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Distributed Tracking Control of Multiple high-order
Uncertain Nonlinear Systems with Guaranteed

Performance
Eduardo Alvarez and Wenjie Dong

Abstract— This paper addresses the distributed tracking
control of multiple uncertain high-order nonlinear systems
with prescribed performance requirements. By introducing
a performance function and a nonlinear transformation,
the prescribed fixed-time performance tracking control
problem is reformulated as a distributed tracking control
problem for multiple special nonlinear systems. With the
aid of the universal approximation theorem for continuous
functions and algebraic graph theory, distributed robust
adaptive controllers are designed using the backstepping
technique. Simulation results are presented to demonstrate
the effectiveness of the proposed algorithms.

Index Terms— Consensus; leader-following control;
nonlinear systems; uncertain systems; distributed tracking
control.

I. INTRODUCTION

Over the past few decades, significant research
efforts have been devoted to distributed cooperative
control of multiple systems. This field has proven
to be crucial across diverse domains, where mul-
tiple agents or components collaborate to achieve
shared goals. Applications span a wide range of ar-
eas, including search-and-rescue operations, swarm
robotics, autonomous vehicles, power distribution
networks, wireless sensor networks, and satellite
and UAV networks, among others.

The consensus control problem involves design-
ing distributed control laws for a group of systems
to ensure that their outputs converge to an agree-
ment on a specific quantity of interest. It plays
a crucial role in distributed cooperative control,
with extensive research yielding significant results
[1–5]. A key performance metric for consensus
algorithms is the consensus rate, particularly in
the context of multiple first-order linear systems.
The consensus rate is determined by the second
smallest eigenvalue of the Laplacian matrix of the
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communication graph, referred to as the algebraic
connectivity. Strategies to enhance algorithm per-
formance often involve manipulating the communi-
cation graph to increase algebraic connectivity [6].
Another approach focuses on designing finite-time
consensus algorithms that drive consensus errors to
zero within a finite time. For example, in [7], finite-
time algorithms were proposed for single-integrator
dynamic systems using Lyapunov techniques. Sim-
ilarly, [2, 8] developed finite-time algorithms using
terminal sliding-mode control for multi-robot sys-
tems. In [9], consensus algorithms for nonlinear
dynamic systems were introduced, employing inte-
gral sliding-mode control and finite-time observers.
Meanwhile, [10–12] explored the use of fuzzy logic
control and neural networks to achieve practical
finite-time convergence of consensus errors. How-
ever, traditional finite-time consensus algorithms are
sensitive to initial conditions, leading to longer set-
tling times when initial errors are large. To address
this, researchers have explored fixed-time consensus
algorithms in recent decades [3, 4, 13–20]. These al-
gorithms ensure that the settling time is independent
of initial conditions, although they rely heavily on
the communication graph’s topology, which may
not be known in practice. To overcome this lim-
itation, prescribed fixed-time consensus algorithms
have been proposed. For instance, [21] addressed the
consensus problem for first-order systems without
a leader, developing practical prescribed fixed-time
algorithms by estimating algebraic connectivity.

Fixed-time and prescribed finite-time control al-
gorithms ensure the convergence of consensus er-
rors to zero within a finite time. However, these
algorithms may face limitations in transient per-
formance, which might not satisfy specific require-
ments. To overcome this challenge, the prescribed
performance-based controller design technique has
proven effective [22]. For example, the study in
[23] investigated the formation control of first-order
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and second-order systems with multiple leaders.
Distributed tracking controllers were designed to
ensure prescribed performance by utilizing the pre-
scribed performance function (PPF). Similarly, [24]
explored prescribed performance formation control
for second-order multi-agent systems, proposing
distributed controllers that meet predefined perfor-
mance criteria using the PPF. Notably, both studies
[23, 24] focused on linear systems with no uncer-
tainties in their dynamics.

In this paper, we address the prescribed per-
formance consensus control problem for multiple
high-order nonlinear systems with uncertainties.
Our objective is to design a distributed controller
for each system, ensuring that the tracking error
converges to a small neighborhood of the origin
within a prescribed fixed time while meeting spe-
cific performance criteria. To achieve this, we adopt
a multifaceted approach. First, we introduce a pre-
scribed performance function (PPF) that integrates
fixed-time, transient, and steady-state performance
requirements into a unified framework. Next, using
the Lyapunov technique, algebraic graph theory, and
the universal approximation theorem of functions,
we propose distributed virtual controllers that satisfy
the required performance conditions. Finally, we
design real controllers employing the backstepping
technique to ensure the system outputs converge to
the desired outputs within the prescribed fixed time
and meet the defined performance standards. The
contributions of this paper are as follows:

• This paper addresses the leader-following con-
trol problem for multiple nonlinear systems
with performance requirements. In contrast, the
study in [21] solves the leader-following con-
trol problem for first-order uncertain nonlinear
systems without considering transient perfor-
mance requirements. In this work, both tran-
sient and steady-state performance are incor-
porated by introducing a performance function
in the controller design.

• This paper addresses the leader-following con-
trol problem for multiple uncertain high-order
nonlinear systems with performance require-
ments. In contrast, the studies in [23, 24]
solve the leader-following control problem with
performance requirements for first-order and
second-order systems without uncertainties. In
this work, the leader-following control problem
for high-order nonlinear systems under uncer-

tainty is studied and a systematic controller
design procedure is proposed.

The subsequent sections of this paper are orga-
nized as follows: Section 2 outlines the problem for-
mulation. Section 3 presents the systematic design
of the controllers. Section 4 provides the simulation
results. Finally, the paper is concluded in Section 5.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a group of m nonlinear systems de-
scribed by the following equations

ẋij = xi+1,j + fij(x̄ij) (1)
i = 1, . . . , n− 1

ẋnj = uj + fnj(x̄nj) (2)
yj = x1j (3)

where xij ∈ R denotes the state, uj ∈ R is the con-
trol input, yj is the output, fij is a smooth function
of x̄ij and is unknown, and x̄ij = [x1j, . . . , xij]

⊤.
The initial condition x̄nj(0) ∈ X where X =
{ζ|∥ζ∥ < r, ∀ζ ∈ Rn} is a compact set in Rn for
some positive constant r.

It is assumed that there exists a virtual system
whose dynamics are represented by the following
equations.

ẋi,m+1 = xi+1,m+1 + fi,m+1(x̄i,m+1), (4)
i = 1, . . . , n− 1

ẋn,m+1 = um+1 + fn,m+1(x̄n,m+1) (5)
ym+1 = x1,m+1 (6)

where um+1 is a known time-varying function. The
virtual system is labeled as (m+ 1)-th system.

