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Abstract. We propose and analyze discontinuous Galerkin (dG) approximations to 3D-1D coupled systems
which model di!usion in a 3D domain containing a small inclusion reduced to its 1D centerline. Convergence to
weak solutions of a steady state problem is established via deriving a posteriori error estimates and bounds on
residuals defined with suitable lift operators. For the time dependent problem, a backward Euler dG formulation
is also presented and analysed. Further, we propose a dG method for networks embedded in 3D domains, which
is, up to jump terms, locally mass conservative on bifurcation points. Numerical examples in idealized geometries
portray our theoretical findings, and simulations in realistic 1D networks show the robustness of our method.
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1. Introduction. Modeling physiological processes involving the flow and transport within
a complex network of vessel-like structures embedded in a 3D domain is crucial. Examples of such
processes include drug transport in vascularized tissue [29, 3] and solute clearance through the
lymphatic vessels in the body [27] and through the glymphatic system of the brain [26, 32]. This
modeling setup has applications not only in physiology but also spans areas such as geosciences
[13, 24].

To account for a complex network of vessels that typically have a small diameter compared
to a surrounding domain, topological model reduction techniques have been proposed [6, 22].
Such models reduce the equations posed in 3D vessels to 1D equations posed on their centerlines.
Further, these 1D equations are suitably coupled to extended 3D equations in the surrounding.
Thereby, 3D–1D models reduce the computational cost while providing a reliable approximation to
the full dimensional system. Bounds on the modeling error induced by such a derivation in terms
of the vessel diameter are derived for the time dependent convection di!usion 3D-1D problem in
[26], for the steady state di!usion 3D-1D problem in [22], and for the steady state 2D-0D problem
in [19].

We remark that the 3D-1D model derived in [22] and further extended in [26] naturally uses
the lateral average as a way to restrict 3D functions to 1D inclusions. This di!ers from the
models presented in [4, 6], where 1D traces of 3D functions are used; therefore, the functional
setting involves special weighted Hilbert spaces. The latter models can be generally viewed as
elliptic problems with Dirac line sources. Several finite element schemes have been proposed and
analyzed for this class of problems. In addition to the continuous Galerkin method introduced
in [5] and further analyzed in [18, 8], we mention the singularity removal method [13], the mixed
approach [14], the interior penalty dG method [25], and the Lagrange multiplier approach [21]. It
is worth noting that the papers [13, 8, 14, 25] only analyze the 3D problem and assume a given
1D source term.

For the 3D-1D problem where the restriction operator is realized via lateral averages, the
continuous Galerkin method is analyzed in [22], providing error estimates in energy norms. To the
best of our knowledge, a discontinuous Galerkin method for the coupled 3D–1D system and its
analysis are novel. DG approximations have several favorable features such as the local mass con-
servation property [28, Section 2.7.3]. In addition, with dG approximations, local mesh refinement
and local high order approximation are easily handled since there are no continuity requirements.
The analysis of dG for the coupled 3D–1D problem requires non–standard arguments as the strong
consistency of the method cannot be assumed. This stems from the observation that the 3D so-
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lution does not belong to H3/2+ω(”) for any positive ω, the natural Sobolev space for the interior
penalty dG bilinear form.

We now summarize the main contributions of the paper and give an outline of the contents.
• We propose an interior penalty dG method for the coupled 3D–1D problem, and we prove
convergence to weak solutions. The main result is given in Theorem 4.6.

• We derive error estimates for regular meshes in Corollary 4.7 and for graded meshes in
Corollary 4.8. The second estimate shows that if the mesh is resolved near the boundary
of the inclusion, then almost optimal error rates are recovered.

• We analyze a backward Euler dG discretization for the time dependent problem by intro-
ducing a suitable interpolant which is based on the elliptic projection. The main result is
in Theorem 5.1.

• For vessel networks embedded in a 3D domain, we propose a dG method with a hy-
bridization technique on bifurcation points. Up to jump terms, this method preserves
conservation of mass on such junctions, see Section 6. We show the well–posedness of this
dG formulation.

The rest of this article is organized as follows. Sections 2 and 3 introduce the model problem and
the dG approximation respectively. The error analysis for the steady state problem is included in
Section 4. We analyze a backward Euler dG method for the transient 3D–1D model in Section 5.
The case of a vessel network inside a 3D domain is studied in Section 6. In Section 7, we provide
numerical examples for manufactured solutions in a 3D–1D setting, for 1D vessel networks, and
for realistic 1D networks in 3D tissue. Conclusions follow in Section 8.

2. Model problem. We introduce the needed notation and the steady state 3D-1D problem.

2.1. Notation. Given an open domain O → Rd, d ↑ {1, 2, 3}, the usual L2 inner product is
denoted by (f, g)O for given real functions f and g. Let L2(O) be the Hilbert space with inner
product (·, ·)O and the usual induced norm ↓ · ↓L2(O). We drop the subscript when O = ” and let
↓ · ↓ := ↓ · ↓L2(!) and (·, ·) := (·, ·)!. Recall the notation of the standard Sobolev spaces Wm,p(O)
and Hm(O) = Wm,2(O) for m ↑ N and 1 ↔ p ↔ ↗. For a given weight w ↑ L→(O) and w > 0
a.e. in O, the weighted L2 inner product is given by (f, g)L2

ω(O) = (f, wg)O with the respective
weighted L2

ε space:

(2.1) ↓f↓L2
w(O) = ↓w1/2f↓L2(O), L2

w(O) = {f : O ↘ R | ↓f↓L2
w(O) < ↗}.

Similarly, the weighted Hilbert space H1
w(O) is given by

(2.2) H1
w(O) = {f ↑ L2

w(O) | ↓≃f↓L2
w(O) < ↗},

where the weighted inner product and norm are

(2.3) (f, g)H1
w(O) = (f, g)L2

w(O) + (≃f,≃g)L2
w(O), ↓f↓2H1

w(O) = ↓f↓2L2
w(O) + ↓≃f↓2L2

w(O).

We omit the subscript/weight w when w = 1. Throughout the paper, we denote by C a generic
constant independent of mesh parameters. We use the standard notation A ↭ B for A ↔ C B and
A ⇐ B for A ↔ C B and B ↔ C A.

2.2. The 3D-1D model. Let ” → R3 be a bounded domain with a one dimensional inclusion
#. We assume that # is parametrized by ω(s), s ↑ [0, L] and is strictly included in ”, ω is C2

regular, and (for simplicity) ↓ω↑(s)↓ = 1 so that the arc length and s coincide. We further define
B” as a generalized cylinder with centerline #. The boundary of B” will be denoted by $. See
Figure 2.1 for an illustration of the considered geometry. A cross-section of B” at s ↑ [0, L] is
denoted by %(s) with area A(s) and perimeter P (s). We assume that there are positive constants
a0, a1 such that a0 ↔ A(s) +P (s) ↔ a1 for all s. We also assume that A belongs to C1([0, L]). For
a function u ↑ L1(ε%(s)), we define the lateral average ū as

(2.4) u(s) =
1

P (s)

∫

ϑ#(s)
u.
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Fig. 2.1. Illustration of the considered geometry

The 3D-1D model that we consider results from a reduction of a 3D-3D model in ”\B” and
in B” with Robin type interface conditions on $. This condition models the membrane $ as
semi-permeable with permeability constant ϑ > 0. Averaging the equations in B” and formally
extending the equations in ”\B”, one obtains the following coupled system.

⇒&u+ ϑ(u⇒ û)ϖ$ = f in ”,(2.5)

⇒ds(A dsû) + P ϑ(û⇒ u) = A f̂ in #.(2.6)

The source terms f ↑ L2(”) and f̂ ↑ L2
A(#) are given. We refer to [22, 26] for details on the

derivation and on the model error analysis. The above equations are to be understood in the weak
sense, and the functional (u⇒ û)ϖ$ is defined over H1(”) as

(2.7) (u⇒ û)ϖ$(v) =

∫

”
P (u⇒ û)v, ⇑v ↑ H1(”).

The above functional is well-defined since an application of Cauchy-Schwarz’s inequality and trace
theorem yields

(2.8) ↓v↓L2
P (”) ↔ ↓v↓L2($) ↭ ↓v↓H1(!), ⇑v ↑ H1(”).

The system (2.5)–(2.6) is complemented by the following boundary conditions.

(2.9) u = 0 on ε”, and A dsû = 0 on s = {0, L}.

To introduce the weak formulation of (2.5)–(2.6), we define the following bilinear forms.

a(u, v) = (≃u,≃v), ⇑u, v ↑ H1(”),(2.10)

a”(û, v̂) = (dsû, dsv̂)L2
A(”), ⇑û, v̂ ↑ H1

A(#),(2.11)

b”(v̂, ŵ) = (ϑv̂, ŵ)L2
P (”), ⇑v̂, ŵ ↑ L2

P (#).(2.12)

The weak formulation of the coupled 3D-1D problem then reads [22]: Find u = (u, û) ↑ H1
0 (”)⇓

H1
A(#) such that

a(u, v) + b”(u⇒ û, v) = (f, v)!, ⇑v ↑ H1
0 (”),(2.13)

a”(û, v̂) + b”(û⇒ u, v̂) = (f̂ , v̂)L2
A(”), ⇑v̂ ↑ H1

A(#).(2.14)

The terms given in b” model the coupling between the 3D solution u and the 1D solution û.
Equivalently, one can write the above as follows. Find u = (u, û) ↑ H1

0 (”)⇓H1
A(#) such that

(2.15) A(u,v) = (f, v)! + (f̂ , v̂)L2
A(”), ⇑v = (v, v̂) ↑ H1

0 (”)⇓H1
A(#),

where we define for u = (u, û),v = (v, v̂) ↑ H1
0 (”)⇓H1

A(#)

(2.16) A(u,v) = a(u, v) + a”(û, v̂) + b”(u⇒ û, v ⇒ v̂).

The problem given in (2.15) is well-posed, see [22, Section 3.2].
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3. Discontinuous Galerkin formulation. The numerical method is presented here.

3.1. Meshes and dG spaces. We consider a family of regular partitions of ” made of
tetrahedra and denoted by T h

! . The mesh-size is h = maxK↓T h
!
hK , where hK = diam(K). We

associate with T h
! , the space H1(T h

! ) of broken H1 functions in ”, and a finite dimensional space
V!

h of broken piecewise polynomials of order k1.

(3.1) V!
h = {vh ↑ L2(”), vh ↑ Pk1(K), ⇑K ↑ T h

! }.

We let T h
” = {(si↔1, si), i = 1, . . . , N} with s0 = 0 and sN = L be a family of uniform partitions

of [0, L], with mesh size h” = si ⇒ si↔1. This mesh over [0, L] defines a partition of the curve #
via the parameterization ω : each element (si↔1, si) defines a curved part of # via the mapping ω.
Note that we will not refer to or use these curved elements as the reference domain is (0, L). We
let H1(T h

” ) be the space of broken H1 functions in (0, L), and we let V”
h be the respective space

of broken piecewise polynomials of order k2.

(3.2) V”
h = {v̂h ↑ L2((0, L)), v̂h ↑ Pk2((si↔1, si)), 1 ↔ i ↔ N}.

Note that with the parameterization, functions in H1(T h
” ) and in V”

h define functions in the broken
H1(#) space by setting v := v̂ ⇔ ω↔1. While this observation highlights that we are essentially
using a Galerkin subspace of the broken H1(#) space, it will not be used or referred to in the
analysis that follows.

For each 1 ↔ i ↔ N , we let Bi be the portion of B” obtained when s is restricted to #i =
(si↔1, si). That is, we have that ⋃

1↗i↗N

Bi = B”.

