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Abstract

In recent years, there has been a growing interest in leveraging deep learn-
ing and neural networks to address scientific problems, particularly in solving
partial di!erential equations (PDEs). However, current neural network-based
PDE solvers often rely on extensive training data or labeled input-output
pairs, making them prone to challenges in generalizing to out-of-distribution
examples. To mitigate the generalization gap encountered by conventional
neural network-based methods in estimating PDE solutions, we formulate a
fully unsupervised approach, requiring no training data, to estimate finite dif-
ference solutions for PDEs directly via small convolutional neural networks.
Our proposed algorithms demonstrate comparable accuracy to the true so-
lution for several selected elliptic and parabolic problems compared to the
finite di!erence method.

Keywords: Convolutional neural networks, unsupervised learning, partial
di!erential equations, finite di!erence

1. Introduction

Partial di!erential equations (PDEs) of elliptic and parabolic type are
ubiquitous in the mathematical modeling of many physical phenomena, and
thus see wide application to many real-world problems. Classical numerical
methods (finite di!erence methods, finite element methods, etc.) introduce
a computational mesh over which matrix representations of di!erential oper-
ators are defined. This results in large linear systems whose e”cient solution
presents a number of computational challenges. Recently, neural networks
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have gained popularity in solving PDEs, partially thanks to the universal ap-
proximation property of neural networks [1, 2]. Popular approaches include
Physics Informed Neural Networks (PINNs) [3], the Deep Galerkin method
[4], and the Deep Ritz method [5, 6]. These methods incorporate the un-
derlying physics of the problem by introducing the di!erential operators of
the PDE or an equivalent variational principle into the loss function. The
common feature of these methods is the requirement of training data as these
methods belong to the class of supervised learning methods. This requires
su”cient training data, which is often generated using more classical numer-
ical algorithms. An important drawback is the poor generalization in neural
networks for supervised learning.

Our proposed method di!ers from the methods described above because
it does not require training data. This helps mitigate the generalization
problem of existing approaches. Our unsupervised learning method is an
iterative method that computes successive approximations of the solution
of the PDE given a source function and boundary data. The iterations are
constructed to minimize a finite di!erence based loss function. To reduce
the computational cost, the PocketNet paradigm is applied to the neural
network architecture [7]. The method is presented for both steady-state and
time-dependent problems. Finite di!erence methods have inspired the con-
struction of various neural networks [8, 9], but again these methods need
training data. The recent work [10] solves elliptic PDEs with constant dif-
fusion and it shares the following similarities with our proposed numerical
method: no training data is needed and the loss function is derived from the
five-point stencil of the finite di!erence approximation. However, our loss
function is di!erent as it incorporates the Dirichlet boundary condition in
a weighted fashion. We also define the method for elliptic PDEs with non-
constant di!usion coe”cient and we extend it to time-dependent problems.
Another key feature of our method is the use of small neural networks, which
makes it computationally e”cient.

An outline of the paper is as follows. Section 2 introduces the model
problem, the network architecture and the loss function. Section 3 describes
the algorithms for both steady-state and time-dependent problems. Results
and discussion are presented in Section 4. Conclusions follow.
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2. Material and Methods

We propose a fully unsupervised method for estimating finite di!erences
solutions to partial di!erential equations via convolutional neural networks.
In contrast to existing deep learning-based methods, our approach is fully
unsupervised. In other words, our approach does not require training data
and estimates the solution to a given PDE directly via the optimization
process, also called the training process.

2.1. Elliptic Problems

Let # → R2 be an open set. Given a function f : # ↑ R and di!usion
coe”cients ω, we consider the 2D Poisson problem with solution u : # ↑ R
such that

↓↔ · (ω↔u) = f in #,

u = g on ε#.
(1)

We begin with the case when ω is constant and assume that ω = 1. For read-
ibility, we assume that # is the square domain (0, L)2, that is partitioned
into a uniform grid of N ↗ N squares with size h = L/N . The methodol-
ogy presented in the paper can be easily extended to rectangular domains.
We first recall the standard finite di!erence method based on the five-point
stencil, applied to (1). Let V0 (resp. Vω) be the set of indices (i, j) such that
the point (xi, yj) = (ih, jh) belongs to the interior (resp. boundary) of #.

4ui,j ↓ ui+1,j ↓ ui→1,j ↓ ui,j+1 ↓ ui,j→1

h2
= f(xi, yj), ↘(i, j) ≃ V0

, (2)

ui,j = g(xi, yj), ↘(i, i) ≃ Vω
. (3)

The finite di!erence solution uh is a vector with entries ui,j satisfying (2)-(3)
and it is known that for smooth enough solutions u and small enough h, the
value ui,j is a good approximation of u(xi, yj). One can rewrite (2) in terms
of a discrete convolutional operator ϑ and convolutional kernel K! defined
as:

K! =
1

h2




0 ↓1 0
↓1 4 ↓1
0 ↓1 0



 . (4)
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We use the shorthand notation fi,j = f(xi, yj). The equivalent form for (2)
is

(K! ϑ uh)i,j = fi,j, ↘(i, j) ≃ V0
. (5)

For a given kernel K ≃ R3↑3, the convolution operator ϑ is defined by

(K ϑ uh)i,j =
1∑

p=→1

1∑

q=→1

Kp,q ui+p,j+q. (6)

With this convolution-based discretization, we can now reformulate the finite
di!erence approximation of (1) as a convex optimization problem given by

(7)argmin
uh

∑

(i,j) ↓V0

(
(K! ϑ uh)i,j ↓ fi,j

)2

+
∑

(i,j) ↓Vω

(
(uh)i,j ↓ gi,j

)2

.