The systems indexed by j for 1 ≤ j ≤ m are
referred to as the follower systems, while the system
indexed by (m + 1) is referred to as the leader
system. In the context of m follower systems and
one leader system, there is communication between
systems. If we consider each system as a vertex
and the indexes of the vertexes are the same as the
labels of the systems, the communication between
systems can be defined by a graph denoted as G =
{V , E}. Here, V = {vj}m+1

j=1 represents the vertex
set, and E = {Ekj}1≤k ̸=j≤m+1 denotes the edge
set. It is assumed that the communication between
systems is bidirectional. An edge Ekj means that
the information of system j is available to system
k and vice versa. For convenience, we assign a tail
and a head for each edge. Without loss of generality,



3

vertex k is considered as the head and vertex j is
considered as the tail for edge Ekj . A path between
vertex k and vertex j is a set of edges which connect
vertex k and vertex j. A path forms a simple cycle
if the path is closed. A graph is connected if for
every pair of vertexes there is a path to connect
them. A tree is defined as a connected graph without
cycles. A tree is a spanning tree if it contains all
the vertexes in the graph.

For a vertex j, the set of its neighbors, repre-
sented as Nj , comprises all vertexes directly con-
nected to vertex j through edges. For (m + 1)
vertexes and K edges, the incidence matrix D(G) =
[dkj] ∈ R(m+1)×K can be defined to characterize
the graph structure. For K edges, we label them
by 1, 2, . . . , K. If the p-th edge is Ekj , dkp = 1
and djp = −1. It is obvious that D(G) is not
unique and depends on the labels of the edges.
The Laplacian matrix of the graph G is denoted as
L = D(G)D(G)⊤. The edge Laplacian matrix is
defined as Le = D(G)⊤D(G).

For system j, it is assumed that system k is one of
its neighbors. We define the tracking error between
system j and system k as

ejk = yj − yk (7)

for 1 ≤ j ≤ m and k ∈ Nj . The transient
and steady-state performance requirements on the
tracking error ejk can be defined by a PPF [25].
With the aid of a given PPF, the problem considered
in this paper is as follows.

Control Problem: For the follower systems in (1)-
(3) and the leader system in (4)-(6), the problem
considered in this article is to design a distributed
control law for system j using its neighbors’ infor-
mation such that

|ejk(t)| < ρ(t) (8)
limt→T |yj(t)− ym+1(t)| ≤ ϵ (9)
limt→∞(yj(t)− ym+1(t)) = 0 (10)

for 1 ≤ j ≤ m and i ∈ Nj , where ρ is a PPF, T and
ϵ are prescribed time constant and the threshold of
the tracking errors.

In order to solve our problem, the following
assumptions are made on the communication graph.

Assumption 1: The communication graph G has a
spanning tree with the node m+1 as the root node.

Assumption 2: The state of the leader system is
bounded.

Assumption 1 indicates that the information of the
leader can be shared among all follower systems.
This assumption is crucial for controller design and
is a requirement in all literature on leader-following
control problems. Assumption 2 is reasonable, as it
is practical for all state values of a system to be
bounded.

III. DISTRIBUTED CONTROLLER DESIGN

A. Prescribed Fixed-time Performance Function

In order to meet the transient performance in
(8) and the steady-state performance in (9), the
prescribed performance function is chosen as

ρ(t) =

{
(ρ0 − ρ∞)exp

(
− c3Tt

T−t

)
+ ρ∞, 0 ≤ t < T

ρ∞, t ≥ T

where |eji(0)| < ρ0 for 1 ≤ j ≤ m and 1 ≤ i ≤
m + 1, ρ∞ < ϵ

m
, and c3 > 1. The constant T is

the prespecified maximum allowable convergence
time for ρ(t) converging from the given maximum
initial error ρ0 to the maximum allowable steady-
state error ρ∞, and c3 denotes the prespecified min-
imum convergence rate. The PPF has the following
properties [25, 26]: 1) ρ(t) is bounded, i.e., 0 <
ρ∞ ≤ ρ(t) ≤ ρ0 and ρ̇(t) ≤ 0; and 2) lim

t→T
ρ(t) = ρ∞

and ρ(t) = ρ∞ for any t ≥ T .
With the aid of the PPF, the following tracking

error is defined

vjk = F (ejk) = ln

(
ejk + ρ

ρ− ejk

)
(11)

where F (ejk) is a natural logarithm function of ejk.
Then,

v̇jk = Ajk(ėjk + Λejk) (12)

where

Ajk =
1

ejk + ρ
+

1

ρ− ejk
, Λ = − ρ̇

ρ
.

For the PPF ρ, the following results have been
proved in [26].

Lemma 1: For the PPF ρ,
1) ρ(t) is monotonically decreasing and Λ > 0.
2) Ajk >

2
ρ
≥ 2

ρ0
> 0.

Lemma 2: For the transformation (11), if vjk is
bounded for 1 ≤ j ≤ m and k ∈ Nj , eqns. (8)-(9)
are satisfied.
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B. Controller Design
Under Assumption 1, the graph G has a spanning

tree. The edge set E can be written as Et∪Ec where
Et includes the edges of the spanning tree and Ec
includes the edges which are not in the spanning
tree. Based on the decomposition of the edges, the
graph G can be decomposed as G = Gt ∪ Gc. Since
there are m+1 vertexes, the number of edges in Et
is m. We label the edges in Et first and then label
the edges in Ec. The corresponding incidence matrix
D(G) can be written as

D = [Dt, Dc] (13)

where Dt ∈ R(m+1)×m and Dc ∈ R(m+1)×(K−m)

represent, respectively, the incidence matrices corre-
sponding to the spanning tree edges and other edges.
It is shown that the columns of Dc are linearly
depend on the columns of Dt [27, 28] and

DtZ = Dc

where
Z = (D⊤

t Dt)
−1D⊤

t Dc.

The incidence matrix D can also be written as
the following block matrix

D =

[
D1

D2

]
=

[
D1t D1c

D2t D2c

]
(14)

where D1 ∈ Rm×K , D2 ∈ R1×K , D1t ∈ Rm×m,
D1c ∈ Rm×(K−m), D2t ∈ R1×m, and D2c ∈
R1×(K−m). It can be verified that

D1tZ = D1c, D2tZ = D2c, Z = D−1
1t D1c.

Let

η =

 η1
...
ηK

 = D⊤
[

y
ym+1

]
=


...
ejk
...

 (15)

where y = [y1, . . . , ym]
⊤. Noting the definition of

the incidence matrix, we have

η = D⊤
[

y
ym+1

]
−D⊤1ym+1

= [D1t, D1c]
⊤ỹ =

[
D⊤

1tỹ
Z⊤D⊤

1tỹ

]
=

[
Im×m

Z⊤

]
D⊤

1tỹ (16)

where 1 is a vector whose elements are one and
ỹ = y − 1ym+1.

Let

z =

 z1
...
zK

 = F (η) =

 F (η1)
...

F (ηL)

 =


...
vjk
...

