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Uncalled4 improves nanopore DNA and RNA 
modification detection via fast and accurate 
signal alignment
 

Sam Kovaka    1 , Paul W. Hook    2, Katharine M. Jenike3, Vikram Shivakumar1, 

Luke B. Morina2, Roham Razaghi2, Winston Timp    2,3 & Michael C. Schatz    1,3,4

Nanopore signal analysis enables detection of nucleotide modifications 

from native DNA and RNA sequencing, providing both accurate genetic 

or transcriptomic and epigenetic information without additional library 

preparation. At present, only a limited set of modifications can be directly 

basecalled (for example, 5-methylcytosine), while most others require 

exploratory methods that often begin with alignment of nanopore signal to 

a nucleotide reference. We present Uncalled4, a toolkit for nanopore signal 

alignment, analysis and visualization. Uncalled4 features an efficient banded 

signal alignment algorithm, BAM signal alignment file format, statistics for 

comparing signal alignment methods and a reproducible de novo training 

method for k-mer-based pore models, revealing potential errors in Oxford 

Nanopore Technologies’ state-of-the-art DNA model. We apply Uncalled4 to 

R NA 6 -m et hy la denine (m6A) detection in seven human cell lines, identifying 

26% more modifications than Nanopolish using m6Anet, including in several 

genes where m6A has known implications in cancer. Uncalled4 is available 

open source at github.com/skovaka/uncalled4.

Long-read single-molecule sequencers from Oxford Nanopore Tech-

nologies (ONT) and Pacific Biosciences (PacBio) have increasing utility 

in generating complete genomes and transcriptomes by improving 

resolution of complex DNA and RNA sequences1–3. These sequenc-

ers can also detect nucleotide modifications without any special-

ized library preparation, enabling genome-wide epigenetic profiling 

including within highly repetitive regions that could not be accurately 

aligned to with short reads4. Nanopore sequencing is unique in not 

relying on sequencing-by-synthesis, instead measuring electric current 

that varies over time as nucleotides pass through a pore. While many 

analyses only use the basecalled sequence, inclusion of the electric 

current can improve fidelity in several applications, including error 

correction5,6, real-time targeted sequencing7,8 and nucleotide modifica-

tion detection9. Furthermore, ONT is currently the only commercially 

available platform for directly sequencing RNA without generation 

of complementary DNA (cDNA), enabling detection of epitranscrip-

tomic modifications. Over 150 known RNA modifications are known 

to exist, although only a few can be comprehensively detected at the 

single-nucleotide level, with varying accuracy10.

Early nanopore sequencers exhibited a high error rate, which 

could be improved via signal-based polishing5 or advanced basecalling 

algorithms. However, a combination of improvements to sequencing 

chemistry and computational methods have decreased the average 

ONT DNA sequencing error rate to nearly 1%, making signal-based 

polishing largely unnecessary for DNA. This was achieved, in part, 

by a recent major DNA chemistry update to the r10.4.1 pore, which 

features two ‘reader heads’ rather than the one present in the previous 

standard, r9.4.1 (Fig. 1a). Direct RNA accuracy has lagged behind, where 

signal-based polishing can still improve splice site identification6. On 

the software side, modern basecallers use neural networks trained 
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Fig. 1 | Pore model and alignment methods overview. a, Schematics of ONT 

sequencing chemistries, their pore k-mer model current distributions, and 

nucleotide compositions of k-mers within current ranges indicated by dashed 

lines. b, A signal-to-reference dotplot of an Escherichia coli 16S rRNA read 

sequenced using ONT r9.4 direct RNA sequencing. Top panel shows the raw 

samples (black) plotted over the reference base it was aligned to, with the 

expected pore model current in white. Main panel shows the Uncalled4 read 

alignment (purple line) over the projected basecaller metadata alignment 

(orange dots). Side panels show per-reference coordinate summary statistics 

for the alignment. c, Schematic of Uncalled4 inputs, outputs and subcommands 

(Methods). d, A trackplot displaying heatmaps of many native (bottom) and 

IVT (top) E. coli 16S rRNA reads aligned by Uncalled4, colored by the difference 

between the observed and expected normalized current level. Top bar is colored 

by reference base, and an O6-methylguanine site is known to occur at position 

526. e, A refplot summarizing the distributions of differences between observed 

and expected normalized current levels for native (purple) and IVT (green) reads. 

e, A comparative signal-to-reference dotplot alongside distance (dist.) metrics 

between Uncalled4 and Nanopolish alignments of the same read, where line 

breaks in the distance plots correspond to regions masked by Nanopolish. norm., 

normalized.
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on known sequences to translate the electrical signal into nucleotide 

reads, with the network architecture and training data being major 

factors in their accuracy11. However, ONT basecallers do not provide an 

accurate mapping between individual bases and the signal segments 

that represent them, instead requiring signal alignment to obtain such 

a mapping.

