THE ASTROPHYSICAL JOURNAL, 975:116 (15pp), 2024 November 1
© 2024. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

https://doi.org/10.3847/1538-4357 /ad7825

CrossMark

Energy-dependent and Energy-integrated Two-moment General-relativistic Neutrino
Transport Simulations of a Hypermassive Neutron Star

Patrick Chi-Kit Cheong (35,:5,7"5)1’2’5 , Francois Foucart' , Matthew D. Duez’ , Arthur Offermans” R

Nishad Muhammed?

, and Pavan Chawhan®

! Department of Physics & Astronomy, University of New Hampshire, 9 Library Way, Durham, NH 03824, USA; patrick.cheong@berkeley.edu
2 Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
3 Department of Physics & Astronomy, Washington State University, Pullman, WA 99164, USA
4 Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
Received 2024 July 29; revised 2024 September 4; accepted 2024 September 5; published 2024 October 29

Abstract

We compare two-moment-based energy-dependent and three variants of energy-integrated neutrino transport
general-relativistic magnetohydrodynamics simulations of a hypermassive neutron star. To study the impacts due
to the choice of the neutrino transport schemes, we perform simulations with the same setups and input neutrino
microphysics. We show that the main differences between energy-dependent and energy-integrated neutrino
transport are found in the disk and ejecta properties, as well as in the neutrino signals. The properties of the disk
surrounding the neutron star and the ejecta in energy-dependent transport are very different from the ones obtained
using energy-integrated schemes. Specifically, in the energy-dependent case, the disk is more neutron-rich at early
times and becomes geometrically thicker at later times. In addition, the ejecta is more massive and, on average,
more neutron-rich in the energy-dependent simulations. Moreover, the average neutrino energies and luminosities
are about 30% higher. Energy-dependent neutrino transport is necessary if one wants to better model the neutrino
signals and matter outflows from neutron star merger remnants via numerical simulations.

Unified Astronomy Thesaurus concepts: Neutron stars (1108); Neutrino astronomy (1100)

1. Introduction

Kilonovae, the thermal transients powered by the radioactive
decay of subrelativistic ejecta from neutron star mergers
(L.-X. Li & B. Paczyniski 1998; B. D. Metzger et al. 2010;
M. Tanaka 2016; B. D. Metzger 2019), are particularly
interesting systems in the study of astrophysical nucleosynthesis.
Although the groundbreaking multimessenger detections of a
binary neutron star merger on 2017 August 17 (e.g., B. P. Abbott
et al. 2017a, 2017b, 2017c) have confirmed our basic under-
standing of neutron star mergers (B. D. Metzger 2017;
L. Rezzolla et al. 2018), details of the kilonova transients are
poorly understood. For instance, it is still unclear what the
abundance patterns of the produced elements are and thus how
much neutron star mergers contribute to nucleosynthesis.

The observables of kilonovae (i.e., their brightness, duration,
and colors) are sensitively related to the properties of the
merger outflows (i.e., their composition, mass, and velocities),
which are significantly affected by neutrino transport and
neutrino—matter interactions. Neutron-rich outflows are respon-
sible for the production of heavy elements (i.e., lanthanides and
actinides) via the r-process, while less neutron-rich outflows
produce lighter elements. In either case, the brightness,
duration, and colors of the resulting light curves depend on
the effective diffusion time through the ejecta and hence on
their composition, mass, and velocities (J. Barnes &
D. Kasen 2013). To better connect the observational signatures
of kilonovae to the matter outflows from mergers, numerical
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simulations of neutron star mergers with neutrino transport are
necessary.

Variants of energy-integrated two-moment schemes based
on the truncated moment formalism (K. S. Thorne 1981;
M. Shibata et al. 2011; C. Y. Cardall et al. 2013) have been
implemented in multiple neutron star merger simulation codes
(e.g., S. Wanajo et al. 2014; F. Foucart et al. 2015, 2016;
Y. Sekiguchi et al. 2015; F. Foucart 2018; D. Radice et al.
2022; L. Sun et al. 2022; M. R. Izquierdo et al. 2024;
C. Musolino & L. Rezzolla 2024; F. Schianchi et al. 2024)
because of the good balance between the accuracy and
computational cost of these approximate transport schemes.
Despite its success in neutron star merger simulations, energy-
integrated transport has two major limitations. First, an “energy
closure” has to be imposed. Namely, one has to assume or
estimate neutrino distributions, as the neutrino spectrum cannot
be reconstructed from the evolved moments. This could be
problematic in regions where the spectrum is nontrivial.
Second, neutrino—matter interactions that require detailed
spectral information, such as neutrino-lepton inelastic scatter-
ings and pair processes, cannot be included easily. Either of
these issues can significantly impact the evolution of neutrinos
and hence the merger dynamics and the composition of the
postmerger remnant. However, there is no study in the
literature of the impact of using an energy-integrated transport
algorithm in the merger context.

The main goal of this work is to better understand the
importance of the evolution of the neutrino spectrum in the
evolution of postmerger hypermassive neutron stars. To this
end, we perform an energy-dependent and three variants of
energy-integrated two-moment neutrino transport general-
relativistic magnetohydrodynamics simulations of a postmer-
ger-like hypermassive neutron star. To focus solely on the
impact of the various two-moment neutrino transport schemes
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on the results, we perform all simulations with identical
neutrino microphysics and numerical setup and with the
same code.

The paper is organized as follows. In Section 2, we outline the
methods we used in this work. The results are presented in
Section 3. This paper ends with a discussion in Section 4. Unless
explicitly stated, we work in geometrized Heaviside-Lorentz
units, for which the speed of light ¢, gravitational constant G,
solar mass M., vacuum permittivity €j, and vacuum perme-
ability pp are all equal to 1 (c=G=M,=¢€y=ppy=1).

2. Methods

We use the quasi-equilibrium postmerger-like hypermassive
neutron star constructed in P. C.-K. Cheong et al. (2024) as the
initial profile for our simulations. Specifically, we pick the
postmerger-like model with central energy density e./ =
1.2604 x 10" gecm ™ and angular momentum J = 5 GM?/c.
This equilibrium model is constructed with the “DD2” equation
of state (M. Hempel & J. Schaffner-Bielich 2010) with a
constant-entropy per baryon s = 1 kg baryon™" and in neutrino-
less O-equilibrium. The star is differentially rotating, following
the four-parameter rotation law of K. Urya et al. (2019) with
angular velocity ratios {Qpex/2 = 1.6, Qeq /€ = 1}, where
Qmax, 2, and Q¢q are the maximum, central, and equatorial
angular velocities of the neutron star, respectively. These ratios
are chosen to empirically match the rotational profiles reported
in binary neutron star merger simulations. As reported in
P. C.-K. Cheong et al. (2024), this profile is dynamically stable
in conformally flat spacetime.