(17)

with the aid of (12), we have

ż = A(η̇ + Λη) = AD⊤
1 ( ˙̃x1∗ + Λx̃1∗) (18)

where A = diag(Aji) is a diagonal positive def-
inite matrix and x̃1∗ = [x̃11, . . . , x̃1m]

⊤ = [x11 −
x1,m+1, . . . , x1m − x1,m+1]

⊤.
Lemma 3: Under Assumption 1, if z is bounded,

and

lim
t→∞

z⊤AD⊤
1 D1Az = 0 (19)

then limt→∞ η = 0 and eqns. (8)-(9) are satisfied.
Proof: Let ηI = [η1, . . . , ηm]

⊤ and ηII =
[ηm+1, . . . , ηK ]

⊤. By eqn. (16), we have

ηII = Z⊤ηI . (20)

Let zI = [z1, . . . , zm]
⊤ and zII =

[zm+1, . . . , zK ]
⊤. By the mean value theorem

and the property of the function F (·) in Lemma 1,

zI = F (0) +GηI = GηI

zII = F (0) +HηII = HZ⊤ηI

where G = diag([G1, . . . , Gm]) and H =
diag([H1, . . . , Hm]) are diagonal matrices with
Gi ≥ 2

ρ0
> 0 and Hi ≥ 2

ρ0
> 0. Eqn. (19) means

that limt→∞D1Az = 0. Noting that

D1Az = [D1t, D1c]A

[
G

HZ⊤

]
ηI

= D1t[I, Z]A diag(G,H)

[
I
Z⊤

]
ηI

= D1t(AIG+ ZAIIHZ
⊤)ηI = D1tΠηI

where A = diag(AI , AII), AI ∈ Rm×m, and
AII ∈ R(K−m)×(K−m), Π = (AIG + ZAIIHZ

⊤)
is a positive definite matrix. So, eqn. (19) means
that limt→∞ ηI = 0. By (20), limt→∞ η = 0.

By Lemma 2, the boundedness of z means that
eqns. (8)-(9) are satisfied. □

Lemma 4: Under Assumption 1, if limt→∞ η =
0, and |ejk(t)| ≤ ρ(t) for 1 ≤ j ≤ m and k ∈ Nj ,
then eqn. (10) is satisfied.
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Proof:

lim
t→∞

L

[
y

ym+1

]
= lim

t→∞
DD⊤

[
y

ym+1

]
= lim

t→∞
Dη = 0.

If the graph G has a spanning tree, the elements of
y and ym+1 reach consensus based on the property
of the Laplacian matrix L. So, y−1ym+1 converges
to zero. □

Next, we design distributed controllers with the
aid of the universal approximation theorem of con-
tinuous function and the backstepping technique.

In the dynamics (1)-(2), there is uncertainty
fij(x̄ij). With the aid of the uniform approximation
theorem of functions [29, 30], in the compact set
X for selected basis vectors ψij(x̄ij) there exists an
ideal constant weight vector θij such that

fij(x̄ij) = ψ⊤
ij(x̄ij)θij + ϵij (21)

where ϵij is the approximation error and is bounded
by unknown constants δij and δ̄ (i.e. |ϵij| ≤ δij ≤ δ̄).
Then (1)-(2) can be written as

ẋij = xi+1,j + ψ⊤
ij(x̄ij)θij + ϵij, (22)

i = 1, . . . , n− 1

ẋnj = uj + ψ⊤
nj(x̄nj)θnj + ϵnj. (23)

Substitute (22) into (18) for i = 1, we have

ż = AD⊤
1 (x2∗ + ψ⊤

1∗θ1∗ + Λx1∗

−Λx1,m+11− ẋ1,m+11+ ϵ1∗) (24)

where x1∗ = [x11, . . . , x1m]
⊤, x2∗ =

[x21, . . . , x2m]
⊤, ψ1∗ = diag([ψ11, . . . , ψ1m]),

and ϵ1∗ = [ϵ11, . . . , ϵ1m]
⊤.

Step 1: Assume that x2j is a virtual control input.
The virtual controller is chosen as

α1j = −λ1
∑
l∈Nj

Ajlzjl − Λx1j − ψ⊤
1j θ̂1j

−

s1j
∑
l∈Nj

Ajlzjl√√√√√
∑

l∈Nj

Ajlzjl

2

+ h(t)

(25)

= −λ1(D1Az)j − Λx1j − ψ⊤
1j θ̂1j

− s1j(D1Az)j√
((D1Az)j)2 + h(t)

(26)

where λ1 > 0, θ̂1j is an estimate of θ1j and will
be chosen later, s1j is the magnitude of a robust
term and will be chosen later, (·)j denotes the j-
th element of its argument vector, and h(t)(> 0)
satisfies ∫ ∞

0

√
h(t)dt <∞. (27)

There are different choices of h. For example,
h(t) = e−t, h(t) = 1

(t+1)4
, etc.

In order to find the update laws for θ̂1j and s1j ,
we choose a Lyapunov function

V1 =
1

2
z⊤z +

1

2

m∑
j=1

θ̃⊤1jΓ
−1
1j θ̃1j

+
1

2

m∑
j=1

γ−1
1j s̃

2
1j (28)

where Γ1j is a positive definite constant matrix, γ1j
is a positive constant, and

θ̃1j = θ1j − θ̂1j (29)
s̃1j = s1,m+1 − s1j (30)

where

s1,m+1 = max
1≤j≤m

max
t∈[0,∞)

|ẋ1,m+1 + Λx1,m+1 − ϵ1j|

is a positive constant. The derivative of V1 is

V̇1 = z⊤AD⊤
1 (x2∗ − α1∗)− λ1z

⊤AD⊤
1 D1Az

+z⊤AD⊤
1 ψ

⊤
1∗θ̃1∗ −

m∑
j=1

s1j((D1Az)j)
2√

((D1Az)j)2 + h

+z⊤AD⊤
1 (ϵ1∗ − Λx1,m+11− ẋ1,m+11)

+
m∑
j=1

θ̃⊤1jΓ
−1
1j

˙̃θ1j +
m∑
j=1

γ−1
1j s̃1,j ˙̃s1j

= z⊤AD⊤
1 (x2∗ − α1∗)− λ1z

⊤AD⊤
1 D1Az

−
m∑
j=1

s1,m+1((D1Az)j)
2√

((D1Az)j)2 + h

+
m∑
j=1

(D⊤
1 Az)j(ϵ1j − Λx1,m+1 − ẋ1,m+1)

+
m∑
j=1

θ̃⊤1j(Γ
−1
1j

˙̃θ1j + ψ1j(D1Az)j)

+
m∑
j=1

s̃1j

(
γ−1
1j

˙̃s1j +
((D1Az)j)

2√
((D1Az)j)2 + h

)
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≤ z⊤AD⊤
1 (x2∗ − α1∗)− λ1z

⊤AD⊤
1 D1Az

−
m∑
j=1

s1,m+1((D1Az)j)
2√

((D1Az)j)2 + h

+
m∑
j=1

s1,m+1(D
⊤
1 Az)j

+
m∑
j=1

θ̃⊤1jΓ
−1
1j (

˙̃θ1j + Γ1jψ1j(D1Az)j)

+
m∑
j=1

s̃1j

(
γ−1
1j

˙̃s1j +
((D1Az)j)

2√
((D1Az)j)2 + h

)
≤ z⊤AD⊤

1 (x2∗ − α1∗)− λ1z
⊤AD⊤

1 D1Az

+ms1,m+1

√
h(t) +

m∑
j=1

θ̃⊤1,jΓ
−1
1j (

˙̃θ1j

+Γ1jψ1,j(D1Az)j)

+
m∑
j=1

s̃1jγ
−1
1j

(
˙̃s1j +

γ1j((D1Az)j)
2√

((D1Az)j)2 + h

)
where α1∗ = [α11, . . . , α1m]

⊤ and we apply the
inequality ζ − ζ2√

ζ2+h
≤

√
h for any scalar ζ .