For each 1 ↔ i ↔ N , we now define neighborhoods of the curve between ω(si↔1) and ω(si)
consisting of 3D elements in T h

! . Namely, we define

(3.3) ϱi = {K ↑ T h
! , K ↖ εBi ↙= ∝}.

We can then write

(3.4) T h
B := {K ↑ T h

! , K ↖ εB” ↙= ∝} =
⋃

1↗i↗N

ϱi.

We assume that if K ↖ B” ↙= ∝, then the two-dimensional Lebesgue measure of εK ↖ εB”

is zero. This ensures that the term b”(·, ·) involving the average operator given in (2.4) is well
defined for H1(T h

! ).
Further, we assume the following relation between the level of refinement for the 3D domain

and that of the 1D domain. For K ↑ T h
B , let IK be the set of integers i0 such that K ↑ ϱi0 . We

assume that the cardinality of IK is bounded above by a constant independent of K and of h.
Essentially, this assumption means the 3D mesh intersecting εB” can not remain fixed while the
1D mesh is refined.

We also denote by $h the set of all interior faces in T h
! . The set of edges belonging to elements

in T h
B is decomposed by defining

(3.5) $i = {F ↑ $h, F → εK, where K ↑ ϱi}.

For each interior face F , we associate a unit normal vector nF and we denote by K1
F and K2

F
the two elements that share F such that the vector nF points from K1

F to K2
F . We denote the

average and the jump of a function vh ↑ V!
h by {vh} and [vh] respectively.

{vh}|F =
1

2

(
vh|K1

F
+ vh|K2

F

)
, [vh]|F = vh|K1

F
⇒ vh|K2

F
, ⇑F ↑ $h.(3.6)
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If F = ε” ↖ εK1
F , then the average and the jump are given by

(3.7) [v]|F = {v}|F = v|K1
F
.

The area of F ↑ $h′ε” is denoted by |F |. Similar definitions are adopted for jumps and averages
of v̂h ↑ V”

h on the nodes si.

1 ↔ i ↔ N ⇒ 1, [v̂h]si = lim
t↘0,t>0

v̂h(si ⇒ t)⇒ lim
t↘0,t>0

v̂h(si + t),

1 ↔ i ↔ N ⇒ 1, {v̂h}si =
1

2
lim

t↘0,t>0
v̂h(si + t) +

1

2
lim

t↘0,t>0
v̂h(si ⇒ t),

[v̂h]s0 = ⇒v̂h(s0), [v̂h]sN = v̂h(sN ).

For v ↑ H1(T h
! ), we define the norm for ς! > 0

(3.8) ↓v↓2V!
h
=

∑

K↓T h
!

↓≃v↓2L2(K) +
∑

F↓$h≃ϑ!

ς!

|F |1/2
↓[v]↓2L2(F ).

A Poincaré inequality holds in H1(T h
! ) (see for e.g [7, Remark 4.15]):

(3.9) ↓v↓L2(!) ↭ ↓v↓V!
h
, ⇑v ↑ H1(T h

! ).

For v̂ ↑ H1(T h
” ), we define the semi-norm for ς” > 0

(3.10) |v̂|2V”
h
=

N∑

i=1

↓dsv̂↓2L2((si→1,si))
+

N↔1∑

i=1

ς”

h”
[v̂]2si .

The above definitions allow us to introduce the norm ↓ ·↓DG on H1(T h
! )⇓H1(T h

” ). For v = (v, v̂),

(3.11) ↓v↓2DG = ↓v↓2V!
h
+ |v̂|2V”

h
+ ↓v ⇒ v̂↓2L2

P (”).

The above indeed defines a norm. If ↓v↓DG = 0, then v = 0 since ↓ · ↓V!
h
is a norm on H1(T h

! ).

This implies that ↓v̂↓L2
P (”) = 0 and v̂ = 0.

3.2. The numerical method. We use interior penalty discontinuous Galerkin forms [28].
Define ah(·, ·) : V!

h ⇓ V!
h ↘ R:

ah(u, v) =
∑

K↓T h
!

∫

K
≃u ·≃v ⇒

∑

F↓$h≃ϑ!

∫

F
{≃u} · nF [v](3.12)

+φ1
∑

F↓$h≃ϑ!

∫

F
{≃v} · nF [u] +

∑

F↓$h≃ϑ!

ς!

|F |1/2

∫

F
[u][v].

For the 1D discrete solution, we introduce the form a”,h(·, ·) : V”
h ⇓ V”

h ↘ R

a”,h(û, v̂) =
N∑

i=1

∫ si

si→1

A
dû

ds

dv̂

ds
⇒

N↔1∑

i=1

{
A

dû

ds

}

si

[v̂]si(3.13)

+ φ2

N↔1∑

i=1

{
A
dv̂

ds

}

si

[û]si +
N↔1∑

i=1

ς”

h”
[û]si [v̂]si .

In the above, φ1, φ2 ↑ {⇒1, 0, 1} lead to symmetric, incomplete, or non-symmetric discretizations,
and ς”,ς! > 0 are penalty parameters. The dG formulation of problem (2.15) then reads as
follows. Find uh = (uh, ûh) ↑ V!

h ⇓ V”
h such that

Ah(uh,vh) = (f, vh)! + (f̂ , v̂h)”, ⇑vh = (vh, v̂h) ↑ V!
h ⇓ V”

h ,(3.14)
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where we defined the form Ah(·, ·) : (V!
h ⇓ V”

h )
2 ↘ R:

Ah(uh,vh) = ah(uh, vh) + a”,h(ûh, v̂h) + b”(uh ⇒ ûh, vh ⇒ v̂h).(3.15)

It is important to note that the interface $ does not need to be resolved by the mesh to realize the
coupling term b”; identifying the elements intersecting $ is su’cient. To show the well–posedness
of the discrete dG formulation, we first show the coercivity of Ah with respect to the norm defined
in (3.11).

Lemma 3.1 (Coercivity). For suitably chosen penalty parameters ς” and ς!, there exists a
constant Ccoerc such that

(3.16) Ah(uh,uh) ∞ Ccoerc↓uh↓2DG, ⇑uh ↑ V!
h ⇓ V”

h .

Proof. If ς! is large enough whenever φ1 = ⇒1 or for any ς! when φ1 = 1 (same conditions
apply for ς” and φ2), we have that

ah(uh, uh) ∞ C1↓uh↓2V!
h
, a”,h(ûh, ûh) ∞ C2|ûh|2V”

h
.(3.17)

Note that the proofs of the above estimates are immediate for the case φ1 = φ2 = 1. For the other
cases, careful applications of discrete trace estimates and Cauchy–Schwarz’s inequality yield the
results. The details of the proofs follow standard arguments, see for e.g. [28, Section 2.7.1]. The
result then immediately follows from the above and from the definition of Ah(·, ·).

Lemma 3.2 (Existence and uniqueness of solutions). There exists a unique pair (uh, ûh) ↑
V!

h ⇓ V”
h solving (3.14).

Proof. From the coercivity property, it easily follows that the solution is unique. Since this is
a square linear system in finite dimensions, existence follows.

4. Error analysis. The main di’culty in the error analysis of the dG formulation is that the
strong consistency of the method can not be assumed. Indeed, under su’cient regularity assump-
tions on the domain, one can only show that the 3D solution u of (2.15) belongs to H3/2↔ω(”) for
ω > 0 [22]. However, the form ah can not be extended to this space since the traces of gradients for
functions in H3/2↔ω(”) are not well–defined. Therefore, we adopt here a combination of a priori
and a posteriori error estimates within the framework proposed by Gudi [16] to prove convergence.
The main result is provided in Theorem 4.6.

4.1. Preliminary lemmas. We first introduce the conforming spaces V!
h,c → H1

0 (”) of

continuous piecewise linear functions defined over T h
! in ”. Similarly, we let V”

h,c be the respective

space of continuous piecewise linear functions defined over T h
” .

Lemma 4.1. There exists an enriching map E = (E, Ê) : V!
h ⇓ V”

h ↘ V!
h,c ⇓ V”

h,c such that

|Ev|H1(!) ↭ ↓v↓V!
h
, |Êv̂|H1(”) ↭ |v̂|V”

h
,(4.1)




∑

K↓T h
!

h↔2
K ↓Ev ⇒ v↓2L2(K)




1/2

↭ ↓v↓V!
h
, ↓Êv̂ ⇒ v̂↓L2(”) ↭ h”|v̂|V”

h
.(4.2)

Proof. An enriching map with the above properties can be constructed as a nodal Lagrange
interpolant with nodal values taken as averages of v (v̂), see [17, Theorem 2.2] and [7, Section
5.5.2]. Another approach is to apply a Scott-Zhang interpolant to a Crouzeix-Raviart correction,
see [12, Lemma 6.2].

We now define L2–projections. Let K ↑ T h
! and #i = (si↔1, si) for i ↑ {1, . . . , N}. For any

(w, ŵ) ↑ L2(K)⇓ L2(#i), define (↼hw, ↼̂hŵ) ↑ Pk1(K)⇓ Pk2(#i) such that

(4.3) ⇑vh ↑ Pk1(K), (↼hw ⇒ w, vh)K = 0, ⇑v̂h ↑ Pk2(#i), (↼̂hŵ ⇒ ŵ, v̂h)L2
P (”i) = 0.
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Lemma 4.2 (Properties of the L2–projections). Let s ↑ {0, . . . , k + 1}, m ↑ {0, . . . , s}, K ↑
T h
! , and #i = (si↔1, si) for i ↑ {1, . . . , N}. Assume that w ↑ Hs(K) and ŵ ↑ Hs(#i). Then,

↓↼hw ⇒ w↓Hm(K) ↭ hs↔m
K ↓w↓Hs(K), ↓↼̂hŵ ⇒ ŵ↓Hm(”i) ↭ hs↔m

” ↓ŵ↓Hs(”i).(4.4)

In addition, the L2 projection is stable in the dG norm. Namely,

(4.5) ↓↼hw↓V!
h
↭ ↓w↓H1(T h

! ), ⇑w ↑ H1(T h
! ).

Proof. Proofs of the estimates in (4.4) can be found in [7, Lemma 1.58]. The proof of (4.5)
follows from applications of trace estimates and (4.4).

We now state a local trace inequality on εB”. The proof of the following estimate is due to Wu
and Xiao [33, Lemma 3.1].

Lemma 4.3 (Local trace estimate on εB”). There exists a constant h0 such that for all h ↔ h0

and K ↑ T h
B , the following estimates hold

↓v↓L2(ϑB”⇐K) ↭ h↔1/2
K ↓v↓L2(K) + h1/2

K ↓≃v↓L2(K), ⇑v ↑ H1(K),(4.6)

↓vh↓L2(ϑB”⇐K) ↭ h↔1/2
K ↓vh↓L2(K), ⇑vh ↑ Pk(K), ⇑k ∞ 1.(4.7)

Hereinafter, we assume that h ↔ h0. We now show a global trace inequality.

Lemma 4.4 (Trace estimate). For u ↑ H1(T h
! ), there holds

(4.8) ↓u↓L2
P (”) ↭ ↓u↓V!

h
.

Proof. We start by showing the result for vh ↑ V!
h . Let #i = (si↔1, si). We use triangle and

Cauchy–Schwarz’s inequalities to obtain that for any 1 ↔ i ↔ N ,

(4.9) ↓vh↓L2
P (”i) ↔ ↓vh ⇒ Evh↓L2

P (”i) + ↓Evh↓L2
P (”i) ↔ ↓vh ⇒ Evh↓L2(ϑBi) + ↓Evh↓L2

P (”i).