Magnetic fields are added on top of the quasi-equilibrium
neutron star profile. In particular, we superimpose magnetic
fields by adding the following vector potential in orthonormal
form:

3

Foad ady — "o :
(A 5 Ae, A¢) = m(o, 0, Bpolr Sln@), (l)
where the relation between orthonormal-basis components and
coordinate-basis components can be found in Appendix A of P.-h.
Cheong et al. (2020). Here, we set 7o = 10 km and By, = 10" G.
This vector potential gives us purely poloidal magnetic fields with
maximum strength 10" G. At the beginning of the simulations,
we impose a low-density magnetosphere with a magnetic-to-gas
pressure ratio  Pp,e/Peas =10 everywhere outside the star,
following the methods of V. Paschalidis et al. (2015). This low-
density gas is meant to mimic the gas surrounding a postmerger
remnant. Given the differential rotation of the remnant and the
initial poloidal magnetic field, a disk will form around the neutron
soon after the simulation starts as a result of magnetic winding.

The general-relativistic radiation magnetohydrodynamics
code Gmunu (P.-h. Cheong et al. 2020, 2021; P. C.-K. Cheong
et al. 2022, 2023; H. H.-Y. Ng et al. 2024) is used for our
simulations. In particular, we dynamically evolve the general-
relativistic magnetohydrodynamics equations and the Einstein
field equations in the conformally flat approximation. The
divergence-free condition of the magnetic field is preserved by
using staggered-meshed constrained transport (C. R. Evans &
J. F. Hawley 1988). All the simulations here are axisymmetric
and performed in cylindrical coordinates (R, z), where the
computational domain covers O km < R < 2000km and 0 km
< z<2000 km, with the resolution ng x n, =128 x 128 and
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Figure 1. Maximum value of the rest-mass density rescaled with its initial
value p,./Pmax ¢ = 0) (top panel) and their relative errors with respect to the
energy-dependent transport case (bottom panel) as functions of time with
different two-moment neutrino transport schemes of a postmerger-like
hypermassive neutron star. In the high-density regions, all the schemes work
similarly.

allowing six adaptive mesh refinement levels on top of that.
The finest grid size at the center of the star is AR=
Az~ 488 m. The finite temperature equation of state “DD2”
(M. Hempel & J. Schaffner-Bielich 2010) is used for the
evolutions. Our simulations adopt the Harten, Lax, and van
Leer (HLL) approximated Riemann solver (A. Harten et al.
1983), the third-order reconstruction method Piecewise Para-
bolic Method (P. Colella & P. R. Woodward 1984), and the
IMEXCB3a time integrator (D. Cavaglieri & T. Bewley 2015).

Two-moment radiation transport schemes together with the
maximum-entropy closure (G. N. Minerbo 1978) are used for
neutrino transport in this work. Gmunu solves either energy-
integrated or energy-dependent neutrino transport. In this work,
we implement and compare three different variants of the
energy-integrated schemes with the energy-dependent scheme.
Specifically, we consider the following two-moment neutrino
transport schemes.

1. (") = (). Essentially the same energy-integrated
scheme as in F. Foucart et al. (2016), but the calculation
of the neutrino number flux is simplified. In the neutrino
number density flux (i.e., Equation (A9)), the flux-
weighted average energy of neutrinos (¢”) is chosen to be
the same as the energy-weighted average energy (¢). This
simplification has been adopted in D. Radice et al.
(2022), C. Musolino & L. Rezzolla (2024), and F. Schi-
anchi et al. (2024).

2. F. Foucart et al. (2016). The energy-integrated neutrino
transport schemes proposed by F. Foucart et al. (2016).

3. H. Andresen et al. (2024). An improved version based on
F. Foucart et al. (2016) for core-collapse supernovae
(H. Andresen et al. 2024). Note that here we do not
include modifications that are specifically calibrated to
core-collapse supernovae.

4. spectral. The energy-dependent neutrino transport
scheme described in P. C.-K. Cheong et al. (2023).
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Figure 2. Profiles of rest-mass density p (first row), temperature 7 (second row), electron fraction Y, (third row), and entropy per baryon s (fourth row) with different
two-moment neutrino transport schemes (left to right columns) at # = 6 ms of a postmerger-like hypermassive neutron star. Despite similar density, temperature, and
entropy profiles, the low-density gas is significantly more neutron-rich in the energy-dependent case. One of the reasons for this is that the radial velocity of the low-
density gas flowing from the star at the beginning of the simulation, mostly due to magnetic winding, is very high. Hence, this results in a large Doppler shift of the
neutrino spectrum. This effect can only be captured when an energy-dependent scheme is used. Therefore, this signature appears only in the energy-dependent case.

For the implementation details of energy-dependent radiation
transport in Gmunu, we refer readers to P. C.-K. Cheong et al.
(2023). The details of the additional implementations for
energy-integrated radiation transport can be found in
Appendix A.

The neutrino microphysics considered here is similar to that of
F. Foucart et al. (2020), with interaction rates provided by
NuLib (E. O’Connor 2015). In particular, we consider three
species of neutrinos: the electron-type (anti)neutrinos v, and 7,
and the heavy-lepton (anti)neutrinos v,, where the muon and tau

neutrinos (i.e., ¥, 7, Vs, and ) are grouped into v,. We further
assume that neutrino—matter interactions can be described by an
emissivity 7, absorption opacity x,, and elastic scattering opacity
kg, Which are obtained from tabulated rates generated via
NuLib. The table includes reaction rates for the charged current
reactions p+e~ <—n+v, and n + e < p + B,; scattering of
neutrinos on protons, neutrons, a-particles, and heavy nuclei;
and ete” < v and bremsstrahlung for the heavy-lepton
neutrinos only. The table is logarithmically spaced in neutrino
energies € (16 groups up to 528 MeV), rest-mass density
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Figure 3. Profiles of rest-mass density p (first row), temperature 7 (second row), electron fraction Y, (third row), and entropy per baryon s (fourth row) with different
two-moment neutrino transport schemes (left to right columns) at # = 50 ms of a postmerger-like hypermassive neutron star. At later times, the magnetic winding is
mostly saturated, and a quasi-equilibrium neutron star with disk system has formed. The thickness and composition of the disk depend on the choice of the neutrino

transport scheme. The disk is thicker when a more accurate moment scheme is used.

p (82 points in [10°, 3.2 x 10"*] gcm ), and fluid temperature
T (65 points in [0.05, 150] MeV) and linearly spaced in the
electron fraction Y, (51 points in [0.01, 0.6]).

3. Results

The magnetohydrodynamical evolutions of the neutron star
(i.e., for p=> 10" g cm™>) are very similar in all cases (see, e.g.,
Figure 1). This is expected, as the neutrinos are mostly in
equilibrium with the fluid in the high-density and hot regions.
Howeyver, this is not the case in the matter outflows and disk
(i.e., lower-density regions).

