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ABSTRACT

Recent advancements in large language models have spurred sig-
nificant developments in Time Series Foundation Models (TSFMs).
These models claim great promise in performing zero-shot forecast-
ing without the need for specific training, leveraging the extensive
“corpus” of time-series data they have been trained on. Forecasting
is crucial in predictive building analytics, presenting substantial
untapped potential for TSFMS in this domain. However, time-series
data are often domain-specific and governed by diverse factors such
as deployment environments, sensor characteristics, sampling rate,
and data resolution, which complicates generalizability of these
models across different contexts. Thus, while language models ben-
efit from the relative uniformity of text data, TSFMs face challenges
in learning from heterogeneous and contextually varied time-series
data to ensure accurate and reliable performance in various appli-
cations. This paper seeks to understand how recently developed
TSFMs perform in the building domain, particularly concerning
their generalizability. We benchmark these models on three large
datasets related to indoor air temperature and electricity usage. Our
results indicate that TSFMs exhibit marginally better performance
compared to statistical models on unseen sensing modality and/or
patterns. Based on the benchmark results, we also provide insights
for improving future TSFMs on building analytics.
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1 INTRODUCTION

Building on the rapid advancement of large language models, time-
series foundation models (TSFMs) have also experienced significant
development as of late. Recent advancements in TSFMs via pretrain-
ing on large and diverse time-series datasets, such as MOMENT [8]
and TimesFM [4], have shown promising results across various
applications. Their main promise lies in their ability to perform
zero-shot forecasting without requiring specific training due to the
vast “corpus” of time-series data they are trained on.

However, the presence of a large corpus alone might not warrant
these models’ ability to generalize effectively. Unlike language data,
which can be effectively leveraged due to uniform grammatical
rules and consistent linguistic structures, time-series data is inher-
ently heterogeneous. Aggregated time-series datasets often consist
of sequences from vastly disparate sources, and thus the approaches
to representing language as tokens uniformly may not work for
various numerical time series data [9, 14]. These differences pose
significant challenges for TSFMs, as they must learn to adapt to a
wide range of temporal and contextual attributes unique to each
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dataset. Consequently, while the vast corpus of time-series data
provides a rich resource, it might not guarantee the same level of
generalizability seen in language models.

The generalizability of these models is further challenged as
there are often unique confounding variables to consider in time-
series data. With buildings as an example: (1) Controlled Dynamics:
temperature and electricity measurements are influenced by the
operation of HVAC systems, such as duty-cycling schedule and
setpoint changes [10], and by occupancy patterns, as buildings are
operated differently when they are occupied; (2) Natural Dynamics:
external factors such as outdoor air temperature, solar irradience
level, and activities of occupants [5] introduce natural multivariate
dynamics present in building datasets. Both controlled and natural
dynamics introduce significant complexity to predictive modeling
in this domain, presenting challenges not typically encountered in
language processing.

Even though these complex dynamics present significant chal-
lenges, TSFMs could still potentially revolutionize building analyt-
ics, which are currently hindered by the ad-hoc model development
across diverse buildings. Together with robustness to unfamiliar
datasets, the applicability to real-life building analytics would en-
tail stable performance across various metrics and conditions, and
handle the diverse confounding effects present in building con-
trol scenarios. However, current research on predictive analytics
for buildings is still largely based on physics-based and conven-
tional machine-learning models [3, 18], and there is no compre-
hensive evaluation of the readiness of TSFMs for these analytic
tasks. We take the first step in addressing this gap by conducting a
multifaceted assessment of their readiness across varying context
and prediction durations and datasets. Our evaluation framework,
therefore, focuses on generalizability across datasets and modalities.
Specifically, we focus on univariate time-series forecasting with
TSFMs that can make zero-shot predictions of two key physical
values in predictive building management: electricity usage and
indoor air temperature. Despite the known benefits of including
covariates in predictions for building analytics, we focus on uni-
variate predictions due to the simple fact that all pre-trained TSFMs
available today can perform univariate forecasting while only a few
allow including covariates.