We obtain an approximate solution û to (7) by training a neural network
Nε : RN↑N ↑ RN↑N with trainable parameters ω ≃ RM . We propose to
train Nε using the unsupervised loss function Lϑ : RN↑N ↑ R given by

Lϑ(û) = ϖ

∑

(i,j)↓V0

(
(K! ϑ û)i,j ↓ fi,j

)2

+ (1↓ ϖ)
∑

(i,j)↓Vω

(ûi,j ↓ gi,j)
2
, (8)

where ϖ = h
2
/4 is a weighting term. The idea behind this loss function is

to directly estimate the finite di!erence approximation to (1) without using
any training data. Specifically, we use f as the input to the CNN and we
perform M updates of the parameters in the neural network Nω, using the
loss function defined above. Algorithm 1 in Section 3 outlines this training
procedure in more detail.

In the case where ω is piecewise constant, ω = (ωi,j), we use the following
finite di!erence discretization

↓ 1

h2

(
ωi+ 1

2 ,j
(ui+1,j ↓ ui,j)↓ ωi→ 1

2 ,j
(ui,j ↓ ui→1,j)

)

↓ 1

h2

(
ωi,j+ 1

2
(ui,j+1 ↓ ui,j)↓ ωi,j→ 1

2
(ui,j ↓ ui,j→1)

)
= fi,j, (9)
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where the interface values ωi+ 1
2 ,j
, ωi→ 1

2 ,j
, ωi,j+ 1

2
, and ωi,j→ 1

2
are the harmonic

averages of ωi,j given by

ωi+ 1
2 ,j

=
2

1
ϖi+1,j

+ 1
ϖi,j

ωi→ 1
2 ,j

=
2

1
ϖi,j

+ 1
ϖi→1,j

ωi,j+ 1
2
=

2
1

ϖi,j+1
+ 1

ϖi,j

ωi,j→ 1
2
=

2
1

ϖi,j
+ 1

ϖi,j→1

.

(10)

The interface values necessitate the imposition of a half-grid (also called
dual grid) onto our original grid. As a result, we modify our neural network
prediction via a dilation operator D : RN↑N ↑ R(2N→1)↑(2N→1) such that

D(û)i,j =

{
û1+ i→1

2 ,1+ j→1
2
, if i and j are odd

0, otherwise.
(11)

Additionally, we map ω from the original grid to the dual grid by applying
the following steps:
Step 1: apply the dilation operator to obtain ω

↔ ≃ R(2N→1)↑(2N→1):

ω
↔ = D(ω). (12)

Step 2: update the values of ω↔ on the half-grid:

ω
↔
i,j =





2
(

1
ϖ↑
i→1,j

+ 1
ϖ↑
i+1,j

)→1

, if i odd and j even

2
(

1
ϖ↑
i,j→1

+ 1
ϖ↑
i,j+1

)→1

, if i even and j odd
(13)

Step 3: set to zero the values of ω↔ that would correspond to the values on
the original grid:

ω̃ =
(
1(2N→1)↑(2N→1) ↓D(1N↑N)

)
⇐ ω

↔
. (14)

In the equation above, 1N↑N is an N ↗ N matrix with all entries equal to
one, and ⇐ is the Hadamard or pointwise product.
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We now introduce the following convolution kernels

T↗ =





0 0 1 0 0
0 0 0 0 0
0 0 ↓1 0 0
0 0 0 0 0
0 0 0 0 0




P↗ =





0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





T↘ = ↓T
T
↗ P↘ = P

T
↗

T≃ =





0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 ↓1 0 0




P≃ =





0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0





T⇐ = ↓T
T
≃ P⇐ = P

T
≃ ,

(15)

which will allow us to rewrite (9) as follows:

↓ 1

h2
((T↗ ϑD(u))⇐ (P↗ ϑ ω̃)↓ (T≃ ϑD(u))⇐ (P≃ ϑ ω̃)

+ (T⇐ ϑD(u))⇐ (P⇐ ϑ ω̃)↓ (T↘ ϑD(u))⇐ (P↘ ϑ ω̃))i,j = fi,j, ↘i, j ≃ V0
,

(16)

which is then used in the first term of the loss function (8) to train our
neural network. The same training process outlined in Algorithm 1 applies
here. Note that in (16), the convolution operator ϑ uses a stride of two
because of the dual grid and the use of larger convolution kernels.

2.2. Parabolic Problems

We generalize the method described in the previous section to time-
dependent problems. We propose a modified loss function that incorporates
the backward Euler method to address the time derivative. Consider the
following parabolic problem on a square domain # and for the time interval
[t0, T ].

εu

εt
↓$u = f in #↗ (t0, T ],

u = g on ε#↗ (t0, T ],

u(·, t0) = u
0 in #↗ {t0}.

