DISCONTINUOUS GALERKIN METHODS FOR 3D-1D SYSTEMS
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Abstract. We propose and analyze discontinuous Galerkin (dG) approximations to 3D-1D coupled systems
which model diffusion in a 3D domain containing a small inclusion reduced to its 1D centerline. Convergence to
weak solutions of a steady state problem is established via deriving a posteriori error estimates and bounds on
residuals defined with suitable lift operators. For the time dependent problem, a backward Euler dG formulation
is also presented and analysed. Further, we propose a dG method for networks embedded in 3D domains, which
is, up to jump terms, locally mass conservative on bifurcation points. Numerical examples in idealized geometries
portray our theoretical findings, and simulations in realistic 1D networks show the robustness of our method.
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1. Introduction. Modeling physiological processes involving the flow and transport within
a complex network of vessel-like structures embedded in a 3D domain is crucial. Examples of such
processes include drug transport in vascularized tissue [29, 3] and solute clearance through the
lymphatic vessels in the body [27] and through the glymphatic system of the brain [26, 32]. This
modeling setup has applications not only in physiology but also spans areas such as geosciences
[13, 24].

To account for a complex network of vessels that typically have a small diameter compared
to a surrounding domain, topological model reduction techniques have been proposed [6, 22].
Such models reduce the equations posed in 3D vessels to 1D equations posed on their centerlines.
Further, these 1D equations are suitably coupled to extended 3D equations in the surrounding.
Thereby, 3D—-1D models reduce the computational cost while providing a reliable approximation to
the full dimensional system. Bounds on the modeling error induced by such a derivation in terms
of the vessel diameter are derived for the time dependent convection diffusion 3D-1D problem in
[26], for the steady state diffusion 3D-1D problem in [22], and for the steady state 2D-0D problem
in [19].

We remark that the 3D-1D model derived in [22] and further extended in [26] naturally uses
the lateral average as a way to restrict 3D functions to 1D inclusions. This differs from the
models presented in [4, 6], where 1D traces of 3D functions are used; therefore, the functional
setting involves special weighted Hilbert spaces. The latter models can be generally viewed as
elliptic problems with Dirac line sources. Several finite element schemes have been proposed and
analyzed for this class of problems. In addition to the continuous Galerkin method introduced
in [5] and further analyzed in [18, 8], we mention the singularity removal method [13], the mixed
approach [14], the interior penalty dG method [25], and the Lagrange multiplier approach [21]. It
is worth noting that the papers [13, 8, 14, 25] only analyze the 3D problem and assume a given
1D source term.

For the 3D-1D problem where the restriction operator is realized via lateral averages, the
continuous Galerkin method is analyzed in [22], providing error estimates in energy norms. To the
best of our knowledge, a discontinuous Galerkin method for the coupled 3D-1D system and its
analysis are novel. DG approximations have several favorable features such as the local mass con-
servation property [28, Section 2.7.3]. In addition, with dG approximations, local mesh refinement
and local high order approximation are easily handled since there are no continuity requirements.
The analysis of dG for the coupled 3D—1D problem requires non—standard arguments as the strong
consistency of the method cannot be assumed. This stems from the observation that the 3D so-
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lution does not belong to H3/2t7(Q) for any positive 7, the natural Sobolev space for the interior
penalty dG bilinear form.
We now summarize the main contributions of the paper and give an outline of the contents.

e We propose an interior penalty dG method for the coupled 3D—1D problem, and we prove
convergence to weak solutions. The main result is given in Theorem 4.6.

e We derive error estimates for regular meshes in Corollary 4.7 and for graded meshes in
Corollary 4.8. The second estimate shows that if the mesh is resolved near the boundary
of the inclusion, then almost optimal error rates are recovered.

e We analyze a backward Euler dG discretization for the time dependent problem by intro-
ducing a suitable interpolant which is based on the elliptic projection. The main result is
in Theorem 5.1.

e For vessel networks embedded in a 3D domain, we propose a dG method with a hy-
bridization technique on bifurcation points. Up to jump terms, this method preserves
conservation of mass on such junctions, see Section 6. We show the well-posedness of this
dG formulation.

The rest of this article is organized as follows. Sections 2 and 3 introduce the model problem and
the dG approximation respectively. The error analysis for the steady state problem is included in
Section 4. We analyze a backward Euler dG method for the transient 3D-1D model in Section 5.
The case of a vessel network inside a 3D domain is studied in Section 6. In Section 7, we provide
numerical examples for manufactured solutions in a 3D—1D setting, for 1D vessel networks, and
for realistic 1D networks in 3D tissue. Conclusions follow in Section 8.

2. Model problem. We introduce the needed notation and the steady state 3D-1D problem.

2.1. Notation. Given an open domain O C R?, d € {1,2,3}, the usual L? inner product is
denoted by (f,g)o for given real functions f and g. Let L?(O) be the Hilbert space with inner
product (-,-)o and the usual induced norm || - || L2(0y. We drop the subscript when O =  and let
|-l ==l - lz2(q) and (+,-) := (-, -)a. Recall the notation of the standard Sobolev spaces W™ ?(O)
and H™(O) = W™2(0) for m € N and 1 < p < oo. For a given weight w € L>*(0) and w > 0
a.e. in O, the weighted L? inner product is given by (f, 9)r20) = (f;wg)o with the respective
weighted L2 space:

(2.1) I fllz2 o) = ||w1/2f||L2(O)7 L2(0)={f:0 =R || fllrz0) < oo}

Similarly, the weighted Hilbert space HJ (O) is given by

(2.2) H,,(0) = {f € L3, (0) | IV fllz2, 0y < 00},
where the weighted inner product and norm are

(2.3) (f:9)mz0) = (F,9) 2,0 + (VY9 200 70y = 1172 0) + V22 0)-

We omit the subscript/weight w when w = 1. Throughout the paper, we denote by C a generic
constant independent of mesh parameters. We use the standard notation A < B for A < C' B and
A~ Bfor A<(CBand B<CA.

2.2. The 3D-1D model. Let Q C R? be a bounded domain with a one dimensional inclusion
A. We assume that A is parametrized by A(s),s € [0, L] and is strictly included in 2, X is C?
regular, and (for simplicity) ||A'(s)|| = 1 so that the arc length and s coincide. We further define
By as a generalized cylinder with centerline A. The boundary of By will be denoted by I'. See
Figure 2.1 for an illustration of the considered geometry. A cross-section of By at s € [0, L] is
denoted by O(s) with area A(s) and perimeter P(s). We assume that there are positive constants
ag, a1 such that ag < A(s) 4+ P(s) < ay for all s. We also assume that A belongs to C1([0, L]). For
a function u € L'(90(s)), we define the lateral average  as

_ 1
(2.4) u(s) = ) /8@(5) u
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Fic. 2.1. Illustration of the considered geometry

The 3D-1D model that we consider results from a reduction of a 3D-3D model in 2\B, and
in By with Robin type interface conditions on I". This condition models the membrane T" as
semi-permeable with permeability constant £ > 0. Averaging the equations in Bj and formally
extending the equations in Q\ By, one obtains the following coupled system.

(2.5) ~Au+ET—1a)dp=f in Q,
(2.6) —dy(Adsi) + Pé(a—u)=Af in A.

The source terms f € L2(Q) and f € L4(A) are given. We refer to [22, 26] for details on the
derivation and on the model error analysis. The above equations are to be understood in the weak
sense, and the functional (7 — @)dp is defined over H'(Q) as

(2.7) (@ — 0)ér(v) = /AP(E —a)s, Yve HY Q).

The above functional is well-defined since an application of Cauchy-Schwarz’s inequality and trace
theorem yields

(2.8) 1@l 22, a) < 0llL2@y S ol Yo € HY(Q).
The system (2.5)—(2.6) is complemented by the following boundary conditions.
(2.9) u=0ondQ, and Adst=0 ons={0,L}.

To introduce the weak formulation of (2.5)-(2.6), we define the following bilinear forms.

(2.10) a(u,v) = (Vu, Vv), Yu,v € HY(Q),
(2.11) an (i, ) = (dst, ds®) 2 (a), Va,0 € Hy(A),
(212) ba (0, W) = (£0,0) 2, (a) Vo,w € Lp(A).

The weak formulation of the coupled 3D-1D problem then reads [22]: Find u = (u, @) € H}(Q) x
H (A) such that

(2.13) a(u,v) +bp (T — 4,7) = (f,v)q, Yo € H} (Q),
(2.14) an (i, 0) + ba(d —7,9) = (f,8) 2 a), Vo € Hy(A).

The terms given in by model the coupling between the 3D solution u and the 1D solution 4.
Equivalently, one can write the above as follows. Find w = (u, @) € Hg(Q2) x H}(A) such that

(215) 'A(uv ’U) = (f,U)Q + (f:ﬁ)Li(A% Vo = (’U,’O) € H&(Q) X H114(A)a
where we define for u = (u,4),v = (v,9) € H3(Q) x H4(A)
(2.16) A(u,v) = a(u,v) + ap (4, 0) + ba(u — 4,7 — 0).

