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dataset. Consequently, while the vast corpus of time-series data

provides a rich resource, it might not guarantee the same level of

generalizability seen in language models.

The generalizability of these models is further challenged as

there are often unique confounding variables to consider in time-

series data. With buildings as an example: (1) Controlled Dynamics:

temperature and electricity measurements are in�uenced by the

operation of HVAC systems, such as duty-cycling schedule and

setpoint changes [10], and by occupancy patterns, as buildings are

operated di�erently when they are occupied; (2) Natural Dynamics:

external factors such as outdoor air temperature, solar irradience

level, and activities of occupants [5] introduce natural multivariate

dynamics present in building datasets. Both controlled and natural

dynamics introduce signi�cant complexity to predictive modeling

in this domain, presenting challenges not typically encountered in

language processing.

Even though these complex dynamics present signi�cant chal-

lenges, TSFMs could still potentially revolutionize building analyt-

ics, which are currently hindered by the ad-hoc model development

across diverse buildings. Together with robustness to unfamiliar

datasets, the applicability to real-life building analytics would en-

tail stable performance across various metrics and conditions, and

handle the diverse confounding e�ects present in building con-

trol scenarios. However, current research on predictive analytics

for buildings is still largely based on physics-based and conven-

tional machine-learning models [3, 18], and there is no compre-

hensive evaluation of the readiness of TSFMs for these analytic

tasks. We take the �rst step in addressing this gap by conducting a

multifaceted assessment of their readiness across varying context

and prediction durations and datasets. Our evaluation framework,

therefore, focuses on generalizability across datasets and modalities.

Speci�cally, we focus on univariate time-series forecasting with

TSFMs that can make zero-shot predictions of two key physical

values in predictive building management: electricity usage and

indoor air temperature. Despite the known bene�ts of including

covariates in predictions for building analytics, we focus on uni-

variate predictions due to the simple fact that all pre-trained TSFMs

available today can perform univariate forecasting while only a few

allow including covariates.

We arrived at the following �ndings through evaluation of TSFMs

on forecasting tasks for buildings: (1) Dataset-level familiarity:

TSFMs outperform statistical models only on previously seen elec-

tricity datasets, with marginal improvement on unseen ones. (2)

Modality-level familiarity: On large-scale indoor air temperature

data, TSFMs perform better over longer durations, while statis-

tical models, particularly AutoARIMA, perform better for shorter

durations and nearly match the performance of the top TSFMs on

unseen datasets for seen sensor modalities.

2 EXISTING TIME-SERIES FOUNDATION
MODELS

A TSFM is a large model pre-trained on massive amounts of time-

series data. TSFMs are designed to learn about general time-series

patterns and leverage zero-shot or transfer learning techniques to

perform time-series analysis on previously unseen datasets [4, 8].

As this is a nascent and evolving �eld with most models released

in 2024, we �rst review existing TSFMs and summarize their archi-

tectures and attributes.

Encoder-based architecture. MOMENT uses an encoder and light-

weight prediction heads as backbone [8]. The model tokenizes

input data using �xed-length patches and employs transformers

for prediction, incorporating reversible instance normalization for

re-scaling and centering time-series. This approach allows MOMENT

to be adapted to various downstream tasks. Chronos [1] uses T5

architecture [15] for probabilistic forecasting. Chronos tokenizes

time-series values using scaling and quantization and then trains

existing transformer-based language model architectures on these

tokenized time-series using cross-entropy loss. SimMTM [6] uses an

encoder-based Transformer architecture with modules for masking,

representation learning, similarity learning, and reconstruction.

Uni2TS [21] utilizes encoder-only transformers for multivariate

time-series, handling di�erent patches and variates. It addresses

cross-frequency learning, covariate handling, and probabilistic fore-

casting. UniTime [12] uses an encoder-based transformer, incorpo-

rating semantic instructions through a language encoder to handle

domain confusion.

Decoder-only architecture. LagLlama [16] uses the Llama ar-

chitecture [19] for multivariate time-series with a focus on prob-

abilistic forecasting. It employs lag features, data augmentation,

and the conventional Llama architecture for robust predictions.

TimesFM [4] model employs a decoder-based transformer for multi-

variate time-series, processing patches through residual blocks to

generate tokens for forecasting.