The latest ONT basecallers can directly detect 5-methylcytosine 

(5mC) and 5-hydroxymethylcytosine (5hmC) from individual DNA 

reads12. In humans, 5mC is the most common DNA modification, with 

wide-ranging effects in cellular development usually via suppression 

of transcription, with aberrant DNA methylation a frequent hallmark 

of several types of cancer13,14. Progress has also been reported from 

ONT on direct RNA basecalling for 6-methyladenine (m6A), the most 

common RNA modification in humans, using the early access RNA004 

sequencing chemistry, currently limited to DRACH motifs (D = A, G 

or T; R = A or G; H = A, C or T) where over 60% of m6A sites occur in 

humans15. m6A is one of several known epitranscriptomic modifica-

tions, with diverse effects including transcript decay16,17, transcript 

stabilization18,19 and increased translational efficiency20. Beyond 5mC, 

5hmC and m6A in limited contexts, detection of other modifications 

requires specialized computational methods run after basecalling. 

Some methods infer modifications from basecaller errors, but these 

are highly derived results that are sensitive to changes in basecalling 

models10. Instead, the most advanced methods analyze the raw signal 

directly, usually in combination with basecalled reads and beginning 

with alignment between the signal and a nucleotide reference.

Nanopore signal alignment (also known as event alignment21,22, 

segmentation9 and resquiggling23) is analogous to standard nucleotide 

alignment in variant calling, where the read aligner is often separate 

from the variant caller. This is also the case for many RNA modification 

callers thatrely on Nanopolish21 or Tombo23, the two most commonly 

used signal aligners10. Signal alignment begins by translating the refer-

ence sequence into electrical current using a k-mer pore model, which 

maps each k-mer to the current expected when that combination of 

bases are in the pore. Processed read signal (for example, normalized) 

is then aligned to the expected reference current using a dynamic 

programming algorithm, such as dynamic time warping (DTW), as 

used by Tombo, or hidden Markov models, used by Nanopolish. The 

different methods generally produce similar, although slightly dif-

ferent alignments, with low-complexity sequences or noisy signal 

often resulting in large-scale disagreements. ONT basecallers can 

also output low-resolution signal alignments called ‘moves’, which 

approximately map blocks of 5–10 signal timepoints to basecalled read 

bases. Moves can be used in modification detection to approximately 

identify signal corresponding to a particular sequence, for example 

to extract signals representing 21–31 bases surrounding CpG sites24,25, 

however, moves lack single-nucleotide resolution and thus require 

correction for more comprehensive analysis. Comparisons between 

signal alignment methods are hindered by the lack of a ground truth 

or a shared file format, causing most modification detectors to only 

support one aligner. More substantially, Nanopolish and Tombo have 

also not been updated for recent changes to ONT software and chem-

istry: neither supports the new r10.4.1 DNA or RNA004 chemistries or 

POD5 signal format, and Tombo relies on deprecated single FAST5 files. 

A more up-to-date alternative to Nanopolish is provided by f5c (ref. 

22), a GPU implementation of the Nanopolish ‘eventalign’ algorithm 

with additional features including r10.4.1 DNA and RNA004 support, 

signal-to-read alignment, support for the open source SLOW5 format 

and an alternate BAM alignment encoding.

Here we present Uncalled4, a software toolkit for nanopore signal 

alignment, analysis and visualization (Fig. 1). Uncalled4 features com-

mand line tools and interactive visualizations for signal-to-reference 

alignments, methods for training new pore models, comparisons 

between alignment methods and modification level statistics. 

Uncalled4 uses a banded alignment algorithm guided by basecaller 

metadata, making it several times faster than Nanopolish or Tombo, 

and outputs an efficient and indexable BAM file that is directly con-

vertible to widely supported and human-readable file formats. We use 

Uncalled4 to train a DNA pore model for the r10.4.1 pore, and apply 

this model to 5mC detection in CpG contexts (5mCpG). We also show 

Uncalled4 outperforms Nanopolish and Tombo in RNA modifica-

tion detection using several different detection methods. We apply 

Uncalled4 and m6Anet to seven normal and cancer human cell lines 

and find 26% more sites supported by the m6A-Atlas than Nanopolish 

with equivalent precision, highlighting increased sensitivity in several 

genes with known m6A-related functions. Uncalled4 is implemented in 

C++ and Python, and is available open source at github.com/skovaka/

uncalled4.

