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Abstract
A combined hybrid mixed and hybridizable discontinuous Galerkin method is formulated for
the flow and transport equations. Convergence of the method is obtained by deriving optimal
a priori error bounds in the L2 norm in space. Since the velocity in the transport equation
depends on the flow problem, the stabilization parameter in the HDGmethod is a function of
the discrete velocity. In addition, a key ingredient in the convergence proof is the construction
of a projection that is shown to satisfy optimal approximation bounds. Numerical examples
confirm the theoretical convergence rates and show the efficiency of high order discontinuous
elements.
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1 Introduction

In this article, we formulate and analyze a hybridmixed–hybridizable discontinuousGalerkin
(HM-HDG) method for a one-way coupled flow and transport problem. In particular, we
employ a mixed hybrid finite element method for the flow, and HDG for the transport. The
highlights of our proposed approach include H(div)-conformity of the discrete velocity
for the flow problem, optimal rates convergence in both the concentration and flux for the
transport problem, and hybridization to reduce the size of the global algebraic systems arising
from both flow and transport.
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Similar approaches have been taken in [32, 33], where a hybridized Raviart–Thomas
method (RT-H) for the flow problem is coupled to the combined RT-H and DG method of
Egger and Schöberl [17] for the transport problem; in [31] where an RT-Hmethod for the flow
problem is coupled to a local discontinuousGalerkin (LDG)method for the transport problem;
in [21] where an RT-H method for the flow problem is coupled to a hybridized finite volume
method for the transport problem in the context of fractured porous media; in [20], where
the hybridizable LDG (LDG-H) method is applied to both the flow and transport problems;
and in [6, 7] where a combined hybridized interior penalty (IP-H) method and a hybridized
Brezzi–Douglas–Marini (BDM-H) method for the Stokes–Darcy system is coupled to an
IP-H method for the transport problem. To highlight how our approach differs from these
existing works, let us put them into historical perspective.

Mixed finite element methods have long been applied to porous media flows, as they
directly provide an approximation to the flow velocity in addition to the pressure [13, 15,
19, 28, 30]. This is in contrast to primal formulations of the Darcy problem, which provide
only an approximation to the pressure and require a post-processing step using numerical
differentiation to recover the velocity.However, the saddle-point structure of the flowproblem
introduces two main challenges to the design of mixed methods. First and foremost, discrete
inf-sup stability requires a delicate choice of approximation spaces for the pressure. While
a seemingly natural choice would be to balance the degree of the approximation for the
velocity and pressure, this choice fails to satisfy a discrete inf-sup condition. This lack of
stability can be addressed by either slightly enlarging the velocity space (for instance, RT),
or reducing the degree of the pressure approximation (for instance, BDM). Both choices
enforce H(div)-conformity of the discrete velocity, which is well-known to be beneficial for
the transport problem. Second, the resulting algebraic saddle-point problem has an indefinite
structure which can be difficult to solve in practice.

To address the problem of indefiniteness, hybridized mixed methods were introduced.
Rather than building the H(div)-conformity directly into velocity approximation space, once
can enforce it by introducing a Lagrange multiplier supported on the mesh skeleton which
can be viewed as an approximation to the trace of the pressure. The velocity and pressure
can then be statically condensed locally from the algebraic system, resulting in a smaller
(positive-definite) global system for only the pressure trace variable on the mesh skeleton. It
is well known that the hybridized formulation of the RT and BDM methods produce linear
systems algebraically equivalent to their original counterparts (see e.g. [16] and references
therein) and thus maintain their desirable properties.

The LDG-H method, on the other hand, strikes a balance between the RT and BDM
methods by using equal degree approximations for both the velocity and the pressure. To
compensate for the lack of inf-sup stability, a stabilization term is introduced through a
numerical flux. Much like the HM methods, the HDG system is closed by enforcing the
continuity of the normal component of the numerical flux through the introduction of a
Lagrange multiplier. A major difference, however, is that the discrete velocity is no longer
in H(div). The LDG-H method exhibits optimal rates of convergence for both the velocity
and pressure, but it has been well observed that discontinuities in the normal component of
the discrete velocity can lead to instabilities when coupled with transport [1].

For this reason, we opt to use a HMmethod for the flow problem, as H(div)-conformity is
beneficial for the transport problem. In particular, we follow the approach of [6, 7] and use a
BDM-Hmethod for the Darcy flow.We remark that this approach differs from the works [21,
31–33] which use an RT-Hmethod for the flow.While the rate of convergence for the pressure
forBDMis one order lower than forRT, there is no coupling between the velocity and pressure
errors and thus no overall impact on the rates of convergence for the transport problem. On

123



Journal of Scientific Computing           (2024) 100:57 Page 3 of 28    57 

the other hand, standard HMmethods have difficulties with convection-dominated problems
for which LDG-H methods are well-suited. As a DG method, stabilizing mechanisms like
upwinding can be built into the numerical flux of LDG-H, with the added benefit of optimal
rates of convergence for both the flux and the concentration. Comparable accuracy cannot
be obtained with the standard DG approaches outlined in the unifying framework of [2].

To perform our error analysis, we leverage the HDG projection introduced in [11] for dif-
fusion equations and extended in [9] to convection-diffusion equations. While this approach
is not novel, there is a subtle but important difference between our analysis compared to
[8, 9]. In these previous works, the convective velocity is carefully chosen to ensure the
underlying convection-diffusion equation is coercive which is essential for the analysis of
the HDG projection. In our setting, the flow equations satisfied by the discrete velocity do
not provide sufficient control over the divergence of the velocity to guarantee coercivity,
and moreover the discrete velocity is discontinuous. This precludes the use of some of the
arguments in previous works. Nevertheless, we show that if the source term for the flow
problem is essentially bounded, existence and uniqueness of the HDG projection, as well
as its optimal approximation properties, can be recovered provided the spatial mesh size is
chosen sufficiently small.

The remainder of the article is outlined as follows: in Sect. 2, we introduce the continuous
problem and our proposed numerical scheme. In Sect. 3we summarize known analysis results
for our discretization of the flow problem. In Sect. 4, we prove that the algebraic system
resulting fromour discretization of the transport problem iswell-posed, introduce and analyze
the HDG projection, and derive optimal error estimates for the transport problem. In Sect. 5,
we perform a number of numerical studies to support our theoretical results and investigate
the qualitative behaviour of our proposed numerical scheme. Finally, we draw conclusions
in Sect. 6.

2 Model Problem and HDG Scheme

Single phase flows in a porous domain Ω ! Rd , d = 2, 3, over a time interval (0, T ) are
characterized by the elliptic equations written in a mixed form:

u = −K∇ p, in Ω × (0, T ), (1)

div(u) = f , in Ω × (0, T ). (2)

where p and u are the fluid pressure and velocity respectively. The symmetric positive definite
matrix K represents the permeability field scaled by the inverse of the fluid viscosity, and f
is a nonzero source or sink function.

The concentration of a tracer is modeled by the following transport equation, also written
in a mixed form:

∂t c + div(q + uc) = g, in Ω × (0, T ), (3)

q = −D∇c, in Ω × (0, T ). (4)

The diffusion matrix D is a symmetric positive definite matrix and g represents an arbitrary
source or sink function.Wecomplement (1–4)with boundary conditions and initial conditions
(n denotes the unit normal vector outward to Ω):

u · n = 0, on ∂Ω × (0, T ), (5)

q · n = 0, on ∂Ω × (0, T ), (6)
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c = c0, in ∂Ω × {0}. (7)

Thanks to the homogeneous Neumann boundary conditions on the pressure and to ensure
the problem is well-posed, we require

∫

Ω
f =

∫

Ω
p = 0. (8)

Next, we discretize (1–4) with the hybrizable discontinuous Galerkin method. Let Eh be
a conforming shape-regular mesh of Ω that consists of simplices E with boundary ∂E
and outward unit normal vector nE . As usual, the mesh size h is the maximum of the
element diameter hE over all elements E . We denote by ∂Eh the union of the faces, namely
∂Eh = ∪E∈Eh ∂E .

Let k ≥ 1 be a fixed integer. The space of discontinuous polynomials of degree k is
denoted by Pk :

Pk = {w ∈ L2(Ω) : w|E ∈ Pk(E), ∀E ∈ Eh}.
The discrete HDG spaces are:

V h =(Pk)
d , Wh = Pk, Qh = Pk−1,

Mh ={ŵh ∈ L2(∂Eh) : ŵh |e ∈ Pk(e), ∀e ∈ ∂Eh}.

For readability, we denote by (·, ·)E the L2 inner-product on an element E and by 〈·, ·〉e the
L2 inner-product on a face e ! ∂E . We also define

(w, v)Eh =
∑

E∈Eh
(w, v)E , 〈w, v〉∂Eh =

∑

E∈Eh
〈w, v〉∂E , (9)

with the usual modifications for vector-valued functions. Let τ > 0 be the time step value
and let tn = nτ be the n-th discrete time such that 0 < t1 < · · · < t N = T is a uniform
partition of the time interval.

