subsequent DP-GEN processes. To further 

improve the model’s accuracy in describing mechanical behaviors, ±10% strain was applied to 

mimic deformed structures. After 66 iterations, the training set comprised 41,950 structures that 

were used in the DFT simulations for supercell energies, atomic forces, and virial stresses. 

The final ML-FF model features a radial cutoff of 6.0Å, smoothly transitioning from 5.5 Å. Its 

embedding network architecture consists of a three-layer neural network with neuron counts of 25, 

50, and 100 in each layer. Additionally, the fitting network employs a three-layer residual network 

(ResNet), with each layer containing 120 neurons. After achieving stable accuracy in DP-GEN, 

the ML-FF underwent an intensive training of four million epochs with the full training set to 

produce the final ML-FF. The learning rate was set to decrease exponentially from 0.002 to 3.5×10-

8 over four million training steps. 

2.3 Molecular dynamics simulations 

In this study, all MD simulations were executed using the LAMMPS software [32], with a 1 fs 

timestep and periodic boundary conditions in three dimensions. The temperature and pressure 

damping constant were set to 0.1 and 1.0, respectively. The Open Visualization Tool (OVITO) [33] 

was employed for visualization and analysis of the simulation results. After developing the ML-

FF potential, theinitial glass structures were generated through a random packing approach. For 

each composition, five unique initial structures (comprising 4000 to 5000 atoms) were derived 

from randomly generated configurations. These structures were equilibrated at a temperature of 

1700 K for 250 picoseconds, followed by cooling to 300 K at a rate of 5×1012 K/sec. After reaching 

300 K, each structure underwent a 100-picosecond equilibration run in the NPT ensemble. 

Firstly, the density and elastic properties were determined of the resulting glass. The density 

was calculated by averaging the trajectory over 100 ps after equilibration at 300 K. The elastic 

tensor (C) was computed directly via Hooke’s law, which involves calculating the difference in 

the pressure tensor after applying a specific deformation (or strain) [34]. The stiffness tensor (S) 

is the inverse of the elastic tensor. Generalized Hooke’s law, using Voigt notation, is represented 

as: 
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σ𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖ϵ𝑗𝑗 

where σ is the stress tensor [35], ϵ is the strain tensor, and i, j are indices ranging from 1 to 6 in 

Voigt notation. A 1% deformation was selected to ensure the calculations remained within the 

linear elastic deformation region. The bulk modulus (B), shear modulus (G), Young’s modulus 

(E), and Poisson’s ratio (ν) were then computed using the Voigt-Reuss-Hill (VRH) approximation, 

which is the arithmetic mean of the Voigt and Reuss averages. The formulas are as follows:   

 

𝐵𝐵𝑉𝑉 =
𝐶𝐶11 + 𝐶𝐶22 + 𝐶𝐶33 + 2(𝐶𝐶12 + 𝐶𝐶13 + 𝐶𝐶23)

9
 

𝐺𝐺𝑉𝑉 =
𝐶𝐶11 + 𝐶𝐶22 + 𝐶𝐶33 − (𝐶𝐶12 + 𝐶𝐶13 + 𝐶𝐶23) + 3(𝐶𝐶44 + 𝐶𝐶55 + 𝐶𝐶66)

15
 

𝐵𝐵𝑅𝑅 =
1

𝑆𝑆11 + 𝑆𝑆22 + 𝑆𝑆33 + 2(𝑆𝑆12 + 𝑆𝑆13 + 𝑆𝑆23) 

𝐺𝐺𝑅𝑅 =
15

4(𝑆𝑆11 + 𝑆𝑆22 + 𝑆𝑆33) − 4(𝑆𝑆12 + 𝑆𝑆13 + 𝑆𝑆23) + 3(𝑆𝑆44 + 𝑆𝑆55 + 𝑆𝑆66) 

 

The Young’s modulus and Poisson’s ratio were then derived using [36]: 

𝐸𝐸 =
1

1
3𝐺𝐺 + 1

9𝐵𝐵
 

ν =
1
2
�1 −

3𝐺𝐺
3𝐵𝐵 + 𝐺𝐺

� 

The conductivity of Li ions was calculated by the Nernst-Einstein relation, given as follows: 

σ = 𝑛𝑛0
𝑒𝑒2

𝑘𝑘𝐵𝐵𝑇𝑇
𝐷𝐷 

where σ is the ionic conductivity, 𝑛𝑛0 is the the number of charge-carrier atoms per volume, 𝑒𝑒 is 

the charge of an electron, 𝑘𝑘𝐵𝐵is the Boltzmann constant, 𝑇𝑇 is the temperature, and D is the diffusion 

coefficient. The diffusion coefficient is calculated from the mean square displacement (MSD) of 

Li derived from MD simulations: 

𝐷𝐷 =
1
6𝑡𝑡

1
𝑁𝑁
�[𝑟𝑟𝑖𝑖(0) − 𝑟𝑟𝑖𝑖(𝑡𝑡)]2
𝑁𝑁

𝑖𝑖
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where 𝑡𝑡 is time, 𝑁𝑁 is the number of all Li atoms, and 𝑟𝑟𝑖𝑖is the position of 𝑖𝑖th Li atom at time 0 and 

time t. 

Li-MSD computations were conducted across a temperature range of 300 to 650 K, at 50 K 

intervals, using the NPT ensemble. The activation energies for Li ion diffusion were obtained by 

fitting the diffusion coefficient data to the Arrhenius equation. Simulation durations varied with 

temperature: 1 ns for temperatures above 400 K, 5 ns at 350 K, and 15 ns at 300 K, to ensure MSD 

calculation convergence at lower temperatures. 

