

# Distributed Tracking Control of Multiple high-order Uncertain Nonlinear Systems with Guaranteed Performance

Eduardo Alvarez and Wenjie Dong

**Abstract**—This paper addresses the distributed tracking control of multiple uncertain high-order nonlinear systems with prescribed performance requirements. By introducing a performance function and a nonlinear transformation, the prescribed fixed-time performance tracking control problem is reformulated as a distributed tracking control problem for multiple special nonlinear systems. With the aid of the universal approximation theorem for continuous functions and algebraic graph theory, distributed robust adaptive controllers are designed using the backstepping technique. Simulation results are presented to demonstrate the effectiveness of the proposed algorithms.

**Index Terms**—Consensus; leader-following control; nonlinear systems; uncertain systems; distributed tracking control.

## I. INTRODUCTION

Over the past few decades, significant research efforts have been devoted to distributed cooperative control of multiple systems. This field has proven to be crucial across diverse domains, where multiple agents or components collaborate to achieve shared goals. Applications span a wide range of areas, including search-and-rescue operations, swarm robotics, autonomous vehicles, power distribution networks, wireless sensor networks, and satellite and UAV networks, among others.

The consensus control problem involves designing distributed control laws for a group of systems to ensure that their outputs converge to an agreement on a specific quantity of interest. It plays a crucial role in distributed cooperative control, with extensive research yielding significant results [1–5]. A key performance metric for consensus algorithms is the consensus rate, particularly in the context of multiple first-order linear systems. The consensus rate is determined by the second smallest eigenvalue of the Laplacian matrix of the

communication graph, referred to as the algebraic connectivity. Strategies to enhance algorithm performance often involve manipulating the communication graph to increase algebraic connectivity [6]. Another approach focuses on designing finite-time consensus algorithms that drive consensus errors to zero within a finite time. For example, in [7], finite-time algorithms were proposed for single-integrator dynamic systems using Lyapunov techniques. Similarly, [2, 8] developed finite-time algorithms using terminal sliding-mode control for multi-robot systems. In [9], consensus algorithms for nonlinear dynamic systems were introduced, employing integral sliding-mode control and finite-time observers. Meanwhile, [10–12] explored the use of fuzzy logic control and neural networks to achieve practical finite-time convergence of consensus errors. However, traditional finite-time consensus algorithms are sensitive to initial conditions, leading to longer settling times when initial errors are large. To address this, researchers have explored fixed-time consensus algorithms in recent decades [3, 4, 13–20]. These algorithms ensure that the settling time is independent of initial conditions, although they rely heavily on the communication graph's topology, which may not be known in practice. To overcome this limitation, prescribed fixed-time consensus algorithms have been proposed. For instance, [21] addressed the consensus problem for first-order systems without a leader, developing practical prescribed fixed-time algorithms by estimating algebraic connectivity.

Fixed-time and prescribed finite-time control algorithms ensure the convergence of consensus errors to zero within a finite time. However, these algorithms may face limitations in transient performance, which might not satisfy specific requirements. To overcome this challenge, the prescribed performance-based controller design technique has proven effective [22]. For example, the study in [23] investigated the formation control of first-order

The authors are with Department of Electrical and Computer Engineering, the University of Texas Rio Grande Valley, Edinburg, TX 78539, USA (Corresponding Email: wenjie.dong@utrgv.edu)

and second-order systems with multiple leaders. Distributed tracking controllers were designed to ensure prescribed performance by utilizing the prescribed performance function (PPF). Similarly, [24] explored prescribed performance formation control for second-order multi-agent systems, proposing distributed controllers that meet predefined performance criteria using the PPF. Notably, both studies [23, 24] focused on linear systems with no uncertainties in their dynamics.

In this paper, we address the prescribed performance consensus control problem for multiple high-order nonlinear systems with uncertainties. Our objective is to design a distributed controller for each system, ensuring that the tracking error converges to a small neighborhood of the origin within a prescribed fixed time while meeting specific performance criteria. To achieve this, we adopt a multifaceted approach. First, we introduce a prescribed performance function (PPF) that integrates fixed-time, transient, and steady-state performance requirements into a unified framework. Next, using the Lyapunov technique, algebraic graph theory, and the universal approximation theorem of functions, we propose distributed virtual controllers that satisfy the required performance conditions. Finally, we design real controllers employing the backstepping technique to ensure the system outputs converge to the desired outputs within the prescribed fixed time and meet the defined performance standards. The contributions of this paper are as follows:

- This paper addresses the leader-following control problem for multiple nonlinear systems with performance requirements. In contrast, the study in [21] solves the leader-following control problem for first-order uncertain nonlinear systems without considering transient performance requirements. In this work, both transient and steady-state performance are incorporated by introducing a performance function in the controller design.
- This paper addresses the leader-following control problem for multiple uncertain high-order nonlinear systems with performance requirements. In contrast, the studies in [23, 24] solve the leader-following control problem with performance requirements for first-order and second-order systems without uncertainties. In this work, the leader-following control problem for high-order nonlinear systems under uncer-

tainty is studied and a systematic controller design procedure is proposed.

The subsequent sections of this paper are organized as follows: Section 2 outlines the problem formulation. Section 3 presents the systematic design of the controllers. Section 4 provides the simulation results. Finally, the paper is concluded in Section 5.

## II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a group of  $m$  nonlinear systems described by the following equations

$$\begin{aligned}\dot{x}_{ij} &= x_{i+1,j} + f_{ij}(\bar{x}_{ij}) \\ i &= 1, \dots, n-1\end{aligned}\quad (1)$$

$$\dot{x}_{nj} = u_j + f_{nj}(\bar{x}_{nj}) \quad (2)$$

$$y_j = x_{1j} \quad (3)$$

where  $x_{ij} \in R$  denotes the state,  $u_j \in R$  is the control input,  $y_j$  is the output,  $f_{ij}$  is a smooth function of  $\bar{x}_{ij}$  and is unknown, and  $\bar{x}_{ij} = [x_{1j}, \dots, x_{ij}]^\top$ . The initial condition  $\bar{x}_{nj}(0) \in \mathcal{X}$  where  $\mathcal{X} = \{\zeta \mid \|\zeta\| < r, \forall \zeta \in R^n\}$  is a compact set in  $R^n$  for some positive constant  $r$ .

It is assumed that there exists a virtual system whose dynamics are represented by the following equations.

$$\begin{aligned}\dot{x}_{i,m+1} &= x_{i+1,m+1} + f_{i,m+1}(\bar{x}_{i,m+1}), \\ i &= 1, \dots, n-1\end{aligned}\quad (4)$$

$$\dot{x}_{n,m+1} = u_{m+1} + f_{n,m+1}(\bar{x}_{n,m+1}) \quad (5)$$

$$y_{m+1} = x_{1,m+1} \quad (6)$$

where  $u_{m+1}$  is a known time-varying function. The virtual system is labeled as  $(m+1)$ -th system.

The systems indexed by  $j$  for  $1 \leq j \leq m$  are referred to as the follower systems, while the system indexed by  $(m+1)$  is referred to as the leader system. In the context of  $m$  follower systems and one leader system, there is communication between systems. If we consider each system as a vertex and the indexes of the vertexes are the same as the labels of the systems, the communication between systems can be defined by a graph denoted as  $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ . Here,  $\mathcal{V} = \{v_j\}_{j=1}^{m+1}$  represents the vertex set, and  $\mathcal{E} = \{E_{kj}\}_{1 \leq k \neq j \leq m+1}$  denotes the edge set. It is assumed that the communication between systems is bidirectional. An edge  $E_{kj}$  means that the information of system  $j$  is available to system  $k$  and vice versa. For convenience, we assign a *tail* and a *head* for each edge. Without loss of generality,

vertex  $k$  is considered as the head and vertex  $j$  is considered as the tail for edge  $E_{kj}$ . A *path* between vertex  $k$  and vertex  $j$  is a set of edges which connect vertex  $k$  and vertex  $j$ . A path forms a *simple cycle* if the path is closed. A graph is *connected* if for every pair of vertexes there is a path to connect them. A *tree* is defined as a connected graph without cycles. A tree is a *spanning tree* if it contains all the vertexes in the graph.

For a vertex  $j$ , the set of its neighbors, represented as  $\mathcal{N}_j$ , comprises all vertexes directly connected to vertex  $j$  through edges. For  $(m+1)$  vertexes and  $K$  edges, the incidence matrix  $D(\mathcal{G}) = [d_{kj}] \in R^{(m+1) \times K}$  can be defined to characterize the graph structure. For  $K$  edges, we label them by  $1, 2, \dots, K$ . If the  $p$ -th edge is  $E_{kj}$ ,  $d_{kp} = 1$  and  $d_{jp} = -1$ . It is obvious that  $D(\mathcal{G})$  is not unique and depends on the labels of the edges. The Laplacian matrix of the graph  $\mathcal{G}$  is denoted as  $L = D(\mathcal{G})D(\mathcal{G})^\top$ . The edge Laplacian matrix is defined as  $L_e = D(\mathcal{G})^\top D(\mathcal{G})$ .

For system  $j$ , it is assumed that system  $k$  is one of its neighbors. We define the tracking error between system  $j$  and system  $k$  as

$$e_{jk} = y_j - y_k \quad (7)$$

for  $1 \leq j \leq m$  and  $k \in \mathcal{N}_j$ . The transient and steady-state performance requirements on the tracking error  $e_{jk}$  can be defined by a PPF [25]. With the aid of a given PPF, the problem considered in this paper is as follows.

*Control Problem:* For the follower systems in (1)-(3) and the leader system in (4)-(6), the problem considered in this article is to design a distributed control law for system  $j$  using its neighbors' information such that

$$|e_{jk}(t)| < \rho(t) \quad (8)$$

$$\lim_{t \rightarrow T} |y_j(t) - y_{m+1}(t)| \leq \epsilon \quad (9)$$

$$\lim_{t \rightarrow \infty} (y_j(t) - y_{m+1}(t)) = 0 \quad (10)$$

for  $1 \leq j \leq m$  and  $i \in \mathcal{N}_j$ , where  $\rho$  is a PPF,  $T$  and  $\epsilon$  are prescribed time constant and the threshold of the tracking errors.

In order to solve our problem, the following assumptions are made on the communication graph.

*Assumption 1:* The communication graph  $\mathcal{G}$  has a spanning tree with the node  $m+1$  as the root node.

*Assumption 2:* The state of the leader system is bounded.

Assumption 1 indicates that the information of the leader can be shared among all follower systems. This assumption is crucial for controller design and is a requirement in all literature on leader-following control problems. Assumption 2 is reasonable, as it is practical for all state values of a system to be bounded.