Recall the definition of ϱi in (3.3) and note that

↓vh ⇒ Evh↓2L2(ϑBi)
=

∑

K↓εi

↓vh ⇒ Evh↓2L2(ϑBi⇐K̄).(4.10)

With (4.7), we obtain that

↓vh ⇒ Evh↓2L2(ϑBi)
↭

∑

K↓εi

h↔1
K ↓vh ⇒ Evh↓2L2(K).

Summing over i and using the global bound (4.2) yield

N∑

i=1

↓vh ⇒ Evh↓2L2(ϑBi)
↭

∑

K↓T h
B

h↔1
K ↓vh ⇒ Evh↓2L2(K) ↭ h↓vh↓2V!

h
.

Therefore, with (2.8), we obtain

↓vh↓2L2
P (”) =

N∑

i=1

↓vh↓2L2
P (”i)

↭ h↓vh↓2V!
h
+ ↓Evh↓2L2

P (”) ↭ h↓vh↓2V!
h
+ ↓Evh↓2H1(!).(4.11)

With Poincaré’s inequality (3.9), and the properties of E (4.1)–(4.2), we obtain the bound

↓Evh↓2H1(!) ↔ ↓Evh ⇒ vh↓2L2(!) + ↓vh↓2L2(!) + |Evh|2H1(!) ↭ ↓vh↓2V!
h
.
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Substituting the above in (4.11) yields (4.8) for vh ↑ V!
h . Consider now u ↑ H1(T h

! ) and recall
that ↼hu is the local L2 projection on V!

h . Then, by Cauchy–Schwarz’s inequality and (4.6), we
have that

↓u⇒ ↼hu↓2L2
P (”i)

↔
∑

K↓εi

↓u⇒ ↼hu↓2L2(ϑBi⇐K)

↭
∑

K↓εi

(
h↔1
K ↓u⇒ ↼hu↓2L2(K) + hK↓≃(u⇒ ↼hu)↓2L2(K)

)
↭

∑

K↓εi

hK↓u↓2H1(K).

In the above, we used the properties of the L2 projection given in (4.4). Then, using triangle
inequality and (4.8) for V!

h , we obtain

↓u↓L2
P (”) ↔ ↓u⇒ ↼hu↓L2

P (”) + ↓↼hu↓L2
P (”) ↭ h1/2(

∑

K↓T h
!

↓u↓2H1(K))
1/2 + ↓↼hu↓V!

h
.(4.12)

The result is concluded by Poincaré’s inequality (3.9) and the stability of the L2 projection ↼h in
the ↓ · ↓V!

h
norm, see (4.5).

A consequence of (4.8) and the triangle inequality is the following bound:

(4.13) ⇑u = (u, û) ↑ H1(T h
! )⇓H1(T h

” ), ↓û↓L2
P (”) ↭ ↓u↓DG.

We will make use of lift operators. For a given (u, û) ↑ H1(T h
! )⇓H1(T h

” ), define (Lhu, L̂hû) ↑
V!

h ⇓ V”
h such that

(Lhu,wh)! + (L̂hû, ŵh)L2
P (”) = b”(u⇒ û, wh ⇒ ŵh), ⇑(wh, ŵh) ↑ V!

h ⇓ V”
h .(4.14)

The existence of (Lhu, L̂hû) easily follows from uniqueness. We show the following estimate.

Lemma 4.5 (Lift operator). Given (u, û) ↑ H1(T h
! ) ⇓H1(T h

” ), let (Lhu, L̂hû) ↑ V!
h ⇓ V”

h be
defined by (4.14). There holds

∑

K↓T h
!

hK↓Lhu↓2L2(K) + ↓L̂hû↓2L2
P (”) ↭ ↓u↓2V!

h
+ ↓û↓2L2

P (”).(4.15)

Proof. Choosing (wh, ŵh) = (0, L̂hû) in (4.14) and using Cauchy-Schwarz’s inequality and
(4.8), we have

↓L̂hû↓2L2
P (”) ↔ ϑ↓u⇒ û↓L2

P (”)↓L̂hû↓L2
P (”) ↭ (↓u↓V!

h
+ ↓û↓L2

P (”))↓L̂hû↓L2
P (”).(4.16)

This shows the bound on the second term in (4.15). Next, fix K ↑ T h
B and recall that IK be the

set of integers i0 such that K ↑ ϱi0 where we assume that the cardinality of IK is bounded above
by a small constant independent of K. In (4.14), choose ŵh = 0 and wh = (Lhu)↽K where ↽K is
the characteristic function on K. We obtain

↓Lhu↓2L2(K) ↭
∑

i0↓IK

(↓u↓L2
P ((si0→1,si0 ))

+ ↓û↓L2
P ((si0→1,si0 ))

)↓wh↓L2
P ((si0→1,si0 ))

.(4.17)

We now use Cauchy–Schwarz’s inequality, the observation that wh is locally supported in K, and
trace inequality (4.7). We estimate

↓wh↓L2
P ((si0→1,si0 ))

↔ ↓wh↓L2(ϑBi0 )
= ↓Lhu↓L2(ϑBi0⇐K̄) ↭ h↔1/2

K ↓Lhu↓L2(K).(4.18)

Thus, we conclude that

(4.19) ↓Lhu↓2L2(K) ↭ h↔1/2
K

∑

i0↓IK

(↓u↓L2
P ((si0→1,si0 ))

+ ↓û↓L2
P ((si0→1,si0 ))

)↓Lhu↓L2(K).
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Summing the above bound over K ↑ T h
B and using Cauchy-Schwarz’s inequality yield

∑

K↓T h
B

hK↓Lhu↓2L2(K) ↭ (↓u↓L2
P (”) + ↓û↓L2

P (”))




∑

K↓T h
B

hK↓Lhu↓2L2(K)




1/2

.

With Lemma 4.4 and with noting that Lhu|K = 0 for K /↑ T h
B , we conclude the result.

4.2. Main result and proof outline. The main convergence result reads as follows.

Theorem 4.6. Let u = (u, û) ↑ H1
0 (”)⇓H1(#) be the weak solution defined by (2.15), and let

uh = (uh, ûh) ↑ V!
h⇓V”

h be the discrete solution defined by (3.14). Recall that hB = maxK↓T h
B
hK .

The following estimate holds.

(4.20) ↓u⇒ uh↓DG ↭ inf
v↓V!

h⇒V”
h

↓u⇒ v↓DG

+ h↓f ⇒ ↼hf↓L2(!) + h”↓f̂ ⇒ ↼̂hf̂↓L2
A(”) + h1/2

B ↓u⇒ û↓L2
P (”).

Proof. Here, we present the main steps of the proof. The details are given in the next section.
We have, see Lemma 4.9 for the proof,

(4.21) ↓u⇒ uh↓DG

↭ inf
v↓V!

h⇒V”
h

(
↓u⇒ v↓DG + sup

ω↓V!
h⇒V”

h

(f,⇀⇒ E⇀)! + (f̂ , ⇀̂⇒ Ê⇀̂)L2
A(”) ⇒Ah(v,ε⇒Eε)

↓ε↓DG

)
.

We now bound the second term above. To this end, fix v,ε ↑ V!
h ⇓ V”

h and let w = ε ⇒ Eε.

Define Z = (f, w)! + (f̂ , ŵ)L2
A(”) ⇒Ah(v,w). With the lift operator (4.14), we write

Z = (f ⇒ Lhv, w)! + (Af̂ ⇒ PL̂hv̂, ŵ)” ⇒ ah(v, w)⇒ a”,h(v̂, ŵ).(4.22)

We integrate by parts the first term in ah(v, w) and the first term in a”,h(v̂, ŵ). We obtain

Z =
∑

K↓T h
!

∫

K
(f ⇒ Lhv +&v)w +

N∑

i=1

∫ si

si→1

(Af̂ ⇒ PL̂hv̂ + ds(A dsv̂))ŵ

︸ ︷ 
Z1

(4.23)

⇒
∑

F↓$h

∫

F
[≃v] · nF {w}⇒

N∑

i=0

[A dsv̂]si{ŵ}si
︸ ︷ 

Z2

+Z3 + Z4,

where Z3, Z4 are the remaining terms in ah(v, w) and a”,h(v̂, ŵ) respectively. Namely,

Z3 = ⇒φ1
∑

F↓$h≃ϑ!

∫

F
{≃w} · ne[v]⇒

∑

F↓$h≃ϑ!

∫

F

ς!

|F |1/2
[v][w],(4.24)

Z4 = ⇒φ2

N↔1∑

i=1

{A dsŵ}si [v̂]si ⇒
N↔1∑

i=1

ς”

h”
[v̂]si [ŵ]si .(4.25)

We start by bounding Z3 and Z4. We note that [u] = [E⇀] = 0 a.e. on F ↑ $h ′ ε” and
that [û]si = [Ê⇀̂]si = 0, i ↑ {1, . . . N ⇒ 1}. We use standard applications of trace inequality
for polynomials and Cauchy-Schwarz’s inequality, see for e.g. [28, Section 2.8.1] for a detailed
exposition, to obtain

|Z3|+ |Z4| ↭ ↓w↓V!
h
↓v ⇒ u↓V!

h
+ ↓ŵ↓V”

h
↓v̂ ⇒ û↓V”

h
(4.26)

↭ (↓⇀↓V!
h
+ |E⇀|H1(!) + |⇀̂|V”

h
+ |Ê⇀̂|H1(”))↓u⇒ v↓DG

↭ ↓ε↓DG↓u⇒ v↓DG.
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In the last inequality above, we used the stability of E given in (4.1) of Lemma 4.1, and the
definition of ↓ ·↓DG. For the term Z1, we use Cauchy–Schwarz’s inequality and the approximation
properties of E (4.2). We use the notation #i = (si↔1, si) and we estimate

(Z1)
2 ↔




∑

K↓T h
!

h2
K↓f +&v ⇒ Lhv↓2L2(K) +

N∑

i=1

h2
”↓Af̂ + ds(A dsv̂)⇒ PL̂hv̂↓2L2(”i)





(4.27)

⇓




∑

K↓T h
!

h↔2
K ↓w↓2L2(K) +

N∑

i=1

h↔2
” ↓ŵ↓2L2(”i)





↭




∑

K↓T h
!

h2
K↓f +&v ⇒ Lhv↓2L2(K) +

N∑

i=1

h2
”↓Af̂ + ds(A dsv̂)⇒ PL̂hv̂↓2L2(”i)



 ↓ε↓2DG

:= (R1
! +R1

”)↓ε↓2DG.

For the term Z2, first note that for F = εK1
F ↖ εK2

F and i = 1, . . . , N ⇒ 1, we use the following
trace estimates [28, Section 2.1.3].

↓{w}↓L2(F ) ↭ |F |↔1/4↓w↓L2(K1
F≃K2

F ), |{ŵ}si | ↭ h↔1/2
” ↓ŵ↓L2(”i≃”i+1).

Applications of Cauchy–Schwarz’s inequalities, the above estimates with the observation that
|F |↔1/2hKj

F
↭ 1 for j = 1, 2, and (4.2) yield

(Z2)
2 ↭

(
∑

F↓$h

|F |1/2↓[≃v] · nF ↓2L2(F ) +
N∑

i=0

h”[A dsv̂]
2
si

)
(4.28)

⇓




∑

K↓T h
!

h↔2
K ↓w↓2L2(K) +

N∑

i=1

h↔2
” ↓ŵ↓2L2(”i)





↭
(

∑

F↓$h

|F |1/2↓[≃v] · nF ↓2L2(F ) +
N∑

i=0

h”[A dsv̂]
2
si

)
↓ε↓2DG := (R2

! +R2
”)↓ε↓2DG.