The fully discrete HM-HDGmethod reads: first find (uh, ph, p̂h) ∈ V h×(Qh+L2
0(Ω))×

Mh such that

∀vh ∈ V h, (K−1uh, vh)Eh − (ph,∇ · vh)Eh + 〈 p̂h, vh · n〉∂Eh = 0, (10a)

∀wh ∈ Qh + L2
0(Ω), (∇ · uh, wh)Eh = ( f , wh)Eh , (10b)

∀ŵh ∈ Mh, 〈uh · n, ŵh〉∂Eh = 0. (10c)

Next, for 1 ≤ n ≤ N , given cn−1
h ∈ Wh , find (qnh, c

n
h , ĉ

n
h) ∈ V h × Wh × Mh satisfying

∀vh ∈ V h, (D−1qnh, vh)Eh − (cnh ,∇ · vh)Eh + 〈̂cnh , vh · n〉∂Eh = 0, (11a)

∀wh ∈ Wh,
1
τ
(cnh − cn−1

h , wh)Eh − (uhcnh + qnh,∇wh)Eh

+ 〈(qnh + uh ĉnh) · n+ σ (cnh − ĉnh), wh〉∂Eh = (g, wh)Eh , (11b)

∀ŵh ∈ Mh, 〈(qnh + uh ĉnh) · n+ σ (cnh − ĉnh), ŵh〉∂Eh = 0. (11c)

The stabilization function σ in the numerical flux is chosen following the considerations
in [20, 25]:

σ |∂E = |uh · nE | +max( ‖D‖L∞(Ω), 1), ∀E ∈ Eh . (12)

The vector nE denotes the unit normal vector outward of ∂E . We initialize the scheme with
the L2-projection of the initial data intoWh , i.e. c0h = πkc0, where πk denotes the L2 operator
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defined by:
∀w ∈ L2(Ω), ∀wh ∈ Wh, (πkw,wh)Eh = (w,wh)Eh . (13)

Since f ∈ L2
0(Ω) and uh ·n = 0 on ∂Ω , it is easy to check that (10b) is satisfied forwh ∈ Qh .

We will also make use of the L2 projection operator π̂k over the mesh skeleton, defined
by:

∀w ∈ L2(∂Eh), ∀ŵh ∈ Mh, ∀e ∈ ∂Eh, 〈π̂kw, ŵh〉e = 〈w, ŵh〉e. (14)

The L2 projections satisfy the following approximation properties for positive constants C
and C∞ independent of hE and h [3, 18]:

∀E ∈ Eh, ∀w ∈ Hk+1(E), ‖w − πk−1w‖L2(E) ≤ ChkE |w|Hk+1(E), (15)

∀E ∈ Eh, ∀w ∈ Hk+1(E), ‖w − π̂kw‖L2(∂E) ≤ Chk+1/2
E |w|Hk+1(E), (16)

∀w ∈ L∞(Ω), ‖πk−1w‖L∞(Ω) ≤ C∞‖w‖L∞(Ω). (17)

3 Analysis of the Scheme

The one-way coupling of the flow with transport allows us to treat the flow equations
separately from the transport equations.

3.1 Flow Problem

Since Problem (10) is a well-known numerical method that originates from [5] in 2D and
[4, 24] in 3D and that has been studied in e.g. [16], we state the results without providing a
proof. Well-posedness is shown in detail in [16, Section 2.4].

An important tool for the derivation of error bounds for the flow problem is the BDM
projection [3, 16], defined locally, for a vector function q sufficiently smooth, as:

∀vh ∈ Nk−2(E), (ΠBDMq, vh)E = (q, vh)E , (18a)

∀ŵh ∈ R(∂E), 〈ΠBDMq · n, ŵh〉∂E = 〈q · n, ŵh〉∂E , (18b)

whereNk−2(E) is the localNédélec space of the first kind [3, 23] andRk(∂E) is the restriction
of Mh to a single element E . The following commutativity property holds, for any E ∈ Eh :

∇ · ΠBDMq = πk−1∇ · q, on E . (19)

In addition, there exists a constant C > 0 such that, for 1 ≤ m ≤ k + 1, for E ∈ Eh and any
q ∈ (Hm(E))d , we have

∥∥q − ΠBDMq
∥∥
L2(E) ≤ Chm |q|Hm (E). (20)

The starting point of the analysis is the error equations. For this, we introduce the following
notation:

eu = u − uh, ζu = ΠBDMu − uh, ξu = u − ΠBDMu,

ep = p − ph, ζp = πk−1 p − ph, ξp = p − πk−1 p,

êp = p − p̂h, ζ̂p = π̂k p − p̂h, ξ̂p = p − π̂k p.

Lemma 1 (Darcy error equations)

(K−1ζu, vh)Eh − (ζp,∇ · vh)Eh + 〈̂ζp, vh · n〉∂Eh = −(K−1ξu, vh)Eh , (21a)
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(∇ · ζu, wh)Eh = 0, (21b)

〈ζu · n, ŵh〉∂Eh = 0, (21c)

for all (vh, wh, ŵh) ∈ V h × Qh × Mh.

Next, using the error equations above, we obtain local bounds.

Lemma 2 There exists a constant C > 0 independent of hE such that the following bounds
hold:

∀E ∈ Eh,
∥∥K−1/2ζu

∥∥
L2(E) ≤

∥∥K−1/2ξu
∥∥
L2(E), (22)

∀E ∈ Eh, h1/2E ‖ζu · n‖L2(∂E) ≤ C
∥∥ξu

∥∥
L2(E). (23)

Using the fact that the pair of spaces (H1
0 (Ω))d × L2

0(Ω) satisfies an inf-sup condition [22],
we derive the following bound on ζp:

Lemma 3 There exists a constant C > 0 independent of h such that

‖ζp‖L2(Ω) ≤ C
∥∥eu

∥∥
L2(Ω)

. (24)

Finally, we have the following local bound on ζ̂p .

Lemma 4 There exists a constant C > 0 independent of h and hE such that

∀E ∈ Eh,
∥∥̂ζp

∥∥
L2(E) ≤ C

(
h−1/2
E ‖ζp‖L2(E) + h1/2E ‖eu‖L2(E)

)
. (25)

An immediate consequence of (15), (16), (20) and Lemmas 2–4 is the following a priori
estimates for the Darcy problem:

Theorem 1 Suppose that k ≥ 1 and (u, p) ∈ (Hk+1(Ω))d × Hk+1(Ω) solves the Darcy
problem (1) and (uh, ph, p̂h) solves the discrete Darcy problem (10). There exists a constant
C > 0 such that, for all E ∈ Eh,

‖u − uh‖L2(E) ≤ Chk+1
E |u|Hk+1(E), (26a)

‖p − ph‖L2(Ω) ≤ Chk(|p|Hk+1(Ω) + |u|Hk+1(Ω)), (26b)

‖(u − uh) · n‖L2(∂E) ≤ Chk+1/2
E |u|Hk+1(E), (26c)

If in addition, the mesh is quasi-uniform, we have

‖p − p̂h‖L2(∂Eh) ≤ Chk+1/2(|p|Hk+1(Ω) + |u|Hk+1(Ω)). (27)

Using a standard inverse inequality (locally on one element) and a Sobolev embedding, we
derive the following uniform L∞ bound on the discrete Darcy velocity uh :

Corollary 1 Assume that the velocity solution to the Darcy problem (1) satisfies u ∈
(H2(Ω))d . Then, there exists a constant C > 0, independent of the mesh size h, such
that

‖uh‖L∞(Ω) ≤ C‖u‖H2(Ω). (28)
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Remark 1 Theorem 1 shows that using a lower order approximation for the pressure will
not impact the accuracy of the proposed HDG method for the transport problem. Thus, the
use of the BDM-H scheme over the RT-H scheme may be more desirable from the point of
view of implementation. However, if one desires a more accurate pressure approximation, the
following local post-processing scheme from [29] can be applied efficiently in an element-
by-element fashion: find p(

h ∈ Pk+1(E) satisfying for all wh ∈ Pk+1(E) the system:

−(K∇ p(
h,∇wh)E = (uh,∇wh)E , (29a)

(p(
h, 1)E = (ph, 1)E . (29b)

It is well-known (see, e.g. [29, Theorem 2.2]) that p(
h converges with order k + 2 if k ≥ 2

and order k + 1 if k = 1.

Remark 2 Our motivation for considering a HM method for the Darcy flow problem is the
H(div;Ω)-conformity of the velocity approximation. However, if onewishes to use theHDG
method for both flow and transport, the velocity approximation may be post-processed in
an element-by-element fashion to obtain an H(div;Ω)-conforming velocity approximation
(see, e.g. [12] for further details).