To compare the properties of the disk surrounding the
neutron star, we compare the rest-mass density p, temperature
T, electron fraction Y,, and entropy per baryon s profiles at
different times with different neutrino transport schemes. At the
beginning of the simulations, low-density gas flows out with
nonnegligible radial velocity from the surface of the star due to
the magnetic winding effect. The Doppler shift effect
significantly alters the distribution of the neutrinos in those
regions, which can only be captured when an energy-dependent
transport scheme is used. As a result, at early times, although
the density, temperature, and entropy are qualitatively the
same, the electron fraction is distinctively lower in the
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Figure 4. The total rest mass, mass-averaged electron fraction, and temperature
of the disk as functions of time with different two-moment neutrino transport
schemes of a postmerger-like hypermassive neutron star. Here, we define the
disk as the regions where p < 10'' g cm . In the energy-dependent case, the
disk mass is slightly higher. Initially, the disk is more neutron-rich, but it
becomes more neutron-poor at later time.

energy-dependent case, as shown in Figure 2. At later times,
the magnetic winding effect mostly saturates and the system
reaches a quasi-equilibrium state, resulting in a neutron star
with disk system. As shown in the hydrodynamical profiles at
t=50ms in Figure 3, the more accurate the neutrino transport
algorithm is, the thicker the disk becomes.

Figure 4 shows the disk mass and the density-weighted
averaged electron fraction and temperature. Those quantities
are defined as

Myisx = f Ddv, 2
p<10'g cm™3

(X)daisk =

! [ f DXdV], 3)
Myig | Jp<10gem3

where the variables X here can be either temperature 7' or
electron fraction Y,. In the energy-dependent case, the disk
mass is slightly higher. Initially, the disk is more neutron-rich,
but it becomes more neutron-poor at later times.

Cheong et al.

Detailed properties of the ejecta, such as its mass,
composition, geometry, and entropy, are very important to
observables of kilonovae. Here, the matter is identified as
unbound when it fulfills the Bernoulli criteria and is outgoing.
In particular, we locate the unbound matter everywhere in the
computational domain by checking
hut < *hmin ( 4)

v, >0 ’

where £ is the specific enthalpy, while A, is its minimum
allowed value for a given equation of state, u, = W( —a + Giv b,
and v, is the radial velocity.

Figure 5 compares the ejecta properties for the different two-
moment neutrino transport schemes at =20 ms and # = 50 ms.
All the energy-integrated neutrino transport schemes predict
very similar ejecta properties. However, the ejecta behaves
differently when an energy-dependent neutrino transport is
used. The total amount of ejecta is larger in the energy-
dependent case, in all directions. Moreover, the distributions of
the electron fraction Y,, the entropy per baryon s, and the
asymptotic velocity v., are noticeably different from the
energy-integrated cases. The energy-dependent scheme pre-
dicts more neutron-rich matter in the equatorial plane and faster
matter outflows in the polar regions. This implies that energy-
integrated schemes could potentially underestimate the total
amount of neutron-rich and/or fast ejecta in neutron star
mergers.

We further compare the total mass and the density-weighted
average properties of the ejecta. The total mass M. and the
density-weighted averaged variable X of the ejecta can be
estimated by (M. Haddadi et al. 2023)

t
Meje = f dr’ .¢‘
0 S

ext

#D dA; + f D f,av, )
‘/Exl

t
(X)eje = L[ f dr’ f VDX dA; + | DX ngdv], (6)
Meie | Yo Sext Vext

where #' = avi — 3, D=Wp is the conserved rest-mass
density, f,, =1 when the fluid at a point is unbound (i.e.,
fulfilling Equation (4)) but O elsewhere, and the variables X can
be temperature 7, entropy s, electron fraction Y,, etc. Sex is the
extraction surface, which is chosen to be a cylinder with radius
R=1800km and |z| =1800km, while V., is the corresp-
onding enclosed region.

Figure 6 compares the total rest mass, mass-averaged
electron fraction, temperature, entropy, and asymptotic velocity
of the ejecta as functions of time with different two-moment
neutrino transport schemes of a postmerger-like hypermassive
neutron star. All the energy-integrated schemes result in minor
differences in mass ejection but are very different from the
energy-dependent case. In the energy-dependent case, the
ejected mass is about 2 times higher by ¢~ 50 ms. In addition,
the ejecta is overall more neutron-rich and has lower entropy.
This implies that energy-integrated schemes could under-
estimate neutron-rich mass ejection in neutron star mergers.

Finally, we present the neutrino signals from the system.
Figure 7 compares the time evolution of the average energies of
neutrinos (e,) and luminosities L, at 1000 km of a postmerger-
like hypermassive neutron star. Here, the neutrino luminosities
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Figure 5. 1D histograms of the unbound outgoing matter in the computational domain of a postmerger-like hypermassive neutron star at = 20 ms (upper panel) and
t =50 ms (lower panel). These plots compare the distribution of ejected mass as functions of temperature 7, electron fraction Y,, entropy per baryon s, asymptotic
velocity v, and angle (6 € [0°, 90°] from pole to equatorial plane) with different two-moment neutrino transport schemes. The ejecta behaves similarly in all the
energy-integrated cases (blue, orange, and gray lines) but not in the energy-dependent case (dark gray lines). At early times, simulations with energy-dependent
neutrino transport predict more neutron-rich and faster matter outflows than the energy-integrated schemes do. That neutron-rich ejecta leaves the computational
domain gradually and can no longer be captured in the histograms at later times. At later times, the composition of the ejecta in the computational domain becomes less
neutron-rich in the energy-dependent scheme. These results suggest that the ejecta properties sensitively depend on the accuracy of the spectral information of

neutrinos.

L, observed by an observer are obtained using
Ll/ = % aFyl - BiEJ/ dAi’ (7)

where dA; = ﬁdxzdx3 (and dA, 5 are obtained by permutation
of the indices). The surface of this integral is chosen to be a
cylinder with radius R=1000km and |z =1000km. The
average energies and luminosities of the energy-dependent
scheme are about 30% higher than in the energy-integrated
schemes. For the energy-integrated cases, the average neutrino
energy of electron-type neutrinos (¢,,) and (¢;) are very close
for all cases. However, the average energies of the heavy-
lepton neutrinos have visible differences between energy-
integrated schemes. This is because the absorption neutrino-
sphere is deeper into the star than the scattering neutrinosphere
for heavy-lepton neutrinos, and the treatment of the energy
spectrum in the regions between those two neutrinospheres is
the major difference between all the schemes we include here.
Note that, although our initial condition is constructed to rotate
similarly to those reported from direct neutron star merger
simulations, the thermodynamics properties are very different
at the stellar center. Typically, the central temperature of a
postmerger hypermassive neutron star is cooler than its surface,
while the opposite is true in our constant-entropy initial data.
Therefore, the neutrino signals reported here, especially for
heavy-lepton neutrinos that are emitted mostly from the inner
part of the star, may not agree well with the results of full
neutron star merger simulations. The energy hierarchy
(e,) > (€) > (e,) (e.g., M. Ruffert & H. T. Janka 1998;
F. Foucart et al. 2020) is observed marginally in all cases

except the case using the methods of F. Foucart et al. (2016),
where (¢,) < (ez,).

