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Ultracold atomic systems are among the most promising platforms that have the potential to shed light
on the complex behavior of many-body quantum systems. One prominent example is the case of a dense
ensemble illuminated by a strong coherent drive while interacting via dipole-dipole interactions. Despite
being subjected to intense investigations, this system retains many open questions. A recent experiment
carried out in a pencil-shaped geometry [Ferioli ef al. Nat. Phys. 19, 1345 (2023)] has reported mea-
surements that have seemed consistent with the emergence of strong collective effects in the form of a
“superradiant” phase transition in free space, when looking at the light-emission properties in the forward
direction. Motivated by the experimental observations, we carry out a systematic theoretical analysis of the
steady-state properties of the system as a function of the driving strength and atom number N. We observe
signatures of collective effects in the weak-driving regime, which disappear with increasing drive strength
as the system evolves into a single-particle-like mixed state comprised of randomly aligned dipoles.
Although the steady state features some similarities to the reported superradiant-to-normal nonequilib-
rium transition, also known as cooperative resonance fluorescence, we observe significant qualitative and
quantitative differences, including a different scaling of the critical drive parameter (from N to +/N). We
validate the applicability of a mean-field treatment to capture the steady-state dynamics under currently
accessible conditions. Furthermore, we develop a simple theoretical model that explains the scaling prop-
erties by accounting for interaction-induced inhomogeneous effects and spontaneous emission, which are

intrinsic features of interacting disordered arrays in free space.
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I. INTRODUCTION

Atoms and photons are among the fundamental building
blocks of our universe. Their interactions rule the behavior
of our physical world and understanding them is an essen-
tial need. However, it is a challenging task, as atom-light
interactions can be extremely complex, especially in the
context of many-body quantum systems [1,2].
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In most relevant situations, a large number of electro-
magnetic modes remain in the vacuum and the photons just
act as passive mediators of excitations between atoms. The
net effect is a virtual exchange of excitations that gives rise
to dipole-dipole interactions between atoms, with both dis-
persive and dissipative contributions [3—6]. Despite elimi-
nating the vast number of electromagnetic vacuum modes
from the picture and simplifying the complexity to only
the atomic degrees of freedom, understanding the conse-
quences of dipolar interactions in dense atomic samples
is extremely complicated [7,8] and, apart from special
limiting cases [1], it remains a long-standing problem in
physical sciences.

For the case of effective two-level atoms, the weak-
excitation limit admits a simple semiclassical description
and a great deal of theoretical [9,10] and experimental

Published by the American Physical Society



SANAA AGARWAL et al.

PRX QUANTUM 5, 040335 (2024)

progress has been made in recent years, including the
observation of collective level shifts [11—23], line broad-
ening [11,13,17,19—21,24-33], and cooperative subradiant
responses [31,34—40] in optically thick [41] and spatially
ordered arrays [19,42—46].

Away from the weak-excitation limit, the problem
becomes theoretically intractable, at least under current
numerical capabilities [47], and many open questions
remain. One situation in which important advances have
been achieved is the case of ordered arrays, where atoms
are initialized in an uncorrelated excited state and allowed
to decay collectively without an external drive [48—50].
This case enjoys the simplification that in the thermody-
namic limit, ordered arrays can be treated as translationally
invariant infinite systems. Although continuous driving
adds further complexity, the translational invariance of the
problem has enabled better understanding under further
assumptions [51-54]. One particularly simple case of the
driven-dissipative system is the limit when only permu-
tationally symmetric states, also known as Dicke states
[55], are populated. This situation arises naturally in opti-
cal cavities, where a single cavity mode talks to all atoms
independent of their location in the array. In this limit,
the theoretical treatment is significantly simpler and has
been a focus of theoretical investigations for decades. One
particular case is the so-called cooperative resonance flu-
orescence (CRF) [56-59] or collective atomic emission
[60], which treats the behavior of a group of two-level
atoms coupled identically to a single radiation mode. As
first proposed by Dicke [55], it leads to a collective decay
mechanism, superradiance, which, as has later been the-
oretically shown, can be stabilized by driving the system
below a critical drive strength. In the thermodynamic limit
of a large number of atoms (or a large cooperation num-
ber), the competition between a coherent drive and decay
gives rise to a nonequilibrium second-order phase transi-
tion. Below a threshold drive strength, the collective dipole
reaches a highly pure steady state characterized by a col-
lective Bloch vector below the equator, pointing at a polar
angle at which the superradiant decay and the external
drive compensate each other. On the other hand, above a
critical drive, the collective dissipation is not enough to
stabilize the strongly driven system and at the mean-field
(MF) level, the system remains oscillating. Beyond-MF
effects dampen the oscillations via phase diffusion and the
system becomes a highly mixed state with a distribution
centered around the equator.

A recent experiment [61] has reported signatures of
the above collective Dicke transition while interrogating a
pencil-shaped cloud of N Rb atoms optically excited by a
laser propagating along its main axis. The experiment has
observed clear manifestations of the two nonequilibrium
phases depending on the ratio between the single-atom
Rabi frequency, 2, of the drive and the collective dis-
sipation rate, ['Ng, characterized by the single-particle

decay rate, I, and an effective atom number, Ny, which
accounts for the finite extent of the diffraction mode of the
cloud, Neg ox N. Above a critical drive 2 > Q¢, a scaling
of the photon emission rate consistent with NezFf has been
observed. This scaling has been modified below Q¢. As
the system has crossed the critical point, the characteristics
of the superradiant light have changed as well.

Regardless of these clear signatures, as explained in that
work [61], the applicability of a fully collective model
scaled by an effective atom number to describe the light
scattering of an elongated sample in free space is highly
unexpected. A justification of its validity starting from
a microscopic model remains an open question. In this
paper, we solve this issue by performing a detailed study of
the light-scattering properties of pencil-shaped disordered
arrays of two-level atoms by directly solving a master
equation. Our analysis accounts for the spatial extent of the
cloud and the dipole-dipole interactions across the array,
including spatial fluctuations, elastic dipole-dipole interac-
tions, and single-particle decay. Starting from a mean-field
description of the master equation, expected to be valid in
the weak- and strong-excitation limits, and complement-
ing it with a moving-average cluster-expansion method
(MACEMF) and the cumulant method, we reproduce
the experimental observations in all reported parameter
regimes. Extended calculations over a larger atom number
window reveal a modified scaling, which is not propor-
tional to an effective atom number (Ng) but to the square
root of the total number of atoms, (v/N), in the array.

Our study demonstrates that the observed collective
behavior is not valid over a broad parameter regime (see
Fig. 1), since it misses important key features of free-
space emission, such as single-atom spontaneous emis-
sion and the frequency shifts arising from inhomogeneous
elastic dipolar interactions. By combining the latter mech-
anisms with collective decay plus drive, we are able

CRF model: QERF =TN/2 | Dipolar model: Q?p"l“ xTy/N

C ) lipolar dipolar
Q< QERF | Q> QCRF Q < QP Q> QP
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FIG. 1. A summary of the important steady-state observ-

ables in the weak—(Q2 <« Q¢) and strong—(2 > Q¢) driving
regimes in the CRF (left) and dipolar (right) models, with respect
to a “critical” drive Q¢ for each model. For the CRF model, we
have the atomic inversion, (S,), as the order parameter of the
regimes, the intensity, (§+§ _), the nondriven part of the atomic
coherence, (S‘x), and the total equal-time two-photon correla-
tion function, g,(0). For the dipolar model, the corresponding
observables are in the spiral basis [defined in Eq. (4)].
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to qualitatively reproduce all the features observed in
the mean-field calculations that account for microscopic
details. In the future, it will be interesting to push exper-
iments to more dense regimes where the mean-field model
becomes invalid and a genuine quantum treatment would
be required in order to properly capture the role of photon-
mediated dipolar interactions in driven ultracold atoms.

In the spirit of quantum simulation, our analysis takes
advantage of state-of-the-art experimental capabilities in
regimes challenging for theory, uses them to develop new
theoretical insights that shed light on long-standing prob-
lems, and makes predictions to further inspire experimen-
tal work.

In Sec. 1I, we introduce the dipolar model, which
describes our system at the microscopic level. We fur-
ther discuss the extremely dilute and dense limiting cases,
which are analytically solvable and useful for understand-
ing the role of interactions in different driving regimes. In
Sec. III, we study the steady state of the dipolar model
using mean-field numerics in the weak- and strong-driving
regimes, and we compare its emergent properties with
the CRF and noninteracting models. Using these insights,
we propose a phenomenological model in Sec. IV, which
accounts for the inhomogeneity of dipolar interactions, is
analytically tractable at the mean-field level, and qualita-
tively reproduces the dipolar model. In Sec. V, we compare
our steady-state and dynamics results with the experimen-
tal data [61], and find fair agreement for most observables.
Lastly, in Sec. VI, we discuss some concluding remarks
and future directions.

I1. QUASI-ONE-DIMENSIONAL GAS OF
DIPOLAR-INTERACTING ATOMS

A. Dipolar model

We consider a three-dimensional elongated (pencil-
shaped) gas of N pointlike atoms fixed at their Gaussian-
sampled positions {7}, as shown in Fig. 2. The atoms have
linewidth (single-atom decay rate) I' and are driven by
a coherent laser drive with Rabi strength 2 = |E a7| /h
(where E is the electric field amplitude of the laser and
d is the transition dipole moment of the atom), detun-
ing A =wp —wy from the atomic transition (frequency
wyp), wave vector fcl, and polarization e;. The quantiza-
tion axis €y is along the Z axis and the axial direction of
the gas is along the X axis. As in Ref. [61], we consider
the case in which e, = e, =y, i.e., the driving laser is
linearly polarized and excites the o -transition between
the hyperfine levels |FF = 2,mp = 2) < |F = 3,mp = 3).
The atoms interact via induced dipole-dipole interactions
mediated by the vacuum electromagnetic modes [1].

We assume that the atomic cloud is cold enough that
we can neglect motion of the atoms, treat them as frozen
during the dynamics, and only focus on the internal-state
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FIG. 2. A schematic of a pencil-shaped ultracold gas of frozen
two-level atoms interacting via photon-mediated interactions,
with elastic (Re G;) and inelastic (Im G;;) components. A con-
tinuous laser drive excites the atoms on resonance with Rabi
frequency €2, wave vector k. = 27/Ax, and polarization e, =
(perpendicular to the quantization axis, z). Atoms spontaneously
emit photons into free space at rate I'.

dynamics spanned by the two relevant levels in each atom
(lg)=IF =2,mp =2) ground and |e) = |F =3, mp =
3) excited), which define a spin-1/2 system. Under these
conditions, which are similar to the system realized in
Ref. [61], the state of an atom can be described by spin-1/2
Pauli operators: 67 = |ex) (ex| — |gx) (g, 6 = lex) (g,
and 6,: = |g) {ex|, for an atom k. The collective spin oper-
ators are denoted as S, = 22;1 o¢/2 fora € {x,y,z} and

o N At
St =246

The dynamics of the system are governed by the master
equation obtained upon adlabatlcally eliminating the pho-
tonic degrees of freedom, p = —z[H o1+ L(0), where A
is the Hamiltonian, which leads to unitary evolution, and
L(p) is the Lindbladian superoperator, which accounts
for all the dissipative processes. The Hamiltonian for the
system is given as H= HO + Hlm, where (setting i = 1)

Q .
=) D (@BTTTeE fhe) — AS. (1)
k

is the single-particle laser drive and
i = =" Ryé; 6 @

accounts for the dipole-dipole interaction. It sums over
pairwise exchange processes among two different atoms
in the array, with the interaction strength given by the
free-space electromagnetic Green’s tensor

ar R R eik()r
a0 = () {o-ren ()
) R ieikor eikgr
ra=ren [((kor>2) ) ((kor)3)“’

where r is the vector connecting the two interacting atoms
and ky =27 /A (A is the atomic transition wavelength).
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The elastic part is determined by the real part of G(r),
Ry = e+ -Re [G(rkj)] -ey, where T implies transpose.
Self-interactions are set to zero: Ry, = 0. The Lindbladian
for the system is expressed as

L) = sz, (26766F —16557.01), O

where 7j; = e*T Im[G(Fy;)] - 4 is the inelastic dipolar-
interaction coefﬁment and Zy; = I'/2 is the spontaneous-
emission decay rate. We define the total dipolar-interaction
coefficient as Gy; = Ry + iZy;.
For simplicity, we define a “spiral” basis, in which we
absorb the drive phase in the coherences, as
3] +_ 6—]' + eii(/EL 7 =m/2) 4)

Then, the spiral collective spin operators  are Si =
YL e R, S = (§, 4502, 5, = —i(S, -

S )/2, andS =85.. Accordingly, we also define new inter-
action coefficients gk, = Gye —ikL Ty Rkj = Ryje ’kL”f/

and ij =1y e"kL "% . In the spiral basis, the Hamiltonian
and the Lindbladian are given as

P[o = _QS, — Aﬁ,, (5)
1nt Z qu Gk 5 (6)
J#k

L(p) = ZIkJ (20 poF =165 BY). ()

Thus, the drive acts collectively along the spiral-X direction
in the Bloch sphere. Hereafter, we will work in the spiral
basis and also set A = 0, unless otherwise mentioned.

Similar to the experimental protocol in Ref. [61], we
initialize all the atoms in the ground state |g)®" and contin-
uously drive them on resonance with the atomic transition,
i.e., A = 0. The excitation of atoms by the drive is coun-
teracted by the free-space single-particle and collective
emission, which generates damping, allowing the system
to eventually reach its steady state. To characterize the sys-
tem across a wide range of drive strengths, €2, we look at
the collective spin observables in the steady state, namely,
the atomic inversion (S‘Z), the absolute value of the spiral
atomic coherence |(§+) [, and its real part |(S‘x) |

The intensity operator describing the photon emission

from the atomic sample along a direction k& can be written
in terms of the spin operators as [4,62,63],

Tk =1k Y 667, ®)

ij

where IO(I;) is a proportionality factor that accounts
for the geometry of the dipolar emission pattern.

