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Abstract— Being able to accurately predict the time to event
of interest, commonly known as survival analysis, is extremely
beneficial in healthcare for modeling disease progression, iden-
tifying prognostic factors, assessing risk of health by building
survival models in health aging, precision medicine, supporting
clinical decision making. In order to be usable by healthcare
providers, survival analysis models need to be accurate, in-
terpretable, and trustable. Efficient interaction between human
stakeholders (e.g., developers, domain experts and/or end-users)
and clear model interpretation not only improve the model
performance but also enhance human trust. The primary goal
of this paper is to develop algorithm and method that support
implementation of trustworthy and time-efficient data-driven
decision making for prevention and early intervention. Our
experimental results on one public cancer datasets demonstrate
the algorithm efficiency for predicting survival time of cancer
patients.

Index Terms— Survival Analysis, Deep Learning, interactive
Machine Learning (iML), eXplainable Artificial Intelligence
(XAI).

I. INTRODUCTION

Survival analysis plays an essential role in healthcare
science, such as prediction of patient death and time to pro-
gression in oncology, estimation of treatment cost, economic
evaluations alongside clinical trials, treatment allocation of
carcinoma in the precision medicine era, analysis of lifespan
in aging research, and prediction of relapse in cognitive
impairments.

80% of aging population have at least one chronic condi-
tion and the leading causes of death among older adults in
the U.S. are chronic diseases including heart disease, cancer,
stroke, Alzheimer’s disease, and diabetes [1]. Most chronic
diseases can be prevented to be worse if we can implement
early intervention [2]. Therefor, building a robust prediction
model for the early stage of chronic diseases is significant.
For instance, we can estimate the probability that a patient
will die by cancer or have heart failure during the upcoming
months, and present the explainable results to physicians,
who can develop an early intervention plan in order to help
that patient extend their life expectancy and ensure health.

Recent advances in deep learning have led to its
widespread application in many domains including survival
analysis [3], [4], [5], [6], [7]. Deep survival analysis takes
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into account both uncensored instances (i.e., the instances
whose target events are observed) and censored instances
(i.e., those that are not observed). In addition, non-linearity
relationship between features and target, and auto feature
representation learning for unstructured data [8], [9] can
be handled by deep survival analysis. While a deep neural
network approach to survival analysis can improve accuracy,
it creates a kind of “black box” decision making where
stakeholders cannot tell how the model operates and how
it comes to its decisions. Thus, uninterpretable deep survival
analysis prediction, is challenging to use because human
stakeholders don’t have the information that they need to
trust the way that the model makes decisions, nor can they
determine when the model may be brittle versus when it is
performing well.

An example of this phenomenon is a model that performed
very well in distinguishing high-risk patients from non-high-
risk patients based on x-ray images collected from Mount
Sinai Hospital [10]. However, when the model was applied
outside of Mount Sinai, the performance plummeted. This
lack of generalizability happened because the model did not
learn clinically relevant information from the images, but
instead its predictions were based on specific characteristics
of the x-ray machine that was used to image the high-
risk ICU patients at Mount Sinai [10]. The model actually
distinguished which machine was used instead of the risk
of the patients. We can see that the model fails to capture
the intrinsic patients’ risk information when both model
interpretation and encoding of stakeholder knowledge are
missing. Thus, it lacks generalizability and fails to adapt to
diverse situations.

Interactive explainable methods need to involve human
experts in the model’s development. Human experts need
to understand how models come to their decisions so that
they can identify inaccurate models before they go into the
clinical validation and the certification process. Thus the
development of interactive explainable models will save con-
siderable time and effort by allowing clinicians to influence
the model development with their knowledge and prevent
faulty models from being fully implemented before their
flaws are recognized.

Accurate diagnosis is critical in clinical decision making.
However, ‘prevention is better than cure’ as prevention and
early intervention will prevent the aging population from
suffering more diseases and/or more extensive treatments.
Although numbers of data driven healthcare prediction mod-
els have been proposed, most of them were merely focusing
on computer-aided diagnosis instead of building an efficient
prediction model in the early stage. This paper cares more



about how to support clinical decision making to provide
patients effective prevention and timely intervention health-
care service via interactive explainable deep survival analysis
(IEDSA).