The problem given in (2.15) is well-posed, see [22, Section 3.2].
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3. Discontinuous Galerkin formulation. The numerical method is presented here.

3.1. Meshes and dG spaces. We consider a family of regular partitions of 2 made of
tetrahedra and denoted by TJ. The mesh-size is h = maXycrh hi, where hg = diam(K). We

associate with 7, the space H' (T8 of broken H! functions in €, and a finite dimensional space
Vg of broken piecewise polynomials of order k;.

(3.1) V2 = {v, € L3(Q), vy, € Py, (K), VK € T},

We let 7" = {(si_1,si), i =1,...,N} with sy = 0 and sy = L be a family of uniform partitions
of [0, L], with mesh size hy = s; — s;_1. This mesh over [0, L] defines a partition of the curve A
via the parameterization A : each element (s;_1, s;) defines a curved part of A via the mapping .
Note that we will not refer to or use these curved elements as the reference domain is (0, L). We
let H!(T) be the space of broken H' functions in (0, L), and we let V2 be the respective space
of broken piecewise polynomials of order k.

(3.2) V& = {05, € L2((0, L)), O € Pry((si-1,8:)), 1 <i <N}

Note that with the parameterization, functions in H'(7}) and in V4 define functions in the broken
H(A) space by setting v := 9 o A~!. While this observation highlights that we are essentially
using a Galerkin subspace of the broken H!(A) space, it will not be used or referred to in the
analysis that follows.
For each 1 < i < N, we let B; be the portion of By obtained when s is restricted to A; =
(si—1,8;). That is, we have that
J Bi=Ba.

1<i<N

For each 1 < i < N, we now define neighborhoods of the curve between A(s;—1) and A(s;)
consisting of 3D elements in 7. Namely, we define

(3.3) wi={KeT}, KnoB;#0}.
We can then write

(3.4) Th ={KeTh KNoBy+#0} = w;.
1<i<N

We assume that if K N By # 0, then the two-dimensional Lebesgue measure of 0K N OBy
is zero. This ensures that the term by (-,-) involving the average operator given in (2.4) is well
defined for H(TJ}).

Further, we assume the following relation between the level of refinement for the 3D domain
and that of the 1D domain. For K € T%, let Zx be the set of integers iy such that K € w;,. We
assume that the cardinality of Zx is bounded above by a constant independent of K and of h.
Essentially, this assumption means the 3D mesh intersecting 0B can not remain fixed while the
1D mesh is refined.

We also denote by T', the set of all interior faces in 7. The set of edges belonging to elements
in 77 is decomposed by defining

(3.5) Iy={FeTl,, FCOK, where K € w;}.

For each interior face F, we associate a unit normal vector ny and we denote by K} and K%
the two elements that share F' such that the vector ng points from K}m to K% We denote the
average and the jump of a function v, € V§ by {v;,} and [vy,] respectively.

1

(3.6) {ondlr =35 (Uh|K}, +vh|Kg,) , [vn]lF = vnlgy —vnlxz, VF €T
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If F =00 N 0K}, then the average and the jump are given by
(3.7) W]l = {v}F =vlgs.

The area of F' € T';, U0 is denoted by |F|. Similar definitions are adopted for jumps and averages
of vy, € VQ on the nodes s;.

I<isN-1 [onls = tal(l)ntl>0 On(si —1) = tal%)r%ovh(sz +1),
1 1
<i<N-— oty = = - b (5i —
1<i<N-—-1, {On}s, 5 tJoI?> On(s; +1) + 5 tjbm>0v n(si —1t),
[0n)sy = —0n(S0),  [On]sy = On(sN)-

For v € HY(TJ}), we define the norm for o > 0

(3-8) ||U||§/g: Z ||VU||2L2(K)+ Z |F|1/2|H ]H%?(F)‘

KeTh FeT,uon
A Poincaré inequality holds in H(7J}) (see for e.g [7, Remark 4.15)):
(3.9) lollz20) < llvllvg, Yo € HY(TQ).

For © € H'(T}), we define the semi-norm for o > 0

N N-1
N N OA
(3.10) |v\@£ = Z ||d3v||%2((s71_1,s7;)) + Z hi[ R
i=1 i=1

The above definitions allow us to introduce the norm || - | pg on H(T%) x HY(T). For v = (v,d),

(3.11) IollBe = loliZe + 013 + 17— 0122 (a)-

The above indeed defines a norm. If [|[v|lpc = 0, then v = 0 since || - ||ye is a norm on HY(TH).
This implies that [[0][z2,x) =0 and & = 0.

3.2. The numerical method. We use interior penalty discontinuous Galerkin forms [28].
Define ap(-,-) : Vit x Vi — R:

(3.12) Z /Vu Vv — Z /{Vu} nplv

KeTh Fel',uo
aQ
+€1 Z {V’U} nF Z W [UHU]
FET U Ferhuasz F

For the 1D discrete solution, we introduce the form a (-, ) : Vﬁ X VQ — R

du dp = da
(3.13) anp (i, ) Z/ dst—Z{Ads} [0]s,
+ Z {Adﬁ} +N 1 TN 14, 10]
c oA
’ ) =1 A

In the above, €1,e2 € {—1,0,1} lead to symmetric, incomplete, or non-symmetric discretizations,
and op,0q > 0 are penalty parameters. The dG formulation of problem (2.15) then reads as
follows. Find uy, = (up, @) € Vg X V% such that

(3.14) Ap(up,vp) = (f,on)a + (f,’Uh) Yo, = (vp,0n) € V% X V;},
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where we defined the form Ay (-, ) : (V¥ x V)2 — R:
(3.15) Ah(uh,vh) = ah(uh,vh) + aA,h(th,ﬁh) + bA<ﬂh — Up,Vp — ﬁh).

It is important to note that the interface I' does not need to be resolved by the mesh to realize the
coupling term by ; identifying the elements intersecting I' is sufficient. To show the well-posedness
of the discrete dG formulation, we first show the coercivity of A; with respect to the norm defined
in (3.11).

LEMMA 3.1 (Coercivity). For suitably chosen penalty parameters op and oq, there exists a
constant Ceoere sSuch that

(316) .Ah(uh, uh) > Ccoerc||uh||2DG, Yuy, € VS}E X V£

Proof. If oq is large enough whenever ¢ = —1 or for any o when ¢; = 1 (same conditions
apply for oa and €2), we have that

(3.17) ap(up, up) > C1HuhH§z§3, an,n(tn, ) > OZWh‘%;Q-

Note that the proofs of the above estimates are immediate for the case €, = e = 1. For the other
cases, careful applications of discrete trace estimates and Cauchy—Schwarz’s inequality yield the
results. The details of the proofs follow standard arguments, see for e.g. [28, Section 2.7.1]. The
result then immediately follows from the above and from the definition of A(,-). d

LEMMA 3.2 (Existence and uniqueness of solutions). There exists a unique pair (up,dp) €
V2 x V& solving (3.14).

Proof. From the coercivity property, it easily follows that the solution is unique. Since this is
a square linear system in finite dimensions, existence follows. ]

4. Error analysis. The main difficulty in the error analysis of the dG formulation is that the
strong consistency of the method can not be assumed. Indeed, under sufficient regularity assump-
tions on the domain, one can only show that the 3D solution u of (2.15) belongs to H/2~"(Q) for
n > 0 [22]. However, the form a;, can not be extended to this space since the traces of gradients for
functions in H3/2-7(Q) are not well-defined. Therefore, we adopt here a combination of a priori
and a posteriori error estimates within the framework proposed by Gudi [16] to prove convergence.
The main result is provided in Theorem 4.6.

4.1. Preliminary lemmas. We first introduce the conforming spaces V3!, C Hj(2) of
continuous piecewise linear functions defined over 7 in Q2. Similarly, we let VQ}C be the respective
space of continuous piecewise linear functions defined over 7.

LEMMA 4.1. There exists an enriching map E = (E,E) (VR x VA — V,?}c X Vﬁ)c such that

(4.1) |Evlmia) S lvllve, [ED]ma) S [0lva,
1/2

(4.2) > BBy = vll72 k) S vllve, 1B = 2llz2a) < haldlva-
KeTh

Proof. An enriching map with the above properties can be constructed as a nodal Lagrange
interpolant with nodal values taken as averages of v (9), see [17, Theorem 2.2] and [7, Section
5.5.2]. Another approach is to apply a Scott-Zhang interpolant to a Crouzeix-Raviart correction,
see [12, Lemma 6.2]. 1]

We now define L2-projections. Let K € Tl and A; = (s;_1,s;) for i € {1,...,N}. For any
(w,w) € L}(K) x L?(A;), define (7w, 7p0) € PF1(K) x P*2(A;) such that

(4.3) Vo, € PM(K),  (mpw —w, o)k =0, Vo € (),  (Fnid — b, 81)12,(a,) = 0-
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LEMMA 4.2 (Properties of the L?-projections). Let s € {0,...,k+1}, m € {0,...,s}, K €
T&, and A; = (si—1,8;) fori € {1,...,N}. Assume that w € H*(K) and 1w € H*(A;). Then,

(4.4) [mhw — wlgm ) S by " llwllgsxy,  NTn® — @l asy S A" (@] e a4
In addition, the L? projection is stable in the dG norm. Namely,
(4.5) Imnwllve < llwllgr 7y, Ywe HY(TG).