In the spiral basis, the expectation value of the
intensity can be expressed as (k) = (Z(k)) =
Io(k) Do J +~_ l(k kL) Gi=7) . The intensity along the

forward directlon k= kL, features very interesting prop-
erties and will be the focus of this study. This direction is
special because it is the direction along which the driving
laser imposes coherence and, therefore, the intensity can
be enhanced due to constructive interference.

We also look into the equal-time two-photon correlation
function, defined as [63]

e GIOIME )
iy = ~—— 2 9
& (k, k) TOI0 ©)

which gives the likelihood of simultaneously emitting a
photon along K and another photon along the k direction.
The “::” in the above expression implies that it needs to
be evaluated using normal-ordered operators. In the exper-
iment [61] in question, the detector was placed in the
forward direction to measure the above-mentioned observ-
ables. Even though the experiment did not measure the
atomic coherence, we will include it in our study as it is
useful for gaining an intuitive understanding of the system.
In addition to the steady state, we also compute the dynam-
ics of the forward intensity, / (%L,t), and the excitation
fraction,

N

ne(t) = Zﬁv (6o +1). (10)

j=1

In the following, we use these observables to investigate
distinct key features of the system as a function of the
strength of the drive, from the weak- to the strong-driving
regimes. To understand the role of interactions, we con-
sider the cases of the extremely dense and dilute limits,
which are analytically tractable and well studied. Then, we
study the moderately dense ensemble of the experiment
(Fig. 2) and compare it with the extremely dilute and dense
limits as a means of investigating the behaviors emergent
from dipolar interactions. Similar to the experiment, we
keep the size of the atomic cloud fixed at an rms axial
length l,x = 20X and radial length /,,¢ = A/2, as shown in
Fig. 2. By varying N, we can tune the density of the cloud
and, thereby, the strength of the dipole-dipole interactions
between the atoms.

B. Cooperative resonance fluorescence (CRF)

In the limit in which all the atoms are confined
within a single wavelength, |rox| < A, we have Ry ~
1/ (|7 I/)t)3,Ik,- — I'/2. If we choose to neglect the elas-
tic part of the interactions (Ry; = 0) and freeze the motion
of the atoms, we can emulate the situation found in an
optical cavity, where all the atoms interact via a single
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electromagnetic mode. When the cavity mode is set on
resonance with the atomic transition, the elastic interac-
tions are suppressed and the dominant interactions are the
ones responsible for collective decay or superradiance,
via which atoms emit collectively at an enhanced emis-
sion rate I'N. In the presence of an additional drive, €2,
the system reduces to the well-studied CRF model, which
describes a system of N atoms driven with a resonant
laser drive at a Rabi frequency 2 and subject to collec-
tive decay (superradiance) described by the jump operator
\/FS'_ with S‘i = Zi 8? [64]. Here, we use the nota-
tion CRF to distinguish from the so-called Dicke model
[65—67], which contains both the rotating and counter-
rotating terms. In the CRF model, the counter-rotating
terms are irrelevant and are therefore neglected. The mas-
ter equation governing the dynamics of the CRF model is
given by

N I N N N
0p = =i | S0 | + 5 (28-58+ = {$45-.5}). ()

where the drive, €2, is applied along the x direction of
the Bloch sphere. This model has been widely studied
and many of the results presented here are well known
[68—70]. However, for completeness, we review the main
features of this model and use them to later compare with
the microscopic model.

The CRF exhibits a steady-state phase transition at
a critical frequency QERF = NT'/2 [71], which delin-
eates two distinct steady-state behaviors depending on
the dimensionless parameter 8 = Q/QERF. For B < 1, the
system is in the “superradiant phase,” where the drive is
balanced by the collective emission, canceling the total
electric field experienced by the collective dipole. We use
quotation marks to remark that this regime was initially
referred to instead as “superfluorescent” by the authors
[56,58,71]. In this phase, the collective dipole lies in the
y-z plane of the Bloch sphere at an angle 6 from the
south pole, given by sinf = 8. For g > 1, the system
transitions into a highly mixed steady state, known as the
“normal” phase. The statistical mixture arises from the col-
lective emission not being strong enough to compensate
the excitation from the drive. As the atomic self-radiated
field is not canceled by the drive, the dipoles undergo col-
lective Rabi flopping. Although Rabi oscillations persist
at long times at the mean-field level, quantum fluctua-
tions lead to phase diffusion, which dampens the oscil-
lations and destroys the coherences, although the system
always remains in the collective manifold by construction.
These two distinct steady-state behaviors are separated
by a second-order phase transition at 8 = 1, as shown in
Fig. 3(a).

Here, it is important to note that Ref. [61] has used the
opposite convention and denoted the 8 > 1 regime as the
superradiant phase. This is inspired by Refs. [69,72] and

(a) N—oco—
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FIG. 3. The steady state of the CRF model using exact diago-

nalization (extremely dense limit, ; — 0, and artificially set-
ting R; = 0). (a) The atomic inversion, (S.) /(N /2), shows
the superradiant phase transition in the thermodynamic limit.
(b) The total coherence, |($’+)|/N = |(SV)|/N, is driven by the
laser drive, which is along the S‘x direction, such that (S‘x) =
0. (c) The intensity scales as N and remains constant as £
is varied in the strong-driving regime (due to preservation of
(82) = (8,8_) + ($2) = N(N + 1)/4). (d) The two-photon cor-
relation function g, (0) does not reach the maximally mixed state
(g2(0) = 2) due to preserved quantum correlations. The N — oo
curves correspond to Egs. (12)(16).

the fact that Eq. (11) has a discrete symmetry character-
ized by its invariance under a mirror reflection §x — —S'x,
followed by complex conjugation. This mirror symmetry
of the Lindblad generator is spontaneously broken in the
B > 1 phase and therefore, under this view, this is the
phase featuring spontancous symmetry breaking. For the
purpose of this work, this is just a different convention and
does not affect our conclusions. We will stick to the more
standard CRF convention that uses S, as the physically
motivated order parameter and denotes the 8 < 1 regime
as the superradiant phase.

By doing a Holstein-Primakoff expansion around the
mean-field steady state in the superradiant regime as well
as introducing a semiclassical method to average in the
normal phase, we can express the steady state in the ther-
modynamic limit (N — oo) analytically across all driv-
ing regimes by varying 8 (with n = /82 — 1) as (for a
derivation, see Appendix C)

SR s

(S.) (12)
0, B =1,

(Sy) =0, (13)
N 1

) 3:3’ IB <1,

R . (14)

B arctan G)
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2
B e B <1,
) = 1
(S,.S_) N p . st (15)
4 arctan (%)
1, B <1,
B (l) _ z_%)
2(0) = n (77 arctan . B 3
1 1 2
2
X arctan (—) (ﬂ arctan (—) - n) , B>=1.
n n
(

16)

22(0) is a short-hand for setting both kand & to 0 in
& (7{, lg’), defined earlier in Eq. (9). For this phase transi-
tion, the order parameter is the population inversion, (S‘z),
which is nonzero in the superradiant phase and zero in the
normal phase [Eq. (12)]. (S.) is continuous but features
an abrupt change in its derivative at the critical point in
the thermodynamic limit (N — 00), as shown in Fig. 3(a).
The finite-N steady state in Fig. 3 is obtained using exact
diagonalization.

The observable (§x) is conserved and is zero in all
regimes [Eq. (13)]. This is a distinguishing feature of this
model, which will become important when comparing with
the other models in this paper. Thus, the atomic coher-
ence is purely imaginary, (§+) =1 (S'y). In the superradiant
phase, (S’y) grows linearly with 8. On the other hand, as 8
is increased in the normal phase, the steady state becomes
more and more mixed and (3),) goes to zero, as shown in
Fig. 3(b).

The photon emission rate (intensity), I = (S’J,S'_), at a
fixed B, increases as N2 82 in the superradiant phase. In the
normal phase, the intensity still scales as N2, reflecting the
collective nature of the system, as <§ . é) =N/2(N/2 +
1), where S = {S’x, S’y, S’Z}. However, the normal phase
intensity is independent of 8 due to the mixed nature of
the state in the normal phase. In fact, for 8 > 1, the inten-
sity reaches the asymptotic value of I = N?/6, as shown
in Fig. 3(c). The coherent nature of the steady state in the
superradiant phase is also evident in the value of the two-
photon correlation function [Fig. 3(d)], as g»(0) =1 for
B < 1, in the large-N limit. In the normal phase, on the
contrary, the system enters a regime in which g,(0) > 1,
suggesting the mixed nature of the steady state and the
build-up of classical correlations.

C. Noninteracting model

In the extremely dilute limit, the mean inter-atomic dis-
tance is large, |7 | > A, and thus to a good approximation
we can neglect the interactions in Egs. (6) and (7) by set-
ting Ry; = 0 and Z;,; = 0. This gives a simplified master

equation for the noninteracting model, p = —i[Hy, p] +
Lo(p), that describes an array of independent atoms
coherently interacting with a classical laser drive while
spontaneously emitting photons at a rate I'. The Lind-

bladian, Lo(5) = (I/2) ¥, (26, 46" — (67.5)/2 = ),
captures the single-particle spontaneous emission. The
laser drive acts as an effective global magnetic field,
B ={2/2,0, A /2}. The single-atom density matrix and,
thus, the spin observables are identical for all atoms in
this noninteracting limit, i.e., (é) = {(éx), <O:'y), (c:72>}, and
their dynamics can be described by the well-known Bloch
equations as

Qv

HO) _5&y % B —F (), (17)

where £ ((6)) = —(T'/2)[(5) + ({(57) + 2)%] accounts for
the damping. Note that the results of this system are well
known and easy to obtain analytically. Here, we discuss the
particular case in which the laser wave vector is aligned
to the observation direction, a condition in which phase
matching can be achieved.

For the on-resonant case (A = 0), the steady-state Bloch
vector is obtained as

A Q
5ty =i=(6%), (6°)=—-R=—-——— (I8
(6*) =i, (6) e (9
and the steady-state intensity is
. . Q/T)2 ik—kL)-Gi—7;)
16 =t —2L vy e
[+2@/T7 |7 A T+2(2/T)?
(19)

which is dominated by the coherences in the weak-driving
regime (2 < I') and by the incoherent single-particle-like
term in the strong-driving regime (2 >> I'). In the large-N
limit, the steady-state intensity can be obtained analyti-
cally by converting the above sum to an integral (with
k= {cos O, sin b cos ¢, sin b sin ¢}), as

( e )4 N Ne—47r2 ((razx(l—cos 6)? +U'l_2ad sin’ 9)

T
b 2(Q/T) :

T

(20)

where o0, and o4 are the axial and radial extents of
the cloud, respectively. As discussed earlier, when the
laser wave vector aligns with the direction of obser-
vation (l; = I€L = 0 = 0), the imprinted phases interfere
constructively. In the weak-driving limit, the forward
emission is dominated by its coherent part, / (EL) ~
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Io(kL) (G )N (N — 1). This N? enhancement of the emis-
sion rate is only seen in the forward direction and van-
ishes exponentially fast with increasing 6 when 6 <1
[Eq. (A20)]. Along other k, the phases in Eq. (19) do not
cancel and the intensity, dominated by its incoherent part,
scales as N far away from k. Ttis worth noting that this N2
enhancement is not due to quantum correlations and arises
trivially from the coherences of the atoms [17,73,74].

For comparison with the other models in this work, we
define the notion of a “critical” drive strength, Q'&"“im',
that maximizes the “forward” intensity. There is, how-
ever, no phase transition in the noninteracting model. This
definition of the critical drive is inspired by the CRF
model, in which the total coherence and the total intensity
peak at the critical drive strength and a phase transition is
observed (for details, see Sec. I1 B). For the noninteracting
model, we set d(5) /d2 = 0 to obtain the critical drive
strength as QUM — T//2.

As shown in Fig. 4(a), in the Weak-driying limit (Q K
Qrcl?“im'), the forward intensity scales as 7 (k;) o< (NQ/T)2,
as shown in Fig. 4(c). Moreover, we find that 2,(0) = 1
[Eq. (A11)] in this limit, as shown in Fig. 4(d), which
reflects the fact that the system is in a coherent state, with
the majority of the atoms in the ground state. gz(O) is
a short-hand for setting both kand ¥ to kL in gz(k k’),
defined earlier in Eq. (9).
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FIG. 4. The steady state in the noninteracting (dilute) limit
across driving regimes. (a) The atomic inversion, (S.)/(N/2).

(b) The total coherence | S+ |/N = | v)|/N, is driven by the

laser in the S direction such that (S) = 0. (c),(e) The “for-
ward” intensity (along the axial direction) scales as (c) N? in
the weak-driving regime and as (e) N in the strong-driving
regime ( (S'z) /(N /2) — 0). (d) The two-photon correlation func-
tion g, (0) in the “forward” direction. (e),(f) Due to the construc-
tive interference of coherences in the “forward” direction, an
N-dependent stronger drive (2 > I'v/N) is needed to reach the

thermal state ((S,S_) — N /2, &(0) — 2).

In the strong-driving limit (£ > Q") radiative
decay disrupts the coherences and leads to a completely
mixed steady state [R — 0 in Eq. (18)]. In this mixed
state, the Bloch vector of each spin-1/2 (atomic dipole) is
reduced to a point at the center of the Bloch sphere such
that (67) — 0 [Fig. 4(a)] and |((§+>| — 0 [Fig. 4(b)]. In
the absence of a finite coherence, there is no_construc-
tive interference in the forward direction, i.e., [ (kL) o« N /2
[Fig. 4(e)]. We obtain g,(0) = 2 in this limit, as shown in
Fig. 4(d), since the system is in a thermal state. As shown
in Fig. 4(f), a very strong drive, Q > I'v/N, is needed to
fully reach this condition. This N-dependent drive scaling
emerges due to the N? enhancement from the construc-
tive interference of coherences and is further explained in
Appendix A.

Lastly, the on-resonant drive Hamiltonian commutes
with fr", so starting from (3"‘) = 0 in the initial state, it
remains zero at all times, irrespective of €2, as shown in
Fig. 4(b).