II. METHOD

Survival analysis aims to estimate time-dependent survival
probability in longitudinal studies, and hence time-dependent
interpretation is desired. To achieve this, given an original
input sample, we define time-dependent counterfactual exam-
ple based on the properties of survival analysis. We further
propose a time-dependent gradient integration to interpret the
survival model.

A. The Brazilian National Cancer Institute (INCA) cancer
dataset description

The public dataset we used in our experiments was col-
lected by the Brazilian National Cancer Institute (INCA),
which includes recorded information related to cancer cases
among the Brazilian population. In this study, our primary
focus is on predicting time to death for cancer patients. This
dataset contains almost 40 variables including for 1,048,576
instances. We finally selected 14,338 patients with 26 vari-
ables to exclude the patients with majority of missing data.

B. Interactive Explainable Deep Survival Analysis Algorithm

In survival analysis, we can only observe either a survival
time (Oi) or a censored time (Ci) for each instance. The
dataset is said to be right-censored iff Ti = min(Oi, Ci)
is observed during the study, where Ti is named as ob-
served time. Usually an instance is represented as a triplet
(Xi, Ti, δi), where Xi ∈ R1×p is the feature vector and
δi is the censoring indicator which equals to 1 for an
uncensored instance, and 0 for a censored instance. The
primary goal of survival analysis is to learn a predictive
function fΘ(·) parameterized by Θ, such that the predicted
survival time is as close as possible to the true survival time.
The learning process is to estimate the parameter Θ by min-
imizing the empirical expectation of a loss L(Θ;X,T, δ) =∑N

i=1 ℓsur(fΘ(Xi), Ti, δi)), where N is the number of train-
ing instances. ℓsur(·) is a designed loss function for survival
analysis, which leverages both uncensored instances (whose
true survival time are known) and censored instances (whose
true survival time are unknown but should be greater than
the corresponding censored time).

This paper focuses on explaining deep discrete-time
survival analysis, which is appropriate here for the fol-
lowing reasons: 1) Most of the existing deep continuous-
time survival analysis models are extended from parametric
censored regressions or Cox model [11], [12], [3], [4], and
hence inherit shortcomings from their corresponding base
models. Discrete-time survival analysis models require no
assumption of the underlying distribution w.r.t. survival time
nor survival function. Therefore, they are more generalized.
2) Deep continuous-time survival analysis models formulate
the survival prediction as a regression problem; therefore,
a post-hoc interpretation method for a general deep neural

network can be used to interpret a deep continuous-time
survival analysis model. So that a model-specific interpreta-
tion method is not needed for deep continuous-time survival
models.

In the following, a formulation for discrete-time sur-
vival analysis is considered in this paper. Assume the
maximal observed time is divided into Tmax intervals
(t0, t1], · · · (tTmax−1, tTmax ], where t0 = 0. Therefore, the
survival time of the i-th instance can be estimated via
predicting whether it is still survival (Ti > tj) or not
within each time interval (tj−1, tj ] for j = 1, · · · , Tmax.
For convenience, we denote I(Ti > tj) as Yi,j , where
I(Ti > tj) = 1 if Ti > tj , and 0 otherwise. Therefore,
the discrete time survival analysis problem is formulated as
the following optimization problem:

min
Θ

Tmax∑
j=1

∑
i∈Uj

ℓ
(
S
(j)
Θ (Xi), Yi,j

)
, (1)

s.t. 1 ≥ S
(j)
Θ (Xi) ≥ S

(j+1)
Θ (Xi) ≥ 0, (2)

where Uj = {i | δi = 1 ∪ Ci > tj} represents the set of
uncensored instances and the instances that are censored after
the j-th time interval; thus, leverages all instances including
handling the censored instances. ℓ is an empirical loss for
classification, e.g., logistic loss. S

(j)
Θ (Xi) is the estimated

survival probability of the i-th instance at the j-th time
interval. The constraint term in Eq. (1) preserves the natural
property of survival probability, i.e., remains in [0, 1] and
monotonically non-increasing over time.