Proof. Proofs of the estimates in (4.4) can be found in [7, Lemma 1.58]. The proof of (4.5)
follows from applications of trace estimates and (4.4). d

We now state a local trace inequality on dBy. The proof of the following estimate is due to Wu
and Xiao [33, Lemma 3.1].

LEMMA 4.3 (Local trace estimate on By). There exists a constant hg such that for all h < hg
and K € T, the following estimates hold

—1/2 2
(4.6) 1oll 2o, iy S P M0l gy + RNVl 2y, Yo € HY(E),
@) onllreenanm S b lonllzee), Yo € Pr(K), Yk >1.

Hereinafter, we assume that h < hy. We now show a global trace inequality.

LEMMA 4.4 (Trace estimate). For u € HY(T}), there holds
(4.8) 2l Lz, a) S llullve-

Proof. We start by showing the result for v, € V2. Let A; = (s;_1, ;). We use triangle and
Cauchy—Schwarz’s inequalities to obtain that for any 1 <7 < N,

(4.9) rllzz @ < 1on — Eonllpza) + 1Bvnllz ) < llvn — Evillrzom) + [EvallLz,a,)-

Recall the definition of w; in (3.3) and note that

(4.10) lvn = BonlF20my = O, llvn = Bonllaop.ni)-
Kew;

With (4.7), we obtain that

”Uh — EUh”%z(aBi) S Z hf(1||Uh - EvhHQL?(K)'
Kew;

Summing over i and using the global bound (4.2) yield

N
> llvw = Bonll20m) S D b lon — Bualfe) S hllonle-
=1 KeTh

B

Therefore, with (2.8), we obtain

N
(4.11) 151172, ) = > 10112, (as) S PllvnlZe + [Bvnll7z a) < PllonlZe + [ Bvalli -
=1

With Poincaré’s inequality (3.9), and the properties of E (4.1)—(4.2), we obtain the bound

1Bonl 3 ) < 1Bvh = vall 20y + [onll7zi) + [Bonling) S ||Uh||§;§3-
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Substituting the above in (4.11) yields (4.8) for v, € V$:. Consider now u € H'(7}) and recall

that m,u is the local L? projection on V% . Then, by Cauchy—Schwarz’s inequality and (4.6), we
have that

HE_WHQL}’,(A,;) < Z ”u - Whu”iz(aBimf)

Kew;
S D (ha e = mnul gy + hac [V (0 =m0 [y ) S D haclulld e
Kew; Kew;

In the above, we used the properties of the L? projection given in (4.4). Then, using triangle
inequality and (4.8) for V§!, we obtain

(4.12) 1@l z2,a) < @ —Tall Lz, a) + [TRUl 22, (0) S h2( Z ||UH12LII(K))1/2 + ||7Thu|\vg'
KeTh

The result is concluded by Poincaré’s inequality (3.9) and the stability of the L? projection 7, in
the || - [|ye norm, see (4.5). d

A consequence of (4.8) and the triangle inequality is the following bound:
(4.13) Vu = (u,a) € H'(T3) x H(TY),  |lillzz ) S llulbe.

We will make use of lift operators. For a given (u, @) € H' () x H'(T}"), define (Lyu, Lya) €
Vi x VA& such that

(4.14) (Lpu, wp)a + (ﬁhﬂ,wh)sz(A) =bp(w— G, wp, —Wp), V(wp, W) € V% X Vﬁ.

The existence of (Lyu, Ehﬂ) easily follows from uniqueness. We show the following estimate.

LEMMA 4.5 (Lift operator). Given (u,a) € H'(TY) x H (T}, let (Lyu, Lya) € V x VA be
defined by (4.14). There holds

2 AL 2 <112
(4.15) z;h hil| Lnul| 72 gy + ||Lhu||L’;;(A) S ”u”vg} + ||u||L2};(A)
KeTh

Proof. Choosing (wp,wp) = (O,f/hﬁ) in (4.14) and using Cauchy-Schwarz’s inequality and
(4.8), we have

(4.16) L@l 72 () < Ell@ = ll 2 a1 Ll 2, ) S (lllve + ll 2, a)) 1 Enl] 2, 4

This shows the bound on the second term in (4.15). Next, fix K € 7} and recall that Zx be the
set of integers 4o such that K € w;, where we assume that the cardinality of Zx is bounded above
by a small constant independent of K. In (4.14), choose @, = 0 and wy, = (Lpu)xx where y i is
the characteristic function on K. We obtain

(4.17) ILnullZe(sy S Z (Rl 22, (511550 )) F N L2 (5101300 DINTR L2, (55 1,510 )) -

i0€LK

We now use Cauchy—Schwarz’s inequality, the observation that wy, is locally supported in K, and
trace inequality (4.7). We estimate

— —1/2
(4.18) 1@nll2, (si-1.50)) < NWnllz2@Bi) = ILnullL208,,nk) S b ")\ Loull 22 )

Thus, we conclude that

—1/2
(419)  EnulZage S AR S (e + 18022 (s ) |l -
i0€LK
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Summing the above bound over K € T/ and using Cauchy-Schwarz’s inequality yield

1/2
D hrlLnulZery S (@lza ) + lallzm) | D0 hrllnulZe
KeT} KeT}h
With Lemma 4.4 and with noting that Lpu|x = 0 for K ¢ 75, we conclude the result. O

4.2. Main result and proof outline. The main convergence result reads as follows.

THEOREM 4.6. Letu = (u, ) € H () x HL(A) be the weak solution defined by (2.15), and let
up, = (up,ap) € VSEX VY be the discrete solution defined by (3.14). Recall that hp = maX g ern hic.
The following estimate holds.

(4.20) ||u—uhHDG 5 inf Hu—'u||DG
VEEx VA

+hl|f = mnfllzz@) + Pallf = Fafllrz ) + hi? i — all Lz, (n)-

Proof. Here, we present the main steps of the proof. The details are given in the next section.
We have, see Lemma 4.9 for the proof,

(4.21) ||u — unlpe

vEVE XV BEVE XV l#llpe

- ( (f,¢—E¢>Q+<f,é>—E¢3>L3<A>—Ah<v7¢—E¢>>
< inf lu —v|pg + sup .

We now bound the second term above. To this end, fix v,¢ € V¥ x VA and let w = ¢ — E¢.
Define Z = (f,w)q + (f, W) 12 (n) — An(v,w). With the lift operator (4.14), we write

(4.22) Z = (f — Lpv,w)g + (Af — PLyo, @) — ap (v, w) — ap (0, ).

We integrate by parts the first term in ap (v, w) and the first term in ap (0, w). We obtain

(4.23) Z= Z/f th+mw+z/ (Af — PLpo + dy(Adyd))i

KeTh
Zy
_ Z/Vu np{w} — ZAdv A}s, +7Z3 + Zy,
Fel'y, =0

Za

where Z3, Z, are the remaining terms in ap (v, w) and ap ,(0,w) respectively. Namely,

(4.24) Zy=—e1 Y /{Vw} nelv] — /|F|1/2

FeTR,uoN Fel',uo
N—-1 N-1 o
(425) Z4 = —€9 Z {Ad w} 7‘/\ "
=1 A

We start by bounding Z3 and Z;. We note that [u] = [E¢] = 0 a.e. on F € I', UIQ and
that [a],, = [Edls, = 0, i € {1,...N —1}. We use standard applications of trace inequality
for polynomials and Cauchy-Schwarz’s inequality, see for e.g. [28, Section 2.8.1] for a detailed
exposition, to obtain

(4.26) 1Zs| +1Z4] S lwllvellv = ullye + l@llvallo — allva
S ([8llve + [Edlui ) + |9lvy + [EG|mr(a))llu — vlbe

S ll¢llpcllu — v|pe-
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In the last inequality above, we used the stability of E given in (4.1) of Lemma 4.1, and the
definition of || - ||pg. For the term Z;, we use Cauchy—Schwarz’s inequality and the approximation
properties of E (4.2). We use the notation A; = (s;_1, s;) and we estimate

(4.27)

N
(Z)? < | DY hllf + Av— LuvllFeixy + > hRIAS + ds(Adsd) — PLpo|354,)

KeTh i=1
N
< D hillwlEa g + DR I@lze )
KeTd i=1
N
S Z Wil f + Av — Lpol|Te gy + Zh?\HAf +ds(Adsd) — Pﬁh@H%z(Ai) lolDg
KeTh i=1

= (Rg, + R)) | 9llbe-

For the term Z, first note that for F = OKL NOK?2 and i = 1,...,N — 1, we use the following
trace estimates [28, Section 2.1.3].