3.2 Bound on the Divergence of the Discrete Velocity

For the well-posedness of the discrete transport problem (11) as well as for the error analysis
in the sequel, we require an L∞-bound on the divergence of the approximate Darcy velocity.
Such a bound follows immediately from the following lemma:

Lemma 5 Let uh ∈ V h be the unique solution to the discrete Darcy flow problem (10). Then,
uh belongs to H0(div;Ω) and

∇ · uh = πk−1 f . (30)

Proof To show that uh belongs to H0(div;Ω), it suffices to prove the continuity of the normal
component of uh across the interior faces of the mesh skeleton ∂Eh , and that uh · n = 0 on
the boundary ∂Ω . This is easily obtained by choosing ŵh in (10c) to be zero everywhere
except on one face e ! ∂Eh . Equation (30) follows immediately from (10b). /0
Remark 3 Alternative to the hybridized mixed methods, one could instead approximate the
Darcy problem using the hybridizable discontinuous Galerkin method as done in [20]. This,
however, presents a number of challenges

4 Analysis of the Transport Problem

4.1 Existence and Uniqueness of the Discrete Solution

We now demonstrate that the transport problem (11) is well-posed under assumptions that
depend on the regularity of the source/sink function f in (2).

Assumption A The function f belongs to L∞(Ω) and τ is chosen small enough, namely
τ ≤ τ0, with

τ0 =
1

C∞‖ f ‖L∞(Ω)
,

where C∞ is the constant in (17).
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To provewell-posedness of the transport problem, sincewe are dealingwith a square linear
system in finite dimensions, it suffices to prove the corresponding homogeneous problem has
only the trivial solution.

Lemma 6 Let Assumption A hold true. Given uh ∈ V h satisfying the discrete Darcy flow
problem (10), (qh, ch, ĉh) = (0, 0, 0) is the unique solution to the homogeneous system

(D−1qh, vh)Eh − (ch,∇ · vh)Eh + 〈̂ch, vh · n〉∂Eh = 0, (31a)

(ch, wh)Eh − τ (uhch + qh,∇wh)Eh + τ 〈(qh + uh ĉh) · n, wh〉∂Eh
+ τ 〈σ (ch − ĉh), wh〉∂Eh = 0, (31b)

〈(qh + uh ĉh) · n, ŵh〉∂Eh + 〈σ (ch − ĉh), ŵh〉∂Eh = 0, (31c)

for all (vh, wh, ŵh) ∈ V h × Wh × Mh.

Proof We first choose vh = τqh in (31a) and integrate by parts to find

τ (D−1qh, qh)Eh + τ (∇ch, qh)Eh − τ 〈ch − ĉh, qh · n〉∂Eh = 0. (32)

Next, we choose wh = ch in (31b):

‖ch‖2L2(Ω)
− τ (uhch + qh,∇ch)Eh + τ 〈(qh + uh ĉh) · n, ch〉∂Eh

+τ 〈σ (ch − ĉh), ch〉∂Eh = 0.

Summing these two equations, we have

‖ch‖2L2(Ω)
+ τ (D−1qh, qh)Eh + τ 〈̂ch, qh · n〉∂Eh − τ (uhch,∇ch)Eh

+ τ 〈uh ĉh · n, ch〉∂Eh + τ 〈σ (ch − ĉh), ch〉∂Eh = 0. (33)

Choosing ŵh = −τ ĉh in (31c) and adding the resulting equation to (33) yields

‖ch‖2L2(Ω)
+ τ (D−1qh, qh)Eh − τ (uhch,∇ch)Eh

+ τ 〈uh · nĉh, ch − ĉh〉∂Eh + τ 〈σ (ch − ĉh), ch − ĉh〉∂Eh = 0. (34)

Adding and subtracting τ 〈uh · nch, ch − ĉh〉∂Eh , we find
‖ch‖2L2(Ω)

+ τ (D−1qh, qh)Eh − τ (uhch,∇ch)Eh
+τ 〈(σ − uh · n)(ch − ĉh), ch − ĉh〉∂Eh + τ 〈uh · nch, ch − ĉh〉∂Eh = 0.

Next, using the fact that uhch · ∇ch = 1
2∇ · (uhc2h) − 1

2c
2
h∇ · uh on each element, we apply

Gauss’s theorem element-by-element to find

−τ (uhch,∇ch)Eh = τ

2
((∇ · uh)ch, ch)Eh − τ

2
〈uh · nch, ch〉∂Eh ,

so that, after some algebraic manipulations, and using the fact that uh · n and ĉh are both
single-valued across element boundaries and that uh · n|∂Ω = 0, we arrive at

‖ch‖2L2(Ω)
+ τ (D−1qh, qh)Eh +

τ

2
((∇ · uh)ch, ch)Eh

+ τ 〈(σ − 1
2
uh · n)(ch − ĉh), ch − ĉh〉∂Eh = 0. (35)

Next, we rearrange, use the fact that ∇ · uh = πk−1 f to find (note that σ − 1
2uh · n > 0)

τ (D−1qh, qh)Eh + ‖ch‖2L2(Ω)
+ τ 〈(σ − 1

2
uh · n)(ch − ĉh), ch − ĉh〉∂Eh
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≤ τ

2
|((πk−1 f )ch, ch)Eh |. (36)

With Assumption A, we write

τ (D−1qh, qh)Eh + ‖ch‖2L2(Ω)
+ τ 〈(σ − 1

2
uh · n)(ch − ĉh), ch − ĉh〉∂Eh

≤ τ

2

∥∥πk−1 f
∥∥
L∞(Ω)

‖ch‖2L2(Ω)
≤ τ

2
C∞

∥∥ f
∥∥
L∞(Ω)

‖ch‖2L2(Ω)
.

Therefore, since τ ≤ τ0, we can conclude that qh = 0, ch = 0, and ĉh = 0. /0

4.2 Error Analysis for the Transport Problem

4.2.1 The HDG Projection

Motivated by the analysis in [9], on any simplex E ∈ Eh we define a projectionΠHDG(q, c) =
(ΠV q,)Wc), dependent on the discreteDarcy velocity uh obtained from (10), as the element
of (Pk(E))d × Pk(E) solving the equations

∀vh ∈ (Pk−1(E))d , (ΠV q + uh)Wc, vh)E = (q + uc, vh)E , (37a)

∀wh ∈ Pk−1(E), ()Wc, wh)E = (c, wh)E , (37b)

∀e ! ∂E, ∀ŵh ∈ Pk(e), 〈ΠV q · n+ σ)Wc, ŵh〉e = 〈q · n+ u · nc, ŵh〉e
+ 〈σc − uh · nπ̂kc, ŵh〉e. (37c)

To analyze this projection, we require the following lemma taken from [9, 11]:

Lemma 7 Denote by P⊥
k (E) the orthogonal complement of Pk−1(E) in Pk(E), that is,

P⊥
k (E) = {wh ∈ Pk(E) | (wh, vh)E = 0, ∀vh ∈ Pk−1(E)}. (38)

For all wh ∈ P⊥
k (E), there exists a constant C∗ > 0 such that

‖wh‖L2(E) ≤ C∗h
1/2
E ‖wh‖L2(e), (39)

for any face e ! ∂E.

First, it is easy to check that (37a–37c) yields a square linear system, thus existence is
equivalent to uniqueness. Indeed, we observe that

dim Pk(E) =
(k + d)!
d! k! , dim Pk(e) =

(k + d − 1)!
(d − 1)! k! .

Thus, the dimension of (Pk(E))d × Pk(E) is

dim(Pk(E))d + dim Pk(E) =
(d + 1)(k + d)!

d! k! ,
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while the number of equations defining the HDG projection is equal to

dim(Pk−1(E))d + dim Pk−1(E)+ (d + 1) dim Pk(e)

= (d + 1)(k + d − 1)!
d! (k − 1)! + (d + 1)(k + d − 1)!

(d − 1)! k!
= (d + 1)(k + d)(k + d − 1)!

d! k! = dim(Pk(E))d + dim Pk(E).

To prove uniqueness, let δq and δc denote the difference between two projections. They
satisfy

∀vh ∈ (Pk−1(E))d , (δq + uhδc, vh)E = 0, (40)

∀wh ∈ Pk−1(E), (δc, wh)E = 0, (41)

∀e ! ∂E, ∀ŵh ∈ Pk(e), 〈δq · n+ σδc, ŵh〉e = 0. (42)

From (41), we see that δc belongs to P⊥
k (E). Choose ŵh = δc|e for all e ! ∂E , and sum

over all e:

〈σδc, δc〉∂E = −(∇ · δq , δc)E − (δq ,∇δc)E

Since ∇ · δq belongs to Pk−1, we have

〈σδc, δc〉∂E = −(δq ,∇δc)E

Choosing vh = ∇δc in (40) yields

〈σδc, δc〉∂E = (uhδc,∇δc)E = 1
2
〈uh · n δc, δc〉∂E − 1

2
((∇ · uh)δc, δc)E .

Therefore,

〈(σ − 1
2
uh · n) δc, δc〉∂E ≤ 1

2
‖πk−1 f ‖L∞(Ω)‖δc‖2L2(E) ≤ 1

2
C∞‖ f ‖L∞(Ω)‖δc‖2L2(E).

By (12), we have

σ − 1
2
uh · n ≥ 1. (43)

Thus, with (39) we obtain

‖δc‖2L2(E) ≤ C∗hE‖δc‖2L2(∂E) ≤ C∗hE 〈(σ − 1
2
uh · n) δc, δc〉∂E

≤ C∗hE
1
2
C∞‖ f ‖L∞(Ω)‖δc‖2L2(E).

