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Abstract

A combined hybrid mixed and hybridizable discontinuous Galerkin method is formulated for
the flow and transport equations. Convergence of the method is obtained by deriving optimal
a priori error bounds in the L? norm in space. Since the velocity in the transport equation
depends on the flow problem, the stabilization parameter in the HDG method is a function of
the discrete velocity. In addition, a key ingredient in the convergence proof is the construction
of a projection that is shown to satisfy optimal approximation bounds. Numerical examples
confirm the theoretical convergence rates and show the efficiency of high order discontinuous
elements.
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1 Introduction

In this article, we formulate and analyze a hybrid mixed—hybridizable discontinuous Galerkin
(HM-HDG) method for a one-way coupled flow and transport problem. In particular, we
employ a mixed hybrid finite element method for the flow, and HDG for the transport. The
highlights of our proposed approach include H (div)-conformity of the discrete velocity
for the flow problem, optimal rates convergence in both the concentration and flux for the
transport problem, and hybridization to reduce the size of the global algebraic systems arising
from both flow and transport.
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Similar approaches have been taken in [32, 33], where a hybridized Raviart-Thomas
method (RT-H) for the flow problem is coupled to the combined RT-H and DG method of
Egger and Schoberl [17] for the transport problem; in [31] where an RT-H method for the flow
problem is coupled to alocal discontinuous Galerkin (LDG) method for the transport problem:;
in [21] where an RT-H method for the flow problem is coupled to a hybridized finite volume
method for the transport problem in the context of fractured porous media; in [20], where
the hybridizable LDG (LDG-H) method is applied to both the flow and transport problems;
and in [6, 7] where a combined hybridized interior penalty (IP-H) method and a hybridized
Brezzi-Douglas—Marini (BDM-H) method for the Stokes—Darcy system is coupled to an
IP-H method for the transport problem. To highlight how our approach differs from these
existing works, let us put them into historical perspective.

Mixed finite element methods have long been applied to porous media flows, as they
directly provide an approximation to the flow velocity in addition to the pressure [13, 15,
19, 28, 30]. This is in contrast to primal formulations of the Darcy problem, which provide
only an approximation to the pressure and require a post-processing step using numerical
differentiation to recover the velocity. However, the saddle-point structure of the flow problem
introduces two main challenges to the design of mixed methods. First and foremost, discrete
inf-sup stability requires a delicate choice of approximation spaces for the pressure. While
a seemingly natural choice would be to balance the degree of the approximation for the
velocity and pressure, this choice fails to satisfy a discrete inf-sup condition. This lack of
stability can be addressed by either slightly enlarging the velocity space (for instance, RT),
or reducing the degree of the pressure approximation (for instance, BDM). Both choices
enforce H (div)-conformity of the discrete velocity, which is well-known to be beneficial for
the transport problem. Second, the resulting algebraic saddle-point problem has an indefinite
structure which can be difficult to solve in practice.

To address the problem of indefiniteness, hybridized mixed methods were introduced.
Rather than building the H (div)-conformity directly into velocity approximation space, once
can enforce it by introducing a Lagrange multiplier supported on the mesh skeleton which
can be viewed as an approximation to the trace of the pressure. The velocity and pressure
can then be statically condensed locally from the algebraic system, resulting in a smaller
(positive-definite) global system for only the pressure trace variable on the mesh skeleton. It
is well known that the hybridized formulation of the RT and BDM methods produce linear
systems algebraically equivalent to their original counterparts (see e.g. [16] and references
therein) and thus maintain their desirable properties.

The LDG-H method, on the other hand, strikes a balance between the RT and BDM
methods by using equal degree approximations for both the velocity and the pressure. To
compensate for the lack of inf-sup stability, a stabilization term is introduced through a
numerical flux. Much like the HM methods, the HDG system is closed by enforcing the
continuity of the normal component of the numerical flux through the introduction of a
Lagrange multiplier. A major difference, however, is that the discrete velocity is no longer
in H (div). The LDG-H method exhibits optimal rates of convergence for both the velocity
and pressure, but it has been well observed that discontinuities in the normal component of
the discrete velocity can lead to instabilities when coupled with transport [1].

For this reason, we opt to use a HM method for the flow problem, as H (div)-conformity is
beneficial for the transport problem. In particular, we follow the approach of [6, 7] and use a
BDM-H method for the Darcy flow. We remark that this approach differs from the works [21,
31-33] which use an RT-H method for the flow. While the rate of convergence for the pressure
for BDM is one order lower than for RT, there is no coupling between the velocity and pressure
errors and thus no overall impact on the rates of convergence for the transport problem. On
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the other hand, standard HM methods have difficulties with convection-dominated problems
for which LDG-H methods are well-suited. As a DG method, stabilizing mechanisms like
upwinding can be built into the numerical flux of LDG-H, with the added benefit of optimal
rates of convergence for both the flux and the concentration. Comparable accuracy cannot
be obtained with the standard DG approaches outlined in the unifying framework of [2].

To perform our error analysis, we leverage the HDG projection introduced in [11] for dif-
fusion equations and extended in [9] to convection-diffusion equations. While this approach
is not novel, there is a subtle but important difference between our analysis compared to
[8, 9]. In these previous works, the convective velocity is carefully chosen to ensure the
underlying convection-diffusion equation is coercive which is essential for the analysis of
the HDG projection. In our setting, the flow equations satisfied by the discrete velocity do
not provide sufficient control over the divergence of the velocity to guarantee coercivity,
and moreover the discrete velocity is discontinuous. This precludes the use of some of the
arguments in previous works. Nevertheless, we show that if the source term for the flow
problem is essentially bounded, existence and uniqueness of the HDG projection, as well
as its optimal approximation properties, can be recovered provided the spatial mesh size is
chosen sufficiently small.

The remainder of the article is outlined as follows: in Sect. 2, we introduce the continuous
problem and our proposed numerical scheme. In Sect. 3 we summarize known analysis results
for our discretization of the flow problem. In Sect.4, we prove that the algebraic system
resulting from our discretization of the transport problem is well-posed, introduce and analyze
the HDG projection, and derive optimal error estimates for the transport problem. In Sect. 5,
we perform a number of numerical studies to support our theoretical results and investigate
the qualitative behaviour of our proposed numerical scheme. Finally, we draw conclusions
in Sect. 6.

2 Model Problem and HDG Scheme

Single phase flows in a porous domain §2 C R, d = 2,3, over a time interval 0, T) are
characterized by the elliptic equations written in a mixed form:

u=—-KVp, in2 x(0,7), (1)
div(u) = f, in 2 x (0, 7). 2)
where p and u are the fluid pressure and velocity respectively. The symmetric positive definite
matrix K represents the permeability field scaled by the inverse of the fluid viscosity, and f
is a nonzero source or sink function.
The concentration of a tracer is modeled by the following transport equation, also written
in a mixed form:
o;c +div(g +uc) = g, in 2 x (0, 7), 3)
q = —DVc, in 2 x (0,7). “4)
The diffusion matrix D is a symmetric positive definite matrix and g represents an arbitrary
source or sink function. We complement (1—4) with boundary conditions and initial conditions
(n denotes the unit normal vector outward to £2):
u-n=0, ond2x(0,7), 5)
q-n=0, ondf2x(0,7), (6)
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c=co, ind x{0}. )

Thanks to the homogeneous Neumann boundary conditions on the pressure and to ensure
the problem is well-posed, we require

/Qf=/ﬂp=0. (8)

Next, we discretize (1-4) with the hybrizable discontinuous Galerkin method. Let &, be
a conforming shape-regular mesh of 2 that consists of simplices E with boundary dE
and outward unit normal vector ng. As usual, the mesh size £ is the maximum of the
element diameter 4 g over all elements E. We denote by d&;, the union of the faces, namely
08, = Ugeg, 0E.

