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Abstract— This paper addresses the distributed tracking
control of multiple uncertain high-order nonlinear systems
with prescribed performance requirements. By introducing
a performance function and a nonlinear transformation,
the prescribed fixed-time performance tracking control
problem is reformulated as a distributed tracking control
problem for multiple special nonlinear systems. With the
aid of the universal approximation theorem for continuous
functions and algebraic graph theory, distributed robust
adaptive controllers are designed using the backstepping
technique. Simulation results are presented to demonstrate
the effectiveness of the proposed algorithms.

Index Terms— Consensus; leader-following control;
nonlinear systems; uncertain systems; distributed tracking
control.

I. INTRODUCTION

Over the past few decades, significant research
efforts have been devoted to distributed cooperative
control of multiple systems. This field has proven
to be crucial across diverse domains, where mul-
tiple agents or components collaborate to achieve
shared goals. Applications span a wide range of ar-
eas, including search-and-rescue operations, swarm
robotics, autonomous vehicles, power distribution
networks, wireless sensor networks, and satellite
and UAV networks, among others.

The consensus control problem involves design-
ing distributed control laws for a group of systems
to ensure that their outputs converge to an agree-
ment on a specific quantity of interest. It plays
a crucial role in distributed cooperative control,
with extensive research yielding significant results
[1-5]. A key performance metric for consensus
algorithms is the consensus rate, particularly in
the context of multiple first-order linear systems.
The consensus rate is determined by the second
smallest eigenvalue of the Laplacian matrix of the
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communication graph, referred to as the algebraic
connectivity. Strategies to enhance algorithm per-
formance often involve manipulating the communi-
cation graph to increase algebraic connectivity [6].
Another approach focuses on designing finite-time
consensus algorithms that drive consensus errors to
zero within a finite time. For example, in [7], finite-
time algorithms were proposed for single-integrator
dynamic systems using Lyapunov techniques. Sim-
ilarly, [2, 8] developed finite-time algorithms using
terminal sliding-mode control for multi-robot sys-
tems. In [9], consensus algorithms for nonlinear
dynamic systems were introduced, employing inte-
gral sliding-mode control and finite-time observers.
Meanwhile, [10—12] explored the use of fuzzy logic
control and neural networks to achieve practical
finite-time convergence of consensus errors. How-
ever, traditional finite-time consensus algorithms are
sensitive to initial conditions, leading to longer set-
tling times when initial errors are large. To address
this, researchers have explored fixed-time consensus
algorithms in recent decades [3, 4, 13-20]. These al-
gorithms ensure that the settling time is independent
of initial conditions, although they rely heavily on
the communication graph’s topology, which may
not be known in practice. To overcome this lim-
itation, prescribed fixed-time consensus algorithms
have been proposed. For instance, [21] addressed the
consensus problem for first-order systems without
a leader, developing practical prescribed fixed-time
algorithms by estimating algebraic connectivity.
Fixed-time and prescribed finite-time control al-
gorithms ensure the convergence of consensus er-
rors to zero within a finite time. However, these
algorithms may face limitations in transient per-
formance, which might not satisfy specific require-
ments. To overcome this challenge, the prescribed
performance-based controller design technique has
proven effective [22]. For example, the study in
[23] investigated the formation control of first-order



and second-order systems with multiple leaders.
Distributed tracking controllers were designed to
ensure prescribed performance by utilizing the pre-
scribed performance function (PPF). Similarly, [24]
explored prescribed performance formation control
for second-order multi-agent systems, proposing
distributed controllers that meet predefined perfor-
mance criteria using the PPF. Notably, both studies
[23,24] focused on linear systems with no uncer-
tainties in their dynamics.