(17)
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Let ϱ > 0 be the time step size. At each time step, tn = nϱ , the finite
di!erence solution denoted by u

n
h solves the following optimization problem

argmin
un
h

∑

(i,j)↓V0

(
u
n
i,j ↓ u

n→1
i,j ↓ ϱ

(
f
n
i,j ↓ (K! ϑ u

n
h)i,j

))2

+
∑

(i,j)↓Vω

(
u
n
i,j ↓ g

n
i,j

)2
. (18)

Above we use the short-hand notation f
n
i,j = f(xi, yj, t

n) and g
n
i,j = g(xi, yj, t

n).
Here, the unknowns un

i,j are the approximations of the solution u evaluated
at the point (xi, yj) and time t

n. We then use the following loss function to
train our CNN at each time step

Lϑ,ϱ (û
n
, û

n→1
, t

n) =ϖ

∑

(i,j)↓V0

(
û
n
i,j ↓ û

n→1
i,j ↓ ϱ

(
f
n
i,j ↓ (K! ϑ û

n)i,j

))2

+ (1↓ ϖ)
∑

(i,j)↓Vω

(
û
n
i,j ↓ g

n
i,j

)2
. (19)

Again, we will choose the weight ϖ = h
2
/4. The key di!erence between (8)

and (19) is that we minimize at each time step. The input to the CNN at
each time step is the previous solution û

n→1 and the output is the solution at
the time step t

n. Algorithm 2 in Section 3 outlines this training procedure
in more detail.

2.3. Network Architecture

We select as our architecture the widely used U-Net [11]. The U-Net was
initially designed for image segmentation tasks but is successful in several
scientific machine learning tasks [12, 13, 14]. The architecture consists of
convolution block operators (blocks), a downsampling (or encoding) path,
and an upsampling (or decoding) path. A channel-wise concatenation op-
eration links each layer in the downsampling and upsampling paths. Each
block consists of two 2D convolution layers. Unlike most implementations of
the U-Net architecture [11, 15, 16], we omit normalization (i.e., batch or in-
stance normalization) and do not apply a non-linear activation function like
ReLU and use the identity function instead (see Section 4). Additionally, we
use the PocketNet approach proposed in [7] and leave the number of feature
maps (channels) at each resolution within our architecture constant, namely
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32. Figure 1 sketches the U-Net architecture for di!erent network depths.
We define the depth, d, of each network to be the number of downsampling
operations present in the network. The size of the feature tensor is halved
from depth d to depth d+ 1.

Figure 1: Sketch of U-Net architecture for di!erent network depths: 0 ⇒ d ⇒ 4.

2.4. Data

2.4.1. Elliptic Problem Data
We test our proposed approach for elliptic problems on four di!erent test

cases. Unless otherwise specified, the domain is the unit square.

The Bubble Function. In the first test case, (1) is solved with data chosen
such that the exact solution is the bubble function

u(x, y) = x(x↓ 1)y(y ↓ 1). (20)

This function is symmetric, and we apply homogeneous zero Dirichlet bound-
ary conditions. Note that for this function, one can show that the five-point
stencil scheme given by (2) applied to the bubble function gives exactly ↓$u

evaluated at the grid point (xi, yj), which implies that the finite di!erence
approximation is exact.

The “Peak” Function. In the second case, we want to test the e!ectiveness
of our strategy when the solution has high gradients and is non-symmetric.
Hence, we select data such that the exact solution is the “peak” function

u(x, y) = 0.0005 (x(x↓ 1)y(y ↓ 1))2 e10x
2+10y

. (21)
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The Exponential-Trigonometric Function. We test our approach on a func-
tion with non-homogeneous Dirichlet boundary conditions in the third case.
We select data such that the exact solution is the exponential-trigonometric
function given by

u(x, y) = e
→x2→y2 sin(3ςx) sin(3ςy) + x. (22)

Non-Constant and Discontinuous Di!usion. To test how our approach fairs
on problems with low regularity, we consider an example with a non-constant,
discontinuous di!usion coe”cient taken from [17]. The problem is posed on
the square domain # = (↓1, 1)2 which we divide into four subdomains #i

corresponding to the quadrants of the Cartesian plane. On each subdomain,
ω is constant and takes the values ω1 = ω3 = 5 and ω2 = ω4 = 1. The exact
solution takes the form

r
ς(ai sin(φ↼) + bi cos(φ↼)), (23)

where (r, ↼) are the polar coordinates of a given point in #, ai, bi are constants
that depend on the subdomains (see [17] for exact values). This discontinuity
in the di!usion coe”cient introduces a singularity in the solution at the
origin, namely the function belongs to the Sobolev space H

1+ς(#), with
φ ⇑ 0.5354.

2.4.2. Parabolic Problem Data
We test our proposed approach for parabolic problems on three di!erent

test cases.

The Trigonometric Function. In the first two cases, (17) is solved with data
such that the exact solution is given by the trigonometric function

u(x, y, t) = cos(t) sin(nςx) sin(nςy). (24)

In the first case, we select n = 1, which gives a symmetric function with a
single peak. In the second case, we set n = 4, which results in 16 peaks and
troughs in our domain.

The Gaussian Function. In the third case, we test our approach on a Gaus-
sian function centered on the point

(
1
2 ,

1
2

)

u(x, y, t) = cos(t)e→50((2x→1)2+(2y→1)2)
. (25)
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2.5. Training and Testing Protocols

We use the Adam optimizer [18] and 5↗5 convolutional kernels in each
layer. The initial learning rate is 0.001 for the steady-state elliptic prob-
lems and 0.0001 for parabolic problems. During training, we use L2 reg-
ularization with a penalty of 10→7 and the norm of the network’s gradi-
ent is clipped so that it is no greater than 10→2. Our models are imple-
mented in Python using TensorFlow (v2.12.0) and trained on an NVIDIA
Quadro RTX 6000 GPU [19]. All network weights are initialized using
the default TensorFlow initializers. All other hyperparameters are left at
their default values. The code for our network architecture is available at
https://github.com/aecelaya/pde-nets.