For investigating the structural properties of the amorphous phases, both partial and total radial 

distribution functions andthe neutron structure factor were calculated. The partial structure factors 

𝑆𝑆𝑖𝑖𝑖𝑖(𝑄𝑄) are first derived from the partial radial distribution function 𝑔𝑔𝑖𝑖𝑖𝑖(𝑟𝑟) as: 

𝑆𝑆𝑖𝑖𝑖𝑖(𝑄𝑄) = 1 + ρ� 4π𝑟𝑟2�𝑔𝑔𝑖𝑖𝑖𝑖(𝑟𝑟) − 1�
𝑠𝑠𝑠𝑠𝑠𝑠 𝑄𝑄 𝑟𝑟
𝑄𝑄𝑄𝑄

∞

0
d𝑟𝑟 

where ρ is the number density, i and j are atom types. The total neutron structure factors S(Q) is 

defined as: 

𝑆𝑆(𝑄𝑄) = �𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗�𝑆𝑆𝑖𝑖𝑖𝑖(𝑄𝑄) − 1�
𝑖𝑖,𝑗𝑗

 

where 𝑐𝑐𝑖𝑖 and 𝑐𝑐𝑗𝑗are the atomic fractions of atom types i and j, 𝑏𝑏𝑖𝑖and 𝑏𝑏𝑗𝑗 are the coherent scattering 

lengths for atom types i and j. The values for Li, Si, P, and S are -1.90 fm, 4.15 fm, 5.13 fm, and 

2.85 fm, respectively. 
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Figure 1. Characterizing Si and P local environments using Qn and En structural order parameters. 

The centered atoms are Si (light yellow) or P (light red) surrounded by S atoms (light green). 

    In analyzing the local structural environment of Si and P within the glass phases, the various 

SRO Si and P strucfrures were classified based on the number of BS atoms within the Si or P 

tetrahedra (Sin or Pn) and the number of edge-sharing tetrahedra (En), as illustrated in Figure 

1 [10,37]. Sin and Pndenotes the number of bridging S atoms connected to a central tetrahedral 

cation (P or Si), with Si0 and P0- indicating an isolated tetrahedron and Si1 and P1 a tetrahedron 

bonded to one BS atom. En quantifies edge-sharing tetrahedral cations in a cluster, with E1 

indicating a single edge-sharing tetrahedron and E2 two edge-sharing tetrahedra. To determine 

connectivity within the Si, P, and S atom network, a cutoff distance of 2.6 Å was used, as 

determined by the RDF results, to include first neighbor bonding interactions. 

3. Results and Discussion 

3.1 Validation of the ML-FF  

    To demonstrate the accuracy of the ML-FF, the structural and mechanical properties of selected 

crystalline and amorphous phases were calculated and compared with results from DFT 

simulations and experimental measurements. Firstly, the fidelity of the ML-FF was benchmarked 

against DFT values from the training set. As depicted in Figure 2, the energy and force predictions 

made by the ML-FF closely align with DFT values for all four systems studied: Li2S-SiS2 glass, 

Li2S-P2S5 glass, Li2S-SiS2-P2S5 glass, and the crystalline Li10SiP2S12. The root-mean-square (RMS) 

Martin, Steve W [M S E]
This is pretty small and hard to see, should a smaller set of them be used here, and the full larger picture of them be used in the SI?

Martin, Steve W [M S E]
I prefer not to use the Q notation, let's use Si^n and P^n where n is number of bridge bonds in the 1st coordination sphere. For edge share we can E^1Sin and E^2Si^n to demote the numbers of edges being shared and the number od BS, note that E^2Si^n only has E^2Si^4 since all S are BS. 
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errors for energies per atom and forces in these systems are 7.57 meV/atom and 0.17 eV/Å, 

respectively. Notably, this level of accuracy falls slightly short of that achieved by previous ML-

FFs for crystalline batteries [22,23]. This slightly less accurate result here is likely due to the 

inherent variability in the substantially larger datasets of amorphous structures compared to 

crystalline systems.  

 
Figure 2. ML-FF versus DFT energies and axial forces (fx, fy, fz) for the randomly selected 

structures from three glassy structures and one crystalline phase. 

     

    Next, the lattice parameters and volume of crystalline Li10SiP2S12 were compared. Table 1 

presents this comparison of the lattice parameters for crystalline Li10SiP2S12 as determined by the 

ML-FF at 300 K, alongside results from both experimental measurements at room temperature  [38] 

and DFT calculations at 0 K  [23]. It is worth noting that DFT predicted lattice parameters (or 

volume) of the unit cell are influenced by the choice of exchange-correlation functionals, with 

results from the PBEsol functional match best with experimental data. When compared to 

experimental values at room temperature, the discrepancies in lattice parameters from our ML-FF 

are less than 1%. The volume predicted by the ML-FF is slightly higher than predicted by PBEsol 

due to the temperature difference.  
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Table 1  Lattice constants and unit cell volume for crystalline Li10SiP2S12 obtained from various 

DFT approaches [23], experimental work [39] and our ML-FF 

Method a (Å) b (Å) c (Å) Volume (Å3) 

PBE 8.774 8.774 12.599 970.0 

PBE + vdw  8.700 8.700 12.490 945.5 

LDA 8.534 8.534 12.144 884.3 

PBEsol 8.696 8.696 12.368 935.3 

SCAN 8.728 8.728 12.496 951.9 

PBEO 8.722 8.722 12.518 952.3 

Expt. 8.651 8.651 12.5095 936.3 

This work 8.695 8.695 12.5104 945.9 

 

It is important to accurately predict the density for describing dynamic properties of GSEs, 

as lower densities may allow additional free space for anion rotations and Li ion diffusion, 

consequently leading to substantially higher conductivities [3,40]. A comparative analysis of 

the density of LPS glass was conducted with both experimental and other computational results 

for Li2S ratios ranging from 67% to 75%. Table 2 lists densities of various LPS glass phases as 

predicted by the ML-FF, experimental measurements  [5,41], DFT-Molecular Dynamics (DFT-

MD) predictions [38] and classical force field molecular dynamics (CMD)  [19]. The ML-FF 

predictions agree very well with experimental values, exhibiting a deviation of only within 3%. 