We arrived at the following findings through evaluation of TSFMs
on forecasting tasks for buildings: (1) Dataset-level familiarity:
TSFMs outperform statistical models only on previously seen elec-
tricity datasets, with marginal improvement on unseen ones. (2)
Modality-level familiarity: On large-scale indoor air temperature
data, TSFMs perform better over longer durations, while statis-
tical models, particularly AutoARIMA, perform better for shorter
durations and nearly match the performance of the top TSFMs on
unseen datasets for seen sensor modalities.

2 EXISTING TIME-SERIES FOUNDATION
MODELS

A TSFM is a large model pre-trained on massive amounts of time-
series data. TSFMs are designed to learn about general time-series
patterns and leverage zero-shot or transfer learning techniques to
perform time-series analysis on previously unseen datasets [4, 8].
As this is a nascent and evolving field with most models released
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in 2024, we first review existing TSFMs and summarize their archi-
tectures and attributes.

Encoder-based architecture. MOMENT uses an encoder and light-
weight prediction heads as backbone [8]. The model tokenizes
input data using fixed-length patches and employs transformers
for prediction, incorporating reversible instance normalization for
re-scaling and centering time-series. This approach allows MOMENT
to be adapted to various downstream tasks. Chronos [1] uses T5
architecture [15] for probabilistic forecasting. Chronos tokenizes
time-series values using scaling and quantization and then trains
existing transformer-based language model architectures on these
tokenized time-series using cross-entropy loss. SimMTM [6] uses an
encoder-based Transformer architecture with modules for masking,
representation learning, similarity learning, and reconstruction.
Uni2TS [21] utilizes encoder-only transformers for multivariate
time-series, handling different patches and variates. It addresses
cross-frequency learning, covariate handling, and probabilistic fore-
casting. UniTime [12] uses an encoder-based transformer, incorpo-
rating semantic instructions through a language encoder to handle
domain confusion.

Decoder-only architecture. Lagl1lama [16] uses the Llama ar-
chitecture [19] for multivariate time-series with a focus on prob-
abilistic forecasting. It employs lag features, data augmentation,
and the conventional Llama architecture for robust predictions.
TimesFM [4] model employs a decoder-based transformer for multi-
variate time-series, processing patches through residual blocks to
generate tokens for forecasting.

Others. TimelLLM [11] reprograms an embedding-visible language
foundation model, such as Llama and GPT-2 models for univariate
time-series forecasting by transforming data into a text format
suitable for language models. TimeGPT [7] leverages a transformer-
based architecture. TimeGPT also deals with missing data, irregular
timestamps, uncertainty quantification, fine-tuning, and anomaly
detection.

Table 1 summarizes the attributes of the above models. Zero-
shot means whether models can make predictions without any
fine-tuning or they are available without the need for training.
We observe that most of these models cannot handle covariates
or irregular (i.e., sampling rate varies over time) time-series data.
To clarify, handling covariates leverages the covariant structure
between external variables to predict a target variable. In contrast,
multivariate forecasting predicts multiple variables simultaneously,
which can assume independence between variables while also in-
corporating the covariance structure between them in some cases.
Though covariates certainly impact building operations, due to
limited model availability, we focus on six models with zero-shot
abilities in making univariate predictions in this paper.

Table 1: Comparison of TSFM Attributes

Models Zero Multi Covariate Irregular Task Takes
Shot Resolution Handling Time-series Agnostic Timestamps

TimelLM (2024) X v v x v X
Uni2Ts (2024) v v v X X v
SimMTM (2023) X v X X X X
TimeGPT (2024) v v v v ? v
Chronos (2024) v v X X X X
MOMENT (2024) v v X X v X
LaglLlama (2024) v v X X X v
TimesFM (2024) v v X X X X
UniTime (2024) X v X X X X
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Table 2: Data Familiarity and Model Structures

Models Level of familiarity Level of familiarity —Obj. Transformer
with electricity with temperature architecture

Uni2TS  Modality, Dynamics  Modality NLL Encoder

Chronos Modality, Dynamics, Modality CE Encoder-
Dataset decoder

MOMENT  Modality, Dynamics, Modality MSE Encoder
Dataset

LaglLlama Modality, Dynamics, None NLL Decoder
Dataset

TimesFM Dataset Modality MSE Decoder

TimeGPT ? ? ? ?