Results
Alignment efficiency, accuracy and visualization
Analogous to Nanopore read mapping, Nanopore signal alignment 

produces a mapping between stretches of nanopore electrical cur-

rent and reference nucleotides. Conventional nucleotide alignments 

of basecalled reads (that is, from minimap2, ref. 26) determine the 

coordinates of the reference sequence, which is encoded into expected 

current using a k-mer pore model. Each pore model is specific to a 

particular sequencing chemistry, defined by molecule type (RNA or 

DNA), pore version (for example, r9.4.1, r10.4.1), sequencing speed 

(for example, 400 bases per second (bps)) and the output nucleotides, 

including possibly one or more modifications (for example, 5mCpG). 

The number of nucleotides affecting the current level varies by pore, 

with r10.4.1’s double reader head necessitating longer k-mers than r9.4.1 

and reduced noise in RNA004 enabling longer k-mers than RNA001 

(Fig. 1a). In both DNA models, we find purines (A and G) at the central 

base enriched at low current levels and pyrimidines (C and T) enriched 

at high current levels, while the exact effect at each position varies 

between r9.4.1 and r10.4.1. RNA has a weaker high-level relationship 

between nucleotide content and current, with less consistency in which 

base has the dominant effect. We also note that all direct RNA pores 

(RNA001, RNA002 and RNA004) have highly similar current character-

istics (Extended Data Fig. 1), although they differ in sequencing speed, 

yield and basecalling accuracy (Supplementary Note 1).

Uncalled4 uses basecaller-guided DTW (bcDTW) to rapidly 

and accurately align nanopore signals either to a reference genome 

and/or transcriptome (signal-to-reference) or to basecalled reads 

(signal-to-read) (Fig. 1b and Extended Data Fig. 2). While signal-to-read 

alignment is a promising method that avoids errors caused by genetic 

variation between the sample and the reference, most modification 

detection methods take advantage of the shared coordinate system 

and lack of basecaller errors provided by signal-to-reference alignment 

(Extended Data Fig. 3 and Supplementary Note 1).

Uncalled4 encodes signal alignments as per-reference-position 

statistics (that is current mean, current standard deviation and dwell 

time; Fig. 1b), which are efficiently stored in BAM tags alongside con-

ventional nucleotide alignments. These BAM files can be either pro-

duced by Uncalled4’s bcDTW algorithm via the align subcommand, 

or by Nanopolish, f5c or Tombo via the convert subcommand (Fig. 1c). 

We compare Uncalled4 with Nanopolish, Tombo and f5c alignments 

of DNA from Drosophila melanogaster (r9.4.1 and r10.4.1) and RNA 

from the human embryonic kidney 293T (HEK293T) cell line (RNA001 

and RNA004). Uncalled is substantially faster than Tombo (2.9–6.8×), 

Nanopolish (1.7–1.9×) and f5c (1.3–2.7×, using a GPU with default param-

eters) (Table 1). The computational performance of Uncalled4 varies 

by molecule and pore type, and the file sizes grow linearly with the 

number of reads (Supplementary Fig. 1). The Uncalled4 compressed 

and indexable BAM format is over 20 times smaller than the Nanopol-

ish or f5c raw eventalign format and six times smaller than eventalign 

with gzip compression (Table 1 and Supplementary Fig. 1). Uncalled4 

also supports read signal input from FAST5, SLOW5/BLOW5 (ref. 27) 

http://www.nature.com/naturemethods
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and POD5 files, the last of which is the new ONT standard and not sup-

ported by Nanopolish, Tombo or f5c.

The median absolute difference (MAD) between per-k-mer normal-

ized mean read current and the pore model can be used as an approxi-

mate measure of alignment quality, where values closer to zero indicate 

a closer match between the read and reference (Extended Data Fig. 3a). 

Uncalled4 has the lowest MAD for RNA004, and is within 0.004 nor-

malized units of the lowest MAD for RNA001, r9.4.1 DNA and r10.4.1 

DNA (Table 1 and Supplementary Table 1). Nanopolish and f5c fail to 

output 9–14% of sites that are covered by basecalled alignments, mostly 

due to masking sites that match the model poorly, which reduces 

the model MAD but also reduces sensitivity around modifications 

that strongly affect the current (Extended Data Fig. 4). Uncalled4 and 

Tombo perform less site-level masking, with Uncalled4 only masking 

sites around large insertions or deletions (>10 nt by default), however, 

Tombo only outputs 76% of basecaller-covered r9.4.1 DNA sites, mostly 

due read-level filtering likely caused by low-complexity sequences. 

Model MAD is therefore a limited metric, since higher MAD should 

be tolerated to accommodate nucleotide modifications and other 

‘noisy’ signals.

We also compare Uncalled4 to other signal aligners by measur-

ing distances between alignment coordinates of pairs of alignment 

methods (Fig. 1e and Supplementary Table 2), or between each align-

ment method and the basecaller ref-moves (Table 1 and Supplemen-

tary Table 1). Uncalled4 alignments consistently average within one 

nucleotide of the ref-moves and consistently perform best in mean 

signal-to-reference distance due to a higher frequency of large-scale 

alignment errors in Nanopolish, Tombo and f5c alignments (Supple-

mentary Fig. 2 and Supplementary Note 2).