The accuracy of the ML-FF is similar to DFT simulations and surpasses the results from 

CMD [19]. It was observed that the density of LPS glass decreases as the Li2S concentration 

increases from 67% to 75%, a trend that is well supported by experimental data. In contrast, 

CMD models predict a uniform density across all compositions, whereas (DFT-MD) 

simulations indicate a peak density at a 70% Li2S concentration.  

 

 

 

 

Table 2 Density values of amorphous LPS phases  produced by different techniques. 

Li2S (%) this CMD [19] Expt. [19] DFT [42] 
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67 1.89 1.84 1.95 1.882 

70 1.88 1.84 1.91 1.889 

75 1.85 1.84 1.88 1.800 

 

In the final part of this sub-section, the modulus of various glass phases weew examined. Table 

3 presents the bulk modulus (B), shear modulus (G), Young's modulus (E), and Poisson's ratio (ν) 

for the four types of systems studied here: Li2S-SiS2 glass, Li2S-P2S5 glass, Li2S-SiS2-P2S5 glass, 

and the crystalline Li10SiP2S12. These values, as determined by the  ML-FF, are compared with 

experimental measurement and other simulation results [20,43]. Specifically, for the binary Li2S-

SiS2 (LiSiS) glass, the ML-FF calculations tend to underestimate the modulus by about 25%, 

yielding values of B = 19.42 GPa, E = 23.82 GPa, and G = 9.19 GPa for a 50% Li2S composition. 

However, these results align more closely to experiments than those obtained from CMD [20]. As 

the Li2S concentration increases from 50% to 67%, the elastic modulus increases, indicating 

enhanced mechanical properties with higher Li2S content in the LiSiS glass phase. The Poisson's 

ratio is consistent from both theory and experiment.  

 

For binary Li2S-P2S5 (LPS) glasses, the ML-FF predictions agree well with experimental 

measurements across all three compositions, with most elastic modulus deviating within 20% of 

experimental values. Similar to LiSiS, the elastic moduli increase with rising Li2S concentration 

according to the ML-FF predictions. However, experimental results do not exhibit a comparable 

trend, which could be attributed to the fact that the measurements were conducted by different 

research groups. Additionally, the moduli of LPS were found to be lower than those of Li2S-SiS2 

glass at the same Li2S concentration (67%), likely due to weaker bonding between P and S 

compared to Si and S  [20,43].  

  

    To the best of our knowledge, there are no existing elastic data in literature for the ternary Li2S-

SiS2-P2S5 glass system. The ML-FF predicts values of B = 19.87 GPa, E = 24.19 GPa and G = 

9.33 GPa, which lie intermediate between the Li2S-SiS2 and Li2S-P2S5 binary systems. This 

suggests that mechanical stability of ternary glass is similar to binary systems as a small amount 

of P2S5 is added. Regarding the crystalline Li10SiP2S12, when comparing the present results with 

DFT calculations using the PBEsol functional [43], values of B = 24.95 GPa,  E = 27.74 GPa and 
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G = 10.55 GPa were observed, with an approximate error margin of 10%. Although the ML-FF is 

developed for the glass phases, it also provides a good description for crystalline phases.   

 

    From these results, it is noted that there is an increase in the Åelastic moduli with rising Li2S 

content, whereas the density decreases with the increasing Li2S concentration. This inverse 

correlation between elastic modulus and density is consistent with experimental findings [6,15]. 

As the Li2S percentage increases, the primary anionic components in the glass changes from chain 

structures in low Li2S glass to more isolated SiS4
4- or PS4

3- units, resulting in a reduced mean 

atomic volumes and lower density [6]. These structure changes will be discussed in the following 

subsections. 

 

Table 3 Calculated bulk modulus (B), shear modulus (G), Young’s modulus (E) and Poisson’s 

ratio (ν) from ML-FF and the comparison with other data source (experiments [5,6,4], classical 

force field molecular dynamics (CMD) [20] and DFT [43]). 

 

 

 

 

 

 

 

 

 

 

 

System Method B 

(GPa) 

E  

(GPa) 

G  

(GPa) 

ν 

Glass Li2S-SiS2 50-50 This work 19.42 23.82 9.19 0.30 

CMD [20] 50.33 58.52 22.40 0.31 
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3.2 Glassy structure and Li ionic conductivity of binary 50Li2S-50SiS2 system 

 

    For LiSiS glass, the binary composition 50Li2S-50SiS2 system was the focus of the study and 

the glassy structure and Li ion conductivity were examined. Figure 3 displays the total, Figure 3(a), 

and partial, Figure 3(b), radial distribution functions (RDF) from the ML-FF MD simulations, and 

the comparison with experimental measurement [11] and other simulations using CMD  [20]. In 

Figure 3(a), the three most pronounced peaks correspond to Si-S (2.1 Å), Li-S (2.46 Å), and S-S 

(3.54 Å) bond correlations and these align well with experimental findings. Notably, however, this 

agreement in predictions and experimental results diverge at the peak around ~2.8 Å, which is 

absent in the ML-FF RDF; this discrepancy will be discussed later. Figure 3(b) reveals that while 

the Si-S and S-S partial RDFs closely match the CMD, significant differences arise in the Si-Si 

and Li-Si correlations.  Specifically, the ML-FF results indicate a peak at 2.8 Å for the Si-Si partial 

RDF, in contrast to Poitras's identification of a peak at 4.0 Å  [20], suggesting that the ML-FF 

glass network features edge-sharing Si units [10,11]. This variance could explain the trough 

observed between 2.5 to 3.0 Å in the total RDF. For Li-Si, the ML-FF predicts a boarder peak 

spanning 3.1 to 3.7 Å, whereas CMD results show a relatively sharper peak at 3.8 Å. The ML-FF 

partial RDF indicates a Si-Si peak at 2.8 Å, aligning with experimental findings. However, this 