Others. TimeLLM [11] reprograms an embedding-visible language

foundation model, such as Llama and GPT-2 models for univariate

time-series forecasting by transforming data into a text format

suitable for language models. TimeGPT [7] leverages a transformer-

based architecture. TimeGPT also deals with missing data, irregular

timestamps, uncertainty quanti�cation, �ne-tuning, and anomaly

detection.

Table 1 summarizes the attributes of the above models. Zero-

shot means whether models can make predictions without any

�ne-tuning or they are available without the need for training.

We observe that most of these models cannot handle covariates

or irregular (i.e., sampling rate varies over time) time-series data.

To clarify, handling covariates leverages the covariant structure

between external variables to predict a target variable. In contrast,

multivariate forecasting predicts multiple variables simultaneously,

which can assume independence between variables while also in-

corporating the covariance structure between them in some cases.

Though covariates certainly impact building operations, due to

limited model availability, we focus on six models with zero-shot

abilities in making univariate predictions in this paper.

Table 1: Comparison of TSFM Attributes

Models
Zero

Shot

Multi

Resolution

Covariate

Handling

Irregular

Time-series

Task

Agnostic

Takes

Timestamps

TimeLLM (2024) × ✓ ✓ × ✓ ×

Uni2TS (2024) ✓ ✓ ✓ × × ✓

SimMTM (2023) × ✓ × × × ×

TimeGPT (2024) ✓ ✓ ✓ ✓ ? ✓

Chronos (2024) ✓ ✓ × × × ×

MOMENT (2024) ✓ ✓ × × ✓ ×

LagLlama (2024) ✓ ✓ × × × ✓

TimesFM (2024) ✓ ✓ × × × ×

UniTime (2024) × ✓ × × × ×
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Table 2: Data Familiarity and Model Structures

Models Level of familiarity

with electricity

Level of familiarity

with temperature

Obj. Transformer

architecture

Uni2TS Modality, Dynamics Modality NLL Encoder

Chronos Modality, Dynamics,

Dataset

Modality CE Encoder-

decoder

MOMENT Modality, Dynamics,

Dataset

Modality MSE Encoder

LagLlama Modality, Dynamics,

Dataset

None NLL Decoder

TimesFM Dataset Modality MSE Decoder

TimeGPT ? ? ? ?

MSE: Mean Squared Error, NLL: Negative Log Likelihood, CE: Cross-Entropy

Table 2 summarizes the data familiarity and model structures for

the studied TSFMs. We use three categories for data familiarity: (1)

Modalities: the model is trained with data from the same modality

as the test set; (2) Dynamics: the model’s training corpus included

time-series data generated by dynamical processes similar to that

governing the test data; (3) Dataset: the UCI electricity dataset

[20] is the only dataset that some of the TFSMs we evaluate were

exposed to during training. We name it dataset-level familiarity if

the model is trained with the UCI dataset.

3 METHODOLOGY

We begin by discussing the datasets gathered for our analysis of

TSFMs. Our analysis aims to provide an initial understanding of

how these models perform over longer horizons, encompassing

seasonal variations and diverse household behaviors. Speci�cally,

we focus on temperature and electricity consumption, and compare

the results with Python implementations of univariate statistical

models, including AutoARIMA [17], Seasonal ARIMA (S-ARIMA) [17],

and BestFit (a 5th-degree polynomial function with learned coe�-

cients). Each statistical model was trained using data from the con-

text window for each prediction, allowing them to act as zero-shot

predictors and ensuring a head-to-head comparison with TSFMs.

We use the following versions of the TSFMs in our study: timegpt-

1-long-horizon, google/timesfm-1.0-200m, amazon/chronos-t5-large,

moirai-1.0-R-large, and MOMENT-1-large.

3.1 Large Public Datasets

3.1.1 ecobee DYD Dataset. To test the general ability of TSFMs in

predicting indoor temperature, we utilized a large publicly available

dataset from ecobee [13]. This dataset is a subset of ecobee’s Donate

Your Data program, containing data from 1,000 homes located in

four U.S. states—California, Texas, Illinois, and New York—collected

in 2017 at 5-minute intervals with a temperature resolution of 1°F.

To ensure statistically signi�cant yet computationally feasible tests,

we selected eight houses with the least number of missing ther-

mostat temperature values from each state, resulting in 32 houses.