Let k > 1 be a fixed integer. The space of discontinuous polynomials of degree k is
denoted by Py:

Pr={w e L*(2) : w|g € Pr(E), VE € &,).
The discrete HDG spaces are:

Vi =P, Wip=Pr On=Pi1.

My, ={y, € L*(3E,) : Wple € Pr(e), Ve € 0E,).

For readability, we denote by (-, -) the L? inner-product on an element E and by (-, -), the
L? inner-product on a face ¢ C 9 E. We also define

W, v)g, = Y (w, e, (W Vg = Y (w, v, ©)

Ee&y Ee&y

with the usual modifications for vector-valued functions. Let T > 0 be the time step value
and let 1" = nt be the n-th discrete time such that 0 < ! < --. < ¥ = T is a uniform
partition of the time interval.

The fully discrete HM-HDG method reads: first find (uy,, pi, pr) € Vi x (QrN L(Z)(.Q)) X
M, such that

Von € Vi, (K~ 'up, vn)e, — (pn, V- vn)e, + (Pr, vi -m)og, =0,  (10a)
Yw, € Op N L(Q)(-Q), Vup, wp)e, = (f, wn)g,, (10b)
YWy € My, (up-n, wp)ag, = 0. (10c)

n—1

Next,for 1 <n < N, givenc,” € Wy, find (¢}, cZ,?Z) e Vi, x Wy, x My, satisfying
Yo, € Vi, (D7'ql,vn)e, — (), V- vp)g, + (€L, vn -n)ag, =0, (11a)

1 n n—1 n n
Ywy € Wy, ;(ch —c, > wn)g, — (upey, +q5, Vwp)g,

+ (g} +upcy) -n+o(cy —<p), wp)ag, = (& whe,, (11b)
VW, € My, {((q}, +uncy) -n+o(ch —7<}), Wn)ag, = 0. (11c)

The stabilization function ¢ in the numerical flux is chosen following the considerations
in [20, 25]:
olpe = lup - ng| +max(|| D] =2y, 1), VE € &,. (12)

The vector ng denotes the unit normal vector outward of 9 E. We initialize the scheme with

the L2-projection of the initial data into Wy, i.e. ¢ = micq, where i denotes the L2 operator
proj h P
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defined by:
Vw e L2(2), Ywy € Wy, (mew, wp)g, = (w, wp)s,. (13)

Since f € L%(Q) anduy-n = Oon 042, itis easy to check that (10b) is satisfied for w;, € Q.
We will also make use of the L? projection operator 7 over the mesh skeleton, defined

by:
Yw e L*(3y), VDy € My, Ve €&, (W, B)e = (w, Wp)e.  (14)

The L? projections satisfy the following approximation properties for positive constants C
and Co, independent of g and A [3, 18]:

VE € &, Ywe H(E), |lw—m— 1wl < Chkwl e g, (15)
VE € &, VYwe HYE), w0l 20m < Chy Plwlgeng,  (16)
Yw € L7(2), |m—i1wlre@) < Coollwllzoe)- )

3 Analysis of the Scheme

The one-way coupling of the flow with transport allows us to treat the flow equations
separately from the transport equations.

3.1 Flow Problem

Since Problem (10) is a well-known numerical method that originates from [5] in 2D and
[4, 24] in 3D and that has been studied in e.g. [16], we state the results without providing a
proof. Well-posedness is shown in detail in [16, Section 2.4].

An important tool for the derivation of error bounds for the flow problem is the BDM
projection [3, 16], defined locally, for a vector function ¢ sufficiently smooth, as:

Yo, € Ni—2(E), (IT*PMg, v, g = (q, vi)E, (18a)
Vi, € ROE), (IPPMq -n, @y)op = (g -n, Wn)ok, (18b)

where Ny_ (E) is the local Nédélec space of the first kind [3, 23] and R (3 E) is the restriction
of M}, to a single element E. The following commutativity property holds, for any E € &;:

V-HBDMq:nk,IV-q, on E. (19)

In addition, there exists a constant C > 0 such that, for | <m < k 4+ 1, for E € &, and any
q € (H™(E)), we have

_ BPM

la a2, < CH" g1 (E)- (20)

The starting point of the analysis is the error equations. For this, we introduce the following
notation:

ey =u—uyp, §M=HBDMu—uh, §u=u—HBDMu,

€p =P = Ph» §p =T—1P = Ph §p =P~ Tk-1P,

e =p—DPh C{p=TkP—DPh» Ep=p—T4D
Lemma1 (Darcy error equations)

(K~ '¢u, vn)e, — (&p, V-vp)g, + (?p, vy - n)ag, = — (K '&u, vp)g,, (21a)
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(V- &y, wp)g, =0, (21b)
(Cu -1, Wh)ag, =0, (21¢)

for all (vy,, wy, W) € Vi x Qp X Mj,.
Next, using the error equations above, we obtain local bounds.

Lemma 2 There exists a constant C > 0 independent of hg such that the following bounds
hold:

VE S & [KT P = K% @)

‘LZ(E)’
VE € &, 21w mll2p) < Cléal o (23)

Using the fact that the pair of spaces (HO1 24 x L%(.Q) satisfies an inf-sup condition [22],
we derive the following bound on ¢,:

Lemma 3 There exists a constant C > 0 independent of h such that
1gpll22) < Clleul| L2(2)" 24)
Finally, we have the following local bound on Ep-

Lemma4 There exists a constant C > 0 independent of h and hg such that
o~ -1/2 1/2
VE € [Tl = € (s 1enle + 1 leal o) - (25)

An immediate consequence of (15), (16), (20) and Lemmas 2—4 is the following a priori
estimates for the Darcy problem:

Theorem 1 Suppose that k > 1 and (u, p) € (H*1(2)1 x H*(2) solves the Darcy
problem (1) and (uy, pn, pr) solves the discrete Darcy problem (10). There exists a constant
C > 0 such that, for all E € &,

lu — wupll 25y < CHE Ul oot (), (26a)

Ip = Pullr22) < Ch*(Uplgri @) + 1l g o). (26b)
k+1/2

I —un) - nll 20 < CHY 21Ul s ), (26¢)

If in addition, the mesh is quasi-uniform, we have
P — Pulli2pe,) < Chk+]/2(|P|Hk+1(:2) + Ul g1 (@) 27

Using a standard inverse inequality (locally on one element) and a Sobolev embedding, we
derive the following uniform L bound on the discrete Darcy velocity uj,:

Corollary 1 Assume that the velocity solution to the Darcy problem (1) satisfies u €
(H%($2))?. Then, there exists a constant C > 0, independent of the mesh size h, such
that

lwpllLe2) < C||u||H2(Q)~ (28)
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Remark 1 Theorem 1 shows that using a lower order approximation for the pressure will
not impact the accuracy of the proposed HDG method for the transport problem. Thus, the
use of the BDM-H scheme over the RT-H scheme may be more desirable from the point of
view of implementation. However, if one desires a more accurate pressure approximation, the
following local post-processing scheme from [29] can be applied efficiently in an element-
by-element fashion: find pj € Py 1(E) satisfying for all wy, € Py (E) the system:

—(KVp}, Vwy)g = (up, Vwp)E, (29a)
(py» DE = (pr» DE. (29b)

It is well-known (see, e.g. [29, Theorem 2.2]) that p; converges with order k + 2 if & > 2
and order k + 1ifk = 1.