III. MEAN-FIELD DIPOLAR MODEL

A. General description

For a general distribution of atomic positions, the inter-
acting system is free to explore an exponentially large
Hilbert space (2V) and its exact dynamics are not tractable.
For simplicity, we take the MF approximation here to char-
acterize the steady state of the system. In Appendix G, we
compare MF with beyond-MF approximation methods to
include the effects of correlations, namely, the MACEMF
(see Appendix F 2) and cumulant-approximation methods.
We show that at the atomic densities considered in this
paper, the MF approximation is valid when describing the
observables under consideration.

We obtain the MF equations of motion (see Appendix B)
and express them as the Bloch equation, i.e., the same as
Eq. (17), but here the components of the effective magnetic
field, BMF at atom i, are site dependent due to the inclusion
of the dlpolar interactions as

B =241 Y (R0 +my6)). @)

J#
l 5 2y 5 Zx
B = i > <Re Gj(a}) —ImG, (5; >> , (22)
J#i
A
BMF — 7 (23)
1. Short-time physics

Although the above MF treatment significantly reduces
the complexity of the problem, the nonlinearity of these
equations makes them difficult to solve analytically and
apart from simple limiting cases, we need to solve them

040335-7



SANAA AGARWAL et al.

PRX QUANTUM 5, 040335 (2024)

numerically. The early-time dynamics (I't <« 1) are one
such regime in which it is possible to gain analytical
insights.

To understand the role of interactions at short times, we
include the inelastic interaction term in the Hamiltonian H
[Egs. (5) and (6)] and obtain the non-Hermitian Hamilto-
nian in the spiral basis as fINH —H- izk”ék Ty 6*;6}_ =
Hp — Zk,/’ 4k Gio; o , Whgrg Ho degcribes thg laser.drive.
Given that the system is initialized in a state in which all

the Bloch vectors are identical in the tilde basis, i.e., (gk) =
(), at short tlmes each Bloch vector commutes with

terms of the form (ok aj), since Zkﬁék [(ok aj),o,])

5, (67 X (Gi) ~ 0.

The emergence of a den51ty shift can be elucidated by

adding such terms, (crk a]) to HNH without altering the
physics of the original system at short times as

P -
H:HNH+ZZRegIg'(Uk'Uj)a (24)
kyj#k

which allows us to rewrite the real part of the new
Hamiltonian as ReH = H, + }‘ > kj+x ReGy6767 and,

at the mean-field level, as Re HMF = -, glMF G,
where é}\’[F =B — (8:;/2)2 ={Q/2,0,A/2 — §;/2} and
8 =) .Re G (67)/2 is the interacting part ofBlMF. This
acts as a self-adjusting magnetic field along Z that depends
on the atomic inversion, (&jz). This effective field gener-
ated by other atoms in the array leads to a precession of
each atomic dipole i about the Z axis of the Bloch sphere,
generating what is known as a density shift or a collec-
tive Lamb shift [75]. As the number of atoms in the cloud
is increased, with the spatial extent fixed, the cloud gets
denser and the induced frequency shift at each atom gets
larger. The frequency shift has two components—a homo-
geneous component, Ayp, which is the average shift across
atoms, and an inhomogeneous component, associated with
the random distribution of the atoms in the array. The
homogeneous component is nonzero when the cloud is
not spherically symmetric and it pushes the atoms out of
resonance, suppressing the growth of coherences and the
excitation fraction. The inhomogeneous component leads
to dephasing. These two key features will be an important
consideration when we derive a simplified model of the
dipolar Hamiltonian in Sec. IV.

The average frequency shift can be measured
in Rabi spectroscopy by scanning the detuning for
the new resonance condition, ie., Ayp =) ,8;/N =
> i Re gﬂ-j (&jZ )/(2N), where the right-hand side has
been averaged over all atoms i [75]. The density shift can
also be measured via Ramsey spectroscopy [76]. In this
case, even at A = 0, there is a residual precession that

leads to a nonzero (S,) during the dynamics of the sys-

tem, even when the system is initialized with (S}) = 0.
This feature distinguishes the dipolar model from the CRF

and noninteracting models, where (Sx) = 0 at all times.

2. Weak-driving limit

Another simplified case is when the laser drive is very
weak, Q « I, such that individual dipoles remain close to
the south pole of the Bloch sphere, i.e., (&f} ~ —1, evenin
the steady state. In this regime, correlations are suppressed
by factors of 2/ I and the system can be described almost
exactly using mean-field theory by setting (67) = —1 at all
times and only considering the dynamics of the coherences
(3]*). This regime has been intensively studied for dilute
samples of dipolar-interacting atomic gases [12,17,18,20,
21,24,28-31,36].

In the weak-driving limit ((&f} = —1) of our pencil-
shaped Gaussian cloud, the average frequency shift
is nonzero and, as discussed above can be obtained
at short times as Ayp = Zj ziRe g,j /(2N). In the
far-field limit (Jr;| > A = G; o< 1/|r;]), we find that
Z/’.\;i Re G, /(2N) o« N, with a small (< T') proportional-
ity constant that depends on the cloud extent and can be
estimated numerically (for details, see Appendix D).

In the weak-driving limit, the mean-field steady-state
coherence can also be obtained for a dilute gas by treating
the interactions perturbatively as [17,30]

O

iQ/2

i -
ol Wl e [ N . 25
% = aTT iA+ T2 ;gf" ()
and the forward intensity is obtained as
I(k) N - DQ?
(k) 4A+T?
%4z (TIm Gy — 2ARe Gy
1 —
* (A2 + T2/4)N
(26)

The steady-state density shift and the linewidth broad-
ening can be obtained from the lineshape as A =
=2 iz ReGy/N and T =23 ., ImG;/N, respec-
tively [17,30]. On resonance (A = 0), the x component of
the goherence is proportional to the density shift, (S'x) /N =
2QA/T? and the forward intensity is reduced by the
inhomogeneous broadening as

I(k) oc N(N — 1)(2/T)*(1 — 2F/ ). (27)
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However, in a highly dense gas, multiphoton scattering
processes become significant, making the steady state
more complicated and beyond the perturbative limit [30].

B. Dynamical regimes in the steady state

Outside the special limits discussed above, we resort to
numerical solutions for obtaining the steady state of the
system. We find that our system exhibits different dynam-
ical behaviors characterized by distinct light-emission
properties, as we vary the laser driving strength €2. Here,
we draw parallels and distinctions among the steady-state
properties of the dipolar, the noninteracting, and the CRF
models, across different driving regimes.

1. Inversion, forward intensity, and two-photon
correlation function

In Fig. 5(a), we show the atomic inversion of the dipolar
model across a range of values of Q2. For the values of N
explored in this work, we do not observe a phase transition
in the dipolar model. Nevertheless, we find it is still use-
ful to define a “critical” driving strength, Qdclp Olar, for the
dipolar model, as the drive strength at which the forward

intensity, (S,.S_), peaks for a given N. The intensity peak
separates the dynamical behaviors in the different driving
regimes based on their emission properties, similar to the
CRF model.

Note that our findings are distinct from the case of trans-
lationally invariant ordered arrays driven with a laser wave

0.4 2000

00T ()

o5k 1600
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dipolar dipolar
Q/Q~ Q/Q.

FIG. 5. The steady state of the MF dipolar model: (a) the
atomic inversion, (S,)/(N/2); (b) the contrast, |(S.)|/N; (c)
the “forward” intensity (along the axial direction); (d) the two-
photon correlation function g,(0) in the “forward” direction. The
dipolar model (solid line) converges to the noninteracting model
(dashed black line) in the dilute limit (small N). The x axis of the
noninteracting curve is scaled as €2/ Qg‘mim' ~ O(1) in (a)~(c)
and as 2/ QU™ « 1/y/N in (d). In (a), (b), and (d), the non-
interacting curve is independent of N; in (c), the noninteracting
curve is for N = 100.

vector perpendicular to the array, where it has recently
been predicted that, in the large-N limit, the system may
undergo a first-order phase transition accompanied by
bistability [54]. This prediction is nevertheless not in con-
tradiction with our work, as Ref. [54] shows that even
a “weak” disorder in the atomic positions can suppress
bistability due to a reduction of the effective interaction
strength. The system considered by us exhibits a large
degree of disorder, lacks translational invariance, and as
such eludes an analytical solution of the full MF equa-
tions. To enable some degree of analytical understand-
ing, we instead introduce a set of simplifications, which
despite not being totally rigorous, still capture the most
relevant physics of the problem at hand and allow us to
gain valuable physical insights. We discuss them later in
Sec. IV. _

We obtain Qg‘p o — oI'VN (c = 0.08) from the numer-
ical steady state of the system. By plotting the steady-
state atomic inversion as a function of a normalized drive
strength, €2/ Q. dipolar ' (ve observe that the curves for differ-
ent values of N appear to collapse, as shown in Fig. 5(a).

As N decreases, the cloud becomes dilute and the
dipolar-interaction coefficients become less important. At
very small V, the steady state of the noninteracting model
is smoothly recovered for all the observables, as shown in
Fig. 5.

In Fig. 5(c) of the dipolar model, we show that the vari-

ation of the forward intensity o (S.S_) curve with the
normalized drive strength is very similar to that of the non-
interacting model [Fig. 4(c)]. The main difference between

these two models is evident in the N scaling of (S‘+S’_).
In the weak-driving regime of the CRF and noninteract-
ing models, where phase matching leads to a perfect N2
enhancement, we show that the forward-intensity curves
for different values of N collapse when divided by N2, in
Figs. 3(c) and 4(c), respectively. But for the dipolar model,
we find that the curves do not collapse when divided by N2.
At weak driving intensities, the site-dependent shifts due
to the dipolar interactions imprint random phases on the
cohelences and thereby suppress the N2 enhancement of

<S+S ) [30,36]. Hence, the N scaling of <S+S ) decreases
as N increases, as later shown in Fig. 8(b).

To further understand the emission properties of the
steady state, we look at the forward two-photon correla-

tion function g,(0) = (S+S+S S_)/(S+S )2,
Fig. 5(d), in the weak-driving regime (2 <« Q
have g,(0) ~ 1, which corresponds to a coherence state.
This is expected because the steady state of the system
resembles a coherent state on the Bloch sphere with a finite
coherence |(S)|/N, as seen in Fig. 5(b) and later validated
analytically using a simpler model (Sec. IV). Given that the
CREF, noninteracting, and dipolar models all feature almost
pure Gaussian-like steady states in this regime, g,(0) is not

As shown in
dlpolar)
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able to distinguish their subtle differences and all the three
models have g,(0) ~ 1 in the weak-excitation limit [see
Figs. 3(d), 4(d), and 5(d)].

When the drive strength is above the “critical” level,

ie., 2> Q‘éipom, the drive quickly dephases the array. As

a consequence, dipolar interactions become subdominant
compared to the rapid rotation induced by the drive. Con-
sistently, the steady state starts to become fully mixed, with
suppressed coherences, signaled by the fact that g,(0) ~ 2
approaches its thermal value [see Fig. 5(d)].

This is in stark contrast to the CRF case, where the col-
lective nature of the master equation enforces the preser-
vation of the collective nature of the state even in the
large-driving limit (2 > QERF). Therefore, the intensity
keeps scaling as N2 [Eq. (15)], as shown in Fig. 3(c), and
2,(0) remains always below the thermal value and satu-
rates as 2,(0) — 1.2 [see Fig. 3(d)]. These key distinctions
imply that a free-space atomic cloud does not behave as a
CRF model in the strong-driving regime.

2. Steady-state frequency shift and contrast
In Fig. 6(a), we see that the steady state of the dipolar

model has (S,) # 0, unlike the noninteracting [Fig. 4(b)]
and CRF [Fig. 3(b)] models, where the x component of
the collective coherence is zero. The resonant laser drive

commutes with (S,) and the finite (S’x) arises from the
dispersive (elastic) part of the dipolar interactions, which
leads to frequency shifts, as discussed in Sec. IIT A. The
latter is most prominent in the weak-driving limit, where
the inversion remains close to its initial minimum value.
In this limit, the fractional x component of the coherence,
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FIG. 6. (a) The x component of the coherence, I(S’x) |/1 (S‘+)| #*
0, arising from frequency shifts due to the elastic dipolar inter-

actions. For the noninteracting model, (Sy) = 0 (dashed black
line). (b) The steady-state “forward” intensity for a range of
laser detunings, A: the dots show the MF-dipolar-model numer-
ics, while the solid lines show the interpolated data. (¢) The
steady-state frequency shift, computed as the detuning at which
the maximum intensity is reached (circles), which follows a lin-
ear dependence with N, as can be seen from the linear best
fit (solid line). Data from numerics of the MF dipolar model
in the weak-driving regime (2/I" = 0.1), averaged over ten
realizations.

~

I(S'x) [/ (S‘ 1), increases with V, which suggests that denser
clouds have larger collective shifts.
Beyond the critical drive, as shown in Fig. 5(b), the

contrast, [(S,)| =/ (S:)% + (S’y)2, starts decaying as the

state begins to get mixed and the Bloch-vector length
gets smaller. This behavior continues with increasing
Q/T until eventually the Bloch vector of the system
reduces to the one expected for the noninteracting system.
The approach to the noninteracting regime as the system
reaches the strong-driving regime is also signaled by the

dominant (S, ;) spin projections and the reduced (Sy) one.

This in turn leads to a reduced value of |(Sy)|/[(S.)], as
shown in Fig. 6(a).

In Fig. 6(b), we look at the lineshape of the steady-
state intensity in the weak-driving regime (2/I" = 0.1) by
varying the laser detuning, A, of the MF dipolar model. We
find that increasing N leads to a bimodal distribution with
apeak at A = 0 and a second resonance at Ape,i. Note that
the second peak arises from dipolar interactions and scales
linearly with N, as shown in Fig. 6(c).

The linear N scaling is consistent with previous work
done in the weak-driving limit [17,30,36,77,78] that has
observed a frequency shift proportional to the atomic
density. In our quasi-one-dimensional (quasi-1D) config-
uration along the X axis, the atomic density scales as
p ~ N/(a;,L), where L = 2l, is the axial length of the
pencil-shaped cloud and a;, < x;; sets the radial confine-
ment. The existence of a prominent second peak can be
naively understood from the fact that the inter-atomic dis-
tances are determined by the axial spacing, i.e., ko|7;| =

ko\/x; +v; +z; ~ kolxj|. As such, the pairwise inter-

actions between atoms along the X axis contribute con-
structively to the shift. Mathematically, this is because
the phases imprinted by the laser cancel those of the
Green’s function, ,C’;i>_,~ o exp(iko|7y | — il;L 7)) ~ 1 (for
more details, see Appendix B). Hence, by aligning the laser
wave vector along the elongated geometry of the cloud,
one can induce a nonzero global frequency shift even in a
disordered configuration [23].