A starting point was sampled from each month, using the same

starting points across models for a deterministic comparison, while

resampling starting points for each house to ensure greater time

diversity. This approach allows us to capture diverse house behav-

iors, climates, and seasonal variations. Sampling starting points

was mainly necessary because the data duration changes based on

varying context windows and prediction horizon values.

3.1.2 UCI Electricity Data. Similarly, to evaluate the general ca-

pability of these models in energy consumption predictions, we

used the UCI Electricity Load Diagrams dataset [20]. This dataset,

frequently used to evaluate forecasting algorithsm, provides an

opportunity to reconsider the performance rankings of TSFMs us-

ing di�erent metrics. The dataset records electricity consumption

in Watts for 370 Portuguese clients from 2011 to 2014, sampled at

15-minute intervals. We sampled 30 houses in this dataset, and for

each season, we sampled a starting point, resulting in 16 starting

points for the each client. This method ensures a comprehensive

evaluation across di�erent seasonal contexts and house speci�cs.

3.1.3 Smart*. The dataset contains whole-house electricity con-

sumption for 114 single-family apartments for the period of 2014-

2016 in kW [2], sampled every 15 minutes. Similar to the previous

approach, we sampled 30 houses in this dataset and, for each season,

sampled 4 di�erent starting points.

We analyzed the list of training datasets presented by each TSFM.

None of them included indoor temperature data or used any elec-

tricity data from Amherst, MA, USA, ensuring no data leakage

for ecobee and Smart*, while some had seen UCI datasets in their

training.

3.2 Experiment Design

We de�ne the following notations employed throughout this paper:

• � : Prediction Length (number of samples)

• �: Context Length (number of samples)

• 5B : Sampling Rate (minutes)

• � : Context Duration (hours), de�ned as � =

� ·5B
60

• % : Prediction Duration, also called Horizon (hours), de�ned

as % =

� ·5B
60

While previous literature typically presents results in terms of

the number of prediction steps/samples, we express these intervals

in terms of hours since it is (a) more intuitive for electricity and tem-

perature predictions, and (b) more comprehensible, particularly as

we resample data to analyze performance across various durations.

In our analysis, we selected each context-prediction duration

pair (�, %) based on two criteria:� < 512, and� < 64. The primary

rationale behind this choice is that most models are optimized to

make predictions within these limits [1, 4, 8]. During this selection,

we considered the sampling rate and resampled to a lower temporal

resolution when necessary. The context-prediction-sampling rate

tuples (�(h), % (h), 5B (mins)) are as follows:

ecobee: {(24, 4, 5), (36, 4, 5), (36, 6, 10),

(48, 6, 10), (48, 12, 15), (96, 12, 15), (168, 24, 30)}

Smart* and UCI: {(48, 12, 15), (72, 12, 15), (96, 12, 15),

(48, 24, 15), (72, 24, 15), (96, 24, 30), (168, 24, 30)}

For the Smart* and UCI datasets, we started with a larger number

of horizons due to the original sampling rate of UCI being 15 min-

utes. We maintained this rate for the Smart* dataset to ensure a fair

comparison between the two datasets. Additionally, considering

the common weekly patterns in household behavior, we aimed to

test the prediction performance of these models when a week of

data is provided to predict the next day. Hence, we introduced an

additional tuple (i.e. (168, 24, 30)) to account for this pattern.
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Table 3: RMSE values for forecasting performance. The best per row is bold, and the second best is underscored. Parameter

values are in units of hours.

Data Parameters Models

� % AutoARIMA S-ARIMA BestFit MOMENT* Chronos* TimeGPT LagLlama* TimesFM* Uni2TS

(a
)
U
C
I
(W

at
ts
)