MSE: Mean Squared Error, NLL: Negative Log Likelihood, CE: Cross-Entropy

Table 2 summarizes the data familiarity and model structures for
the studied TSFMs. We use three categories for data familiarity: (1)
Modalities: the model is trained with data from the same modality
as the test set; (2) Dynamics: the model’s training corpus included
time-series data generated by dynamical processes similar to that
governing the test data; (3) Dataset: the UCI electricity dataset
[20] is the only dataset that some of the TFSMs we evaluate were
exposed to during training. We name it dataset-level familiarity if
the model is trained with the UCI dataset.

3 METHODOLOGY

We begin by discussing the datasets gathered for our analysis of
TSFMs. Our analysis aims to provide an initial understanding of
how these models perform over longer horizons, encompassing
seasonal variations and diverse household behaviors. Specifically,
we focus on temperature and electricity consumption, and compare
the results with Python implementations of univariate statistical
models, including AutoARIMA [17], Seasonal ARIMA (S-ARIMA) [17],
and BestFit (a 5th-degree polynomial function with learned coeffi-
cients). Each statistical model was trained using data from the con-
text window for each prediction, allowing them to act as zero-shot
predictors and ensuring a head-to-head comparison with TSFMs.
We use the following versions of the TSFMs in our study: timegpt-
1-long-horizon, google/timesfm-1.0-200m, amazon/chronos-t5-large,
moirai-1.0-R-large, and MOMENT-1-large.

3.1 Large Public Datasets

3.1.1 ecobee DYD Dataset. To test the general ability of TSFMs in
predicting indoor temperature, we utilized a large publicly available
dataset from ecobee [13]. This dataset is a subset of ecobee’s Donate
Your Data program, containing data from 1,000 homes located in
four U.S. states—California, Texas, Illinois, and New York—collected
in 2017 at 5-minute intervals with a temperature resolution of 1°F.
To ensure statistically significant yet computationally feasible tests,
we selected eight houses with the least number of missing ther-
mostat temperature values from each state, resulting in 32 houses.
A starting point was sampled from each month, using the same
starting points across models for a deterministic comparison, while
resampling starting points for each house to ensure greater time
diversity. This approach allows us to capture diverse house behav-
iors, climates, and seasonal variations. Sampling starting points
was mainly necessary because the data duration changes based on
varying context windows and prediction horizon values.
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3.1.2  UCI Electricity Data. Similarly, to evaluate the general ca-
pability of these models in energy consumption predictions, we
used the UCI Electricity Load Diagrams dataset [20]. This dataset,
frequently used to evaluate forecasting algorithsm, provides an
opportunity to reconsider the performance rankings of TSFMs us-
ing different metrics. The dataset records electricity consumption
in Watts for 370 Portuguese clients from 2011 to 2014, sampled at
15-minute intervals. We sampled 30 houses in this dataset, and for
each season, we sampled a starting point, resulting in 16 starting
points for the each client. This method ensures a comprehensive
evaluation across different seasonal contexts and house specifics.

3.1.3 Smart™. The dataset contains whole-house electricity con-
sumption for 114 single-family apartments for the period of 2014-
2016 in kW [2], sampled every 15 minutes. Similar to the previous
approach, we sampled 30 houses in this dataset and, for each season,
sampled 4 different starting points.