### III. DISTRIBUTED CONTROLLER DESIGN

#### A. Prescribed Fixed-time Performance Function

In order to meet the transient performance in (8) and the steady-state performance in (9), the prescribed performance function is chosen as

$$\rho(t) = \begin{cases} (\rho_0 - \rho_\infty) \exp\left(-\frac{c_3 T t}{T-t}\right) + \rho_\infty, & 0 \leq t < T \\ \rho_\infty, & t \geq T \end{cases}$$

where  $|e_{ji}(0)| < \rho_0$  for  $1 \leq j \leq m$  and  $1 \leq i \leq m+1$ ,  $\rho_\infty < \frac{\epsilon}{m}$ , and  $c_3 > 1$ . The constant  $T$  is the prespecified maximum allowable convergence time for  $\rho(t)$  converging from the given maximum initial error  $\rho_0$  to the maximum allowable steady-state error  $\rho_\infty$ , and  $c_3$  denotes the prespecified minimum convergence rate. The PPF has the following properties [25, 26]: 1)  $\rho(t)$  is bounded, i.e.,  $0 < \rho_\infty \leq \rho(t) \leq \rho_0$  and  $\dot{\rho}(t) \leq 0$ ; and 2)  $\lim_{t \rightarrow T} \rho(t) = \rho_\infty$  and  $\rho(t) = \rho_\infty$  for any  $t \geq T$ .

With the aid of the PPF, the following tracking error is defined

$$v_{jk} = F(e_{jk}) = \ln\left(\frac{e_{jk} + \rho}{\rho - e_{jk}}\right) \quad (11)$$

where  $F(e_{jk})$  is a natural logarithm function of  $e_{jk}$ . Then,

$$\dot{v}_{jk} = A_{jk}(\dot{e}_{jk} + \Lambda e_{jk}) \quad (12)$$

where

$$A_{jk} = \frac{1}{e_{jk} + \rho} + \frac{1}{\rho - e_{jk}}, \quad \Lambda = -\frac{\dot{\rho}}{\rho}.$$

For the PPF  $\rho$ , the following results have been proved in [26].

*Lemma 1:* For the PPF  $\rho$ ,

- 1)  $\rho(t)$  is monotonically decreasing and  $\Lambda > 0$ .
- 2)  $A_{jk} > \frac{2}{\rho} \geq \frac{2}{\rho_0} > 0$ .

*Lemma 2:* For the transformation (11), if  $v_{jk}$  is bounded for  $1 \leq j \leq m$  and  $k \in \mathcal{N}_j$ , eqns. (8)-(9) are satisfied.

## B. Controller Design

Under Assumption 1, the graph  $\mathcal{G}$  has a spanning tree. The edge set  $\mathcal{E}$  can be written as  $\mathcal{E}_t \cup \mathcal{E}_c$  where  $\mathcal{E}_t$  includes the edges of the spanning tree and  $\mathcal{E}_c$  includes the edges which are not in the spanning tree. Based on the decomposition of the edges, the graph  $\mathcal{G}$  can be decomposed as  $\mathcal{G} = \mathcal{G}_t \cup \mathcal{G}_c$ . Since there are  $m+1$  vertexes, the number of edges in  $\mathcal{E}_t$  is  $m$ . We label the edges in  $\mathcal{E}_t$  first and then label the edges in  $\mathcal{E}_c$ . The corresponding incidence matrix  $D(\mathcal{G})$  can be written as

$$D = [D_t, D_c] \quad (13)$$

where  $D_t \in R^{(m+1) \times m}$  and  $D_c \in R^{(m+1) \times (K-m)}$  represent, respectively, the incidence matrices corresponding to the spanning tree edges and other edges. It is shown that the columns of  $D_c$  are linearly depend on the columns of  $D_t$  [27, 28] and

$$D_t Z = D_c$$

where

$$Z = (D_t^\top D_t)^{-1} D_t^\top D_c.$$

The incidence matrix  $D$  can also be written as the following block matrix

$$D = \begin{bmatrix} D_1 \\ D_2 \end{bmatrix} = \begin{bmatrix} D_{1t} & D_{1c} \\ D_{2t} & D_{2c} \end{bmatrix} \quad (14)$$

where  $D_1 \in R^{m \times K}$ ,  $D_2 \in R^{1 \times K}$ ,  $D_{1t} \in R^{m \times m}$ ,  $D_{1c} \in R^{m \times (K-m)}$ ,  $D_{2t} \in R^{1 \times m}$ , and  $D_{2c} \in R^{1 \times (K-m)}$ . It can be verified that

$$D_{1t} Z = D_{1c}, \quad D_{2t} Z = D_{2c}, \quad Z = D_{1t}^{-1} D_{1c}.$$

Let

$$\eta = \begin{bmatrix} \eta_1 \\ \vdots \\ \eta_K \end{bmatrix} = D^\top \begin{bmatrix} y \\ y_{m+1} \end{bmatrix} = \begin{bmatrix} \vdots \\ e_{jk} \\ \vdots \end{bmatrix} \quad (15)$$

where  $y = [y_1, \dots, y_m]^\top$ . Noting the definition of the incidence matrix, we have

$$\begin{aligned} \eta &= D^\top \begin{bmatrix} y \\ y_{m+1} \end{bmatrix} - D^\top \mathbf{1} y_{m+1} \\ &= [D_{1t}, D_{1c}]^\top \tilde{y} = \begin{bmatrix} D_{1t}^\top \tilde{y} \\ Z^\top D_{1t}^\top \tilde{y} \end{bmatrix} \\ &= \begin{bmatrix} I_{m \times m} \\ Z^\top \end{bmatrix} D_{1t}^\top \tilde{y} \end{aligned} \quad (16)$$

where  $\mathbf{1}$  is a vector whose elements are one and  $\tilde{y} = y - \mathbf{1} y_{m+1}$ .

Let

$$z = \begin{bmatrix} z_1 \\ \vdots \\ z_K \end{bmatrix} = F(\eta) = \begin{bmatrix} F(\eta_1) \\ \vdots \\ F(\eta_L) \end{bmatrix} = \begin{bmatrix} \vdots \\ v_{jk} \\ \vdots \end{bmatrix} \quad (17)$$

with the aid of (12), we have

$$\dot{z} = A(\dot{\eta} + \Lambda\eta) = AD_1^\top(\dot{\tilde{x}}_{1*} + \Lambda\tilde{x}_{1*}) \quad (18)$$

where  $A = \text{diag}(A_{ji})$  is a diagonal positive definite matrix and  $\tilde{x}_{1*} = [\tilde{x}_{11}, \dots, \tilde{x}_{1m}]^\top = [x_{11} - x_{1,m+1}, \dots, x_{1m} - x_{1,m+1}]^\top$ .

*Lemma 3:* Under Assumption 1, if  $z$  is bounded, and

$$\lim_{t \rightarrow \infty} z^\top A D_1^\top D_1 A z = 0 \quad (19)$$

then  $\lim_{t \rightarrow \infty} \eta = 0$  and eqns. (8)-(9) are satisfied.

*Proof:* Let  $\eta_I = [\eta_1, \dots, \eta_m]^\top$  and  $\eta_{II} = [\eta_{m+1}, \dots, \eta_K]^\top$ . By eqn. (16), we have

$$\eta_{II} = Z^\top \eta_I. \quad (20)$$

Let  $z_I = [z_1, \dots, z_m]^\top$  and  $z_{II} = [z_{m+1}, \dots, z_K]^\top$ . By the mean value theorem and the property of the function  $F(\cdot)$  in Lemma 1,

$$\begin{aligned} z_I &= F(\mathbf{0}) + G\eta_I = G\eta_I \\ z_{II} &= F(\mathbf{0}) + H\eta_{II} = HZ^\top \eta_I \end{aligned}$$

where  $G = \text{diag}([G_1, \dots, G_m])$  and  $H = \text{diag}([H_1, \dots, H_m])$  are diagonal matrices with  $G_i \geq \frac{2}{\rho_0} > 0$  and  $H_i \geq \frac{2}{\rho_0} > 0$ . Eqn. (19) means that  $\lim_{t \rightarrow \infty} D_1 A z = 0$ . Noting that

$$\begin{aligned} D_1 A z &= [D_{1t}, D_{1c}] A \begin{bmatrix} G \\ HZ^\top \end{bmatrix} \eta_I \\ &= D_{1t} [I, Z] A \text{diag}(G, H) \begin{bmatrix} I \\ Z^\top \end{bmatrix} \eta_I \\ &= D_{1t} (A_I G + Z A_{II} H Z^\top) \eta_I = D_{1t} \Pi \eta_I \end{aligned}$$

where  $A = \text{diag}(A_I, A_{II})$ ,  $A_I \in R^{m \times m}$ , and  $A_{II} \in R^{(K-m) \times (K-m)}$ ,  $\Pi = (A_I G + Z A_{II} H Z^\top)$  is a positive definite matrix. So, eqn. (19) means that  $\lim_{t \rightarrow \infty} \eta_I = 0$ . By (20),  $\lim_{t \rightarrow \infty} \eta = 0$ .

By Lemma 2, the boundedness of  $z$  means that eqns. (8)-(9) are satisfied.  $\square$

*Lemma 4:* Under Assumption 1, if  $\lim_{t \rightarrow \infty} \eta = 0$ , and  $|e_{jk}(t)| \leq \rho(t)$  for  $1 \leq j \leq m$  and  $k \in \mathcal{N}_j$ , then eqn. (10) is satisfied.

*Proof:*

$$\begin{aligned}\lim_{t \rightarrow \infty} L \begin{bmatrix} y \\ y_{m+1} \end{bmatrix} &= \lim_{t \rightarrow \infty} DD^\top \begin{bmatrix} y \\ y_{m+1} \end{bmatrix} \\ &= \lim_{t \rightarrow \infty} D\eta = 0.\end{aligned}$$

If the graph  $\mathcal{G}$  has a spanning tree, the elements of  $y$  and  $y_{m+1}$  reach consensus based on the property of the Laplacian matrix  $L$ . So,  $y - \mathbf{1}y_{m+1}$  converges to zero.  $\square$

Next, we design distributed controllers with the aid of the universal approximation theorem of continuous function and the backstepping technique.

In the dynamics (1)-(2), there is uncertainty  $f_{ij}(\bar{x}_{ij})$ . With the aid of the uniform approximation theorem of functions [29, 30], in the compact set  $\mathcal{X}$  for selected basis vectors  $\psi_{ij}(\bar{x}_{ij})$  there exists an ideal constant weight vector  $\theta_{ij}$  such that

$$f_{ij}(\bar{x}_{ij}) = \psi_{ij}^\top(\bar{x}_{ij})\theta_{ij} + \epsilon_{ij} \quad (21)$$

where  $\epsilon_{ij}$  is the approximation error and is bounded by unknown constants  $\delta_{ij}$  and  $\bar{\delta}$  (i.e.  $|\epsilon_{ij}| \leq \delta_{ij} \leq \bar{\delta}$ ). Then (1)-(2) can be written as

$$\begin{aligned}\dot{x}_{ij} &= x_{i+1,j} + \psi_{ij}^\top(\bar{x}_{ij})\theta_{ij} + \epsilon_{ij}, \quad (22) \\ i &= 1, \dots, n-1\end{aligned}$$

$$\dot{x}_{nj} = u_j + \psi_{nj}^\top(\bar{x}_{nj})\theta_{nj} + \epsilon_{nj}. \quad (23)$$

Substitute (22) into (18) for  $i = 1$ , we have

$$\begin{aligned}\dot{z} &= AD_1^\top(x_{2*} + \psi_{1*}^\top\theta_{1*} + \Lambda x_{1*} \\ &\quad - \Lambda x_{1,m+1}\mathbf{1} - \dot{x}_{1,m+1}\mathbf{1} + \epsilon_{1*}) \quad (24)\end{aligned}$$

where  $x_{1*} = [x_{11}, \dots, x_{1m}]^\top$ ,  $x_{2*} = [x_{21}, \dots, x_{2m}]^\top$ ,  $\psi_{1*} = \text{diag}([\psi_{11}, \dots, \psi_{1m}])$ , and  $\epsilon_{1*} = [\epsilon_{11}, \dots, \epsilon_{1m}]^\top$ .