If we choose the update laws
˙̂
θ1j = Γ1jψ1,j(D1Az)j =: τ

[1]
1j (31)

ṡ1j =
γ1j((D1Az)j)

2√
((D1Az)j)2 + h(t)

, (32)

then

V̇1 ≤ z⊤AD⊤
1 (x2∗ − α1∗)− λ1z

⊤AD⊤
1 D1Az

+m
√
h. (33)

Step 2: Since x2j is not the control input, it cannot
be α1j . Let

ξ2j = x2j − α1j. (34)

Then

ξ̇2j = x3j + ψ⊤
2jθ2j + ϵ2j − α̇1j (35)

= x3j + ψ⊤
2jθ2j + ϵ2j −

∂α1j

∂x1j
(x2j + ψ⊤

1jθ1j)

−
∑
l∈Nj

∂α1j

∂x1l
(x2l + ψ⊤

1lθ1l)−
∂α1j

∂x1j
ϵ1j

−
∑
l∈Nj

∂α1j

∂x1l
ϵ1l −

∂α1j

∂θ̂1j

˙̂
θ1j −

∂α1j

∂h
ḣ

−∂α1j

∂s1j
ṡ1j (36)

It is assumed that x3j is a virtual control input.
The following virtual input is proposed as

α2j = −λ2jξ2j − ψ⊤
2j θ̂2j − (D1Az)j

−
s2jξ2jβ

2
2j√

ξ22jβ
2
2j + h

+
∂α1j

∂x1j
(x2j + ψ⊤

1j θ̂1j)

+
∂α1j

∂θ̂1j

˙̂
θ1j +

∑
l∈Nj

∂α1j

∂x1l
(x2l + ψ⊤

1lθ̂1l)

+
∂α1j

∂h
ḣ+

∂α1j

∂s1j
ṡ1j (37)

where

β2j = 1 +

√(
∂α1j

∂x1j

)2

+ h

+

√√√√√
∑

l∈Nj

∂α1j

∂x1l

2

+ h

λ2 > 0, θ̂2j and s2j are estimates of θ2j and
δ̄2∗ = max1≤j≤m δ2j , respectively. In order to design
the update laws for θ̂1j , θ̂2j , and s2j , we choose a
Lyapunov function

V2 = V1 +
1

2

m∑
j=1

ξ22j +
1

2

m∑
j=1

θ̃⊤2jΓ
−1
2j θ̃2j

+
1

2

m∑
j=1

γ−1
2j s̃

2
2j (38)

where θ̃2j = θ2j − θ̂2j , s̃2j = δ̄2∗ − s2j , Γ2j is
a positive definite constant matrix, and γ2j is a
positive constant.

The derivative of V2 is

V̇2 ≤ z⊤AD⊤
1 (x2∗ − α1∗)− λ1z

⊤AD⊤
1 D1Az

+ms1,m+1

√
h(t) +

m∑
j=1

θ̃⊤1,jΓ
−1
1j (

˙̃θ1j + τ
[1]
1j )

+
m∑
j=1

s̃1jγ
−1
1j

(
˙̃s1j +

γ1j((D1Az)j)
2√

((D1Az)j)2 + h

)

+
m∑
j=1

ξ2j(x3j − α2j) +
m∑
j=1

[−λ2jξ22j

−ξ2j(D1AZ)j −
s2jξ

2
2jβ

2
2j√

ξ22jβ
2
2j + h
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+ξ2jψ
⊤
2j θ̃2j + ξ2jϵ2j − ξ2j

∂α1j

∂x1j
ψ⊤
1j θ̃1j

−ξ2j
∑
l∈Nj

∂α1j

∂x1l
ψ⊤
1lθ̃1l − ξ2j

∂α1j

∂x1j
ϵ1j

−ξ2j
∑
l∈Nj

∂α1j

∂x1l
ϵ1l]

+
m∑
j=1

θ̃⊤2jΓ
−1
2j

˙̃θ2j +
m∑
j=1

γ−1
2j s̃2j ˙̃s2j

≤ −λ1z⊤AD⊤
1 D1Az +ms1,m+1

√
h

+
m∑
j=1

θ̃⊤1jΓ
−1
1j (

˙̃θ1j + τ
[1]
1j

−Γ1jψ1jξ2j
∂α1j

∂x1j
− Γ1jψ1j

∂α1j

∂x1j

∑
l∈Nj

ξ2l)

+
m∑
j=1

s̃1jγ
−1
1j

(
˙̃s1j +

γ1j((D1Az)j)
2√

((D1Az)j)2 + h

)

+
m∑
j=1

ξ2j(x3j − α2j) +
m∑
j=1

[−λ2jξ22j

−
s2jξ

2
2jβ

2
2j√

ξ22jβ
2
2j + h

+|ξ2j|

1 +

√(
∂α1j

∂x1j

)2

+ h

+

√√√√√
∑

l∈Nj

∂α1l

∂x1l

2

+ h

 δ̄2∗

+
m∑
j=1

θ̃⊤2j(Γ
−1
2j

˙̃θ2j + ψ2jξ2j)

+
m∑
j=1

γ−1
2j s̃2j ˙̃s2j

≤ −λ1z⊤AD⊤
1 D1Az + (s1,m+1 + δ̄2∗)m

√
h

+
m∑
j=1

θ̃⊤1jΓ
−1
1j (

˙̃θ1j + τ
[1]
1j

−Γ1jψ1jξ2j
∂α1j

∂x1j
− Γ1jψ1j

∂α1j

∂x1j

∑
l∈Nj

ξ2l)

+
m∑
j=1

s̃1jγ
−1
1j

(
˙̃s1j +

γ1j((D1Az)j)
2√

((D1Az)j)2 + h

)

+
m∑
j=1

ξ2j(x3j − α2j)−
m∑
j=1

λ2jξ
2
2j

+
m∑
j=1

θ̃⊤2jΓ
−1
2j (

˙̃θ2j + Γ2jψ2jξ2j)