We analyzed the list of training datasets presented by each TSFM.
None of them included indoor temperature data or used any elec-
tricity data from Ambherst, MA, USA, ensuring no data leakage
for ecobee and Smart*, while some had seen UCI datasets in their
training.

3.2 Experiment Design
We define the following notations employed throughout this paper:

e H: Prediction Length (number of samples)
e C: Context Length (number of samples)
fs: Sampling Rate (minutes)

D: Context Duration (hours), defined as D = C6'(J)[S

P: Prediction Duration, also called Horizon (hours), defined
H-fs
60

While previous literature typically presents results in terms of
the number of prediction steps/samples, we express these intervals
in terms of hours since it is (a) more intuitive for electricity and tem-
perature predictions, and (b) more comprehensible, particularly as
we resample data to analyze performance across various durations.

In our analysis, we selected each context-prediction duration
pair (D, P) based on two criteria: C < 512, and H < 64. The primary
rationale behind this choice is that most models are optimized to
make predictions within these limits [1, 4, 8]. During this selection,
we considered the sampling rate and resampled to a lower temporal
resolution when necessary. The context-prediction-sampling rate
tuples (D(h), P(h), fs(mins)) are as follows:

{(24,4,5), (36,4,5), (36, 6, 10),

(48, 6, 10), (48, 12, 15), (96, 12, 15), (168, 24,30}
{(48,12,15), (72,12, 15), (96, 12, 15),

(48,24, 15), (72, 24, 15), (96, 24, 30), (168, 24, 30)}

as P =

ecobee:

Smart* and UCI:

For the Smart™ and UCI datasets, we started with a larger number
of horizons due to the original sampling rate of UCI being 15 min-
utes. We maintained this rate for the Smart* dataset to ensure a fair
comparison between the two datasets. Additionally, considering
the common weekly patterns in household behavior, we aimed to
test the prediction performance of these models when a week of
data is provided to predict the next day. Hence, we introduced an
additional tuple (i.e. (168, 24,30)) to account for this pattern.
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Table 3: RMSE values for forecasting performance. The best per row is bold, and the second best is underscored. Parameter

values are in units of hours.

Data Parameters Models
D P AutoARIMA S-ARIMA BestFit MOMENT  Chronos’ TimeGPT LaglLlama’ TimesFM  Uni2TS
48 12 276.6 409.4 140.0 127.6 78.54 192.6 279.4 105.2 204.4
z 48 24 347.3 638.5 138.6 178.2 93.83 204.4 376.8 120.7 275.8
£ 72 12 241.1 375.4 153.6 1433 68.96 190.4 273.3 87.88 147.8
5 72 24 269.0 562.3 172.7 179.4 80.31 200.7 359.4 95.45 187.8
) 9% 12 221.8 271.7 175.4 149.8 69.67 193.2 220.0 89.17 123.5
= 9 24 210.1 209.4 1873 205.9 81.18 185.6 338.5 80.87 79.07
168 24 151.4 148.1 190.7 218.4 71.71 182.4 208.4 75.42 72.24
- 48 12 913 1,053 965 907 1,076 929 1,059 897 145228
= 48 24 936 1,097 970 932 1,113 956 1,148 925 1,699,758
=3 72 12 893 1,019 956 899 1,030 925 993 886 339,39
*35 72 24 921 1,034 972 926 1,071 951 1,092 914 305,820
& 9% 12 874 1,022 952 884 1,029 909 948 869 18,741
= % 24 775 842 840 787 879 765 944 763 734,520
=~ 168 24 746 830 832 765 830 748 829 735 340,623
24 4 1.047 1.194 1.448 1.069 1.532 1.145 1.968 1.154 1.451
@ 36 4 1.124 1.129 2.635 1.252 1.679 1.217 2.017 1.213 1.289
kY 36 6 1.376 1.582 2.686 1.276 1.891 1.246 2.181 1.390 1.522
E 43 6 1.240 1.465 1.973 1.193 1.709 1.140 2.033 1.204 1.400
s 48 12 1.826 2.556 1.983 1.432 1.911 1.568 2.243 1.319 1.897
= 96 12 1.824 2.243 2.154 1512 1.732 1.625 2.033 1.236 1.657
168 24 1.685 1.673 2.337 1.830 1.870 1.719 2.343 1.379 1.637