In this paper, we address the prescribed per-
formance consensus control problem for multiple
high-order nonlinear systems with uncertainties.
Our objective is to design a distributed controller
for each system, ensuring that the tracking error
converges to a small neighborhood of the origin
within a prescribed fixed time while meeting spe-
cific performance criteria. To achieve this, we adopt
a multifaceted approach. First, we introduce a pre-
scribed performance function (PPF) that integrates
fixed-time, transient, and steady-state performance
requirements into a unified framework. Next, using
the Lyapunov technique, algebraic graph theory, and
the universal approximation theorem of functions,
we propose distributed virtual controllers that satisfy
the required performance conditions. Finally, we
design real controllers employing the backstepping
technique to ensure the system outputs converge to
the desired outputs within the prescribed fixed time
and meet the defined performance standards. The
contributions of this paper are as follows:

« This paper addresses the leader-following con-
trol problem for multiple nonlinear systems
with performance requirements. In contrast, the
study in [21] solves the leader-following con-
trol problem for first-order uncertain nonlinear
systems without considering transient perfor-
mance requirements. In this work, both tran-
sient and steady-state performance are incor-
porated by introducing a performance function
in the controller design.

o This paper addresses the leader-following con-
trol problem for multiple uncertain high-order
nonlinear systems with performance require-
ments. In contrast, the studies in [23,24]
solve the leader-following control problem with
performance requirements for first-order and
second-order systems without uncertainties. In
this work, the leader-following control problem
for high-order nonlinear systems under uncer-

tainty is studied and a systematic controller
design procedure is proposed.

The subsequent sections of this paper are orga-
nized as follows: Section 2 outlines the problem for-
mulation. Section 3 presents the systematic design
of the controllers. Section 4 provides the simulation
results. Finally, the paper is concluded in Section 5.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a group of m nonlinear systems de-
scribed by the following equations

Ty = iy + fij(Ti) (D
i=1....n—1

Tnj Uj + fnj(Znj) 2

Yyj = Ty (3)

where z;; € IR denotes the state, u; € I is the con-
trol input, y; is the output, f;; is a smooth function
of Z;; and is unknown, and T;; = [zy;,..., %]
The initial condition z,;(0) € X where & =
{C]I¢]| < r,¥¢ € R™} is a compact set in R™ for
some positive constant 7.

It is assumed that there exists a virtual system
whose dynamics are represented by the following
equations.

Timt1 = Tiptmel + fime1(@imer), (D)
1=1,...,n—1

Tnmtl = Umgr + fn,m+1 (En,m+1) (5)

Ym+1 T1,m+1 (6)

where u,,,1 1s a known time-varying function. The
virtual system is labeled as (m + 1)-th system.
The systems indexed by j for 1 < 5 < m are
referred to as the follower systems, while the system
indexed by (m + 1) is referred to as the leader
system. In the context of m follower systems and
one leader system, there is communication between
systems. If we consider each system as a vertex
and the indexes of the vertexes are the same as the
labels of the systems, the communication between
systems can be defined by a graph denoted as G =
{V,€}. Here, V = {u;}7" represents the vertex
set, and &€ = {Ej;}1<pzj<m+1 denotes the edge
set. It is assumed that the communication between
systems is bidirectional. An edge Ej; means that
the information of system j is available to system
k and vice versa. For convenience, we assign a tail
and a head for each edge. Without loss of generality,



vertex k is considered as the head and vertex j is
considered as the tail for edge Ej;. A path between
vertex k and vertex j is a set of edges which connect
vertex k and vertex j. A path forms a simple cycle
if the path is closed. A graph is connected if for
every pair of vertexes there is a path to connect
them. A tree is defined as a connected graph without
cycles. A tree is a spanning tree if it contains all
the vertexes in the graph.

For a vertex 7, the set of its neighbors, repre-
sented as J\/j, comprises all vertexes directly con-
nected to vertex j through edges. For (m + 1)
vertexes and K edges, the incidence matrix D(G) =
[dij] € RMYXE can be defined to characterize
the graph structure. For K edges, we label them
by 1,2,..., K. If the p-th edge is FEj;, di, = 1
and d;, = —1. It is obvious that D(G) is not
unique and depends on the labels of the edges.
The Laplacian matrix of the graph G is denoted as
L = D(G)D(G)". The edge Laplacian matrix is
defined as L. = D(G)" D(G).

For system j, it is assumed that system k is one of
its neighbors. We define the tracking error between
system j and system k as

(7

for 1 < j < m and k € N;. The transient
and steady-state performance requirements on the
tracking error ej; can be defined by a PPF [25].
With the aid of a given PPF, the problem considered
in this paper is as follows.