Read signal and pore model characteristics
The nucleotide composition of k-mers at different current levels 

(Fig. 1a) demonstrate a complex relationship between nucleotide posi-

tion and current. This can be quantitatively summarized by comput-

ing its ‘substitution profile’: the average normalized current change 

observed by substituting each base at each position for every k-mer in 

the model (Fig. 2a). We call the k-mer position with the most influence 

on current level the ‘central base’, and observe generally less influence 

at positions further from the central base, with the exception of r10.4.1 

where a secondary reader head generates a smaller, but consistent 

secondary effect near the beginning of the k-mer. In contrast to the 

DNA models, the profile of the RNA001 model is highly similar to the 

central five bases of RNA004, suggesting that the two RNA pores are 

structurally similar (Fig. 1a).

The reported intent of r10.4.1’s double reader head is better accu-

racy around homopolymers. Homopolymers longer than the span of 

the reader head register little-to-no change as the same bases repeat-

edly pass through the pore, generating a higher frequency of deletions 

(Fig. 2b). Supporting this intent, we find r10.4.1 has a lower frequency of 

deletions in homopolymers nine nucleotides or longer in the Drosoph-

ila melanogaster genome compared to r9.4.1 (Fig. 2c). The deletion rate 

varies depending on which nucleotide the homopolymer is composed 

of, more so than the overall difference between r9.4.1 and r10.4.1, and 

is highest in cytosine with 26% of reads containing a deletion.

The length of homopolymers longer than the span of the pore 

(for example, 9-mers) can be estimated based on the dwell time, which 

measures how long the homopolymer occupied the pore. Such esti-

mates are complicated by the high variability of dwell time, where the 

standard deviation of per-k-mer dwell times (14 raw samples for r10.4.1) 

is larger than the median (eight raw samples for r10.4.1) (Fig. 2d). Dwell 

time is also affected by sequence identity, depending both on the 

sequence at the pore and upstream where the motor protein is bound28. 

The position-specific influence of sequence on dwell time can be quan-

tified by computing the median dwell time for each 5-mer at each offset 

relative to the central pore position, then computing the standard 

deviation of median dwell times for each set of 5-mers at each offset 

(Fig. 2e). Dwell time is usually most affected by the sequence 11–13 bases 

upstream, likely due to interactions with the motor protein, except in 

r10.4.1 DNA where the effect is slightly stronger within the pore. Dwell 

time standard deviation correlates with the mean dwell time, with 

the slowest sequencing speed (RNA001 70 bps) yielding the high-

est overall standard deviation. Guanine (G) generally increases dwell 

time, while cytosine (C) generally decreases dwell time, although the 

effect depends on the position relative to the pore and motor protein  

(Supplementary Fig. 3). These dwell time effects likely influence base-

calling, particularly in homopolymers where it is the primary feature 

that determines length.

Uncalled4 provides a method to iteratively train pore models by 

repeatedly aligning signal and averaging signal characteristics for 

each k-mer (Methods and Supplementary Note 3). We use this training 

Table 1 | Alignment time, disk space usage and distance from projected basecaller alignments for Uncalled4 and 
comparable Nanopore signal aligners

Sequencing chemistry Signal aligner File size (MB) Time Percentage of sites 

masked (%)

Model MAD Median ref-moves distance

Sig-to-ref Jaccard

DNA r9.4

Uncalled4 131.04 350.6 3.36 0.0908 0.3750 0.6000

f5c 3,212.52 530.0 14.03 0.0865 0.3750 0.5833

Nanopolish 3,212.52 653.8 14.03 0.0865 0.3750 0.5833

Tombo 389.45 / 640.26 1015.0 23.66 0.2899 0.7000 0.8148

DNA r10.4
Uncalled4 132.25 244.7 2.62 0.1017 0.6429 0.7500

f5c 3,706.41 574.4 10.54 0.0977 0.6429 0.7500

RNA001

Uncalled4 31.97 113.9 1.27 0.1355 0.5714 0.7222

f5c 737.39 144.7 9.29 0.1369 0.5333 0.7143

Nanopolish 737.50 194.9 9.29 0.1369 0.5333 0.7143

Tombo 95.07 / 254.95 772.8 1.69 0.1317 0.6897 0.8182

RNA004
Uncalled4 32.91 63.7 1.96 0.0937 0.2500 0.5000

f5c 541.68 70.6 9.50 0.1107 0.1304 0.5500

Tombo stores signal alignments alongside raw signal data in single FAST5 files, so space usage is reported as ‘additional space’/‘total FAST5 size’. ‘Percentage of sites masked’ indicates the 