48 12 276.6 409.4 140.0 127.6 78.54 192.6 279.4 105.2 204.4

48 24 347.3 638.5 138.6 178.2 93.83 204.4 376.8 120.7 275.8

72 12 241.1 375.4 153.6 143.3 68.96 190.4 273.3 87.88 147.8

72 24 269.0 562.3 172.7 179.4 80.31 200.7 359.4 95.45 187.8

96 12 221.8 271.7 175.4 149.8 69.67 193.2 220.0 89.17 123.5

96 24 210.1 209.4 187.3 205.9 81.18 185.6 338.5 80.87 79.07

168 24 151.4 148.1 190.7 218.4 71.71 182.4 208.4 75.42 72.24

(b
)
S
m
ar
t*
(W

at
ts
) 48 12 913 1,053 965 907 1,076 929 1,059 897 145,228

48 24 936 1,097 970 932 1,113 956 1,148 925 1,699,758

72 12 893 1,019 956 899 1,030 925 993 886 339,396

72 24 921 1,034 972 926 1,071 951 1,092 914 305,820

96 12 874 1,022 952 884 1,029 909 948 869 18,741

96 24 775 842 840 787 879 765 944 763 734,520

168 24 746 830 832 765 830 748 829 735 340,623

(c
)
ec
ob
ee

(°
F
)

24 4 1.047 1.194 1.448 1.069 1.532 1.145 1.968 1.154 1.451

36 4 1.124 1.129 2.635 1.252 1.679 1.217 2.017 1.213 1.289

36 6 1.376 1.582 2.686 1.276 1.891 1.246 2.181 1.390 1.522

48 6 1.240 1.465 1.973 1.193 1.709 1.140 2.033 1.204 1.400

48 12 1.826 2.556 1.983 1.432 1.911 1.568 2.243 1.319 1.897

96 12 1.824 2.243 2.154 1.512 1.732 1.625 2.033 1.236 1.657

168 24 1.685 1.673 2.337 1.830 1.870 1.719 2.343 1.379 1.637

*Models that have seen the UCI dataset in their training phase

4 EXPERIMENTAL RESULTS

With the desiderata of understanding the long-term general perfor-

mance of TSFMs in predicting electricity usage and indoor temper-

ature, we conducted an analysis using three large datasets. Table 3

illustrates the performance of each model, measured by RMSE. Our

results provide insights into model performance across a diverse

range of seasons and household characteristics.

Our �rst dataset, UCI as shown in Table 3 (a), was used to train

several TSFMs. Comparing model performance on familiar versus

unfamiliar data reveals their generalization ability. Three models

trained on this dataset (Chronos, TimesFM, MOMENT) perform best,

especially for shorter durations. An interesting observation arises

with the Uni2TS model, which approaches the performance of the

others as the duration increases though it has not seen this data

before. This phenomenon may occur because the data is resam-

pled as the duration increases, resulting in a dataset that di�ers

slightly from the original training data sampled every 15 minutes.

Consequently, Uni2TSmanages to close the performance gap. Com-

paring statistical models with foundation models, we observed

that BestFit outperforms models that have not been trained on

the UCI dataset (TimeGPT and Uni2TS) on � = 48 and 72. Besides,

AutoARIMA and BestFit outperform LagLlama consistently despite

LagLlama being trained on the dataset.

Switching to the Smart* electricity dataset (shown in Table 3

(b)) reveals a shift in model performance. The number of steps is

not strictly di�erent for varying durations, as data is resampled

for longer periods, so performance discrepancies re�ect behav-

ioral characteristics. Evaluated on the Smart* dataset, Chronos

loses its leading position to TimesFM. MOMENT and TimeGPT are

comparable in terms of absolute performance, following TimesFM

and AutoARIMA. Other FMs perform worse, and Uni2TS shows

large errors due to outliers. Regarding statistical models, overall,

AutoARIMA performs consistently close to the best TSFM TimesFM,

BestFit outperforms three foundation models, and S-ARIMA out-

performs two foundation models. Compared to the observations in

the UCI dataset, the considerably larger errors of TSFMs suggest the

challenging predictability of Smart* and the limited generalizability

of TSFMs, narrowing the performance gap with statistical models.

The ecobee dataset presents a more diverse set of results (Ta-

ble 3(c)), with statistical models outperforming others for shorter

durations. As the duration increases, temperature variations tend

to smooth out, where TSFMs seem to perform better. Nonethe-

less, AutoARIMA remains competitive, nearly matching the best-

performing forecasting models. When comparing MOMENT, TimeGPT,

and TimesFM, we �nd that TimesFM excels in long-duration predic-

tions, whereas MOMENT and TimeGPT perform best during moderate

durations where temperature changes are less variable. This nu-

anced performance indicates the importance of considering duration-

speci�c characteristics when evaluating model e�cacy.