Control Problem: For the follower systems in (1)-
(3) and the leader system in (4)-(6), the problem
considered in this article is to design a distributed
control law for system j using its neighbors’ infor-
mation such that

Cik = Y5 — Yk

lesi(t)] < p(t) @®)
limyr [y () = Ymia (8)| <€ ©)
My 00 (Y5 () — Ym+a(t)) =0 (10)

for 1 <j <mandi € Nj, where p is a PPF, T and
€ are prescribed time constant and the threshold of
the tracking errors.

In order to solve our problem, the following
assumptions are made on the communication graph.

Assumption 1: The communication graph G has a
spanning tree with the node m + 1 as the root node.

Assumption 2: The state of the leader system is
bounded.

Assumption 1 indicates that the information of the
leader can be shared among all follower systems.
This assumption is crucial for controller design and
is a requirement in all literature on leader-following
control problems. Assumption 2 is reasonable, as it
is practical for all state values of a system to be
bounded.

III. DISTRIBUTED CONTROLLER DESIGN
A. Prescribed Fixed-time Performance Function

In order to meet the transient performance in
(8) and the steady-state performance in (9), the
prescribed performance function is chosen as

ot = {

where |e;;(0)] < po for 1 < j <mand 1 <i <
m+1, p < 5, and ¢z > 1. The constant T is
the prespecified maximum allowable convergence
time for p(t) converging from the given maximum
initial error py to the maximum allowable steady-
state error p.., and c3 denotes the prespecified min-
imum convergence rate. The PPF has the following
properties [25,26]: 1) p(t) is bounded, ie., 0 <
poo < p(t) < po and p(t) < 0; and 2) limp(t) = poc
and p(t) = ps for any ¢ > T.

With the aid of the PPF, the following tracking
error is defined

€k +
Vi = F(ij) =In <,0]k——ei)
J

(Po = poc)exp (—55) + poe, 0<t<T
pocs t>T

(1)

where F'(e;;;) is a natural logarithm function of e;y.
Then,

e = Ajr(ér + Aejy) (12)

where
1 1 )
I p

, A=—=.
Cik TP P~ Ck p

For the PPF p, the following results have been
proved in [26].

Lemma 1: For the PPF p,

1) p(t) is monotonically decreasing and A > 0.

2) Aj>2>2>0.

Lemma 2: For the transformation (11), if v is
bounded for 1 < j < m and k € N, eqns. (8)-(9)
are satisfied.



B. Controller Design

Under Assumption 1, the graph G has a spanning
tree. The edge set £ can be written as & UE, where
&; includes the edges of the spanning tree and &,
includes the edges which are not in the spanning
tree. Based on the decomposition of the edges, the
graph G can be decomposed as G = G; U G,.. Since
there are m + 1 vertexes, the number of edges in &;
is m. We label the edges in &; first and then label
the edges in &.. The corresponding incidence matrix
D(G) can be written as

D =Dy, D]

where D, € RMmTUxm and D, € Rm+1)x
represent, respectively, the incidence matrices corre-
sponding to the spanning tree edges and other edges.

It is shown that the columns of D, are linearly
depend on the columns of D, [27,28] and

D.Z = D.

(13)

(K—m)

where
Z = (D/D,)"'D/D,.

The incidence matrix D can also be written as
the following block matrix

D= Dl _ Dlt ch
Dy Dat Do,

where D1 € RmXK, D2 € RIXK, Dlt < Rmxm,
D, € R™E-m_ D, e R>" and D,. €
RY(K=m) 1t can be verified that

DyZ = Dy., DyZ = Ds., Z= Dy, Ds..
Let

(14)

15)

Uit
! ' { Y1 ] "
Nk

where ¥y = [y1,...,ym] . Noting the definition of
the incidence matrix, we have

1= D { yjﬂ } =D Ly
- D!y
= [Dy, D]’ :[ 1t }
[ 1t 1] Yy ZTDM?J
‘[me
- { i ]Duy (16)

where 1 is a vector whose elements are one and
Y=Y — 1Ym1.