Therefore, assuming that

C∗hEC∞‖ f ‖L∞(Ω) ≤ 1,

we may conclude that δc = 0. This implies that component-wise δq belongs to P⊥
k and that

δq · n = 0 on ∂E . With (39), we conclude that δq = 0. Define

h0 =
1

C∗C∞‖ f ‖L∞(Ω)
. (44)

Then for all h ≤ h0 the functions )V q and )Wc exist and are unique.
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We remark that, thanks to Corollary 1, the approximation errors derived below for the
projection ΠHDG are independent of uh assuming the exact Darcy velocity is sufficiently
regular, i.e. u ∈ (H2(Ω))d .

The following proposition is similar to [9, Proposition 4.2].We reproduce the proof below.

Proposition 1 The component )Wc of the HDG projection defined in (37) satisfies for all
zh ∈ P⊥

k (E),

〈σ ()Wc − c), zh〉∂E = (∇ · q, zh)E − 〈(u − uh) · nc, zh〉∂E
−〈uh (̂πkc − c) · n, zh〉∂E + (uh()Wc − c),∇zh)E + ((u − uh)c,∇zh)E . (45)

Proof Fix zh ∈ P⊥
k (E). Testing (37c) with ŵh = zh |e, for all e ! ∂E , and summing over all

faces e, we have

〈σ ()Wc − c), zh〉∂E = 〈(q − )V q) · n, zh〉∂E − 〈(uh π̂kc − uc) · n, zh〉∂E .

Integrating the first term on the right hand side by parts yields

〈σ ()Wc − c), zh〉∂E = (∇ · (q − )V q), zh)E + (q − )V q,∇zh)E
−〈(uh π̂kc − uc) · n, zh〉∂E .

Since ∇ · ()V q) ∈ Pk−1(E) and zh ∈ P⊥
k (E),

〈σ ()Wc − c), zh〉∂E = (∇ · q, zh)E + (q − )V q,∇zh)E − 〈(uh π̂kc − uc) · n, zh〉∂E .

Then, by (37a), we can write this as

〈σ ()Wc − c), zh〉∂E = (∇ · q, zh)E + (uh)Wc − uc,∇zh)E − 〈(uh π̂kc − uc) · n, zh〉∂E .

The result follows after noting that

uh)Wc − uc = (uh − u)c + uh()Wc − c),

uh π̂kc − uc = (uh − u)c + uh(π̂kc − c).

/0

Lemma 8 Let k ≥ 0 and suppose (u, q, c) ∈ (Hk+1(Ω))d + (H2(Ω))d × (Hk+1(Ω))d ×
Hk+1(Ω). There is a positive constant C independent of h, τ and the functions c, q, u, uh
such that

‖)Wc − πkc‖L2(Ω) ≤ Chk+1
(
(σmax + ‖u‖H2(Ω))|c|Hk+1(Ω)

+ |∇ · q|Hk (Ω) + ‖c‖L∞(Ω)|u|Hk+1(Ω)

)
, (46)

provided the mesh size satisfies h ≤ h0 with h0 defined by (44). Here,

σmax = ‖σ‖L∞(∂Eh) ! ‖u‖H2(Ω) +max(‖D‖L∞(Ω), 1).

Proof Our starting point is Proposition 1. For brevity, we denote ec = )Wc − c, ζc =
)Wc − πkc and ξc = πkc − c. Observe that ζc ∈ P⊥

k (E), since (37b) along with the fact
that Pk−1(E) ! Pk(E) shows that for all vh ∈ Pk−1(E),

()Wc − πkc, vh)E = (c − πkc, vh)E = 0.
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Testing (45) with zh = ζc, we have

〈σ ()Wc − c), ζc〉∂E = (∇ · q, ζc)E − 〈(u − uh) · nc, ζc〉∂E
−〈uh(π̂kc − c) · n, ζc〉∂E + (uh()Wc − c),∇ζc)E + ((u − uh)c,∇ζc)E .

A few algebraic manipulations leads to

〈σζc, ζc〉∂E = −〈σξc, ζc〉∂E + (∇ · q, ζc)E − 〈(u − uh) · nc, ζc〉∂E
−〈uh(π̂kc − c) · n, ζc〉∂E + (uhζc,∇ζc)E + (uhξc,∇ζc)E + ((u − uh)c,∇ζc)E .

Next, noting that uhζc ·∇ζc = 1
2∇ · (uhζ 2

c )− 1
2 ζ

2
c ∇ · uh , we apply Gauss’s theorem to find

(ζcuh,∇ζc)E = 1
2
〈uh · nζc, ζc〉∂E − 1

2
((∇ · uh)ζc, ζc)E , (47)

and thus with (43)

‖ζc‖2L2(∂E) ≤ − 〈σξc, ζc〉∂E + (∇ · q, ζc)E − 〈(u − uh) · nc, ζc〉∂E
− 〈uh(π̂kc − c) · n, ζc〉∂E + (uhξc,∇ζc)E + ((u − uh)c,∇ζc)E

− 1
2
((∇ · uh)ζc, ζc)E

= T1 + · · · + T7.

We now bound each term Ti for 1 ≤ i ≤ 7.
First, byCauchy–Schwarz’s inequality and a discrete trace inequality (see e.g. [14, Lemma

1.46]),

|T1| ≤ C‖σ‖L∞(∂Eh)h
−1/2
E ‖ξc‖L2(∂E)‖ζc‖L2(E)

≤ C
(
max(‖D‖L∞(Ω), 1)+ ‖uh‖L∞(Ω)

)
hk |c|Hk+1(E)‖ζc‖L2(E),

by the approximation properties of the L2-projection πk . The term T2 can be bounded by
observing that

T2 = (∇ · q, ζc)E = (∇ · q − πk−1∇ · q, ζc)E ,

so by the triangle inequality we have

|T2| ≤ Chk |∇ · q|Hk (E)‖ζc‖L2(E).

Next, Hölder’s inequality, the estimate (26c), and a discrete trace inequality yield

|T3| ≤ ‖c‖L∞(Ω)

∥∥(u − uh) · n
∥∥
L2(∂E)‖ζc‖L2(∂E)

≤ Chk‖c‖L∞(Ω)|u|Hk+1(E)‖ζc‖L2(E).

As for T4, we apply Hölder’s inequality, to find

|T4| ≤ ‖uh · n‖L∞(∂E)‖π̂kc − c‖L2(∂E)‖ζc‖L2(∂E).

To proceed further, we use the approximation properties of the projection π̂kc and a discrete
trace inequality:

|T4| ≤ Chk‖uh‖L∞(Ω)|c|Hk+1(E)‖ζc‖L2(E).
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Next, by Hölder’s inequality, an inverse inequality, and the approximation properties of the
projection πk , we have

|T5| ≤ ‖uh‖L∞(Ω)‖ξc‖L2(E)‖∇ζc‖L2(E)

≤ Chk‖uh‖L∞(Ω)|c|Hk+1(Ω)‖ζc‖L2(E).

We bound T6 in a similar fashion, using the error bound (26a):

|T6| ≤ Chk‖c‖L∞(Ω)|u|Hk+1(E)‖ζc‖L2(E).

Using Lemma 7 and the fact that ∇ · uh = πk−1 f , we have

|T7| ≤ 1
2
‖∇ · uh‖L∞(Ω)‖ζc‖2L2(E)

≤ C∞
2

‖ f ‖L∞(Ω)‖ζc‖2L2(E).

From Lemma 7, we have

‖ζc‖2L2(E) ≤ C∗hE‖ζc‖2L2(∂E).

Thus, by combining the above bounds and using Lemma 7, we find there exists a constant
C > 0, independent of h and τ , such that when h ≤ h0, (46) holds. /0

To analyze the projection error ‖ΠV q − q‖L2(Ω) we require two auxiliary projections taken
from [9, Section 4.3] originally defined in [10]. For a fixed element E , let e( be a face of E
on which σ |∂E attains its maximum. For any sufficiently regular q, we define the projections
PV 1q and PV 2q as the elements of Pk(E) satisfying

∀vh ∈ (Pk−1(E))d , (PV 1q, vh)E = (q + uc − uh)Wc, vh)E , (48a)

∀e ! ∂E \ e(, ∀ŵh ∈ Pk(e), 〈PV 1q · n, ŵh〉e = 〈(q + uc − uh π̂kc) · n, ŵh〉e, (48b)

and

∀vh ∈ (Pk−1(E))d , (PV 2q, vh)E = (q, vh)E , (49a)

∀e ! ∂E \ e(, ∀ŵh ∈ Pk(e), 〈PV 2q · n, ŵh〉e = 〈q · n, ŵh〉e. (49b)

That the equations defining PV 1 and PV 2 are well-posed follows from [10, Lemma 3.1].
Now, fix an element E ∈ Eh and observe that the set of unit normals to the faces of E

excluding e(, i.e. {ne | e 3= e(}, forms a basis for Rd . Denote by {̃ne | e 3= e(} the dual basis
of {ne | e 3= e(} satisfying

ñei · ne j = δi j , ei , e j 3= e(.