fraction of per-read reference positions that were covered by basecalled read alignments but not by the signal aligner. ‘Model MAD’ is the MAD between per-read k-mer current means and the 

pore model. Sig, signal. Bold indicates the best performing method in each category.
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procedure on PCR-amplified D. melanogaster DNA sequenced using 

r9.4.1 and r10.4.1 pores, showing strong agreement with correspond-

ing pore models released by ONT (Extended Data Fig. 5). A notable 

set of outlier k-mers between the Uncalled4 and ONT r10.4.1 400-bps 

model have a consistent NNNNTVTTN motif (N, any base; V, not T), 

possibly caused by errors in the ONT model as evidenced by the k-mer 

substitution profile, comparison to ONT’s r10.4.1 260-bps model and 

modification detection performance (Extended Data Fig. 5b–d and 

Supplementary Note 8). We also trained a r9.4.1 direct RNA (RNA002) 

model using in vitro transcribed (IVT) human HeLa cell line data, and 

the resulting model strongly correlates with both ONT’s legacy ‘rna_

r9.4_180mv_70bps’ and the RNA004 model, again demonstrating high 

similarity in current characteristics of these sequencing chemistries 

(Supplementary Note 3 and Extended Data Fig. 1b).

DNA modification model training and detection
To explore the effect of DNA modifications on the r10.4.1 DNA sequenc-

ing, we sequenced D. melanogaster DNA treated with CpG methyltrans-

ferase M.SssI to broadly modify CpG sites with 5mC (5mCpG), with 

an average per-site methylation rate of 88% estimated by the Guppy 

basecaller (v.6.4.8, high-accuracy model). We trained a 9-mer model 

on the 5mCpG D. melanogaster dataset and compared the current lev-

els to the unmodified model, confirming that k-mers with CpG in the 

central position were the most divergent (Fig. 3a and Supplementary 

Fig. 4a–c). In contrast, CpGs in the first five k-mer positions (secondary 

reader head) provide almost no information (Supplementary Fig. 4a). 

We also used Uncalled4 and f5c to directly detect 5mCpG methylation 

by comparing current levels between PCR and 5mCpG D. melanogaster 

r10.4.1 data using two-sample Kolmogorov–Smirnov (KS) test statistics 

or z-scores to compare current distributions surrounding CpG sites 

(Supplementary Note 4). The pattern of KS statistics and z-scores was 

highly similar for Uncalled4 and f5c, both showing a primary and sec-

ondary peak in each statistic, consistent with r10.4.1’s double reader 

head (Fig. 3b and Supplementary Fig. 4d,e).

In addition to naturally occurring DNA and RNA modifications, 

Uncalled4 can train models including artificial modifications. We 

demonstrate this by training a pore model on Saccharomyces cerevisiae 

DNA with constitutive incorporation of BrdU, a thymine analog used to 
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label newly synthesized DNA29 (Fig. 3c and Supplementary Fig. 5a,b). 

We compare this to a model trained on the same data using DNAscent29 

by aligning a mixture of BrdU-modified and unmodified reads using 

each BrdU pore model and a control DNA model, and find that the 

Uncalled4 model can better classify reads as BrdU by comparing cur-

rent levels in k-mers with a single ‘T’ in their central position (Fig. 3d, 

Supplementary Fig. 5c and Supplementary Note 5). We acknowledge 

that DNAscent uses a more sophisticated classification approach that 

enables classification of k-mers with ‘T’s outside the central position; 

our analysis demonstrates that model training improves accuracy for 

Uncalled4 alignments using this simple statistic.

Comparative RNA modification detection
To measure the effectiveness of Uncalled4, Nanopolish and Tombo in 

RNA modification detection, we begin with a comparative approach 

using two-sample KS statistics to measure dissimilarity of per-reference 

current distributions in two datasets with differing modification rates. 

We limit our analyses to RNA001 and RNA002, as there are currently far 

fewer publicly available RNA004 datasets and modification detection 

methods. We first use each aligner to compute KS statistics to detect 

a diverse set of 36 annotated Escherichia coli ribosomal RNA (rRNA) 

modifications by comparing native and IVT datasets, showing that 

Uncalled4 has consistently higher areas under the receiving-operator 
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curve (AUROC) and precision-recall curve (AUPRC) using 100× coverage 

at each site (Supplementary Fig. 6).

We next apply comparative methods to detect m6A using two 

human HEK293T cell line samples: wild-type and METTL3 m6A methyl-

transferase knockout (KO). Accuracy was estimated using m6ACE-seq 

labels filtered for METTL3-sensitive sites30. Using transcript-level KS 

statistics, Uncalled4 outperforms Nanopolish and Tombo in AUPRC 

and AUROC, both in all contexts and limited to DRACH motifs (Fig. 4a 

and Extended Data Fig. 6). We also input the Uncalled4 and Nanopolish 

alignments into xPore30, again yielding higher AUPRC and AUROC for 

Uncalled4 (Fig. 4a, Extended Data Fig. 6 and Supplementary Fig. 7). 