*Step 1:* Assume that  $x_{2j}$  is a virtual control input. The virtual controller is chosen as

$$\begin{aligned}\alpha_{1j} &= -\lambda_1 \sum_{l \in \mathcal{N}_j} A_{jl} z_{jl} - \Lambda x_{1j} - \psi_{1j}^\top \hat{\theta}_{1j} \\ &\quad - \frac{s_{1j} \sum_{l \in \mathcal{N}_j} A_{jl} z_{jl}}{\sqrt{\left(\sum_{l \in \mathcal{N}_j} A_{jl} z_{jl}\right)^2 + h(t)}} \quad (25)\end{aligned}$$

$$\begin{aligned}&= -\lambda_1 (D_1 A z)_j - \Lambda x_{1j} - \psi_{1j}^\top \hat{\theta}_{1j} \\ &\quad - \frac{s_{1j} (D_1 A z)_j}{\sqrt{((D_1 A z)_j)^2 + h(t)}} \quad (26)\end{aligned}$$

where  $\lambda_1 > 0$ ,  $\hat{\theta}_{1j}$  is an estimate of  $\theta_{1j}$  and will be chosen later,  $s_{1j}$  is the magnitude of a robust term and will be chosen later,  $(\cdot)_j$  denotes the  $j$ -th element of its argument vector, and  $h(t)(> 0)$  satisfies

$$\int_0^\infty \sqrt{h(t)} dt < \infty. \quad (27)$$

There are different choices of  $h$ . For example,  $h(t) = e^{-t}$ ,  $h(t) = \frac{1}{(t+1)^4}$ , etc.

In order to find the update laws for  $\hat{\theta}_{1j}$  and  $s_{1j}$ , we choose a Lyapunov function

$$\begin{aligned}V_1 &= \frac{1}{2} z^\top z + \frac{1}{2} \sum_{j=1}^m \tilde{\theta}_{1j}^\top \Gamma_{1j}^{-1} \tilde{\theta}_{1j} \\ &\quad + \frac{1}{2} \sum_{j=1}^m \gamma_{1j}^{-1} \tilde{s}_{1j}^2 \quad (28)\end{aligned}$$

where  $\Gamma_{1j}$  is a positive definite constant matrix,  $\gamma_{1j}$  is a positive constant, and

$$\tilde{\theta}_{1j} = \theta_{1j} - \hat{\theta}_{1j} \quad (29)$$

$$\tilde{s}_{1j} = s_{1,m+1} - s_{1j} \quad (30)$$

where

$$s_{1,m+1} = \max_{1 \leq j \leq m} \max_{t \in [0, \infty)} |\dot{x}_{1,m+1} + \Lambda x_{1,m+1} - \epsilon_{1j}|$$

is a positive constant. The derivative of  $V_1$  is

$$\begin{aligned}\dot{V}_1 &= z^\top A D_1^\top (x_{2*} - \alpha_{1*}) - \lambda_1 z^\top A D_1^\top D_1 A z \\ &\quad + z^\top A D_1^\top \psi_{1*}^\top \tilde{\theta}_{1*} - \sum_{j=1}^m \frac{s_{1j} ((D_1 A z)_j)^2}{\sqrt{((D_1 A z)_j)^2 + h}} \\ &\quad + z^\top A D_1^\top (\epsilon_{1*} - \Lambda x_{1,m+1} \mathbf{1} - \dot{x}_{1,m+1} \mathbf{1}) \\ &\quad + \sum_{j=1}^m \tilde{\theta}_{1j}^\top \Gamma_{1j}^{-1} \dot{\tilde{\theta}}_{1j} + \sum_{j=1}^m \gamma_{1j}^{-1} \tilde{s}_{1j} \dot{\tilde{s}}_{1j} \\ &= z^\top A D_1^\top (x_{2*} - \alpha_{1*}) - \lambda_1 z^\top A D_1^\top D_1 A z \\ &\quad - \sum_{j=1}^m \frac{s_{1,m+1} ((D_1 A z)_j)^2}{\sqrt{((D_1 A z)_j)^2 + h}} \\ &\quad + \sum_{j=1}^m (D_1^\top A z)_j (\epsilon_{1j} - \Lambda x_{1,m+1} - \dot{x}_{1,m+1}) \\ &\quad + \sum_{j=1}^m \tilde{\theta}_{1j}^\top (\Gamma_{1j}^{-1} \dot{\tilde{\theta}}_{1j} + \psi_{1j} (D_1 A z)_j) \\ &\quad + \sum_{j=1}^m \tilde{s}_{1j} \left( \gamma_{1j}^{-1} \dot{\tilde{s}}_{1j} + \frac{((D_1 A z)_j)^2}{\sqrt{((D_1 A z)_j)^2 + h}} \right)\end{aligned}$$

$$\begin{aligned}
&\leq z^\top A D_1^\top (x_{2*} - \alpha_{1*}) - \lambda_1 z^\top A D_1^\top D_1 A z \\
&\quad - \sum_{j=1}^m \frac{s_{1,m+1}((D_1 A z)_j)^2}{\sqrt{((D_1 A z)_j)^2 + h}} \\
&\quad + \sum_{j=1}^m s_{1,m+1} (D_1^\top A z)_j \\
&\quad + \sum_{j=1}^m \tilde{\theta}_{1j}^\top \Gamma_{1j}^{-1} (\dot{\tilde{\theta}}_{1j} + \Gamma_{1j} \psi_{1j} (D_1 A z)_j) \\
&\quad + \sum_{j=1}^m \tilde{s}_{1j} \left( \gamma_{1j}^{-1} \dot{\tilde{s}}_{1j} + \frac{((D_1 A z)_j)^2}{\sqrt{((D_1 A z)_j)^2 + h}} \right) \\
&\leq z^\top A D_1^\top (x_{2*} - \alpha_{1*}) - \lambda_1 z^\top A D_1^\top D_1 A z \\
&\quad + m s_{1,m+1} \sqrt{h(t)} + \sum_{j=1}^m \tilde{\theta}_{1j}^\top \Gamma_{1j}^{-1} (\dot{\tilde{\theta}}_{1j} \\
&\quad + \Gamma_{1j} \psi_{1j} (D_1 A z)_j) \\
&\quad + \sum_{j=1}^m \tilde{s}_{1j} \gamma_{1j}^{-1} \left( \dot{\tilde{s}}_{1j} + \frac{\gamma_{1j} ((D_1 A z)_j)^2}{\sqrt{((D_1 A z)_j)^2 + h}} \right)
\end{aligned}$$

where  $\alpha_{1*} = [\alpha_{11}, \dots, \alpha_{1m}]^\top$  and we apply the inequality  $\zeta - \frac{\zeta^2}{\sqrt{\zeta^2 + h}} \leq \sqrt{h}$  for any scalar  $\zeta$ .

If we choose the update laws

$$\dot{\tilde{\theta}}_{1j} = \Gamma_{1j} \psi_{1j} (D_1 A z)_j =: \tau_{1j}^{[1]} \quad (31)$$

$$\dot{\tilde{s}}_{1j} = \frac{\gamma_{1j} ((D_1 A z)_j)^2}{\sqrt{((D_1 A z)_j)^2 + h(t)}}, \quad (32)$$

then

$$\begin{aligned}
\dot{V}_1 &\leq z^\top A D_1^\top (x_{2*} - \alpha_{1*}) - \lambda_1 z^\top A D_1^\top D_1 A z \\
&\quad + m \sqrt{h}.
\end{aligned} \quad (33)$$

Step 2: Since  $x_{2j}$  is not the control input, it cannot be  $\alpha_{1j}$ . Let

$$\xi_{2j} = x_{2j} - \alpha_{1j}. \quad (34)$$

Then

$$\dot{\xi}_{2j} = x_{3j} + \psi_{2j}^\top \theta_{2j} + \epsilon_{2j} - \dot{\alpha}_{1j} \quad (35)$$

$$\begin{aligned}
&= x_{3j} + \psi_{2j}^\top \theta_{2j} + \epsilon_{2j} - \frac{\partial \alpha_{1j}}{\partial x_{1j}} (x_{2j} + \psi_{1j}^\top \theta_{1j}) \\
&\quad - \sum_{l \in \mathcal{N}_j} \frac{\partial \alpha_{1j}}{\partial x_{1l}} (x_{2l} + \psi_{1l}^\top \theta_{1l}) - \frac{\partial \alpha_{1j}}{\partial x_{1j}} \epsilon_{1j} \\
&\quad - \sum_{l \in \mathcal{N}_j} \frac{\partial \alpha_{1j}}{\partial x_{1l}} \epsilon_{1l} - \frac{\partial \alpha_{1j}}{\partial \hat{\theta}_{1j}} \dot{\hat{\theta}}_{1j} - \frac{\partial \alpha_{1j}}{\partial h} \dot{h} \\
&\quad - \frac{\partial \alpha_{1j}}{\partial s_{1j}} \dot{s}_{1j}
\end{aligned} \quad (36)$$

It is assumed that  $x_{3j}$  is a virtual control input. The following virtual input is proposed as

$$\begin{aligned}
\alpha_{2j} &= -\lambda_{2j} \xi_{2j} - \psi_{2j}^\top \hat{\theta}_{2j} - (D_1 A z)_j \\
&\quad - \frac{s_{2j} \xi_{2j} \beta_{2j}^2}{\sqrt{\xi_{2j}^2 \beta_{2j}^2 + h}} + \frac{\partial \alpha_{1j}}{\partial x_{1j}} (x_{2j} + \psi_{1j}^\top \hat{\theta}_{1j}) \\
&\quad + \frac{\partial \alpha_{1j}}{\partial \hat{\theta}_{1j}} \dot{\hat{\theta}}_{1j} + \sum_{l \in \mathcal{N}_j} \frac{\partial \alpha_{1j}}{\partial x_{1l}} (x_{2l} + \psi_{1l}^\top \hat{\theta}_{1l}) \\
&\quad + \frac{\partial \alpha_{1j}}{\partial h} \dot{h} + \frac{\partial \alpha_{1j}}{\partial s_{1j}} \dot{s}_{1j}
\end{aligned} \quad (37)$$

where

$$\begin{aligned}
\beta_{2j} &= 1 + \sqrt{\left( \frac{\partial \alpha_{1j}}{\partial x_{1j}} \right)^2 + h} \\
&\quad + \sqrt{\left( \sum_{l \in \mathcal{N}_j} \frac{\partial \alpha_{1j}}{\partial x_{1l}} \right)^2 + h}
\end{aligned}$$