To assess the accuracy of our predicted solutions, we use the following
norms of the error between the exact solution u and its approximate û for
steady-state problems:

||u↓ û||2,h = h

 ∑

(i,j)↓V0⇒Vω

(u(xi, yj)↓ ûi,j)2 (26)

||u↓ û||⇑ = max
(i,j)↓V0⇒Vω

|u(xi, yj)↓ ûi,j|. (27)

For time-dependent problems, similar errors are computed at the final time
T .

3. Calculation

We use Algorithm 1 to approximate a solution û to (1). In this algorithm,
we start by initializing the neural network Nε with trainable parameters ω.
In this case, we use the U-Net architecture described in Section 2.3. We
set the maximum number of optimization steps M as the stopping criterion
for the algorithm. We then begin the minimization (or training) process by
generating a prediction from our neural network with the source term f as the
input. Given the current prediction, we compute the loss value and update
the network weights via backpropagation. If the loss value from the current
prediction is less than the previous best value, we update our best loss and
save the current prediction. Algorithm 1 fully outlines this procedure.

We use Algorithm 2 to approximate a solution û
NT to (17), where NT is an

integer such that T = NT ϱ . Like with Algorithm 1, we randomly initialize
a U-Net and set a maximum number of optimization steps as a stopping
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Algorithm 1 Unsupervised CNN Training For (1)
Input Right-hand side f and boundary condition g

Output Approximate solution to (7), û↔

1: Randomly initialize the network parameters ω
2: Set maximum iterations M
3: k ⇓ 0 ↽ Iteration counter
4: ⇀↔ ⇓ +⇔ ↽ Store smallest loss value
5: while k < M do

6: û ⇓ Nε(f) ↽ Get network prediction
7: ⇀ ⇓ Lϑ(û) ↽ Compute loss
8: Update ω using backpropagation on ⇀

9: if ⇀ < ⇀↔ then

10: û↔ ⇓ û ↽ Save best prediction
11: ⇀↔ ⇓ ⇀ ↽ Update smallest loss value

12: k ⇓ k + 1

criterion. However, in this case, the maximum number of steps applies to
each time step. We then set the initial condition as the previous solution.
We apply nearly the same steps for each time step as with Algorithm 1.
Namely, we produce a candidate prediction from our neural network with
the previous solution as the input. We compute the loss value and update
the network weights via backpropogation on the loss. If the loss value is lower
than the previously observed lowest loss value, then we update our lowest
loss value and save the current prediction. At the end of this process, we
set the previous solution to the best current solution. This process continues
for every time step. Algorithm 2 fully outlines this procedure. Note that
in this algorithm, we do not reinitialize our neural network weights at each
time step. Instead, we use the previous network configuration as the initial
state for the next time step.

4. Results and Discussion

Using the methods described in Section 2 and Algorithm 1, we approxi-
mate the finite di!erence solution to the elliptic problems defined in Section
2.4.1 with constant di!usion coe”cients (i.e., ω = 1). Table 1 shows the
accuracy of our unsupervised predictions for a varying grid size and number
of optimization steps. We fix the depth of our U-Net architecture to three in
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Algorithm 2 Unsupervised CNN Training For (17)

Input Number of time steps NT , final time T , initial condition u
0,

right hand side f , and boundary condition g

Output Approximate solution to (18) at final time û
NT

1: Randomly initialize the network parameters ω
2: Set maximum iterations M
3: ϱ ⇓ T/NT ↽ Initialize time step size
4: n ⇓ 1 ↽ Time step counter
5: while n ⇒ NT do

6: k ⇓ 0 ↽ Iteration counter
7: ⇀↔ ⇓ +⇔ ↽ Store smallest loss value
8: while k < M do

9: w ⇓ Nε(ûn→1) ↽ Get network prediction
10: ⇀ ⇓ Lϑ,ϱ (w, ûn→1

, nϱ) ↽ Compute loss
11: Update ω using backpropagation on ⇀

12: if ⇀ < ⇀↔ then

13: û
n ⇓ w ↽ Save best prediction

14: ⇀↔ ⇓ ⇀ ↽ Update smallest loss value

15: k ⇓ k + 1
16: n ⇓ n+ 1

this case. For reference, Table 3 shows the accuracy of the finite di!erence
method for varying grid sizes. For the peak and exponential-trigonometric
functions, our approach provides a good approximation to the finite di!er-
ence solution. We do not, however, see this for the bubble function example.
In that case, the solution of the finite di!erence method is exact. Under
our selected settings (i.e., depth and optimization steps), our method stops
at an error of approximately 10→6 in the ||·||2,h norm for the bubble func-
tion example. The cause of this discrepancy between our method applied to
the bubble function and the finite di!erence solution may be that current
neural network optimizers like Adam are stochastic, gradient-based, and do
not have optimal step sizes. We hypothesize that our neural network is get-
ting stuck in a neighborhood around the global minimum because of these
previously listed limitations of optimizers like Adam. Hence, using second-
order, Hessian-based optimizers or better step-size computations may allow
for faster convergence to more accurate solutions for our neural network-
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based approach.
Figure 2 shows the true solution, predicted solution, and absolute di!er-

ence for the bubble, peak, and exponential-trigonometric cases on a 128↗128
grid. This figure shows that for every case, our unsupervised algorithm pro-
duces visually indistinguishable solutions from the true solution in each case.