We additionally tested two methods for calling gene-level m6A sites: 

transcript-to-gene averaging and spliced genome alignment, the lat-

ter of which is a unique capability of Uncalled4 (Extended Data Fig. 7 

and Supplementary Note 6). Uncalled4 performs best in both AUPRC 

and AUROC using either gene-level detection method (Fig. 4a and 

Extended Data Fig. 8).

RNA modification detection with m6Anet
To detect RNA m6A sites without a matched control dataset we input 

Uncalled4 alignments to m6Anet (ref. 31), a specialized m6A detec-

tion method designed for Nanopolish that uses a neural network to 

call m6A modifications at DRACH sites on individual reads before 

aggregating them to the transcript level. We retrained m6Anet using 

Uncalled4 alignments of the same HCT116 dataset that was used in the 

default m6Anet model for Nanopolish (Methods). We then compare 

m6Anet performance on a single wild-type HEK293T sample aligned 

with Uncalled4 or Nanopolish with previously published HEK293T 

GLORI labels32 to estimate accuracy, demonstrating higher AUPRC and 

AUROC (Fig. 4b and Supplementary Fig. 8). Uncalled4 with m6Anet 

outputs 17% more candidate sites than Nanopolish due to less read- 

and site-level filtering, and Uncalled4 has consistently higher AUPRC 

when only including sites output by both aligners (intersection), by 

either aligner (union), or all sites sufficiently covered by basecalled 

alignments (cov ≥ 20×, Fig. 4b). Uncalled4 finds disproportionately 

more m6A sites in low-coverage regions (Fig. 4c and Supplementary 

Note 7), and the same trends are observed when sites are averaged to 

the gene level (Extended Data Fig. 9). We also used m6Anet to compare 

wild-type and METTL3-KO samples (Supplementary Note 7 and Sup-

plementary Fig. 9), and found Uncalled4 + m6Anet outperforms KS 

statistics and xPore in DRACH contexts using any aligner (Fig. 4a and 

Extended Data Figs. 6 and 8).

We next compared the prevalence of m6A modifications using 

m6Anet in seven human cell lines, consisting of three normal and 

four cancer tissues (Fig. 5a). We used two replicates for most samples, 

except for the human mammary epithelial cell (HMEC) line where 

only one replicate was available, and HEK293T where three were used 

(Supplementary Table 3). We used m6A-Atlas v.2 as our set of puta-

tively m6A-positive sites, noting that while this is an imperfect ground 

truth, the relative performance between different methods is similar 

whether GLORI or m6A-Atlas labels are used, showing it can be used to 

identify putative true positive (pTP) sites. (Supplementary Fig. 10 and 

Supplementary Note 8).

Beginning with transcript-level m6Anet calls on primary align-

ments, we find that Uncalled4 alignments yield consistently higher 

AUPRC and AUROC than Nanopolish on all samples (Supplementary 

Table 4). Uncalled4 also has generally higher recall and precision using 

the default probability cutoff of 0.9, with 18% more true positive m6A 

sites on average. The same patterns are observed when probabilities 

are averaged to the gene level, with more sites found by both aligners 

in every sample and Uncalled4 again finding 18% more true positives 

on average (Fig. 5a,b and Supplementary Table 5). Precision is lowest 

for NA12878 using either aligner, even more so than the other samples 

absent from m6A-atlas (HMEC and K562), likely because NA12878 has 

the lowest data quality as measured by observed yield, basecaller pass 

and fail rate and quality scores (Supplementary Table 3). To correct the 

variable precision estimates, we adjusted the probability thresholds 

for each sample such that each has equal precision of either 80, 85 or 

90% (Supplementary Table 4). Uncalled4 finds 27.3 and 28.1% more 

pTP sites on average at 80 and 85% precision respectively, but finds 

0.1% fewer pTP sites at 90% precision. The lesser performance at 90% 

precision is likely due to the unreliability of m6A-Atlas labels at this 

threshold, where notably Uncalled4 finds more pTP sites in HEK293T, 

the most represented cell line in the m6A-Atlas. We therefore use the 

set of modifications found at 85% precision for further analysis, yield-

ing higher recall than the default threshold in every cell line except 

NA12872 (Fig. 5a).