In this paper, we introduce a sophisticated designed net-
work structure to tackle the constraint in Eq.(1). Based on
the Markov assumption, survival probability at the j-th time
interval is:

S
(j)
Θ (Xi) = fθj (Xi) · S(j−1)

Θ (Xi) =

j∏
1

fθj (Xi), (3)

where fθj (Xi) denotes the predicted probability that the
event of interest is not happened during the j-th time interval,
and S

(j−1)
Θ (Xi) is the survival probability at the (j − 1)-th

time interval. Since S
(0)
Θ (Xi) = 1, i.e., for all observed in-

stances that event of interest is not happened prior the starting
time, the second equality holds in Eq. (3). θj is the set of
model parameters associated with the j-th time interval, and
note that parameters for different time intervals, i.e., θj and
θk, may share same components based on the structure of the
neural network. Eq.(3) ensures that the S

(j)
Θ (Xi) obeys the

constraint in Eq.(1) and the corresponding network structure
is illustrated in Figure 1. To interpret the aforementioned
deep discrete-time survival analysis model, we propose an
Integrated Gradients (IG) based attribution method. IG is
one of the most commonly used interpretation algorithm for
deep learning models [13]. In IG the attribution score of the
l-th feature of a given sample (x) is mathematically defined
as IGl(x) := (xl − x′

l) ×
∫ 1

0
∂f(x′+α(x−x′))

∂xl
dα, which is a

path integration of the gradients from a reference/baseline
(i.e., x′) to the given sample along a straight line. Therefore,



Fig. 1: Conceptual representation of the designed network
structure that ensures the monotonically non-increasing prop-
erty of survival probability. A specific network structure will
be designed to meet the property of input data, e.g., CNN for
image data and DNN for tabular data, and hybrid structure
can be used to handle multimedia data.

the attribution score is highly dependent on the selection of
reference.

The most common type of feedback from physicians is that
particular features are important, and in practice they only
care about the top influential features. Let Φl = {ϕ(j)

i,l |i =
1, · · · , N, and j = 1, · · · , Tmax} denotes the set of attribu-
tions related to the l-th feature, and I ⊂ {1, · · · , p} be the set
of important features selected by physicians. To encode this
feedback, we encourage {||Φl′ ||2 ≥ 1

p

∑p
l=1 ||Φl||2 | ∀l′ ∈

I}, i.e., for each selected feature the l2 norm of its correlated
attributions should be greater than or equal to the average of
l2 norm of the attribution across all features. In addition, to
encourage the model to focus on the top influential features,
we propose the following regularization term:

Ω(Φ(Θ, X)) = λ1

∑
l′∈I

ReLU(
1

p

p∑
l=1

||Φl||2 − ||Φl′ ||2) (4)

+λ2

∑
l′′ /∈I

||Φl′′ ||2,

where ReLU( 1p
∑p

l=1 ||Φl||2 − ||Φl′ ||2) is greater than 0

iff 1
p

∑p
l=1 ||Φl||2 > ||Φl′ ||2. Therefore, the first part of

regularization term encourages the selected features to have
above average contribution to the output. The second part of
regularization (

∑
l′′ /∈I ||Φl′′ ||2) encourages the group spar-

sity among none-selected features, i.e., if the l′′-th feature is
unimportant then all elements of its feature attribution (Φl′′ )
are encouraged to be close to zero, where λ1 ≥ 0 and λ2 ≥ 0
adjust the regularization strength of each part.

III. EXPERIMENTS AND RESULTS

A. Interactive Human Expertise Integration
We integrate the feedback from one physician (i.e., Dr.

Winston Liaw, M.D., M.P.H.) in our team into our algorithm
to improve the prediction performance to achieve interac-
tive Machine Learning (iML). Dr. Liaw recognized several
features such as Extension (localized or metastasis), and
Illness.Code (Brazilian ICD-10 codes, specifically cancer
types as some cancers, e.g., C61–ovarian cancer, are more
aggressive than others, e.g., C509–female breast cancer [14])
that are more important in the INCA dataset to predict the
death time of cancer patients.

B. Comparison methods

We demonstrate the performance of our proposed method
by comparing with several other commonly used methods:

• The Cox proportional hazards model (Cox): The Cox
model is the most commonly used method in survival
analysis [15], and it is trained by using the coxph
function in the survival R package1 [16].

• DeepSurv: DeepSurv is an extension of Cox pro-
portional hazards model that employs a deep neural
network to replace the linear regression in standard
Cox model thereby handling the non-linearity [11]. A
Pytorch implementation of DeepSurv can be found in
the pycox package

2
.