We also want to study the network depth’s e!ect on our predictions’
accuracy. Table 2 shows the accuracy of our unsupervised neural network
predictions for varying grid sizes and U-Net depths. We set the number of
optimization steps to 4,000. Here, we see that the depth of the U-Net archi-
tectures does not appear to have a significant e!ect on the accuracy of our
predictions. The only notable exceptions are for the bubble and exponential-
trigonometric functions on a 128↗128 grid with a depth equal to two. This
discrepancy may be caused by the network not capturing su”ciently rich
features on the finer grid. The fact that we see a decrease in the errors be-
tween our predictions and the true solution to those comparable to the finite
di!erence method as we increase the depth to three or greater supports this
hypothesis. Note that for coarser grids (i.e., fewer grid points), we do not
test higher network depths since the size of the features (the output of each
layer) at the coarser grids in such networks would be smaller than the size
of the convolutional kernels in the network.

The results of Algorithm 1 for the non-constant di!usion problem de-
fined in Section 2.4.1 are shown in Table 4. Here, we see more significant
errors than with the constant di!usion problems. Figure 3 shows the true
solution, predicted solution, and absolute di!erence for the non-constant dif-
fusion problem on a 128↗128 grid. This figure shows that the errors are
mostly concentrated around the discontinuities in ω. We do not compare
this to the finite di!erence method because the exact solution exhibits a sin-
gularity at the origin. Indeed, the gradient of the exact solution blows up at
the point (0, 0).

Because the finite di!erence solution solves the convex minimization prob-
lem (7), the finite di!erence approximation’s accuracy limits our approach’s
accuracy. This explains the relatively poor performance in the case of dis-
continuous di!usion. It is well known that, due to the singularity at the
origin, the exact solution to the discontinuous di!usion problem belongs to
the Sobolev space H

1+ς(#), where φ ⇑ 0.5354 [17]. Hence, the finite di!er-
ence method, which requires more regularity, performs poorly.

Using the methods described in Section 2 and Algorithm 2, we approxi-
mate the finite di!erence solution to the parabolic problems defined in Section
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Figure 2: (Top) Bubble function. (Middle) “Peak” function. (Bottom) Exponential

trigonometric function. From left to right, contour plots of true solution, predicted solu-

tion, and absolute di!erence. All predictions and solutions are on a 128↗128 grid. Note

that µ = 10
→6

in the colorbar for the bubble function di!erence.

Figure 3: From left to right, contour plots of true solution, predicted solution, and absolute

di!erence for the non-constant di!usion problem.
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Problem M N = 32 N = 64 N = 128

||u↓ û||2,h ||u↓ û||⇑ ||u↓ û||2,h ||u↓ û||⇑ ||u↓ û||2,h ||u↓ û||⇑

Bubble

500 4.7521e-05 5.2953e-04 4.8521e-05 8.2744e-04 4.2407e-04 1.6607e-03

1,000 2.5330e-05 2.4341e-04 2.1550e-05 3.4875e-04 1.3244e-04 5.3431e-04

2,000 1.4457e-05 1.4313e-04 9.1955e-06 1.4581e-04 4.0090e-05 3.0874e-04

4,000 3.2266e-06 3.0962e-05 3.1159e-06 5.4674e-05 7.6852e-06 8.5074e-05

8,000 2.2661e-06 2.9351e-05 3.7016e-06 4.9231e-05 3.7105e-06 4.4149e-05

Peak

500 2.0066e-02 1.2398e-01 1.0361e-02 1.2776e-01 3.2611e-02 2.8655e-01

1,000 2.0603e-02 1.1937e-01 5.3352e-03 3.2162e-02 5.0469e-03 2.6498e-02

2,000 2.0594e-02 1.1934e-01 5.5620e-03 3.2176e-02 1.3510e-03 8.0407e-03

4,000 2.1275e-02 1.1932e-01 5.6542e-03 3.2192e-02 1.3851e-03 8.0365e-03

8,000 2.0616e-02 1.1933e-01 5.5843e-03 3.2196e-02 1.4042e-03 8.0850e-03

Exp-Trig

500 2.8224e-03 1.8145e-02 1.0084e-03 1.5877e-02 2.6316e-03 3.0236e-02

1,000 2.4582e-03 7.8004e-03 6.3506e-04 4.8903e-03 4.0585e-04 1.6215e-02

2,000 2.3809e-03 7.8190e-03 5.9138e-04 1.8863e-03 1.8116e-04 3.6817e-03

4,000 2.4604e-03 7.8169e-03 5.9671e-04 2.4966e-03 1.5110e-04 1.3024e-03

8,000 2.3742e-03 7.8151e-03 5.8227e-04 1.8845e-03 1.4478e-04 5.7032e-04

Table 1: Accuracy of unsupervised predictions for a varying grid size N , number of opti-

mization steps M, and the depth of the U-Net set to three.