Remark 2 Our motivation for considering a HM method for the Darcy flow problem is the
H (div; §2)-conformity of the velocity approximation. However, if one wishes to use the HDG
method for both flow and transport, the velocity approximation may be post-processed in
an element-by-element fashion to obtain an H (div; §2)-conforming velocity approximation
(see, e.g. [12] for further details).

3.2 Bound on the Divergence of the Discrete Velocity

For the well-posedness of the discrete transport problem (11) as well as for the error analysis
in the sequel, we require an L°°-bound on the divergence of the approximate Darcy velocity.
Such a bound follows immediately from the following lemma:

Lemma5 Letu; € Vy, be the unique solution to the discrete Darcy flow problem (10). Then,
uy belongs to Hy(div; §2) and

Veup=m_1f. (30)
Proof To show that uj, belongs to Hy(div; §2), it suffices to prove the continuity of the normal
component of u;, across the interior faces of the mesh skeleton d&, and that uy, - n = 0 on

the boundary 9£2. This is easily obtained by choosing Wy, in (10c) to be zero everywhere
except on one face e C 9. Equation (30) follows immediately from (10b). ]

Remark 3 Alternative to the hybridized mixed methods, one could instead approximate the
Darcy problem using the hybridizable discontinuous Galerkin method as done in [20]. This,
however, presents a number of challenges

4 Analysis of the Transport Problem
4.1 Existence and Uniqueness of the Discrete Solution

We now demonstrate that the transport problem (11) is well-posed under assumptions that
depend on the regularity of the source/sink function f in (2).

Assumption A The function f belongs to L°°(£2) and 7 is chosen small enough, namely
T < 10, With

1

=0,
Cooll fliL=(2)

where C is the constant in (17).
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To prove well-posedness of the transport problem, since we are dealing with a square linear
system in finite dimensions, it suffices to prove the corresponding homogeneous problem has
only the trivial solution.

Lemma 6 Let Assumption A hold true. Given uy € V), satisfying the discrete Darcy flow
problem (10), (q,, ch, ¢n) = (0,0, 0) is the unique solution to the homogeneous system

(D™'qy, vi)g, — (e, V - va)g, + (Ch, Vi - m)ag, =0, (31a)
(cn, wn)g, — T@nch +qp, Vwp)e, +T((gy + unch) - n, wp)ae,

+ t{o(ch —Ch), wp)ag, =0, (31b)
((qy +uncy) - n, Wy)yg, + (o (ch —Ch), Wh)ag, =0, (3lc)

for all (vy,, wy, W) € Vi x Wy, x M.
Proof We first choose v, = tq,, in (31a) and integrate by parts to find
(D7 gy, qp)e, + T(Ven qi)e, — Tlen = Ch, gy - Mg, = 0. (32)
Next, we choose wj, = cj, in (31b):
||Ch||iz(9) — t(unch +qp, Ven)e, + (g, + unch) - n, cndag,
+t{o(cr —Ch), cn)ag, = 0.
Summing these two equations, we have
lenl 32y + TP an, aie, + T @iy qy - mhag, — T@ncn, Vene,
+ t{upcy - n, ch)oe, + tlo(cp —Ch), cndag, = 0. (33)
Choosing w;, = —1¢}, in (31¢) and adding the resulting equation to (33) yields
lenlFa gy + T (D" qn, gi)e, — T@nch, Ven)e,
+ T (up - ncy, cp — Ch)ag, + t{o(ch —Ch), ch — Ch)ag, = 0. (34)
Adding and subtracting t{u, - ncy, cp — Ch)ag,, we find

llen lliz(m + (D7 'q;. q)e, — T(ich, Vepe,
+7((c —up - n)(ch —Ch), ch — Ch)ag, + T{up - ncy, cp —Ch)ag, = 0.

Next, using the fact that ujcj, - Vep = %V . (uhc,%) — %C%V - uy, on each element, we apply
Gauss’s theorem element-by-element to find

T T
—t(upcp, Vep)g, = E(W “UR)Ch, Ch)E, — E(uh “RCh, CR)IE, »

so that, after some algebraic manipulations, and using the fact that uj, - n and ¢}, are both
single-valued across element boundaries and that uy, - |3 = 0, we arrive at

_ T
lenlZagg) + 7D~ a4, an)e, + (V- wien, cn)e,

1 —~ ~
+ {0 — Sun -n)(chp —Ch), ch — Ch)ag, = 0. (35)

Next, we rearrange, use the fact that V - u, = mx_1 f to find (note that o — %uh -n > 0)

. 1 N N
©(D7' 5 ane, + llenllga g + T — Sun - m)(en =), en = T,
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=

[(GTe—1.f)cn» cn)e,l- (36)

I

With Assumption A, we write

- 1 . N
t(D7'qp an)e, + lenllfa g, + T = Swn - m)(en =), cn — Thhae
T 2 T 2
=< 5”T[kflf”LOO(Q)”Ch”LZ(Q) = ECOO HfHLoo(Q)”Ch”LZ(Q)

Therefore, since T < 19, we can conclude that g, = 0, ¢, =0, and ¢, = 0. m]

4.2 Error Analysis for the Transport Problem

4.2.1 The HDG Projection

Motivated by the analysis in [9], on any simplex E € &, we define a projection IT"PS(q, ¢) =
(ITyq, ITyc), dependent on the discrete Darcy velocity uj, obtained from (10), as the element

of (Pe(E)? x Pr(E) solving the equations

Vo, € P (E)?!, (Tyvq +upIye, vi)g = (g +uc, vy, (37a)
Vwy € Pr1(E), (Iwe, wp)E = (¢, wn)E, (37b)
Ve C 0E, Ywy, € Pr(e), (ITyq -n+oMyc, Wp)e = (g -1 +u - nc, W),

+ (oCc — uy - nTLC, Wp)e. (37¢)

To analyze this projection, we require the following lemma taken from [9, 11]:
Lemma 7 Denote by ]P’,ﬂ‘(E) the orthogonal complement of Pr_1(E) in Py (E), that is,
Pi(E) = {wy € P(E) | (wh, vp)g =0, Vv € Py ()} (38)
For all wy, € Pkl(E), there exists a constant C, > 0 such that
172
lwillz2g) < Cohg llwnllp2), (39)
for any face e C OF.

First, it is easy to check that (37a-37c) yields a square linear system, thus existence is
equivalent to uniqueness. Indeed, we observe that

k+d)! k+d—1)!
Gk + ), dim]P’k(e)=(+7).
d'k! (d — k!

dim Py (E) =

Thus, the dimension of (P (E))? x Pi(E) is

(d+ Dk +a)!

. d . _
dim(Px(E))” + dim Py (E) = I

’
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while the number of equations defining the HDG projection is equal to

dim(Pe_1 (E))? + dim Py (E) + (d + 1) dim Py (e)
_d+Dk+d-D! (@d+Dk+d-D!
a d' (k= 1) d — D'k!
_ @+ Dk Z‘f}ifk T4 =D im@(E) + dim Pu(E).