Let

21 F(m)
z = : =F(n) = : = | v |(17)

ZK F(nr)
with the aid of (12), we have

i = A+ An) = AD/ (&, + Azy,) (18)

where A = diag(A;;) is a diagonal positive def-
inite matrix and 71, = [T11,...,%1m] = |[T11 —
T1m4+1y -+ L1m — Il,m+1]T-

Lemma 3: Under Assumption 1, if z is bounded,
and

lim z' AD DAz = 0

t—o0

(19)

then lim;_,., 7 = 0 and eqns. (8)-(9) are satisfied.
Proof: Let ny = [n,...,nm]" and n; =

[Mmits- -5 MK] . By eqn. (16), we have
nr= 2" (20)
Let Zr = [217...,2m]T and ZIT =
[Zm41,--.,2k]". By the mean value theorem

and the property of the function F(-) in Lemma I,

211 (0)+H77U—HZ Ul
where G = diag([Gy,...,Gp)) and H =
diag([Hy,...,Hy]) are diagonal matrices with

Glzf > 0 and H; > 2 > 0. Eqn. (19) means
that lim;_,., D1 Az = 0. N%tmg that

D1Az = [Dy, Dy ]A [ HC;T } nr
— Du[l,Z]A diag(G, H) [ e } "
= Dy(AG+ ZAHZ My = Dy
where A = diag(Ar, Arr), A € R™™, and

A € RE—m>XE=m) T — (A;G + ZA HZT)
i1s a positive definite matrix. So, eqn. (19) means
that lim,; .., n; = 0. By (20), lim; ,,, 1 = 0.

By Lemma 2, the boundedness of z means that
eqns. (8)-(9) are satisfied. [

Lemma 4: Under Assumption 1, if lim; ,.n =
0, and |e;.(t)| < p(t) for 1 < j < m and k € Nj,
then eqn. (10) is satisfied.



Proof:
th{ 4 } = MnDDT[ y }
t—00 Ym+1 t—o00 Ym+1

= lim Dn=0.
t—o0

If the graph G has a spanning tree, the elements of
y and y,,,1 reach consensus based on the property
of the Laplacian matrix L. So, y — 1y,,,1 converges
to zero. U

Next, we design distributed controllers with the
aid of the universal approximation theorem of con-
tinuous function and the backstepping technique.

In the dynamics (1)-(2), there is uncertainty
fij(Zi;). With the aid of the uniform approximation
theorem of functions [29,30], in the compact set
X for selected basis vectors 1;;(Z;;) there exists an
ideal constant weight vector ¢;; such that

_ T/=
fi(@iy) = ¥5(Z5)0;5 + €
where ¢;; is the approximation error and is bounded

by unknown constants J;; and J (i.e. leii| < 65 < 9).
Then (1)-(2) can be written as

21

Ty Tiv1y + Uy (Z)05 + €5, (22)
i=1,....n—1
g = U+ Uy (Tnj)Bnj + €nj. (23)

Substitute (22) into (18) for 7 = 1, we have

—Ay 1l — Tl + ) (24)
where T1x = [IL‘H, . ,ZElm]T, Lok =
[Ta1, s Tom] s e = diag([Yn, . Yim]),s
and €1x = [611, Ce ,€1m]T.

Step 1: Assume that x,; is a virtual control input.
The virtual controller is chosen as

Q= -\ Z Alejl — Axlj - ¢1Tjé1j
leN;
SljZAlejl
- el (25)
2

ZAlejl + (1)

leN;
B Slj(DlAZ)j (26)

V((D142);)* + h(t)

where \; > O, élj is an estimate of ¢;; and will
be chosen later, s;; is the magnitude of a robust
term and will be chosen later, (-); denotes the j-
th element of its argument vector, and h(t)(> 0)
satisfies

27)

/Ow\/%dt<oo.

There are different choices of h. For example,
h(t) = et h(t) = (t+1)4, etc. )

In order to find the update laws for 0; and sy,
we choose a Lyapunov function

1 R

§ZTZ + 5 Zl Hil;fljlelj
1 m
+5 Z

where I'y; is a positive definite constant matrix, vy,

‘/i:

—1~2
Ty S1j

(28)

is a positive constant, and
by = 6,0y (29)
§1j = Sim+1 — S1j (30)
where
S1m+1 = max max |$1 m—+1 + A.Tl m+1 — 61j|

1<5<m t€[0,00)
is a positive constant. The derivative of V] is
Vi = 2TAD] (23, — A\iz"AD! D, Az
s1;((D1Az);)?
< /((D14z2);)? + h