—1/2 A
S hAl/ ||w||L2(AiUAi+1)~

Hw}llzzm) S 117wl e erorzy, Hdds,

Applications of Cauchy—Schwarz’s inequalities, the above estimates with the observation that
|F|7Y2h,; <1 for j=1,2, and (4.2) yield
F

N
(4.28) (Z2)* < ( D FIEI] ey + ZhA[Ads’ff}i>

Fel'y, =0

N
X Z hi )3 k) +Z:hKQH1Z7||2L2(A,i)
KeTd i=1

N
< ( S (2T g + zhA[Adsmzi) 6l26 — (7 + Rl
Fely, 1=0

Combining the bounds above we have

lu—wnllos < _inf (Il =vlo + (Rh + RR)Y + (Rh + B})'?) .

Qo YA
vEV XV

The proof is finished by obtaining the required bounds on the residual (R, + R}), see Lemma
4.10 and Corollary 4.11, and on the residual (R3 + R3), see Lemma 4.12 and Corollary 4.13. 0O

COROLLARY 4.7 (Error rate). Under the assumptions of Theorem 4.6, if u € H3/>7(Q) for
anyn >0 and & € H3(A), then the following bound holds

(4.29) lu—wnloe S B2 (ullsr2-n(e) F1T=allp ) FI1F z2@)) +oa (@l iz o)+ 1125 a))-

Proof. Let Spu = (Shu,ghﬁ) S V% X V{L\ where S), and Sh are Scott—Zhang interpolants of
u and 4 respectively [30]. With the triangle inequality, (2.8), and approximation properties, we
bound

(4.30) |lw— Shullpe S llu = Shull ) + 18 — Sudlgy a) + 18— Sndl L2, (a)
S W2l ga-agoy + il -

Using the above bound in (4.20) yields the desired estimate. |
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We now show that if the mesh is refined near the boundary of By, (namely the mesh size is of
the order h?*t where we recall k; is the polynomial degree for the space V%) then almost optimal
error estimates can be recovered. To this end, we use the definitions of graded meshes [2, 5, 19]
in order to obtain the required estimates.

COROLLARY 4.8 (Graded meshes). Let rxg = dist(K,0Ba) and recall that hx = diam(K).
Suppose that the mesh satisfies the following grading property.

1‘% ; 1
(4.31) hew~ TR T i rr > 5hK,
h2k1 otherwise.

Let hy ~ hy, for K € TE. Assume that the assumptions of Theorem 4.6 hold. Further, assume
that w € HFHL(Q\By) N HMFY(By), @ € H*(A), f € H*~1(Q), and f € L*>(A). Then,

(4.32)  [lu — wnlpe SP 2wl g gy + ull e @z + Nullzaz-n@) + 1l -1(9)
+ 2R (lal 2y + 1l L2 ca))-
Proof. Define an interpolant Ipu € V% such that Ihu|x = Spulk, the Scott—Zhang interpolant

restricted to K, if rg < %hK and Iu|x = mhu, the local L? projection, otherwise. We use the
local approximation properties of the Scott—Zhang interpolant. Namely, we have that [30]

(kl—‘rl,s)—l‘

(4.33)  |u— Shulmi k) + bt — Shull 2y S Bt ull sy, 1< 8 <k +1.

In the above, Ak is the union of elements sharing a face with K. Hence, we obtain that

(4.34) 3 (|u — Dol gy + Wil — Ihu||2L2(K))

KeTh rk<ihx

1—-2 —
S e Mullseaan S PO ulls 0 g

KET&L,T‘KS%hK

Further, using the approximation properties of the L? projection, we obtain

(4.35) S (= g + il = Tl

KeTh re>5hk

S > Rl S EF Nl sy + 1l omm):
KeTh rk>ihk

In the above, we also used that rx < diam(€2). Now, note that

(4.36) lu = Tnulde $ 57 (1w = Tnul ey + hillle — Dl 3y ) -
KeTh

Define Iyu = (Iju, S'hﬁ) We use the above bounds, triangle inequality, (4.8), and approximation

properties of S;, to obtain that
(4.37) lu— Ihulpe < llu— Tullye + |@ — Spitlys + & — Spdl L2, (a)

S hkl(Hu”H’ﬂ“(BA) + HUHHMH(Q\ETA) + hi%”“HHW?‘"(Q)) 4 p2R ||1ALHH2(A)~

In the above, we used the assumption that hy ~ hx for K € 7'[? and thus hp ~ h?F1. The above
bound estimates the first term of (4.20). The second and third terms in (4.20) are bounded by
the approximation properties of the L? projections, see (4.4). Finally, the last term in (4.20) is
controlled by observing that 7 < thx, VK € TE. Thus, using (4.31), hg < h?¥1. Along with

~ 2

(2.8), this concludes the proof. |
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4.3. Proof details. We now provide details for the steps given in the proof of Theorem 4.6.

LEMMA 4.9. Let w and up, be the solutions of (2.15) and (3.14) respectively. Then, (4.21)
holds.

Proof. The proof follows from the abstract framework given in [16, Lemma 2.1]. In the
notation of this Lemma, we set V = H}(Q) x H(A), |[v|3 = ||1)H%11(Q) + ”v”?ﬂ(/\)’ and || - ||n =
I - lpg. We verify assumptions (N1)—(N3) of [16]. Observe that assumption (N1) is the coercivity
estimate of Lemma 3.1. We now verify assumption (N3) which states that

(4.38) |Ev|v < |lvlpe, Yo e ViEx Vi
Let v = (v,0) € V¥ x VA&, From Lemma 4.1, we have
(4.39) [Ev| (o) + [1ED] y a) S lvllpz) + 1912z 4y + [[0llve + [0]va-

For the first term above, we use Poincaré’s inequality (3.9). For the second term, we use the fact
that A, P > 0, triangle inequality, and trace inequality (Lemma 4.4):

(4.40) 19[ 22, (a) S N9 =Dl 22, a) + [0l 22,a) S 119 =Dl L2 (a) + ||UHV§3~
Therefore, we obtain that
(4.41) IEv|| 1) + |9 1 a) < ||'U||V§L’ + ||77HVQ + v = 9ll2,a) S VD

Hence, (4.38) is verified. It remains to verify (N2). We show that for v € Hg(Q) x H(A),
vy € V% X Vﬁ, and w € Viﬁc X Vﬁ,c, there holds

(4.42) A(v, w) — Ap(vp, w) < v - vhHDG(”w”%l(Q) + Hwnfq;(/\))l/?

For this, observe that [v] = [w] = 0 a.e. on e € I'y, U Q. Thus, we have that

a(v,w) — an(vp,w) = Y /KV(vah)-waq > /F{Vw}.np[vrv].

KeTh Fer,uon
With the trace estimate for polynomials
[F[YY{Vw}  npllemm S IVwllp2kioxzy, F =0KpNOKE,
and Cauchy-Schwarz’s inequality, we obtain that
(4.43) av,w) = an(vn,w) S Jon — vllys i o).
A similar argument shows that
(4.44) an(0,0) — ann(0ny ) S [ — Dl [ )

For the remainder terms, we simply use Cauchy-Schwarz’s inequality and the trace estimate (2.8).
Indeed, we have that
bA(D — 0,0 — W) — bA(Vp — Op, W — @) < &V —Vp — (0 = 0n) [l L2, () [[@ — D 22 (a)
S v = wvnllpe(lwlla @) + 1@ll22 ) S lv —vrlpe(lwl @) + 101, (a))-
Estimate (4.42) follows by combining the above bounds. The proof is finished by applying [16,
Lemma 2.1]. d

We now show the first residual bound. We recall that for any K € T2, the set Z denotes the set
of integers iy such that K € w;,.
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LEMMA 4.10 (Bound on local residuals over elements). Fiz 1 < i < N and recall that
A; = (si—1,8;). For allvy, € V% and any K € w;, there holds

(4.45) |If +Av = Lpvll72 5y S RV (u =)l L2 x) + b Z [ — aHQLf,(Aj)
JE€LK

[ Ln(u = ) T2y + 170 f = fll72()-
For any 0, € V&, there holds
(4.46)  [|Af + do(Adsd) = PLuol72(a,) S Pa%llds(@ = 0)l|75 a,) + 17 = all72 4,
+ 1 Ln(@ = 0) |72 (ar) + 1S = Fll75 00

Proof. Let bk be the bubble function associated to K [31]. Define the residuals R = (7, f +
Av — Lpv)|k and ¥ = Rbg. Owing to the properties of the bubble functions, we estimate

IRl S [ R = [ (F4 B0 Lo+ [ (mf = )0 =To+ T

K K K
Since 1 vanishes on the boundary of K, we integrate by parts and obtain
(4.47) T = / (fo— Vv -V — Lpo).