As discussed earlier in Sec. 111 A 2, the steady-state den-
sity shift of the lineshape in the weak-driving limit for
a dilute gas is A = — Yok 2 Re ij/N . For simplicity, we
consider the far-field regime (o< 1/7) of the interactions,
which is the dominant term in the dilute case, and obtain
A in the large-N limit by integrating over the pencil-
shaped distribution of the cloud, as A = —cgNT, where
cr ~ 0.003 is a constant depending on the spatial extent
of the cloud. Similarly, we obtain the linewidth broaden-
ing as T = ¢;NT with ¢; &~ 0.004. In the regime in which
2I' > T, ie., N > 250, the dilute gas description is no
longer valid on resonance as, under this assumption, the
predicted forward intensity becomes unphysical [Eq. (27)]
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and the perturbative treatment fails. Thus, even though the
prediction of A is very close to Apcak, the weak-driving
physics in our system is beyond the first-order expansion
in interactions.

Of course, our analysis neglects motional effects in ther-
mal samples, laser forces, and dipolar forces. As shown in
Ref. [30], motional decoherence can induce a reduction of
the density shift and wash out the double-peak structure
compared to what is expected for frozen atoms.

C. N scaling for different driving strengths

To emphasize the collapse of the curves for different
values of N and the different critical properties across mod-
els, we compare the steady-state atomic inversion across a
wide range of driving strengths for the dipolar model (solid
line), the CRF model (dashed-dotted line), and the nonin-
teracting model (dotted line), in Fig. 7(a). The x axis of
Fig. 7(a) has been scaled differently for each model, corre-
sponding to the scaling of the “critical” driving strength
Q¢, where m € {CRF model, Dipolar model, Nonint.
(Noninteracting) model}. The N scaling of Q" for these
models has been shown in Fig. 7(b). The N scaling of the
critical drive for the dipolar model (o VN) clearly differs
from that of the noninteracting [approximately O(1)] and
CRF (x N) models.

In Fig. 8, we show the N scaling of the steady-state
intensity, i.e., we define «(2/I',N) such that (k)

(S.8_) o« N*©@/TN) gt fixed /T, across a wide range
of driving strengths. Note that «(2/ ", N) varies slowly
with N and we obtain «(2/ ', N) by fitting the steady-
state intensity to a power law over a finite range, [N —
8N,N], N ~ 0.4N. In Fig. 8(a), we choose the x axis to
be the bare driving strength €2/ T", to compare our predic-
tions with the measurements of a recent experiment [61]. In
the weak-driving regime, we find @ < 1 for the dipolar and
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FIG. 7. (a) The steady-state atomic inversion (S.) /(N /2) for
the dipolar (solid line), noninteracting (dotted line), and CRF
(dashed-dotted line) models. The x axis is scaled with the crit-
ical drive Q7% for each model, m. (b) The N scaling of Q" for
the dipolar (approximately +/N), noninteracting (approximately
O(1)), and CRF (approximately N) models.
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FIG. 8. The N-scaling exponent of the steady-state “forward”

intensity, (S;S_) o« N“. (a) o computed at a fixed Rabi fre-
quency, 2/ T, similar to Ref. [61]. « is similar for the CRF
(N = 10) and dipolar model (N = 2000) in the intermediate-
driving regime for a small range of €2/ I', which has been probed
in Ref. [61]. Atlarge 2/ T, @ = 2 for the CRF due to the preser-
vation of (S2) but the dipolar model becomes single-particle-like
(o = 1) due to spontaneous emission. Due to finite-size effects,
a < 2 for N = 10 (CRF). (b) « computed at a fixed Q/Qf, the
ratio of the Rabi frequency and the critical drive, for each model:
MF dipolar (solid lines), noninteracting (dashed black line), and
CRF (dashed-dotted green line).

the CRF models. Usually, @ < 1 is understood as a signa-
ture of subradiance but in our case this is simply an artifact
due to the N scaling being calculated at a fixed bare driv-
ing strength, Q/I". At a fixed value of /T, the system
crosses over from the strong—( > Q‘élpom, Q > QFRF)
to the weak—(Q <« Q‘élp()lar, Q < QERF) driving regime
as N is increased, leading to an inaccurate N scaling.
The dependence of a(2/T", N) on N also arises because
increasing N at a fixed 2/ I" changes the physical regime.
The variation of (€2/ I', N) with N is most apparent when
N approaches the value at which  ~ Q""" and the sys-
tem crosses over from the weak to the strongly driven
regime. This leads to a “kink” in «, i.e., & > 2, for the
mean-field dipolar model at intermediate driving strengths
in Fig. 8(a), which is again an artifact of fixing 2/ I". These
artifacts are not seen for the noninteracting model because
Q‘é"“i“" ~ (O(1) (in the large-N limit), so fixing 2/ T also
fixes the regime for all V.

In Fig. 8(a), we see that a of the dipolar model coin-
cides with that of the noninteracting model in the regime
of strong driving for all N < 2000, i.e., Q> Q‘é‘p"lar =
cI'v/N ~ 3.6T". This confirms our expectation that in the
strong-driving regime, the dipolar model behaves like the
noninteracting model. In Fig. 8(a), we also see the clear
difference between the CRF and the dipolar models in
the strong-driving regime. We show the CRF model for
N = 10 to compare with the experimental prediction [61],
where it is reported that a cloud of N = 2000 atoms can
equivalently be described by the CRF model of a reduced
effective atom number, Neg = 10. Close to the peak, the «
of the dipolar model agrees with that of the CRF model
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in a small range of Q/I". Even though the two models
have very different « in general, this was the regime probed
by the experiment, partly justifying the conclusions drawn
in Ref. [61]. Reaching the genuine strong-driving limit
requires large enough Rabi frequencies, which are not so
accessible in current experiments.

In Fig. 8(b), we calculate the N scaling by prop-
erly fixing the scaled driving strength, €2/ lep o and, as
expected, we find no signatures of subradlance. More-
over, the divergence of «, i.e., the region in which o >
2, seen in Fig. 8(a), vanishes. Instead, at weak driving,
a(Q/ QI N decreases from 2 (perfect phase match-
ing) to close to 1 (randomized phases) for the dipolar
model as N is increased and the collective shifts get
stronger, suppressing the N2 enhancement. In the weak-
driving regime, the variation of a($2/ Q‘élpOIar,N ) with N
arises from the fact that at small N, the system is dilute
and behaves as the noninteracting model with perfect
phase matching (o« &~ 2). As N is increased, the interac-
tions get stronger and the interaction-induced dephasing
suppresses the phase matching more and more, thus reduc-
ing «. Furthermore, even within a given driving regime, o
can vary due to the finite size of the system. At larger N,
the dynamical behavior of the system begins to converge
with increasing N and therefore o varies more slowly,
approaching a fixed N-independent value. In the strong-
driving regime, o — 1 for all NV, as the system becomes
single-particle-like. We show the best fits for extracting o
for different values of N in Sec. B 1. On the other hand, for
the CRF model, in the large-N limit, « scales as N2 in all
driving regimes.

IV. MODIFIED-CRF (Mod-CRF) MODEL

In this section, we propose a simplified theoretical
model at the mean-field level to describe the emergent
properties of our system. In the microscopic picture of
the dipolar model, the dispersive part of the dipole-dipole
interactions between atoms leads to a frequency shift in
the transition frequency of each atom, as discussed in
Sec. III A. This shlft can equlvalently be captured by an
additional term Zl | 8:(67 in the CRF Hamiltonian, as

N
Hytoa.cre = =S+ Y 8067, (28)
i=1

where the frequency shift of an atom 7 is described
as 8;(¢) = Zj ziRe Q~U (@?(t)) /4, inspired by the short-
time dynamics of the MF dipolar model. To distinguish
the collective slowly varying part of the interaction-
induced shift from the inhomogeneous fast time-varying
effects, we express the frequency shift as §;(t) = §(¢) +
hi(1), where §(f) = Zlﬁél Re g,j (67(1))/(4N) is the aver-
age shift across all the atoms in the cloud at any

time ¢ and A;(f) is the fast time-varying inhomoge-
neous component, which describes beyond-short-time
dynamics. The homogeneous component, 3(f), is dom-
inated by the shifts that add up along the axial direc-
tion due to the constructive interference of the laser-
induced phases with the interaction-induced phases. To
capture the constructive shifts in a simplified way, we
assume that 8(f) for our cloud can be described by
a collective system, such as a translationally invariant
atomic array, giving 5@ ~ > ;Re gio(ﬁz(t)) /(2N). The
interaction-induced time-varying inhomogeneous compo-
nent, 4;(¢), accounts for the random and dynamic evolution
of the atomic dipolar phases. %;(¥) has a zero mean, is
time dependent, and is therefore not removable by a sim-
ple echo pulse. For simplicity, these conditions are roughly
incorporated by considering the /; functions as stochastic
white-noise variables with spectral function: 4;(t)h; (¢') =
4y 8,8t — 1) [79].

The net dephasing arising from the #;(#)6;7 term can
be accounted for by local jump operators ./yz6;7 in
the master-equation formulation, where y; is a common
dephasing rate for all the atoms, which we set to be pro-
portional to the variance of the frequency shifts (for details,
see Sec. D 1), which scales linearly with the density of the
atomic ensemble [5,17,30]. Thus, we define the dephasing
rate as y; = c¢4Ny,, where ¢, is a phenomenological con-
stant that depends on the overall volume and geometry of
the atomic cloud and y; is the spontaneous-emission decay
rate.

Accounting for the overall elastic interactions, the col-
lective superradiant emission from nearby atoms, and the
single-particle spontaneous emission (since the purely col-
lective behavior is only possible in the high-density limit,
not achieved in the experiment), we obtain the modified
CRF model described by a master equation of the form
p = _Z[Hmod cRF> A] + Lmod-crr(0), where the Hamilto-
nian is

A

Hinoa-crr = =28, + x(S)S-. (29)

where x = 258(f)/ (S,(8)) = Z#O Re GiO/N is a constant.

X(ASA'Z(t)) acts as a time-dependent global magnetic field,
which describes the shearing of the collective Bloch vec-
tor via one-axis twisting (OAT) at the mean-field level. The
Lindbladian is expressed as

Lnotcrr(p) = = (28-58, (8,5, )

+§Z(26-“+ (67, 51/2 = )

+yd2(& P67 = 5).

(30)
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where the first line is the collective dissipation in the
CRF model with rate I'p = Zi £0 Im g~0,~ /N, the second
line is the single-particle spontaneous emission with decay
rate y,, and the third line is the single-particle dephas-
ing with rate j;. Unlike the CRF model, this modified
model does not preserve (éz). The case without dephas-
ing (y; = 0) and OAT (x = 0) has been predicted to show
a first-order phase transition and bistability [57,71,80] at
a critical driving strength given by Q¢ ~ I'pN/(2v/2).
Hence, spontaneous emission only changes the critical
drive by a factor of 1/+/2 compared to the original CRF
model (QcRF = I'N/2). When we include the effect of
dephasing (y; # 0) and dispersive interactions (x # 0),
we find that the modified model still undergoes a first-
order phase transition with bistability but the critical point
depends on the N scaling of y,;. We obtain the mean-field
steady state in the superradiant phase for N > 1 from the
following self-consistent equations (for a derivation, see

Appendix D):
Sy 1 4y [ (5002 + (5,2
5t () (522
(31
d\2 G \2 2 S
(Se)" 4+ (Sy)°  Q FD)/SN(1+<SZ>/(N/2)). (32)

N? B N2(T3 + x?)
The critical point is defined as the driving strength at which
the above solution ceases to be valid and is obtained as
(with yg = caNys/4)

Qpt R = IpV/Nf (33)

where f ~ 555 AL+ (/ Tp)*l/ca) + (4,/Tp) s a
constant.

In Fig. 9, we show the steady-state values of the Mod-
CRF model obtained from mean-field numerics, where we
have set ¢; = 0.002. This specific value of ¢, is not special
and we find qualitatively similar results for other values
aslongascy < 1. Wehave x =}, Re on /N ~ 0.003

and I'p =} ;o Im C;Oj /N = 0.002 for our pencil-shaped
cloud (for details, see Appendix D). The steady state of
the Mod-CRF model shows qualitatively similar behav-
iors to the MF dipolar model (Fig. 5). The critical drive
strength for the Mod-CRF model, ng"d'CRF, scales as
. . dipolar . .
approximately /N, similar to Q.. This VN scaling
is also recovered in the numerics as the scaled numer-
ical curves (x-axis scaling €2/ Q’gOd'CRF) of the atomic
inversion become indistinguishable at large N [Fig. 9(a)].
Similarly, the scaled numerical curves of the intensity
[Fig. 9(c)], £2(0) [Fig. 9(d)], and the atomic coherences
[Figs. 9(b) and 9(e)] also look indistinguishable. In the
weak-driving regime, the real part of the atomic coherence,

—~
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FIG. 9. (a)Ad) The steady state of the modified CRF model
from MF numerics: (a) the atomic inversion (S‘z) /(N /2); (b)
the total coherence, |(S1)|/N; (c) the intensity (S,.S_), which
largely scales as approximately N due to dephasing; (d) the
two-photon correlation function g;(0). (e) The x component of

the coherence, |(§x)| /1{(S+)| # 0, arising from the mean-field
frequency shift. In the large-N limit, QUO4CRF ~ I'V/N is the

critical drive for this model [Eq. (33)].