"Models that have seen the UCI dataset in their training phase

4 EXPERIMENTAL RESULTS

With the desiderata of understanding the long-term general perfor-
mance of TSFMs in predicting electricity usage and indoor temper-
ature, we conducted an analysis using three large datasets. Table 3
illustrates the performance of each model, measured by RMSE. Our
results provide insights into model performance across a diverse
range of seasons and household characteristics.

Our first dataset, UCI as shown in Table 3 (a), was used to train
several TSFMs. Comparing model performance on familiar versus
unfamiliar data reveals their generalization ability. Three models
trained on this dataset (Chronos, TimesFM, MOMENT) perform best,
especially for shorter durations. An interesting observation arises
with the Uni2TS model, which approaches the performance of the
others as the duration increases though it has not seen this data
before. This phenomenon may occur because the data is resam-
pled as the duration increases, resulting in a dataset that differs
slightly from the original training data sampled every 15 minutes.
Consequently, Uni2TS manages to close the performance gap. Com-
paring statistical models with foundation models, we observed
that BestFit outperforms models that have not been trained on
the UCI dataset (TimeGPT and Uni2TS) on C = 48 and 72. Besides,
AutoARIMA and BestFit outperform Lagllama consistently despite
LaglLlama being trained on the dataset.

Switching to the Smart™ electricity dataset (shown in Table 3
(b)) reveals a shift in model performance. The number of steps is
not strictly different for varying durations, as data is resampled
for longer periods, so performance discrepancies reflect behav-
ioral characteristics. Evaluated on the Smart* dataset, Chronos
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loses its leading position to TimesFM. MOMENT and TimeGPT are
comparable in terms of absolute performance, following TimesFM
and AutoARIMA. Other FMs perform worse, and Uni2TS shows
large errors due to outliers. Regarding statistical models, overall,
AutoARIMA performs consistently close to the best TSFM TimesFM,
BestFit outperforms three foundation models, and S-ARIMA out-
performs two foundation models. Compared to the observations in
the UCI dataset, the considerably larger errors of TSFMs suggest the
challenging predictability of Smart™ and the limited generalizability
of TSFMs, narrowing the performance gap with statistical models.

The ecobee dataset presents a more diverse set of results (Ta-
ble 3(c)), with statistical models outperforming others for shorter
durations. As the duration increases, temperature variations tend
to smooth out, where TSFMs seem to perform better. Nonethe-
less, AutoARIMA remains competitive, nearly matching the best-
performing forecasting models. When comparing MOMENT, TimeGPT,
and TimesFM, we find that TimesFM excels in long-duration predic-
tions, whereas MOMENT and TimeGPT perform best during moderate
durations where temperature changes are less variable. This nu-
anced performance indicates the importance of considering duration-
specific characteristics when evaluating model efficacy.

In summary, models that have been trained using the UCI dataset,
such as Chronos, TimesFM, and MOMENT, demonstrated superior
forecasting abilities on the same dataset. Shifting to the unseen
electricity dataset, the performance gap between statistical models
and TSFMs is marginal, indicating limited generalizability across
datasets. For indoor air temperature forecasting, TSFMs generally
outperform statistical models across extended prediction horizons
with the lowest errors ranging from 1 to 1.4°F for durations up to 24
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hours. Conversely, shorter durations highlight the efficacy of statis-
tical models, particularly AutoARIMA, which achieves comparative
or superior accuracy (1°F).