Combining the bounds above we have

↓u⇒ uh↓DG ↔ inf
v↓V!

h⇒V”
h

(
↓u⇒ v↓DG + (R1

! +R1
”)

1/2 + (R2
! +R2

”)
1/2

)
.

The proof is finished by obtaining the required bounds on the residual (R1
! + R1

”), see Lemma
4.10 and Corollary 4.11, and on the residual (R2

! +R2
”), see Lemma 4.12 and Corollary 4.13.

Corollary 4.7 (Error rate). Under the assumptions of Theorem 4.6, if u ↑ H3/2↔ω(”) for
any ω > 0 and û ↑ H2

A(#), then the following bound holds

(4.29) ↓u⇒uh↓DG ↭ h1/2↔ω(↓u↓H3/2→ε(!)+↓u⇒ û↓L2
P (”)+↓f↓L2(!))+h”(↓û↓H2

A(”)+↓f̂↓L2
A(”)).

Proof. Let Shu = (Shu, Ŝhû) ↑ V!
h ⇓ V”

h where Sh and Ŝh are Scott–Zhang interpolants of
u and û respectively [30]. With the triangle inequality, (2.8), and approximation properties, we
bound

(4.30) ↓u⇒ Shu↓DG ↭ ↓u⇒ Shu↓H1(!) + |û⇒ Ŝhû|H1
A(”) + ↓û⇒ Ŝhû↓L2

P (”)

↭ h1/2↔ω↓u↓H3/2→ε(!) + h”↓û↓H2
A(”).

Using the above bound in (4.20) yields the desired estimate.
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We now show that if the mesh is refined near the boundary of B”, (namely the mesh size is of
the order h2k1 where we recall k1 is the polynomial degree for the space V!

h ) then almost optimal
error estimates can be recovered. To this end, we use the definitions of graded meshes [2, 5, 19]
in order to obtain the required estimates.

Corollary 4.8 (Graded meshes). Let rK = dist(K, εB”) and recall that hK = diam(K).
Suppose that the mesh satisfies the following grading property.

(4.31) hK ⇐

h r

1↔ 1
2k1

K , if rK > 1
2hK ,

h2k1 , otherwise.

Let h” ⇐ hK , for K ↑ T h
B . Assume that the assumptions of Theorem 4.6 hold. Further, assume

that u ↑ Hk1+1(”\B”) ↖Hk1+1(B”), û ↑ H2(#), f ↑ Hk1↔1(”), and f̂ ↑ L2(#). Then,

↓u⇒ uh↓DG ↭hk1↔2ω(↓u↓Hk1+1(B”) + ↓u↓Hk1+1(!\B”) + ↓u↓H3/2→ε(!) + ↓f↓Hk1→1(!))(4.32)

+ h2k1(↓û↓H2(”) + ↓f̂↓L2(”)).

Proof. Define an interpolant Ihu ↑ V!
h such that Ihu|K = Shu|K , the Scott–Zhang interpolant

restricted to K, if rK ↔ 1
2hK and Ihu|K = ↼hu, the local L2 projection, otherwise. We use the

local approximation properties of the Scott–Zhang interpolant. Namely, we have that [30]

(4.33) |u⇒ Shu|H1(K) + h↔1
K ↓u⇒ Shu↓L2(K) ↭ hmin(k1+1,s)↔1

K ↓u↓Hs(%K), 1 ↔ s ↔ k1 + 1.

In the above, &K is the union of elements sharing a face with K. Hence, we obtain that

(4.34)
∑

K↓T h
! ,rK↗ 1

2hK

(
|u⇒ Ihu|2H1(K) + h↔2

K ↓u⇒ Ihu↓2L2(K)

)

↭
∑

K↓T h
! ,rK↗ 1

2hK

h1↔2ω
K ↓u↓2H3/2→ε(%K) ↭ h2k1(1↔2ω)↓u↓2H3/2→ε(!).

Further, using the approximation properties of the L2 projection, we obtain

(4.35)
∑

K↓T h
! ,rK> 1

2hK

(
|u⇒ Ihu|2H1(K) + h↔2

K ↓u⇒ Ihu↓2L2(K)

)

↭
∑

K↓T h
! ,rK> 1

2hK

h2k1↓u↓2Hk1+1(K) ↭ h2k1(↓u↓2Hk1+1(B”) + ↓u↓2
Hk1+1(!\B”)

).

In the above, we also used that rK ↭ diam(”). Now, note that

↓u⇒ Ihu↓2V!
h
↭

∑

K↓T h
!

(
|u⇒ Ihu|2H1(K) + h↔2

K ↓u⇒ Ihu↓2L2(K)

)
.(4.36)

Define Ihu = (Ihu, Ŝhû). We use the above bounds, triangle inequality, (4.8), and approximation
properties of Ŝh to obtain that

↓u⇒ Ihu↓DG ↭ ↓u⇒ Ihu↓V!
h
+ |û⇒ Ŝhû|V”

h
+ ↓û⇒ Ŝhû↓L2

P (”)(4.37)

↭ hk1(↓u↓Hk1+1(B”) + ↓u↓Hk1+1(!\B”) + h↔2ω↓u↓H3/2→ε(!)) + h2k1↓û↓H2(”).

In the above, we used the assumption that h” ⇐ hK for K ↑ T h
B and thus h” ⇐ h2k1 . The above

bound estimates the first term of (4.20). The second and third terms in (4.20) are bounded by
the approximation properties of the L2 projections, see (4.4). Finally, the last term in (4.20) is
controlled by observing that rK ↭ 1

2hK , ⇑K ↑ T h
B . Thus, using (4.31), hB ↭ h2k1 . Along with

(2.8), this concludes the proof.
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4.3. Proof details. We now provide details for the steps given in the proof of Theorem 4.6.

Lemma 4.9. Let u and uh be the solutions of (2.15) and (3.14) respectively. Then, (4.21)
holds.

Proof. The proof follows from the abstract framework given in [16, Lemma 2.1]. In the
notation of this Lemma, we set V = H1

0 (”)⇓H1
A(#), ↓v↓2V = ↓v↓2H1(!) + ↓v↓2H1

A(”), and ↓ · ↓h =

↓ · ↓DG. We verify assumptions (N1)–(N3) of [16]. Observe that assumption (N1) is the coercivity
estimate of Lemma 3.1. We now verify assumption (N3) which states that

(4.38) ↓Ev↓V ↭ ↓v↓DG, ⇑v ↑ V!
h ⇓ V”

h .

Let v = (v, v̂) ↑ V!
h ⇓ V”

h . From Lemma 4.1, we have

(4.39) ↓Ev↓H1(!) + ↓Êv̂↓H1
A(”) ↭ ↓v↓L2(!) + ↓v̂↓L2

A(”) + ↓v↓V!
h
+ |v̂|V”

h
.

For the first term above, we use Poincaré’s inequality (3.9). For the second term, we use the fact
that A,P > 0, triangle inequality, and trace inequality (Lemma 4.4):

(4.40) ↓v̂↓L2
A(”) ↭ ↓v̂ ⇒ v↓L2

P (”) + ↓v↓L2
P (”) ↭ ↓v̂ ⇒ v↓L2

P (”) + ↓v↓V!
h
.

Therefore, we obtain that

↓Ev↓H1(!) + ↓Êv̂↓H1
A(”) ↭ ↓v↓V!

h
+ ↓v̂↓V”

h
+ ↓v ⇒ v̂↓L2

P (”) ↭ ↓v↓DG.(4.41)

Hence, (4.38) is verified. It remains to verify (N2). We show that for v ↑ H1
0 (”) ⇓ H1(#),

vh ↑ V!
h ⇓ V”

h , and w ↑ V!
h,c ⇓ V”

h,c, there holds

(4.42) A(v,w)⇒Ah(vh,w) ↭ ↓v ⇒ vh↓DG(↓w↓2H1(!) + ↓ŵ↓2H1
A(”))

1/2.

For this, observe that [v] = [w] = 0 a.e. on e ↑ $h ′ ε”. Thus, we have that

a(v, w)⇒ ah(vh, w) =
∑

K↓T h
!

∫

K
≃(v ⇒ vh) ·≃w ⇒ φ1

∑

F↓$h≃ϑ!

∫

F
{≃w} · nF [vh ⇒ v].

With the trace estimate for polynomials

|F |1/4↓{≃w} · nF ↓L2(F ) ↭ ↓≃w↓L2(K1
F≃K2

F ), F = εK1
F ↖ εK2

F ,

and Cauchy-Schwarz’s inequality, we obtain that

(4.43) a(v, w)⇒ ah(vh, w) ↭ ↓vh ⇒ v↓V!
h
|w|H1(!).

A similar argument shows that

(4.44) a”(v̂, ŵ)⇒ a”,h(v̂h, ŵ) ↭ |v̂h ⇒ v̂|V”
h
|ŵ|H1

A(”).

For the remainder terms, we simply use Cauchy-Schwarz’s inequality and the trace estimate (2.8).
Indeed, we have that

b”(v ⇒ v̂, w ⇒ ŵ)⇒ b”(vh ⇒ v̂h, w ⇒ ŵ) ↔ ϑ↓v ⇒ vh ⇒ (v̂ ⇒ v̂h)↓L2
P (”)↓w ⇒ ŵ↓L2

P (”)

↭ ↓v ⇒ vh↓DG(↓w↓H1(!) + ↓ŵ↓L2
P (”)) ↭ ↓v ⇒ vh↓DG(↓w↓H1(!) + ↓ŵ↓H1

A(”)).

Estimate (4.42) follows by combining the above bounds. The proof is finished by applying [16,
Lemma 2.1].

We now show the first residual bound. We recall that for any K ↑ T h
B , the set IK denotes the set

of integers i0 such that K ↑ ϱi0 .
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Lemma 4.10 (Bound on local residuals over elements). Fix 1 ↔ i ↔ N and recall that
#i = (si↔1, si). For all vh ↑ V!

h and any K ↑ ϱi, there holds

(4.45) ↓f +&v ⇒ Lhv↓2L2(K) ↭ h↔2
K ↓≃(u⇒ v)↓L2(K) + h↔1

K

∑

j↓IK

↓u⇒ û↓2L2
P (”j)

+ ↓Lh(u⇒ v)↓2L2(K) + ↓↼hf ⇒ f↓2L2(K).

For any v̂h ↑ V”
h , there holds

(4.46) ↓Af̂ + ds(A dsv̂)⇒ PL̂hv̂↓2L2(”i)
↭ h↔2

” ↓ds(û⇒ v̂)↓2L2
A(”i)

+ ↓u⇒ û↓2L2
P (”i)

+ ↓L̂h(û⇒ v̂)↓2L2
P (”i)

+ ↓↼̂hf̂ ⇒ f̂↓2L2
A(”i)

.

Proof. Let bK be the bubble function associated to K [31]. Define the residuals R = (↼hf +
&v ⇒ Lhv)|K and ⇁ = RbK . Owing to the properties of the bubble functions, we estimate

↓R↓2L2(K) ↭
∫

K
R⇁ =

∫

K
(f +&v ⇒ Lhv)⇁ +

∫

K
(↼hf ⇒ f)⇁ = T1 + T2.

Since ⇁ vanishes on the boundary of K, we integrate by parts and obtain

T1 =

∫

K
(f⇁ ⇒≃v ·≃⇁ ⇒ Lhv ⇁).(4.47)

Testing (2.15) with (⇁, 0) and substituting in the above gives

T1 =

∫

K
≃(u⇒ v) ·≃⇁ + b”(u⇒ û,⇁)⇒

∫

K
Lhv ⇁.(4.48)

The first term is bounded by Cauchy-Schwarz’s inequality and inverse estimates since ⇁ belongs
to a finite dimensional space.