We can then write,

∀i = 1, 2, q − PV i q =
∑

e 3=e(

(
(q − PV i q) · ne

)
ñe,

Therefore, since

‖q − PV i q‖2L2(E) ≤
∑

e 3=e(

‖(q − PV i q) · ne‖2L2(E),

it suffices to estimate

‖(q − PV i q) · ne‖L2(E), e 3= e(.
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Lemma 9 Let k ≥ 0 and suppose (u, q, c) ∈ (Hk+1(Ω))d + (H2(Ω))d × (Hk+1(Ω))d ×
Hk+1(Ω). There exists a constant C > 0 independent of h such that

‖(ΠV q − PV 1q) · ne‖L2(E) ≤ Chk+1, (50a)

‖PV 1q − PV 2q‖L2(E) ≤ Chk+1, (50b)

‖(PV 2q − q) · ne‖L2(E) ≤ Chk+1. (50c)

Proof Note that (50a) follows from the proof of [11, Proposition A.3]. We provide details for
completeness. By equations (37a) and (48a) defining ΠV and PV 1 , respectively, we have

∀vh ∈ (Pk−1(E))d ,
∑

ei 3=e(

∑

e j 3=e(

((ΠV q − PV 1q) · nei ñei , vh · ne j ñe j )E

= (ΠV q − PV 1q, vh)E = 0.

However, since ñe j and ne j are parallel,

∀vh ∈ (Pk−1(E))d ,
∑

ei 3=e(

((ΠV q − PV 1q) · nei , vh · ñei )E = 0.

Equivalently, since we can choose e.g. vh = whne j for any wh ∈ Pk−1(E), we have that

∀wh ∈ Pk−1(E), ((ΠV q − PV 1q) · ne j , wh)E = 0,

and thus (ΠV q − PV 1q) · ne ∈ P⊥
k (E) for each e 3= e(. For brevity, denote ζ

q
e = (ΠV q −

PV 1q) · ne.
Next, subtracting (48b) from (37c), we find

∀ŵh ∈ Pk(e), ∀e 3= e(, 〈ζ q
e , ŵh〉e = 〈σ (c − )Wc), ŵh〉e. (51)

By [11, Lemma A.1], the trace map γe : P⊥
k (E) → Pk(e) is a bijection, so we can choose

ŵh such that ŵh |e = ζ
q
e . Consequently, by the Cauchy–Schwarz’s inequality, the triangle

inequality, and a discrete trace inequality,

‖ζ q
e ‖L2(e) ≤σmax‖c − )Wc‖L2(e)

≤Cσmax
(
‖c − πkc‖L2(e) + h−1/2‖πkc − )Wc‖L2(E)

)
.

Equation (50a) now follows from Lemma 7, Lemma 8, and the approximation properties of
the L2-projection πk .

Next, we show (50b). By the definition of the projections PV 1 and PV 2 ,

(PV 1q − PV 2q, vh)E = (uc − uh)Wc, vh)E , ∀vh ∈ (Pk−1(E))d , (52a)

〈(PV 1q − PV 2q) · n, ŵh〉e = 〈
(
uc − uh)̂kc

)
· n, ŵh〉e, ∀ŵh ∈ Pk(e), (52b)

for all e 3= e(. There exists a constant C > 0, independent of h, such that

‖PV 1q − PV 2q‖L2(E) ≤ C
(
‖uc − uh)Wc‖L2(E)

+ h1/2
∑

e 3=e(

∥∥ (uc − uh π̂kc) · n
∥∥
L2(e)

)
. (53)

To see this, let Z = PV 1q − PV 2q, χ = uc − uh)Wc, and , = (uc − uh)̂kc) · n for
brevity. Then, we can rewrite (52) as: given χ ∈ L2(E) and , ∈ L2(e) for all e ! ∂E\e(,
find Z ∈ (Pk(E))d such that

∀vh ∈ (Pk−1(E))d , (Z, vh)E = (χ , vh)E , (54a)
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∀ŵh ∈ Pk(e), 〈Z · n, ŵh〉e = 〈,, ŵh〉e. (54b)

Equation (53) now follows from the inequality, for a constant C independent of h:

‖Z‖L2(E) ≤ C
(
‖πk−1Z‖L2(E) + h1/2

∑

e 3=e(

‖Z · n‖L2(e)

)
, (55)

which can be derived using a finite dimensional scaling argument with the Piola transforma-
tion upon noting that

∥∥π̃k−1 Z̃
∥∥
L2(Ẽ) +

∑

ẽ 3=ẽ(

∥∥Z̃ · ñ
∥∥
L2 (̃e)

defines a norm on (Pk(Ẽ))d , with Ẽ the reference triangle or tetrahedron. Testing (54a) and
(54b) with πk−1Z and Z · n, respectively, we find that

‖πk−1Z‖L2(E) ≤ ‖χ‖L2(E), ‖Z · n‖L2(e) ≤ ‖,‖L2(e). (56)

Consequently,

‖PV 1q − PV 2q‖L2(E) ! ‖c(u − uh)‖L2(E) + ‖uh(c − )Wc)‖L2(E)

+h1/2‖c (u − uh) · n‖L2(∂E) + h1/2‖uh · n(c − π̂kc)‖L2(∂E).

Equation (50c) now follows from the estimates on the errors u− uh , c− )Wc, and c− π̂kc.
Finally, (50c) follows from a standard Bramble–Hilbert style argument as shown in [10,

Lemma 3.3]. /0

Theorem 2 (HDG projection error) Let k ≥ 0 and suppose (u, q, c) ∈ (Hk+1(Ω))d +
(H2(Ω))d × (Hk+1(Ω))d × Hk+1(Ω). There exists a constant C > 0 such that

‖c − )Wc‖L2(Ω) ≤ Chk+1, (57a)

‖q − ΠV q‖L2(Ω) ≤ Chk+1, (57b)

provided the mesh size satisfies h < h0, with h0 defined in (44).

4.2.2 The Error Equations

We now derive a set of error equations that will be instrumental in establishing our a priori
estimates. The starting point is the following set of equations satisfied by the exact solution,
assuming sufficient regularity:

(D−1qn, vh)Eh − (cn,∇ · vh)Eh + 〈cn, vh · n〉∂Eh = 0, (58a)

(∂t cn, wh)Eh − (ucn + qn,∇wh)Eh + 〈̂Sn · n, wh〉∂Eh = (gn, wh)Eh , (58b)

〈̂Sn · n, ŵh〉∂Eh = 0, (58c)

for all (vh, wh, ŵh) ∈ V h × Wh × Mh . Here, we define the exact flux

Ŝn = qn + ucn . (59)

For brevity, we will denote the errors as:

enq = qn − qnh, enc = cn − cnh , ênc = cn − ĉnh , (60)
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the projections of the errors as:

ζ n
q = )V qn − qnh, ζ n

c = )Wcn − cnh , ζ̂ n
c = π̂kcn − ĉnh , (61)

and the approximation errors of the projections as:

ξnq = qn − )V qn, ξnc = cn − )Wcn, ξ̂nc = cn − π̂kcn . (62)

Lemma 10 (The concentration error equations) Let (u, q, c) be sufficiently regular solutions
to the Darcy and transport problems, (1) and (3), respectively. It holds that

(D−1ζ n
q , vh)Eh − (ζ n

c ,∇ · vh)Eh + 〈̂ζ n
c , vh · n〉∂Eh = −(D−1ξnq , vh)Eh , (63a)

(∂t cn − δτ cnh , wh)Eh − (ζ n
q + uhζ n

c ,∇wh)Eh

+ 〈ζ n
q · n+ uh · nζ̂ n

c + σ (ζ n
c − ζ̂ n

c ), wh〉∂Eh = 0, (63b)

〈ζ n
q · n+ uh · nζ̂ n

c + σ (ζ n
c − ζ̂ n

c ), ŵh〉∂Eh = 0, (63c)

for all (vh, wh, ŵh) ∈ V h × Wh × Mh.

Proof We begin by noting that, by the second equation defining the HDG projection, (37b)
and the definition of the L2 projection π̂k , we can write (58a) as

∀vh ∈ V h, (D−1qn, vh)Eh − ()Wcn,∇ · vh)Eh + 〈π̂kcn, vh · n〉∂Eh = 0.

and therefore for any vh in V h , we obtain

(D−1ΠV qn, vh)Eh − ()Wc,∇ · vh)Eh + 〈π̂kc, vh · n〉∂Eh = −(D−1ξnq , vh)Eh . (64)

Subtracting (11a) from (64), we have

∀vh ∈ V h, (D−1ζ n
q , vh)Eh − (ζ n

c ,∇ · vh)Eh + 〈̂ζ n
c , vh · n〉∂Eh = −(D−1ξnq , vh)Eh ,

which is precisely (63a).
Next, we derive (63b). Applying the definition of the HDG projection in (58b), we have

for all wh ∈ Wh ,

(∂t cn, wh)Eh − (uh)Wcn + ΠV qn,∇wh)Eh
+〈ΠV q · n+ uh · nπ̂kc + σ ()Wc − c), wh〉∂Eh = (gn, wh)Eh . (65)

Subtracting (11b) from (65), we have for all wh ∈ Wh :

(∂t cn − δτ cnh , wh)Eh − (uhζ n
c + ζ n

q ,∇wh)Eh

+〈ζ n
q · n+ uh · nζ̂ n

c + σ (ζ n
c − ζ̂ n

c ), wh〉∂Eh = 0.