K
Testing (2.15) with (¢,0) and substituting in the above gives
(4.48) T = / V(u—v) -V +bp(u — a,1) —/ Lpvp.
K K

The first term is bounded by Cauchy-Schwarz’s inequality and inverse estimates since 1 belongs
to a finite dimensional space.

T S B IV (=) L2y [Vl 2 i) + ba(@ — @,%)) —/ Lyvip.
K

For the second term above, we use the definition of the lift operator (4.14) and write
bA(@ = @, ) = ba(@ — @, — mp¥p) + (Lu, mpth) k. = ba(@ — 4,9 — ) + (Lo, ¥) k-

Here we used the definition of the L? projections in (4.3) and the fact that L,u € Vi2. Since ¢ is
locally supported on one element K, with Cauchy—Schwarz’s inequality, trace estimate (4.7), and
stability of the L? projection, we obtain the bound

Z y — 7Th1/)||i§3(Aj) < Ny = e omanry S P ¥ — mnlliay S Px I0N72 k)
J€IK

Thus, with Cauchy-Schwarz’s and triangle inequalities, we obtain that

(4.49) ba(@ =, —m) S hid P (Y [ — 3 s a0 21l 20y
J€IK

Thus, we obtain

_ —-1/2 _ ~
T Sl | B IV (e = o)l 2y + 1En(w = o)z a0y + b (Y la—all3a a,)'
JE€IK
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The term T5 is simply handled by Cauchy-Schwarz’s inequality. Collecting the resulting bounds in
(11), noting that [|¢[|z2(k) < || R/ 12(k), and using the triangle inequality yields estimate (4.45).

To show (4.46), let b; denote the bubble functions associated to A;, R = (A7t f 4+ ds(Ad,d) —
PLyt)|s,, and ¢ = Rb;. We have

1Reay S [ R = [ (AF +di(4dit) = PLy0Y + [ Al ~ i =To+ 1o
A A A
Testing (2.15) with (0, 1[)) and performing the same computation as before, we obtain

(4.50) Ts = /A‘Ads(ﬁfﬁ) dsqﬁfbA(afa,ﬁ—ﬁm[;)+/A_Pih(faf@)¢.

i

With Cauchy-Schwarz’s and inverse inequalities, the stability of the L? projection, and the fact
that v is locally supported in A;, we obtain

Ts SNl eg an (hx 1da(@ = 0z sy + I1Ln (G = 9) |23 a) + 1T = @l (a,))-

Bounding Ty with Cauchy—Schwarz’s inequality and using that ||1&”L’;‘D(Ai) < ||R||L2(Ai), estimate
4.46) is obtained. O
(

An immediate corollary to the above Lemmas is the following global bound.

COROLLARY 4.11. Recall that hg = maxgcyn hg. The following bound on RY + RY (as
defined in (4.27)) holds.

(4.51) (Rey + RY) Sllu — vl + (hp + 13w - '&”%fp(A)
+ B2\ f = 7 fll3agq) + PAIF — 7z (a)-

Proof. First note that if K ¢ Tjg, then Lpv =0 on K, and Zx = 0. We can write

Ry = > Wilf+Av—Lpvliaey+ Y. Rkl + Av|Fa ).
KeTh KeTG\Th

For the first term in the right-hand side, we use Lemma 4.10 and the assumption that |Zx| < C
for all K € T} to obtain the bound:

Ry Sllu=vlge + hplla —all2s () + P21 f = mfli2

+ ) hElL(u— )20+ D, PRI+ Avl Tk
KeTh KeTI\Th

If K ¢ T}, then standard a posteriori estimates [7, Section 5.5.1] yield
RiLf + AvllTe ) S IV (w = 0) 1220y + BENF = T f 2 (), VE € Ty \ 5

With the bound above and Lemma 4.5, we can conclude that bound (4.51) holds on RY,. The
same bound holds on R} which follows immediately from Lemma 4.10 and Lemma 4.5. O

We proceed to bound on R + R%. For any face F, let Sp = K} UK#% where K} and K# are
the elements sharing the face F'. We also define

VI<i<N-1, S;=A_1UA;, So=Ao, Sy=An_1, Sn+1=0.
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LEMMA 4.12 (Bound on local residual over faces). Fiz 1 < i < N. Then, for any F € T;,
and any v € V%, there holds

(4.52) [|[Vo] - nrpliagm SIFITY? Y IV =) ey + [FIY? D0 If + Av = Lyv|Feax
KCSF KCSFr
I L= 0) sy + 1= 25 506,
For any © € V9, there holds
(4.53) [Ads0]3, Shytlds(i = 0)]75 g, + a > lAf +do(Adsd) = PLy0|F2(a,
AeCS;
+ hAHih(ﬁ - ﬁ)”iz(gi) + h/\”ﬂ - ﬁ”i%(gl)

Proof. Fix 1 < i < N and fix F in I';. Denote by br the face bubble associated to F’; this
means that bg vanishes on the boundary of Sr and br takes the value one at the barycenter of
F. Fix v in Vg. We set r = [Vv] - np, extend r by constant values along ng, and set 1) = rbp.
From [7, proof of Lemma 5.7 (ii)], we have

(4.54) 1] 250y S 147l 2 ey-
With the properties of the bubble function and integration by parts, we have
(455) [l S / rp = / Vo e = 3 / TS / Vo Vi,
F F Kcsp 'K Kcsp 'K
Choose the test function v = (1, 0) in (2.15)
(4.56) Z / Vu -V +ba(a—a,%)= [ fi.
KCSp K Sk
We introduce the L? projection and rewrite the second term above as
ba(T — i, 9) = ba (@ — 4,9 — mut)) + (Lnu, math)o = ba (@ — @, 9 — mp1)) + / Lput.
Sk
We add (4.56) to (4.55), use the above expansion, and add and subtract Lyv. We obtain
Il < 3 [ ¢+ o=t [ Law—we
K

KCSp F

+ Y / V(0 u) - Vb — bp (@i — i, — ) = Wh + .+ Wi,
KCSp K
With (4.54), the terms W; and W are bounded as:

Wi+ Wa SIFIY el 2 ) <( > F+ A0 = Lyl e i) + [ Ln(u— v)wsﬂ) :
KCSp

With inverse estimates and (4.54) and the observation that h; [F|*/* < |F|=Y/* for £ = 1,2, we
F
bound

Ws S |74 L2y ( Z IV (u— U)H%Q(K))I/Q'
KCSr

Let K ll,ﬂ and KI% denote the elements that share the face F' and let Jr denote the set of indices ig
such that K} belongs to w;, or such that K% belongs to w;,. In reality, the set Jp is either the
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singleton {i} (recall that F belongs to I';) or the pair {i,7+ 1} or the pair {i — 1,4} or the triplet
{i—1,4,i+1}

Wi=(EP@—0), 0 —mad)a = Y (EP@—10), ¢ — math)a,

LteJr
_E(Z ||ﬂ—ﬂ||%;(1\@))1/2(z H@—?Th?#”ig,(m))lﬂ
edr leJr
< [z — |35 4, )20 — Tl L2 (S wnoBa) -
(Ae)

LeJr
With Cauchy-Schwarz inequality and trace estimate (4.7), we obtain
Wa €Y I —alfzn,)?( D bl = mlia )2
LeJr KCSFr
—1/2)—

where hp = min(hg1, hg2 ). Therefore, with (4.54), we have
F F

—-1/2 _
(4.57) Wi S b PIEP Al e 18— il 2 8,08, S Illeacm T = @l 2 5,08, -

Collecting the above bounds and using appropriate Young’s inequalities yield (4.52). To prove the
bound (4.53), we denote by b; the typical hat function associated to the node s;; this means that
b; is piecewise linear, takes the value 1 at s; and the value 0 at all the other nodes sy for ¢ # i.
Denote by 7; = [Ads0]s, and let 1[)1 = b Tt easily follows that

; 1/2) 4
(4.58) ledill sy < P21l
Using integration by parts, it is easy to check that
(4.59) 7 = [Add],di(si) = (/ ds(Adsd) b + Adsf;dsz/}i) .
AeCSA" Ae Ae

This time, we choose for test function v = (0, 1&1) in (2.15) to obtain
(4.60) > [ Addddi- @i = [ Afb.
N Ay S'i
AeCS;
We rewrite it as
(4.61) > / Adyt dgthi — ba (@ — @, s — Fadhy) + / PLyiigp; = / Afihi.
Ag Si Si
A[CS

We add (4.61) to (4.59) and we add and subtract PLy,%. We obtain

72 < Z /A/ (Af + d,(Add) — PLLO)Y; + /S PLy(0 — @)

+ Z / - S"/’zﬂLbA(U*Uﬂ/)zfﬂhdh) W5++Wg

A[CS
We easily bound the terms W5, W5 and W7 by (4.58)

Ws+We S BY20) { (30 IAF +d(Aded) = PErdl3agu) 2 + 12— )12 5, | -
AzCS‘

12
W S 210D sl = 9) 32 a0
AZCS
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For the term Wy, we have by Cauchy-Schwarz and stability of the L?-projection that

< h1/2||u .