T1 ↭ h↔1
K ↓≃(u⇒ v)↓L2(K)↓⇁↓L2(K) + b”(u⇒ û,⇁)⇒

∫

K
Lhv ⇁.

For the second term above, we use the definition of the lift operator (4.14) and write

b”(u⇒ û,⇁) = b”(u⇒ û,⇁ ⇒ ↼h⇁) + (Lhu,↼h⇁)K = b”(u⇒ û,⇁ ⇒ ↼h⇁) + (Lhu,⇁)K .

Here we used the definition of the L2 projections in (4.3) and the fact that Lhu ↑ V!
h . Since ⇁ is

locally supported on one element K, with Cauchy–Schwarz’s inequality, trace estimate (4.7), and
stability of the L2 projection, we obtain the bound

∑

j↓IK

↓⇁ ⇒ ↼h⇁↓2L2
P (”j)

↔ ↓⇁ ⇒ ↼h⇁↓2L2(ϑB”⇐K) ↭ h↔1
K ↓⇁ ⇒ ↼h⇁↓2L2(K) ↭ h↔1

K ↓⇁↓2L2(K).

Thus, with Cauchy-Schwarz’s and triangle inequalities, we obtain that

(4.49) b”(u⇒ û,⇁ ⇒ ↼h⇁) ↭ h↔1/2
K (

∑

j↓IK

↓u⇒ û↓2L2
P (”j)

)1/2↓⇁↓L2(K).

Thus, we obtain

T1 ↭↓⇁↓L2(K)



h↔1
K ↓≃(u⇒ v)↓L2(K) + ↓Lh(u⇒ v)↓L2(K) + h↔1/2

K (
∑

j↓IK

↓ū⇒ û↓2L2
P (”j)

)1/2



 .
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The term T2 is simply handled by Cauchy-Schwarz’s inequality. Collecting the resulting bounds in
(11), noting that ↓⇁↓L2(K) ↭ ↓R↓L2(K), and using the triangle inequality yields estimate (4.45).

To show (4.46), let b̂i denote the bubble functions associated to #i, R̂ = (A↼̂hf̂ +ds(A dsv̂)⇒
PL̂hv̂)|”i , and ⇁̂ = R̂b̂i. We have

↓R̂↓2L2(”i)
↭

∫

”i

R̂⇁̂ =

∫

”i

(Af̂ + ds(A dsv̂)⇒ PL̂hv̂)⇁̂ +

∫

”i

A(↼̂hf̂ ⇒ f̂)⇁̂ = T3 + T4.

Testing (2.15) with (0, ⇁̂) and performing the same computation as before, we obtain

T3 =

∫

”i

A ds(û⇒ v̂) ds⇁̂ ⇒ b”(u⇒ û, ⇁̂ ⇒ ↼̂h⇁̂) +

∫

”i

PL̂h(û⇒ v̂)⇁̂.(4.50)

With Cauchy–Schwarz’s and inverse inequalities, the stability of the L2 projection, and the fact
that ⇁̂ is locally supported in #i, we obtain

T3 ↭ ↓⇁̂↓L2
P (”i)(h

↔1
” ↓ds(û⇒ v̂)↓L2

A(”i) + ↓L̂h(û⇒ v̂)↓L2
P (”i) + ↓u⇒ û↓L2

P (”i)).

Bounding T4 with Cauchy–Schwarz’s inequality and using that ↓⇁̂↓L2
P (”i) ↭ ↓R̂↓L2(”i), estimate

(4.46) is obtained.

An immediate corollary to the above Lemmas is the following global bound.

Corollary 4.11. Recall that hB = maxK↓T h
B
hK . The following bound on R1

! + R1
” (as

defined in (4.27)) holds.

(R1
! +R1

”) ↭↓u⇒ v↓2DG + (hB + h2
”)↓u⇒ û↓2L2

P (”)(4.51)

+ h2↓f ⇒ ↼hf↓2L2(!) + h2
”↓f̂ ⇒ ↼̂hf̂↓L2

A(”).

Proof. First note that if K /↑ T h
B , then Lhv = 0 on K, and IK = ∝. We can write

R1
! =

∑

K↓T h
B

h2
K↓f +&v ⇒ Lhv↓2L2(K) +

∑

K↓T h
! \T h

B

h2
K↓f +&v↓2L2(K).

For the first term in the right-hand side, we use Lemma 4.10 and the assumption that |IK | ↭ C
for all K ↑ T h

B to obtain the bound:

R1
! ↭↓u⇒ v↓2V!

h
+ hB↓ū⇒ û↓2L2

P (”) + h2↓f ⇒ ↼hf↓2L2(!)

+
∑

K↓T h
B

h2
K↓Lh(u⇒ v)↓2L2(K) +

∑

K↓T h
! \T h

B

h2
K↓f +&v↓2L2(K).

If K /↑ T h
B , then standard a posteriori estimates [7, Section 5.5.1] yield

h2
K↓f +&v↓2L2(K) ↭ ↓≃(u⇒ v)↓2L2(K) + h2

K↓f ⇒ ↼hf↓2L2(K), ⇑K ↑ T h
! \ T h

B .

With the bound above and Lemma 4.5, we can conclude that bound (4.51) holds on R1
!. The

same bound holds on R1
” which follows immediately from Lemma 4.10 and Lemma 4.5.

We proceed to bound on R2
! +R2

”. For any face F , let SF = K1
F ′K2

F where K1
F and K2

F are
the elements sharing the face F . We also define

⇑1 ↔ i ↔ N ⇒ 1, Ŝi = #i↔1 ′ #i, Ŝ0 = #0, ŜN = #N↔1, ŜN+1 = ∝.
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Lemma 4.12 (Bound on local residual over faces). Fix 1 ↔ i ↔ N . Then, for any F ↑ $i,
and any v ↑ V!

h , there holds

↓[≃v] · nF ↓2L2(F ) ↭ |F |↔1/2
∑

K⇑SF

↓≃(u⇒ v)↓2L2(K) + |F |1/2
∑

K⇑SF

↓f +&v ⇒ Lhv↓2L2(K)(4.52)

+ |F |1/2↓Lh(u⇒ v)↓2L2(SF ) + ↓u⇒ û↓2
L2

P (Ŝi≃Ŝi+1)
.

For any v̂ ↑ V”
h , there holds

[A dsv̂]
2
si ↭h↔1

” ↓ds(û⇒ v̂)↓2
L2

A(Ŝi)
+ h”

∑

”ϑ⇑Ŝi

↓Af̂ + ds(A dsv̂)⇒ PLhv̂↓2L2(”ϑ)
(4.53)

+ h”↓L̂h(û⇒ v̂)↓2
L2(Ŝi)

+ h”↓u⇒ û↓2
L2

P (Ŝi)
.

Proof. Fix 1 ↔ i ↔ N and fix F in $i. Denote by bF the face bubble associated to F ; this
means that bF vanishes on the boundary of SF and bF takes the value one at the barycenter of
F . Fix v in V!

h . We set r = [≃v] · nF , extend r by constant values along nF , and set ⇁ = rbF .
From [7, proof of Lemma 5.7 (ii)], we have

(4.54) ↓⇁↓L2(SF ) ↭ |F |1/4↓r↓L2(F ).

With the properties of the bubble function and integration by parts, we have

↓r↓2L2(F ) ↭
∫

F
r⇁ =

∫

F
[≃v] · nF⇁ =

∑

K⇑SF

∫

K
&v ⇁ +

∑

K⇑SF

∫

K
≃v ·≃⇁.(4.55)

Choose the test function v = (⇁, 0) in (2.15)

(4.56)
∑

K⇑SF

∫

K
≃u ·≃⇁ + b”(u⇒ û,⇁) =

∫

SF

f⇁.

We introduce the L2 projection and rewrite the second term above as

b”(u⇒ û,⇁) = b”(u⇒ û,⇁ ⇒ ↼h⇁) + (Lhu,↼h⇁)! = b”(u⇒ û,⇁ ⇒ ↼h⇁) +

∫

SF

Lhu⇁.

We add (4.56) to (4.55), use the above expansion, and add and subtract Lhv. We obtain

↓r↓2L2(F ) ↭
∑

K⇑SF

∫

K
(f +&v ⇒ Lhv)⇁ +

∫

SF

Lh(v ⇒ u)⇁

+
∑

K⇑SF

∫

K
≃(v ⇒ u) ·≃⇁ ⇒ b”(u⇒ û,⇁ ⇒ ↼h⇁) = W1 + . . .+W4.

With (4.54), the terms W1 and W2 are bounded as:

W1 +W2 ↭|F |1/4↓r↓L2(F )

(
(
∑

K⇑SF

↓f +&v ⇒ Lhv↓2L2(K))
1/2 + ↓Lh(u⇒ v)↓L2(SF )

)
.

With inverse estimates and (4.54) and the observation that h↔1
Kϑ

F
|F |1/4 ↭ |F |↔1/4 for , = 1, 2, we

bound

W3 ↭ |F |↔1/4↓r↓L2(F )(
∑

K⇑SF

↓≃(u⇒ v)↓2L2(K))
1/2.

Let K1
F and K2

F denote the elements that share the face F and let JF denote the set of indices i0
such that K1

F belongs to ϱi0 or such that K2
F belongs to ϱi0 . In reality, the set JF is either the
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singleton {i} (recall that F belongs to $i) or the pair {i, i+ 1} or the pair {i⇒ 1, i} or the triplet
{i⇒ 1, i, i+ 1}.

W4 = (ϑP (u⇒ û),⇁ ⇒ ↼h⇁)” =
∑

ϖ↓JF

(ϑP (u⇒ û),⇁ ⇒ ↼h⇁)”ϑ

↔ ϑ(
∑

ϖ↓JF

↓u⇒ û↓2L2
P (”ϑ)

)1/2(
∑

ϖ↓JF

↓⇁ ⇒ ↼h⇁↓2L2
P (”ϑ)

)1/2

↔ ϑ(
∑

ϖ↓JF

↓u⇒ û↓2L2
P (”ϑ)

)1/2↓⇁ ⇒ ↼h⇁↓L2(SF⇐ϑB”).

With Cauchy-Schwarz inequality and trace estimate (4.7), we obtain

W4 ↭ ϑ(
∑

ϖ↓JF

↓u⇒ û↓2L2(”ϑ)
)1/2(

∑

K⇑SF

h↔1
K ↓⇁ ⇒ ↼h⇁↓2L2(K))

1/2

↭ h↔1/2
F ↓u⇒ û↓L2(Ŝi≃Ŝi+1)

↓⇁↓L2(SF ),

where hF = min(hK1
F
, hK2

F
). Therefore, with (4.54), we have

(4.57) W4 ↭ h↔1/2
F |F |1/4↓r↓L2(F )↓u⇒ û↓L2(Ŝi≃Ŝi+1)

↭ ↓r↓L2(F )↓u⇒ û↓L2(Ŝi≃Ŝi+1)
.

Collecting the above bounds and using appropriate Young’s inequalities yield (4.52). To prove the
bound (4.53), we denote by b̂i the typical hat function associated to the node si; this means that
b̂i is piecewise linear, takes the value 1 at si and the value 0 at all the other nodes sϖ for , ↙= i.
Denote by r̂i = [A dsv̂]si and let ⇁̂i = r̂ib̂i. It easily follows that

(4.58) ↓⇁̂i↓L2(Ŝi)
↭ h1/2

” |r̂i|.