Expt. [6] 26.10 31.00 11.90 0.30 

67-33 This work 23.64 28.27 10.87 0.30 

Li2S-P2S5 67-33 This work 14.98 18.41 7.11 0.30 

Expt. [6] 20.70 22.10 8.40 0.31 

70-30 Thiswork  16.66 20.18 7.77 0.30 

Expt. [5] 19.70 21.90 8.30 0.32 

75-25 This work 18.61 21.89 8.39 0.30 

Expt. [41] 20.90 22.90 8.70 0.32 

Li2S-SiS2-

P2S5 

60-32-08 This work 19.87 24.19 9.33 0.30 

Crystal Li10SiP2S12 This work 24.95 27.74 10.55 0.31 

DFT [43] 27.80 24.80 9.20 0.35 
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peak does not appear in the total RDF, possibly because its relatively low intensity is 

overshadowed by neighboring peaks such as Li-S (2.46 Å) and S-S (3.54 Å). 

 
Figure 3. The RDFs from ML-FF and compared to previous experimental results [11] and CMD 

simulations [20]: (a): total RDF; (b) partial RDF. 

 

    To gain deeper insight into local atomic structures, the distribution of BS on Si-S units (Sin and 

Pn) and edge-sharing Si-S units (En) were calculated and are presented in Table 4. Overall, the BS 

units identified by the ML-FF are consistent with experimental findings and CMD predictions. 

Notably, the ML-FF data predominantly features Si2 or Si3 bridging sulfur units, while CMD 

results indicate a more even distribution amounts of Si1, Si2, and Si3 units. However, in contrast to 

the 50% occurrence of Si4 species reported in experiments, our ML-FF model identifies only 1.1% 

Si4 species, and CMD predicts 5.8%. The discrepancy in Si4 representation between the findings 

of the ML-FF and experimental results could be attributed to two main factors: (1) the minor 

chemical shifts that make Sin identification challenging in experimental results  [20]; and (2) 

differences in simulation parameters, such as quenching rates, which can substantially influence 

the resulting structures, compared to those produced by experimental ball-milling methods [44].  

 

Table 4. Sin, Pn, and En distribution (%) in 50Li2S-50SiS2 glass from ML-FF and compared with 

other experiment [11] and classical force field molecular dynamics (CMD) [20]. 

 Q0 Q1 Q2 Q3 Q4 E0 E1 E2 

CMD 7.5 30.6 35.4 20.7 5.8 100   

Expt.   50  50 77 23  

This work 4.2 14.4 59.6 20.6 1.1 34.5 65.2 0.3 

 

 

Martin, Steve W [M S E]
What about the P^n units?
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    In examining the population of edge-sharing Si (En) clusters, the analysis based on ML-FF 

simulations reveals a notable presence of 65.2% E1 and only 0.3% E2 clusters, as shown in Table 

4. This finding contrasts with CMD results, which shows a complete absence of edge-sharing 

clusters [20], aligning with experimental results. For the composition of the edge-sharing E1 SRO 

units of Si, E1Si2 species at 41.9%, E1Si3 species at 19.3%, and E2Si4 species at 0.9% were found. 

These specific population details are shown in Table 5. The majority of E2Si2 within the edge-

sharing category suggests that the 50Li2S-50SiS2 glass maintains a partial chain-like structure, 

characterized by SiS4 tetrahedra interconnected via either S-S edges or S corners [20]. These ML-

FF findings show a closer alignment with experimental observations than does CMD, particularly 

in terms of the accurate representation of Si2 units and the presence of edge-sharing units.   

 

Table 5. Calculated Sin and En population (%) in 50Li2S-50SiS2 glass  

 

 E0 E1 E2 

Si0 4.8 0 0 

Si1 16.9 0 0 

Si2 12.6 41.9 0 

Si3 2.9 19.3 0 

Si4 0 0.9 0.8 

 

    Figure 4 displays the computed Li ionic conductivity of the 50Li2S-50SiS2 glass derived from 

the ML-FF simulations, alongside a comparison with experimental measurements  [12,45]. The 

simulations predict an ionic conductivity of 2.13 mS/cm at 300K (σ300K), which is approximately 

an order of magnitude higher than typical experimental results that  are in the 10−4 S/cm range. 

The activation energy (∆Eact) for Li diffusion calculated in the ML-FF study is ~25 kJ/mole, 

aligning reasonably well with the experimental measurement of 31kJ/mole. Several factors may 

explain the discrepancies between the experimental results and the ML-FF simulation 

outcomes [46]. Distinct synthesis techniques, such as melt-quenching and ball milling, can result 

in varied phases, heterogeneous structures, and the introduction of impurities, all of which 

significantly influence the resulting conductivity values. Further, the ML-FF simulation models 

do not include any impurities, and the  quenching rate in the ML-FF is much faster, leading to 
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more homogeneous amorphous structures. Taking these factors into account, the predicted 

conductivity aligns with the range of experimental measurements. Furthermore, Nernst-Einstein 

equation was used to estimate ionic conductivity, assuming that ion interactions do not influence 

conductivity. This assumption may also contribute to the observed discrepancies between 

theoretical predictions and experimental results.  

 
Figure 4. The conductivity of 50Li2S-50SiS2 glass predicted from ML-FF simulations, and the 

comparison with experimental measurements [12, 45]. 

 

 



19 
 

3.3 Glassy Structure and ionic conductivity of binary Li2S-P2S5 system 

 

 
Figure 5. (a) Neutron structure factor (S(Q)) and (b) partial RDFs for three binary xLi2S-(100-

x)P2S5  glasses (x = 67, 70, 75). 