+
m∑
j=1

γ−1
2j s̃2j

 ˙̃s2j +
γ2jξ

2
2jβ

2
2j√

ξ22jβ
2
2j + h


We choose the update law (32) for s1j and the

update laws for θ̂1j , θ̂2j , and s2j as

˙̂
θ1j = τ1j − Γ1jψ1jξ2j

∂α1j

∂x1j

−Γ1jψ1j
∂α1j

∂x1j

∑
l∈Nj

ξ2l =: τ
[2]
1j (39)

˙̂
θ2j = Γ2jψ2jξ2j =: τ

[2]
2j (40)

ṡ2j =
γ2jξ

2
2jβ

2
2j√

ξ22jβ
2
2j + h

(41)

Then

V̇2 ≤ −λ1z⊤AD⊤
1 D1Az −

m∑
j=1

λ2jξ
2
2j

+
m∑
j=1

ξ2j(x3j − α2j) + (s1,m+1 + δ̄2∗)m
√
h.

Step i: Since xij is not a real control input, it
cannot be αi−1,j . Let

ξij = xij − αi−1,j (42)

Then

ξ̇ij = xi+1,j + ψ⊤
ijθij + ϵij − α̇i−1,j (43)

= xi+1,j + ψ⊤
ijθij + ϵij

−
i−1∑
k=1

∂αi−1,j

∂xkj
(xk+1,j + ψ⊤

kjθkj + ϵkj)

−
i−1∑
k=1

∑
l∈Nj

∂αi−1,j

∂xkl
(xk+1,l + ψ⊤

klθkl + ϵkl)

−
i−1∑
k=1

∂αi−1,j

∂θ̂kj

˙̂
θkj −

i−1∑
k=1

∑
l∈Nj

∂αi−1,j

∂θ̂kl

˙̂
θkl

−
i−1∑
k=1

∂αi−1,j

∂skj
ṡkj. (44)
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It is assumed that xi+1,j is a virtual control input.
The following virtual control input is proposed.

αij = −λijξij − ψ⊤
ij θ̂ij +

i−1∑
k=1

∂αi−1,j

∂xkj
(xk+1,j

+ψ⊤
kj θ̂kj) +

i−1∑
k=1

∑
l∈Nj

∂αi−1,j

∂xkl
(xk+1,l

+ψ⊤
klθ̂kl) +

i−1∑
k=1

∂αi−1,j

∂θ̂kj

˙̂
θkj

+
i−1∑
k=1

∑
l∈Nj

∂αi−1,j

∂θ̂kl

˙̂
θkl −

sijξijβ
2
ij√

ξ2ijβ
2
ij + h

+
i−1∑
k=1

∂αi−1,j

∂skj
ṡkj − ξi−1,j (45)

where

βij = 1 +
i−1∑
k=1

√(
∂αi−1,j

∂xkj

)2

+ h

+
i−1∑
k=1

∑
l∈Nj

√(
∂αi−1,j

∂xkl

)2

+ h

λij > 0, θ̂ij and sij are estimates of θij and δ̄i∗ =
max1≤j≤m δij , respectively. In order to design the
update laws for θ̂ij and sij , we choose a Lyapunov
function

Vi = Vi−1 +
1

2

m∑
j=1

ξ2ij +
1

2

m∑
j=1

θ̃⊤ijΓ
−1
ij θ̃ij

+
1

2

m∑
j=1

γ−1
ij s̃

2
ij (46)

where θ̃ij = θij − θ̂ij , s̃ij = δ̄i∗ − sij , Γij is a
positive definite constant matrix, and γij is a positive
constant.

The derivative of Vi is

V̇i ≤ −λ1z⊤AD⊤
1 D1Az +

(
s1,m+1 +

i−1∑
k=2

δ̄k∗

)
m
√
h

+
i−1∑
k=1

m∑
j=1

θ̃⊤kjΓ
−1
kj (

˙̃θkj + τ
[i−1]
kj )

+
m∑
j=1

s̃1jγ
−1
1j

(
˙̃s1j +

γ1j((D1Az)j)
2√

((D1Az)j)2 + h

)

+
m∑
j=1

ξij(xi+1,j − αij)−
i∑

k=2

m∑
j=1

λkjξ
2
kj

+
i−1∑
k=2

m∑
j=1

γ−1
kj s̃kj

 ˙̃skj +
γkjξ

2
kjβ

2
kj√

ξ2kjβ
2
kj + h


+

m∑
j=1

ξijψ
⊤
ij θ̃ij +

m∑
j=1

ξijϵij

−
m∑
j=1

ξij

i−1∑
k=1

∂αi−1,j

∂xkj
(ψ⊤

kj θ̃kj + ϵkj)

−
m∑
j=1

ξij

i−1∑
k=1

∑
l∈Nj

∂αi−1,j

∂xkl
(ψ⊤

klθ̃kl + ϵkl)

−
m∑
j=1

sijξ
2
ijβ

2
ij√

ξ2ijβ
2
ij + h

+
m∑
j=1

θ̃⊤ijΓ
−1
ij

˙̃θij +
m∑
j=1

γ−1
i,j s̃ij ˙̃sij

Noting that |ϵij| ≤ δ̄i∗, we have

V̇i ≤ −λ1z⊤AD⊤
1 D1Az

+

(
s1,m+1 +

i−1∑
k=2

δ̄k∗

)
m
√
h

+
i−1∑
k=1

m∑
j=1

θ̃⊤kjΓ
−1
kj (

˙̃θkj + τ
[i−1]
kj

−Γkjψkjξij
∂αi−1,j

∂xkj
− Γkjψkj

∂αi−1,j

∂xkj

∑
l∈Nj

ξil)

+
m∑
j=1

s̃1jγ
−1
1j

(
˙̃s1j +

γ1j((D1Az)j)
2√

((D1Az)j)2 + h

)

+
m∑
j=1

ξij(xi+1,j − αij)−
i∑

k=2

m∑
j=1

λkjξ
2
kj

+
i−1∑
k=2

m∑
j=1

γ−1
kj s̃kj

 ˙̃skj +
γkjξ

2
kjβ

2
kj√

ξ2kjβ
2
kj + h


+

m∑
j=1

|ξij|βij δ̄i∗ −
m∑
j=1

δ̄i∗ξ
2
ijβ

2
ij√

ξ2ijβ
2
ij + h

+
m∑
j=1

s̃ijξ
2
ijβ

2
ij√

ξ2ijβ
2
ij + h

+
m∑
j=1

θ̃⊤ijΓ
−1
ij (

˙̃θij
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+Γijψijξij) +
m∑
j=1

γ−1
i,j s̃ij ˙̃sij

Next, we apply

|ξij|βij ≤
ξ2ijβ

2
ij√

ξ2ijβ
2
ij + h

+
√
h

then

V̇i ≤ −λ1z⊤AD⊤
1 D1Az

+

(
s1,m+1 +

i∑
k=2

δ̄k∗

)
m
√
h

+
i−1∑
k=1

m∑
j=1

θ̃⊤kjΓ
−1
kj (

˙̃θkj + τ
[i−1]
kj

−Γkjψkjξij
∂αi−1,j

∂xkj
− Γkjψkj

∂αi−1,j

∂xkj

∑
l∈Nj

ξil)