Problem d # Params.
N = 32 N = 64 N = 128

||u↓ û||2,h ||u↓ û||⇑ ||u↓ û||2,h ||u↓ û||⇑ ||u↓ û||2,h ||u↓ û||⇑

Bubble

2 283,713 3.2705e-06 3.8412e-05 2.8414e-06 4.1518e-05 5.4252e-04 1.9439e-03

3 412,225 3.2266e-06 3.0962e-05 3.1159e-06 5.4674e-05 7.6852e-06 8.5074e-05

4 541,889 - - 2.6481e-06 4.1081e-05 3.2062e-06 6.0881e-05

5 669,249 - - - - 2.8731e-06 9.5620e-05

Peak

2 283,713 2.1274e-02 1.1932e-01 5.6116e-03 3.2174e-02 1.4157e-03 7.9525e-03

3 412,225 2.1275e-02 1.1932e-01 5.6542e-03 3.2192e-02 1.3851e-03 8.0365e-03

4 541,889 - - 5.6673e-03 3.2192e-02 1.4087e-03 8.0848e-03

5 669,249 - - - - 1.4042e-03 8.0918e-03

Exp-Trig

2 283,713 2.4689e-03 7.8191e-03 5.9526e-04 1.8814e-03 2.8053e-02 7.5356e-02

3 412,225 2.4604e-03 7.8169e-03 5.9671e-04 2.4966e-03 1.5110e-04 1.3024e-03

4 541,889 - - 5.9509e-04 1.8855e-03 1.5166e-04 1.8679e-03

5 669,249 - - - - 1.4944e-04 1.2124e-03

Table 2: Accuracy of unsupervised predictions for varying grid sizes N and U-Net depths

d. We set the number of optimization steps to 4,000.

2.4.2. The time step is ϱ = 0.1. Except for the first time step, we set the
number of optimization steps per time step to 250. Because we start with
randomly initialized weights in the first time step, we set the number of op-
timization steps to 1,000 in the first time step. Table 6 shows the accuracy
of our unsupervised predictions for varying grid sizes. For reference, Table
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Problem
N = 32 N = 64 N = 128

||u↓ uh||2,h ||u↓ uh||⇑ ||u↓ uh||2,h ||u↓ uh||⇑ ||u↓ uh||2,h ||u↓ uh||⇑
Bubble 1.3582e-16 2.8449e-16 2.4524e-16 6.8695e-16 8.1134e-16 1.9776e-15

Peak 1.7597e-02 1.1151e-01 5.3441e-03 3.1282e-02 1.3988e-03 7.9696e-03

Exp-Trig 2.2986e-03 7.3266e-03 5.7262e-04 1.8251e-03 1.4303e-04 4.5588e-04

Table 3: Finite di!erence errors for selected elliptic problems for comparison.

Problem M N = 32 N = 64 N = 128

||u↓ û||2,h ||u↓ û||⇑ ||u↓ û||2,h ||u↓ û||⇑ ||u↓ û||2,h ||u↓ û||⇑

Non. Const.

Di!.

500 4.6597e-02 1.8380e-01 8.6890e-02 3.7069e-01 5.5651e-01 2.1105e+00

1,000 3.9795e-02 1.6035e-01 4.9640e-02 1.3376e-01 2.0766e-01 6.4809e-01

2,000 3.9718e-02 1.5799e-01 3.1458e-02 1.2455e-01 8.7473e-02 2.8797e-01

4,000 3.9713e-02 1.5794e-01 3.1224e-02 1.2258e-01 4.9868e-02 1.1281e-01

8,000 3.9710e-02 1.5800e-01 3.1045e-02 1.2221e-01 3.1002e-02 9.3761e-02

Table 4: Accuracy of unsupervised predictions on the non-constant di!usion problem for

a varying grid sizes N , number of optimization steps M, and the depth of the U-Net set

to three.

Problem d # Params.
N = 32 N = 64 N = 128

||u↓ û||2,h ||u↓ û||⇑ ||u↓ û||2,h ||u↓ û||⇑ ||u↓ û||2,h ||u↓ û||⇑

Non. Const.

Di!.

2 283,713 3.9709e-02 1.5798e-01 3.1294e-02 1.2265e-01 3.3859e-02 1.4377e-01

3 412,225 3.9713e-02 1.5794e-01 3.1224e-02 1.2258e-01 4.9868e-02 1.1281e-01

4 541,889 - - 3.1110e-02 1.2282e-01 3.8937e-02 1.0907e-01

5 669,249 - - - - 3.6566e-02 1.0511e-01

Table 5: Accuracy of unsupervised predictions on non-constant di!usion problem for vary-

ing grid sizes N and U-Net depths d. We set the number of optimization steps to 4,000.

7 shows the accuracy of the finite di!erence method with backward Euler
for varying grid sizes. Here, we see that Algorithm 2 achieves comparable
accuracy to the finite di!erence method with backward Euler. However, we
do not see the same convergence as with the finite di!erence approach for
the trigonometric functions. The small number of optimization steps can
explain this lack of convergence and, again, the weakness of first-order op-
timizers like Adam. Figures 4 through 6 show the true solution, predicted
solution, and absolute di!erence for the first ten time steps of each prob-
lem. These figures show that our unsupervised approach produces visually
accurate solutions. Finally, Table 8 displays the errors for several choices
of activation functions at time t = 0.5. The errors are similar for ReLU,
Tanh, Swish [20], and identity activation functions. These results indicate
that linear activation functions (i.e., the identity) are su”cient for learning
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solutions to time-dependent problems.