(5}), is nonzero and increases with N due to collec-
tive shifts [Fig. 9(e)]. In the strong-driving regime (2 >
Qmod-CRF) “the intensity of the Mod-CRF becomes single-
particle-like, i.e., (S'JrS’_) = N/2, as the coherences go to
zero [Fig. 9(b)]. In this regime, the atomic inversion goes
to zero as well [Fig. 9(a)] and g»(0) reaches its thermal
value of 2 [Fig. 9(d)]. These characteristics describe a
departure from the CRF model and qualitatively resemble
the properties of the MF dipolar model [Figs. 5 and 6(a)].
While the analytically obtained steady-state atomic
inversion in Eq. (31) can feature bistability and undergo
a first-order transition, we do not observe these features
in Fig. 9(a). This is owing to the values of the model
parameters, which are the ensemble averages of the orig-
inal dipolar coefficients. These parameters are consistent
with the experimental densities, where the far-field (1/r)
interactions dominate the physics and MF is valid. In par-
ticular, at the densities considered in our work, we have
I'pN ~ ya, ie., the collective decay and the dephasing
rates are similar in value. The competition between col-
lective decay and dephasing determines how collective
the system remains and the sharpness of the phase transi-
tion. As the collective decay rate is increased beyond that
used in Fig. 9, we find that the bistability starts to become
more prominent. However, we believe that at such large
densities, the MF model becomes invalid and beyond-MF
corrections arising from the strong near-field (1/7°) inter-
actions dominate the physics, leading to correlations [81]
as well as motional effects [30], all neglected so far in our
analysis. Understanding the validity of an MF description
in the high density regime, however, is beyond the scope
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of our current study and is deferred to follow-up investi-
gations. Here, we just limit ourselves to saying that while
we cannot rule out the existence of a phase transition in the
thermodynamic limit, from the numerical analysis carried
out in the less dense regime relevant for current experi-
ments, we do not expect a transition to happen. A rigorous
investigation of the high density limit nevertheless remains
an open question.

V. COMPARISONS WITH EXPERIMENT

In this section, we compare our mean-field numer-
ics for the dipolar model with experimental results [61].
The experimental system and measurement protocols are
all described in Ref. [61]. The participating states corre-
spond to the o -polarized atomic transition between the
two levels |5S1/2,F = 2,mF = 2) — |5P3/2,F = 3,mF =
3) in ¥ Rb with linewidth I' = 2 x 6 MHz. The Clebsch-
Gordan coefficient for this transition is 1. This system is
the same as the one described in Fig. 2.

In Fig. 10, we show the dynamics of the total exci-
tation fraction n.(9) = Y ,;((6.(1)) + 1)/(2N). To do this,
we evolve the system under a continuous drive with Rabi
frequency Q2 = 4.5T" from the ground state to the steady
state. We find that the mean-field numerics (red lines) agree
more or less with the experiment (blue traces), for differ-
ent values of N. The red-shaded region shows n, within a
range of N values to account for experimental uncertain-
ties. Both the numerics and the experimental data feature
a dephasing of the Rabi oscillations with increasing parti-
cle number, which is not seen in the noninteracting model
(dashed black line).

In Fig. 11(a), we look at the steady-state atomic inver-
sion and find very good agreement of our numerics (con-
tinuous lines) with the experimental data (symbols) for
N = 300. An experimental data point in Fig. 11(a) for N =
1500 at 2/ T" &~ 4.5 ((S’Z)/(N/2) ~ —(.45) is not consis-
tent with the steady state in Fig. 10(c) (n.(t — oo) =
05= (5’;) /(N /2) = 0). This could be due to calibration
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FIG. 10. The excitation fraction n, versus time for fixed
Q/T' = 45—MF dipolar numerics for Nyg atoms (thick red
line) on top of experimental data (blue traces) for Ny, taken
from Ref. [61]: (a) Nexp = 350, Nyr = 350; (b) Neyp = 1000,
Nvp = 1150 £ 13%; () Neyp = 1600, Ny = 1700 &= 6%. The
red-shaded regions show the numerics data in the specified Nyr
ranges. The dashed black line is the solution of the noninteracting
model.
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FIG. 11. (S'z) /(N /2): the steady-state atomic inversion. (a)
MEF dipolar numerics (solid lines) and experimental data (sym-
bols) from Ref. [61]. (b) MF data with x-axis scaling of approx-
imately ©/ Q0™ showing the collapse of curves for different
values of N.

errors or other experimental systematics. Other than these
quantitative differences, it is clear that there is a quali-
tative agreement with the theory in the trends observed
in the experiment. In Fig. 11(b), we plot the numerical
data with our scaling of the Rabi frequency, Q/ Q‘élp(’lar ~
Q/(0.08I'/N), and the data collapse to a single curve,
as previously discussed. In Fig. 11(a), while the weakly

driven regime begins to appear at values of Q/ Q‘éip"lar <1,

where (S‘Z) /(N /2) < —1/2, there are very few experimen-
tal data points in this regime, which may make it seem
that the weakly driven limit is missing. To fully reach the
weakly driven limit, (S.) /(N/2) — —1, smaller values of
Q are needed, as shown in Fig. 11(b), i.e., Q/Qg‘polar <
0.1, which would amount to < 0.3T" for Ny, = 1500
and 2 < 0.1T" for Ngyp = 300. In the purely theoretical
figure [Fig. 11(b)], with the x axis (R/QEP™) scaled
logarithmically, the weak-driving regime becomes more
visible.

(a) (b)
HH500 941300 1800 MF

2 20f > 0.2}~N=400

% } ~N=1300

kE % —N=1800

X = 0.1

»5 —

0.0 -
107! 10°

Q /Qdcipolar

FIG. 12. (a) The steady-state intensity of the MF dipolar
model in the forward direction (f = 0, dashed line), averaged
over a solid angle (A6 = 6,y — 6i,) around the forward direc-
tion with 6y, = /22 and 6, = /7 £ /50 (solid lines, shaded
region), and experimental data (dots) from Ref. [61]. Iy is a fit-
ting factor for the MF dipolar model, chosen to match the theory
peak with the experimental values. (b) MF data (6, = /22 and
fout = 7/7) with x-axis scaling ~/ Q2" show the collapse of
curves, as expected.
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In Fig. 12(a), we compare the steady-state intensity
from MF numerics with the experimental data [61] and
find fair agreement. Here, we look at the steady-state

intensity, /o ) Z 5.6 o)

direction (k kL, dashed line) and averaged over a
solid angle around the forward direction (shaded region).
Here, k= {cos,sinf cos ¢, sin 6 sin ¢}, is the direction
of observation, with 6 the angle from the x axis (for-
ward direction) and ¢ the azimuthal angle in the y-
z plane from J. For the circularly polarized transition,
eg=ey=—(x+ zy)/«/z and we obtain Io(k) x (1+
sin® 0 sin® ¢) /2 (see Appendix A 3). As some of the light
in the forward direction is filtered out in the experiment
to remove the laser light, we average the intensity over an
annular region [30,82], such that the averaged intensity is

expressed as fgz“t do fozn de sin 01 (k) Y, (646-) i /4,
where foy = 7/7 % 7/50, 6 = 7/22, and A = [, do

fOZ” d¢ sin 6 is the normalization factor. The values of Oyy
and 6;, are extremely difficult to determine experimentally
and hence we consider them as fitting parameters, while
making sure that their values remain within a reasonable
range.

Furthermore, we have included direct contributions
from the probe light to the intensity, considering that the
filter may not be perfect (for details, see Appendix E). We
use an approximately 4% leakage of probe light intensity,
which is also a fitting parameter, and its value is consistent
across Figs. 12—14. The experimental data, which represent
the photon rate in arbitrary units, are scaled with a fitting
factor, which has been used in Ref. [61] to compare their

¢*7ii | strictly in the forward

data with the CRF model. To compare our results with
the experimental data, we scale the intensity with a fit-
ting factor Iy, which is obtained by matching the peak of
the experimental curve with the peak of the numerics for
each V.

In Fig. 13, we compare the dynamics of the forward
intensity, /(f), measured in the experiment (red traces)
[83], with the intensity from the MF numerics in the strictly
forward direction (dashed black line) and the MF numerics
data averaged over a solid angle about the forward direc-
tion (solid blue line) with 8;, = 7 /22 and a range of 0, =
/7 £ /50 (blue-shaded region). This is the same range
of solid-angle values as discussed earlier for the steady-
state intensity. To properly compare the bare photon rate
from the experiment with the numerical values of the inten-
sity, we scale the dynamical intensity /(f) by its steady-
state value /ss, thus making the scaled intensity, /(#)//ss,
independent of the distance between the atomic cloud and
the detector, which is difficult to determine exactly for
the experimental setup. In the weak (2 < Q™) and

intermediate (2 ~ lepom) driving regimes, the experi-
ment agrees well with the purely forward intensity of the
dipolar model (dashed black line) for different values of
N, as shown in Figs. 13(a)-13(c). In Figs. 13(d)-13(f), we
see that in the strong-driving regime (2 > Q‘élp(’lar), the
experiment agrees well with the dipolar-model intensity
when averaged over the solid angle (blue-shaded region)
for different values of N. Thus, the solid angle (6in, Oout),
for which the numerics and the experiment agree, depends
on the drive strength, 2/ I". One possible explanation is
the fact that the radiative force of the laser pushes the

(a) (b) ()
4t QI'=2.67 4t QI =25 4t QI =35
m —Exp_' .
= --MF (k=kv)
§ 2 N, —MF (A0) 2r 2t
0 0 0
@ ©) = )
l: Q/IT'=10.0 1\ QI =9.67 no QI =10.0
g b N i
Zrogi KA 1041V
s 1 Yino4 mYyono Ad
~ 0 4 A » 0 11 ~
10 ', N 1 10 " | A |

0 50
t (ns)

FIG. 13.
angle (A6 = Oyt —

t (ns)

The dynamics of the intensity for the MF dipolar model in the forward direction (dashed black line), averaged over a solid
0in) about the forward direction with 6, = 7 /22 and 0y, = 7 /7 £ /50 (solid blue line, blue-shaded region), with

experimental data (red traces) [83]. The intensity /() has been scaled by its steady-state value, Iss, for each data set. (a)+c) The weak-

and intermediate-driving regimes (Q < Qgpom). (d)(f) The strong-driving regime (<2 > Qgip olary “(a),(d) N =
1900, QPR ~ 3 5T,

(b).(e) N = 1500, Q7™ ~ 3.1T; (c),(H N =

1300, QI ~ 2.9T;
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FIG. 14. 2,(0) in the steady state for N = 1400: in the forward
direction (6 = 0, dashed black line), averaged over a solid angle
(A0 = Byt — 6in) about the forward direction with 0;, = /22
and 6, = /16 £ 7/100 (green-shaded region), with experi-
mental data (red dots) from Ref. [61].

atomic cloud closer to the filter and the detector, changing
the solid angle of the detected light. Of course, the radia-
tive force may also lead to other motional effects such as
dephasing, which we have not considered here.

In Fig. 14, we look at the steady-state equal-time two-
point photon correlation function g,(0), as defined in
Eq. (9), in the strictly forward direction (8 = 0, dashed
black line) and averaged over an annular region around
the forward direction—the same as we did for the inten-
sity earlier, with the same 6y, = 7 /22 but with a smaller
Oout = /16 £ /100 (green-shaded region). Again, we
find fair agreement between the experimental (red dots)
[61] and numerical (green-shaded region) values, when
averaged over the solid angle. We see some discrepan-
cies at intermediate 2/ I values, which could arise from
the dephasing of coherences due to atomic motion in the
experiment. The best-fit 6,,; values are not identical to the
ones used for the intensity plots but such changes could
occur between different experimental measurements. Here,
we plot the numerical values for the noninteracting model
instead of the dipolar model, as we find that it is quicker to
integrate over the solid angle analytically over the steady
state of the noninteracting model than to do a discrete sum
in this case. We have already shown that the g,(0) val-
ues for the noninteracting model coincide with those of the
MF dipolar model in Fig. 5(d), so we expect these values
to be valid for our system. For further details about the
analytical averaging of g, (0) for the noninteracting model,
see Appendix A. We find that the solid angle for fitting
the forward intensity and the g,(0) data has some varia-
tion across data sets. This is likely due to the uncertainties
associated with the spatial filter in the current experimental
data and hopefully our work will stimulate new measure-
ments that can resolve and shed light on this disagreement
in future research.

VI. CONCLUSIONS

We have studied the age-old, albeit complicated,
problem of characterizing the emission properties of a

spatially extended ensemble of driven interacting atoms in
free space. What makes this problem complicated is the
lack of symmetries such as translational invariance in peri-
odic arrays and permutational invariance in optical cavi-
ties. In the absence of symmetries, an exact microscopic
treatment of the system is impossible due to its exponen-
tially large Hilbert space (approximately 2V). Neverthe-
less, we are able to greatly reduce the complexity of the
problem by identifying two distinct driving regimes (weak
and strong), where an MF treatment is almost exact and
the problem becomes at least numerically tractable with
just 3N degrees of freedom. Furthermore, we find that our
MF numerics are able to qualitatively capture the physics
across all driving regimes and that beyond-MF methods
(MACEMF and cumulant) lead to negligible corrections.

We find a crossover between nonequilibrium phases in
the steady state of our system as a function of the driv-
ing strength 2/ I, akin to the superradiant phase transition
in the CRF model. We find that the inhomogeneity of
free-space dipolar interactions plays a key role in mak-
ing our system strikingly different from the CRF model.
This is most prominent in the N scaling of the critical
order parameter, which is o« +/N in our system and dif-
fers from that in the permutationally invariant CRF model
(ox N). Moreover, the strongly driven phase in our model
is completely mixed and single-particle-like, whereas the
“normal” phase of the CRF has collective quantum corre-
lations.

At the cloud densities considered, our system is gov-
erned by the far-field dipolar interaction (approximately
1/r), which is long range in quasi-1D. The collective
effects of the long-range interactions are tempered by the
dephasing arising from inhomogeneous frequency shifts
and free-space emission. Using these physical insights,
we propose a heuristic modified CRF model capable
of describing our system, which includes single-particle
dephasing, shearing, and spontaneous emission. This mod-
ified CRF is able to qualitatively reproduce the emergent
features of our complicated microscopic dipolar model and
is analytically solvable at the mean-field level.