4. Discussion

In this work, we compare two-moment energy-dependent
and energy-integrated neutrino transport simulations of hyper-
massive neutron stars. Specifically, we perform general-
relativistic radiation magnetohydrodynamics simulations of a
high angular momentum hypermassive neutron star with an
energy-dependent and three variants of energy-integrated two-
moment schemes with the same input neutrino microphysics.
We study the impact of this choice of the neutrino transport
schemes on our simulations, focusing particularly on the
neutrino signatures as well as the disk and ejecta properties.

As expected, we find that all the schemes work similarly in
the high-density hot regions, as the neutrinos are mostly in
equilibrium with the fluid. We do not find any significant
differences in the evolution of the neutron star among all four
different neutrino transport schemes. However, this is not the
case for the semitransparent region, where the spectral
information of the neutrinos is essential yet nontrivial. Not
only are the neutrinos not fully in equilibrium with the fluid,
but also their spectra can be significantly altered by the
gravitational redshift and the Doppler shift effects.

The properties of the disk surrounding the star are
significantly different when an energy-dependent scheme is
used. Dependence on the characteristics of the magnetic winding
effects, either the gravitational redshift or the Doppler shift
effects, can impact the neutrino spectrum at different levels.
These effects can only be captured with energy-dependent
transports and hence lead to very different disk formation
processes compared to energy-integrated simulations. Compared
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Figure 6. The total rest mass, mass-averaged electron fraction, temperature,
entropy, and asymptotic velocity of the ejecta as functions of time with
different two-moment neutrino transport schemes of a postmerger-like
hypermassive neutron star. In the energy-dependent case, the ejecta properties
differ noticeably compared to all the energy-integrated cases. At t ~ 50 ms, the
ejected mass is about 2 times higher. In addition, the ejecta is overall more
neutron-rich and has lower entropy. This implies that energy-integrated
schemes could underestimate neutron-rich mass ejection in neutron star
mergers.

to the energy-integrated cases, we find that the disk in the
energy-dependent case is more neutron-rich at early times
(t<10ms) and becomes geometrically thicker at later times
(t Z 50 ms).

Cheong et al.

The evolution of the matter outflows (i.e., their thermo-
dynamical properties and composition), which are sensitively
dependent on neutrino—matter interactions, are also heavily
dependent on the accuracy of the neutrino energy distributions.
In our simulations, we find that the properties of the ejecta are
noticeably different between energy-dependent and energy-
integrated schemes. In the energy-dependent case, at early
times, it gives more neutron-rich and faster matter outflows
than the energy-integrated schemes, while the compositions of
the outflows are more similar at later times. The total ejecta is
overall more massive and neutron-rich and has lower entropy in
the energy-dependent simulation.

The energy-dependent scheme predicts average energies and
luminosities ~30% higher than the energy-integrated cases. The
differences in average neutrino energies between the different
energy-integrated schemes are, on the other hand, very small,
except for heavy-lepton neutrinos. This is because different
schemes have different treatments of the regions between the
absorption and scattering neutrinosphere, and these regions are
larger for heavy-lepton neutrinos than for electron-type neutrinos.

Our findings agree with the comparison of (energy-
dependent) Monte Carlo and energy-integrated two-moment
schemes of direct neutron star merger simulations presented in
F. Foucart et al. (2020, 2024). For instance, F. Foucart et al.
(2020, 2024) have also reported higher neutrino average
energies and luminosities in their Monte Carlo simulations than
in their energy-integrated two-moment simulation, as well as
higher ejected masses (although the latter is likely not resolved
at the current accuracy of the Monte Carlo simulations). Both
their and our results suggest that estimating the neutrino
distributions based on F. Foucart et al. (2016, 2024) in energy-
integrated transports could underestimate the neutrino average
energies and luminosities, as well as the ejected mass.

The uncertainties due to neutrino microphysics could be
even larger than the discrepancy between energy-dependent
and energy-integrated transports. Most of the neutron star
merger simulations consider only the iso-energetic neutrino—
matter interactions. More complicated neutrino—matter interac-
tions that involve energy or species coupling, such as neutrino-
lepton inelastic scattering and pair processes, are often ignored
or treated very approximately. These neutrino—matter interac-
tions could be important in neutron star mergers (H. H.-Y. Ng
et al. 2024), altering the evolution of the entire system. Spectral
information about neutrinos is needed in order to include these
interactions in simulations properly. The inclusion of these
interactions in hypermassive neutron star simulations is left as
future work.

Energy-dependent neutrino transport is essential for accurate
kilonova modeling. The observables of kilonovae are sensi-
tively related to the properties of the merger outflows. Here, we
show that the ejecta properties are sensitive to the neutrino
spectral information. The timescales of these effects and
differences lie in the typical lifetime of a postmerger
hypermassive neutron star (O(10 ms)). Depending on when
the hypermassive neutron star collapses to a black hole, the
resulting disk and ejecta could be very inaccurate if energy-
integrated schemes are used. Moreover, the ability to resolve
the neutron spectral information is essential to include more
neutrino microphysics. To accurately model matter outflow
from neutron star mergers, energy-dependent neutrino transport
is necessary.
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Figure 7. Time evolution of far-field-averaged neutrino energies ({¢,); upper panels) and luminosities (L,; lower panels) measured by an observer comoving with fluid
at 1000 km of a postmerger-like hypermassive neutron star. The averaged neutrino energies are qualitatively the same among all the cases. The energy hierarchy
(e,) > (€,) > (&) is observed among all neutrino transport schemes we adopted here, which agrees with the literature. Similarly, the luminosities in all cases agree

qualitatively.
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Appendix A
Implementation of Energy-integrated Neutrino Transport
Schemes

A.l. Moment Evolution

The evolution equations of the moments of neutrinos can be
obtained by (M. Shibata et al. 2011; C. Y. Cardall et al. 2013;
A. Mezzacappa et al. 2020)

1 0

v}/f]‘;w _ _a_(GZU/wpvpuV) = SH (Al)
€

réd’
€2

where 7" and U*P are the monochromatic second-rank and
third-rank energy-momentum tensors and S, is the radiation
four-force, which describes the interaction between the
radiation and the fluid. Energy integration of Equation (Al)
gives

ViThg = St (A2)

where
T = fo AreTrde, (A3)
Shy= j; Ame?Sh de (A4)

are the energy-integrated energy-momentum tensor of the
radiation and the radiation four-force. The major limitation of
energy-integrated transport is twofold: (i) the evolution of the



THE ASTROPHYSICAL JOURNAL, 975:116 (15pp), 2024 November 1

neutrino spectrum cannot be captured, and (ii) neutrino—matter
interactions that require spectral information of neutrinos
cannot be easily included. Either of them can significantly
impact the evolution of neutrinos and their coupling to the fluid
and hence the merger dynamics and the evolution of the fluid
composition.