To prove uniqueness, let §; and 8. denote the difference between two projections. They
satisfy

Yo, € (Pr—1(E)Y, (84 +unde, vi)g =0, (40)
Vwy, € Py_1(E), (8, wp)g =0, 1)
Ve C OE, Ywy, € Pi(e), (5q “n+ 08, Wp)e = 0. 42)

From (41), we see that §. belongs to ]Pkl(E). Choose wy, = 8|, for all e C 9E, and sum
over all e:

(08¢, 8c)or = —(V - 84,38:)E — (8q, V) E
Since V - 8, belongs to Py, we have
(08¢, 8¢)oE = _(sq, Véc)E
Choosing v, = Vé, in (40) yields
1 1
(080 80)3E = (uhac‘a V(SC)E = §<uh ‘n 80» 8c>3E - E((V . uh)8C7 8L')E-

Therefore,

1 1 1
(0 = Sun-m)de.8e)ar < 51Tk flle@ Il gy < 5 Cooll fllee 1el}a .
By (12), we have
1
U—Euh'"ZI- (43)
Thus, with (39) we obtain

1
18cl72(z) < CohEldelfap) < Cahel(@ — Sun-m)de, 8l

1
< Gl Cooll @) IBell 7 -
Therefore, assuming that

CiheCoxoll fllLe2) < 1,

we may conclude that 6. = 0. This implies that component-wise §, belongs to P,ﬂ- and that
84 -n =0 on dE. With (39), we conclude that §; = 0. Define

1
T CiColl fllre)

Then for all 4 < hg the functions [Ty q and [Ty c exist and are unique.

ho (44)
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We remark that, thanks to Corollary 1, the approximation errors derived below for the
projection ITHPC are independent of u, assuming the exact Darcy velocity is sufficiently
regular, i.e. u € (H2(§2))".

The following proposition is similar to [9, Proposition 4.2]. We reproduce the proof below.

Proposition 1 The component ITyc of the HDG projection defined in (37) satisfies for all
zn € PH(E),

{(oUTwec =), zn)oe = (V - q, zn)E — (W —up) - nc, zp)sE
—(up e —c) -n, zpn)oE + (wp(we — ©), Vzp)g + (( — up)e, Vzp)g.  (45)

Proof Fix z;, € ]P)kl(E). Testing (37¢) with Wy, = z/e, for all e C 9 E, and summing over all
faces e, we have

(o(ITwe =), zn)oe = (@ — [Tvq) - n, zn)sE — ((WpTTkC — UC) - 1, Zp)HE -
Integrating the first term on the right hand side by parts yields

(oIlwec —c), znyoe = (V- (q — IIvq), zn)E +(q — Ilvq, VZp)E
—({(upTEC — uc) - n, zp)yE.

Since V - (ITyq) € Pr—1(E) and z; € P (E),

(o(Iwe —c¢),zn)oe = (V- q,zn)E + (9 — ITvq, Vzp) g — ((Wp7T¢ — uc) - n, 2p)yE.-
Then, by (37a), we can write this as
(o(Mwe —c¢), zn)oe = (V- q, z20)E + Wpllwe —uc, Vzp) g — ((Wpmie — uc) - n, 2p)oE-
The result follows after noting that

upllywce —uc = (up, —u)c + uy(Iyce — c),

upke — uc = (uy, — u)c + uy (7Trc — c).
O

Lemma8 Let k > 0 and suppose (u,q,c) € (H*1(2))4 N (H*(£2))4 x (H1(2))4 x
H*1(82). There is a positive constant C independent of h, T and the functions c, q, u, up
such that

Iwe = 7eell 2y < CH (@mas + 1l ) lelin @)
+ IV - gLty + el gy ) (46)
provided the mesh size satisfies h < ho with ho defined by (44). Here,
omax = o llL>@e,) < lullg2 ) + max(| Do), D.

Proof Our starting point is Proposition 1. For brevity, we denote e, = ITwyc — ¢, { =
Ilwc — myc and &, = mrc — c. Observe that ¢, € Pkl(E ), since (37b) along with the fact
that P, (E) C Py (E) shows that for all v, € Pr_1(E),

(ITwc — e, vp)E = (¢ — mre, vp)g = 0.
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Testing (45) with z;, = ¢., we have

(oUTwe —¢), 8o = (V- q,l)E — ((u —up) - nc, §e)oE
—(up (@R — ) - n, LYo + Wn(ITwe — ¢), Vi) g + ((u —up)e, Vi) E.

A few algebraic manipulations leads to

(08c, &e)oE = —(0&c, 8o + (V- q, 8)E — (W —up) - ne, 8e)yE
_(uh(7?k\c =) m, L)oo + Wple, Vi) g + Wpbe, Vi) g + ((w —up)e, Vie)E.

Next, noting that u, ¢, - V¢, = ly. (uhfcz) — %{CZV - uyp, we apply Gauss’s theorem to find

(Cettn. Vi)E = %(uh e, Le)oE — %((v U)o, L) (47)
and thus with (43)
18elF 2005y < = (08, Edar + (V- 4, 6 — (@ — wp) - ne, &ehar
—(up(@C —¢) - n, 8e)aE + Wne, Vi) E + (U —up)e, Vi) E
- %((v up)les L) E
=T +---+T.

We now bound each term 7; for 1 <i < 7.
First, by Cauchy—Schwarz’s inequality and a discrete trace inequality (see e.g. [14, Lemma
1.46]),

—1/2
ITi] < CllollL=@e)hg / &cllz2a ) Iell2 (k)
< C (max(| Dllze(e), D) + llunlloc2)) Blel g gy 16ell 2y

by the approximation properties of the L2-projection mx. The term 7> can be bounded by
observing that

=(V-qt)E=(N-q—-m1V-q,5)E,
so by the triangle inequality we have
T2l < CHA|V - qlye gy lISell 2 x)-
Next, Holder’s inequality, the estimate (26c), and a discrete trace inequality yield
T3] < llcllooqe | @ — un) - r]| 2 p el 208
< Ch¥llellzoe ()|l gt iy e L2 e)-
As for Ty, we apply Holder’s inequality, to find
|T4| < llup ’"||L°°(3E)||ﬁ7c\c - C||L2(aE) ||§c||L2(3E)-

To proceed further, we use the approximation properties of the projection 7xc and a discrete
trace inequality:

T4l < Ch* upll Lo (@) lel s gy 6l L2y -
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Next, by Holder’s inequality, an inverse inequality, and the approximation properties of the
projection my, we have

IT5] < llunllLo@)lécll L2y IVEell L2y
< Ch*lupll @) el g o)l Zell 2 k) -
We bound 7§ in a similar fashion, using the error bound (26a):
|Tsl < Ch¥llcll ooy 11l st gy 1Zell 2

Using Lemma 7 and the fact that V - u, = mx_1 f, we have

|T7]

IA

1
SV - wnllis @) el g g,

IA

COO 2
SN @ el 2 -
From Lemma 7, we have

18172y < CohEllEeFa
Thus, by combining the above bounds and using Lemma 7, we find there exists a constant

C > 0, independent of & and 7, such that when & < hg, (46) holds. ]

To analyze the projection error [ITvq — q|| 2oy We require two auxiliary projections taken
from [9, Section 4.3] originally defined in [10]. For a fixed element E, let ¢* be a face of E
on which o |5 g attains its maximum. For any sufficiently regular g, we define the projections
Py,q and Py,q as the elements of P, (E) satisfying

Vop € @1 (E)?, (Pv,q.vi)E = (q +uc —upllyc,v)e,  (48a)

Ve CAE\ e*, VY, € Pr(e), (Py,q-n,wp)e = ((q+uc —upmpc) - n, )., (48b)
and

Vo € Bi1(EN?, (Pv,q,vi)E = (g, vi)E, (49a)

Ve CAE\ e*, VYuw, € Pr(e), (Py,q-n,wp)e=I(q-n, W)e. (49b)

That the equations defining Py, and Py, are well-posed follows from [10, Lemma 3.1].