$\lambda_2 > 0$ ,  $\hat{\theta}_{2j}$  and  $s_{2j}$  are estimates of  $\theta_{2j}$  and  $\bar{\delta}_{2*} = \max_{1 \leq j \leq m} \delta_{2j}$ , respectively. In order to design the update laws for  $\hat{\theta}_{1j}$ ,  $\hat{\theta}_{2j}$ , and  $s_{2j}$ , we choose a Lyapunov function

$$\begin{aligned}
V_2 &= V_1 + \frac{1}{2} \sum_{j=1}^m \xi_{2j}^2 + \frac{1}{2} \sum_{j=1}^m \tilde{\theta}_{2j}^\top \Gamma_{2j}^{-1} \tilde{\theta}_{2j} \\
&\quad + \frac{1}{2} \sum_{j=1}^m \gamma_{2j}^{-1} \tilde{s}_{2j}^2
\end{aligned} \quad (38)$$

where  $\tilde{\theta}_{2j} = \theta_{2j} - \hat{\theta}_{2j}$ ,  $\tilde{s}_{2j} = \bar{\delta}_{2*} - s_{2j}$ ,  $\Gamma_{2j}$  is a positive definite constant matrix, and  $\gamma_{2j}$  is a positive constant.

The derivative of  $V_2$  is

$$\begin{aligned}
\dot{V}_2 &\leq z^\top A D_1^\top (x_{2*} - \alpha_{1*}) - \lambda_1 z^\top A D_1^\top D_1 A z \\
&\quad + m s_{1,m+1} \sqrt{h(t)} + \sum_{j=1}^m \tilde{\theta}_{1j}^\top \Gamma_{1j}^{-1} (\dot{\tilde{\theta}}_{1j} + \tau_{1j}^{[1]}) \\
&\quad + \sum_{j=1}^m \tilde{s}_{1j} \gamma_{1j}^{-1} \left( \dot{\tilde{s}}_{1j} + \frac{\gamma_{1j} ((D_1 A z)_j)^2}{\sqrt{((D_1 A z)_j)^2 + h}} \right) \\
&\quad + \sum_{j=1}^m \xi_{2j} (x_{3j} - \alpha_{2j}) + \sum_{j=1}^m [-\lambda_{2j} \xi_{2j}^2 \\
&\quad - \xi_{2j} (D_1 A z)_j - \frac{s_{2j} \xi_{2j} \beta_{2j}^2}{\sqrt{\xi_{2j}^2 \beta_{2j}^2 + h}}]
\end{aligned}$$

$$\begin{aligned}
& + \xi_{2j} \psi_{2j}^\top \tilde{\theta}_{2j} + \xi_{2j} \epsilon_{2j} - \xi_{2j} \frac{\partial \alpha_{1j}}{\partial x_{1j}} \psi_{1j}^\top \tilde{\theta}_{1j} \\
& - \xi_{2j} \sum_{l \in \mathcal{N}_j} \frac{\partial \alpha_{1j}}{\partial x_{1l}} \psi_{1l}^\top \tilde{\theta}_{1l} - \xi_{2j} \frac{\partial \alpha_{1j}}{\partial x_{1j}} \epsilon_{1j} \\
& - \xi_{2j} \sum_{l \in \mathcal{N}_j} \frac{\partial \alpha_{1j}}{\partial x_{1l}} \epsilon_{1l} \\
& + \sum_{j=1}^m \tilde{\theta}_{2j}^\top \Gamma_{2j}^{-1} \dot{\tilde{\theta}}_{2j} + \sum_{j=1}^m \gamma_{2j}^{-1} \tilde{s}_{2j} \dot{\tilde{s}}_{2j} \\
\leq & -\lambda_1 z^\top A D_1^\top D_1 A z + m s_{1,m+1} \sqrt{h} \\
& + \sum_{j=1}^m \tilde{\theta}_{1j}^\top \Gamma_{1j}^{-1} (\dot{\tilde{\theta}}_{1j} + \tau_{1j}^{[1]} \\
& - \Gamma_{1j} \psi_{1j} \xi_{2j} \frac{\partial \alpha_{1j}}{\partial x_{1j}} - \Gamma_{1j} \psi_{1j} \frac{\partial \alpha_{1j}}{\partial x_{1j}} \sum_{l \in \mathcal{N}_j} \xi_{2l}) \\
& + \sum_{j=1}^m \tilde{s}_{1j} \gamma_{1j}^{-1} \left( \dot{\tilde{s}}_{1j} + \frac{\gamma_{1j} ((D_1 A z)_j)^2}{\sqrt{((D_1 A z)_j)^2 + h}} \right) \\
& + \sum_{j=1}^m \xi_{2j} (x_{3j} - \alpha_{2j}) + \sum_{j=1}^m [-\lambda_{2j} \xi_{2j}^2 \\
& - \frac{s_{2j} \xi_{2j}^2 \beta_{2j}^2}{\sqrt{\xi_{2j}^2 \beta_{2j}^2 + h}} \\
& + |\xi_{2j}| \left( 1 + \sqrt{\left( \frac{\partial \alpha_{1j}}{\partial x_{1j}} \right)^2 + h} \right. \\
& \left. + \sqrt{\left( \sum_{l \in \mathcal{N}_j} \frac{\partial \alpha_{1l}}{\partial x_{1l}} \right)^2 + h} \right) \bar{\delta}_{2*} \\
& + \sum_{j=1}^m \tilde{\theta}_{2j}^\top (\Gamma_{2j}^{-1} \dot{\tilde{\theta}}_{2j} + \psi_{2j} \xi_{2j}) \\
& + \sum_{j=1}^m \gamma_{2j}^{-1} \tilde{s}_{2j} \dot{\tilde{s}}_{2j} \\
\leq & -\lambda_1 z^\top A D_1^\top D_1 A z + (s_{1,m+1} + \bar{\delta}_{2*}) m \sqrt{h} \\
& + \sum_{j=1}^m \tilde{\theta}_{1j}^\top \Gamma_{1j}^{-1} (\dot{\tilde{\theta}}_{1j} + \tau_{1j}^{[1]} \\
& - \Gamma_{1j} \psi_{1j} \xi_{2j} \frac{\partial \alpha_{1j}}{\partial x_{1j}} - \Gamma_{1j} \psi_{1j} \frac{\partial \alpha_{1j}}{\partial x_{1j}} \sum_{l \in \mathcal{N}_j} \xi_{2l}) \\
& + \sum_{j=1}^m \tilde{s}_{1j} \gamma_{1j}^{-1} \left( \dot{\tilde{s}}_{1j} + \frac{\gamma_{1j} ((D_1 A z)_j)^2}{\sqrt{((D_1 A z)_j)^2 + h}} \right)
\end{aligned}$$

$$\begin{aligned}
& + \sum_{j=1}^m \xi_{2j} (x_{3j} - \alpha_{2j}) - \sum_{j=1}^m \lambda_{2j} \xi_{2j}^2 \\
& + \sum_{j=1}^m \tilde{\theta}_{2j}^\top \Gamma_{2j}^{-1} (\dot{\tilde{\theta}}_{2j} + \Gamma_{2j} \psi_{2j} \xi_{2j}) \\
& + \sum_{j=1}^m \gamma_{2j}^{-1} \tilde{s}_{2j} \left( \dot{\tilde{s}}_{2j} + \frac{\gamma_{2j} \xi_{2j}^2 \beta_{2j}^2}{\sqrt{\xi_{2j}^2 \beta_{2j}^2 + h}} \right)
\end{aligned}$$

We choose the update law (32) for  $s_{1j}$  and the update laws for  $\hat{\theta}_{1j}$ ,  $\hat{\theta}_{2j}$ , and  $s_{2j}$  as

$$\begin{aligned}
\dot{\hat{\theta}}_{1j} &= \tau_{1j} - \Gamma_{1j} \psi_{1j} \xi_{2j} \frac{\partial \alpha_{1j}}{\partial x_{1j}} \\
&\quad - \Gamma_{1j} \psi_{1j} \frac{\partial \alpha_{1j}}{\partial x_{1j}} \sum_{l \in \mathcal{N}_j} \xi_{2l} =: \tau_{1j}^{[2]} \quad (39)
\end{aligned}$$

$$\dot{\hat{\theta}}_{2j} = \Gamma_{2j} \psi_{2j} \xi_{2j} =: \tau_{2j}^{[2]} \quad (40)$$

$$\dot{s}_{2j} = \frac{\gamma_{2j} \xi_{2j}^2 \beta_{2j}^2}{\sqrt{\xi_{2j}^2 \beta_{2j}^2 + h}} \quad (41)$$

Then

$$\begin{aligned}
\dot{V}_2 &\leq -\lambda_1 z^\top A D_1^\top D_1 A z - \sum_{j=1}^m \lambda_{2j} \xi_{2j}^2 \\
&\quad + \sum_{j=1}^m \xi_{2j} (x_{3j} - \alpha_{2j}) + (s_{1,m+1} + \bar{\delta}_{2*}) m \sqrt{h}.
\end{aligned}$$

*Step i:* Since  $x_{ij}$  is not a real control input, it cannot be  $\alpha_{i-1,j}$ . Let

$$\xi_{ij} = x_{ij} - \alpha_{i-1,j} \quad (42)$$

Then

$$\dot{\xi}_{ij} = x_{i+1,j} + \psi_{ij}^\top \theta_{ij} + \epsilon_{ij} - \dot{\alpha}_{i-1,j} \quad (43)$$

$$\begin{aligned}
&= x_{i+1,j} + \psi_{ij}^\top \theta_{ij} + \epsilon_{ij} \\
&\quad - \sum_{k=1}^{i-1} \frac{\partial \alpha_{i-1,j}}{\partial x_{kj}} (x_{k+1,j} + \psi_{kj}^\top \theta_{kj} + \epsilon_{kj}) \\
&\quad - \sum_{k=1}^{i-1} \sum_{l \in \mathcal{N}_j} \frac{\partial \alpha_{i-1,j}}{\partial x_{kl}} (x_{k+1,l} + \psi_{kl}^\top \theta_{kl} + \epsilon_{kl}) \\
&\quad - \sum_{k=1}^{i-1} \frac{\partial \alpha_{i-1,j}}{\partial \hat{\theta}_{kj}} \dot{\hat{\theta}}_{kj} - \sum_{k=1}^{i-1} \sum_{l \in \mathcal{N}_j} \frac{\partial \alpha_{i-1,j}}{\partial \hat{\theta}_{kl}} \dot{\hat{\theta}}_{kl} \\
&\quad - \sum_{k=1}^{i-1} \frac{\partial \alpha_{i-1,j}}{\partial s_{kj}} \dot{s}_{kj}. \quad (44)
\end{aligned}$$