Uncalled4 finds disproportionately more m6A at sites at low cov-

erage due to Nanopolish’s pervasive masking (Fig. 5b). Sites found by 

either aligner are generally enriched around stop codons and in the 3′ 

untranslated region, consistent with previous findings (Extended Data 

Fig. 10a,b). Most m6A sites that are only found by Uncalled4 are in the 

m6A-Atlas, and most sites not present in the m6A-Atlas are found by 

both Nanopolish and Uncalled4 (Fig. 5c). For both methods, approxi-

mately half of all sites were only identified in one sample, 30–32% of 

which are absent from the m6A-Atlas. The total number of m6A sites 

generally decreases with the number of supporting samples, as does 

the putative false positive rate, with the notable exception of sites 

shared by all seven samples, which is greater than those shared by only 

six samples (Extended Data Fig. 10c). This set of m6A sites shared by 

all samples indicates transcripts that are broadly modified; for exam-

ple, the gene c-Myc has seven modifications found by Uncalled4 in all 

samples, where m6A has a well studied stabilizing effect on the c-Myc 

messenger RNA (mRNA)18.

Aggregating the per-sample gene counts further, we compute the 

total number of modifications found across all samples for each gene 

by Uncalled4 and Nanopolish, revealing Uncalled4 broadly finds more 

modifications than Nanopolish (Supplementary Table 5). Specifically, 

we find more m6A in 66% of genes, fewer in 18% of genes and an equal 

number in 16% of genes (Fig. 5d). To further explore differences in m6A 

count in genes across the healthy and cancerous cell lines, we focus our 

analysis on COSMIC Census tier 1 genes33, which identifies genes with 

mutations implicated in cancer development, and specifically only 

those with m6A present in all samples (Fig. 5e). Among this subset, the 

gene with the largest increase in m6A count between Uncalled4 and 

Nanopolish is ABL1, an oncogene that fuses with BCR in chronic myeloid 

leukemia (CML). ABL1 has been identified as a potential target of the 

ALKBH5 demethylase34, and it has been observed that m6A contributes 

to aberrant translation in BCR-ABL1 positive CML cases35. Incidentally, 

we find multiple m6A-containing reads that support the BCR-ABL1 

fusion in the CML K562 cell line, demonstrating the long-range infor-

mation provided by Nanopore sequencing (Fig. 5f). The gene with the 

next-highest increase in m6A count is the oncogene JUN, which is a 

known target of the METTL3 methyltransferase and its translation is 

promoted by m6A modification20. Several other genes in this subset are 

known to be transcriptionally destabilized by m6A: STK11 (ref. 16), ID3 

(ref. 36), AKT1, AKT2 (ref. 17) and NCOR2 (ref. 34). Others are known to 

be stabilized by m6A, such as c-MYC18 and THRAP3 (ref. 19).

Furthermore, among the top ten genes ranked by increase in m6A 

sites with Uncalled4 is TTC4, with a total 60 sites identified by Uncalled4 

and 35 by Nanopolish across all cell lines, notably none of which are in 

the m6A-Atlas (Supplementary Table 5). However, closer inspection 

revealed that m6A-Atlas assigned all TTC4 labels to the MROH7-TTC4 

readthrough transcript, which entirely contains TTC4 (Fig. 5g). Most 

reads that align to MROH7-TTC4 also multimap to TTC4, and TTC4 m6A 

modification has been implicated in lung sepsis response in mice37, 

suggesting that m6A-Atlas has mislabeled which gene the genomic 

coordinates should correspond to. TTC4 contains a 34 amino acid 

tetratricopeptide repeat, which makes short-read alignment less reli-

able and may contribute to inaccuracies in its m6A-Atlas labels.
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Discussion
Nanopore signal is information rich, encoding much more than 

the four canonical bases obtained from standard basecalling. 

Signal-to-nucleotide alignment is a critical step in extracting this 

information, but the process is error prone and few standards exist 

for comparing alignment methods. Uncalled4 features a rapid and 

highly accurate alignment algorithm guided by basecaller metadata, a 

compressed and indexed BAM-based signal alignment file format, and 

analyses to facilitate comparisons between signal alignment methods. 

Uncalled4’s pore model training method is fully reproducible, requires 

no previous k-mer based model and reveals potential errors in ONT’s 

official r10.4.1 DNA model. Accurate signal alignment enables more 

sensitive DNA and RNA modification detection than comparable signal 

aligners, enabling it to find substantially more RNA m6A sites in several 

disease-relevant genes using m6Anet in healthy and cancer human cell 

lines compared to Nanopolish.