+
m∑
j=1

s̃1jγ
−1
1j

(
˙̃s1j +

γ1j((D1Az)j)
2√

((D1Az)j)2 + h

)

+
m∑
j=1

ξij(xi+1,j − αij)−
i∑

k=2

m∑
j=1

λkjξ
2
kj

+
i−1∑
k=2

m∑
j=1

γ−1
kj s̃kj

 ˙̃skj +
γkjξ

2
kjβ

2
kj√

ξ2kjβ
2
kj + h


+

m∑
j=1

θ̃⊤ijΓ
−1
ij (

˙̃θij + Γijψijξij)

+
m∑
j=1

γ−1
ij s̃ij( ˙̃sij +

γijξ
2
ijβ

2
ij√

ξ2ijβ
2
ij + h

)

We choose the update laws for skj (1 ≤ k ≤ i−1)
the same as before and the update laws for θ̂kj (1 ≤
k ≤ i) and sij as follows.

˙̂
θkj = τ

[i−1]
kj − Γkjψkjξij

∂αi−1,j

∂xkj
(47)

−Γkjψkj
∂αi−1,j

∂xkj

∑
l∈Nj

ξil =: τ
[i]
kj (48)

1 ≤ k ≤ i− 1,
˙̂
θij = Γijψijξij =: τ

[i]
ij (49)

ṡij =
γijξ

2
ijβ

2
ij√

ξ2ijβ
2
ij + h

(50)

Then

V̇i ≤ −λ1z⊤AD⊤
1 D1Az −

i∑
k=2

m∑
j=1

λkjξ
2
kj

+
m∑
j=1

ξ⊤ij (xi+1,j − αij)

+

(
s1,m+1 +

i∑
k=2

δ̄k∗

)
m
√
h.

Step n: Since xnj is not a real control input, it
cannot be αn−1,j . Let

ξnj = xnj − αn−1,j (51)

Then

ξ̇nj = uj + ψ⊤
njθnj + ϵnj − α̇n−1,∗

= uj + ψ⊤
njθnj + ϵnj

−
n−1∑
k=1

∂αi−1,j

∂xkj
(xk+1,j + ψ⊤

kjθkj + ϵkj)

−
n−1∑
k=1

∑
l∈Nj

∂αi−1,j

∂xkl
(xk+1,l + ψ⊤

klθkl + ϵkl)

−
n−1∑
k=1

∂αi−1,j

∂θ̂kj

˙̂
θkj −

n−1∑
k=1

∑
l∈Nj

∂αi−1,j

∂θ̂kl

˙̂
θkl

The control input uj is proposed as

αnj = −λnjξnj − ψ⊤
nj θ̂nj

+
n−1∑
k=1

∂αi−1,j

∂xkj
(xk+1,j + ψ⊤

kj θ̂kj)

+
n−1∑
k=1

∑
l∈Nj

∂αi−1,j

∂xkl
(xk+1,l + ψ⊤

klθ̂kl)

+
n−1∑
k=1

∂αi−1,j

∂θ̂kj

˙̂
θkj +

n−1∑
k=1

∑
l∈Nj

∂αi−1,j

∂θ̂kl

˙̂
θkl

−
snjξnjβ

2
nj√

ξ2njβ
2
nj + h

− ξn−1,j (52)

where

βnj = 1 +
n−1∑
k=1

√(
∂αn−1,j

∂xkj

)2

+ h

+
n−1∑
k=1

∑
l∈Nj

√(
∂αn−1,j

∂xkl

)2

+ h



10

λnj > 0, θ̂nj and snj are estimates of θnj and δ̄n∗ =
max1≤j≤m δnj , respectively. In order to design the
update laws for θ̂nj and snj , we choose a Lyapunov
function

Vn = Vn−1 +
1

2

m∑
j=1

ξ2nj +
1

2

m∑
j=1

θ̃⊤njΓ
−1
nj θ̃nj

+
1

2

m∑
j=1

γ−1
nj s̃

2
nj (53)

where θ̃nj = θnj − θ̂nj , s̃nj = δ̄n∗ − snj , Γnj is
a positive definite constant matrix, and γnj is a
positive constant.

The derivative of Vn is

V̇n ≤ −λ1z⊤AD⊤
1 D1Az

+

(
s1,m+1 +

n∑
k=2

δ̄k∗

)
m
√
h

+
n−1∑
k=1

m∑
j=1

θ̃⊤kjΓ
−1
kj (

˙̃θkj + τ
[n−1]
kj

−Γkjψkjξij
∂αn−1,j

∂xkj
− Γkjψkj

∂αn−1,j

∂xkj

∑
l∈Nj

ξil)

+
m∑
j=1

s̃1jγ
−1
1j

(
˙̃s1j +

γ1j((D1Az)j)
2√

((D1Az)j)2 + h

)

−
n∑

k=2

m∑
j=1

λkjξ
2
kj

+
n−1∑
k=2

m∑
j=1

γ−1
kj s̃kj

 ˙̃skj +
γkjξ

2
kjβ

2
kj√

ξ2kjβ
2
kj + h


+

m∑
j=1

θ̃⊤njΓ
−1
nj (

˙̃θnj + Γnjψnjξnj)

+
m∑
j=1

γ−1
nj s̃nj( ˙̃snj +

γnjξ
2
njβ

2
nj√

ξ2njβ
2
nj + h

)

We choose the update laws for skj (1 ≤ k ≤ n−1)
the same as before and the update laws for snj and
θ̂kj (1 ≤ k ≤ n) as follows.

ṡnj =
γnjξ

2
njβ

2
nj√

ξ2njβ
2
nj + h

(54)

˙̂
θkj = τ

[n−1]
kj − Γkjψkjξij

∂αn−1,j

∂xkj

−Γkjψkj
∂αn−1,j

∂xkj

∑
l∈Nj

ξil) =: τ
[n]
kj (55)

1 ≤ k ≤ n− 1
˙̂
θnj = Γnjψnjξnj =: τ

[n]
nj (56)

then

Vn ≤ −λ1z⊤AD⊤
1 D1Az −

n∑
k=2

m∑
j=1

λkjξ
2
kj

+

(
s1,m+1 +

n∑
k=2

δ̄k∗

)
m
√
h.

With the aid of the above design procedure, the
following theorem can be proved.