While there has been considerable recent interest in this
area with other works [53,54] looking into the light emis-
sion and critical properties of driven-dissipative atomic
arrays, our work goes beyond the existing literature, which
ignores the laser-induced spatial phase, and studies a sys-
tem that is closer to the experimental implementation. The
laser phase, for example, is key to enabling collective
effects in our system. Not only is it responsible for cancel-
ing the phases in the Green’s function along the forward
direction but it also leads to a finite average frequency
shift and a nontrivial scaling of the critical drive with
respect to N. Previous work [53] characterizing the critical
drive has not found a relevant N scaling. In addition, other
works [53,54] have not looked carefully into the effects of
strong disorder, which breaks translational invariance. For
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our system, both disorder and laser phases play an impor-
tant role in determining the dynamical behaviors. Disorder
dephases the coherences and suppresses the N scaling of
the critical drive from N (translationally invariant case) to
V/N. To the best of our knowledge, the N scaling presented
here has not been reported before.

More importantly, our results are able to reproduce most
of the experimental findings from a recent work [61].
Our work bridges the theoretical gap between the widely
studied CRF model and the spatially extended inhomoge-
neous atomic ensembles accessible in current experimental
setups. While previous work has shed some light on the
properties of dilute atomic ensembles, our work extends
this knowledge to moderately dense ensembles where col-
lective effects are relevant beyond just frequency shifts and
linewidth broadening.

For future work, it would be useful to measure (using
Ramsey spectroscopy) the collective frequency shift aris-

ing from dipolar interactions, which leads to a nonzero (S)
in the dipolar model, as opposed to the CRF and nonin-

teracting models, where (S;) = 0. This is a smoking-gun
signature of many-body effects in this system. The next
step would be to study highly dense atomic ensembles,
where the near-field elastic dipolar interactions (approxi-
mately 1/7°) dominate the physics and the MF treatment
breaks down. The effects of atomic motion would become
pertinent in the presence of strong light-matter interactions
in dense ensembles. Another avenue worth exploring is the
case of multilevel atoms, which includes the internal level
structure of alkaline-earth(-like) atoms due to hyperfine
splitting. Even in the weak-driving regime, the multilevel
system can have quantum correlations in the ground-state
manifold [84] and is distinct from the semiclassical two-
level picture. While there has been some recent work
on the emission properties of multilevel arrays in free
space, it is largely confined to the early-time dynamics [85]
and inverted arrays [50]. Characterizing the steady-state
properties of multilevel ensembles is crucial for current
experiments and remains an unsolved problem.

Note added —During the completion of our work, we
became aware of a related recent work [82] that reaches
conclusions similar to ours using a complementary theo-
retical treatment.
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APPENDIX A: NONINTERACTING MODEL

Here, we consider the noninteracting system and
its steady-state solution. The master equation describ-
ing this system is p= —z[Ho, 0] + Lo(p), where Ho
—(2/2) Zk(e’k“kak +h.c.) is the Hamiltonian and
Lop) = (T/2) %, (26756, = 167.5)/2 = 5) is  the
Lindbladian. The atomic equations of motion reduce to the
standard optical Bloch equations:

(67) = =T ((67) +1) +i%2 (P74 (67) — e7n(57)),
(A1)
A+ A+ 2 i A
(0 ) = —5(0;) + i e " (oy), (A2)
2 2
and the steady state can be obtained by setting (é,f y=20

and (o) = 0 for all k, as

FZ
(O'k) = —m = —R, (A3)
At Q i
(0 ) = —i—=e "L"kR. (A4)

The steady-state intensity in an observed direction k is

-2 g

J i#]

10 _
Lo(k)

1—R Q? P
Gt Vo ER2Ze'“f—’%)'(ff—’f). (A5)

2 —
i#]

The two-photon correlation function in an observed direc-
tion £ is

= S”r k S”r k S k S k
50V = (ST (0)S* (S~ (k) ()>,
(S+(k)S (k)2

(A6)

where S (k) = > 6lieiik';f . For noninteracting particles,
iAJ

the correlations factor for different atoms as (6, o*ﬁ)
(6(85).
tion relations of the Pauli operators as (G,64) = 8up1 +
2ig*Py (8;), where o, 8,y € {x,y,z}. Using this scheme,
the two-photon correlation function along the measure-
ment direction can be expressed as

For the same atom, we use the commuta-
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7 1 . A N 2z o) 2 Jop Jog
2O = | 326 +1) (67 +1) +2 ) (67 +1) (60060) + Y (66161 67)

(i) (ijk)

1 AL A
x| 522 (80 + 1) + 3@ e))
(i)

1

where we have suppressed the notation to denote %* =

6j+eikL"f and (ij ...) denotes sum over unlike indices, i.¢.,

it

1. Weak-driving regime

In the weak-driving regime (2 < I'), the steady-state
solution can be expressed as

. 2
(o) =—(1- Tz (A8)
Q -
(6:) = e (A9)
and the intensity along the laser wave vector is
1k, Q2 1\ 2
g =N (N — -> ~ —N?, (A10)
Lky) T 2 r

which scales as N? in the large-N limit due to the con-
structive interference of coherences along the measure-
ment direction. In this regime, the two-photon correlation
function can be expressed as

- - 2 1 . -
20) (k) =1— N + V2 = ngnocgz(o)(kL) =1,
(A1)

which is consistent with the value for a coherent state. In
the extreme weak-driving limit, the atoms are very weakly
excited such that (c}jz ) = —1, which, along with Eq. (A7),

gives 3,(0) (k) — 1.

2. Strong-driving regime

In the strong-driving regime (2 > I'), the steady-state
solution can be expressed as

1‘*2
(07) = Yer (A12)
r ...
<Ak+> _ iﬁe—lkui’k (A13)

A

(ijkd)
-2

; (A7)

and the intensity along the laser wave vector is given by

1k N T2
k) N, —SN(N —2).
Lk) 2 4Q

(Al14)

When the drive is in the regime '?/4Q% < 1/N = Q >
I'v/N/2 for all N, the intensity scales as N. As the
drive gets extremely large, €2 3> NT'/2, the state gets fully
mixed and / (kL) — N/2. In this limit, we obtain

- 2 -
20 =2-= = lim £0) =2, (Al

consistent with the fact that the system is described by a
thermal state. In the extreme strong-driving limit, the sys-
tem is maximally mixed such that (6]2 ) — 0and (6j+’_) —

0. Plugging this into Eq. (A7) also gives 2,(0) (l_c'L) — 2.

3. Averaging over a solid angle

For our pencil-shaped cloud (Fig. 2), the atomic posi-
tions are distributed in a Gaussian distribution,

p(x,y,z) = , (A16)

(271)3/20ax0r2ad

where 0,x = 20\ and o, = A/2 are the axial and radial
standard deviations of the cloud, respectively. Then, in the
large-N limit, we can replace the sum over atoms i and j in
the intensity in Eq. (A5) by an integral over the positions,
weighted by their distribution p(x,y,z), as

I(k 1—-R Q2
(—3 ~ )N - —2R2N
Iy (k) 2 r
02 NP
+ FRZ / d3}"/ d3,,/p(?)p(;’)el(k—kL)'(V—’/)’

(A17)
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where in the first line we have subtracted the contribution from the i = term in the integral. We define ¢ = k— l;L =
(9x,qy,9-)- Then, it is easy to do obtain the integral in Cartesian coordinates as

0 o0 o0 .

= N exp(—(0nd; + Oady, + Oad)-

2

(A18)

Now, we substitute l;L = (27 /A)x and k= (2m/2) (cos@,sinb cos ¢, sin 6 sin ), where 0 is the angle from the X axis
(forward direction) and ¢ is the azimuthal angle in the y-z plane from . Then, we obtain the intensity as

160,9)  2(/D)*

L) ~ (1+2(Q/1)2)?

Close to the forward direction 8§ = §6 ~ 0, the intensity can be expressed as

166,¢) 22/ 1)

S N1
L (1+2Q/T)) {

such that the N2 enhancement falls off exponentially fast
as the observation direction deviates from the forward
direction.

We need to multiply the above intensity equation
[Eq. (A19)] by the geometric factor Io(k). Due to
the large distance of the detector from the cloud,
Io(lAc) is the factor associated with the far-field part
of the electromagnetic Green’s tensor and appears
in the expression of the dipolar intensity pattern as
=2 1—k®kb- -1 —kek &, where &, is the
polarization of light associated with the atomic transition
corresponding to fluorescence. For circularly polarized
light, we obtain Io(if) = (1 + sin’ 0 sin? $)/2.

Then, the intensity can be averaged over an annular
region, which has 6;, = /22 and 6, = 7 /7 as the inner
and outer boundaries, to obtain

2x Bout
Iy = / deo / doI(6,$) sinO(1 + sin® 0 sin? ¢)/(24)
0 bin

~[2(2/ D)4/ +2(Q/D))IN {c,
+ [cIv/2(2/ 1)),

where 4 = f02” do fef;’“‘ df sin@. It can be seen that the

extra factor of cll/cl, &~ 0.022, due to the averaging over
a finite solid angle around the forward direction, reduces
the relative strength of the coherent emission and shifts
the peak of the intensity to lower 2/ I". We have substi-
tuted o.x = A/2 and o9 = 20X above, corresponding to
our system (Fig. 2), to obtain a numerical value.

Similarly, we can also integrate over the atomic posi-
tions, weighted by the Gaussian distribution, to obtain the

N exp(—(2m)2 (02 (1 — cos0)* + 62 sin° 0))
N [1 T . (A19)
Ne—(@m)? (024807 +0380%/4)
QT : (A20)

analytical expression for the steady-state two-photon cor-
relation function, g, (k, k'), defined in Eq. (9), in terms of
k= @,¢p)and k' = (6,9).

APPENDIX B: MEAN-FIELD DIPOLAR MODEL

The mean-field equations of motion for the dipolar
model can be obtained from the master equation by fac-
toring the multi-atom correlations as (ﬁkﬁj) = (;lk)(éj),
where j # k. For an atom £, this treatment leads to

N

Az Az A2 i A— A

(67) = =T ((67)+1) +2i |57+ 37 Gy 67| (6,)
j=1
J#k

O o N
—2i 3e—lkw‘k+zg;; @h |6, @B
j=l

ik

N
N 2 i N R
(6 ) +i| Sem +Y Gt | (60,
j=1

ik
(B2)

where Gy = Ry + il = Gy is the dipolar interaction
coefficient and is symmetric with respect to the indices.
We can see from the above equations that the dipolar-
interaction term acts like an effective time-dependent com-
plex drive with a strength that depends on the coherence of
other atoms in the array. The elastic and inelastic dipolar
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coefficients are the real and imaginary parts, respectively, of the free-space electromagnetic Green’s function,

— cos? cos(kyr) B ) _sin(kor) _ cos(kor)

Ry = (3I'/4) [(1 cos” ) for 4+ (1 —3cos”0) ( Gor)? )3 )} ,
_ (kor) _ ) cos(kor) _ sin(koyr)

Ly = (3r'/4) [(1 cos? 8) . + (1 —3cos”6) ( or 2 o) >j| s

where r = |ry;|, cos 6 = 7y; - &4, ¢ = 0,£1, 0 is the angle
between the polarization of the atomic transition (e,, ori-
entation of the transition “dipole”) and the inter-atomic
distance. For the MF dipolar model at the densities con-
sidered in this paper, ko7 > 1 and the physics is dominated
by the 1/r (far-field) term, where 7 is the average inter-
atomic distance. The far-field interaction coefficients are
somewhat simpler,

~ (3T /4)(1 — co 29)°°S(k°r),
()}”

)~ GBI/ —cos?0) T,
ol”

and we have G;; = Ry; + iZ; ~ (3T'/4)(1 — cos? H)e'*or/
(kor). By gauging away the phase of the laser, we can
rewrite the MF equations as

Q L, s
—2i 5+Z 6 | 00), (B3)
et
. N
<é,j>=—g<:k+>+i %+ZQ~;;<3]+> 67), (B4
7k
where we have included the laser phase in the

interaction coefficient as Q~k,- =Gy e LTy~ (3T /A —
cos? 0)e™ 0" —kL7) / (ko). in the far-field limit. This addi-
tional phase leads to constructive interference of inter-
action terms in the direction of the laser wave vector,
i.e., kor — ki - 75 = 0. For our setup, ky, = 27w /Ax = ki -
71y = ko(xx — x;) and in the quasi-1D gas, we have |7,kj| ~
Ixx — x;| and cos? 6 ~ % - &,|* (¢ = 0, £1) for the majority
of atomic pairs. For a linearly polarized atomic transition
(é0 = 2), |% - &,)* = 0 and for a circularly polarized transi-

tion (&4 = —(& 4 i9)/v/2), | - &> = 1/2. Then, Gy ; ~
(3I'/8)/(kor) and g",K,J ~ (3T'/8)e?* 0" / (kyr), where we

have assumed that the atomic indices are sorted in increas-
ing order of position along the x axis. Unlike in periodic
arrays with special lattice spacing such that e?*0" =1, in
a disordered array the ¢?*" phases in Qk<j j terms would

get washed out in comparison to the G j,; terms. In the
MF equations of motion, we have constructive interference

of terms approximately g~k>j J <c:7j_> <c:7k+ ). This implies that
due to the phase matching of dipolar interactions with the
laser drive, effects will constructively add up from an atom
k further along in the path of the laser absorbing a photon

emitted from an atom j earlier in the path of the laser.