Finally, we turn to (63c). To begin, we use the definition of the HDG projection in (58c) to
find:

∀ŵh ∈ Mh, 〈ΠV q · n+ uh · nπ̂kc + σ ()Wc − c), ŵh〉∂Eh = 0. (66)

Subtracting (11c) from (66):

∀ŵh ∈ Mh, 〈ζ n
q · n+ uh · nζ̂ n

c + σ (ζ n
c − ζ̂ n

c ), ŵh〉∂Eh = 0,

which is (63c). /0
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Lemma 11 Assuming τ ≤ 1/C f , and h < h0, with h0 defined in (44), we have

∥∥ζm
c

∥∥2
L2(Ω)

+ τ

m∑

n=1

∥∥D−1/2ζ n
q
∥∥2
L2(Ω)

+ 2τ
m∑

n=1

∥∥ζ n
c − ζ̂ n

c

∥∥2
L2(∂Eh)

≤ C exp(C f T )
(
h2k+2 + τ 2

)
, (67)

where C f = 1+ 2C∞
∥∥ f

∥∥
L∞(Ω)

and C is a positive constant independent of h and τ .

Proof Testing (63a), (63b), and (63c) with (vh, wh, ŵh) = (ζ n
q , ζ

n
c ,−ζ̂ n

c ), we have:

(D−1ζ n
q , ζ

n
q)Eh − (ζ n

c ,∇ · ζ n
q)Eh + 〈̂ζ n

c , ζ
n
q · n〉∂Eh = −(D−1ξnq , ζ

n
q)Eh , (68a)

(∂t cn − δτ cnh , ζ
n
c )Eh − (ζ n

q + uhζ n
c ,∇ζ n

c )Eh

+ 〈ζ n
q · n+ uh · nζ̂ n

c + σ (ζ n
c − ζ̂ n

c ), ζ
n
c 〉∂Eh = 0, (68b)

− 〈ζ n
q · n+ uh · nζ̂ n

c + σ (ζ n
c − ζ̂ n

c ), ζ̂
n
c 〉∂Eh = 0. (68c)

Integrating by parts in (68a), we obtain

(D−1ζ n
q , ζ

n
q)Eh + (∇ζ n

c , ζ
n
q)Eh − 〈ζ n

c − ζ̂ n
c , ζ

n
q · n〉∂Eh = −(D−1ξnq , ζ

n
q)Eh . (69)

Summing (68b), (68c) and (69), we are left with

(D−1ζ n
q , ζ

n
q)Eh + (∂t cn − δτ cnh , ζ

n
c )Eh − (uhζ n

c ,∇ζ n
c )Eh +

〈uh · nζ̂ n
c , ζ

n
c − ζ̂ n

c 〉∂Eh + 〈σ (ζ n
c − ζ̂ n

c ), ζ
n
c − ζ̂ n

c 〉∂Eh = −(D−1ξnq , ζ
n
q)Eh .

Noting that uhζc · ∇ζc = 1
2∇ · (uhζ 2

c ) − 1
2 ζ

2
c ∇ · uh , we apply Gauss’s theorem to find

(uhζ n
c ,∇ζ n

c )E = 1
2
〈uh · nζ n

c , ζ
n
c 〉∂E − 1

2
((∇ · uh)ζ n

c , ζ
n
c )E ,

and therefore, we have

(D−1ζ n
q , ζ

n
q)Eh + (∂t cn − δτ cnh , ζ

n
c )Eh +

1
2
((∇ · uh)ζ n

c , ζ
n
c )Eh

+〈(σ − 1
2
uh · n)(ζ n

c − ζ̂ n
c ), ζ

n
c − ζ̂ n

c 〉∂Eh = −(D−1ξnq , ζ
n
q)Eh . (70)

Noting that we can write

∂t cn − δτ cnh = (∂t cn − δτ cn)+ δτ (cn − cnh)

= (∂t cn − δτ cn)+ δτ ζ
n
c + δτ ξ

n
c ,

we can multiply (70) by τ and rearrange to find

2τ
∥∥D−1/2ζ n

q
∥∥2
L2(Ω)

+ 2(ζ n
c − ζ n−1

c , ζ n
c )Eh + 2τ 〈ζ n

c − ζ̂ n
c , ζ

n
c − ζ̂ n

c 〉∂Eh
≤ −2τ (D−1ξnq , ζ

n
q)Eh − τ ((∇ · uh)ζ n

c , ζ
n
c )Eh − 2τ (∂t cn − δτ cn, ζ n

c )Eh
−2τ (δτ ξ

n
c , ζ

n
c )Eh , (71)

where we have used that σ − 1
2uh · n ≥ 1 by (43). By the symmetry of D, the Cauchy–

Schwarz’s inequality, and Young’s inequality, we have

2τ |(D−1ξnq , ζ
n
q)Eh | ≤ τ

∥∥D−1/2ξnq
∥∥2
L2(Ω)

+ τ
∥∥D−1/2ζ n

q
∥∥2
L2(Ω)

.
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Next, we have by Hölder’s inequality,

τ |((∇ · uh)ζ n
c , ζ

n
c )Eh | ≤ C∞τ

∥∥ f
∥∥
L∞(Ω)

‖ζ n
c ‖2L2(Ω)

.

Once again, by the Cauchy–Schwarz’s inequality and Young’s inequality, we have

2τ |(∂t cn − δτ cn, ζ n
c )Eh | ≤ 4τ‖∂t cn − δτ cn‖2L2(Ω)

+ τ

4
‖ζ n

c ‖2L2(Ω)
.

Similarly,

2τ |(δτ ξ
n
c , ζ

n
c )Eh | ≤ 4τ‖δτ ξ

n
c ‖2L2(Ω)

+ τ

4
‖ζ n

c ‖2L2(Ω)
.

Collecting the above bounds and using that 2x(x − y) ≥ x2 − y2, we have
∥∥ζ n

c

∥∥2
L2(Ω)

−
∥∥ζ n−1

c

∥∥2
L2(Ω)

+ τ
∥∥D−1/2ζ n

q
∥∥2
L2(Ω)

+ 2τ
∥∥ζ n

c − ζ̂ n
c

∥∥2
L2(∂Eh)

≤ τ
∥∥D−1/2ξnq

∥∥2
L2(Ω)

+4τ‖∂t cn − δτ cn‖2L2(Ω)
+ 4τ‖δτ ξ

n
c ‖2L2(Ω)

+ τ

(
1
2
+ C∞

∥∥ f
∥∥
L∞(Ω)

) ∥∥ζ n
c

∥∥2
L2(Ω)

.

Summing from n = 1, . . . ,m, assuming that

τ ≤ 1
1+ 2C∞

∥∥ f
∥∥
L∞(Ω)

, (72)

multiplying both sides of the inequality by 2 and rearranging, we find

∥∥ζm
c

∥∥2
L2(Ω)

+ 2τ
m∑

n=1

(∥∥D−1/2ζ n
q
∥∥2
L2(Ω)

+ 2
∥∥ζ n

c − ζ̂ n
c

∥∥2
L2(∂Eh)

)

≤ 2
∥∥ζ 0

c

∥∥2
L2(Ω)

+ 2τ
m∑

n=1

(∥∥D−1/2ξnq
∥∥2
L2(Ω)

+ 4‖∂t cn − δτ cn‖2L2(Ω)
+ 4‖δτ ξ

n
c ‖2L2(Ω)

)

+ τ
(
1+ 2C∞

∥∥ f
∥∥
L∞(Ω)

) m−1∑

n=1

∥∥ζ n
c

∥∥2
L2(Ω)

.

Thus, the application of a discrete Grönwall inequality yields

∥∥ζm
c

∥∥2
L2(Ω)

+ 2τ
m∑

n=1

(∥∥D−1/2ζ n
q
∥∥2
L2(Ω)

+ 2
∥∥ζ n

c − ζ̂ n
c

∥∥2
L2(∂Eh)

)

≤ 2 exp
(
C f T

) ∥∥ζ 0
c

∥∥2
L2(Ω)

+ 2 exp
(
C f T

)
τ

m∑

n=1

(∥∥D−1/2ξnq
∥∥2
L2(Ω)

+ 4‖∂t cn − δτ cn‖2L2(Ω)
+ 4‖δτ ξ

n
c ‖2L2(Ω)

)
,

where C f = 1+ 2C∞
∥∥ f

∥∥
L∞(Ω)

.
Using (57b), we have:

τ

m∑

n=1

∥∥D−1/2ξnq
∥∥2
L2(Ω)

≤ CTh2k+2.
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Similarly, using (57a), we have

τ

m∑

n=1

‖δτ ξ
n
c ‖2L2(Ω)

= τ

m∑

n=1

‖δτ cn − )W (δτ cn)‖2L2(Ω)
≤ CTh2k+2.