It is assumed that  $x_{i+1,j}$  is a virtual control input. The following virtual control input is proposed.

$$\begin{aligned}
\alpha_{ij} = & -\lambda_{ij}\xi_{ij} - \psi_{ij}^\top \hat{\theta}_{ij} + \sum_{k=1}^{i-1} \frac{\partial \alpha_{i-1,j}}{\partial x_{kj}}(x_{k+1,j} \\
& + \psi_{kj}^\top \hat{\theta}_{kj}) + \sum_{k=1}^{i-1} \sum_{l \in \mathcal{N}_j} \frac{\partial \alpha_{i-1,j}}{\partial x_{kl}}(x_{k+1,l} \\
& + \psi_{kl}^\top \hat{\theta}_{kl}) + \sum_{k=1}^{i-1} \frac{\partial \alpha_{i-1,j}}{\partial \hat{\theta}_{kj}} \dot{\hat{\theta}}_{kj} \\
& + \sum_{k=1}^{i-1} \sum_{l \in \mathcal{N}_j} \frac{\partial \alpha_{i-1,j}}{\partial \hat{\theta}_{kl}} \dot{\hat{\theta}}_{kl} - \frac{s_{ij}\xi_{ij}\beta_{ij}^2}{\sqrt{\xi_{ij}^2\beta_{ij}^2 + h}} \\
& + \sum_{k=1}^{i-1} \frac{\partial \alpha_{i-1,j}}{\partial s_{kj}} \dot{s}_{kj} - \xi_{i-1,j} \quad (45)
\end{aligned}$$

where

$$\begin{aligned}
\beta_{ij} = & 1 + \sum_{k=1}^{i-1} \sqrt{\left(\frac{\partial \alpha_{i-1,j}}{\partial x_{kj}}\right)^2 + h} \\
& + \sum_{k=1}^{i-1} \sum_{l \in \mathcal{N}_j} \sqrt{\left(\frac{\partial \alpha_{i-1,j}}{\partial x_{kl}}\right)^2 + h}
\end{aligned}$$

$\lambda_{ij} > 0$ ,  $\hat{\theta}_{ij}$  and  $s_{ij}$  are estimates of  $\theta_{ij}$  and  $\bar{\delta}_{i*} = \max_{1 \leq j \leq m} \delta_{ij}$ , respectively. In order to design the update laws for  $\hat{\theta}_{ij}$  and  $s_{ij}$ , we choose a Lyapunov function

$$\begin{aligned}
V_i = & V_{i-1} + \frac{1}{2} \sum_{j=1}^m \xi_{ij}^2 + \frac{1}{2} \sum_{j=1}^m \tilde{\theta}_{ij}^\top \Gamma_{ij}^{-1} \tilde{\theta}_{ij} \\
& + \frac{1}{2} \sum_{j=1}^m \gamma_{ij}^{-1} \tilde{s}_{ij}^2 \quad (46)
\end{aligned}$$

where  $\tilde{\theta}_{ij} = \theta_{ij} - \hat{\theta}_{ij}$ ,  $\tilde{s}_{ij} = \bar{\delta}_{i*} - s_{ij}$ ,  $\Gamma_{ij}$  is a positive definite constant matrix, and  $\gamma_{ij}$  is a positive constant.

The derivative of  $V_i$  is

$$\begin{aligned}
\dot{V}_i \leq & -\lambda_1 z^\top A D_1^\top D_1 A z + \left( s_{1,m+1} + \sum_{k=2}^{i-1} \bar{\delta}_{k*} \right) m \sqrt{h} \\
& + \sum_{k=1}^{i-1} \sum_{j=1}^m \tilde{\theta}_{kj}^\top \Gamma_{kj}^{-1} (\dot{\tilde{\theta}}_{kj} + \tau_{kj}^{[i-1]}) \\
& + \sum_{j=1}^m \tilde{s}_{1j} \gamma_{1j}^{-1} \left( \dot{\tilde{s}}_{1j} + \frac{\gamma_{1j}((D_1 A z)_j)^2}{\sqrt{((D_1 A z)_j)^2 + h}} \right)
\end{aligned}$$

$$\begin{aligned}
& + \sum_{j=1}^m \xi_{ij}(x_{i+1,j} - \alpha_{ij}) - \sum_{k=2}^i \sum_{j=1}^m \lambda_{kj} \xi_{kj}^2 \\
& + \sum_{k=2}^{i-1} \sum_{j=1}^m \gamma_{kj}^{-1} \tilde{s}_{kj} \left( \dot{\tilde{s}}_{kj} + \frac{\gamma_{kj} \xi_{kj}^2 \beta_{kj}^2}{\sqrt{\xi_{kj}^2 \beta_{kj}^2 + h}} \right) \\
& + \sum_{j=1}^m \xi_{ij} \psi_{ij}^\top \tilde{\theta}_{ij} + \sum_{j=1}^m \xi_{ij} \epsilon_{ij} \\
& - \sum_{j=1}^m \xi_{ij} \sum_{k=1}^{i-1} \frac{\partial \alpha_{i-1,j}}{\partial x_{kj}} (\psi_{kj}^\top \tilde{\theta}_{kj} + \epsilon_{kj}) \\
& - \sum_{j=1}^m \xi_{ij} \sum_{k=1}^{i-1} \sum_{l \in \mathcal{N}_j} \frac{\partial \alpha_{i-1,j}}{\partial x_{kl}} (\psi_{kl}^\top \tilde{\theta}_{kl} + \epsilon_{kl}) \\
& - \sum_{j=1}^m \frac{s_{ij} \xi_{ij} \beta_{ij}^2}{\sqrt{\xi_{ij}^2 \beta_{ij}^2 + h}} \\
& + \sum_{j=1}^m \tilde{\theta}_{ij}^\top \Gamma_{ij}^{-1} \dot{\tilde{\theta}}_{ij} + \sum_{j=1}^m \gamma_{ij}^{-1} \tilde{s}_{ij} \dot{\tilde{s}}_{ij}
\end{aligned}$$

Noting that  $|\epsilon_{ij}| \leq \bar{\delta}_{i*}$ , we have

$$\begin{aligned}
\dot{V}_i \leq & -\lambda_1 z^\top A D_1^\top D_1 A z \\
& + \left( s_{1,m+1} + \sum_{k=2}^{i-1} \bar{\delta}_{k*} \right) m \sqrt{h} \\
& + \sum_{k=1}^{i-1} \sum_{j=1}^m \tilde{\theta}_{kj}^\top \Gamma_{kj}^{-1} (\dot{\tilde{\theta}}_{kj} + \tau_{kj}^{[i-1]}) \\
& - \Gamma_{kj} \psi_{kj} \xi_{ij} \frac{\partial \alpha_{i-1,j}}{\partial x_{kj}} - \Gamma_{kj} \psi_{kj} \frac{\partial \alpha_{i-1,j}}{\partial x_{kj}} \sum_{l \in \mathcal{N}_j} \xi_{il} \\
& + \sum_{j=1}^m \tilde{s}_{1j} \gamma_{1j}^{-1} \left( \dot{\tilde{s}}_{1j} + \frac{\gamma_{1j}((D_1 A z)_j)^2}{\sqrt{((D_1 A z)_j)^2 + h}} \right) \\
& + \sum_{j=1}^m \xi_{ij}(x_{i+1,j} - \alpha_{ij}) - \sum_{k=2}^i \sum_{j=1}^m \lambda_{kj} \xi_{kj}^2 \\
& + \sum_{k=2}^{i-1} \sum_{j=1}^m \gamma_{kj}^{-1} \tilde{s}_{kj} \left( \dot{\tilde{s}}_{kj} + \frac{\gamma_{kj} \xi_{kj}^2 \beta_{kj}^2}{\sqrt{\xi_{kj}^2 \beta_{kj}^2 + h}} \right) \\
& + \sum_{j=1}^m |\xi_{ij}| \beta_{ij} \bar{\delta}_{i*} - \sum_{j=1}^m \frac{\bar{\delta}_{i*} \xi_{ij}^2 \beta_{ij}^2}{\sqrt{\xi_{ij}^2 \beta_{ij}^2 + h}} \\
& + \sum_{j=1}^m \frac{\tilde{s}_{ij} \xi_{ij}^2 \beta_{ij}^2}{\sqrt{\xi_{ij}^2 \beta_{ij}^2 + h}} + \sum_{j=1}^m \tilde{\theta}_{ij}^\top \Gamma_{ij}^{-1} (\dot{\tilde{\theta}}_{ij})
\end{aligned}$$

$$+ \Gamma_{ij} \psi_{ij} \xi_{ij}) + \sum_{j=1}^m \gamma_{i,j}^{-1} \tilde{s}_{ij} \dot{\tilde{s}}_{ij}$$

Next, we apply

$$|\xi_{ij}| \beta_{ij} \leq \frac{\xi_{ij}^2 \beta_{ij}^2}{\sqrt{\xi_{ij}^2 \beta_{ij}^2 + h}} + \sqrt{h}$$

then

$$\begin{aligned} \dot{V}_i &\leq -\lambda_1 z^\top A D_1^\top D_1 A z \\ &\quad + \left( s_{1,m+1} + \sum_{k=2}^i \bar{\delta}_{k*} \right) m \sqrt{h} \\ &\quad + \sum_{k=1}^{i-1} \sum_{j=1}^m \tilde{\theta}_{kj}^\top \Gamma_{kj}^{-1} (\dot{\tilde{\theta}}_{kj} + \tau_{kj}^{[i-1]}) \\ &\quad - \Gamma_{kj} \psi_{kj} \xi_{ij} \frac{\partial \alpha_{i-1,j}}{\partial x_{kj}} - \Gamma_{kj} \psi_{kj} \frac{\partial \alpha_{i-1,j}}{\partial x_{kj}} \sum_{l \in \mathcal{N}_j} \xi_{il} \\ &\quad + \sum_{j=1}^m \tilde{s}_{1j} \gamma_{1j}^{-1} \left( \dot{\tilde{s}}_{1j} + \frac{\gamma_{1j} ((D_1 A z)_j)^2}{\sqrt{((D_1 A z)_j)^2 + h}} \right) \\ &\quad + \sum_{j=1}^m \xi_{ij} (x_{i+1,j} - \alpha_{ij}) - \sum_{k=2}^i \sum_{j=1}^m \lambda_{kj} \xi_{kj}^2 \\ &\quad + \sum_{k=2}^{i-1} \sum_{j=1}^m \gamma_{kj}^{-1} \tilde{s}_{kj} \left( \dot{\tilde{s}}_{kj} + \frac{\gamma_{kj} \xi_{kj}^2 \beta_{kj}^2}{\sqrt{\xi_{kj}^2 \beta_{kj}^2 + h}} \right) \\ &\quad + \sum_{j=1}^m \tilde{\theta}_{ij}^\top \Gamma_{ij}^{-1} (\dot{\tilde{\theta}}_{ij} + \Gamma_{ij} \psi_{ij} \xi_{ij}) \\ &\quad + \sum_{j=1}^m \gamma_{ij}^{-1} \tilde{s}_{ij} (\dot{\tilde{s}}_{ij} + \frac{\gamma_{ij} \xi_{ij}^2 \beta_{ij}^2}{\sqrt{\xi_{ij}^2 \beta_{ij}^2 + h}}) \end{aligned}$$