- Axl,m+11 - $1,m+11)

Oél*) -

+2" AD] ] 0, — Z

+ZTAD;|—(€1*
NN ST R I IR Y
j=1 j=1
= TADT(ZEQ* — O[l*) — AlzTADIDlAZ
Z 81 ;m+1 DlAZ) )

=+ Z(DIAZ)j(Glj — A1 1 — T1me)

j=1

+> 0T
j=1

-y 18 (Dut2),)
—1—;31] (w v DA, h)

01 + (D1 A2);)




< zTADT(xQ* Mz"AD] DAz

Z 31m+1 D1A2)j)2
“/((D14z2);)? + h

041*) -

+ Z s1mi1(D] Az);

j 1

Ze

5 (g, o ((D1A2))”
—l—jZlSlJ (713' 1j \/((D1Az)j)2 + h>

01] + Ty (DIAZ) )

< 2"AD/ (29, — ay,) — )\IZTADTD Az
+ms1 mi1V/ h(t) + Z o) 913
+I1101(D1Az);)
e (DA, )
+ 5171‘1 51
25 ( I (DA TR
where oy, = [aq1,...,a1,,]" and we apply the

inequality ( — C2 - < v/h for any scalar (.

If we choose the update laws

b, = Ty (DiA2); =1 (3D
G = 7 ((D142);)? 7 (32)
V ((D1A2);)? + h(t)
then
Vv, < ZTADIT(.rQ* — Qi) — /\12TAD1TD1AZ
+mvVh. (33)

Step 2: Since x; is not the control input, it cannot
be ayj. Let

f2j = Tgj — Oy (34)
Then
52]‘ = x3; + w;—je%‘ + €95 — C“41' (35)
Jay
= I3+ Q/JQTJ-@Q]' + €25 — 071 ( Toj + 1/11]91;)
j
oo Oy
Z 1] (21 + fy0u) — T”flj
leN; 1
RS
ien; ST 0y,
0
T, (36)

681]

It is assumed that x3; is a virtual control input.
The following virtual input is proposed as

T4
- 7702]“923' -

bl oy
J 774

V&g +h O

8061] 61] + Z Oa ].]

g = —A;&; (D1Az);

(xo + %Tléu)

leN;

80413 80(1J
h+ 37
T on Mt 9y, ©7)

where

2
By = 1+ (%) +h

81‘1]‘

2

dary
(D) e
lENj xll

Ay > 0, égj and s; are estimates of 6¢,; and
02« = MaxXj<j<m 02j, respectively. In order to design
the update laws for 0;;, 0, and sy;, we choose a

Lyapunov function

1 < s 1 - AT =15
‘/2 = %+§Z£2j+§292jrgj02j
7j=1 7j=1
5 72.] 82]
j:

where 02]‘ = 02]‘ — (92ja §2j = 52* — 525, ng is
a positive definite constant matrix, and ~,; is a
positive constant.

The derivative of V5 is

(38)

Vo < 2V AD] (29, — an,) — )\lzTADTDlAz

+Ze

1z ((DiAz);)?
+j2181y71j ( 1t \/((DlAZ)j)2+h)

+ Z§2j(x3j — agj) + Z[_/\ijgj
j=1 j=1
52j§§j/822j

\/&3,05,+ h

+MS1 m41 91] + 7'11])

—&2i(D1AZ); —



IN

IN

. ooy 1~
+§2j¢;—j02j + §2j€2j - égja—lj@/);rjglj

0 0
—52JZ 041] T911 f2g alj

leN;
(9041
52] Z —— Eu
leN; Ox L1
+ D 05T )+ ) 5,505
j=1 j=1
—AlZTADTDlAZ + m317m+1\/ﬁ
- Z 6T (0, + 7Y
O O
F1j¢1]§2j 1J 1]¢1] L Z SQZ)

L1 lEN;

. 5 71, ((D142),)
+;Slﬂlj ( 1j + \/((DlAZ)j)2+h>

+ Y bolagy —ag) + ) [
j=1 j=1
323‘5%3'5%]‘

V508 +

a@lj 2
+[&y) | 1+ +h

al’lj

2

P _
n Z% +h |6,
lENj xll

2_]-152]‘ + 12;&a5)