 

    In this study, we examined the binary LPS glass with three different Li2S concentrations, 

specifically xLi2S-(100-x)P2S5 where x is 67, 70 and 75. Notably, the Li ion conductivity of 

75Li2S-25P2S5 has been reported to be as high as 0.3 – 1.0 mS/cm [15,47]. Figure 5(a) shows the 

neutron structure factor, S(Q), for these three compositions, compared with previous experimental 

and DFT-MD results [15]. The S(Q) of the glassy structure derived from the ML-FF simulations 

shows remarkable agreement across the entire range with existing experimental data, surpassing 

even the DFT-MD results. The intensity of the first principal peak, located at around Q = 1.4 Å-1, 

aligns well for x=67 and x=70 compositions, but slightly underestimate for x=75. The first peak is 

due to intermediate range order of Li-P, P-P, and P-S, corresponding to a periodicity of 4.5 Å. The 

second and third principal peaks, observed at 2.0 Å-1 and 3.8 Å-1, are also reproduced with high 

accuracy. The second peak corresponds to S-S periodicity and the third peak is associated with 

both S-S and P-S short-range periodicities. 

 

    Figure 5(b) shows the partial pair distribution functions (RDFs) for Li-Li, Li-S, Li-P, P-P, P-S 

and S-S. While there is a broad consensus between the three components, certain disparities, 

particularly in the P-P pair correlation, emerge. Typically, two peaks are observed in the P-P 

correlation: one at 2.2 Å representing the direct bonding in the P2S6
4-, and another at 3.5 Å for the 
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corner-sharing P2S7
4- clusters. An analysis of these results reveals an additional peak at 2.9 Å for 

x=67 and x=70. This peak is indicative of the P-P distance in the edge-sharing P2S6
2- clusters. In 

the Li-Li RDF, the first peak for x=75 is slightly shifted towards smaller distances, positioned at 

3.5 Å, compared to 3.7 Å in both x=67 and x=70. The Li-P RDF shows the first peak at 3.1 Å, 

while the P-S RDF has its first peak at 2.0 Å, indicating the P-S bonds in the local clusters, such 

as PS4 tetrahedra. The Li-S and S-S RDFs remain relatively consistent across all three 

compositions. The Li-S and S-S RDFs remain relatively consistent across all compositions, with 

the Li-P RDF showing the first peak at 2.5 Å and the S-S RDF's first and second peaks observed 

at 3.3 Å and 3.9 Å, respectively. These S-S peaks correspond to the S-S distances in inter- and 

intra-PS molecular clusters  [16]. 

 

    Detailed results for bridging sulfur (Pn) and the edge-sharing phosphorus (En) are tabulated in 

Table 6. Usually the edge-sharing unit in the LPS glass is considered less likely to form compared 

to LiSiS glass, especially when Li2S is over 50% [10]. However, the ML-FF simulated glass 

structures contain 16.9% and 9.6% edge-sharing P2S6
2- units, indicated by E1 in Table 6, for 67% 

and 70% Li2S, respectively. Despite variations in the exact populations, the ML-FF simulated glass 

structures reveal that the populations of corner-sharing P2S7
4-, P-P dimer P2S6

4-, and edge-sharing 

P2S6
2- decrease with an increase in Li2S percentage, while the population of PS4

3- rises. Particularly, 

the corner-sharing P1 (P2S7
4-) percentage changes from 26.3% to 20.8% and then to 6.82% as the 

Li2S percentage increases from 67% to 70% and to 75%. This trend aligns with experimental 

results. The rising population of isolated PS4 tetrahedra indicates a reduced mean atomic volume, 

which may account for the increased elastic modulus [6].  

 

Table 6. Qn and En distribution (%) in three xLi2S-(100-x)P2S5 glasses (x = 67, 70, 75) from ML-

FF simulations. 

Li2S 

percentage 

Pn En 

x P0 P1 P2 P3 E0 E1 

67 50.1 26.3 21.5 2.1 83.1 16.9 

70 67.6 20.8 11.3 0.3 90.4 9.6 

75 93.2 6.8 0.0 0.0 100 0 
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 The computed conductivities for the x=67, x=70, and 75 GSEs are 2.2 mS/cm, 2.9 mS/cm, 

and 3.6 mS/cm, respectively, which align well with other computational [17,19] and 

experimental [15,48,49] findings, as shown in Figure 6(a). The calculated diffusion activation 

energies for these compositions are 0.313 eV, 0.307 eV, and 0.303 eV, respectively, which are 

also consistent with experimental and computational results (Figure 6(b)). It was suggested that 

the presence of P2S7
4- anion could suppress lithium ionic conduction [15] due to stronger attraction 

between P2S7
4- and Li+. This is consistent with our predictions on Li ionic conductivity in Figure 

6 and Pn populations in Table 6. The calculations of the Pn species show a significant decrease in 

P1~P3 and drastic increase in Q0 as Li2S concentration increases from 67% to 75%. This explains 

the highest conductivity of 75Li2S-25P2S5 among all three compositions. It is worth noting that 

that the ionic conductivity from ML-FF and other theoretical studies are much higher than 

experimental measurements. Indeed, the ML-FF predictions show less discrepancy compared with 

other theoretical studies. The discrepancy between theory and experiment may arises from the 

relatively low glass forming ability in binary LPS and the experimental samples consist of impurity 

and heterogeneous structures.    