< A- N A~
Ws S llw—allz s 2,8 S L2 s,

= tndill 2 sy S 1T = @l 2 s,

Collecting the above bounds yield the desired result. ]
The bound on (R% + R3) easily follows.

COROLLARY 4.13. The following bound on R + R% as defined in (4.28) holds.
(4.62) (B + ) Sllu = vllbe + (b + h3)l[T — @22 )

+ 2 f = wnfll3e 0y + BANF — 70 fllog a)-

Proof. Recalling the definition of (3.5), we have

N
Roy=3> > IFIINVe melliem + 3 IFI2IIVY - nplLe .

i=1 Fely Fery\UXL, Ty

The first part is bounded using Lemma 4.12.

N
Do D NN el e S llu—vlle

i=1 Fel’;

+ > Wk(If + Ao = LollFa gy + 1 Ln(u = 0)l|720x0)) + BB = ill7a -
KeTh

If F does not belong to Ufil I';, then Lyv = 0 on Sr and standard a posteriori estimates are used.
We omit the details for brevity. Following [7, Lemma 5.27], we have

N
2V el fee S Y IV @=0)F20) + 030 — 7 flli2gs,), YF €T\ [JT
KCSp i=1

Combining the above estimates with Lemma 4.5 and Corollary 4.11 yields the bound (4.62) on
R%. For R}, we have from Lemma 4.12 that

N N
R =S A, £ 3 I 02, + R S A+ (A8 — PLubla,
=0 =0 =0 AeCS;
AR Ln (@ = )75 (a) + PAIT = @72 (n)-
Applying Corollary 4.11 and Lemma 4.5 yields the bound on R3. ]

5. Time dependent 3D-1D model. We now consider the time dependent model. For
details on the derivation, well-posedness, and regularity properties of the system, we refer to [26].
The weak formulation of the time-dependent problem reads as follows. Find u = (u,@) € V =
L2(0,T; HY(Q)) x L?(0,T; H{(A)) with (dyu, dya) € L*(0,T; L*(Q)) x L*(0,T; L% (A)) such that

(5.1) (Byu, v) + (O (AG), D) + A(w,v) = (f,v) + (A f,0)r, YveV.
(5.2) u(0) = (u,4°%) € L*(Q) x L4 (A).

We recall that A is given in (2.15) and assume that f € L2(0,T; L*(2)) and f € L2(0,T; L4 (A))
are given. We retain the assumptions on A and P from the previous sections, and we assume that
they are independent of time. Consider a uniform partition of the time interval [0,7] into Np
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sub-intervals with time step size 7. We use the notation ¢g"(-) = g(t",-) = g(nr,-) for any function
g. Let (u),49) € Vi x VA be the L? projection of (u,a°).

uh) = mpul,  a) = 7pa°.

A backward Euler dG approximation then reads as follows. Find uj, = (u}, 4} )1<n<ng € V% X V{L\
such that

1 — 1 ~M ~N— ~ n
(5:3)  —(up —up ™ vn) + —(A@@g — a3 "), 0n)a + An(ug, vn)

3

= (f",on) + (Af", 0p)a, Vou € Vit x VI

The form Aj, is given in (3.15). To analyse the above scheme, we define the following elliptic
projection: IIj,(t) : H(0,T; HY()) x HY(0,T; Hy(A)) — H(0,T;V$¥) x HY(0,T; V) such that
for a given g(t) = (9(t),9(?))

An(Thg(t), o) = (9(t), vn)a + (AG(t), br)a. You € Vi x Vi

From the analysis of the previous section, for any ¢t > 0, II,g(t) is well defined. Since Ay, is linear
and coercive and I, is continuous, 0;(IIg(t)) = I1;,0,g(t). Hereinafter, we assume that (u, ) €
HY(0,T; H3?=1(Q)) x HY(0,T; H*(A)), (Oyu, O (A1) € L?(0,T; L*(Q)) x L*(0,T; L*(A)), and
(f, f) € HY(0,T; L*())x H'(0,T; L2(A)). For smooth domains and for (u°,4°) € HZ () x H(A),
the H3/2=7 spatial regularity on u is proven in [26, Proposition 4.2] and the H? spatial regularity
for @ can be expected since it solves a parabolic equation with an L?-source term. By formally
differentiating in time the parabolic 3D—1D problem and under sufficient assumptions on the initial
conditions, the H! regularity in time for u and @ can be expected, see for e.g [11, Chapter 7].

Now, for w(t) = (u(t),a(t)) and f(t) = (f(t),f(t)), we define the interpolant n,(t) =
(nn (), 7n(t)) € V§? x V& such that

nn(t) = Uu((f(t) = Opu(t), Af(t) — Advi(t))).

Therefore, we have that
An(ny, (), 1) = (F(t) = Beu(t), o) + (A f(t) — Adya(t), 0n)a,  Yon € VP X Vi,
Since
Alu(t),v) = (f(t) = du(t), v) + (Af (1) — Adyi(t), d)a, Vo € Hg () x HA(A),
we apply the error analysis of the previous section to obtain that for any n > 0
(54) |nn(®) = u®)loe S P2 ([w®)] gore-n() + 8012 (a)
+h(|f(t) = Beu(®) | 2@ + /() — Beu(®) 2 (a))-

Here, for simplicity, we let hy = h. It is also easy to see that

Oy (t) = O ILL ((F(t) — Opu(t), A f(t) — Adyi(t)))
=T0,((0: £ (t) — Oeu(t), Ay f(t) — Adui(t)).

Therefore,
Ah(at’l']h(t), ’Uh) = (8tf(t) — 8ttu(t), ’Uh) + (A 6tf(t) — Aattﬂ(t), QA}h)A, V'I)h € V% X Vﬁ
Observing that

A@@pu(t),v) = (D f (1) = Quult),v) + (Ad:f(t) — ADut(t),0)a, Vo € HY(Q) x Hj(A),
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we apply the previous analysis to obtain a bound on ||0;n,,(t) — dyu(t)|pe that is a similar to
(5.4):
(5.5)  [10smy,(t) = Deu(®)llpa S W27 (105u(t) | rrara—n () + 100 | 112 (a))

+ h([10ef (t) = Ouu(t)l| L2 () + 10f () = Dt 12, ())-
This interpolant allows us to prove the following result.

THEOREM 5.1. For any 1 < m < Nrp, there holds

C.
coercTZ Huh _ unHDG 5 7_ 4 hl 2n

n=1

(5.6) g — ™ 1+ flag — @™ (|7 () +

The above estimate holds under the assumptions: (u,@) € H'(0,T; H3/>=1(Q))x H'(0,T; H*(A)),
(O, B (AR)) € L2(0, T 17() < I2(0, T T2(A)), and (£, f) € H'(0,T; I2(9))x H' (0, T; L(A)),

Proof. We derive the error equation for e} = (e}, é) = ul — nit. For all vj, € V¥ x VA,
1 n—1 1 sn—1y\ = n
(5.7) (e —ep s vn) + — (A€ — &), 0n)a + Anle, vn)

1 — 1 ~\n ~n An— ~
= —(r(0mw)" = (o =y "), on) + —(TA@@)" = A — ;). o )a-

The proof is based on energy arguments. We test (5.7) with v, = e} and multiply by 7. With
the coercivity property (3.16), we obtain

1 P 1 N A — C'Coerc
58) SR = e %) + SUER I ) — 167 125, 0) + —2rlleR B

S (@)™ — (=~ 1)sen) + (AT (@)™ — (i — i) ep)a = T1 + T

It is standard to show (with Cauchy-Schwarz’s inequality, Taylor’s theorem, and Poincaré’s in-
equality (3.9)) that

Ty S (720l L2 (n - ams2 ) + 72100 (w = mn) | 2 en 1 ams2 )€ lve-

With Young’s inequality, we then obtain

Ccoerc
T, < Cr? HattuHL? tn—1¢n,02(Q)) T Cll0¢(u — 77h)||L2(tn vgnip2) T T le h”DG
Similarly, we bound T with

coerc

T < 07'2||A8ttm|%2(tn4,tn;LZ(A)) + C||Ad¢(a — ﬁh)|\%2(twl,tvr;L2(Q)) +7 3 lenlIbe-

We use the above bounds in (5.8), and we sum the resulting bound over n. We obtain that

e (|* + HéZleLi(A) + Ceoere Z lerllba < 72 10wull 20 7.02()) + 1A alE 1.2 (0))

+ 10 (u — nh)”L?(O,T;LQ(Q)) + 1 A0 (i — )72 0,720 + lenll” + 1€RlI73 (a)-

Then, the result follows by using the error estimates (5.4) and (5.5), approximation properties of
the L? projections (4.4), and the triangle inequality. 0

REMARK 1. In the case of graded meshes, i.e. under the same mesh assumptions as Corol-
lary 4.8, almost optimal spatial convergence rates in the dG norm hold. For example, for k1 =1,
we have that for any 1 < m < N,

m

(5.9) lugy =™ |+l — ™[5 a) 4 Geoere ZHuh w2 < 724 h212,
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The above estimate holds under the additional assumption that u € H'(0,T; H*(Q\BA)NH?(B,)).
The proof follows from the same argument as before where similar estimates to (4.32) are used for
the dG norm of m;, — u and of Oy(n, —w). For k1 > 1, one can also derive almost optimal rates
under additional regularity requirements on the solution. We omit the details for brevity.