+> 05,
j=1

+ D7 B
j=1

—AlzTADTD Az -+ (51,m+1 + 52*)771\/5

+Ze

91] —'I— 7—1]}

)"
—F1j¢1j§2j8$ 1;@/)138 - L)
19 1en;
N R (Y BN )
+ Sy | S+
; T ( T V(DiAZ))2 4 h

+ Zgzj(fsj — ;) — Z /\2jf22j
: =t
+Ze 3 (B35 + Tajihasa;)

72]52]&2]

+Z%] 52; S2J T

We choose the update law (32) for s;; and the
update laws for 0y}, fy;, and s,; as

- 3Je!
0 = my— Tyt~
Oary
—Puwlja—lizfsm =77 (39)
L1 leN;
Oy = Tajihaila; = 72[? (40)
2 02
by = ’72g52]52] (41)
V&85 +h

Then

Vo < —Mz'AD/ DAz — Z >\2j522j

Jj=1

T 2521(9”31‘ — 03) + (S1ms1 + 02 )mV .
7j=1

Step i: Since x;; is not a real control input, it
cannot be a;_; ;. Let

§ij = Tij — Qi1 (42)

Then

§j = Tyt w;eij + € (43)

T
= $i+1j + @Z’z“eij + €
J

— Qi1

aaz 1
- Z ] (Thy1y + ij% + €xj)

Oay
_Z ) ,:] 1t + Vil + €w)

k=1 leN;
8@@ aaz
—Z 0y~ ZZ ”eu
k=1 89k] k=1 lEN;

(44)

. (‘30@ 1]
Z 8sk]



It is assumed that x;, ; is a virtual control input.
The following virtual control input is proposed.

o L day
w;ewz a;‘l
) + Z > 60" LJ

k=1 leN;

+¢k10kl ‘I‘ Z

— J
Qu; = (karLj

—Nijij —

Lk+1,1

Qi1 ,J
Qk]
kJ

Aij > 0, éij and s;; are estimates of ¢;; and T
max<j<m 0, respectively. In order to design the
update laws for éij and s;;, we choose a Lyapunov
function

V. =

Vi +%Z§§j +%Zegrwle
J=
4= Z,yfl 32

where é,’j = 02‘]' — éz‘j’ gij = gz* — Sij» Fij is a
positive definite constant matrix, and ;; is a positive
constant.

The derivative of V; is

(46)

i—1

(2

> ik

m
+ 3 &l — i)
j=1

k=2 j=1
i—1 m
Yk fk @g
+ZZ% Sy | Swy o+ /—] —
k=2 j=1 fkjﬁkj + h
m 5 m
+ Z &0 + Z §ij€ij

_ Z &] 80[1 OQi-1,5

7j=1

- ng Z Z 8@2 1] wklékl + Ekl)

j=1 k=1 leN;

m 2 122
SU 137

j=1 4/ fjﬁfj +h
+ Z ONT 0+ 3 70t 5issy
P =1

(wijékj + €rj)
k=1

Noting that |e;;| < 6;., we have

v, <

V; < _AlZTADIDlAZ + (Sl,m-i-l + Z 51@*) m\/ﬁ

k=2
i—1 m

+3 305 O + 7l )

k=1 j=1
R i 75 ((D1Az2);)?

+ Syt | 51y +
; J 11y ( J \/(<D1A2>])2 +h

—/\12TADID1AZ

i—1
+ (Sl,m—i—l + Z gk*) m\/ﬁ
k=2

11—

—

+ O Tt Oy + T,Lg 1
1

=1 j=

Ea

8041 1] 8al 1,5

ijwkjgu
+ Z §1j’}/fj1 <§1j +

+ E 52] mz—&-ly azg

Z Szl

Lhj lEN;

71,((D1Az2),)? )

kﬂ/%g

\/<<D1AZ)')2 +h

Z Z )"fﬂglw

k=2 j=1
i—1 m
71@51@ ﬁk
DD i B | Skt e
k=2 j=1 £kjﬁk]+h

m 51*2 2

T ST N i 11
Z_; Y ]Z_;,/ 505+ h
_|_Z Szjgzzﬁz] +20U o
14/ ij +h j=1



- Th
+T0ii6i5) + Z Vij 8558 en

1 ) 7 m
! Vi < —M2TADI DAz =3 ST e
Next, we apply =2 j—1
2 32 T
€318y < ——2e VR +D_ &5 (@i — ai)
j=1