Now, fix an element E € &, and observe that the set of unit normals to the faces of E
excluding e*, i.e. {n. | e # e*}, forms a basis for R?. Denote by {7i, | e # ¢*} the dual basis
of {n, | e # e*} satisfying

~ *
nei-nej:(Sij, e,-,ej;ée .
We can then write,

Vi=1,2, ¢—Pyv,g=) ((g—Pv,g) - n)n,
eFe*
Therefore, since
lg = Pv,qliap < D Ig = Pv,@) - nelja g,
e#e*

it suffices to estimate

(g — PV,-Q) '”e”LZ(E)’ e # e*.
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Lemma?9 Let k > 0 and suppose (u, q,c) € (H*1(2)? N (H*(2))? x (H1(£2))4 x
H*Y(2). There exists a constant C > 0 independent of h such that

I(Tyq — Py,q) - nell 2 < CH*T, (50a)
IPv,qg — Pv,qll 2 < CH*T, (50b)
I(Pv,q — @) nell 2 < Ch*TL (50¢)

Proof Note that (50a) follows from the proof of [11, Proposition A.3]. We provide details for
completeness. By equations (37a) and (48a) defining ITy and Py, respectively, we have

Vo€ @ (E)Y, Y D ((UTyg — Py q) - nefie,, v - neTie) e
ejFe* ejFe*
={Ilyq — Py,q,vp)g =0.
However, since n, : and n, ; are parallel,
Yo € P (E)Y, Y (Tvg — Py,q) - ne, vy -Jie) g = 0.
ej #e*
Equivalently, since we can choose e.g. v, = wyn, ; for any wy, € Pr_1(E), we have that

VYwy € Pr—1(E), (UIvg — Pv,q) -ne;, wp)g =0,

and thus (ITyq — Py,q) - n, € IF’,%(E) for each e # e*. For brevity, denote {f =Ilyq —

Py.q) - n..
Next, subtracting (48b) from (37c), we find

Vo, € Pe(e), Ve #e*, (¢, Wn)e = (0(c — Mwc), Dp)e. (51)

By [11, Lemma A.1], the trace map y, : P,}(E) — Px(e) is a bijection, so we can choose
Wy, such that @y|. = ¢J. Consequently, by the Cauchy—Schwarz’s inequality, the triangle
inequality, and a discrete trace inequality,

12112y <Omaxlle — Mwell 2
<Comax (lc = mkell 2y + h™ e — Mwell 2 -

Equation (50a) now follows from Lemma 7, Lemma 8, and the approximation properties of
the L2-projection 7.
Next, we show (50b). By the definition of the projections Py, and Py,,

(Pv,q — Pv,q,vi)E = (uc —uplye, vi)g, Vv, € (Pr_1(E)), (52a)
((Pv,q — Py,q) -n, Wp)e = ((wc — upldic) -n, Wp)e, Yy, € Pr(e), (52b)

for all e # e*. There exists a constant C > 0, independent of /4, such that
1PV = Pvaglliae = C(llue — unMwel 2,

02N | we —wiie) -, ). (53)
e#e*

To see this, let Z = Py,q — Py,q, x = uc —upllyc, and o = (uc — uhﬁkc) - n for
brevity. Then, we can rewrite (52) as: given x € L%(E) and w € L%(e) forall e C dE\e*,
find Z € (Px(E))“ such that

Vo € P (BN, (Z,vn)E = (X, vi)E, (54a)
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Yy, € Prle), (Z-n,Wh)e = (@, Wp)e- (54b)
Equation (53) now follows from the inequality, for a constant C independent of A:
121128y < C(Ima-1Zll ey + 172 Y NZ mlage)- (55)
e#e*

which can be derived using a finite dimensional scaling argument with the Piola transforma-
tion upon noting that

|71 Z] o) + DN Z -7 12
iz

defines a norm on (IP; (F? )4, with E the reference triangle or tetrahedron. Testing (54a) and
(54b) with wy_1 Z and Z - n, respectively, we find that

Imi—1Zll2 ey = X2y, 1Z-nli2e) < loli2e)- (56)
Consequently,

I1Pv,qg — Pv,qllr2ey S e —un)lip2gy + llun(c = Dwo)ll L2 gy

+h' Pl (uw —up) - nll2pE + 0 lun - n(c — 70O 208)-

Equation (50¢) now follows from the estimates on the errors u — uy, ¢ — Iy ¢, and ¢ — iC.
Finally, (50c) follows from a standard Bramble—Hilbert style argument as shown in [10,
Lemma 3.3]. O

Theorem 2 (HDG projection error) Let k > 0 and suppose (u,q,c) € (H*1(£2))4 N
(H2(2)? x (HM1(2)? x H*Y(Q). There exists a constant C > 0 such that

le — Mwell 2@y < CAFT, (57a)
lg — Myql 2 < CRF, (57b)

provided the mesh size satisfies h < ho, with ho defined in (44).
4.2.2 The Error Equations
We now derive a set of error equations that will be instrumental in establishing our a priori

estimates. The starting point is the following set of equations satisfied by the exact solution,
assuming sufficient regularity:

(D", vp)g, — (", V - vp)g, + (", vy - m)se, =0, (58a)
(0", wp)g, — (e 4+ q", Vwy)g, + (8" -1, wi)ag, = (&", wa)g,, (58b)
(8" - n, Wy)pg, =0, (58¢)

for all (v, wy, Wy) € Vi x Wy, x My,. Here, we define the exact flux

~n

S =q"+uc". (59

For brevity, we will denote the errors as:

n__ ,n__ n n__.n_ .n N __ n __an
e, =4q" —qy, e =c" —cp e =c" -, (60)
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the projections of the errors as:
tg=1lvq" —q,. ¢! =Twc" —c, ¢l =mc" =7, (61)
and the approximation errors of the projections as:

£ =q"—Ilvq", &' =c"—Iyc", E'=c"—mc". (62)

Lemma 10 (The concentration error equations) Let (u, q, c¢) be sufficiently regular solutions
to the Darcy and transport problems, (1) and (3), respectively. It holds that

(D7'¢h vn)e, — @V - vp)e, + (T vn - m)ag, = —(D7Ep. va)eg,. (63a)
(3" — 8zch wi)g, — (&g +ung, Vwn)g,

+(&p nt w0t + o=, waae, =0, (63b)
(€p 4wy -ngl + o =0, Wnag, =0, (63¢)

for all (vy,, wy,, W) € Vi, x Wy, x My,.

Proof We begin by noting that, by the second equation defining the HDG projection, (37b)
and the definition of the L2 projection 7y, we can write (58a) as

Yor € Vi, (D7'q" vi)g, — TTwc", V- vp)g, + (mxc™, v - m)ag, = 0.
and therefore for any vj, in V,, we obtain
(D~ 'yq", vp)e, — (Twe, V - vp)g, + (TEC, vy - n)pg, = —(D_lé,;', vp)g,.  (64)
Subtracting (11a) from (64), we have
You € Vi, (D7'¢0 vp)e, — (60, V - vi)e, + (€0 vn - n)as, = —(DEL vp)e,,

which is precisely (63a).
Next, we derive (63b). Applying the definition of the HDG projection in (58b), we have
for all wy, € W,

@c", wh)e, — Wpllwc" +Myq", Vwy)g,
+(Iyq -n+uy - nmc +o(ITwe — ), wphag, = (&, wp)g, - (65)

Subtracting (11b) from (65), we have for all w;, € Wj,:
(3" — 8zcpy wi)g, — (Ung! + &g, Vwn)eg,
HEh o ntuyng + ol =T, waag, = 0.