6. Extension to 1D networks embedded in a 3D domain. We extend the above nu-
merical method and model to a 1D network in a 3D domain. We adopt the notation of [9] where
a hybridized dG method is used for convection diffusion problems in a network. Here, we only
introduce Lagrange multipliers on the bifurcation nodes, and we couple the network model to the
3D equations. We do not analyze this dG method for the 3D-1D network model beyond showing
well-posedness and local mass conservation at bifurcation points. The error analysis will be the
object of future work.

A network is represented by a finite, directed, and connected oriented graph G(V, ) where V
is the set of vertices and & is the set of edges. We let £(v) denote the set of edges sharing a vertex
v. The boundary of the graph is then defined by Vy = {v € V, card(€(v)) = 1}. For a given edge
e = (V& v, ), we define the function ne : V — {—1,0, 1} with

ne(Vi) = 1, ne(voy) = —1 and ne(v) =0, Vv & V\{vi, Vo }-

The collection of bifurcation points is denoted by B = {v € V, card(£(v)) > 3}. For each e € £,
we define a surrounding cylinder B, of cross—section ©, with area A and perimeter P.. The L%
space over the graph is defined by

(6.1) Lp(G) ={u: ue=ule € L}, (e), Ve € E}.

This 1D-network is embedded in a 3D domain 2. The surrounding cylinders B, are all strictly
included in . In Q, we solve for u satisfying (in the distributional sense)

(6.2) —Au+é(u—a)dg=f inQ, w=0onodQ,
and for each e € &£, we solve for a 1D solution 4. satisfying
(6.3) —ds(Ae dyfie) + Pollie — Te) = fe in e.

The coefficient £ is a piecewise positive constant on each edge of the graph. The function @ is
defined by

u, Veeé.

The functional £(u — @)dg is defined by

& — 1)og(v Z/{e - (Te — Ue)Te, Vv € HY(Q).

eef

We supplement the above system with the following boundary conditions which impose conser-
vation of fluxes and continuity at bifurcation points. On the boundary, we impose homogeneous
Neumann conditions.

(6.4) Z Ae dslie(V)ne(v) =0 and de(v) = tier (v), VveB, Ve e €&(v),
ec€&(v)

(6.5) Aedystie(v) =0, Vv EVy, ee&(v).

To summarise, the 3D-1D network model consists of (6.2)-(6.3) with boundary conditions (6.4)-
(6.5). The above model can also be found in [22, Section 2.5]. We now introduce a dG formulation
for this model.



DISCONTINUOUS GALERKIN METHODS FOR 3D-1D SYSTEMS 21

6.1. DG for the 3D-1D network model. For each e € £, we denote by h. the characteristic
length of a partition of the edge e and we introduce a mesh and a space V§ of degree k. similar
0 (3.2). Then, we define the broken polynomial space

VY = {in: Ople = e € Vi)

We will use a hybridization technique to handle the values of the discrete solution at the bifurcation
points. Thus, we define

(66) VE = {d}h = (ﬁ)v,h)VGBa Zwah < OO}
veB

We now define the form b, : (V§2 x V§ x V)2 — R which enforces conditions at the bifurcation
points, see Remark 2. For v € B, define

(67) bv((uh, '&h,fbh)7 (U)m’ﬁ)h,'l[}h)) = Z Ae dsﬁe,h(v)ne(v) (ﬁ)e,h(v) — ’UN}V,h)
ec&(v)

+ Z Ae dswe,h(v)ne(v) ('&e,h(v) - av,h) + Z *(ue,h(v) - ﬂ'v,h) (we,h(V) - wv,h)'
ecE(v) ecE(v) €

The full dG formulation reads as follows. Find (up,p, @) € Vg X Vg X Vf such that for all
(wh, Wp, p,) € Vi x VY x VB, there holds

(68) ah(Uh, wh) + Z be(ﬂe,h - ﬁe,h7we,h) = (fa wh)a
ec&
(69) Z ae,h(ae,ha Iz]e,h) + Zbe(ﬂe,h — Ue,h, UA)e,h)
ecé eeé

+ va((uh7’&'h7ah)a (U)h, whawh)) = Z(fe,we,h)LQAe(e)-

veB eeé

In the scheme above, the form aj is the same one defined by (3.12) and the forms e and be
correspond to the forms ap , and by with A = e. For instance, we write

be(0,1) = (&0, @) 2, (¢)y V0,0 € L% (e).

REMARK 2 (Bifurcation conditions). For a given v € B, let W, € Vf be such that w, p =1
and zero otherwise. Choosing (wp,, Wp, Wr,) = (0,0,wp) in (6.9) yields:

N Oy , . -
(6.10) D Acdgiien(Vne(v) + Y (e n(v) —ivs) =0, WeEB.
ee&(v) ec&(v) €

That is, up to jump terms, the discrete dG scheme locally conserves the fluzes, see (6.4), at each
bifurcation point.

LEMMA 6.1 (Well-posedness). There exists a unique solution for the problem given in (6.8)
and (6.9).

Proof. For any (up, Gy, i) € V5! x Vg x VB et

X = ap(un,up) + Z e, (Te,h, Ue,h)
ecf

+ ) be(Ten — flens Ten — ten) + Y by((un, iy in), (un, i, iin)).
el veB
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It suffices to show that

A _ A o -
(6.11) X 2 lunlfe + Y _(anfss + Ten = denlis @)+ D 5= — i),
ecé vEB ecE(v) e
since the right hand side above defines a norm. Here, |- [ve is defined in the same way as (3.10).

Consider the last term in X and recall the trace estimate:
(6.12) |datien (V) - e(V)| < Corhg || dstien | L2 e,

where e, is the mesh element of e incident to v. Then, with the above estimate, Cauchy-
Schwarz’s inequality for sums applied twice, and Young’s inequality, we bound the first term

in 37 ez b ((un, @n, an), (un, in, @n)) by
. . . 1 .
D D Mediien(ne(v) (Gen(v) =) < 53 D7 Celinlzy,

veBec&(v) veBec&(v)
Cs . _
+Z Z hi(ue,h(v)_uv,h)Qv
veEBec&(v) €

where C, is the coercivity constant of aep, similar to (3.17), and Cs > 0 is a positive constant
depending on C,, on C;, and on A.. Thus, if o, is large enough, there exists a constant Cy > 0
such that

> bu((un, tin, @), (un, iy in)) + ZC Jn o > Z 04 (tie,n(v) — @y,p)?,

veB eES veBec&(v) he

It then follows that

Z ae,h(ﬁe,ha ﬂe,h) + Z bv(uhv ﬁha ah)v (Uha ahv ﬂh))

ecé veB
1 ~ 12 C’4 ~ ~ 2
> 3 Zce|uh|7:h + Z Z E(ue,h(v) — Ty,p)”
ee& veBec&(v)

From here, we use the coercivity results (3.17) and the definition of be to conclude that (6.11)
holds. We omit the details for brevity. O

7. Numerical results. We present results for manufactured solutions in a 3D-1D setting
and in a 1D vessel network. We also show results for a realistic 1D network in a 3D domain.

7.1. Manufactured solutions with one vessel in a 3D domain. In this first example,
we consider manufactured solutions and compute error rates. Let Q = (—0.5,0.5)3 contain A =
{(0,0,2),z € (—0.5,0.5)} with a surrounding cylinder of constant radius R = 0.05. Denoting by r
the distance to the line A, the exact solutions are
Y {gjl( —RWn(%))a, r> R,

]

(7.1) and @ = sin(7z) + 2.

r<R.