The advection in energy space (i.e., the second term of the
left-hand side of Equation (Al), which captures the gravita-
tional and Doppler red/blueshifts of the neutrino spectrum,
vanishes after energy integration because of energy conserva-
tion. In neutron star mergers, this term is not negligible, as the
gravitational effect is strong and the fluid velocity is high.
Properly capturing the energy advection is essential to
neutrino evolution (e.g., see the energy advection tests in
E. O’Connor 2015; T. Kuroda et al. 2016; P. Anninos &
P. C. Fragile 2020; C. Chan & B. Muller 2020;
P. C.-K. Cheong et al. 2023). Not taking care of the energy
advection could significantly affect neutrino evolution and lead
to inaccurate results.

Here, we adopt the 3+ 1 reference metric formalism
(P. J. Montero et al. 2014; T. W. Baumgarte & S. L. Shapiro
2020; V. Mewes et al. 2020). In this formalism, the metric can
be written as

ds? = —a2di* + ~;(dx' + Bldr)(dx’ + Bidr), (AS)

where « is the lapse function, 3 " is the spacelike shift vector,
and +; is the spatial metric. We adopt a conformal decom-
position of the spatial metric -y; with the conformal factor 1,
Y = w“'?ij, where 4 is the conformally related metric. In the
conformally flat approximation, the reference metric is the
conformally related metric (i.e., 3; = 4;).

The evolution equations of the first two moments of
radiation E and F; for each species can be written as

0 A . .
E[VV/’AYE] + Vi [W/4 (aF" — EBY]
=V7/4 [=Foja + PUK;]
— ayv/A Sk, (A6)

0 = A Py i i
E[\/”Y/’YE‘] + Vi [Vy/A (P’ — F; 3]
=/ [—Eaz’a + RV + %Oépjk@i%k]

+ Y/ A Sk Vi (A7)

where n* is the four-velocity of an Eulerian observer, V; are the
covariant derivatives associated with the reference metric ’yi]., P
is the radiation stress tensor, and K; is the extrinsic curvature.

A.2. Neutrino Number Density Evolution

In addition to neutrino energy and flux density, we also
evolve the neutrino number density N,

%[ S7AN] + SiVA/R (@B — NBY] = ay7/3 o, (A8)

where @, are the covariant derivatives associated with the
reference metric %- As in F. Foucart et al. (2016), we
reconstruct N/E for the flux calculation in Equation (A8) and
apply the HLL Riemann solver.

Cheong et al.
The Fy' in the flux terms in Equation (A8) is

. i it H*

By = I Tt (A9)
() (eh)

where (€) is an energy-weighted average neutrino energy,
which can reasonably be estimated by

E — Fvi
N

(e") is a flux-weighted average energy of the neutrino, the
choice of which is a major limitation of this energy-integrated
scheme.

One of the simplest choices is setting (¢”) = (¢). This choice
is very convenient from the implementation point of view and
has been adopted in D. Radice et al. (2022), C. Musolino &
L. Rezzolla (2024), and F. Schianchi et al. (2024). Although
(e") ~ (€) in the optically thin regions, the choice of (¢*) is
nontrivial elsewhere. In low-absorption optical depth but high-
scattering optical depth regions, the spectrum of the neutrino
flux can be significantly biased toward lower neutrino energies
(ie., (") < (€)).

Here, we consider the scheme proposed by F. Foucart et al.
(2016). Specifically, in this scheme, (e”) is chosen to be

(ef)  FFR—s"'(FBF) — BEF)
()  FFy—sS(FFy — BR)

() =W (A10)

(Al1)

where F, = El( “’”) is the ath-order complete Fermi—Dirac

keT
integral and g, is the chemical potential for neutrinos. For a

more compact expression, we omit the dependence in :—T in

B
Equation (Al11). Two auxiliary scalars, s€ and s”, where

0<s€<s”<1, are introduced to control (¢”)/(¢) as shown
in Equation (A11). s represents the fraction of neutrinos that
have gone through a significant optical depth since emission.
s¥ is chosen to be a function of s and the optical depth 7,

c

sF= T (A12)

1+
By following F. Foucart et al. (2016), the optical depth 7 is
estimated as

¢=1/0 + pgn), (A13)

where ¢ = \/H"H,/J? is the flux factor, while (3 is a parameter
for this scheme (not to be confused with the shift vector). 3 is
calibrated to be 48 for a core-collapse supernova system, such
that the optical depth 7 is roughly 2/3 on the neutrinosphere.
Here, we dynamically evolve s€ in each implicit step by

Ns€ + aAtFsF

sCF = : (Al14)
N + aAH(F + Ty)
where
— sF - 2
F = ov| Bfo=s"BR F2F1)]. (AL5)
hE

The collisional source term for the number density N in
Equation (AS8) is given by
C—‘—RL—‘— RNJN
0 TN N TN W ( E_ F;'Vi) s

(A16)
(€)
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where 7, and Ry are the energy-integrated number emission
and the energy-averaged number absorption, respectively. This
source term is handled in the implicit step. For instance, in the
implicit step, after the neutrino energy and flux density {E, F}
are updated, we update the neutrino number density N by

SN = \VY/AN + OZVW/ﬁA”_]N.

1+ OéA[RN(

- (A17)
W(E—E-v’))

A.3. Opacities and Emissivities

The energy-averaged absorption and scattering coefficients
are

> KasefdV,
Ras:\];:zi (AIS)
e
> ko fdV,
gL @9
0 €

where f is the distribution function, and we have defined
dv,= 4mé’de. In this scheme, neutrinos are assumed to follow
a Fermi—Dirac distribution function,

—1
fip(e: T 1) = [1 + exp(%)] . (A20)

Biv

where € is the neutrino energy, p, is the neutrino chemical
potential, and T, is the neutrino temperature.

In our current implementation, the neutrino chemical
potential x, can be obtained directly from the equation-of-
state table, which assumes that neutrinos are in equilibrium
with the fluid. Namely, we set

= . (A21)
It is suggested that the neutrino chemical potential u, can be
obtained by interpolating its value at equilibrium and free-
streaming limit (E. O’Connor & C. D. Ott 2010; F. Foucart
et al. 2015; F. Schianchi et al. 2024), e.g., p,=
pA[1 — exp(—7)], where 7 is the optical depth. Since the
estimated optical depth 7 via Equation (A13) is not very
accurate, and this interpolation has a minimal effect in neutron
star mergers (F. Foucart et al. 2015), in the current implemen-
tation, we do not use this interpolated chemical potential. We
note, however, that this could lead to significant differences in
the context of core-collapse supernovae.

Usually, the emissivity, absorption, and scattering coeffi-
cients are functions of fluid rest-mass density p, temperature 7,
and electron fraction Y,. When neutrinos are in equilibrium
with the fluid, mostly in optically thick regions, the neutrino
temperature is roughly the same as the fluid temperature (i.e.,
T, ~ T). However, the neutrino temperature can be significantly
different from the fluid temperature in non-optically thick
regions. By following F. Foucart et al. (2016), we first calculate
the energy-averaged absorption and scattering opacities by
setting T, =T,

[ Fas(o, T. Yo efip (€, T, g1, ) V.
= . (A2

S efin (e, T, p)dv.