Finally, we turn to (63c). To begin, we use the definition of the HDG projection in (58c¢) to
find:
YW, € My, (Oyq-n+up-nwc+o{Twe —c¢), Wh)ae, = 0. (66)

Subtracting (11c) from (66):
Vibp € My, (£ n+up-nl + 0@ — ). Di)sg, = 0.

which is (63c). ]
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Lemma 11 Assuming t < 1/Cy, and h < hg, with hq defined in (44), we have

m m
2 — 2 2
& ”LZ(Q) tT Z |p ”ZCZ ”LZ(Q) +2t Z ler =< ”L2(ash)
n=1 n=1
< Cexp(CyT) (W42 4 2%), 67)
where Cy =1+ 2C ”f”Lw(m and C is a positive constant independent of h and t.

Proof Testing (63a), (63b), and (63c) with (vs, wy, Wy) = (&2, ¢7, —’;:C”), we have:

(D7'¢n. e, — @1V - Ee, + (1 8 - mag, = —(D7'Ep. L)y, (68)
(B " = 8ccp, E e — (Gq +untl', Ve,

(L8 ntuyng + ol =T e, =0, (68b)
—(&hntup - ng + o =T )se, = 0. (68¢)

Integrating by parts in (68a), we obtain
(D7en Mg, + (VEI Ee, — (€ =T 8o - n)ag, = —(DT &0 E)g,.  (69)
Summing (68b), (68c) and (69), we are left with
(D70, e, + Orc™ = 8ccht te, — ngl, Ve, +
(wp - ngl ¢ = Tag, + (0@l =T, ¢ = Tlhag, = —(D7 &0 Eh)s,.

Noting that uy ¢, - V¢, = lyg. (u;,{C2 - %Q‘CQV - up, we apply Gauss’s theorem to find

1 1
(ung!, Vi e = 5("11 ngl, 8)oE — 5((v “up)e, EDE,

and therefore, we have
_ 1
(D™1eg, &)e, + " = 8ecy, ¢De, + (V- une!, (e

1 -~ ~
(o = Ju-m(@ =T 8! = Tag, = ~(D7'Ep £ (70)
Noting that we can write

0rc" = 8cf = (9" — 8:c™) +8:(c" — )
= (0" — 8" + SICCH + Sr%‘f»

we can multiply (70) by 7 and rearrange to find
—1/2 0|2 n n—1 .n n_sn «n _on
2t || D gq HLZ(_Q) + 2(§¢ - gc ’ ;c )gh + 2t<§c - é‘C ’ é‘c - gc >agh

< —2t(DT'E) e, — TV )l e, — 2T (" — 8" g,
21 (8., (N (71)

where we have used that o — %uh -n > 1 by (43). By the symmetry of D, the Cauchy—
Schwarz’s inequality, and Young’s inequality, we have

2¢|(D™! 2 SPal = THD‘”%‘Z ”iz(g) + THD_I/ZCZHi2(Q)'
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Next, we have by Holder’s inequality,
(V- un)ls &D,] < Coot | f | oo 162 1720y
Once again, by the Cauchy—Schwarz’s inequality and Young’s inequality, we have
T
2((Bh” = 8o £1)e, | < ATNBhC” = 82+ Z 1L 172 .
Similarly,
201880 Ee, | < ATNEN 12 g + < IE0 1
tScr S )& = TSc LZ(.Q) 4 c L2(.Q)'
Collecting the above bounds and using that 2x(x — y) > x> — y?, we have

2 12 _ 2 ~u112
& ||L2(.Q) - ¢ 1||L2(.Q) +7|D I/ZCZ ||L2(.Q) +2t)gl =g ”LZ(aSh)

_ 2
<t|D 1/252 ||L2(.Q)

1
HAT(0rc" = 8ec” ]2 gy + 4TN8E T2y + T (5 + Coo f||Lm(m) 170

Summing fromn = 1, ..., m, assuming that

T = . )
14+ 2C0 | f] 1o

(72)

multiplying both sides of the inequality by 2 and rearranging, we find
m
2 _ 2 ~1 2
& HLZ(Q) +2t Z (HD WCZ HLZ(Q) +2lgr = ||L2(8£;,))
n=1

m
<20 hay + 20 D0 (1071285 gy + 400" — 5ec B gy + 41cE! g )

n=1

m—1
2
+1 (1 +2Cx HfHLOO(Q)) Z chn ”LZ(Q)'
n=1

Thus, the application of a discrete Gronwall inequality yields

m
2 _ 2 ~n 112
(14 ”L2(Q) +2TZ(”D I/QCZ”H(Q) +2¢r —¢ ||L2(88h))
n=1

< 2exp (CfT) Hgf Hiz(ﬂ)
m

+2exp (C4T) T 3 (D728 2 + 40" = 81320, +418:E2 12 )

n=1

where Cp = 1+ 2Coo| f | o (-
Using (57b), we have:

m
_ 2
T Z ”D 1/2;;.2 ”LZ(Q) < CTth“.

n=1
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Similarly, using (57a), we have

m m
T I8E Ga gy =T Y 18" — Mw (e o g, < CTHHH2.

n=1 n=1

Next, Taylor’s theorem yields:

m t’ll
§ : 2 2 2
T ||8tcn - (StCn”LZ(Q) = Cr / ||attc||L2(Q)-
0
n=1

Finally, since we initialize the numerical method with cg = mco, by Lemma 8 we have:
02 2k+2
= HLZ(Q) = Ch™™

Collecting the above bounds, we obtain the desired result (67). O

Theorem 3 (Error estimate) Let k > 0 and suppose (u, q, ¢) € (H*T1(£2)? N (H?(£2))? x
(H*1(2)? x H*Y(Q2) are solutions to the Darcy and transport problems, (1) and (3),
respectively. Assuming T < 1/Cy, and h < hg, with hg defined in (44), we have

m
”Cm —cy “22(9) tr Z ”D_l/z(qn - qZ)||iz(m = Cexp(CyT) <h2k+2 + fz) )

n=1
m
51y = Comp(Es ) (5 4 22,
n=1

where Cy =1+ 2C ” f ” L(@) and C is a positive constant independent of h and t.

Proof Follows from the triangle inequality, Lemma 11, the approximation properties of ITyy,
My, 7, and the fact that exp(C;T) > 1. m}

5 Numerical Results

In this section, we perform three numerical experiments to test our algorithm and compare
with our theoretical results. All simulations have been implemented using Netgen/NGSolve
[26,27]. In each case, we employ static condensation for both the flow and transport problems
to eliminate the interior degrees of freedom (dofs) resulting in a reduction in the size of the
global systems. We briefly review this key feature of hybrid mixed methods and hybridizable
discontinuous Galerkin methods below. While our discussion will center around the hybridiz-
able discontinuous Galerkin method for the transport problem, similar considerations hold
for the hybrid mixed method for the flow problem.
As outlined in [25], at each time step we can express the transport problem (11a)—(11c)

in matrix form:

A-BT DTN [0 0

B E G C|=|F]|, (73)

D H J]||C 0

whence we can obtain the following statically condensed system for c by eliminating both
0 and C locally on each element: R
KC =F, (74)
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where the matrices K and F are defined as

K=J—-[D H] [g _Il)’T}l [DGT] : (75)
AN

Once C has been computed, @ and C can be obtained using the fact that

[g] - [2 _Il)ﬂ]l ([2} B [Iﬂ 6)’ (77

and this calculation can be performed in an element-by-element fashion. Consequently, the
only globally coupled degrees of freedom arising from the system (11a)—(11c) that remain
after static condensation are those associated with 6 the concentration on the mesh skeleton.
As these degrees of freedom are defined solely on (d — 1)-dimensional facets, the resulting
statically condensed system enjoys a global system of size O(k4~!) in comparison to O (k%)
for classical discontinuous Galerkin methods.