\/ 585+ h .
then + (sl,mﬂ + Z 5k*> mVh.
k=2

; TApT : . . .
Vi < =Mz AD, DAz Step n: Since x,; is not a real control input, it
' cannot be o, ;. Let

+ 81’m 1+ gk* m\/ﬁ 7
( " kZ; ) Enj = Tnj — o1y 51)

i—1 m
; = Then
T 71— i—1
+D D 0T Oy + 7" _ . |
k=1 j=1 gnj = Uy + wnjé’nj —+ €nj — Q14
dai— Oa;— — w070 '
Fk;gwkjf” d ij¢k] L.j Z le u] + wn] nj + €nj
Tk Tk lEN; (9041 .

1 1, ((D142),) _k 7 Oy
+ Syt | 51y +
= ( e 55 sty i
- (Thg1, kUKl 1 €kt
k=1 leN; Tkl
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We choose the update laws for s;; (1 < k Ag 1—1)

the same as before and the update laws for 0; (1 < 8% i1, 3% Li g
k <1) and s;; as follows. * Z kit Z Z ki

k=1 leN;
A aaz Sn"fn‘ﬁn‘
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Anj >0, énj and s,; are estimates of ¢,,; and Ops =
mMaxi<;<m Onj, respectively. In order to design the
update laws for énj and s,;, we choose a Lyapunov
function

Vo = Vn—l+%2€72zj
3 Z%If s

where an = Hnj — an, gnj = (Sn* — Snj Fnj 18
a positive definite constant matrix, and ,; is a
positive constant.

The derivative of V,, is

Z 2By

(53)
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f)/njgr%j 7213
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We choose the update laws for s;; (1 < k& < n—1)
the same as before and the update laws for s,; and
0r; (1 <k <n) as follows.

bny = —7"2]5”; ng (54)
\/ njﬁnj—i_h‘

: e aan

by = V= D&y’

kj

8an 1,5

D=2 Y &) = 7] (59)
Tkj lEN;
1<k<n-1
Onj = Tugtni€as = Ty (56)

then

Vo < —Mz2"ADIDiAz =) ) NE,

k=2 j=1
+ (817m+1 + Z Slg*) m\/ﬁ
k=2

With the aid of the above design procedure, the
following theorem can be proved.

Theorem 1: For the systems in (1)-(2), under
Assumptions 1-2 the distributed control law

u

(57)

i = Onj

with the update laws

z)

(58)
Vi 2 12
= 2RUU 1 <i<n,1<j<n59)

Sz )
! [e22 1 p
LYY

ensure that (8)-(10) are satisfied, where the control
parameters are defined in the above controller de-
sign procedure.

Proof: With the control law (57), we have

Vn < —)\12TAD1TD1AZ — Z Z )\k’jglgj

k=2 j=1

+ (sl,mﬂ +> %) mVh  (60)
k=2

< (sl,mﬂ + Z 6,%) mvh. (61)
k=2
Integrating both sides of (61), we have
Va(t) < V,(0)
+ <Sl7m+1 + z”: 5k*> m/t \/WT)dT
< o0 = :

which means that V(t) is bounded (i.e., V' € Ly).
Therefore, z, &;, 0;;, and s;; are bounded for all 7



and j. Integrating both sides of (60), we have

t n.m t
)\1/ zTADlTDlAsz—i—ZZ)\kj/ &2.dr
0 0

k=2 j=1

< Va(0) = Va(?)
+ <Sl,m+1 + i Sk*> m/t \/ h(T)dT < 00

which means that D;Az and &; (2 < @ < n,
1 < j < m) are square-integrable. With the aid
of Barbalat’s lemma, DAz and §;; 2 < i < n,
1 < 5 < m) converge to zero. By Lemma 3, eqns.
(8)-(9) are satisfied. Since the communication graph
G is connected, eqn. (10) is satisfied by Lemma 4.
OJ

Leveraging the properties of the prescribed per-
formance function p, the proposed controllers fa-
cilitate the convergence of tracking errors between
neighboring systems to a specified value within
finite time. In the controller design, to simplify
notation, the PPF p remains consistent across dif-
ferent systems. However, one can substitute p with
p; specifically for system j. Furthermore, the PPF
p can be tailored to different functions, accom-
modating diverse transient and steady-state perfor-
mance requirements. Within the controller design,
the transformation (11) is represented by a natural
logarithm function. However, alternative choices for
p are viable.