—eq
Ra,s
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I Ralp, To Yo fyp (6 T, 1) aVv,

Ry = , (A23)
I fen(es T g )av.
and apply the correction
T2

Ra,x = /_ﬁf,(,]g(,o, T, Ye)T_V’ (A24)

where the neutrino temperature 7, can be estimated by

A (i)

T, = —T7 (), (A25)

'“'7/
F 3(ﬁ)

where (€) is estimated by Equation (A10). In practice, we limit
the correction 1 < Tl,2 /T? < 10 for more robust simulations.

The energy-integrated emissivities can then be calculated by
imposing Kirchhoff's law:

_ — 47T /’('l/ 4

= Ra ksT)", A26
N R 3(kBT)( 8 7) (A26)
_ — 47T :ul/ 3

= iyn——F; kgT)>. A27
Nn HN(/’lC)3 Z(kBT)( sT) (A27)

For robustness, we consider neutrino—matter interactions
only for the region where p > 10°gcem * and 7> 0.1 MeV.

A.4. Coupling to Fluid

The coupling to fluid is the same as described in P. C.-K.
Cheong et al. (2023), except that the source terms for the
evolution equation of the electron fraction Y, can be obtained
from neutrino number densities. In particular, the evolution
equation for the electron fraction Y, is given by

Va(pYeu®) = myR, (A28)
where m, is the atomic mass unit, and
R = —;{ sign(v;) 771\/”1’ — W;Ni:jl’,v’)]’ (A29)
and
+1, if vy, =1,
sign(v;)) =41, ify; =10, . (A30)

0, otherwise

A.5. Improvement by H. Andresen et al. (2024)

The gray scheme of F. Foucart et al. (2016) has been
improved for core-collapse supernovae by H. Andresen et al.
(2024). These improvements have been partially integrated in
Gmunu for more comprehensive comparisons. Note that the
improvements proposed in H. Andresen et al. (2024) are
focused on the core-collapse supernova problem. Some of them
may not apply for neutron star merger cases. To keep the
scheme generic and for easier implementation, we included
only the following adjustments.

We replace Equations (A11), (A14), and (A15) by

(ef)  FBF—sf(BF - BE)

= , (A31)
(€) BF — sC(BF — KF)
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Ns€ + aAtFsF

§CF = , (A32)
N + 7) + aAt(F + 7y)
_sF _ 2
Fo(N FF —s" (Bl — hB) ’ (A33)
Y2
respectively.

When the neutrino temperature 0.1 MeV <7, < 16 MeV,
instead of extrapolating the opacities by multiplying the
correction factors, we calculate the opacities by

o Kaso, T, Yo efep (60 T p,)dV.
| efin e, Ty p)av.

o Ko, T Yo fep (e, T )V,
j(‘)oo fFD (e, T, Uz/)dvf '

For the case that the neutrino temperature is higher than
16 MeV, we use the original scheme as in Equation (A24).
Here the neutrino temperature 7, is still estimated by
Equation (A25). Although the calculation of the degeneracy
parameter should involve neutrino temperature in this case, we
do not solve a nonlinear equation for neutrino temperature.

Note that, as pointed out in H. Andresen et al. (2024),
estimating the optical depth with Equation (A13) not only
requires a parameter 3 but also could underestimate the optical
depth 7. However, as the geometry in neutron star mergers is
often nonspherical, the alternative approach proposed in
H. Andresen et al. (2024) may not work well in such systems.
Additionally, the fact that the optical depth can be calculated
from only local variables when using Equation (A13) is
computationally convenient. Therefore, we adopt that equation
to calculate optical depth 7 in this work.

, (A34)

a,s

(A35)

Ry =

Appendix B
Add-on Implementation

B.1. Toward Weak Equilibrium

Since the neutrino-fluid coupling is done explicitly, the
hydrodynamical quantities such as temperature 7 and electron
fraction Y,, and therefore the emissivity and opacities, are kept
fixed during an implicit time step. As pointed out in D. Radice
et al. (2022), this can cause the numerical scheme to oscillate if
the weak equilibration timescale is too small to be resolved by
a time step At. In the worst-case scenario, this could cause
significant changes of the electron fraction Y, in just one
implicit step, affecting the stability of the evolution and leading
to failure of the simulation. This can be avoided if the time step
is chosen to be adaptive to the change of Y, (e.g., in
P. C.-K. Cheong et al. 2023). However, reducing the time-
step size means increasing the computational cost. To avoid
such strong restrictions of the time-step size without solving the
full implicit neutrino-fluid coupling equations, we follow the
method proposed by D. Radice et al. (2022). In practice, we
found that this approach works well in both energy-integrated
and dependent neutrino transport simulations. For complete-
ness, here we highlight the key details of this method.

The idea is to recalculate the emissivity with a new estimated
target fluid temperature and electron fraction when the weak
equilibration timescale cannot be resolved by a given time step
At. In particular, when the estimated radiation-fluid
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equilibration timescale Teqm is smaller than Az, we estimate
the target fluid temperature and electron fraction {7*, Y,*} by

Y — v,

Y=Y, + “—<max (Toqm, 0.5A1), Bl

, 05As (Teq ) (B1)
eq _

T =T+ umax (Teqms 0.5A1), (B2)

0.5A¢

where {T°9, Y9} are the temperature and electron fraction
obtained by assuming weak equilibrium and lepton and energy
conservation by following A. Perego et al. (2019). After that,
we recalculate the emissivity as in Equations (A26) and (A27)
with {T*, Y}, while the opacities remain unchanged.

The radiation-fluid equilibration timescale is estimated as

Teqm = 7mipv (7-eqm)7 (B3)
where
Teqm = [Ka(Kq + k)12 (B4)

is a function of the species and energy of neutrinos. Since
unwanted strong oscillations of the electron fraction Y, are the
main concern, here we consider only the timescale of electron-
type neutrinos (i.e., v, and 7). In the energy-integrated neutrino
transport cases, the timescale 7y is calculated directly from
the energy-averaged opacities &, s; Equation (B3) in these cases
is independent of energy bins.