5.1 Manufactured Solution

To verify the theoretical rates of convergence predicted by Theorem 3, we use the method
of manufactured solutions on the unit square 2 = [0, 11%. The source term and boundary
condition for the Darcy problem (1) are chosen such that the exact solution is given by

—27 sin(7x) exp(3)
1/m cos(mx) exp(3)

2
u(x,y) = [ } o Pl y) = ——cos(rx) exp(3), (78)
and the source term and boundary condition for the transport problem (3) are chosen such
that the exact solution is given by

c(x,y,t) =sinm(x —t)) cosr(y — t)). (79)

For simplicity, the conductivity and diffusion matrices are the identity matrix. First we com-
pute the discrete Darcy velocity using the hybrid mixed method (10) and then apply the HDG
scheme (11) with k = 1,2, 3 for a sequence of mesh and time step sizes h; = 1/2j and
t; = 1/2%+DJ until the end time T = 0.1. The errors for the pressure, the post-processed
pressure, and velocity are shown in Table 1; optimal rates are obtained, as expected from
Theorem 1. See Remark 1 for details on the post-processing.

Table 2 displays the errors for the concentration and its gradient in the L? norm at the final
time, as well as in the following norm

1/2

N
”eq ”(2(L2,D) = (r Z ”D_l/z(qn - qz)”i%@)) : (80)
n=1

Examining the results in Table 2, the estimated order of convergence in the L2-norm appears
to approach k 4 1 for both the scalar and flux variables, as well as in the £2(L?) norm for the
flux variable, in full agreement with the prediction of Theorem 3.

We consider a convection dominated problem wherein a contaminant is transported along
a channel at a constant velocity. We wish to evaluate the accuracy of the solution obtained
with increasing polynomial degree. The domain is £2 = [0, 2.5] x [0, 0.5], and for simplicity
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Table 1 Errors in the pressure and velocity between the exact solutions p, u and the discrete solutions py,, uj,,
and post-processed pressure pZ computed in the L%-norm

hj lp—pull 2y Rate  Jlu—uplao) Rate  p—pjl2)  Rate
k=1 172 2252 x107! - 3.087x1071 - 8.205 x10~2 -
122 1.116x1071 1.013  8.001 x10~2 1.948  2.106 x10~2 1.962
123 5.545x1072 1.009  2.022x107! 1985  5.305x1073 1.989
124 2767x1072 1.003  5.069x1073 1996  1.329 x1073 1.997
125 1.383x1072 1.000  1.268x1073 1999 3324 x1074 1.999
k=2 12 4.176x1072 - 3.082x1072 - 3.640x 1073 -
122 1.065x1072 1971  3.828 x1073 3.009 2321 x1074 3.971
1722 2.678x1073 1992 4.736x10~% 3015  1.455x1073 3.996
124 6703x107* 1.998  5.889x1077 3.008  9.089 x10~7 4.000
1/2°  1.676x10~% 1.999  7.343x107° 3.004  5.678x1078 4.001
k=3 12 5.475%1073 - 2.396x 1073 - 1.997 x10™4 -
122 6.968x10~4 2974  1.486x1074 4011 6.160x10~° 5.019
1/22 8.749x1077 2993  9.215x107° 4011  1.898x1077 5.020
1/2* 1.095x1073 2998  5.732x1077 4007  5.884 x10~° 5.011
1/2°  1.369x107° 2998 3.573x1078 4004 1.831x10710 5.006

Table 2 Errors in the concentration and flux between the exact solutions ¢, ¢ and the discrete solutions ¢y, g,
computed in various norms

hj 7 ledll 2 Rate  llegll;2p)  Rate  llegll22.p,  Rate
k=1 12 122 2.162x10° - 2.712x 100 - 1.356x 100 -
122 12% 4789x107! 2174 8489x10~! 1676 3.085x10°!  2.136
1/23 126 1361x1071 1815 2.187x107!1 1956 7.913x1072  1.962
124 128 3965x1072 1779 5531x1072 1983 2.039x1072  1.956
1/2° 1210 9608x1073 2045 1.387x1072 1996 5.221x1073 1.966
k=2 1)2 123 4329x10°0 - 8.805x10~1 - 3.113x1070 -
1/22 126 1.099x10~! 1976 1.871x10~! 2235 6.869x1072  2.180
1/23 1722 1.606x1072 2776  2402x1072 2961 9.363x1073 2875
1724 121219531073 3.039  2995x1073  3.004 1.198x1073  2.966
1/2° 1215 2411x107% 3018 3.738x107%  3.002 1.507x10~% 2991
k=3 1)2 124 3264x1070 - 3.936x10°1 - 1.536x10~1 -
1/22 128 2011x1072  4.021 2260x1072  4.122 1.239x10"2  3.631
1/23 1212 1366x1073  3.880 1.313x1073 4105 8.404x10~%  3.883
124 17216 8204x1075  4.057 7.884x1075  4.058 5301x1075  3.987
1/25 1220 5063x1070 4018 4.854x107° 4022 3313x107°  4.000
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Table 3 Number of mesh elements and number of degrees of freedom used for each simulation

k 1 5 1 6 1 7 1 7
Np 800 264 2888 800 11464 2888 46516 11464
Niofs 2496 2520 8856 8736 34776 35424 140316 139104

Fig.1 The channel

£2 =10,2.5] x [0,0.5] and
contaminant plume. Top: The
initial plume at # = 0. Bottom:
The plume att = 1

we take it to be a homogeneous medium with permeability equal to one. We choose the
problem data for the flow problem such that the velocity is u(x, y) = [8/5, 0]7. We set the
diffusion coefficient to 107°. Initially, the contaminant is concentrated in a ball of radius
r = 0.05 centered at the point (xo, yp) = (0.25, 0.25); that is,

colx. y) = I, By (x0, Y0), @1
' 0, £\ B,(xo0,y0).

We run eight simulations to qualitatively compare the use of linear piecewise polynomials
on a sequence of increasingly finer meshes to the use of piecewise polynomials of degree
k =5, 6,7 with a comparable cost. Table 3 displays the number of mesh elements Nj and
the number of globally coupled degrees of freedom Ngofs for each simulation. Simulations
with comparable Ngofs are grouped together. The final time is 7 = 1 and we fix the time step
to = 10™*. Figure 1 displays the concentration contour at # = 0 and = T for the choice
of k = 7 on a mesh with 2888 elements. We observe that the tracer is transported from left to
right, as expected. The physical diffusion is small and the concentration contour at the final
time remains sharp, which indicates negligible numerical diffusion.