 

The ionic conductivity is related to the diffusion process of Li in the binary glass. When 

comparing the calculated diffusion coefficients, which stand at 2.51 × 10-8 cm2/s for x=67, 2.96 

×10-8 cm2/s for x=70, and 3.16 ×10-8 cm2/s for x=75, the difference in diffusion coefficients 

between x=75 and x=70 is less than that between x=70 and x=65. This is notable since the 

difference in Pn species between x=75 and x=70 is greater than that between x=70 and x=67. This 

suggests that the effect of P2S7
4- is not linear and its effects on the Li diffusion significantly 

increases as P1 specie concentration increases to 26.3%. It is worth mentioning that other factors 

such as the number density of Li could also attribute to the overall conductivity  [42] and a higher 

Li number density in x=75 composition may enhance the Li ionic conductivity. Similar to ionic 

conductivity, the activation energy predicted from theory is systematically lower than 

experimental measurements.   
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Figure 6.  The ML-FF predicted (a) ionic conductivities at room temperature and (b) activation 

energies for three xLi2S-(100-x)P2S5 glasses (x = 67, 70, 75), and the comparison with 

experimental [2,15,48] and other theoretical [17,19] studies. 

 

3.4 Structure and ionic conductivity of ternary 60Li2S-32SiS2-8P2S5 glass  

    The ternary Li2S-SiS2-P2S5 glass exhibits several advantages over its binary counterparts, Li2S-

SiS2 and Li2S-P2S5. The binary Li2S-SiS2 glass demonstrates instability when in contact with 

lithium metal, which limits its application in all-solid-state batteries. The synthesis of Li2S-P2S5 is 

challenging due to the high vapor pressure of P2S5 [14]. In contrast, the ternary Li2S-SiS2-P2S5 

glass composition shows enhanced stability against lithium metal, with P2S5 acting as a 

stabilizer [50]. This glass also exhibits improved glass-forming ability, facilitating the production 

of homogeneous bulk glasses devoid of heterogeneities and phase boundaries [14]. Previous study 

showed that among the 60Li2S-40[(1-x)SiS2-xP2S5] compositions, the variant 60Li2S-32SiS2-

8P2S5 exhibits the highest conductivity at 0.7 mS/cm at room temperature  [13]. In this work, we 

investigate the structural properties and lithium-ion conductivity of the 60Li2S-32SiS2-8P2S5 

compound, aiming to gain a deeper understanding of its efficacy as a solid electrolyte.  

Martin, Steve W [M S E]
Show only kJ/mole
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Figure 7. (a) Neutron structure factor (S(Q)), (b) radial distribution function (RDF), and (c, d) 

partial radial distribution functions for the 60Li2S-32SiS2-8P2S5 glass, as derived from ML-FF 

simulations at room temperature. 

To best of our best knowledge, there have been no experimental or computational studies 

reporting the RDF or neutron structure factor, S(Q), for the ternary 60Li2S-32SiS2-8P2S5 glass 

system. Figure 7(a) shows the computed S(Q) for the 60Li2S-32SiS2-8P2S5 glass from the ML-FF 

simulations. The first peak, appearing at around 1.3 Å-1, is attributed to the Si-S network. The 

second and third peak, located at ~ 2.0 Å-1 and 3.8 Å-1, corresponds to S-S interactions and short-

range order involving S-S, P-S, and Si-S, respectively. Figure 7(b) illustrates the total RDF for this 

ternary glass, marked by three significant peaks. The first peak at 2.1 Å is predominantly due to 

P-S (2.05 Å) and Si-S (2.1 Å) bonds. The subsequent peaks at 2.46 Å and 3.46 Å are indicative of 

Li-S and S-S bonds, respectively. Figure 7(c) depicts the Li partial RDF, where the Li-Si RDF 

reveals two peaks at 3.1 Å and 3.7 Å, similar to our findings in the binary 50Li2S-50SiS2 glass.  

The P-P partial RDF, shown in Figure 7(d), presents a strong peak around 2.2 Å and a weaker 

peak around 3.6 Å, indicating the presence of the P-P bond (P2S6
4-) unit and a low amount of 

corner-sharing P2S7
4- unit, with no edge-sharing P2S6

2- unit. This agrees well with the MAS-NMR 
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experimental data [14]. Moreover, Figure 7(d) indicates that Si-Si and Si-P peaks are at 2.9 Å 

and 3.5 Å, suggesting the coexistence of edge-sharing and corner-sharing SiS4 and PS4 

tetrahedral units within the glass. However, no peaks are observed around 2.2 Å for the Si-Si 

RDF, indicating no Si-Si bonds, normally observed in Si2S6
6- units, are present in our simulated 

ternary glass. This finding contrasts with MAS-NMR experimental data  [14], which suggested 

the presence of 35.7% Si2S6
6-. Additionally, these experimental results indicated that 66.0% of 

phosphorus and 32.8% of silicon exist as isolated PS4 and SiS4 tetrahedral clusters, respectively. 

These isolated tetrahedral units are consistent with the first peaks in partial P-S and Si-S RDFs. 

Table 7. Sin and En distribution (%) in 60Li2S-32SiS2-8P2S5 glass from ML-FF and the comparison 

with experiment [14]. 

   Sin, Pn     En  

 n 0 1 2 3 Q44 E0 E1 E2 

Experiment Si 70.2 5.1 22.7 2.0 0 83.0 17.0 0 

P 85.9 14.0 0 0 0 100 0 0 

This work Si 20.2 25.3 44.2 9.8 0.5 58.4 41.3 0.3 

P 69.8 21.3 8.4 0.6 0 94.3 5.7 0 

 

Table 8. Detailed local environment of P in 60Li2S-32SiS2-8P2S5 glass from ML-FF 

n = # of BS  

(Pn) 

# of Edge-sharing 

units (En) 
P-S-X P-X Population 

0 0   60.8% 

0 0  P 9.0% 

1 0 Si  16.8% 

2 1 Si, Si  5.0% 

 

 

 



25 
 

Table 9. Detailed local environments of Si in 60Li2S-32SiS2-8P2S5 glass from ML-FF 

n= # of BS (Sin) 
# of Edge-sharing units 

(En) 
Si-S-X Population 

0 0   20.2% 

1 0 Si 21.7% 

2 0 Si, Si 7.9% 

2 1 Si, Si 29.5% 

    To further investigate the local environments of P and Si, the dominant local SRO units for P 

and Si are given in Tables 8 and 9. The full data are provided in Table S1 and Table S2. The ML-