Next, Taylor’s theorem yields:

τ

m∑

n=1

‖∂t cn − δτ cn‖2L2(Ω)
≤ Cτ 2

∫ tm

0
‖∂t t c‖2L2(Ω)

.

Finally, since we initialize the numerical method with c0h = πkc0, by Lemma 8 we have:
∥∥ζ 0

c

∥∥2
L2(Ω)

≤ Ch2k+2.

Collecting the above bounds, we obtain the desired result (67). /0

Theorem 3 (Error estimate) Let k ≥ 0 and suppose (u, q, c) ∈ (Hk+1(Ω))d + (H2(Ω))d ×
(Hk+1(Ω))d × Hk+1(Ω) are solutions to the Darcy and transport problems, (1) and (3),
respectively. Assuming τ ≤ 1/C f , and h < h0, with h0 defined in (44), we have

∥∥cm − cmh
∥∥2
L2(Ω)

+ τ

m∑

n=1

∥∥D−1/2(qn − qnh)
∥∥2
L2(Ω)

≤ C exp(C f T )
(
h2k+2 + τ 2

)
,

τ

m∑

n=1

∥∥cn − ĉnh
∥∥2
L2(∂Eh) ≤ C exp(C f T )

(
h2k+1 + τ 2

)
,

where C f = 1+ 2C∞
∥∥ f

∥∥
L∞(Ω)

and C is a positive constant independent of h and τ .

Proof Follows from the triangle inequality, Lemma 11, the approximation properties of)W ,
ΠV , π̂k , and the fact that exp(C f T ) ≥ 1. /0

5 Numerical Results

In this section, we perform three numerical experiments to test our algorithm and compare
with our theoretical results. All simulations have been implemented using Netgen/NGSolve
[26, 27]. In each case, we employ static condensation for both the flow and transport problems
to eliminate the interior degrees of freedom (dofs) resulting in a reduction in the size of the
global systems. We briefly review this key feature of hybrid mixed methods and hybridizable
discontinuousGalerkinmethods below.While our discussionwill center around the hybridiz-
able discontinuous Galerkin method for the transport problem, similar considerations hold
for the hybrid mixed method for the flow problem.

As outlined in [25], at each time step we can express the transport problem (11a)–(11c)
in matrix form:




A −BT DT

B E G
D H J








Q
C
Ĉ



 =




0
F
0



 , (73)

whence we can obtain the following statically condensed system for Ĉ by eliminating both
Q and C locally on each element:

KĈ = F, (74)
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where the matrices K and F are defined as

K = J −
[
D H

] [
A −BT

B D

]−1 [
DT

G

]
, (75)

F = −
[
D H

] [
A −BT

B D

]−1 [
0
F

]
. (76)

Once Ĉ has been computed, Q and C can be obtained using the fact that
[
Q
C

]
=

[
A −BT

B D

]−1 ([
0
F

]
−

[
DT

G

]
Ĉ

)
, (77)

and this calculation can be performed in an element-by-element fashion. Consequently, the
only globally coupled degrees of freedom arising from the system (11a)–(11c) that remain
after static condensation are those associated with Ĉ, the concentration on the mesh skeleton.
As these degrees of freedom are defined solely on (d − 1)-dimensional facets, the resulting
statically condensed system enjoys a global system of sizeO(kd−1) in comparison toO(kd)
for classical discontinuous Galerkin methods.

5.1 Manufactured Solution

To verify the theoretical rates of convergence predicted by Theorem 3, we use the method
of manufactured solutions on the unit square Ω = [0, 1]2. The source term and boundary
condition for the Darcy problem (1) are chosen such that the exact solution is given by

u(x, y) =
[−2π sin(πx) exp( y2 )
1/π cos(πx) exp( y2 )

]
, p(x, y) = − 2

π
cos(πx) exp( y2 ), (78)

and the source term and boundary condition for the transport problem (3) are chosen such
that the exact solution is given by

c(x, y, t) = sin(2π(x − t)) cos(2π(y − t)). (79)

For simplicity, the conductivity and diffusion matrices are the identity matrix. First we com-
pute the discrete Darcy velocity using the hybrid mixed method (10) and then apply the HDG
scheme (11) with k = 1, 2, 3 for a sequence of mesh and time step sizes h j = 1/2 j and
τ j = 1/2(k+1) j until the end time T = 0.1. The errors for the pressure, the post-processed
pressure, and velocity are shown in Table 1; optimal rates are obtained, as expected from
Theorem 1. See Remark 1 for details on the post-processing.

Table 2 displays the errors for the concentration and its gradient in the L2 norm at the final
time, as well as in the following norm

∥∥eq
∥∥

-2(L2,D) =
(

τ

N∑

n=1

∥∥D−1/2(qn − qnh)
∥∥2
L2(Ω)

)1/2

. (80)

Examining the results in Table 2, the estimated order of convergence in the L2-norm appears
to approach k+ 1 for both the scalar and flux variables, as well as in the -2(L2) norm for the
flux variable, in full agreement with the prediction of Theorem 3.

We consider a convection dominated problem wherein a contaminant is transported along
a channel at a constant velocity. We wish to evaluate the accuracy of the solution obtained
with increasing polynomial degree. The domain isΩ = [0, 2.5]× [0, 0.5], and for simplicity
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Table 1 Errors in the pressure and velocity between the exact solutions p, u and the discrete solutions ph , uh ,
and post-processed pressure p(

h computed in the L2-norm

h j ‖p − ph‖L2(Ω) Rate ‖u − uh‖L2(Ω) Rate ‖p − p(
h‖L2(Ω) Rate

k = 1 1/2 2.252 ×10−1 – 3.087×10−1 – 8.205 ×10−2 –

1/22 1.116×10−1 1.013 8.001 ×10−2 1.948 2.106 ×10−2 1.962

1/23 5.545×10−2 1.009 2.022×10−1 1.985 5.305×10−3 1.989

1/24 2.767×10−2 1.003 5.069×10−3 1.996 1.329 ×10−3 1.997

1/25 1.383×10−2 1.000 1.268×10−3 1.999 3.324 ×10−4 1.999

k = 2 1/2 4.176×10−2 – 3.082×10−2 – 3.640×10−3 –

1/22 1.065×10−2 1.971 3.828 ×10−3 3.009 2.321 ×10−4 3.971

1/23 2.678×10−3 1.992 4.736×10−4 3.015 1.455×10−5 3.996

1/24 6.703×10−4 1.998 5.889×10−5 3.008 9.089 ×10−7 4.000

1/25 1.676×10−4 1.999 7.343×10−6 3.004 5.678×10−8 4.001

k = 3 1/2 5.475×10−3 – 2.396×10−3 – 1.997 ×10−4 –

1/22 6.968×10−4 2.974 1.486×10−4 4.011 6.160×10−6 5.019

1/23 8.749×10−5 2.993 9.215×10−6 4.011 1.898×10−7 5.020

1/24 1.095×10−5 2.998 5.732×10−7 4.007 5.884 ×10−9 5.011

1/25 1.369×10−6 2.998 3.573×10−8 4.004 1.831×10−10 5.006

Table 2 Errors in the concentration and flux between the exact solutions c, q and the discrete solutions ch , qh
computed in various norms

h j τ j ‖eNc ‖L2(Ω) Rate ‖eNq ‖L2(Ω) Rate ‖eq‖-2(L2,D) Rate

k = 1 1/2 1/22 2.162×100 – 2.712×100 – 1.356×100 –

1/22 1/24 4.789×10−1 2.174 8.489×10−1 1.676 3.085×10−1 2.136

1/23 1/26 1.361×10−1 1.815 2.187×10−1 1.956 7.913×10−2 1.962

1/24 1/28 3.965×10−2 1.779 5.531×10−2 1.983 2.039×10−2 1.956

1/25 1/210 9.608×10−3 2.045 1.387×10−2 1.996 5.221×10−3 1.966

k = 2 1/2 1/23 4.329×10−1 – 8.805×10−1 – 3.113×10−1 –

1/22 1/26 1.099×10−1 1.976 1.871×10−1 2.235 6.869×10−2 2.180

1/23 1/29 1.606×10−2 2.776 2.402×10−2 2.961 9.363×10−3 2.875

1/24 1/212 1.953×10−3 3.039 2.995×10−3 3.004 1.198×10−3 2.966

1/25 1/215 2.411×10−4 3.018 3.738×10−4 3.002 1.507×10−4 2.991

k = 3 1/2 1/24 3.264×10−1 – 3.936×10−1 – 1.536×10−1 –

1/22 1/28 2.011×10−2 4.021 2.260×10−2 4.122 1.239×10−2 3.631

1/23 1/212 1.366×10−3 3.880 1.313×10−3 4.105 8.404×10−4 3.883

1/24 1/216 8.204×10−5 4.057 7.884×10−5 4.058 5.301×10−5 3.987

1/25 1/220 5.063×10−6 4.018 4.854×10−6 4.022 3.313×10−6 4.000
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Table 3 Number of mesh elements and number of degrees of freedom used for each simulation

k 1 5 1 6 1 7 1 7

Nh 800 264 2888 800 11464 2888 46516 11464

Ndofs 2496 2520 8856 8736 34776 35424 140316 139104

Fig. 1 The channel
Ω = [0, 2.5] × [0, 0.5] and
contaminant plume. Top: The
initial plume at t = 0. Bottom:
The plume at t = 1

we take it to be a homogeneous medium with permeability equal to one. We choose the
problem data for the flow problem such that the velocity is u(x, y) = [8/5, 0]T . We set the
diffusion coefficient to 10−6. Initially, the contaminant is concentrated in a ball of radius
r = 0.05 centered at the point (x0, y0) = (0.25, 0.25); that is,

c0(x, y) =
{
1, Br (x0, y0),
0, Ω \ Br (x0, y0).