5 DISCUSSION AND CONCLUSIONS

Our investigation stemmed from the belief that TSFMs, trained
on diverse time-series data, could generalize to unseen settings.
Despite training statistical models using only context window data
for each prediction, we found marginal differences between TSFMs
and statistical models on unseen datasets. In domains like indoor
air temperature, where TSFMs lack familiar data, performance is
comparable to statistical models. Beyond empirical insights, we
identify areas needing further exploration and key features required
for TSFMs.

Incorporating Context: Time-series data presents unique chal-
lenges that current models struggle to address. Models like UniTime
[12] and TimeLLM [11] incorporate context but are not zero-shot
predictors. In contrast, zero-shot TSFMs typically rely only on time-
series data, lacking auxiliary context that could improve predictions.
Unlike language models that leverage contextual cues such as syn-
tax and semantics, time-series data often lacks this information,
complicating pattern recognition. Additionally, the variability in
time-series data, driven by factors like physical processes and sen-
sor characteristics, adds complexity. To enhance robustness, TSFMs
need to incorporate auxiliary information or undergo fine-tuning
to account for this diversity.

Exploring New Attributes: Our study marks an initial exploration
of TSFMs in predictive building analytics, but many attributes, such
as handling covariates and irregular time-series, remain underex-
plored due to only a few TSFMs providing such features. While
Section 2 outlines existing features in TSFMs, a more thorough
investigation is required to assess their performance. Further ex-
ploration could unlock the potential of TSFMs in building analytics
and other cyber-physical systems.

Based on our findings, we propose two key attributes for fu-
ture TSFMs: (1) Task-agnostic models that handle a range of tasks
beyond forecasting, such as classification and anomaly detection,
without requiring task-specific fine-tuning. This can be achieved
using pre-trained task-specific heads [8] or the design of natural
language outputs. Replacing task-specific heads enables reasoning
tailored to each task, while the integration of natural language
will allow for more intuitive time-series analysis and user-friendly
explanations. (2) The ability to integrate contextual metadata via
natural language, enhancing model performance by incorporating
factors like operational settings, weather, or occupancy patterns
that influence building energy consumption and thermal dynamics.

In conclusion, the effectiveness of TSFMs can be preasumably
further enhanced by integrating essential metadata and account-
ing for confounding variables, which are critical in the context of
building physics. Our future research aims to improve the appli-
cability of TSFMs in reliable building analytics by incorporating
physics-based insights, robust covariate handling, and contextual
metadata into these models.

ACKNOWLEDGMENTS

This research was sponsored in part by: Pennsylvania Infrastruc-
ture Technology Alliance (PITA); the Air Force Office of Scientific

173

BUILDSYS 24, November 7-8, 2024, Hangzhou, China

Research under Cooperative Agreement #FA95502210193; the DEV-
COM ARL under Cooperative Agreement #W911NF-17-2-0196; and,
the NIHm DOT Center under Award #1P41EB028242. Our code can
be found in https://github.com/nesl/TSFM_Building.

REFERENCES

[1] Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro
Mercado, Huibin Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebas-
tian Pineda Arango, Shubham Kapoor, et al. 2024. Chronos: Learning the language
of time series. arXiv preprint arXiv:2403.07815 (2024).

Sean Barker, Aditya Mishra, David Irwin, Emmanuel Cecchet, Prashant Shenoy,
Jeannie Albrecht, et al. 2012. Smart™: An open data set and tools for enabling
research in sustainable homes. SustKDD, August 111, 112 (2012), 108.

Yongbao Chen, Mingyue Guo, Zhisen Chen, Zhe Chen, and Ying Ji. 2022. Physical
energy and data-driven models in building energy prediction: A review. Energy
Reports 8 (2022), 2656—2671.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. 2024. A decoder-only
foundation model for time-series forecasting. https://doi.org/10.48550/arXiv.
2310.10688 arXiv:2310.10688 [cs].