• CoxTime: CoxTime is a relative risk model that extends
Cox regression beyond the proportional hazards [12],
and its Pytorch implementation is available in the pycox
package

3
.

• DeepHit: DeepHit is a deep learning model designed
for discrete-time survival analysis, where a feed forward
DNN that incorporates both ranking loss and binary
loss (log-likelihood) at each discrete time point is used
to predict the probability density values at each time
point [5]. A Pytorch implementation of Deephit can also
be found in the pycox package

4
.

C. Evaluation metric: the concordance index (C-index)

The concordance index (C-index), is a general perfor-
mance measure of prediction models that generates continu-
ous, ordinal and dichotomous outcomes [17], which quanti-
fies the quality of predicted rankings. Let us consider a pair
of 2-tuples (y1, ŷ1) and (y2, ŷ2), where yi is the true target
value, and ŷi is the predicted outcome. The concordance
probability is defined as:

c = Pr(ŷ1 > ŷ2|y1 > y2). (5)

By definition, the C-index has the same scale as the area
under the ROC Curve (AUC) in binary classification, and if
yi is binary, then the C-index is same as the AUC. Therefore,
similar to the AUC, c = 1 indicates perfect prediction and
c = 0.5 indicates the prediction is as good as a random
guess.

As censored data can be easily taken into account, the
C-index is the most commonly used evaluation metric in
survival analysis [18]. In 1982, Harrell et al. proposed the
first definition and computational formulation of C-index for
time-to-event data [18], i.e., the proportion of concordant
pairs divided by the total number of possible evaluation pairs.
Based on the types of learning targets, the existing survival
prediction methods can be divided into two categories: risk
score orientated and survival time orientated. The risk score
orientated methods, e.g. the Cox proportional hazard model
and its extensions, aim at learning a risk score for each
instance. Note that, the instance with a low risk score should
survive longer.

1https://cran.r-project.org/web/packages/
survival/index.html

https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/index.html


D. Results

We compare our proposed method interactive explainable
deep survival analysis (IEDSA) with several other commonly
used methods in survival analysis mentioned in the sub-
section III-B in terms of C-index defined in the subsection
III-C using the Brazilian National Cancer Institute (INCA)
cancer dataset described in the subsection II-A. To test the
model performance, we splited the INCA cancer dataset into
80% training and 20% testing sets. The comparison results
are presented in Table I and we can see that our proposed
IEDSA method achieved the best prediction performance in
the testing set.

We also present the Fig. 2, plotted based on the calculated
expected gradient values, which explains IEDSA prediction
model in terms of feature importance. As one of the most
important eXplainable Artificial Intelligence (XAI) methods,
feature importance is measured as a way to explain the
identification results generated from ML models. Based on
this plot it can be seen that four features have stronger
predictive power in the trained model, which are Indicator
of Rare Case (i.e., is the disease rare), Morphology Descrip-
tion (i.e., carcinoma information including type and sites),
Description of Disease (i.e., the distribution of cancer within
the anatomical structures of a biological organism) and Status
Address (i.e., the state where the patient is living now). Note
that, in Fig. 2, a positive value influences the model to predict
alive, whereas the negative ones influence the model toward
prediction of death.

TABLE I: Performance comparison of the proposed
method interactive explainable deep survival analysis
(IEDSA) and other existing related methods using C-
index.

Cox Deepsurv Coxtime Deephit IEDSA
Train dataset 0.819 0.730 0.741 0.740 0.817
Test dataset 0.629 0.725 0.738 0.729 0.813

Fig. 2: Feature importance generated from our proposed
IEDSA method.

IV. CONCLUSION

In this paper, we proposed a time-dependent interpretation
method for survival analysis to improve transparency and
trustworthiness of deep discrete-time survival analysis mod-
els achieved the targets of both iML and XAI. Moreover,

the proposed interpretation method can be used to encode
domain knowledge and expert feedback in an interactive
way to achieve better prediction performance. In the future,
we plan to develop a sufficient system to keep human in
the loop that allows human experts to provide feedback to
the algorithm in order to optimize it via a human-computer
interaction (HCI) interface.
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