Using integration by parts, it is easy to check that

(4.59) r̂2i = [A dsv̂]si ⇁̂i(si) =
∑

”ϑ⇑Ŝi

∫

”ϑ

ds(A dsv̂) ⇁̂i +

∫

”ϑ

A dsv̂ ds⇁̂i


.

This time, we choose for test function v = (0, ⇁̂i) in (2.15) to obtain

(4.60)
∑

”ϑ⇑Ŝi

∫

”ϑ

A dsû ds⇁̂i ⇒ b”(u⇒ û, ⇁̂i) =

∫

Ŝi

Af̂ ⇁̂i.

We rewrite it as

(4.61)
∑

”ϑ⇑Ŝi

∫

”ϑ

A dsû ds⇁̂i ⇒ b”(u⇒ û, ⇁̂i ⇒ ↼̂h⇁̂i) +

∫

Ŝi

PL̂hû ⇁̂i =

∫

Ŝi

Af̂ ⇁̂i.

We add (4.61) to (4.59) and we add and subtract PL̂hv̂. We obtain

r̂2i ↭
∑

”ϑ⇑Ŝi

∫

”ϑ

(Af̂ + ds(A dsv̂)⇒ PL̂hv̂)⇁̂i +

∫

Ŝi

PL̂h(v̂ ⇒ û)⇁̂i

+
∑

”ϑ⇑Ŝi

∫

”ϑ

A ds(v̂ ⇒ û) ds⇁̂i + b”(u⇒ û, ⇁̂i ⇒ ↼̂h⇁̂i) = W5 + . . .+W8.

We easily bound the terms W5,W6 and W7 by (4.58)

W5 +W6 ↭ h1/2
” |r̂i|



(
∑

”ϑ⇑Ŝi

↓Af̂ + ds(A dsv̂)⇒ PL̂hv̂↓2L2(”ϑ)
)1/2 + ↓L̂h(û⇒ v̂)↓L2

P (Ŝi)



 ,

W7 ↭ h↔1/2
” |r̂i|(

∑

”ϑ⇑Ŝi

↓ds(û⇒ v̂)↓2L2
A(”ϑ)

)1/2.
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For the term W8, we have by Cauchy-Schwarz and stability of the L2–projection that

W8 ↭ ↓u⇒ û↓L2
P (Ŝi)

↓⇁̂i ⇒ ↼̂h⇁̂i↓L2
P (Ŝi)

↭ ↓u⇒ û↓L2
P (Ŝi)

↓⇁̂i↓L2
P (Ŝi)

↭ h1/2
” ↓u⇒ û↓L2

P (Ŝi)
|r̂i|.

Collecting the above bounds yield the desired result.

The bound on (R2
! +R2

”) easily follows.

Corollary 4.13. The following bound on R2
! +R2

” as defined in (4.28) holds.

(R2
! +R2

”) ↭↓u⇒ v↓2DG + (hB + h2
”)↓u⇒ û↓2L2

P (”)(4.62)

+ h2↓f ⇒ ↼hf↓2L2(!) + h2
”↓f̂ ⇒ ↼̂hf̂↓L2

A(”).

Proof. Recalling the definition of (3.5), we have

R2
! =

N∑

i=1

∑

F↓$i

|F |1/2↓[≃v] · nF ↓2L2(F ) +
∑

F↓$h\
⋃N

i=1 $i

|F |1/2↓[≃v] · nF ↓2L2(F ).

The first part is bounded using Lemma 4.12.

N∑

i=1

∑

F↓$i

|F |1/2↓[≃v] · nF ↓2L2(F ) ↭ ↓u⇒ v↓2V!
h

+
∑

K↓T h
!

h2
K(↓f +&v ⇒ Lhv↓2L2(K) + ↓Lh(u⇒ v)↓2L2(K)) + h2

B↓u⇒ û↓2L2
P (”).

If F does not belong to
N

i=1 $i, then Lhv = 0 on SF and standard a posteriori estimates are used.
We omit the details for brevity. Following [7, Lemma 5.27], we have

|F |1/2↓[≃v] · nF ↓2L2(F ) ↭
∑

K⇑SF

↓≃(u⇒ v)↓2L2(K) + h2
SF

↓f ⇒ ↼hf↓2L2(SF ), ⇑F ↑ $h\
N⋃

i=1

$i

Combining the above estimates with Lemma 4.5 and Corollary 4.11 yields the bound (4.62) on
R2

!. For R
2
”, we have from Lemma 4.12 that

R2
” =

N∑

i=0

h”|A dsv̂|2si ↭
N∑

i=0

↓ds(û⇒ v̂)↓2
L2

A(Ŝi)
+

N∑

i=0

h2
”

∑

”ϑ⇑Ŝi

↓Af̂ + ds(A dsv̂)⇒ PLhv̂↓2L2(”ϑ)

+h2
”↓L̂h(û⇒ v̂)↓2L2

P (”) + h2
”↓u⇒ û↓2L2

P (”).

Applying Corollary 4.11 and Lemma 4.5 yields the bound on R2
”.

5. Time dependent 3D-1D model. We now consider the time dependent model. For
details on the derivation, well–posedness, and regularity properties of the system, we refer to [26].
The weak formulation of the time–dependent problem reads as follows. Find u = (u, û) ↑ V =
L2(0, T ;H1

0 (”))⇓ L2(0, T ;H1
A(#)) with (εtu, εtû) ↑ L2(0, T ;L2(”))⇓ L2(0, T ;L2

A(#)) such that

(εtu, v) + (εt(Aû), v̂)” +A(u,v) = (f, v) + (A f̂, v̂)”, ⇑v ↑ V .(5.1)

u(0) = (u0, û0) ↑ L2(”)⇓ L2
A(#).(5.2)

We recall that A is given in (2.15) and assume that f ↑ L2(0, T ;L2(”)) and f̂ ↑ L2(0, T ;L2
A(#))

are given. We retain the assumptions on A and P from the previous sections, and we assume that
they are independent of time. Consider a uniform partition of the time interval [0, T ] into NT
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sub-intervals with time step size τ . We use the notation gn(·) = g(tn, ·) = g(nτ, ·) for any function
g. Let (u0

h, û
0
h) ↑ V!

h ⇓ V”
h be the L2 projection of (u0, û0).

u0
h = ↼hu

0, û0
h = ↼̂hû

0.

A backward Euler dG approximation then reads as follows. Find uh = (un
h, û

n
h)1↗n↗NT ↑ V!

h ⇓V”
h

such that

(5.3)
1

τ
(un

h ⇒ un↔1
h , vh) +

1

τ
(A(ûn

h ⇒ ûn↔1
h ), v̂h)” +Ah(u

n
h,vh)

= (fn, vh) + (Af̂n, v̂h)”, ⇑vh ↑ V!
h ⇓ V”

h .

The form Ah is given in (3.15). To analyse the above scheme, we define the following elliptic
projection: (h(t) : H1(0, T ;H1

0 (”))⇓H1(0, T ;H1
A(#)) ↘ H1(0, T ;V!

h )⇓H1(0, T ;V”
h ) such that

for a given g(t) = (g(t), ĝ(t))

Ah((hg(t),vh) = (g(t), vh)! + (A ĝ(t), v̂h)”. ⇑vh ↑ V!
h ⇓ V”

h .

From the analysis of the previous section, for any t > 0, (hg(t) is well defined. Since Ah is linear
and coercive and (h is continuous, εt((hg(t)) = (hεtg(t). Hereinafter, we assume that (u, û) ↑
H1(0, T ;H3/2↔ω(”)) ⇓ H1(0, T ;H2(#)), (εttu, εtt(Aû)) ↑ L2(0, T ;L2(”)) ⇓ L2(0, T ;L2(#)), and
(f, f̂) ↑ H1(0, T ;L2(”))⇓H1(0, T ;L2(#)). For smooth domains and for (u0, û0) ↑ H1

0 (”)⇓H1(#),
the H3/2↔ω spatial regularity on u is proven in [26, Proposition 4.2] and the H2 spatial regularity
for û can be expected since it solves a parabolic equation with an L2–source term. By formally
di!erentiating in time the parabolic 3D–1D problem and under su’cient assumptions on the initial
conditions, the H1 regularity in time for u and û can be expected, see for e.g [11, Chapter 7].

Now, for u(t) = (u(t), û(t)) and f(t) = (f(t), f̂(t)), we define the interpolant ϑh(t) =
(ωh(t), ω̂h(t)) ↑ V!

h ⇓ V”
h such that

ϑh(t) = (h((f(t)⇒ εtu(t), Af̂(t)⇒Aεtû(t))).

Therefore, we have that

Ah(ϑh(t),vh) = (f(t)⇒ εtu(t), vh) + (A f̂(t)⇒A εtû(t), v̂h)”, ⇑vh ↑ V!
h ⇓ V”

h .

Since

A(u(t),v) = (f(t)⇒ εtu(t), v) + (Af̂(t)⇒Aεtû(t), v̂)”, ⇑v ↑ H1
0 (”)⇓H1

A(#),

we apply the error analysis of the previous section to obtain that for any ω > 0

(5.4) ↓ϑh(t)⇒ u(t)↓DG ↭ h1/2↔ω(↓u(t)↓H3/2→ε(!) + ↓û(t)↓H2
A(”))

+ h(↓f(t)⇒ εtu(t)↓L2(!) + ↓f̂(t)⇒ εtu(t)↓L2
A(”)).

Here, for simplicity, we let h” ⇐ h. It is also easy to see that

εtϑh(t) = εt(h((f(t)⇒ εtu(t), A f̂(t)⇒A εtû(t)))

= (h((εtf(t)⇒ εttu(t), A εtf̂(t)⇒A εttû(t)).

Therefore,

Ah(εtϑh(t),vh) = (εtf(t)⇒ εttu(t), vh) + (A εtf̂(t)⇒A εttû(t), v̂h)”, ⇑vh ↑ V!
h ⇓ V”

h .

Observing that

A(εtu(t),v) = (εtf(t)⇒ εttu(t), v) + (A εtf̂(t)⇒A εttû(t), v̂)”, ⇑v ↑ H1
0 (”)⇓H1

A(#),
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we apply the previous analysis to obtain a bound on ↓εtϑh(t) ⇒ εtu(t)↓DG that is a similar to
(5.4):

(5.5) ↓εtϑh(t)⇒ εtu(t)↓DG ↭ h1/2↔ω(↓εtu(t)↓H3/2→ε(!) + ↓εtû(t)↓H2
A(”))

+ h(↓εtf(t)⇒ εttu(t)↓L2(!) + ↓εtf̂(t)⇒ εttu(t)↓L2
A(”)).

This interpolant allows us to prove the following result.

Theorem 5.1. For any 1 ↔ m ↔ NT , there holds

(5.6) ↓um
h ⇒ um↓2 + ↓ûm

h ⇒ ûm↓2L2
A(”) +

Ccoerc

4
τ

m∑

n=1

↓un
h ⇒ un↓2DG ↭ τ2 + h1↔2ω.

The above estimate holds under the assumptions: (u, û) ↑ H1(0, T ;H3/2↔ω(”))⇓H1(0, T ;H2(#)),
(εttu, εtt(Aû)) ↑ L2(0, T ;L2(”))⇓L2(0, T ;L2(#)), and (f, f̂) ↑ H1(0, T ;L2(”))⇓H1(0, T ;L2(#)).

Proof. We derive the error equation for enh = (enh, ê
n
h) = un

h ⇒ ϑn
h. For all vh ↑ V!

h ⇓ V”
h ,

(5.7)
1

τ
(enh ⇒ en↔1

h , vh) +
1

τ
(A(ênh ⇒ ên↔1

h ), v̂h)” +Ah(e
n
h,vh)

=
1

τ
(τ(εtu)

n ⇒ (ωnh ⇒ ωn↔1
h ), vh) +

1

τ
(τA(εtû)

n ⇒A(ω̂nh ⇒ ω̂n↔1
h ), v̂h)”.