Problem t
N = 32 N = 64 N = 128

||u↓ û||2,h ||u↓ û||⇑ ||u↓ û||2,h ||u↓ û||⇑ ||u↓ û||2,h ||u↓ û||⇑

Trig. (n = 1)

0.5 7.6825e-04 1.5388e-03 1.0661e-03 2.1703e-03 1.1562e-03 2.4109e-03

1.0 5.2059e-04 1.0459e-03 7.0987e-04 1.4189e-03 7.7541e-04 1.5364e-03

2.5 6.1710e-04 1.2354e-03 8.6825e-04 1.7483e-03 9.4440e-04 1.9382e-03

5.0 1.6629e-04 3.3075e-04 2.5692e-04 5.2649e-04 3.0442e-04 6.2141e-04

Trig. (n = 4)

0.5 6.0011e-03 1.1977e-02 1.3953e-03 2.9254e-03 3.2371e-04 9.0033e-04

1.0 3.6984e-03 7.3841e-03 8.5877e-04 1.8117e-03 1.9062e-04 5.3841e-04

2.5 5.4592e-03 1.0897e-02 1.3062e-03 3.1186e-03 8.4891e-04 2.8031e-03

5.0 1.9352e-03 3.8744e-03 4.8639e-04 1.3043e-03 9.8322e-04 2.5854e-03

Gaussian

0.5 3.0932e-03 3.8826e-02 7.1997e-04 1.0341e-02 1.8902e-04 2.5298e-03

1.0 1.9069e-03 2.3921e-02 4.4389e-04 6.3892e-03 1.3421e-04 1.4701e-03

2.5 2.8197e-03 3.5385e-02 6.5362e-04 9.5078e-03 2.7103e-04 2.3168e-03

5.0 1.0004e-03 1.2579e-02 2.8684e-04 2.6686e-03 3.1119e-04 9.0614e-04

Table 6: Accuracy of unsupervised predictions for varying grid sizes and time steps for

parabolic problems. The depth of the network is set to three, the number of optimization

iterations at each time step to 250, and the time step to 0.1.

Problem t
N = 32 N = 64 N = 128

||u↓ û||2,h ||u↓ û||⇑ ||u↓ û||2,h ||u↓ û||⇑ ||u↓ û||2,h ||u↓ û||⇑

Trig. (n = 1)

0.5 7.6693e-04 1.5299e-03 1.0560e-03 2.1106e-03 1.1255e-03 2.2507e-03

1.0 5.2033e-04 1.0380e-03 7.0797e-04 1.4151e-03 7.5314e-04 1.5060e-03

2.5 6.1623e-04 1.2293e-03 8.6455e-04 1.7280e-03 9.2434e-04 1.8484e-03

5.0 1.5534e-04 3.0988e-04 2.3116e-04 4.6204e-04 2.4942e-04 4.9877e-04

Trig. (n = 4)

0.5 5.9961e-03 1.1961e-02 1.3890e-03 2.7763e-03 2.8791e-04 5.7573e-04

1.0 3.7021e-03 7.3852e-03 8.5647e-04 1.7119e-03 1.7638e-04 3.5271e-04

2.5 5.4540e-03 1.0880e-02 1.2656e-03 2.5296e-03 2.6449e-04 5.2889e-04

5.0 2.8215e-03 5.6286e-03 6.5597e-04 1.3111e-03 1.3834e-04 2.7664e-04

Gaussian

0.5 3.0933e-03 3.8814e-02 7.1809e-04 1.0412e-02 1.8424e-04 2.4368e-03

1.0 1.9068e-03 2.3920e-02 4.4286e-04 6.4085e-03 1.1490e-04 1.4920e-03

2.5 2.8194e-03 3.5387e-02 6.5422e-04 9.5075e-03 1.6586e-04 2.2389e-03

5.0 1.4619e-03 1.8355e-02 3.3909e-04 4.9403e-03 8.4882e-05 1.1716e-03

Table 7: Finite di!erences with backward Euler errors on selected parabolic problems for

comparison. Here, the time step is 0.1.

Algorithm 1 may benefit from transfer learning (i.e., reusing weights from
previous problems) with a supervised counterpart that is trained on a large
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Problem Activation
N = 32 N = 64 N = 128

||u↓ û||2,h ||u↓ û||⇑ ||u↓ û||2,h ||u↓ û||⇑ ||u↓ û||2,h ||u↓ û||⇑

Trig. (n = 1)

ReLU 7.6775e-04 1.5420e-03 1.0746e-03 2.1598e-03 1.2400e-03 2.5946e-03

Tanh 7.6743e-04 1.5391e-03 1.0590e-03 2.1269e-03 1.1478e-03 2.3299e-03

Swish 7.6905e-04 1.5538e-03 1.0623e-03 2.0923e-03 1.1637e-03 2.4307e-03

Identity 7.6825e-04 1.5388e-03 1.0661e-03 2.1703e-03 1.1562e-03 2.4109e-03

Trig. (n = 4)

ReLU 5.9967e-03 1.1968e-02 1.5607e-03 4.1957e-03 9.2973e-04 2.7800e-03

Tanh 5.9970e-03 1.1968e-02 1.3906e-03 2.8266e-03 3.1624e-04 8.8251e-04

Swish 6.0061e-03 1.1990e-02 1.6013e-03 3.9862e-03 4.7380e-04 1.4040e-03

Identity 6.0011e-03 1.1977e-02 1.3953e-03 2.9254e-03 3.2371e-04 9.0033e-04

Gaussian

ReLU 3.0932e-03 3.8828e-02 7.3665e-04 1.0873e-02 3.8312e-04 3.3270e-03

Tanh 3.0930e-03 3.8808e-02 7.1797e-04 1.0419e-02 1.9917e-04 2.4221e-03

Swish 3.0933e-03 3.8830e-02 7.4640e-04 1.0099e-02 6.0038e-04 4.4619e-03

Identity 3.0932e-03 3.8826e-02 7.1997e-04 1.0341e-02 1.8902e-04 2.5298e-03

Table 8: Accuracy of unsupervised predictions for varying grid sizes and activation func-

tions at time 0.5. The depth of the network is set to three, the number of optimization

steps to 250, and the time step is 0.1.