1. NV scaling of intensity

Here, we discuss how the forward intensity scales with

N at a fixed value of Q/ Qdipomr which fixes the regime
(weak or strong driving) of the system. We define the N

scaling as (S, S_) oc N*©/ SR ) the same as in the
main text, such that o(€2/ lepo}ar N) varies slowly with
N. We show this slow Varlatlon with N in Fig. 15 (right),
where the power-law scaling, «(S2/ Q(élp Olar,N ), 1s calcu-
lated between black dots, which correspond to the upper
limits of the N values for the fits and the lower limit for
each fit is approximately 0.6N. Corresponding to these
fits, we show the power-law scaling, a(Q/Q‘é’po}ar,N),
in Fig. 15 (left), which remains almost constant with N

in the strong-driving regime 2 /Qchpolar > 1, where the

(@) (b)
20 dipolar a”.
Q/Qfipolar . 105 .
218 - 0.11 = 26 ’/'
T:; 16 1.15 = 39 <,;'\ 10*
E1S fl
< \' @ 10°
g Q/Q;iﬂmlm .
® 12 102 —0.11=2.6 *fit
~ 115-39
1.0
1000 2000 3000 4000 5000 102 10°
N N
FIG. 15. (a) The N dependence of the N scaling of the for-

dipolar

ward intensity, (S+S )y oc N9 N) - (b) The MF steady-
state intensity (solid line) versus N and best fits (dotted-dashed
black line) of the intensity to a power law in N corresponding to
the a(Q2/ Q‘élp(’lar, N) values on the left.
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system becomes mixed and we get the single-particle-
like linear scaling with N. In the weak-driving regime,
Q/ QU™ < 1, we see that a(/ QEP™, N) ~ 2 at small
N, where almost perfect phase-matching occurs in the
dilute limit. As N increases, the system gets denser
and interaction-induced shifts lead to dephasing, reduc-
ing a(Q/Q‘é‘p(’lar,N). Thus, at fixed Q/Qgp(’lar, as N is
increased, the physics changes from the dilute to the
strongly interacting regime, which is reflected in the value
of a(Q/ QI N).

APPENDIX C: CRF MODEL ANALYSIS

Consider the CRF master equation given by

a0 Ta - N
L =-io [Sx,p] 4T (S_pS+ - E{S+S_,,o}) . (Cl)

Equation (C1) can be rewritten in the following form:

p UV P

L =r(0p0" - ={070,5}), C2

o (p 2{ ,p}> (C2)
where

. A N . A N

where B is the order parameter and is given by f = Q/<Q,
with Q. = NI"/2. From the factorization of Eq. (C2), we
can infer the properties of the steady state [86].

For B < 1, the system is in the superradiant phase. To
analyze the stable state within the polarized phase, we
employ a Holstein-Primakoff expansion centered around
the polarization direction. In mean-field theory, the Bloch
vector stabilizes at an angle 6, where sin6 = 8. This leads
us to consider a rotated coordinate system:

S, =8, (C4)
S“y = A; cosf — gj sin @, (C35)
S, = A; cos6 + 3’; sin 6, (C6)

such that the Bloch vector is aligned along —z’. We then
do a Holstein-Primakoff (HP) expansion about this direc-
tion, with the (lowest-order) replacements 3’; ~ —(N/2),
S, ~%J/NJ2,and 8, ~ —p/N/2, with & = (@ +&"/v/2
and p = (a —a')/v/2i, which satisfies [fc,ﬁ] =1i. The
operator O in Eq. (C3) in the HP expansion will have the
form

. . . N [N
0=Sx—iSy+i/33%,/E(fc—i-iﬁcosQ). (C7)

For B < 1, the state is in the superradiant phase and
will remain coherent. This implies that the density

matrix of the steady state satisfies p = |0p) (Op| and
OlOD) =0, ie., 0 corresponds to an annihilation oper-
ator with unique dark state |0p). To normalize prop-
erly O, we recall that the annihilation operator ap =
mO satisfies the commutation relation [&D, &I—,] =1.
Replacing, we find that m? [fc + ip cos6,X — ip cos 0] =
m?*cos 0 (—2i%) = 2m*cos® =1, so m = 1/+/2cos 6 and
the annihilation operator reads as ap = (£ + ip cos6) /
/2 cos@. In these terms, we can define Xp = (ap + ag)/
V2 and pp = (ap — &I))/\/Ei, so we can find that x =
A/cosOxp and p = pp/+/cos 6. These operators will allow
us to calculate expected values in the superradiant regime.
Our aim is to find expressions that represent the behav-
ior of the expected values of the operators of interest at
the limit of a large number of particles. Replacing the
operators of Eq. (C6) expanded in HP, we find that

A . [N
S, ~ Xp zcosé,

(C8)
A N . |N
Sy & —sinf — pp,/ = cos b, (C9)
2 2
S N coso -5 ino (C10)
, A ——cosf — sing.
2 pp 2cosb

From the mean-field analysis, we can obtain that <$’x> =
0, (Sy> — N/2sin6 and <S> — _N/2cos0 [86]. For the

expected value <§+$’_> we can calculate using the HP
expansion:

A A A N
S+:Sx+iSy%ch‘/30039
+i N 6 —p ,/N 0
i3 sin Py 5 cos
N |N A n
= i; sinf + > cosf (xD - ipD)

N t
= iz sin® + v/ N cosOay,. (C11)

So, 3‘+§_ expanded as a function of the HP operators and
its expected value is

P N :
S+S_ ~ (15 sin @ + \/NCOS 0&;)
N . N
X <—15 sinf + vNcosé’aD) ,
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. . N . N
<S+S_> - <0D ‘S+S_‘ oD> ~ i sing (—i sin

N 2
= (— sin@) .
2

We have used the fact that <&£> = (ap) = <&£&D> = 0. This

formula is valid for & < /2, where the HP approximation
holds.

Now, we estimate the expected value <§+§+§_3'_> as

(C12)

<§+§+§_§_> == <OD ‘L§+L§+A§_§_‘ OD> 5
N
- 10p) ~ —i5 5in6 [0p)
A A A A N N A A
<S+S+S_S_> ~ <i3 sin 9) (—iE sin 9) <0D ‘S+S_‘ 0D>
N 4
= (— sin9> )
2

A A A A A A~ \2
In this case, we find that g, (0) = <S+S+S_S_> /(S+S_> at

the HP limit is g, (0) ~ (N/2sin0)*/((N/2sin6)*)" = 1
for the superradiant phase. Regarding the HP approxima-
tion, this tends to improve at the limit of large numbers of
particles such that it converges to the exact result [86], so
we can expect that for 8 < 1 the previous result is valid at
N — o0 and that, in these conditions, g, (0) = 1.

For 8 > 1, we are in the normal phase. In that case, the
steady state is highly mixed. In general, the steady state
can be written formally as

(C13)

~ 1 1
,Oss:NA 5

5 .
vzt ’/3 N/2 —ip

(C14)

where N is a normalization constant and 8 = 22/ (I'N).
In the normal phase (8 > 1), the properties of the steady
state are derived through semiclassical analysis. We
parametrize the phase space using angles 6 and ¢ as fol-

lows: (3}, S‘y, §Z> — N /2 (sin 6 cos ¢, sin 6 sin ¢, cos 0),
s0 8. — N/2sinfe, and operator traces are replaced by
integrals over the sphere, with the measure N /47 sin 6 df
d¢. The normalization constant N is determined through

this process. To obtain N, we recall the normalization
condition Tr (4ss) = 1, so we need to satisfy

b4 2 1
= N/O /0 (sinfe~® + iB) (sinfei — ip)

N .
— sinOdepdo.
4

(C15)

This integral can be done using calculus of residues around
the unit circle z = ¢ in the counterclockwise direction

and we must be aware that sinf/8 < 1 in the normal
phase, which will be relevant for determining the suitable
residues inside the integration curve. In particular, the use
of this substitution in Eq. (C15) leads to

dz
N 4”:3/ fil 1 z—lsme) (z—ii> “

sin 6
(C16)

In Eq. (C16) we can identify that the residue zys; =
i(sin6/B) belongs to the interior of the integration curve,
whereas z.s» = i(f/sin 0) does not belong because, for all
0, we have sinf < § in the normal phase. By the Cauchy
integral formula, we deduce that

N sin @
1 = do.
,32 —sin’@

we find that N =./B2—1/N arctan

-1

(C17)

From here,

(=)

The estimation of the expected values can be performed
using a similar integration process such that O = O (0, ¢)

andn=./B*—las

<O> ~ 47 arthn (1/n)

b4 21
0 0

For example, in the case of <§)2€>, we can observe that 5)% —

0 (0, ¢) sin 0dpdo
(sinfe= + iB) (sinfe® — if)
(C18)

(N/2)? sin® 6 cos? ¢, so in the normal phase we have that

o\ n
<S’C> "~ 47 arctan (1/m)
(M)2 sin® 6 cos? pdpdo

2
x /0 fo (sinfe=i® 4 iB) (sinfe’® — iB)

=l=-) ———. (C19)
2 ) 3B2arctan(1/n)

In particular for calculating g, (0), we need to estimate

<§+S‘+S’_S‘_>.

tity at the limit of large N, then we expand the oper-

ator in the semiclassical approx1mat10n at the leadmg

order of N. This implies that S+S+S S_ —52 $2 -

(V/2sin Qe’¢) (N/2sin Ge_’¢) +0 (N3 ~ (vV/2)*sin* 0
for large N. In this case, the mathematical expression for

Given that we are estimating this quan-
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finding g, (0) at the leading order is given by

_ Ui
4 arctan (1/n)
/ /Zﬂ (4)" sin""" odgpds
sm@e"¢ +iB) (sinfei — i)’

(C20)

my
20) ~ —
m;

~ (ﬁ—4 arctan (l) — /82 - %>
U 1 3
(1amn () =) arn ;)
x [ Barctan| — ) —n ) narctan| — ). (C21)
n n

The remanent integrals used to estimate the quantities of
interest in Egs. (13)~«16) are as follows:

B — =
v~ )
4narctan<;)
T 2

<

o Jo

Ui
=5 (ﬂ - ,BaTn(l/n),
<$~+S~_> ~ <§)2{ + §§>
n

5 sin’ 0 sin ¢pdpdo
(sinfe~ + iB) (sinfe® — ip)

(C22)

sin3 0dgde

2 N
,/ / (sinfe~ ’¢ —|— iB) (sinfe — ip)
2

N ,32— i

"\ () )

APPENDIX D: MODIFIED CRF MODEL

The main steady-state features of the dipolar model can
be recovered from a much simpler model, which can be
solved analytically—the CRF model with one-axis twist-
ing, dephasing, and spontaneous emission. Even though
this model has a bistable solution in the superradiant phase.
For our chosen initial condition |g)®", we find that the sys-
tem reaches a steady state very similar to that of the dipolar
model. To see this, first we obtain the mean-field steady
state, which can be derived from the equations of motion

of this model and is given by

A N N ~ N P

(8) = 28 — 1 (5 46 >> o (8 + (5,17,

A A A A .+ 4 A

(8,) = 2(5.) + M8 (8, — (V‘J;—”")wy)

+ 25 (S:)(S0),
A A o+ 4 ~ A A
(8) = Tn(8.)(8,) — WB—””NS» ~20(8,) (5.
(D1)

where, as usual, we have used (0“0,? ) = (a )(8,28 ) for

j #k and (626) = 2igqp,(8)). For the cooperative
emission and one-axis twisting (OAT) terms, we have

(o“o,f) (0 )(6,5) for all j,k [71]. We can see from
the above equations that for x =0, (S}) = FD(S’Z)(S}) —

[, +4va)/2)(8) = (S (0) = ($:(0)) [ dt exp{ ' (.(1)) —
[(ys +4va)/ 2]}. Hence, for an initial state with (S’X(O)) =
0 and x = 0, the value of (§ (f)) remains zero for the full
dynamlcs of the system. This is because the laser drive is
along SY, so it commutes with and does not alter S The
other terms are dissipative and they destroy the coherence,
S.. However, the OAT (x # 0) term causes shearing of
the collective Bloch vector about the z axis, which leads to
S, # 0.

For simplicity, from here on, we will use the nota-
(Sz) /(N /2) and we define new variables (7, ¢) to

express the collective coherence as (§+) /N = re®, such
that r = /(S,)2 + (S‘y)z/N is the contrast and ¢ is the
phase in the X-Y plane of the collective Bloch sphere

[87]. Then, the MF equations can be expressed in terms
of (z,r,¢) as

tion z =

z=—2Qrsing — ys(1 +z) — 2I'pb N2, (D2)
.+ 4
2 =5(9 sing + ['pNr) — Wr, (D3)
Y
¢=2—Qcos¢+—xzz (D4)

The steady state can be obtained by setting z = i = ¢ = 0.
Then, we multiply 4r/z to both sides of Eq. (D3) to obtain

},2
—2Qrsing — 2IpN? = —2(y, + 4yd); (D5)

We plug Eq. (D5) into Eq. (D2) to obtain the steady state as

’,2
—2(ys + 4yd); —y(1+2)=0,

11 44
e A Y I C )
—i=73 2\/ (+)/S)r

(D6)
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There is a phase transition when the term inside the
square root reaches zero and the critical value . can be
obtained as

1
v = ze=—1/2.

2200+ 4valvy)

Now, we want to obtain the critical driving strength. We
can square and rewrite Egs. (D2) and (D4) as

(D7)

497 sin’ ¢ = [2TpNi2 + y,(1 4 2)°,
4Q%7 cos? ¢ = 4y 2N?

(D8)
(D9)

We add Egs. (D8) and (D9), and keep up to leading-order
terms in N to obtain

Q= ,/(> + THN2 + ToyN(1 +2).  (D10)

The sign of €2 determines the direction of the drive along
j:ﬁx. For x = 0, we get back the same MF equations when
we flip the signs of © and ¢ simultaneously. Thus, the
two drive directions %S, are physically equivalent. How-
ever, a nonzero x breaks this symmetry. Nevertheless, we
get qualitatively similar steady states for the negative and
positive values of €2, so we will only consider the posi-
tive value for illustration here. Now, we plug z. and r.
from Eq. (D7) into Eq. (D10) to obtain the critical drive
strength as

1 2 4y,
Qmod-CRF 2\/_\/ +(X/Vd) N + yN (Dll)

1+ (4yd/ys

If we consider the case without dephasing and OAT,
ie., y4=0 and x =0, we recover Q¢ ~ FDN/(Z«/E)
[57,71,80]. Thus, the inclusion of spontaneous emission in
the CRF model only modifies the critical driving strength
by a constant factor, without altering its NV scaling. As dis-
cussed in the main text, accounting for the frequency shifts
from dipolar interactions is important. For that, we set the

dephasing rate to be 4y,/ys = caN (cs=constant). Then,
we take the large-N limit, to obtain the critical point as

r 1 I'p)? 4y,
Qe ~ D ﬁ + (x/T'p) n Vs
22 Cd

(D12)
D

In Fig. 16, we show the dynamics of the excitation fraction
n.(t), using the mean-field equations for the modified CRF
model [Eq. (D1)], with ¢; = 0.002. This specific value of
¢4 1s not special and we find qualitatively similar results
for other values as long as ¢; <« 1. We have taken the
continuum limit to obtain x = 1/N [ d°7Re GHp(F) ~
0.003 and I'p = 1/N [ d*rlm G p () ~ 0.002, where
o(7) [Eq. (A16)] is the pencil-shape distribution of the
cloud. Similar to the MF dipolar model, we find that for
fixed Q2/ys, increasing N leads to larger dephasing and to
a suppression of n,.