The fluid temperature and electron fraction {74, Y 9}
assuming weak equilibrium and lepton and energy conserva-
tion are obtained by solving (see A. Perego et al. 2019)

Y=Y+ Y, (T, YY) — Y, (T, Y.9),
ot = efid (T, Y59)

+ Lz, (T4, Y9 + Z, (T, YY) + 4Z,, (T9)],
my

(BS)

(B6)

where Y; is the total lepton fraction and e, and egqy;q are the
total and fluid energy densities. The fluid energy density is
defined as epuiq = p(1 + €), where ¢ is the fluid specific
internal energy. The total lepton fraction Y, and the total energy
density u are obtained at the beginning of the implicit step (the
intermediate values of the radiation field are used, after
applying the explicit terms; the algorithm thus depends on
the exact implicit—explicit scheme adopted) by

Y=Y, + 28N, — Ny, (B7)
P

Ciot = €fluid T [Euf + EDe + 4E1/X]- (B8)

The neutrino particle and energy fractions ¥, and Z,, in
Equations (B5) and (B6) are given by

4mm, Hy,
Y, (T, Y)= —-F L (kg T)3, B9
(T, Yo) o)} z(kBT)( sT) (B9)
dmm My,
Z,(T,Y,) = —LF| =2 |(kgT)*. B10
( ) (o)) 3(kBT)( BT) (B10)

The nonlinear Equations (B5) and (B6) are solved by using the
multidimensional Broyden method described in W. H. Press
et al. (1996).
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Note that although only electron-type neutrinos’ equilibrium
timescale is used to compare to the simulation time step (see
Equation (B3)), the energy conservation equation being solved
in Equation (B6) assumes that heavy-lepton neutrinos are also
in equilibrium. In practice, there are regions where the electron-
type neutrinos are expected to be in equilibrium, but not the
heavy-lepton neutrinos. The method described there may force
heavy-lepton neutrinos to equilibrium in those regions. A better
solution to overcome the timescale issue will be left as
future work.

B.2. Initialization of the Radiation Quantities

By default, we initialize the radiation quantities as follows.
When the absorption opacity is nonzero, we initialize the
radiation energy and flux densities {£, F;} by assuming that the
neutrinos are fully trapped. For instance, we set {&, F;} by
following Equations (79) and (80) in P. C.-K. Cheong et al.
(2023) and setting the comoving second moment H* = 0:

&= %(4W2 - 1), (B11)

7= (3w, B12)
where the neutrino energy density in the comoving frame is
assumed to be

1
J= WffFD(f’ T, ).

In the energy-integrated cases, we apply the same equations
for {E, F;}, with an energy-integrated neutrino energy density

J= J;) > JdV.. The neutrino number densities are initialized as

N:ﬁ_N ; )
i \W(E — Fvi)

When the auxiliary scalar s€1s evolved, we set it to be zero
everywhere at the beginning of the simulations as in F. Foucart
et al. (2016).

(B13)

(B14)

B.3. Avoiding Neutrino Beam Crossing at the Pole

One of the major limitations of the two-moment scheme is its
failure to describe crossing radiation beams. Usually, the
closure relations are chosen to be asymptotically correct in the
optically thick region but do not work very well in the free-
streaming region (F. Foucart 2023). As a result, the two-
moment approach fails to describe crossing radiation beams
(see, e.g., A. Sadowski et al. 2013; F. Foucart et al. 2015;
L. R. Weih et al. 2020; F. Foucart 2023). This causes a huge
problem in the polar region in the axisymmetric supramassive/
hypermassive neutron star simulations. The radiation gets
trapped and keeps gaining energy in the polar regions due to
the geometry of the rotating neutron star, eventually leading to
a failure of the simulation.

To avoid this, we enforce the radiation to be outgoing in the
optically thin region at each time step. For instance, when the

flux factor ( = \/H"H,/J? is larger than 0.5, we set

F; — sign(x') x |F]. (B15)

In this way, the radiation is enforced to be outgoing, and the
energy is conserved.
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Appendix C
Hydrostatic Test with a Proto-Neutron Star Background

Here, we follow the test used in F. Foucart et al. (2016) and
H. Andresen et al. (2024). In particular, we map the
hydrodynamical background of a core-collapse simulation of a
30 M, progenitor. This profile is identical to the one used in
H. Andresen et al. (2024). To exclude the Doppler shift and
gravitational redshift effects, the fluid velocity is set to 0 and
the metric to flat space. We run the simulations with neutrino
evolution only and run them until 100 ms to reach a steady-
state solution.

Table 1 compares the steady-state neutrino signals obtained
with different schemes. Our results agree with F. Foucart et al.
(2016) and H. Andresen et al. (2024) qualitatively. For
instance, all the electron-type neutrinos behave similarly, but
not heavy-lepton neutrinos. As discussed in the main text, the
main reason is that the absorption neutrinosphere is deeper into
the star than the scattering neutrinosphere for heavy-lepton
neutrinos, while the treatment of the regions between these two
neutrinospheres is the major difference between all the schemes
we include here.

Table 1
Neutrino Luminosities and Averaged Energies in the Hydrostatic Simulations
with a Fixed Proto—Neutron Star Background

Schemes 10°" erg sV (MeV)
L, Ly, Ly, (en)  (en) (6w
Spectral 99.50 3131 143.06 1039 1228 19.20
(eF) = (e) 118.61 3137 10596 1096 1147 2501
F. Foucart et al. 117.89 3427 12414 1028 1074 22.12
(2016), 3=6
H. Andresen et al. 117.19  33.03 10147 1050 10.65 20.14
(2024), B=6

Note. The hydrodynamical background is obtained via a simulation of a 30 M,
progenitor. The velocities and gravitational field are set to be 0 to exclude the
Doppler shift and gravitational redshift effects. These quantities are extracted at
r =500 km at # = 100 ms. Our results agree with F. Foucart et al. (2016) and
H. Andresen et al. (2024) qualitatively. For instance, all the electron-type
neutrinos behave similarly, but not heavy-lepton neutrinos. This is because the
absorption neutrinosphere is deeper into the star than the scattering neutrino-
sphere for heavy-lepton neutrinos, and the treatment in the regions between the
two neutrinospheres is the major difference between all the schemes we
include here.

Appendix D
Core Collapse of a 20 M, Star in One Dimension

In this section, we present the simulation of the core collapse
of a massive star in one dimension with two-moment neutrino
transport schemes. Here, we use the same progenitor and
equation of state as in E. O’Connor et al. (2018) and H. And-
resen et al. (2024). In particular, the 20 M, solar metallicity
progenitor star of S. E. Woosley & A. Heger (2007) and the
SFHo equation of state of A. W. Steiner et al. (2013) are used
in this test.

The computational domain covers [0, 104] km for r, with the
resolution N, =128 and allowing /,,,x = 10 mesh levels. The
corresponding finest grid size is Ar~ 153 m. The refinement
criteria are the same as the core-collapse supernova simulations
reported in P. C.-K. Cheong et al. (2023). The neutrino
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Figure 8. Time evolution of far-field-averaged neutrino energies ({¢,); upper panels) and luminosities (L,; lower panels) measured by an observer comoving with fluid
at 500 km of a collapsing 20 M, star. The energy—inte%rated moment scheme of F. Foucart et al. (2016; dotted lines) and H. Andresen et al. (2024; dotted—dashed
>.

lines) and the simplified version (i.e., setting (€) = (e

; dashed lines) are shown in the plot. The solid blue lines show the energy-dependent neutrino transport

simulations with the same neutrino interactions. The reference evolution with conventional neutrino—matter interactions (i.e., including neutrino—electron inelastic
scattering) is presented with the solid orange lines. The averaged neutrino energies of electron types (¢,,) and (e;,) are very close among all the cases. However, the
averaged energies of heavy-lepton neutrinos are very different with different approaches. The behavior of heavy-lepton neutrinos is sensitive to the neutrino
treatments, while it is insensitive to the parameter 5 € [4, 8]. On the other hand, the luminosities in the case of energy-integrated schemes are lower than the cases

with full energy transport and approaching similar values at later times.

microphysics is provided by NuLib (E. O’Connor 2015), where
the neutrino interaction sets are the same as in E. O’Connor et al.
(2018). The energy space is logarithmically discretized into 18
groups from 1 to 280 MeV.