To approximate unknown functions, one can
choose the basis to be polynomial functions, sig-
moid functions, logistic functions, or other func-
tions. To effectively implement the proposed con-
trollers, obtaining the partial derivatives of the vir-
tual controllers is imperative. With the aid of the
command filtered backstepping technique [31-33],
simplified distributed controllers can be proposed.
Due to space limitations, it is omitted.

IV. SIMULATION

Consider three second-order systems in (1)-(3),
where

flj = LE’%] -+ Sin(2x1j)

fgj = (I,’gj + 3]3%] + 2sin 5(132j.
There is one second-order leader system in (4)-(5)
with f14 = sin(2$14), f24 = 5cos3T1a — 2%94,

and uy = 3cos2t. The communication between
systems is shown in Fig. 1. It is obvious that the

\‘ \
/

=
\f
(2

Fig. 1.

The communication graph G between systems.

communication graph G is connected. The incidence
matrix D is

1 0 0 1 1
[Di] | -1 1 0 0 o0
D= {D2 } 10 -1 1 0 -1
0 0 -1 -1 0
The PPF is chosen as
(t) = 20exp (72%) 0.1, if 0<t <10
PU= o, if ¢ > 10

The control problem is to design distributed con-
trollers such that y; — y4 converge to zero for 1 <
J < 3 and the performance (9) is satisfied.

In the controller design, we choose

21T 2 2T
Uiy = [Lwy,ay,] by = [1, 25, 25, 205, 3

The boundedness of the approximation errors is
evident. The distributed controllers proposed in
Sections 3 and 4 effectively address the control
problem.

The proposed controllers from Theorem 1 were
implemented in a simulation with specified control
parameters. Fig. 2 illustrates the convergence of the
response y; — y4 for 1 < j < 3 to zero. In Fig.
3, the responses of ejs, €14, €23, €31, —p, and p
are depicted, revealing that ejs, €14, €23, and esy
are bounded by —p and p, thereby confirming the
satisfaction of (9). Fig. 4 showcases the response of
01; for 1 < j < 3. Additionally, Fig. 5 illustrates
the response of s; for 1 < j < 3. Figure 6 presents
the response of égj for 1 < j < 3. Lastly, Fig. 7
demonstrates the response of s9; for 1 < j < 3. The
simulation results affirm that 6;; and s;; are bounded
for 1 < < 2and 1 < 5 < 3. These findings
robustly substantiate the validity of the claim made
in Theorem 1.
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Fig. 2. The tracking error of y; —y4 for 1 < j < 4.
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Fig. 4. The response of él]’ for1 <j<3.

Updates of s” for 1<j<3

Fig. 5.

J

Updates of . for 1< j< 3

The response of s1;

10 15 20
time (s)

for1 <5< 3.

25

1.5 1
2 ‘ ‘ ‘ ‘
0 5 10 15 20 25
time (s)
Fig. 6. The response of égj for1 <j<3.
3
S21
S22 ™
2.5 f Sa3| |
[sp}
v
Vi
T 2t i
S
w'cT
kS
Q8 15 rjﬁ b
©
o
o
o]
’ i
05 ‘ ‘ ‘ ‘
0 5 10 15 20 25
time (s)
Fig. 7. The response of sz; for 1 < j < 3.



V. CONCLUSION

In this paper, the distributed tracking control of
high-order uncertain nonlinear systems with pre-
scribed performance requirements was studied. Dis-
tributed robust adaptive controllers were proposed
to ensure that tracking errors converge to a small
neighborhood around the origin within a specified
finite time while satisfying prescribed performance
criteria. The results presented in this paper provide
a new approach to addressing the distributed control
of uncertain nonlinear systems with performance
requirements. Throughout our study, bidirectional
communication between systems is assumed; how-
ever, these findings can potentially be extended
to scenarios where the communication graph is
directed.
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