The proof is based on energy arguments. We test (5.7) with vh = enh and multiply by τ . With
the coercivity property (3.16), we obtain

1

2
(↓enh↓2 ⇒ ↓en↔1

h ↓2) + 1

2
(↓ênh↓2L2

A(”) ⇒ ↓ên↔1
h ↓2L2

A(”)) +
Ccoerc

2
τ↓enh↓2DG(5.8)

↭ (τ(εtu)
n ⇒ (ωnh ⇒ ωn↔1

h ), enh) + (A(τ(εtû)
n ⇒ (ω̂nh ⇒ ω̂n↔1

h )), ênh)” = T1 + T2.

It is standard to show (with Cauchy-Schwarz’s inequality, Taylor’s theorem, and Poincaré’s in-
equality (3.9)) that

T1 ↭ (τ3/2↓εttu↓L2(tn→1,tn;L2(!)) + τ1/2↓εt(u⇒ ωh)↓L2(tn→1,tn;L2(!)))↓enh↓V!
h
.

With Young’s inequality, we then obtain

T1 ↔ Cτ2↓εttu↓2L2(tn→1,tn;L2(!)) + C↓εt(u⇒ ωh)↓2L2(tn→1,tn;L2(!)) + τ
Ccoerc

8
↓enh↓2DG.

Similarly, we bound T2 with

T2 ↔ Cτ2↓Aεttû↓2L2(tn→1,tn;L2(”)) + C↓Aεt(û⇒ ω̂h)↓2L2(tn→1,tn;L2(!)) + τ
Ccoerc

8
↓enh↓2DG.

We use the above bounds in (5.8), and we sum the resulting bound over n. We obtain that

↓emh ↓2 + ↓êmh ↓2L2
A(”) +

Ccoerc

4
τ

m∑

n=1

↓enh↓2DG ↭ τ2(↓εttu↓2L2(0,T ;L2(!)) + ↓Aεttû↓20,T ;L2(!)))

+ ↓εt(u⇒ ωh)↓2L2(0,T ;L2(!)) + ↓Aεt(û⇒ ω̂h)↓2L2(0,T ;L2(!)) + ↓e0h↓2 + ↓ê0h↓2L2
A(”).

Then, the result follows by using the error estimates (5.4) and (5.5), approximation properties of
the L2 projections (4.4), and the triangle inequality.

Remark 1. In the case of graded meshes, i.e. under the same mesh assumptions as Corol-
lary 4.8, almost optimal spatial convergence rates in the dG norm hold. For example, for k1 = 1,
we have that for any 1 ↔ m ↔ NT ,

(5.9) ↓um
h ⇒ um↓2 + ↓ûm

h ⇒ ûm↓2L2
A(”) +

Ccoerc

4
τ

m∑

n=1

↓un
h ⇒ un↓2DG ↭ τ2 + h2(1↔2ω).
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The above estimate holds under the additional assumption that u ↑ H1(0, T ;H2(”\B”)↖H2(B”)).
The proof follows from the same argument as before where similar estimates to (4.32) are used for
the dG norm of ϑh ⇒ u and of εt(ϑh ⇒ u). For k1 > 1, one can also derive almost optimal rates
under additional regularity requirements on the solution. We omit the details for brevity.

6. Extension to 1D networks embedded in a 3D domain. We extend the above nu-
merical method and model to a 1D network in a 3D domain. We adopt the notation of [9] where
a hybridized dG method is used for convection di!usion problems in a network. Here, we only
introduce Lagrange multipliers on the bifurcation nodes, and we couple the network model to the
3D equations. We do not analyze this dG method for the 3D-1D network model beyond showing
well–posedness and local mass conservation at bifurcation points. The error analysis will be the
object of future work.

A network is represented by a finite, directed, and connected oriented graph G(V, E) where V
is the set of vertices and E is the set of edges. We let E(v) denote the set of edges sharing a vertex
v. The boundary of the graph is then defined by Vϑ = {v ↑ V, card(E(v)) = 1}. For a given edge
e = (vein, v

e
out), we define the function ne : V ↘ {⇒1, 0, 1} with

ne(v
e
in) = 1, ne(v

e
out) = ⇒1 and ne(v) = 0, ⇑v ↑ V \ {vein, veout}.

The collection of bifurcation points is denoted by B = {v ↑ V, card(E(v)) ∞ 3}. For each e ↑ E ,
we define a surrounding cylinder Be of cross–section %e with area Ae and perimeter Pe. The L2

P
space over the graph is defined by

(6.1) L2
P (G) = {u : ue = u|e ↑ L2

Pe
(e), ⇑e ↑ E}.

This 1D-network is embedded in a 3D domain ”. The surrounding cylinders Be are all strictly
included in ”. In ”, we solve for u satisfying (in the distributional sense)

(6.2) ⇒&u+ ϑ(u⇒ û)ϖG = f in ”, u = 0 on ε”,

and for each e ↑ E , we solve for a 1D solution ûe satisfying

(6.3) ⇒ds(Ae dsûe) + Pe(ûe ⇒ ue) = f̂e in e.

The coe’cient ϑ is a piecewise positive constant on each edge of the graph. The function u is
defined by

u|e = ue =
1

Pe

∫

ϑ#e

u, ⇑e ↑ E .

The functional ϑ(u⇒ û)ϖG is defined by

ϑ(u⇒ û)ϖG(v) =
∑

e↓E

∫

e
ϑe Pe(ue ⇒ ûe)ve, ⇑v ↑ H1(”).

We supplement the above system with the following boundary conditions which impose conser-
vation of fluxes and continuity at bifurcation points. On the boundary, we impose homogeneous
Neumann conditions.

∑

e↓E(v)

Ae dsûe(v)ne(v) = 0 and ûe(v) = ûe↑(v), ⇑ v ↑ B, ⇑ e, e↑ ↑ E(v),(6.4)

Ae dsûe(v) = 0, ⇑ v ↑ Vϑ , e ↑ E(v).(6.5)

To summarise, the 3D-1D network model consists of (6.2)-(6.3) with boundary conditions (6.4)-
(6.5). The above model can also be found in [22, Section 2.5]. We now introduce a dG formulation
for this model.
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6.1. DG for the 3D-1D network model. For each e ↑ E , we denote by he the characteristic
length of a partition of the edge e and we introduce a mesh and a space Ve

h of degree ke similar
to (3.2). Then, we define the broken polynomial space

VG
h = {v̂h : v̂h|e = v̂e,h ↑ Ve

h}.

We will use a hybridization technique to handle the values of the discrete solution at the bifurcation
points. Thus, we define

(6.6) VB
h = {w̃h = (w̃v,h)v↓B,

∑

v↓B
w̃2

v,h < ↗}.

We now define the form bv : (V!
h ⇓ VG

h ⇓ VB
h )

2 ↘ R which enforces conditions at the bifurcation
points, see Remark 2. For v ↑ B, define

(6.7) bv((uh, ûh, ũh), (wh, ŵh, w̃h)) =
∑

e↓E(v)

Ae dsûe,h(v)ne(v) (ŵe,h(v)⇒ w̃v,h)

+
∑

e↓E(v)

Ae dsŵe,h(v)ne(v) (ûe,h(v)⇒ ũv,h) +
∑

e↓E(v)

ςv

he
(ûe,h(v)⇒ ũv,h) (ŵe,h(v)⇒ w̃v,h).

The full dG formulation reads as follows. Find (uh, ûh, ũh) ↑ V!
h ⇓ VG

h ⇓ VB
h such that for all

(wh, ŵh, w̃h) ↑ V!
h ⇓ VG

h ⇓ VB
h , there holds

ah(uh, wh) +
∑

e↓E
be(ue,h ⇒ ûe,h, we,h) = (f, wh),(6.8)

∑

e↓E
ae,h(ûe,h, ŵe,h) +

∑

e↓E
be(ûe,h ⇒ ue,h, ŵe,h)(6.9)

+
∑

v↓B
bv((uh, ûh, ũh), (wh, ŵh, w̃h)) =

∑

e↓E
(f̂e, ŵe,h)L2

Ae
(e).

In the scheme above, the form ah is the same one defined by (3.12) and the forms ae,h and be
correspond to the forms a”,h and b” with # = e. For instance, we write

be(v̂, ŵ) = (ϑev̂, ŵ)L2
Pe

(e), ⇑v̂, ŵ ↑ L2
Pe
(e).

Remark 2 (Bifurcation conditions). For a given v ↑ B, let w̃h ↑ VB
h be such that w̃v,h = 1

and zero otherwise. Choosing (wh, ŵh, w̃h) = (0, 0, w̃h) in (6.9) yields:

(6.10)
∑

e↓E(v)

Ae dsûe,h(v)ne(v) +
∑

e↓E(v)

ςv

he
(ûe,h(v)⇒ ũv,h) = 0, ⇑v ↑ B.

That is, up to jump terms, the discrete dG scheme locally conserves the fluxes, see (6.4), at each
bifurcation point.

Lemma 6.1 (Well–posedness). There exists a unique solution for the problem given in (6.8)
and (6.9).

Proof. For any (uh, ûh, ũh) ↑ V!
h ⇓ VG

h ⇓ VB
h , let

X = ah(uh, uh) +
∑

e↓E
ae,h(ûe,h, ûe,h)

+
∑

e↓E
be(ue,h ⇒ ûe,h, ue,h ⇒ ûe,h) +

∑

v↓B
bv((uh, ûh, ũh), (uh, ûh, ũh)).
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It su’ces to show that

X ↫ ↓uh↓2V!
h
+
∑

e↓E
(|ûh|2Ve

h
+ ↓ue,h ⇒ ûe,h↓2L2

P (e)) +
∑

v↓B

∑

e↓E(v)

ςe

he
(ûe,h(v)⇒ ũv,h)

2,(6.11)

since the right hand side above defines a norm. Here, | · |Ve
h
is defined in the same way as (3.10).

Consider the last term in X and recall the trace estimate:

(6.12) |dsûe,h(v) · ne(v)| ↔ Ctrh
↔1/2
e ↓dsûe,h↓L2(ev),

where ev is the mesh element of e incident to v. Then, with the above estimate, Cauchy–
Schwarz’s inequality for sums applied twice, and Young’s inequality, we bound the first term
in


v↓B bv((uh, ûh, ũh), (uh, ûh, ũh)) by

∑

v↓B

∑

e↓E(v)

|Ae dsûe,h(v)ne(v) (ûe,h(v)⇒ ũv,h)| ↔
1

2

∑

v↓B

∑

e↓E(v)

Ce|ûh|2T h
e

+
∑

v↓B

∑

e↓E(v)

C3

he
(ûe,h(v)⇒ ũv,h)

2,

where Ce is the coercivity constant of ae,h, similar to (3.17), and C3 > 0 is a positive constant
depending on Ce, on Ctr and on Ae. Thus, if ςv is large enough, there exists a constant C4 > 0
such that

∑

v↓B
bv((uh, ûh, ũh), (uh, ûh, ũh)) +

1

2

∑

e↓E
Ce|ûh|2T h

e
∞

∑

v↓B

∑

e↓E(v)

C4

he
(ûe,h(v)⇒ ũv,h)

2,

It then follows that
∑

e↓E
ae,h(ûe,h, ûe,h) +

∑

v↓B
bv(uh, ûh, ũh), (uh, ûh, ũh))

∞ 1

2

∑

e↓E
Ce|ûh|2T h

e
+
∑

v↓B

∑

e↓E(v)

C4

he
(ûe,h(v)⇒ ũv,h)

2.