We choose the update laws for  $s_{kj}$  ( $1 \leq k \leq i-1$ ) the same as before and the update laws for  $\hat{\theta}_{kj}$  ( $1 \leq k \leq i$ ) and  $s_{ij}$  as follows.

$$\dot{\hat{\theta}}_{kj} = \tau_{kj}^{[i-1]} - \Gamma_{kj} \psi_{kj} \xi_{ij} \frac{\partial \alpha_{i-1,j}}{\partial x_{kj}} \quad (47)$$

$$- \Gamma_{kj} \psi_{kj} \frac{\partial \alpha_{i-1,j}}{\partial x_{kj}} \sum_{l \in \mathcal{N}_j} \xi_{il} =: \tau_{kj}^{[i]} \quad (48)$$

$$1 \leq k \leq i-1,$$

$$\dot{\hat{\theta}}_{ij} = \Gamma_{ij} \psi_{ij} \xi_{ij} =: \tau_{ij}^{[i]} \quad (49)$$

$$\dot{s}_{ij} = \frac{\gamma_{ij} \xi_{ij}^2 \beta_{ij}^2}{\sqrt{\xi_{ij}^2 \beta_{ij}^2 + h}} \quad (50)$$

Then

$$\begin{aligned} \dot{V}_i &\leq -\lambda_1 z^\top A D_1^\top D_1 A z - \sum_{k=2}^i \sum_{j=1}^m \lambda_{kj} \xi_{kj}^2 \\ &\quad + \sum_{j=1}^m \xi_{ij}^\top (x_{i+1,j} - \alpha_{ij}) \\ &\quad + \left( s_{1,m+1} + \sum_{k=2}^i \bar{\delta}_{k*} \right) m \sqrt{h}. \end{aligned}$$

Step n: Since  $x_{nj}$  is not a real control input, it cannot be  $\alpha_{n-1,j}$ . Let

$$\xi_{nj} = x_{nj} - \alpha_{n-1,j} \quad (51)$$

Then

$$\begin{aligned} \dot{\xi}_{nj} &= u_j + \psi_{nj}^\top \theta_{nj} + \epsilon_{nj} - \dot{\alpha}_{n-1,*} \\ &= u_j + \psi_{nj}^\top \theta_{nj} + \epsilon_{nj} \\ &\quad - \sum_{k=1}^{n-1} \frac{\partial \alpha_{i-1,j}}{\partial x_{kj}} (x_{k+1,j} + \psi_{kj}^\top \theta_{kj} + \epsilon_{kj}) \\ &\quad - \sum_{k=1}^{n-1} \sum_{l \in \mathcal{N}_j} \frac{\partial \alpha_{i-1,j}}{\partial x_{kl}} (x_{k+1,l} + \psi_{kl}^\top \theta_{kl} + \epsilon_{kl}) \\ &\quad - \sum_{k=1}^{n-1} \frac{\partial \alpha_{i-1,j}}{\partial \hat{\theta}_{kj}} \dot{\hat{\theta}}_{kj} - \sum_{k=1}^{n-1} \sum_{l \in \mathcal{N}_j} \frac{\partial \alpha_{i-1,j}}{\partial \hat{\theta}_{kl}} \dot{\hat{\theta}}_{kl} \end{aligned}$$

The control input  $u_j$  is proposed as

$$\begin{aligned} \alpha_{nj} &= -\lambda_{nj} \xi_{nj} - \psi_{nj}^\top \hat{\theta}_{nj} \\ &\quad + \sum_{k=1}^{n-1} \frac{\partial \alpha_{i-1,j}}{\partial x_{kj}} (x_{k+1,j} + \psi_{kj}^\top \hat{\theta}_{kj}) \\ &\quad + \sum_{k=1}^{n-1} \sum_{l \in \mathcal{N}_j} \frac{\partial \alpha_{i-1,j}}{\partial x_{kl}} (x_{k+1,l} + \psi_{kl}^\top \hat{\theta}_{kl}) \\ &\quad + \sum_{k=1}^{n-1} \frac{\partial \alpha_{i-1,j}}{\partial \hat{\theta}_{kj}} \dot{\hat{\theta}}_{kj} + \sum_{k=1}^{n-1} \sum_{l \in \mathcal{N}_j} \frac{\partial \alpha_{i-1,j}}{\partial \hat{\theta}_{kl}} \dot{\hat{\theta}}_{kl} \\ &\quad - \frac{s_{nj} \xi_{nj} \beta_{nj}^2}{\sqrt{\xi_{nj}^2 \beta_{nj}^2 + h}} - \xi_{n-1,j} \end{aligned} \quad (52)$$

where

$$\begin{aligned} \beta_{nj} &= 1 + \sum_{k=1}^{n-1} \sqrt{\left( \frac{\partial \alpha_{n-1,j}}{\partial x_{kj}} \right)^2 + h} \\ &\quad + \sum_{k=1}^{n-1} \sum_{l \in \mathcal{N}_j} \sqrt{\left( \frac{\partial \alpha_{n-1,j}}{\partial x_{kl}} \right)^2 + h} \end{aligned}$$

$\lambda_{nj} > 0$ ,  $\hat{\theta}_{nj}$  and  $s_{nj}$  are estimates of  $\theta_{nj}$  and  $\bar{\delta}_{n*} = \max_{1 \leq j \leq m} \delta_{nj}$ , respectively. In order to design the update laws for  $\hat{\theta}_{nj}$  and  $s_{nj}$ , we choose a Lyapunov function

$$\begin{aligned} V_n = & V_{n-1} + \frac{1}{2} \sum_{j=1}^m \xi_{nj}^2 + \frac{1}{2} \sum_{j=1}^m \tilde{\theta}_{nj}^\top \Gamma_{nj}^{-1} \tilde{\theta}_{nj} \\ & + \frac{1}{2} \sum_{j=1}^m \gamma_{nj}^{-1} \tilde{s}_{nj}^2 \end{aligned} \quad (53)$$

where  $\tilde{\theta}_{nj} = \theta_{nj} - \hat{\theta}_{nj}$ ,  $\tilde{s}_{nj} = \bar{\delta}_{n*} - s_{nj}$ ,  $\Gamma_{nj}$  is a positive definite constant matrix, and  $\gamma_{nj}$  is a positive constant.

The derivative of  $V_n$  is

$$\begin{aligned} \dot{V}_n \leq & -\lambda_1 z^\top A D_1^\top D_1 A z \\ & + \left( s_{1,m+1} + \sum_{k=2}^n \bar{\delta}_{k*} \right) m \sqrt{h} \\ & + \sum_{k=1}^{n-1} \sum_{j=1}^m \tilde{\theta}_{kj}^\top \Gamma_{kj}^{-1} (\dot{\tilde{\theta}}_{kj} + \tau_{kj}^{[n-1]} \\ & - \Gamma_{kj} \psi_{kj} \xi_{ij} \frac{\partial \alpha_{n-1,j}}{\partial x_{kj}} - \Gamma_{kj} \psi_{kj} \frac{\partial \alpha_{n-1,j}}{\partial x_{kj}} \sum_{l \in \mathcal{N}_j} \xi_{il}) \\ & + \sum_{j=1}^m \tilde{s}_{1j} \gamma_{1j}^{-1} \left( \dot{\tilde{s}}_{1j} + \frac{\gamma_{1j} ((D_1 A z)_j)^2}{\sqrt{((D_1 A z)_j)^2 + h}} \right) \\ & - \sum_{k=2}^n \sum_{j=1}^m \lambda_{kj} \xi_{kj}^2 \\ & + \sum_{k=2}^{n-1} \sum_{j=1}^m \gamma_{kj}^{-1} \tilde{s}_{kj} \left( \dot{\tilde{s}}_{kj} + \frac{\gamma_{kj} \xi_{kj}^2 \beta_{kj}^2}{\sqrt{\xi_{kj}^2 \beta_{kj}^2 + h}} \right) \\ & + \sum_{j=1}^m \tilde{\theta}_{nj}^\top \Gamma_{nj}^{-1} (\dot{\tilde{\theta}}_{nj} + \Gamma_{nj} \psi_{nj} \xi_{nj}) \\ & + \sum_{j=1}^m \gamma_{nj}^{-1} \tilde{s}_{nj} \left( \dot{\tilde{s}}_{nj} + \frac{\gamma_{nj} \xi_{nj}^2 \beta_{nj}^2}{\sqrt{\xi_{nj}^2 \beta_{nj}^2 + h}} \right) \end{aligned}$$

We choose the update laws for  $s_{kj}$  ( $1 \leq k \leq n-1$ ) the same as before and the update laws for  $s_{nj}$  and  $\hat{\theta}_{kj}$  ( $1 \leq k \leq n$ ) as follows.

$$\begin{aligned} \dot{s}_{nj} &= \frac{\gamma_{nj} \xi_{nj}^2 \beta_{nj}^2}{\sqrt{\xi_{nj}^2 \beta_{nj}^2 + h}} \\ \dot{\hat{\theta}}_{kj} &= \tau_{kj}^{[n-1]} - \Gamma_{kj} \psi_{kj} \xi_{ij} \frac{\partial \alpha_{n-1,j}}{\partial x_{kj}} \end{aligned} \quad (54)$$

$$- \Gamma_{kj} \psi_{kj} \frac{\partial \alpha_{n-1,j}}{\partial x_{kj}} \sum_{l \in \mathcal{N}_j} \xi_{il}) =: \tau_{kj}^{[n]} \quad (55)$$

$$1 \leq k \leq n-1$$

$$\dot{\hat{\theta}}_{nj} = \Gamma_{nj} \psi_{nj} \xi_{nj} =: \tau_{nj}^{[n]} \quad (56)$$

then

$$\begin{aligned} V_n \leq & -\lambda_1 z^\top A D_1^\top D_1 A z - \sum_{k=2}^n \sum_{j=1}^m \lambda_{kj} \xi_{kj}^2 \\ & + \left( s_{1,m+1} + \sum_{k=2}^n \bar{\delta}_{k*} \right) m \sqrt{h}. \end{aligned}$$

With the aid of the above design procedure, the following theorem can be proved.