The above 3D solution is obtained from the observation that [10, eq. 40], see also [19]:

(7.2) /Q—(amu+ayyu)u:/rg+1 /§P T — )T

We set & = 1, and we modify the source terms f, f and the boundary conditions so that the
equations are satisfied. The parameters are set to € = e = —1, ky = ks = 1, and 0 = op = 30.
For all our examples, we use the FEniCS finite element framework [1, 23] and the (FEniCS),,
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module [20]. We compute the solution (up, y,), the L? and the H! norms of the errors e;, = u—uy
and é, = 4 — 1y, on a family of uniform meshes created by by FEniCS “BoxMesh” with 6N3
number of elements. The results reported in Table 7.1 corroborate the error estimates established
in Corollary 4.7. In particular, we observe that ||ep,|| g1 (o) converges at a rate slightly higher than
0.5 while for [|ép || g1 () linear convergence can be seen. In the L?-norms we observe improved
error rates. Due to the coupling and the low regularity of the 3D solution, it is not clear whether
one can prove improved optimal error rates of 3/2 — 1 and of 2 for the 3D and 1D solutions
respectively.

’ N ‘ ||€h||H1(Q) ‘ rate ‘ ||€hHL2(Q) ‘ rate ‘ ||éh||H1(A) ‘ rate ‘ ||éh||L2(A) ‘ rate ‘
4 | 2.313e-01 - 1.562¢-02 - 5.008e-01 - 3.663e-02 -
8 | 1.300e-01 | 0.832 | 4.714e-03 | 1.729 | 2.519e-01 | 0.992 | 1.779e-02 | 1.042
16 | 8.323e-02 | 0.643 | 1.457e-03 | 1.694 | 1.262¢-01 | 0.998 | 7.832e-03 | 1.184
32 | 5.247e-02 | 0.666 | 4.345e-04 | 1.746 | 6.308e-02 | 1.000 | 3.374e-03 | 1.215
64 | 3.292e-02 | 0.673 | 1.171e-04 | 1.891 | 3.150e-02 | 1.002 | 8.293e-04 | 2.024

TABLE 7.1
L? and H' norms of the errors (ey,ér) and rates between the 3D-1D exact solution (7.1) and the computed
solutions on a family of uniform meshes.

7.2. Manufactured solution for a vessel network. Next, we verify the convergence of
the dG scheme for the 1D network model. Precisely, in this example, we now consider only the
Poisson problem posed on the network —A4 = f on G complemented with (6.4) and homogeneous
Dirichlet conditions on Vj, and we do not solve for a 3D solution. The dG scheme for this 1D
diffusion problem problem is given in (6.9) with u, = vy, = £ = 0 and the penalty parameters set
as 0. = oy = 10. We consider the network embedded in R? shown in Table 7.2 which includes
3 bifurcations, i.e. |B| = 3, located at vi = (0,1), va = (—1,2), v3 = (1,2) while the remaining
nodes are placed at vo = (0,0), v4 = (—1.5,3), vs = (—0.5,3), v¢ = (0.5,3), vz = (1.5,3). Given
G, we consider the following solution and data

472 cos 21y, (x,y) € eg

7.3 0=4{ 24+ 120y — 1), Y) Eei<i<a s J = '
(7.3) i +3V2(y - 1) (z,y) €ei<i<a s f 0, (x,y) € eizo

y + cos 27y, (z,y) € e {
24 V24 1Al - 2), (19) € escics

Using (7.3) and the dG scheme with linear polynomials we consider approximation properties of
the method with respect to the norm

(7.4) (@l e = D Nenlldy + 30 3 T2 (ien(®) = i)’

ec€ veBee&( v)

where ||ép |3, is a slight modification to (3.10) to also include boundary terms. Table 7.2 reports
the errors in the norm given in (7.4). From numerical analysis of interior penalty and of hybridiz-
able dG methods, we expect first order convergence in the norm given above. This is what we
observe in Table 7.2. Further, we compute the term ji(v) = > cce(,) dstie,n(v)ne(v) accounting for
conservation of mass. Considering Remark 2, we expect this term to converge at a similar rate to
the norm given in (7.4). This is indeed what we observe.
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h ”(éh7éh)”vgx\v5 rate maxveg|jh(v)| rate
e3 €4 eg €6 h h

5.00e-1 1.420 - 1.242 -
2.50e-1 9.705¢e-1 5.49 4.683e-1 1.41
@ @ 1.25e-1 4.268e-1 1.19 1.759e-1 1.41
6.25e-2 1.809e-1 1.24 7.807e-2 1.17
3.13e-2 7.896e-2 1.18 3.770e-2 1.05
€1 €2 1.56e-2 3.698¢-2 1.11 1.868¢-2 1.01
7.81e-3 1.771e-2 1.06 9.320e-3 1.00
3.91e-3 8.656e-3 1.03 4.657e-3 1.00
1.95e-3 4.277e-3 1.02 2.328e-3 1.00
9.77e-4 2.126e-3 1.01 1.164e-3 1.00
€0 4.88e-4 1.060e-3 1.00 5.821e-4 1.00
2.44e-4 5.291e-4 1.00 2.910e-4 1.00

TABLE 7.2

Error convergence and flux conservation of the DG scheme defined as part of (6.8)-(6.9) and applied to the
standalone diffusion problem on the network shown to the left. Here é, = u — Uy, €, = u — Uy, with u the exact
solution (7.3). The norm is defined in (7.4). Following Remark 2, we let jo(v) = 3 ocg(yy dstle,n(V)ne(v). We set
the polynomial degree ke = 1.

7.3. Coupled 3D-1D simulation in realistic networks. In Figure 7.1, we finally illus-
trate the capabilities of our dG scheme to model tissue micro-circulation in a realistic setting. To
this end, we utilize the data set [15] which includes vasculature of a 1 mm?® of a mouse cortex, and
we let G be defined in terms of arteries and venules of this network, leaving out the capillaries. The
vessel radius in the network ranges approximately from 5 pm to 35 um. The 3D domain € is then
defined as a bounding box of G of dimensions [570.8,518.7,992.0] pum. Upon discretization (with a
uniform structured mesh, h ~ 57.3 ym and hp =~ 0.9 um), dimVs,z = 196608, ding = 11196, and
dimV% = 57.

In (2.6), we then apply homogeneous Dirichlet and Neumann conditions on u and 4 respectively
and, for simplicity, set £ =1 and f =0, f = 1. The obtained solution fields are shown in Figure
7.1; as a result of the coupling, the concentration wu is higher in the vicinity of the network than
elsewhere in the 3D domain.

Fic. 7.1. Numerical solutions iy and up, due to the dG scheme (6.8)-(6.9) applied to the coupled 3D-1D
problem (6.2)—(6.3) with bifurcation conditions (6.4) considered on a realistic network taken from [15].

REMARK 3. While dG methods offer advantages over their continuous counterparts, it is well
known that the number of degrees of freedom (DOFs) for dG methods is higher than that of con-
tinuous finite element methods (cG). See Table 7.3 for a comparison with respect to DOFs and
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scheme H Ndofs§) ‘ ndofsA ‘ tasmblOh [S] ‘ tsolve@n [S] ‘ tasmbl-Ah [S} ‘ tsolve-Ah [S]

dG 196608 | 11253 0.25 19.4 (50) 11.1 52.0 (50)
cG 9537 5598 0.025 0.03 (8) 6.6 0.19 (16)
TABLE 7.3

Cost comparison of discretizations of the coupled 3D-1D problem (6.2)—(6.3) using the realistic network from
[15] (leaving out the capillaries) and the mesh size of the example above. The dG scheme (6.8)-(6.9) with k1 = ko =
1 is compared with the continuous linear Lagrange elements discretization [22, 26] in terms of (i) dimensionality
of the approximation spaces, (i) assembly and solution times of the Poisson problem induced by the bilinear form
ap, (3.12) and (iii) assembly and solution times of the coupled problem, see (6.8)-(6.9). The systems are solved
by preconditioned conjugate gradient method with (identical) algebraic multigrid preconditioner. Numbers in the
brackets show the number of Krylov iterations to convergence (same convergence criteria are used in all the cases).

assembly and solution time for the coupled 3D—1D network problem of this section. It is observed
that the increase in the DOF's is primarily caused by the 3D—discretization and not by the hybrid
dG method of the 1D network. Further, we remark that the advantages of dG methods, such as
local mass conservation and stability, are particularly apparent for transient advection—-dominated
diffusion problems. Here, we focus on the analysis of the elliptic case. We believe this to be a
necessary first step to study dG approzimations of 8D-1D advection diffusion systems where we
expect to need the elliptic projection for the error analysis. This setting along with a computational
study on the balance between accuracy and cost is an interesting future research direction.

8. Conclusions. Interior penalty discontinuous Galerkin methods are introduced for coupled
3D-1D problems. These models span several areas of applications such as modeling flow and
transport in vascularized tissue. We analyze dG approximations for the steady state problem and
a backward Euler dG method for the time dependent problem. Our analysis is valid under minimal
assumptions on the regularity of the solution and on the mesh. Recovering almost optimal rates
for graded meshes is also shown, under sufficient regularity assumptions. Further, we propose a
novel dG method with hybridization for a network of vessels in a 3D surrounding. The method,
up to jump terms, locally conserves mass at bifurcation points. Numerical results demonstrate
our error analysis.
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