1. Modelling random shifts as dephasing

Here, we show how the interaction-induced inhomoge-
neous shifts lead to a dephasing of the atomic coherences.
We describe the interaction-induced dynamical frequency
shift at an atom i as 8;(1) = A(¢) + h;(r), where A(?) is the
average shift over all the atoms in the cloud and #4;(?) is
the position-dependent shift with a zero mean. Considering
that 4;(¢) is an inhomogeneous frequency shift dominated
by local interactions, it varies on a time scale faster than
the other time scales of the system. Then, we can write the
dynamics of the atomic coherence under 4;(f) as

%(éﬁ(r)) = —ih;(®){o +(f)>

— (5 (0) o en O G+ (),

where the slow-time dynamics are included in the propor-
tionality factor. Assuming that the shifts are uncorrelated
and random, we can model them as a Gaussian white-
noise process, h;(H)h;(t') = 4y,8(t — 1)8;, where 4y, is
the variance of the shifts. Averaging over this Gaus-
sian process with zero mean and variance 4y,;, we obtain

1.00
N =300 N = 1000 N =1500 N =2000
0.75 QI=5.1 QIr=5.1 QIr=5.1 QI =5.1
< 0.50
0.25
0'000 5 0 0 5 0 5
I't I't It I't

FIG. 16.
OAT, and spontaneous emission.

The dynamics of the excitation fraction n, for fixed 2/T" = Q/y, = 5.1 for the CRF model with dephasing (¢; = 0.002),
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e~ Jod @) — g=2vat [88]. Thus, the random shifts effec-
tively give rise to an overall dephasing of the coherences
at a rate 2y,.

One key assumption in our model is that these shifts
arc uncorrelated, which is valid for the densities consid-
ered in our paper, where the MF numerics agree well with
the beyond-MF methods. Going to large-N systems where
near-field interactions dominate, stronger fluctuations will
land the system in the beyond-MF regime, in which a more
thorough and self-consistent modeling of the correlations
is required.

APPENDIX E: CONTRIBUTION OF LASER LIGHT
TO THE INTENSITY

We consider a coordinate system in which the center
of the atomic cloud is the reference point for the ori-
gin, C = {0, 0,0}. All the other vectors and positions are
defined with respect to this point. Then, the position of an
atom (with respect to C) is given as 7;. The position of the
laser source is c7L = {—d, 0, 0}. The position of a point on
the detector is R = R{cos6,sin b cos ¢, sin O sin ¢}, where
0 is the angle from the x axis and ¢ is the azimuthal angle
in the y-z plane.

The total electric field and the intensity at a point R on
the detector are given as

total (R) drlve (l_é) + < atoms (R)> (El)
[lolal(R) total(R) Etotal (R)’ (Ez)

where the electric field of the driving laser is
Efye(®) = E®)eL = (h2/\dece™ ¥, (E3)

inwhichR' = R — c_iL = (Rcos6 +d,Rsin6 cos ¢, Rsiné
sin¢) is the distance vector from the laser source to the
detector, the laser polarization is e, = é,, and its wave vec-
toris ky, = (27 /1) for our system. The electric field of the
atomic dipoles is

Mowo

R
)= 3nTc

ZG(R—VJ) euldisr,  (E4)

dtOmb (

where R — 7; is the distance vector from atom j to the
detector.

Then, considering that the detector is very far from the atomic cloud, it is safe to assume that R >> |7;| and that the
electric field of the atoms is dominated by the far-field limit terms (R > A = G « 1/(koR)). Under these assumptions,

the total intensity (laser + atomic emission) is obtained as

; (ﬁ)_< hI )2 szz+ 3Q
total - koll_é”gil r2 2\/51-' -

(1 + sin’ @ cos? q’))
16 2

where k = Q2r /)L)IA? and we have defined

~ =67 exp(ik - (R—7) —ikL - R)

k.an

= 6j_ exp(il_c" (ﬁ — 17_,) — i/_éL . (ﬁ — c_iL))

=67 exp(—i(k -7 — ki -d) — itk — k) - B). (E6)
The spiral basis has been defined to absorb the laser-
induced phase in the Hamiltonian. Keeping the same
definition, in the current coordinate system, the spiral basis
is defined as c"}j_ = i(?j_e_ikL'(;f —9U) where the extra phase
factor of i comes from the overlap of the circular polariza-
tion of the transition with the laser polarization. So we can

Z (Im (%‘)(1 — sin? @ cos® ¢) + Re (cgrj_) sin(229) cos ¢>

; (E5)

rewrite Eq. (E6) in terms of the spiral basis operator as

67 =—io exp(—i(k — k) - (5 — R))

A (E7)

In the forward direction k = I;L, the phases cancel and we

have éj— = —iéj_. For simplicity, we assume (l; — EL) .
R~ ~ 2m, as it is difficult to determine its exact value exper-
1menta11y Since we are averaging over k to obtain the final
numerical values, we expect that changing the value of |R|
will not change the result significantly.

For simplicity, when including the contribution of the

probe light in estimating g, (0), we have neglected the term
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accounting for the interference between the probe and the
atomic electric fields.

APPENDIX F: NUMERICAL APPROXIMATIONS
1. Mean-field methods

We use mean-field theory to obtain the dynamics and
steady state of the dipolar model. Under mean-field the-
ory, the connected part of the atom-atom correlations is
assumed to be negligible. In this case, all correlations can
be expressed as products of classical expectation values, as
shown in Fig. 17. To benchmark the results obtained from
mean-field theory, we use the cumulant method, which
goes beyond the mean-field approximation by including
two-point connected correlations (for an intuitive picture,
see Fig. 17). The MF equations of motion for the dipolar
model are given in Appendix B.

2. MACEMF method

We introduce an improved cluster technique that we call
MACEMF (moving-average cluster expansion plus mean
field). The method combines dynamics considering both
local clusters and mean-field interactions with external par-
ticles. This method is based on a cluster approximation
called MACE [89], developed in the past to deal with
dipolar interactions in dilute arrays. It exactly solves for
the dynamics inside clusters that are not rigid but instead
are adjusted depending of the observable in consideration.
For single-point observables 6y, it chooses a cluster that
contains the strongest coupled particles to the & particle
in consideration. It disregards the influence of particles
outside the cluster. In fact, at a cluster size of 1, MACE
essentially reduces to single-particle dynamics.

To account for interaction effects with the particles
outside a given cluster, we include them via a mean-
field approach. In this way, the dipole-dipole interaction
with the outside particles is mapped as an effective time-
dependent magnetic field acting upon the atoms in the
cluster as shown in Fig. 17. So by combining the exact

dynamics within the cluster with the mean-field contribu-
tions, we aim to improve the description of the nonequilib-
rium dynamics of the system.

The clusters are chosen and adapted to optimize the
single- or two-particle observables in consideration by
including in the cluster the particles that feature the
strongest coupling constants to the particle or particles on
which the observable is acting.

We generalize it to also include the effect of the external
particles to each cluster via the mean-field approximation.
This means that the interaction of a given cluster with
the surrounding particles is reduced to an effective mag-
netic field acting on the particles in the cluster. We denote
this approach as MACE—mean field (MACEMF). Over-
all, the method aims to include the best of both the MF
and the MACE solutions and improve upon them. In the
limit of one particle per cluster, the MACEMF reduces
to the MF approximation and if we neglect the MF cou-
plings between clusters, then the MACEMEF reduces to the
MACE approximation.

For the j particle in the array, the effective Hamiltonian
and Lindbladian associated with the cluster of the particle
j read as follows:

H/CMF = _QZ(

(eL ey) 6;F —|—hc>

Mean Field (MF)

Cumulant

i€C;
- Z Riu6; 6, — Z Ri (6, (6 ) +he),
i,keC; i€Cj,
kgécj
(Fla)
ZI"‘ 267 p6;" {O’+U_,,5})
+ Y Ta(60)[p67 1= (6)[5,67]) s
ieCj,
keG;
(F1b)
MACEMF

i) ) o) )
-2{o) (1) ()

&

<;T;-er,‘> ~ <fr;‘ 57

DO O
@ N €

@‘

ik ke AMF\ =
Hyiacemr = Hyiace + z <B. >'U,
i€Ci

FIG. 17. Numerical approximations. Mean-field (left) uses nonoverlapping clusters, factoring many-body correlations into single-
particle values. Cumulant approximation (center), at second order, factors three-body correlations into two-body and single-body
correlations. MACEMF (right) treats a cluster and its surrounding particles as a single cluster influenced by an external time-dependent

magnetic field.
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where C; denotes the set of particles that are contained in the j -particle cluster and p; is the density matrix that describes
this cluster.
The cluster C; is selected by choosing the particles that have the strongest interactions with the j particle (largest |Gj|).
Identifying the second part of the Lindbladian in Eq. (F1a) as an effective element of the Hamiltonian, we can rewrite
as follows:

Hyp==>" Qe FLT (o - e5) + D Rul6p) |67 +he | = Y Rastor —i Y Tu((67)67 —(65)67).

1€ kg Gj ikeC e,
keC;
(F2a)
L[p]= ) Tu (267 567 — {66 .44)). (F2b)
i,keCj
Rearranging further the Hamiltonian given in Eq. (F2a), we obtain that
Hyp ==Y || Qe F 7 (e ef) + > Gul6y) | 67 +he | = > Rub6;. (F3)

i€G kg Gj ikeC

For estimating second-order correlations of the form <8j“8,f >, where o, 8 = x,y,z and j # k, we consider the following
cases (recall that, by default, i € C; for all i):

(o3¢ +{oral),
d *, ifkeC andj € G,

, ifkeC andj ¢ Cy, (F4)

, ifk¢ Ciandj € G,

Aja><f>, ifk ¢ C;andj ¢ Cy.

Here, ((’5> = Tr(p; 0), which represents the expected APPENDIX G: VALIDITY OF MEAN-FIELD
G R THEORY
value of the operator O with respect to the cluster C;. Sim- _ .
ilar decompositions can be used to estimate higher-order In this appendix, we benchmark the steady-state proper-
correlations. ties of the MF dipolar model by comparing with the results
0.0
50 1
-0.2
_ L 407
S -04 >T 30 { —MF Dipolar: N = 2000
S"\, el o MACEMF C6: N = 2000
“© —0.6 Quy 20
-0.8 i
— MF Dipolar: N = 2000 10
~1.0 ® MACEMEF C6: N = 2000 01
107! 10° 10! 10% 107! 10° 10! 107
QT QT

FIG. 18. Comparing MACEMF C6, i.e., a cluster size of six atoms, with MF in the steady state for N = 2000.
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0.0
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—MF Dipolar: N = 800
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FIG. 19.

of beyond-MF methods such as MACEMF, exact diago-
nalization (ED), and cumulant approximation. We average
the data over approximately ten realizations for the MF,
MACEMEF, and ED results.

MACEMF includes short-range beyond-MF correla-
tions by treating them exactly (using ED) within a given
cluster size. In Fig. 18, we show that the MF steady-state
atomic inversion and forward intensity for N = 2000 agree
extremely well with those obtained from MACEMF with
cluster size 6, across a range of 2/ " spanning the differ-
ent dynamical phases. We find that the MACEMF results
do not change appreciably as we increase the cluster size
beyond 6. The agreement between MF and MACEMF sug-
gests that the effect of short-range interactions is minimal
in the steady state and gets washed out at these densities.
At higher densities, the inter-atomic distances would be
shorter and 1/7° interactions would dominate, causing MF
to break down.

1.8 E
- Nonint. "
16| =+ MF -1 W7
¢ ED i 7
1.4 :
- 6
1.2
€10 — s
S0 T I v1:0  4/m
08| 3 4 iait IAY
g::: %g Z1 4
0.6 $—y—48"
04| ITTTIL 3
02| I ITT
2
1072 107! 10° 10! 10?
QT

FIG. 20. Comparing ED with MF for the two-photon correla-
tion function in the steady state g, (0).

40 A
= 30 1
- —MF Dipolar: N = 800
(”’i 204 ¢© Cumulant: N =800
(lt\/_}/
10 1
0
107! 100 10! 102
Qr

Comparing cumulant (single realization) with MF (averaged over ten realizations) in the steady state for N = 800.

The cumulant method includes long-range beyond-MF
two-point correlations. In Fig. 19, we show that the MF
steady-state atomic inversion and forward intensity for
N = 800 agree extremely well with those obtained from
the cumulant method, across a range of Q/I' in the
intermediate-driving regime, where we expect the effect
of correlations to be most apparent, compared to the weak
and strong-driving regimes. From the excellent agreement
between MF and cumulant, we can see that the effect of
long-range correlations is negligible in the steady state
of our system. Cumulant numerics with higher densities
and larger N take extremely long run times, restricting us
up to N = 800 here. However, as we already see good
agreement with MACEMF at N = 2000, we do not expect
the cumulant results to change at least qualitatively up to
N = 2000.

In Fig. 20, we compare the two-photon correlation func-
tion g, (0) in the steady state of the MF dipolar model with
that obtained from ED. We choose small N for this com-
parison, as the Hilbert space grows exponentially with N
and ED becomes numerically intractable for larger N. We
keep the OD fixed while reducing N, so that the interaction
strength is still similar to that of the N = 2000 system. We
find that at small 2/ T", there is a lot of variance in g,(0)
across realizations and within these error bars, there seems
to be a fair agreement between ED and MF. At large Q2/ T,
the system becomes single-particle-like and the error bars
get smaller as interactions do not play a role and the change
in atomic positions across realizations stops affecting the
physics. Hence, there is a much better agreement between
ED and MF in this regime. Due to finite N corrections,
22(0) does not go from exactly 1 to 2, as the drive strength
is increased.
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