Theorem 1: For the systems in (1)-(2), under
Assumptions 1-2 the distributed control law

uj = αnj (57)

with the update laws

˙̂
θij = τ

[n]
ij (58)

ṡij =
γijξ

2
ijβ

2
ij√

ξ2ijβ
2
ij + h

, 1 ≤ i ≤ n, 1 ≤ j ≤ m(59)

ensure that (8)-(10) are satisfied, where the control
parameters are defined in the above controller de-
sign procedure.

Proof: With the control law (57), we have

V̇n ≤ −λ1z⊤AD⊤
1 D1Az −

n∑
k=2

m∑
j=1

λkjξ
2
kj

+

(
s1,m+1 +

n∑
k=2

δ̄k∗

)
m
√
h (60)

≤

(
s1,m+1 +

n∑
k=2

δ̄k∗

)
m
√
h. (61)

Integrating both sides of (61), we have

Vn(t) ≤ Vn(0)

+

(
s1,m+1 +

n∑
k=2

δ̄k∗

)
m

∫ t

0

√
h(τ)dτ

< ∞

which means that V (t) is bounded (i.e., V ∈ L∞).
Therefore, z, ξij , θ̂ij , and sij are bounded for all i
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and j. Integrating both sides of (60), we have

λ1

∫ t

0

z⊤AD⊤
1 D1Azdτ +

n∑
k=2

m∑
j=1

λkj

∫ t

0

ξ2kjdτ

≤ Vn(0)− Vn(t)

+

(
s1,m+1 +

n∑
k=2

δ̄k∗

)
m

∫ t

0

√
h(τ)dτ <∞

which means that D1Az and ξij (2 ≤ i ≤ n,
1 ≤ j ≤ m) are square-integrable. With the aid
of Barbalat’s lemma, D1Az and ξij (2 ≤ i ≤ n,
1 ≤ j ≤ m) converge to zero. By Lemma 3, eqns.
(8)-(9) are satisfied. Since the communication graph
G is connected, eqn. (10) is satisfied by Lemma 4.
□

Leveraging the properties of the prescribed per-
formance function ρ, the proposed controllers fa-
cilitate the convergence of tracking errors between
neighboring systems to a specified value within
finite time. In the controller design, to simplify
notation, the PPF ρ remains consistent across dif-
ferent systems. However, one can substitute ρ with
ρj specifically for system j. Furthermore, the PPF
ρ can be tailored to different functions, accom-
modating diverse transient and steady-state perfor-
mance requirements. Within the controller design,
the transformation (11) is represented by a natural
logarithm function. However, alternative choices for
ρ are viable.

To approximate unknown functions, one can
choose the basis to be polynomial functions, sig-
moid functions, logistic functions, or other func-
tions. To effectively implement the proposed con-
trollers, obtaining the partial derivatives of the vir-
tual controllers is imperative. With the aid of the
command filtered backstepping technique [31–33] ,
simplified distributed controllers can be proposed.
Due to space limitations, it is omitted.

IV. SIMULATION

Consider three second-order systems in (1)-(3),
where

f1j = x21j + sin(2x1j)

f2j = x22j + 3x21j + 2 sin 5x2j.

There is one second-order leader system in (4)-(5)
with f14 = sin(2x14), f24 = 5 cos 3x14 − 2x24,
and u4 = 3 cos 2t. The communication between
systems is shown in Fig. 1. It is obvious that the

Fig. 1. The communication graph G between systems.

communication graph G is connected. The incidence
matrix D is

D =

[
D1

D2

]
=


1 0 0 1 1
−1 1 0 0 0
0 −1 1 0 −1
0 0 −1 −1 0

 .
The PPF is chosen as

ρ(t) =

{
20 exp

(−20t
10−t

)
+ 0.1, if 0 ≤ t < 10

0.1, if t ≥ 10

The control problem is to design distributed con-
trollers such that yj − y4 converge to zero for 1 ≤
j ≤ 3 and the performance (9) is satisfied.

In the controller design, we choose

ψ1j = [1, x1j, x
2
1j]

⊤, ψ2j = [1, x1j, x
2
1j, x2j, x

2
2j]

⊤

The boundedness of the approximation errors is
evident. The distributed controllers proposed in
Sections 3 and 4 effectively address the control
problem.

The proposed controllers from Theorem 1 were
implemented in a simulation with specified control
parameters. Fig. 2 illustrates the convergence of the
response yj − y4 for 1 ≤ j ≤ 3 to zero. In Fig.
3, the responses of e12, e14, e23, e34, −ρ, and ρ
are depicted, revealing that e12, e14, e23, and e34
are bounded by −ρ and ρ, thereby confirming the
satisfaction of (9). Fig. 4 showcases the response of
θ̂1j for 1 ≤ j ≤ 3. Additionally, Fig. 5 illustrates
the response of s1j for 1 ≤ j ≤ 3. Figure 6 presents
the response of θ̂2j for 1 ≤ j ≤ 3. Lastly, Fig. 7
demonstrates the response of s2j for 1 ≤ j ≤ 3. The
simulation results affirm that θij and sij are bounded
for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3. These findings
robustly substantiate the validity of the claim made
in Theorem 1.
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Fig. 2. The tracking error of yj − y4 for 1 ≤ j ≤ 4.
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V. CONCLUSION

In this paper, the distributed tracking control of
high-order uncertain nonlinear systems with pre-
scribed performance requirements was studied. Dis-
tributed robust adaptive controllers were proposed
to ensure that tracking errors converge to a small
neighborhood around the origin within a specified
finite time while satisfying prescribed performance
criteria. The results presented in this paper provide
a new approach to addressing the distributed control
of uncertain nonlinear systems with performance
requirements. Throughout our study, bidirectional
communication between systems is assumed; how-
ever, these findings can potentially be extended
to scenarios where the communication graph is
directed.

Disclosure statement
No potential conflict of interest was reported by

the author(s).
Data availability statement
Data sharing is not applicable to this article as no

new data were created or analyzed in this study.
Funding
This work was supported by the National Science

Foundation of USA (Award No. 2112650 and No.
ECCS-2037649).

REFERENCES

[1] R. Yang, L. Liu, and G. Feng, “An overview of recent advances
in distributed coordination of multi-agent systems,” Unmanned
Systems, vol. 10, no. 03, pp. 307–325, 2022.

[2] N. Ullah, Y. Mehmood, J. Aslam, A. Ali, and J. Iqbal, “Uavs-
ugv leader follower formation using adaptive non-singular
terminal super twisting sliding mode control,” IEEE Access,
vol. 9, pp. 74 385–74 405, 2021.

[3] O. Mechali, J. Iqbal, J. Wang, X. Xie, and L. Xu, “Distributed
leader-follower formation control of quadrotors swarm sub-
jected to disturbances,” in 2021 IEEE International Conference
on Mechatronics and Automation (ICMA), 2021, pp. 1442–
1447.