In summary, models that have been trained using the UCI dataset,

such as Chronos, TimesFM, and MOMENT, demonstrated superior

forecasting abilities on the same dataset. Shifting to the unseen

electricity dataset, the performance gap between statistical models

and TSFMs is marginal, indicating limited generalizability across

datasets. For indoor air temperature forecasting, TSFMs generally

outperform statistical models across extended prediction horizons

with the lowest errors ranging from 1 to 1.4°F for durations up to 24
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hours. Conversely, shorter durations highlight the e�cacy of statis-

tical models, particularly AutoARIMA, which achieves comparative

or superior accuracy (1°F).

5 DISCUSSION AND CONCLUSIONS

Our investigation stemmed from the belief that TSFMs, trained

on diverse time-series data, could generalize to unseen settings.

Despite training statistical models using only context window data

for each prediction, we found marginal di�erences between TSFMs

and statistical models on unseen datasets. In domains like indoor

air temperature, where TSFMs lack familiar data, performance is

comparable to statistical models. Beyond empirical insights, we

identify areas needing further exploration and key features required

for TSFMs.

Incorporating Context: Time-series data presents unique chal-

lenges that current models struggle to address. Models like UniTime

[12] and TimeLLM [11] incorporate context but are not zero-shot

predictors. In contrast, zero-shot TSFMs typically rely only on time-

series data, lacking auxiliary context that could improve predictions.

Unlike language models that leverage contextual cues such as syn-

tax and semantics, time-series data often lacks this information,

complicating pattern recognition. Additionally, the variability in

time-series data, driven by factors like physical processes and sen-

sor characteristics, adds complexity. To enhance robustness, TSFMs

need to incorporate auxiliary information or undergo �ne-tuning

to account for this diversity.

ExploringNewAttributes:Our studymarks an initial exploration

of TSFMs in predictive building analytics, but many attributes, such

as handling covariates and irregular time-series, remain underex-

plored due to only a few TSFMs providing such features. While

Section 2 outlines existing features in TSFMs, a more thorough

investigation is required to assess their performance. Further ex-

ploration could unlock the potential of TSFMs in building analytics

and other cyber-physical systems.

Based on our �ndings, we propose two key attributes for fu-

ture TSFMs: (1) Task-agnostic models that handle a range of tasks

beyond forecasting, such as classi�cation and anomaly detection,

without requiring task-speci�c �ne-tuning. This can be achieved

using pre-trained task-speci�c heads [8] or the design of natural

language outputs. Replacing task-speci�c heads enables reasoning

tailored to each task, while the integration of natural language

will allow for more intuitive time-series analysis and user-friendly

explanations. (2) The ability to integrate contextual metadata via

natural language, enhancing model performance by incorporating

factors like operational settings, weather, or occupancy patterns

that in�uence building energy consumption and thermal dynamics.

In conclusion, the e�ectiveness of TSFMs can be preasumably

further enhanced by integrating essential metadata and account-

ing for confounding variables, which are critical in the context of

building physics. Our future research aims to improve the appli-

cability of TSFMs in reliable building analytics by incorporating

physics-based insights, robust covariate handling, and contextual

metadata into these models.

ACKNOWLEDGMENTS

This research was sponsored in part by: Pennsylvania Infrastruc-

ture Technology Alliance (PITA); the Air Force O�ce of Scienti�c

Research under Cooperative Agreement #FA95502210193; the DEV-

COM ARL under Cooperative Agreement #W911NF-17-2-0196; and,

the NIHm DOT Center under Award #1P41EB028242. Our code can

be found in https://github.com/nesl/TSFM_Building.

REFERENCES
[1] Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro

Mercado, Huibin Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebas-
tian Pineda Arango, ShubhamKapoor, et al. 2024. Chronos: Learning the language
of time series. arXiv preprint arXiv:2403.07815 (2024).

[2] Sean Barker, Aditya Mishra, David Irwin, Emmanuel Cecchet, Prashant Shenoy,
Jeannie Albrecht, et al. 2012. Smart*: An open data set and tools for enabling
research in sustainable homes. SustKDD, August 111, 112 (2012), 108.

[3] Yongbao Chen, Mingyue Guo, Zhisen Chen, Zhe Chen, and Ying Ji. 2022. Physical
energy and data-driven models in building energy prediction: A review. Energy
Reports 8 (2022), 2656–2671.

[4] Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. 2024. A decoder-only
foundation model for time-series forecasting. https://doi.org/10.48550/arXiv.
2310.10688 arXiv:2310.10688 [cs].