*Theorem 1:* For the systems in (1)-(2), under Assumptions 1-2 the distributed control law

$$u_j = \alpha_{nj} \quad (57)$$

with the update laws

$$\dot{\hat{\theta}}_{ij} = \tau_{ij}^{[n]} \quad (58)$$

$$\dot{s}_{ij} = \frac{\gamma_{ij} \xi_{ij}^2 \beta_{ij}^2}{\sqrt{\xi_{ij}^2 \beta_{ij}^2 + h}}, \quad 1 \leq i \leq n, 1 \leq j \leq m \quad (59)$$

ensure that (8)-(10) are satisfied, where the control parameters are defined in the above controller design procedure.

*Proof:* With the control law (57), we have

$$\begin{aligned} \dot{V}_n \leq & -\lambda_1 z^\top A D_1^\top D_1 A z - \sum_{k=2}^n \sum_{j=1}^m \lambda_{kj} \xi_{kj}^2 \\ & + \left( s_{1,m+1} + \sum_{k=2}^n \bar{\delta}_{k*} \right) m \sqrt{h} \end{aligned} \quad (60)$$

$$\leq \left( s_{1,m+1} + \sum_{k=2}^n \bar{\delta}_{k*} \right) m \sqrt{h}. \quad (61)$$

Integrating both sides of (61), we have

$$\begin{aligned} V_n(t) \leq & V_n(0) \\ & + \left( s_{1,m+1} + \sum_{k=2}^n \bar{\delta}_{k*} \right) m \int_0^t \sqrt{h(\tau)} d\tau \\ & < \infty \end{aligned}$$

which means that  $V(t)$  is bounded (i.e.,  $V \in L_\infty$ ). Therefore,  $z$ ,  $\xi_{ij}$ ,  $\hat{\theta}_{ij}$ , and  $s_{ij}$  are bounded for all  $i$

and  $j$ . Integrating both sides of (60), we have

$$\begin{aligned} \lambda_1 \int_0^t z^\top A D_1^\top D_1 A z d\tau + \sum_{k=2}^n \sum_{j=1}^m \lambda_{kj} \int_0^t \xi_{kj}^2 d\tau \\ \leq V_n(0) - V_n(t) \\ + \left( s_{1,m+1} + \sum_{k=2}^n \bar{\delta}_{k*} \right) m \int_0^t \sqrt{h(\tau)} d\tau < \infty \end{aligned}$$

which means that  $D_1 A z$  and  $\xi_{ij}$  ( $2 \leq i \leq n$ ,  $1 \leq j \leq m$ ) are square-integrable. With the aid of Barbalat's lemma,  $D_1 A z$  and  $\xi_{ij}$  ( $2 \leq i \leq n$ ,  $1 \leq j \leq m$ ) converge to zero. By Lemma 3, eqns. (8)-(9) are satisfied. Since the communication graph  $\mathcal{G}$  is connected, eqn. (10) is satisfied by Lemma 4.  $\square$

Leveraging the properties of the prescribed performance function  $\rho$ , the proposed controllers facilitate the convergence of tracking errors between neighboring systems to a specified value within finite time. In the controller design, to simplify notation, the PPF  $\rho$  remains consistent across different systems. However, one can substitute  $\rho$  with  $\rho_j$  specifically for system  $j$ . Furthermore, the PPF  $\rho$  can be tailored to different functions, accommodating diverse transient and steady-state performance requirements. Within the controller design, the transformation (11) is represented by a natural logarithm function. However, alternative choices for  $\rho$  are viable.

To approximate unknown functions, one can choose the basis to be polynomial functions, sigmoid functions, logistic functions, or other functions. To effectively implement the proposed controllers, obtaining the partial derivatives of the virtual controllers is imperative. With the aid of the command filtered backstepping technique [31–33], simplified distributed controllers can be proposed. Due to space limitations, it is omitted.

#### IV. SIMULATION

Consider three second-order systems in (1)-(3), where

$$\begin{aligned} f_{1j} &= x_{1j}^2 + \sin(2x_{1j}) \\ f_{2j} &= x_{2j}^2 + 3x_{1j}^2 + 2 \sin 5x_{2j}. \end{aligned}$$

There is one second-order leader system in (4)-(5) with  $f_{14} = \sin(2x_{14})$ ,  $f_{24} = 5 \cos 3x_{14} - 2x_{24}$ , and  $u_4 = 3 \cos 2t$ . The communication between systems is shown in Fig. 1. It is obvious that the

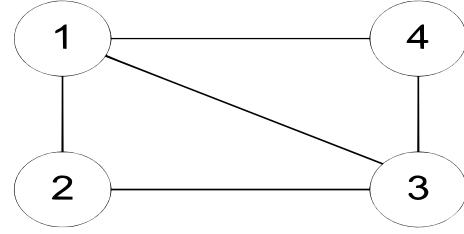


Fig. 1. The communication graph  $\mathcal{G}$  between systems.

communication graph  $\mathcal{G}$  is connected. The incidence matrix  $D$  is

$$D = \left[ \begin{array}{ccccc} D_1 & & & & \\ \hline D_2 & & & & \end{array} \right] = \left[ \begin{array}{ccccc} 1 & 0 & 0 & 1 & 1 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & -1 \\ \hline 0 & 0 & -1 & -1 & 0 \end{array} \right].$$

The PPF is chosen as

$$\rho(t) = \begin{cases} 20 \exp\left(\frac{-20t}{10-t}\right) + 0.1, & \text{if } 0 \leq t < 10 \\ 0.1, & \text{if } t \geq 10 \end{cases}$$

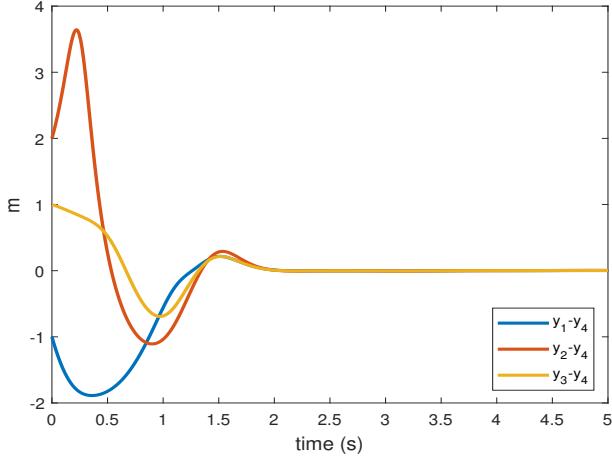
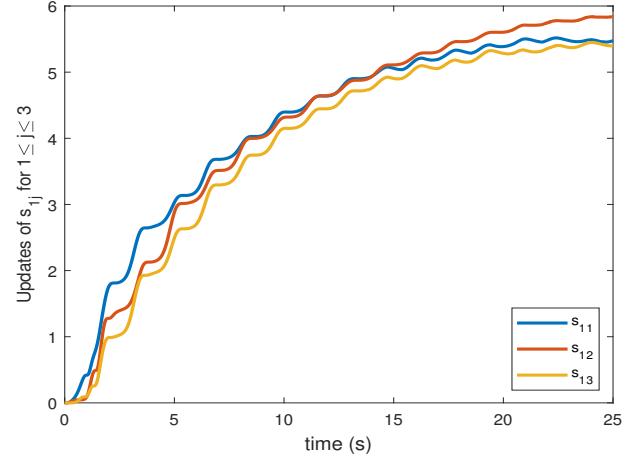
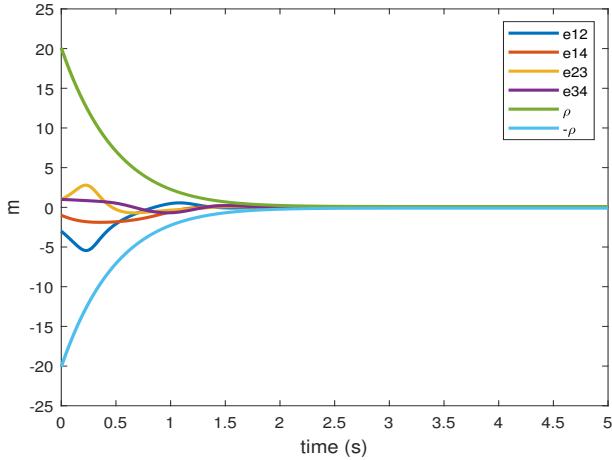
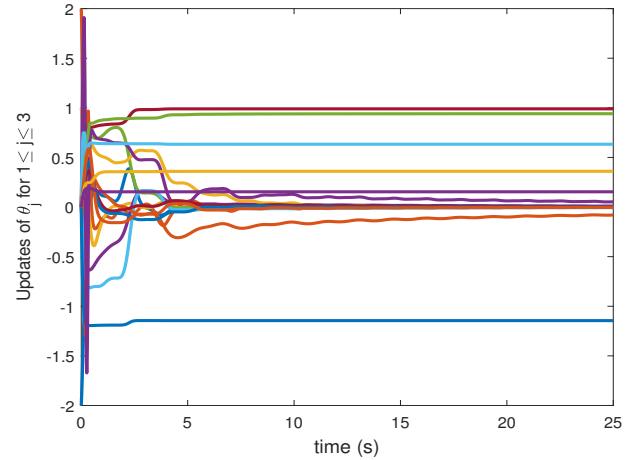
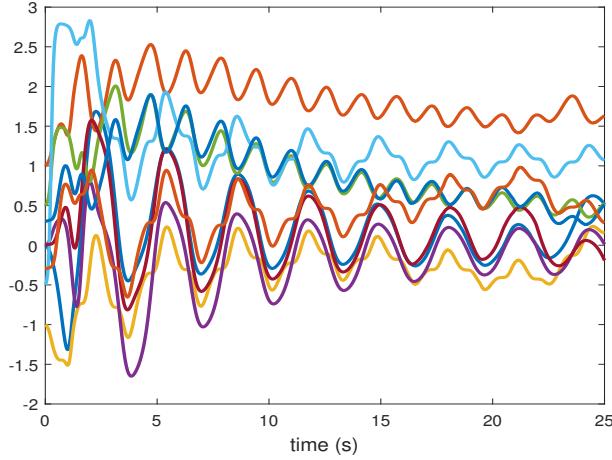
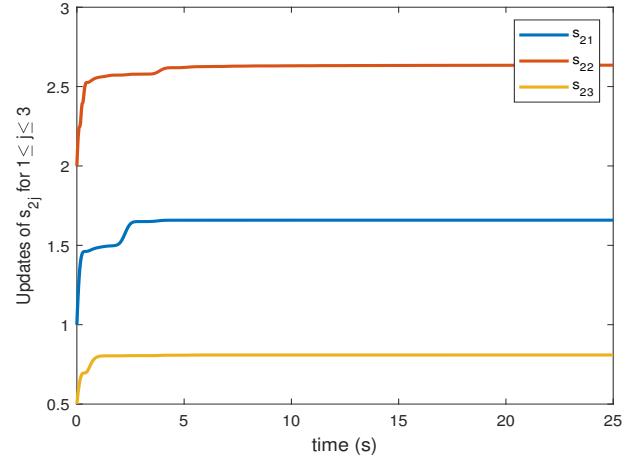
The control problem is to design distributed controllers such that  $y_j - y_4$  converge to zero for  $1 \leq j \leq 3$  and the performance (9) is satisfied.