FF computed fractions of the various Pn and En SRO units in the simulated glass structure are 

compared with the 31P MAS-NMR experimental data [14], and are shown in Table 7. For P related 

clusters, the ML-FF results reveal a predominant Si0 at 69.8%. Further examination on En indicates 

the distribution of P atoms in PS4
3- tetrahedron at 60.8% and in P2S6

4- units at 9.0% (Table 8). The 

remaining PS4 tetrahedra are mostly corner-sharing with SiS4 tetrahedra, where 16.8% P atoms are 

connected to Si atoms through bridging sulfur, and 3.4% P atoms are connected to P atoms through 

BSs. The E1 PS4 tetrahedra have an even smaller population, accounting for only around 5.7%, 

and these are predominantly edge-sharing with SiS4 tetrahedra. The corner-sharing and edge-

sharing units connecting SiS4 and PS4 are not recognized in previous experimental work [14].  

Regarding Si local environments, our ML-FF predicts 44.2% Si2, 25.3% Si1, and 20.23% 

Si0 species. Similar to the 50Li2S-50SiS2 results, the Si2 species are predominantly edge-sharing 

units. The non-edge-sharing Si units have a slightly larger population, with E0 Si at 58.40% and 

E1 Si at 41.29%. Like the experiments, E2 Si is less likely to be found in this glass. The most 

populated Si environments in our simulated glass are 29.5% in edge-sharing Si2S6
4-, 21.7% in 

corner-sharing Si2S7
3-, and 20.2% in isolated SiS4

4-, as shown in Table 9. This is partly consistent 

with experimental results [14], which claim 32.8% in SiS4
4-, and 17.0% in Si2S6

4-, and 5.1% Si2S7
3-, 

respectively. However, there are no Si-Si bonds (Si2S6
6- units) found in the ML-FF simulated glass, 

while experimental results show there are 35.7%. This may suggest that the simulated glass 

structure is primarily composed of a connected SiS4 network, similar to the 50Li2S-50SiS2 glass, 

with some Si atoms in the network replaced by P atoms, rather than isolated SiS4 and PS4 
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tetrahedral clusters. The difference between the ML-FF simulated glass and experimental 

results could be attributed to fast cooling rates in MD simulations, as well as the different 

procedure (ball-milling and melt-quenching) of obtaining glass experimentally. 

    Next, the Li ion conductivity were determined from the ML-FF in this ternary 60Li2S-32SiS2-

8P2S5 glass at relative high temperatures and were compared to the results with existing 

experimental data  [13,14], as illustrated in Figure 8. Due to the limited timescale of MD 

simulations, the ionic conductivity was computed at high temperatures from 300 to 650 K, whereas 

the experimental data predominantly pertain to low temperatures from -60 to 90 °C. Overall, the 

Li ion conductivity predicted using ML-FF aligns closely with experimental findings. Notably, at 

room temperature, the ML-FF predicts a Li ion conductivity of 2.57 mS/cm, slightly surpassing 

the experimental values of 1.0 mS/cm [14] and 0.7 mS/cm [13]. Furthermore, the ML-FF  

predicted activation barrier for Li diffusion is 26.1 kJ/mole eV, modestly lower than the 

experimental reported values of 30.9 kJ/mole [14]  and 34.7 kJ/mole [13]. It is noteworthy that the 

calculated conductivity for ternary 60Li2S-32SiS2-8P2S5 glass is comparable to that of the binary 

50Li2S-50SiS2 glass (2.17 mS/cm) and the binary LPS glass with a composition of 70Li2S-30P2S5 

(2.9 mS/cm). This implies that the ternary glass possesses relatively high ion conductivity, suitable 

for practical applications, and potentially offers superior stability compared to the binary LPS and 

LiSiS glasses. It is worth noting that the difference between calculated and experimental 

conductivity in the ternary glass is much less than in the binary glass, which could be attributed to 

the increased homogeneity of the ternary samples from experiments [13,14].  
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Figure 8. Calculated Li ion conductivity from ML-FF and the comparison with experiment 

results [14].  

    To elucidate the high ionic conductivity mechanism of this ternary glass, we investigated the Li 

ion diffusion mechanism at room temperature. Figure 9 displays the atomic structure of the ternary 

glass structure from ML-FF simulations, along with a detailed view of the trajectories of typical 

Li-ions over 30 ps at room temperature. These trajectories, illustrated using colored spheres, 

indicate the beginning (b) and ending (e) positions of six lithium ions. Notably, lithium ions #5, 

#6, and #10 demonstrate correlated diffusion behavior around tetrahedra A through D. As they 

migrate out from their initial locations, other lithium ions move in to occupy the positions they 

vacated. Meanwhile, Li ions #8 follows an uncorrelated diffusion path along the tetrahedra A, and 

ions #7 and #9 remains near their original locations.  

    Previous research has suggested that Li cation transport may be associated with the reorientation 

of neighboring anions clusters in LPS glass [40], leading to a low temperature "paddle-wheel" 

effect and enhanced Li ion conductivity. However, the lower glass density in those studies might 

contribute to this effect [3]. In the investigation here, the densities found from ML-FF and 

experiments agree quite well. For this reason,  the potential "paddle-wheel" effect was examined 

more accurately. This effects was illustrated by analyzing the rotation angles of the tetrahedra 

using the Kabsch algorithm [51]. The ML-FF findings reveal significant rotations in tetrahedra C, 
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E, and G (17.3°, 9.7°, and 22.2°, respectively), while tetrahedron D exhibits a smaller rotation of 

5.0°. The remaining tetrahedra rotate to a much less degree, generally between 1° and 3°. It is 

noteworthy that tetrahedra C, E, and G are associated with the correlated diffusion of Li ions #5, 

#6, and #10, suggesting that tetrahedral rotation might facilitate lithium ion diffusion via the 

"paddle-wheel" effect, thereby lowering energy barriers  [52]. Interestingly, tetrahedron A remains 

relatively stationary, even as nearby lithium ions move. This finding underscores the need for 

future research to delve deeper into the underlying mechanisms of the "paddle-wheel" effect and 

its relationship with nearby lithium diffusion.  