labeled dataset. We randomly initialize the neural network weights in Al-
gorithms 1 and 2 (first time step only). This random initialization may
result in predictions with high errors at the beginning of training. With-
out optimal step sizes in our optimizer, these poor solutions may result in
slow convergence towards an optimal solution. Using transfer learning with
a pre-trained network that is trained in a supervised setting (i.e., with la-
beled training data), the initial predictions from our algorithms may be al-
ready close to optimal, resulting in faster convergence. One could view the
use of these pre-trained networks as a sort of preconditioner for our neural
network-based approach. Indeed, we see the benefits of transfer learning with
Algorithm 2 after the first time step. Instead of reinitializing the weights for
the subsequent time steps, we resuse the weights from the previous solution.
That allows us to use a small number of optimization steps (i.e., M = 250)
at each time for parabolic problems.

It is important to note that our methods for estimating the finite di!er-
ence solutions do not explicitly construct the finite di!erence matrix. Instead,
we use our neural networks to map the source term f to the approximate
finite di!erence solution. In this sense, we are learning the inverse mapping
of the finite di!erence matrix. From a numerical point of view, this provides
the advantage of not having to construct or store a finite di!erence matrix.
Instead, we implement the required stencil(s) for our problem in the loss
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function and apply them appropriately. Only having to implement the sten-
cils and not construct a finite di!erence matrix is also an advantage from an
implementation point-of-view.

The justification for the lack of non-linear activation functions in our
network is that the relationship between the source term f and the finite
di!erences solution uh is given by a system of linear equations of the form
Auh = f . In other words, we know a priori that our goal is to learn a
linear relationship between f and our estimated solution. In many machine
learning applications, the exact nature of the input and output relationship
is unknown and assumed to be highly non-linear. Hence, including non-linear
activation functions results in a network that learns a non-linear relationship
between inputs and outputs. The use of the identity function as an activation
puts us outside of the scope of the universal approximation theorem [21, 22,
23]. However, in our case, we do not need our neural network to be a universal
approximator. The role of the network is to learn a linear relationship for a
single example.

We utilize the PocketNet approach proposed by [7] in our proposed al-
gorithms. This approach takes advantage of the similarity between the U-
Net architecture and geometric multigrid methods to drastically reduce the
number of parameters, while maintaining the same accuracy as conventional
CNNs for medical imaging and scientific machine learning tasks [7, 24, 25].
Additionally, we replace transposed convolution with bilinear upsampling.
We find that these changes save time and memory and yield the same ac-
curacy that we see using conventional CNNs (i.e., doubling the number of
channels at every depth). These results indicate that smaller neural networks
(in terms of parameters) can achieve high accuracy for scientific machine
learning tasks.

We see in Tables 2 and 5 that the depth of the U-Net architecture does
not generally have a significant e!ect on our results. This indicates that,
regardless of depth, the U-Net architecture is su”ciently expressive to learn
a mapping from the right hand side f to an approximation of the finite
di!erence solution uh. However, non-U-shaped architectures like the HRNet
may also produce similar or improved results [26]. Additionally, the use of
residual or dense connections within the convolutions of our architecture may
also be beneficial [27, 28]. Such block designs have been shown to speed up
convergence to lower loss values for neural networks [29]. Finally, modifying
our existing architecture by adding deep supervision could also speed up
convergence to lower loss values in fewer iterations [30, 31].
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The use of the weighting parameter ϖ in (8) and (19) is necessary to
enforce the given boundary conditions. We arrived at our proposed values of
ϖ via a grid search over a range of possible values. However, finding optimal
values of weighting parameters like ϖ is an open question [32]. Future work
will explore this topic further.

5. Conclusions

The results presented above show the e!ectiveness of our proposed un-
supervised approaches for estimating the finite di!erence solution to elliptic
and parabolic problems. Unlike current neural network-based methods for
estimating the solutions of PDEs, our algorithms do not rely on training
data. Instead, they leverage the machinery of neural networks to estimate
the finite di!erence solution to a given problem directly. As a result, our
approach does not su!er from the generalization gap seen in PINNs or other
neural network-based approaches, which rely on training data.

Our approach could benefit finite di!erence solvers by producing better
initial guesses and/or acting as a preconditioner. With a few iterations,
Algorithm 1 can produce good initial guesses for iterative solvers, thereby
reducing the number of iterations required to solve the linear system resulting
from (2) or (9). This same idea can also apply to time-dependent problems,
but with initial guesses being produced at each time step. Additionally,
because we employ identity for activation functions, our neural networks are
linear. Hence, it may be possible to represent a pretrained architecture as
a matrix. This resulting matrix could then be used as a preconditioner for
finite di!erence solvers. This use of preconditioners and further testing on
other kinds of PDEs, like convection-di!usion and nonlinear problems, will
be the object of future work.
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Figure 4: True solution (top), predicted solution (middle) and absolute di!erence (bottom)

for the first ten time steps of the trigonometric problem presented in Section 2.4 with n = 1.
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Figure 5: True solution (top), predicted solution (middle) and absolute di!erence (bottom)

for the first ten time steps of the trigonometric problem presented in Section 2.4 with n = 4.
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Figure 6: True solution (top), predicted solution (middle) and absolute di!erence (bottom)

for the first ten time steps of the Gaussian problem presented in Section 2.4.
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