In the controller design, we choose

$$\psi_{1j} = [1, x_{1j}, x_{1j}^2]^\top, \quad \psi_{2j} = [1, x_{1j}, x_{1j}^2, x_{2j}, x_{2j}^2]^\top$$

The boundedness of the approximation errors is evident. The distributed controllers proposed in Sections 3 and 4 effectively address the control problem.

The proposed controllers from Theorem 1 were implemented in a simulation with specified control parameters. Fig. 2 illustrates the convergence of the response  $y_j - y_4$  for  $1 \leq j \leq 3$  to zero. In Fig. 3, the responses of  $e_{12}$ ,  $e_{14}$ ,  $e_{23}$ ,  $e_{34}$ ,  $-\rho$ , and  $\rho$  are depicted, revealing that  $e_{12}$ ,  $e_{14}$ ,  $e_{23}$ , and  $e_{34}$  are bounded by  $-\rho$  and  $\rho$ , thereby confirming the satisfaction of (9). Fig. 4 showcases the response of  $\hat{\theta}_{1j}$  for  $1 \leq j \leq 3$ . Additionally, Fig. 5 illustrates the response of  $s_{1j}$  for  $1 \leq j \leq 3$ . Figure 6 presents the response of  $\hat{\theta}_{2j}$  for  $1 \leq j \leq 3$ . Lastly, Fig. 7 demonstrates the response of  $s_{2j}$  for  $1 \leq j \leq 3$ . The simulation results affirm that  $\theta_{ij}$  and  $s_{ij}$  are bounded for  $1 \leq i \leq 2$  and  $1 \leq j \leq 3$ . These findings robustly substantiate the validity of the claim made in Theorem 1.

Fig. 2. The tracking error of  $y_j - y_4$  for  $1 \leq j \leq 4$ .Fig. 5. The response of  $s_{1j}$  for  $1 \leq j \leq 3$ .Fig. 3. The tracking errors  $e_{12}$ ,  $e_{14}$ ,  $e_{23}$ , and  $e_{34}$  and  $-\rho$  and  $\rho$ .Fig. 6. The response of  $\hat{\theta}_{2j}$  for  $1 \leq j \leq 3$ .Fig. 4. The response of  $\hat{\theta}_{1j}$  for  $1 \leq j \leq 3$ .Fig. 7. The response of  $s_{2j}$  for  $1 \leq j \leq 3$ .

## V. CONCLUSION

In this paper, the distributed tracking control of high-order uncertain nonlinear systems with prescribed performance requirements was studied. Distributed robust adaptive controllers were proposed to ensure that tracking errors converge to a small neighborhood around the origin within a specified finite time while satisfying prescribed performance criteria. The results presented in this paper provide a new approach to addressing the distributed control of uncertain nonlinear systems with performance requirements. Throughout our study, bidirectional communication between systems is assumed; however, these findings can potentially be extended to scenarios where the communication graph is directed.

### Disclosure statement

No potential conflict of interest was reported by the author(s).

### Data availability statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

### Funding

This work was supported by the National Science Foundation of USA (Award No. 2112650 and No. ECCS-2037649).

## REFERENCES

- [1] R. Yang, L. Liu, and G. Feng, "An overview of recent advances in distributed coordination of multi-agent systems," *Unmanned Systems*, vol. 10, no. 03, pp. 307–325, 2022.
- [2] N. Ullah, Y. Mehmood, J. Aslam, A. Ali, and J. Iqbal, "Uav-ugv leader follower formation using adaptive non-singular terminal super twisting sliding mode control," *IEEE Access*, vol. 9, pp. 74 385–74 405, 2021.
- [3] O. Mechali, J. Iqbal, J. Wang, X. Xie, and L. Xu, "Distributed leader-follower formation control of quadrotors swarm subjected to disturbances," in *2021 IEEE International Conference on Mechatronics and Automation (ICMA)*, 2021, pp. 1442–1447.
- [4] O. Mechali, L. Xu, X. Xie, and J. Iqbal, "Theory and practice for autonomous formation flight of quadrotors via distributed robust sliding mode control protocol with fixed-time stability guarantee," *Control Engineering Practice*, vol. 123, p. 105150, 2022.
- [5] J. Zhang, D. Yang, H. Zhang, and H. Su, "Adaptive secure practical fault-tolerant output regulation of multiagent systems with dos attacks by asynchronous communications," *IEEE Transactions on Network Science and Engineering*, vol. 10, no. 6, pp. 4046–4055, 2023.
- [6] Y. Kim and M. Mesbahi, "On maximizing the second smallest eigenvalue of a state-dependent graph laplacian," *IEEE Transactions on Automatic Control*, vol. 51, no. 1, pp. 116–120, 2006.
- [7] L. Wang and F. Xiao, "Finite-time consensus problems for networks of dynamic agents," *IEEE Transactions on Automatic Control*, vol. 55, no. 4, pp. 950–955, 2010.
- [8] S. Khoo, L. Xie, and Z. Man, "Robust finite-time consensus tracking algorithm for multirobot systems," *IEEE/ASME Transactions on Mechatronics*, vol. 14, no. 2, pp. 219–228, 2009.
- [9] S. Shi, H. Feng, W. Liu, and G. Zhuang, "Finite-time consensus of high-order heterogeneous multi-agent systems with mismatched disturbances and nonlinear dynamics," *Nonlinear Dynamics*, no. 2, pp. 1317–1333, 2019.
- [10] D. Chen, X. Liu, and W. Yu, "Finite-time fuzzy adaptive consensus for heterogeneous nonlinear multi-agent systems," *IEEE Transactions on Network Science and Engineering*, vol. 7, no. 4, pp. 3057–3066, 2020.
- [11] G. Dong, H. Li, H. Ma, and R. Lu, "Finite-time consensus tracking neural network ftc of multi-agent systems," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 32, no. 2, pp. 653–662, 2021.
- [12] P. Li, X. Wu, X. Chen, and J. Qiu, "Distributed adaptive finite-time tracking for multi-agent systems and its application," *Neurocomputing*, vol. 481, pp. 46–54, 2022.
- [13] Z. Zuo and L. Tie, "A new class of finite-time nonlinear consensus protocols for multi-agent systems," *International Journal of Control*, vol. 87, no. 2, pp. 363–370, 2014.
- [14] ———, "Distributed robust finite-time nonlinear consensus protocols for multi-agent systems," *International Journal of Systems Science*, vol. 47, no. 6, pp. 1366–1375, 2016.
- [15] H. Wang, W. Yu, G. Wen, and G. Chen, "Fixed-time consensus of nonlinear multi-agent systems with general directed topologies," *IEEE Transactions on Circuits and Systems II: Express Briefs*, vol. 66, no. 9, pp. 1587–1591, 2019.
- [16] B. Ning, Z. Zuo, J. Jin, and J. Zheng, "Distributed fixed-time coordinated tracking for nonlinear multi-agent systems under directed graphs," *Asian Journal of Control*, vol. 20, no. 2, pp. 646–658, 2018.
- [17] L. Hao, X. Zhan, J. Wu, T. Han, and H. Yan, "Fixed-time group consensus of nonlinear multi-agent systems via pinning control," *International Journal of Control, Automation and Systems*, vol. 19, no. 1, pp. 200–208, 2021.
- [18] Y. Wang, Y. Song, D. J. Hill, and M. Krstic, "Prescribed-time consensus and containment control of networked multiagent systems," *IEEE Transactions on Cybernetics*, vol. 49, no. 4, pp. 1138–1147, 2019.
- [19] L. Zhao, Y. Liu, F. Li, and Y. Man, "Fully distributed adaptive finite-time consensus for uncertain nonlinear multiagent systems," *IEEE Transactions on Cybernetics*, vol. 52, no. 7, pp. 6972–6983, 2022.
- [20] H. Hong, W. Yu, G. Wen, and X. Yu, "Distributed robust fixed-time consensus for nonlinear and disturbed multiagent systems," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 47, no. 7, pp. 1464–1473, 2017.
- [21] Z. Zuo, R. Ke, and Q.-L. Han, "Fully distributed adaptive practical fixed-time consensus protocols for multi-agent systems," *Automatica*, vol. 157, p. 111248, 2023.
- [22] J. Zhang, D. Yang, H. Zhang, Y. Wang, and B. Zhou, "Dynamic event-based tracking control of boiler turbine systems with guaranteed performance," *IEEE Transactions on Automation Science and Engineering*, vol. 21, no. 3, pp. 4272–4282, 2024.
- [23] F. Chen and D. V. Dimarogonas, "Leader-follower formation control with prescribed performance guarantees," *IEEE Transactions on Control of Network Systems*, vol. 8, no. 1, pp. 450–461, 2021.
- [24] Y. Huang, Z. Meng, and D. V. Dimarogonas, "Prescribed performance formation control for second-order multi-agent systems with connectivity and collision constraints," *Automatica*, vol. 160, p. 111412, 2024.
- [25] C. P. Bechlioulis and G. A. Rovithakis, "Robust adaptive control of feedback linearizable mimo nonlinear systems with

prescribed performance,” *IEEE Transactions on Automatic Control*, vol. 53, no. 9, pp. 2090–2099, 2008.

[26] P. Yang and Y. Su, “Proximate fixed-time prescribed performance tracking control of uncertain robot manipulators,” *IEEE/ASME Transactions on Mechatronics*, vol. 27, no. 5, pp. 3275–3285, 2022.

[27] M. Mesbahi and M. Egerstedt, *Graph Theoretic Methods in Multiagent Networks*. Princeton University Press, 2010.

[28] M. M. Nilanjan Roy Chowdhury, Srikant Sukumar and A. Loría, “On the estimation of the consensus rate of convergence in graphs with persistent interconnections,” *International Journal of Control*, vol. 91, no. 1, pp. 132–144, 2018.

[29] M. H. Stone, “The generalized weierstrass approximation theorem,” *Mathematics Magazine*, vol. 21, no. 4, pp. 167–184, 1948.

[30] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” *Neural Networks*, vol. 2, no. 5, pp. 359–366, 1989.

[31] J. A. Farrell, M. Polycarpou, M. Sharma, and W. Dong, “Command filtered backstepping,” *IEEE Transactions on Automatic Control*, vol. 54, no. 6, pp. 1391–1395, June 2009.

[32] W. Dong, J. A. Farrell, M. M. Polycarpou, V. Djapic, and M. Sharma, “Command filtered adaptive backstepping,” *IEEE Transactions on Control Systems Technology*, vol. 20, no. 3, pp. 566–580, May 2012.

[33] J. Yu, P. Shi, and L. Zhao, “Finite-time command filtered backstepping control for a class of nonlinear systems,” *Automatica*, vol. 92, pp. 173–180, 2018.