[4] O. Mechali, L. Xu, X. Xie, and J. Iqbal, “Theory and practice
for autonomous formation flight of quadrotors via distributed
robust sliding mode control protocol with fixed-time stability
guarantee,” Control Engineering Practice, vol. 123, p. 105150,
2022.

[5] J. Zhang, D. Yang, H. Zhang, and H. Su, “Adaptive secure
practical fault-tolerant output regulation of multiagent systems
with dos attacks by asynchronous communications,” IEEE
Transactions on Network Science and Engineering, vol. 10,
no. 6, pp. 4046–4055, 2023.

[6] Y. Kim and M. Mesbahi, “On maximizing the second smallest
eigenvalue of a state-dependent graph laplacian,” IEEE Trans-
actions on Automatic Control, vol. 51, no. 1, pp. 116–120, 2006.

[7] L. Wang and F. Xiao, “Finite-time consensus problems for
networks of dynamic agents,” IEEE Transactions on Automatic
Control, vol. 55, no. 4, pp. 950–955, 2010.

[8] S. Khoo, L. Xie, and Z. Man, “Robust finite-time consensus
tracking algorithm for multirobot systems,” IEEE/ASME Trans-
actions on Mechatronics, vol. 14, no. 2, pp. 219–228, 2009.

[9] S. Shi, H. Feng, W. Liu, and G. Zhuang, “Finite-time con-
sensus of high-order heterogeneous multi-agent systems with
mismatched disturbances and nonlinear dynamics,” Nonlinear
Dynamics, no. 2, pp. 1317–1333, 2019.

[10] D. Chen, X. Liu, and W. Yu, “Finite-time fuzzy adaptive
consensus for heterogeneous nonlinear multi-agent systems,”
IEEE Transactions on Network Science and Engineering, vol. 7,
no. 4, pp. 3057–3066, 2020.

[11] G. Dong, H. Li, H. Ma, and R. Lu, “Finite-time consensus track-
ing neural network ftc of multi-agent systems,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 32, no. 2,
pp. 653–662, 2021.

[12] P. Li, X. Wu, X. Chen, and J. Qiu, “Distributed adaptive
finite-time tracking for multi-agent systems and its application,”
Neurocomputing, vol. 481, pp. 46–54, 2022.

[13] Z. Zuo and L. Tie, “A new class of finite-time nonlinear
consensus protocols for multi-agent systems,” International
Journal of Control, vol. 87, no. 2, pp. 363–370, 2014.

[14] ——, “Distributed robust finite-time nonlinear consensus proto-
cols for multi-agent systems,” International Journal of Systems
Science, vol. 47, no. 6, pp. 1366–1375, 2016.

[15] H. Wang, W. Yu, G. Wen, and G. Chen, “Fixed-time consensus
of nonlinear multi-agent systems with general directed topolo-
gies,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 66, no. 9, pp. 1587–1591, 2019.

[16] B. Ning, Z. Zuo, J. Jin, and J. Zheng, “Distributed fixed-time
coordinated tracking for nonlinear multi-agent systems under
directed graphs,” Asian Journal of Control, vol. 20, no. 2, pp.
646–658, 2018.

[17] L. Hao, X. Zhan, J. Wu, T. Han, and H. Yan, “Fixed-time
group consensus of nonlinear multi-agent systems via pinning
control,” International Journal of Control, Automation and
Systems, vol. 19, no. 1, pp. 200–208, 2021.

[18] Y. Wang, Y. Song, D. J. Hill, and M. Krstic, “Prescribed-time
consensus and containment control of networked multiagent
systems,” IEEE Transactions on Cybernetics, vol. 49, no. 4,
pp. 1138–1147, 2019.

[19] L. Zhao, Y. Liu, F. Li, and Y. Man, “Fully distributed adaptive
finite-time consensus for uncertain nonlinear multiagent sys-
tems,” IEEE Transactions on Cybernetics, vol. 52, no. 7, pp.
6972–6983, 2022.

[20] H. Hong, W. Yu, G. Wen, and X. Yu, “Distributed robust fixed-
time consensus for nonlinear and disturbed multiagent systems,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 47, no. 7, pp. 1464–1473, 2017.

[21] Z. Zuo, R. Ke, and Q.-L. Han, “Fully distributed adaptive prac-
tical fixed-time consensus protocols for multi-agent systems,”
Automatica, vol. 157, p. 111248, 2023.

[22] J. Zhang, D. Yang, H. Zhang, Y. Wang, and B. Zhou, “Dynamic
event-based tracking control of boiler turbine systems with
guaranteed performance,” IEEE Transactions on Automation
Science and Engineering, vol. 21, no. 3, pp. 4272–4282, 2024.

[23] F. Chen and D. V. Dimarogonas, “Leader–follower formation
control with prescribed performance guarantees,” IEEE Trans-
actions on Control of Network Systems, vol. 8, no. 1, pp. 450–
461, 2021.

[24] Y. Huang, Z. Meng, and D. V. Dimarogonas, “Prescribed perfor-
mance formation control for second-order multi-agent systems
with connectivity and collision constraints,” Automatica, vol.
160, p. 111412, 2024.

[25] C. P. Bechlioulis and G. A. Rovithakis, “Robust adaptive
control of feedback linearizable mimo nonlinear systems with



14

prescribed performance,” IEEE Transactions on Automatic Con-
trol, vol. 53, no. 9, pp. 2090–2099, 2008.

[26] P. Yang and Y. Su, “Proximate fixed-time prescribed per-
formance tracking control of uncertain robot manipulators,”
IEEE/ASME Transactions on Mechatronics, vol. 27, no. 5, pp.
3275–3285, 2022.

[27] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in
Multiagent Networks. Princeton University Press, 2010.

[28] M. M. Nilanjan Roy Chowdhury, Srikant Sukumar and A. Lorı́a,
“On the estimation of the consensus rate of convergence in
graphs with persistent interconnections,” International Journal
of Control, vol. 91, no. 1, pp. 132–144, 2018.

[29] M. H. Stone, “The generalized weierstrass approximation the-
orem,” Mathematics Magazine, vol. 21, no. 4, pp. 167–184,
1948.

[30] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedfor-
ward networks are universal approximators,” Neural Networks,
vol. 2, no. 5, pp. 359–366, 1989.

[31] J. A. Farrell, M. Polycarpou, M. Sharma, and W. Dong, “Com-
mand filtered backstepping,” IEEE Transactions on Automatic
Control, vol. 54, no. 6, pp. 1391–1395, June 2009.

[32] W. Dong, J. A. Farrell, M. M. Polycarpou, V. Djapic, and
M. Sharma, “Command filtered adaptive backstepping,” IEEE
Transactions on Control Systems Technology, vol. 20, no. 3, pp.
566–580, May 2012.

[33] J. Yu, P. Shi, and L. Zhao, “Finite-time command filtered back-
stepping control for a class of nonlinear systems,” Automatica,
vol. 92, pp. 173–180, 2018.