From here, we use the coercivity results (3.17) and the definition of be to conclude that (6.11)
holds. We omit the details for brevity.

7. Numerical results. We present results for manufactured solutions in a 3D–1D setting
and in a 1D vessel network. We also show results for a realistic 1D network in a 3D domain.

7.1. Manufactured solutions with one vessel in a 3D domain. In this first example,
we consider manufactured solutions and compute error rates. Let ” = (⇒0.5, 0.5)3 contain # =
{(0, 0, z), z ↑ (⇒0.5, 0.5)} with a surrounding cylinder of constant radius R = 0.05. Denoting by r
the distance to the line #, the exact solutions are

(7.1) u =


ϱ

ϱ+1 (1⇒R ln( r
R ))û, r > R,

ϱ
ϱ+1 û, r ↔ R.

and û = sin(↼z) + 2.

The above 3D solution is obtained from the observation that [10, eq. 40], see also [19]:

(7.2)

∫

!
⇒(εxx u+ εyyu) v =

∫

$

ϑ

ϑ + 1
û v = ⇒

∫

”
ϑ P (u⇒ û)v.

We set ϑ = 1, and we modify the source terms f, f̂ and the boundary conditions so that the
equations are satisfied. The parameters are set to φ1 = φ2 = ⇒1, k1 = k2 = 1, and ς! = ς” = 30.
For all our examples, we use the FEniCS finite element framework [1, 23] and the (FEniCS)ii
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module [20]. We compute the solution (uh, ûh), the L2 and the H1 norms of the errors eh = u⇒uh

and êh = û ⇒ ûh on a family of uniform meshes created by by FEniCS “BoxMesh” with 6N3

number of elements. The results reported in Table 7.1 corroborate the error estimates established
in Corollary 4.7. In particular, we observe that ↓eh↓H1(!) converges at a rate slightly higher than
0.5 while for ↓êh↓H1(”) linear convergence can be seen. In the L2–norms we observe improved
error rates. Due to the coupling and the low regularity of the 3D solution, it is not clear whether
one can prove improved optimal error rates of 3/2 ⇒ ω and of 2 for the 3D and 1D solutions
respectively.

N ↓eh↓H1(!) rate ↓eh↓L2(!) rate ↓êh↓H1(”) rate ↓êh↓L2(”) rate

4 2.313e-01 - 1.562e-02 - 5.008e-01 - 3.663e-02 -
8 1.300e-01 0.832 4.714e-03 1.729 2.519e-01 0.992 1.779e-02 1.042
16 8.323e-02 0.643 1.457e-03 1.694 1.262e-01 0.998 7.832e-03 1.184
32 5.247e-02 0.666 4.345e-04 1.746 6.308e-02 1.000 3.374e-03 1.215
64 3.292e-02 0.673 1.171e-04 1.891 3.150e-02 1.002 8.293e-04 2.024

Table 7.1
L
2 and H

1 norms of the errors (eh, êh) and rates between the 3D-1D exact solution (7.1) and the computed
solutions on a family of uniform meshes.

7.2. Manufactured solution for a vessel network. Next, we verify the convergence of
the dG scheme for the 1D network model. Precisely, in this example, we now consider only the
Poisson problem posed on the network ⇒&û = f̂ on G complemented with (6.4) and homogeneous
Dirichlet conditions on Vϑ , and we do not solve for a 3D solution. The dG scheme for this 1D
di!usion problem problem is given in (6.9) with uh = vh = ϑ = 0 and the penalty parameters set
as ςe = ςv = 10. We consider the network embedded in R2 shown in Table 7.2 which includes
3 bifurcations, i.e. |B| = 3, located at v1 = (0, 1), v2 = (⇒1, 2), v3 = (1, 2) while the remaining
nodes are placed at v0 = (0, 0), v4 = (⇒1.5, 3), v5 = (⇒0.5, 3), v6 = (0.5, 3), v7 = (1.5, 3). Given
G, we consider the following solution and data

(7.3) û =






y + cos 2↼y, (x, y) ↑ e0
2 + 1

2

∈
2(y ⇒ 1), (x, y) ↑ e1↗i↗2

2 + 1
2

∈
2 + 1

8

∈
5(y ⇒ 2), (x, y) ↑ e3↗i↗6

, f̂ =


4↼2 cos 2↼y, (x, y) ↑ e0
0, (x, y) ↑ ei ⇓=0

.

Using (7.3) and the dG scheme with linear polynomials we consider approximation properties of
the method with respect to the norm

(7.4) ↓(êh, ẽh)↓2VG
h⇒VB

h
=

∑

e↓E
↓êh↓2Vh

e
+
∑

v↓B

∑

e↓E(v)

ςe

he
(ûe,h(v)⇒ ũv,h)

2,

where ↓êh↓2Vh
e
is a slight modification to (3.10) to also include boundary terms. Table 7.2 reports

the errors in the norm given in (7.4). From numerical analysis of interior penalty and of hybridiz-
able dG methods, we expect first order convergence in the norm given above. This is what we
observe in Table 7.2. Further, we compute the term jh(v) =


e↓E(v) dsûe,h(v)ne(v) accounting for

conservation of mass. Considering Remark 2, we expect this term to converge at a similar rate to
the norm given in (7.4). This is indeed what we observe.
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v0

v1

v3

v7

e6

v6

e5

e2

v2

v5

e4

v4

e3

e1

e0

h ⇔(êh, ẽh)⇔VG
h

↓VB
h

rate maxv↔B|jh(v)| rate

5.00e-1 1.420 – 1.242 –
2.50e-1 9.705e-1 5.49 4.683e-1 1.41
1.25e-1 4.268e-1 1.19 1.759e-1 1.41
6.25e-2 1.809e-1 1.24 7.807e-2 1.17
3.13e-2 7.896e-2 1.18 3.770e-2 1.05
1.56e-2 3.698e-2 1.11 1.868e-2 1.01
7.81e-3 1.771e-2 1.06 9.320e-3 1.00
3.91e-3 8.656e-3 1.03 4.657e-3 1.00
1.95e-3 4.277e-3 1.02 2.328e-3 1.00
9.77e-4 2.126e-3 1.01 1.164e-3 1.00
4.88e-4 1.060e-3 1.00 5.821e-4 1.00
2.44e-4 5.291e-4 1.00 2.910e-4 1.00

Table 7.2
Error convergence and flux conservation of the DG scheme defined as part of (6.8)-(6.9) and applied to the

standalone di!usion problem on the network shown to the left. Here êh = u → ûh, ẽh = u → ũh with u the exact
solution (7.3). The norm is defined in (7.4). Following Remark 2, we let jh(v) =

∑
e↑E(v) dsûe,h(v)ne(v). We set

the polynomial degree ke = 1.

7.3. Coupled 3D-1D simulation in realistic networks. In Figure 7.1, we finally illus-
trate the capabilities of our dG scheme to model tissue micro-circulation in a realistic setting. To
this end, we utilize the data set [15] which includes vasculature of a 1mm3 of a mouse cortex, and
we let G be defined in terms of arteries and venules of this network, leaving out the capillaries. The
vessel radius in the network ranges approximately from 5µm to 35µm. The 3D domain ” is then
defined as a bounding box of G of dimensions [570.8, 518.7, 992.0]µm. Upon discretization (with a
uniform structured mesh, h ⇐ 57.3µm and h” ⇐ 0.9µm), dimV!

h = 196608, dimVG
h = 11196, and

dimVB
h = 57.

In (2.6), we then apply homogeneous Dirichlet and Neumann conditions on u and û respectively
and, for simplicity, set ϑ = 1 and f = 0, f̂ = 1. The obtained solution fields are shown in Figure
7.1; as a result of the coupling, the concentration u is higher in the vicinity of the network than
elsewhere in the 3D domain.

Fig. 7.1. Numerical solutions ûh and uh due to the dG scheme (6.8)-(6.9) applied to the coupled 3D-1D
problem (6.2)–(6.3) with bifurcation conditions (6.4) considered on a realistic network taken from [15].

Remark 3. While dG methods o!er advantages over their continuous counterparts, it is well
known that the number of degrees of freedom (DOFs) for dG methods is higher than that of con-
tinuous finite element methods (cG). See Table 7.3 for a comparison with respect to DOFs and
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scheme ndofs” ndofs# tasmblah [s] tsolveah [s] tasmblAh [s] tsolveAh [s]

dG 196608 11253 0.25 19.4 (50) 11.1 52.0 (50)
cG 9537 5598 0.025 0.03 (8) 6.6 0.19 (16)

Table 7.3
Cost comparison of discretizations of the coupled 3D-1D problem (6.2)–(6.3) using the realistic network from

[15] (leaving out the capillaries) and the mesh size of the example above. The dG scheme (6.8)-(6.9) with k1 = k2 =
1 is compared with the continuous linear Lagrange elements discretization [22, 26] in terms of (i) dimensionality
of the approximation spaces, (ii) assembly and solution times of the Poisson problem induced by the bilinear form
ah (3.12) and (iii) assembly and solution times of the coupled problem, see (6.8)-(6.9). The systems are solved
by preconditioned conjugate gradient method with (identical) algebraic multigrid preconditioner. Numbers in the
brackets show the number of Krylov iterations to convergence (same convergence criteria are used in all the cases).

assembly and solution time for the coupled 3D–1D network problem of this section. It is observed
that the increase in the DOFs is primarily caused by the 3D–discretization and not by the hybrid
dG method of the 1D network. Further, we remark that the advantages of dG methods, such as
local mass conservation and stability, are particularly apparent for transient advection–dominated
di!usion problems. Here, we focus on the analysis of the elliptic case. We believe this to be a
necessary first step to study dG approximations of 3D-1D advection di!usion systems where we
expect to need the elliptic projection for the error analysis. This setting along with a computational
study on the balance between accuracy and cost is an interesting future research direction.

8. Conclusions. Interior penalty discontinuous Galerkin methods are introduced for coupled
3D-1D problems. These models span several areas of applications such as modeling flow and
transport in vascularized tissue. We analyze dG approximations for the steady state problem and
a backward Euler dG method for the time dependent problem. Our analysis is valid under minimal
assumptions on the regularity of the solution and on the mesh. Recovering almost optimal rates
for graded meshes is also shown, under su’cient regularity assumptions. Further, we propose a
novel dG method with hybridization for a network of vessels in a 3D surrounding. The method,
up to jump terms, locally conserves mass at bifurcation points. Numerical results demonstrate
our error analysis.
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[31] Rüdiger Verfürth. A review of a posteriori error estimation techniques for elasticity problems. Computer
Methods in Applied Mechanics and Engineering, 176(1-4):419–440, 1999.

[32] Vegard Vinje, Erik NTP Bakker, and Marie E Rognes. Brain solute transport is more rapid in periarterial
than perivenous spaces. Scientific Reports, 11(1):1–11, 2021.

[33] Haijun Wu and Yuanming Xiao. An unfitted hp-interface penalty finite element method for elliptic interface
problems. Journal of Computational Mathematics, 37(3):316, 2019.


	Introduction
	Model problem
	Notation
	The 3D-1D model

	Discontinuous Galerkin formulation
	Meshes and dG spaces
	The numerical method

	Error analysis
	Preliminary lemmas
	Main result and proof outline
	Proof details

	Time dependent 3D-1D model
	Extension to 1D networks embedded in a 3D domain
	DG for the 3D-1D network model

	Numerical results
	Manufactured solutions with one vessel in a 3D domain
	Manufactured solution for a vessel network
	Coupled 3D-1D simulation in realistic networks

	Conclusions
	References