Longquan Diao, Yongjun Sun, Zejun Chen, and Jiayu Chen. 2017. Modeling
energy consumption in residential buildings: A bottom-up analysis based on
occupant behavior pattern clustering and stochastic simulation. Energy and
Buildings 147 (2017), 47-66. https://doi.org/10.1016/J.ENBUILD.2017.04.072
Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, and Ming-
sheng Long. 2023. SimMTM: A Simple Pre-Training Framework for Masked Time-
Series Modeling. (Oct. 2023). http://arxiv.org/abs/2302.00861 arXiv:2302.00861.
Azul Garza, Cristian Challu, and Max Mergenthaler-Canseco. 2024. TimeGPT-1.
(May 2024). http://arxiv.org/abs/2310.03589 arXiv:2310.03589 [cs, stat].
Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur
Dubrawski. 2024. MOMENT: A Family of Open Time-series Foundation Models.
http://arxiv.org/abs/2402.03885 arXiv:2402.03885 [cs].

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. 2024. Large language
models are zero-shot time series forecasters. Advances in Neural Information
Processing Systems 36 (2024).

Tyler Hoyt, Edward Arens, and Hui Zhang. 2015. Extending air temperature
setpoints: Simulated energy savings and design considerations for new and
retrofit buildings. Building and Environment 88 (2015), 89-96.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi,
Pin-Yu Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. 2024.
Time-LLM: Time Series Forecasting by Reprogramming Large Language Models.
http://arxiv.org/abs/2310.01728 arXiv:2310.01728 [cs].

Xu Liu, Junfeng Hu, Yuan Li, Shizhe Diao, Yuxuan Liang, Bryan Hooi, and Roger
Zimmermann. 2024. UniTime: A Language-Empowered Unified Model for Cross-
Domain Time Series Forecasting. (Feb. 2024). https://doi.org/10.48550/arXiv.
2310.09751 arXiv:2310.09751 [cs].

Na Luo and Tianzhen Hong. 2022. Ecobee Donate Your Data 1,000 homes in 2017.
(2022). https://doi.org/10.25584/ecobee/1854924

Mike A Merrill, Mingtian Tan, Vinayak Gupta, Tom Hartvigsen, and Tim Althoff.
2024. Language Models Still Struggle to Zero-shot Reason about Time Series.
arXiv preprint arXiv:2404.11757 (2024).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yangi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text transformer. Journal of machine
learning research 21, 140 (2020), 1-67.

Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Hena Ghonia, Rishika Bhag-
watkar, Arian Khorasani, Mohammad Javad Darvishi Bayazi, George Adamopou-
los, Roland Riachi, Nadhir Hassen, Marin Bilog, Sahil Garg, Anderson Schneider,
Nicolas Chapados, Alexandre Drouin, Valentina Zantedeschi, Yuriy Nevmyvaka,
and Irina Rish. 2024. Lag-Llama: Towards Foundation Models for Probabilistic
Time Series Forecasting. http://arxiv.org/abs/2310.08278 arXiv:2310.08278 [cs].
Seabold Skipper and Perktold Josef. 2010. statsmodels: Econometric and statistical
modeling with python. 9th Python in Science Conference (2010).

Ying Sun, Fariborz Haghighat, and Benjamin CM Fung. 2020. A review of the-
state-of-the-art in data-driven approaches for building energy prediction. Energy
and Buildings 221 (2020), 110022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

Artur Trindade. 2015. ElectricityLoadDiagrams20112014. UCI Machine Learning
Repository. DOI: https://doi.org/10.24432/C58C86.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese,
and Doyen Sahoo. 2024. Unified Training of Universal Time Series Forecasting
Transformers. (May 2024). http://arxiv.org/abs/2402.02592 arXiv:2402.02592.

[10

[11

[12

(13]

[14

[15

[16

o
)

[18

[19]

[20

[21



	Abstract
	1 Introduction
	2 Existing time-series Foundation Models
	3 Methodology
	3.1 Large Public Datasets
	3.2 Experiment Design

	4 Experimental Results
	5 Discussion and Conclusions
	Acknowledgments
	References