Energy-coupled neutrino interactions, such as neutrino—
electron inelastic scattering, are not included when an energy-
integrated neutrino transport is used. However, those energy-
coupled interactions are essential for the modeling of the
collapsing phase of core-collapse supernovae. To perform end-
to-end core-collapse supernova simulations with energy-
integrated neutrino transport, we adopt the parameterized
deleptonization scheme of M. Liebendorfer (2005). Note that,
instead of including neutrino pressure by following the
description in M. Liebendorfer (2005), we switch on the
neutrino transport before core bounce. For instance, when the
maximum rest-mass density p, .. is above the neutrino-trapping
density pyap ~ 102 gem ™, we switch on the two-moment
neutrino transport and enable the coupling between neutrinos
and fluid energies and momenta. When neutrino transport is
switched on, we initialize the radiation quantities as described
in Section B.2. The change of the electron fraction is controlled
by this deleptonization scheme until the proto—neutron star is
formed; i.e., the evolution of the electron fraction Y, is
switched on at core bounce, which is defined as when the
matter entropy per baryon is larger than or equal to 3 (i.e.,
s >3 kg baryon™") in the core region (r < 30 km).

To better compare different transport schemes, we perform
all the simulations with identical input microphysics except the
reference model. In particular, we perform simulations with the
energy-integrated moment scheme of F. Foucart et al. (2016)
and H. Andresen et al. (2024), as well as using the simplified
scheme setting (¢) = (¢”). In addition, we perform simulations

with energy-dependent neutrino transport with the same
deleptonization scheme and neutrino interactions. To compare
to the conventional core-collapse supernova simulations, we
also include simulations with full energy-dependent neutrino
transport with conventional neutrino—matter interactions as in
E. O’Connor et al. (2018) as a reference model.

The time evolution of averaged neutrino energies (e,)
measured by an observer comoving with fluid at 500 km of a
collapsing 20 M, star are shown in the left column of Figure 8.
All the schemes predict a very similar averaged neutrino energy
of electron types (¢,,) and (¢;,). However, the average energies
of heavy-lepton neutrinos (¢, ) are very different with different
approaches. For instance, the simplified approach overesti-
mates by about ~25% the average energy of heavy-lepton
neutrinos when compared to the energy-dependent case. While
the schemes of F. Foucart et al. (2016) and H. Andresen et al.
(2024) are closer to the energy-dependent case at the very
beginning, the differences become more significant at later
times. Overall, the behavior of heavy-lepton neutrinos is
sensitive to the neutrino treatments, while it is insensitive to the
choice of the parameter (3 in the range of [4, 8].

The time evolution of the luminosities L, measured by an
observer comoving with the fluid at 500 km of a collapsing 20
M, star is shown in the right column of Figure 8. Although the
average energies of electron-type neutrinos are very similar
among all the schemes we have tested, the corresponding
luminosities can be very different from the energy-dependent
cases. The luminosities in the case of energy-integrated
schemes are lower than the cases with full energy transport
and approaching similar values at later times.

Figure 9 compares the time evolution of the shock and
proto—neutron star radius among different neutrino transport
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Figure 9. Time evolution of the shock and proto—neutron star radius, where the
former is defined as the location of the largest absolute velocity while the latter
is defined as the location where the rest-mass density p = 10'" g cm>. The
energy-integrated moment scheme of F. Foucart et al. (2016; dotted lines) and
H. Andresen et al. (2024; dotted—dashed lines) and the simplified version (i.e.,
setting (¢) = (”); dashed lines) are shown in the plot. The solid blue lines
show the energy-dependent neutrino transport simulations with the same
neutrino interactions. The reference evolution with conventional neutrino—
matter interactions (i.e., including neutrino—electron inelastic scattering) are
presented with the solid orange lines. The shock radius is sensitive to the
neutrino treatments but insensitive to the choice of the parameter § € [4, 8].
The shock radius in the case of energy-integrated schemes is lower than the
cases with full energy transport and approaching closer values at later times.
The proto—neutron star radius evolution in the case of F. Foucart et al. (2016)
matches the energy-dependent cases surprisingly well, while other energy-
integrated schemes predict a slightly larger proto—neutron star.

schemes. Here, the shock radius is defined as the location of the
largest absolute velocity, while the proto—neutron star radius is
defined as the location when the rest-mass density
p=10""gcm . Similar to the neutrino signatures, the shock
radius is sensitive to the neutrino treatments but insensitive to
the choice of the parameter 5 € [4, 8]. The shock radius in the
case of energy-integrated schemes is lower than the cases with
full energy transport and approaching closer values at later
times. The proto—neutron star radius evolution in the case of
F. Foucart et al. (2016) matches the energy-dependent cases
surprisingly well, while other energy-integrated schemes
predict a slightly larger proto—neutron star.

Although the energy-integrated transport scheme of F. Foucart
et al. (2016) implemented in Gmunu is essentially the same as
the one reported in H. Andresen et al. (2024), we report different
results. In particular, we do not observe strong deviations of the
average energy of electron-type neutrinos compared to the
energy-dependent scheme, and the average energy of heavy-
lepton neutrinos behaves differently. In addition, we observe a
different hierarchy of the shock radius and proto—neutron star
radius. In our energy-integrated neutrino transport simulations,
the shock radius is smaller than the energy-dependent case,
which is the opposite in H. Andresen et al. (2024). The proto—
neutron star radius of the case of F. Foucart et al. (2016) is
slightly larger than the energy-dependent case, which is not the
case in H. Andresen et al. (2024).

Using the equilibrium neutrino chemical potentials every-
where in the simulations (i.e., via Equation (A21)) is one of the
reasons for this discrepancy. By using an interpolated neutrino
chemical potential with the estimated optical depth, we manage
to get results that agree better (e.g., a shock that is stronger than
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in the energy-dependent case) for the early postbounce time (i.e.,
t — thounce S 150 ms), but not afterward. Lacking more accurate
optical depth information prevents us from investigating this
further. These results suggest that this core collapse of the 20 M,
star test is very sensitive to the implementation details in energy-
integrated cases; comparisons using other codes would be
necessary to understand the origin of the discrepancy.
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