(81)

We run eight simulations to qualitatively compare the use of linear piecewise polynomials
on a sequence of increasingly finer meshes to the use of piecewise polynomials of degree
k = 5, 6, 7 with a comparable cost. Table 3 displays the number of mesh elements Nh and
the number of globally coupled degrees of freedom Ndofs for each simulation. Simulations
with comparable Ndofs are grouped together. The final time is T = 1 and we fix the time step
to τ = 10−4. Figure1 displays the concentration contour at t = 0 and t = T for the choice
of k = 7 on a mesh with 2888 elements. We observe that the tracer is transported from left to
right, as expected. The physical diffusion is small and the concentration contour at the final
time remains sharp, which indicates negligible numerical diffusion.

We now show the numerical concentrations obtained with the different choices of poly-
nomial degrees and mesh size in Fig. 2. We first note that the concentration contour on the
coarsest mesh for k = 1 exhibits significant numerical diffusion. As the mesh size is refined
(top row of Fig. 2), the numerical diffusion becomes negligible and the concentration con-
tour for piecewise linears with 143016 globally coupled degrees of freedom (dofs) appears
to converge to a sharp plume. The bottom row of Fig. 2 shows the concentration contours
obtained with higher polynomial degrees such that the number of globally coupled degrees of
freedom is comparable to the one used for piecewise linears on various meshes. We observe
that while the concentration contour on the coarsest mesh (800 elements) for k = 5 is more
accurate than the one obtained with k = 1 (with a comparable cost: 2496 versus 2520 dofs),
it still shows some numerical diffusion. This seems to indicate that the number of degrees of
freedom is too small to capture the correct solution. The solution obtained with k = 6 on a
mesh with 800 elements is more accurate than the solution with k = 1 with comparable cost.
As the polynomial degree increases to k = 7 and the mesh is finer, we obtain a converged
solution for the concentration that exhibits a sharp contour. Figure2 shows that it is advan-
tageous to use higher order polynomial approximations on coarser meshes than piecewise
linears on finer meshes for this numerical example.
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Fig. 2 Close-up snapshots of the concentration plume in the region [1.6, 2.1] × [0, 5] ! Ω at T = 1 for
various polynomial degrees and mesh sizes

Fig. 3 Profiles of concentration extracted along horizontal line (top row) and vertical line (bottom row), for
different polynomial degrees and different mesh sizes

To better compare the numerical solutions, the concentration profiles are extracted along
both a horizontal line (y = 0.25) and a vertical line (x = 1.85) in Fig. 3. Overshoots
and undershoots are observed in the neighborhood of the solution front, specially in the
profiles along the vertical line. Overall as Ndofs (from left to right in each row of Fig. 3),
the approximation of the concentration improves. The solution obtained with k = 1 with
2496 dofs is more diffuse than the solution obtained with k = 5 with comparable cost (2520
dofs); the highest value of the concentration is about 0.6 as opposed to about 1 for k = 5.
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Fig. 4 Left: set-up showing the location of the permeability lens and the initial plume. Right: pressure contours
and streamlines

However, the amount of overshoot and undershoot is significant for the solution with k = 5.
With higher degree k = 7, we observe a reduction of the overshoots and undershoots (third
figure on each row). As the mesh is further refined (fourth figure on each row), the solution
becomes more accurate. The solution with piecewise linears is much closer to the solution
obtained with k = 7 but there are some small oscillations in the piecewise linear solution in
the profile along the vertical line. Figure3 confirms that the higher order polynomial solutions
provide a better approximation of the concentration than the linear polynomial solution with
comparable number of dofs. Overshoot and undershoot phenomena are present in the higher
order solution but they decrease as the polynomial degree further increases.

5.2 Contaminant Transport in Mediumwith Permeability Lens

Next, we consider the transport of a contaminant in a porous medium with a permeability
lens. The domain is Ω = [0, 1]2, and the permeability is 9.44 × 10−3 everywhere except
for the lens [0.4, 0.6]2 where it is taken to be 9.44 × 10−6. We split the source term for the
flow problem into f = q I − qP , where q I and qP are piecewise constant on [0.1, 0.1]2 and
[0.9, 1]2, respectively, and satisfy

∫

Ω
q I dx =

∫

Ω
qPdx = 0.36. (82)

We impose a no-flow boundary condition u · n|∂Ω = 0 and a zero-mean condition on the
pressure to ensure it is uniquely defined.

Initially, the contaminant is concentrated in a ball of radius r = 0.125 centered at the
point (x0, y0) = (0.25, 0.25), similar to (81). The set-up of the problem is shown in the
left panel of Fig. 4: the permeability lens is the gray square, and the initial plume is in
pink. Contours of the pressure field are displayed in the right panel of Fig. 4, as well as the
streamlines. As expected, the direction of the flow is from the source location to the sink
location. While not shown in that figure, the velocity magnitude is much smaller inside the
permeability lens. This is made evident in Fig. 5. Snapshots of the concentration contours
at t = 0.75, 1.0, 1.25 show that the plume is transported along the principal direction of
the flow while avoiding the square inclusion. We compare the numerical solutions obtained
with different polynomial degrees: k = 1, 3, 5, on the same mesh made of 8890 elements,
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Fig. 5 Snapshots of concentration obtained with different polynomial degrees

which yields 26926, 53852 and 80778 coupled degrees of fredom. The initial circular plume
splits itself into two plumes that propagate around the permeability lens and merge again
at a later time. We plot the concentration profiles along the line y = 1.225 − x at time
t = 1.25 in Fig. 6. All three different approximations produce similar profiles with relatively
sharp fronts. The solutions obtained with k = 3 and k = 5 are very close to each other. The
piecewise linear approximation shows a more diffusive profile, in particular in the narrow
region where the two parts of the plume merge again after the square inclusion. We observe
that for all three simulations, the plume does not penetrate the permeability lens. The front
in the surrounding rock matrix becomes sharper as the polynomial degree increases.

Finally we comment on the amount of overshoot/undershoot that is being observed in
the numerical solution. Throughout the simulations, the magnitude of the overshoot and
undershoot is small and remains bounded. Figure7 displays the concentration contours at
t = 1.0: elements where there is overshoot or undershoot are colored in white. This figure
shows that the number of elements where overshoot and undershoot occurs decreases as the
polynomial degree increases. We have also observed that the magnitude of the overshoot or
undershoot decreases as the polynomial degree increases from k = 1 to k = 3, and from
k = 3 to k = 5. Figure8 displays in green (resp. orange) the elements where the overshoot
(resp. undershoot) is above 0.005. The solutions obtained with higher order approximation
exhibit reduced overshoot/undershoot both in magnitude and in area.
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Fig. 6 Concentration profiles along the line y = 1.225 − x at t = 1.25 and a close-up view

Fig. 7 Concentration contours at t = 1.0 for k = 1 (left), k = 3 (center) and k = 5 (right). Elements with
overshoot or undershoot are colored in white

Fig. 8 Concentration contours at t = 1.0 for for k = 1 (left), k = 3 (center) and k = 5 (right). Overshoot and
undershoot above 0.005 are in green and orange respectively
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6 Conclusions

The analysis of theHDGmethod is obtained for the one-way coupled flow and transport prob-
lem. The stabilization term is carefully constructed and depends on the normal component
of the velocity as well as the diffusion coefficient. Optimal rates are proved for the scalar and
flux variables. The error analysis relies on a modified HDG projection that satisfies optimal
bounds. Numerical simulations demonstrate the benefit of using higher order of approxi-
mation as opposed to piecewise linears. Solutions obtained with comparable costs exhibit
sharper fronts if higher order polynomials are used. Increasing the polynomial degree also
has a positive impact in reducing the amount of overshoot and undershoot and the number
of elements where these phenomena occur.
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