 

Figure 9. (a) Atomic model of 60Li2S-32SiS2-8P2S5 glass at room temperature, derived from ML-

FF simulations; (b) magnified view of the local structure, highlighting superimposed trajectories 

of lithium ions over a 30 ps period. The lithium diffusion trajectories are represented by colored 

spheres, where 'b' denotes the initial lithium position and 'e' marks the end position of diffusion 

ruing the 30 ps period. PS4 and SiS4 tetrahedra are distinguished by purple and brown colors, 

respectively. 

 

4. Conclusions 

In summary, a new machine learning force field (ML-FF) has been developed that can be 

used for a range of lithium sulfide GSEs Initially, the ML-FF was validated against density 

functional theory (DFT) calculations, demonstrating good agreement in predicted energy and 

force values. It was then used to generate glass structures which included the compositions 
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50Li2S-50SiS2, 67Li2S-33P2S5, 70Li2S-30P2S5, 75Li2S-25P2S5, and 60Li2S-32SiS2-8P2S5, 

through melt-quench simulations using the developed ML-FF. The lattice parameters of 

crystalline Li10SiP2S12 were also determined to further validate the ML-FF. Our ML-FF accurately 

predicted density, elastic modulus, RDFs, and neutron structure factors. Following this validation, 

the ML-FF was used to calculate the local environments of Si and P atoms in these glasses, as well 

as the Li ionic conductivity from 300 K to 650 K. 

For the 50Li2S-50SiS2 glass, the ML-FF successfully identified the edge-sharing units, a 

feature observed in experiments but not reproduced so-far by classical force fields. Consistent with 

experiments, it predicts that approximately 65% of Si atoms in this glass exist in an edge-sharing 

environment. In the Li2S-P2S5 glass, the ML-FF suggests a minor presence of edge-sharing P2S6
2- 

environments in compositions with 67% and 70% Li2S. The P1 to P4 species decrease in 

concentration with increasing Li2S content, while the P0 species increase in concentration, a trend 

consistent with experimental observations indicating a breakdown of the connected network into 

isolated units as Li2S concentration increases. For the ternary 60Li2S-32SiS2-8P2S5 glass, the ML-

FF accurately predicts P environments but does not identify the Si-Si dimer unit (Si2S6
6-). 

Moreover, it indicates the presence of both corner and edge sharing between PS4 and SiS4 

tetrahedra. These differences highlight that our ML-FF's predictions for the 60Li2S-32SiS2-8P2S5 

structure feature fewer isolated anions compared to experimental data. 

Regarding ionic conductivity at 300K, all five glass compositions demonstrate similar 

magnitudes of conductivity and adhere to the Arrhenius relationship. The 50Li2S-50SiS2 glass 

exhibits the lowest conductivity at 2.1 mS/cm, while the 75Li2S-25P2S5 glass shows the highest at 

3.6 mS/cm. The ternary glass records a conductivity of 2.6 mS/cm, placing it in between. The 

predicted conductivities are approximately an order of magnitude higher than experimental results 

for the binary Li2S-SiS2 and Li2S-P2S5 glasses, but they align closely with the ternary glass. This 

suggests that the ternary glass may be more homogenous than binary glasses. Further, we analyzed 

30-ps Li-ion trajectories within a section of the 60Li2S-32SiS2-8P2S5 glass. Observations indicate 

that lithium ions near SiS4 or PS4 tetrahedra, exhibiting larger rotations, show more pronounced 

diffusion compared to those near less rotating tetrahedra. However, it is not a consistent rule that 

all tetrahedra near diffused lithium ions demonstrate significant rotation. 
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Table S1. Detailed local environment of P in 60Li2S-32SiS2-8P2S5 glass from ML-FF 

# of Bridging 
sulfur (Qn) 

# of Edge-sharing 
units (En) P-S-X P-X Population 

0 0   60.78% 
0 0  P 8.98% 
1 0 Si  16.80% 
1 0 Si P 1.02% 
1 0 P  3.44% 
2 0 Si, Si  1.17% 
2 0 Si, Si P 0.16% 
2 0 Si, P  1.80% 
2 0 P, P  0.08% 
2 1 Si, Si  5.00% 
2 1 P, P  0.16% 
2 1 Si, Si P 0.08% 
3 0 Si, Si, Si  0.08% 
3 1 Si, Si, Si  0.31% 
3 1 Si, Si, P  0.16% 
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Table S2. Detailed local environment of Si in 60Li2S-32SiS2-8P2S5 glass from ML-FF 

# of Bridging 
sulfur 

# of Edge-
sharing units Si-S-X Population 

0 0   20.23% 
1 0 Si 21.72% 
1 0 P, P 3.59% 
2 0 Si, Si 7.89% 
2 0 Si, P 3.24% 
2 0 P, P 0.82% 
2 1 Si, Si 29.45% 
2 1 P, P 2.77% 
3 0 Si, Si, Si 0.70% 
3 0 Si, Si, P 0.20% 
3 1 Si, Si, Si 6.37% 
3 1 Si, Si, P 1.95% 
3 1 Si, P, P 0.51% 
3 1 P, P, P 0.08% 
4 1 Si, Si, Si, Si 0.12% 
4 1 Si, P, P, P 0.04% 
4 2 Si, Si, Si, Si 0.31% 
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