[5] Longquan Diao, Yongjun Sun, Zejun Chen, and Jiayu Chen. 2017. Modeling
energy consumption in residential buildings: A bottom-up analysis based on
occupant behavior pattern clustering and stochastic simulation. Energy and
Buildings 147 (2017), 47–66. https://doi.org/10.1016/J.ENBUILD.2017.04.072

[6] Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, and Ming-
sheng Long. 2023. SimMTM: A Simple Pre-Training Framework for Masked Time-
Series Modeling. (Oct. 2023). http://arxiv.org/abs/2302.00861 arXiv:2302.00861.

[7] Azul Garza, Cristian Challu, and Max Mergenthaler-Canseco. 2024. TimeGPT-1.
(May 2024). http://arxiv.org/abs/2310.03589 arXiv:2310.03589 [cs, stat].

[8] Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur
Dubrawski. 2024. MOMENT: A Family of Open Time-series Foundation Models.
http://arxiv.org/abs/2402.03885 arXiv:2402.03885 [cs].

[9] Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew GWilson. 2024. Large language
models are zero-shot time series forecasters. Advances in Neural Information
Processing Systems 36 (2024).

[10] Tyler Hoyt, Edward Arens, and Hui Zhang. 2015. Extending air temperature
setpoints: Simulated energy savings and design considerations for new and
retro�t buildings. Building and Environment 88 (2015), 89–96.

[11] Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi,
Pin-Yu Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. 2024.
Time-LLM: Time Series Forecasting by Reprogramming Large Language Models.
http://arxiv.org/abs/2310.01728 arXiv:2310.01728 [cs].

[12] Xu Liu, Junfeng Hu, Yuan Li, Shizhe Diao, Yuxuan Liang, Bryan Hooi, and Roger
Zimmermann. 2024. UniTime: A Language-Empowered Uni�ed Model for Cross-
Domain Time Series Forecasting. (Feb. 2024). https://doi.org/10.48550/arXiv.
2310.09751 arXiv:2310.09751 [cs].

[13] Na Luo and Tianzhen Hong. 2022. Ecobee Donate Your Data 1,000 homes in 2017.
(2022). https://doi.org/10.25584/ecobee/1854924

[14] Mike A Merrill, Mingtian Tan, Vinayak Gupta, Tom Hartvigsen, and Tim Altho�.
2024. Language Models Still Struggle to Zero-shot Reason about Time Series.
arXiv preprint arXiv:2404.11757 (2024).

[15] Colin Ra�el, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a uni�ed text-to-text transformer. Journal of machine
learning research 21, 140 (2020), 1–67.

[16] Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Hena Ghonia, Rishika Bhag-
watkar, Arian Khorasani, Mohammad Javad Darvishi Bayazi, George Adamopou-
los, Roland Riachi, Nadhir Hassen, Marin Biloš, Sahil Garg, Anderson Schneider,
Nicolas Chapados, Alexandre Drouin, Valentina Zantedeschi, Yuriy Nevmyvaka,
and Irina Rish. 2024. Lag-Llama: Towards Foundation Models for Probabilistic
Time Series Forecasting. http://arxiv.org/abs/2310.08278 arXiv:2310.08278 [cs].

[17] Seabold Skipper and Perktold Josef. 2010. statsmodels: Econometric and statistical
modeling with python. 9th Python in Science Conference (2010).

[18] Ying Sun, Fariborz Haghighat, and Benjamin CM Fung. 2020. A review of the-
state-of-the-art in data-driven approaches for building energy prediction. Energy
and Buildings 221 (2020), 110022.

[19] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and e�cient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[20] Artur Trindade. 2015. ElectricityLoadDiagrams20112014. UCI Machine Learning
Repository. DOI: https://doi.org/10.24432/C58C86.

[21] Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese,
and Doyen Sahoo. 2024. Uni�ed Training of Universal Time Series Forecasting
Transformers. (May 2024). http://arxiv.org/abs/2402.02592 arXiv:2402.02592.

173


	Abstract
	1 Introduction
	2 Existing time-series Foundation Models
	3 Methodology
	3.1 Large Public Datasets
	3.2 Experiment Design

	4 Experimental Results
	5 Discussion and Conclusions
	Acknowledgments
	References