We now show the numerical concentrations obtained with the different choices of poly-
nomial degrees and mesh size in Fig.2. We first note that the concentration contour on the
coarsest mesh for k = 1 exhibits significant numerical diffusion. As the mesh size is refined
(top row of Fig.2), the numerical diffusion becomes negligible and the concentration con-
tour for piecewise linears with 143016 globally coupled degrees of freedom (dofs) appears
to converge to a sharp plume. The bottom row of Fig.2 shows the concentration contours
obtained with higher polynomial degrees such that the number of globally coupled degrees of
freedom is comparable to the one used for piecewise linears on various meshes. We observe
that while the concentration contour on the coarsest mesh (800 elements) for k = 5 is more
accurate than the one obtained with k = 1 (with a comparable cost: 2496 versus 2520 dofs),
it still shows some numerical diffusion. This seems to indicate that the number of degrees of
freedom is too small to capture the correct solution. The solution obtained with k = 6 on a
mesh with 800 elements is more accurate than the solution with k = 1 with comparable cost.
As the polynomial degree increases to k = 7 and the mesh is finer, we obtain a converged
solution for the concentration that exhibits a sharp contour. Figure2 shows that it is advan-
tageous to use higher order polynomial approximations on coarser meshes than piecewise
linears on finer meshes for this numerical example.
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k=1 k=1 k=1 k=1
Nofs = 2496 Nogs = 8856 Nots = 34776 Naots = 140316

k=5 k=6 k=17 k=1
Nogs = 2520 Nots = 8736 Nogs = 35424 Nots = 139104

-9.8e-02 0 0.1 02 03 04 05 06 07 08 09 1 1.2e+00
EE——

Fig. 2 Close-up snapshots of the concentration plume in the region [1.6,2.1] x [0,5] C £2 at T = 1 for
various polynomial degrees and mesh sizes

k=61 10} 1.0 —= k=71

4 08fF

Concentration
Concentration
Concentration
Concentration

4 02F

Concentration
Concentration

Fig. 3 Profiles of concentration extracted along horizontal line (top row) and vertical line (bottom row), for
different polynomial degrees and different mesh sizes

To better compare the numerical solutions, the concentration profiles are extracted along
both a horizontal line (y = 0.25) and a vertical line (x = 1.85) in Fig.3. Overshoots
and undershoots are observed in the neighborhood of the solution front, specially in the
profiles along the vertical line. Overall as Ngofs (from left to right in each row of Fig.3),
the approximation of the concentration improves. The solution obtained with k = 1 with
2496 dofs is more diffuse than the solution obtained with k = 5 with comparable cost (2520
dofs); the highest value of the concentration is about 0.6 as opposed to about 1 for k = 5.
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6.1e+01
50
40
30
20

Lens
/

Plume

o
Pressure

-6.1e+01

Fig.4 Left: set-up showing the location of the permeability lens and the initial plume. Right: pressure contours
and streamlines

However, the amount of overshoot and undershoot is significant for the solution with k = 5.
With higher degree k = 7, we observe a reduction of the overshoots and undershoots (third
figure on each row). As the mesh is further refined (fourth figure on each row), the solution
becomes more accurate. The solution with piecewise linears is much closer to the solution
obtained with k = 7 but there are some small oscillations in the piecewise linear solution in
the profile along the vertical line. Figure 3 confirms that the higher order polynomial solutions
provide a better approximation of the concentration than the linear polynomial solution with
comparable number of dofs. Overshoot and undershoot phenomena are present in the higher
order solution but they decrease as the polynomial degree further increases.

5.2 Contaminant Transport in Medium with Permeability Lens

Next, we consider the transport of a contaminant in a porous medium with a permeability
lens. The domain is £2 = [0, 1]?, and the permeability is 9.44 x 1073 everywhere except
for the lens [0.4, 0.6]% where it is taken to be 9.44 x 107°. We split the source term for the
flow problem into f = g — ¢¥, where ¢’ and g* are piecewise constant on [0.1, 0.1]* and
[0.9, 112, respectively, and satisfy

/ q'dx =/ gFdx = 0.36. (82)
2 2

We impose a no-flow boundary condition u - n|3 = 0 and a zero-mean condition on the
pressure to ensure it is uniquely defined.

Initially, the contaminant is concentrated in a ball of radius r = 0.125 centered at the
point (xg, yo) = (0.25, 0.25), similar to (81). The set-up of the problem is shown in the
left panel of Fig.4: the permeability lens is the gray square, and the initial plume is in
pink. Contours of the pressure field are displayed in the right panel of Fig.4, as well as the
streamlines. As expected, the direction of the flow is from the source location to the sink
location. While not shown in that figure, the velocity magnitude is much smaller inside the
permeability lens. This is made evident in Fig.5. Snapshots of the concentration contours
att = 0.75, 1.0, 1.25 show that the plume is transported along the principal direction of
the flow while avoiding the square inclusion. We compare the numerical solutions obtained
with different polynomial degrees: k = 1, 3, 5, on the same mesh made of 8890 elements,
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-7.1e-02 0.1 02 03 04 05 06 07 08 09 1.1e+00
| | |

Fig.5 Snapshots of concentration obtained with different polynomial degrees

which yields 26926, 53852 and 80778 coupled degrees of fredom. The initial circular plume
splits itself into two plumes that propagate around the permeability lens and merge again
at a later time. We plot the concentration profiles along the line y = 1.225 — x at time
t = 1.25in Fig. 6. All three different approximations produce similar profiles with relatively
sharp fronts. The solutions obtained with k = 3 and k = 5 are very close to each other. The
piecewise linear approximation shows a more diffusive profile, in particular in the narrow
region where the two parts of the plume merge again after the square inclusion. We observe
that for all three simulations, the plume does not penetrate the permeability lens. The front
in the surrounding rock matrix becomes sharper as the polynomial degree increases.

Finally we comment on the amount of overshoot/undershoot that is being observed in
the numerical solution. Throughout the simulations, the magnitude of the overshoot and
undershoot is small and remains bounded. Figure7 displays the concentration contours at
t = 1.0: elements where there is overshoot or undershoot are colored in white. This figure
shows that the number of elements where overshoot and undershoot occurs decreases as the
polynomial degree increases. We have also observed that the magnitude of the overshoot or
undershoot decreases as the polynomial degree increases from k = 1 to k = 3, and from
k = 3 to k = 5. Figure 8 displays in green (resp. orange) the elements where the overshoot
(resp. undershoot) is above 0.005. The solutions obtained with higher order approximation
exhibit reduced overshoot/undershoot both in magnitude and in area.
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Fig.6 Concentration profiles along the line y = 1.225 — x at t = 1.25 and a close-up view
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0.0e+00 0.1 0.2 0.2 02 03 0.4 04 05 05 06 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0e+00
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Fig. 7 Concentration contours at = 1.0 for k = 1 (left), k = 3 (center) and k = 5 (right). Elements with
overshoot or undershoot are colored in white
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Concentration
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Fig.8 Concentration contours at ¢ = 1.0 for for k = 1 (left), k = 3 (center) and k = 5 (right). Overshoot and
undershoot above 0.005 are in green and orange respectively
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6 Conclusions

The analysis of the HDG method is obtained for the one-way coupled flow and transport prob-
lem. The stabilization term is carefully constructed and depends on the normal component
of the velocity as well as the diffusion coefficient. Optimal rates are proved for the scalar and
flux variables. The error analysis relies on a modified HDG projection that satisfies optimal
bounds. Numerical simulations demonstrate the benefit of using higher order of approxi-
mation as opposed to piecewise linears. Solutions obtained with comparable costs exhibit
sharper fronts if higher order polynomials are used. Increasing the polynomial degree also
has a positive impact in reducing the amount of overshoot and undershoot and the number
of elements where these phenomena occur.
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