A major benefit of epigenetic profiling with long reads is that the 

genetic identity is maintained, in contrast to short-read methods that 

involve base substitutions or read truncation, making it possible to 

comprehensively measure single-nucleotide, structural and epigenetic 

variation in one assay. In principle, these methods could be applied to 

a wide variety of samples with publicly available nanopore sequencing 

data, however, the raw signal required to identify modifications is often 

not made available, mostly due to large file sizes and lack of database 

support. Uncalled4’s BAM format efficiently provides the statistics 

required by most signal-based detection methods in a widely supported 

format. A similar BAM tag was recently introduced by Squiguliser38, a 

nanopore signal alignment visualizer in part inspired by an early ver-

sion of Uncalled4, however, this only stores signal coordinates and not 

the current-level data required for modification detection. The use of 

efficient and indexable data representations will become even more 

critical as long-read sequencing becomes more widely adopted. In 
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addition to widespread clinical sequencing with long reads, the Human 

Pangenome Reference Consortium is using both ONT and PacBio 

sequencing to assemble a haplotype-resolved human pangenome39. 

Long-read pangenomes present the opportunity and challenge of 

pan-epigenomic analysis, complicated by every cell having a potentially 

unique and dynamic epigenome, and multiple types of nucleotide 

modification present across species. Uncalled4 provides a step toward 

scaling such analyses as more data becomes available.

Even more daunting than pan-epigenomics, a pan-epitranscriptomic 

catalog would need to account for the underlying dynamic nature of 

the transcriptome and a much wider array of RNA modifications. The 

most well studied RNA modifications play an important role in RNA 

stability, mRNA splicing, mRNA export, translation efficiency and 

several other important roles40. The lack of training data is now the 

major factor preventing identification of most of the over 150 known 

RNA modifications. Certain modifications may also generate minute 

changes in signal, meaning accurate signal alignment is necessary to 

reveal these subtle changes. For modifications that can be detected 

but not identified for lack of accurate labels, Uncalled4’s visualizations 

(Fig. 1) and analyses can serve as useful exploratory tools.
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Our work showed that aggregating transcript-level m6A calls to 

the gene level is a straightforward approach to improve accuracy, how-

ever, this eliminates potentially interesting transcript-specific results. 

Detailed exploration of transcript-level modifications cannot rely 

solely on labels from short-read assays, which generally do not provide 

transcript-level specificity. Long-read methods must also be improved 

to accurately assign reads to transcripts in multi-isoform genes. Con-

ventional transcriptome alignment often maps reads to incorrect tran-

scripts by trimming alternatively spliced regions, or fails to include all 

potential mappings of fragmented reads, as shown here and in previous 

work41. Spliced genome alignment is an alternative approach that avoids 

isoform alignment ambiguity, but fully interpreting genome alignments 

would require mapping and disambiguating reads from the genome to 

transcriptome, similar to reference-guided transcriptome assembly42. If 

transcript-level modifications could be accurately identified, such meth-

ods could be applied to allele-specific modifications, similar to recent 

work in conventional transcriptomics2. Long reads are also well-suited 

for characterizing unannotated transcripts, or noncanonical transcripts 

generated by structural variation or circular RNAs, the last of which are 

associated with RNA modifications such as m6A (ref. 43).

We have presented a toolkit for nanopore signal alignment and 

analysis, focusing on applications in nucleotide modification detection. 

Signal alignment is useful in other applications, for example in several 

recent rapid signal mappers designed for targeted sequencing7,8,44,45. 

Uncalled4 could be useful in optimization of such approaches, and the 

Python module is already used by Sigmoni for basic signal process-

ing44. Uncalled4 will also be valuable in understanding future updates 

to nanopore sequencing chemistry, and will aid other signal-based 

methods in adapting to those changes.

Online content
Any methods, additional references, Nature Portfolio reporting sum-

maries, source data, extended data, supplementary information, 

acknowledgements, peer review information; details of author contri-

butions and competing interests; and statements of data and code avail-

ability are available at https://doi.org/10.1038/s41592-025-02631-4.
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Methods
Uncalled4 overview
Uncalled4 is a Python module and command line utility, with many 

computationally intensive subroutines implemented in C++ with 

Python bindings provided via PyBind11. The command line function-

alities are split into several subcommands (Fig. 1f): ‘align’ implements 

the basecaller-guided signal alignment algorithm, which outputs a BAM 

file by default: ‘convert’ converts between signal alignment formats, 

where BAM and eventalign formats support input and output, Tombo 

FAST5s only support input, and m6Anet and TSV files only support 

output; and ‘train’ iteratively applies the alignment algorithm to train 

pore models and outputs a directory with k-mer models produced 

in each iteration.The remaining commands are divided into analysis 

and visualization. The analysis commands are refstats, which outputs 

reference-level statistics (for example, KS statistics), readstats, which 

outputs read-level statistics (for example, mean normalized model 

difference) and compare, which compares two BAM files containing 

the same set of reads aligned using difference methods (for example, 

Uncalled4 and Nanopolish). Visualization commands display interac-

tive Plotly visualization, either as HTML files exportable to SVG or PNG, 

or as web browser sessions: dotplot displays one or more alignments of 

a signal read (Fig. 1b,c), trackplot displays one or more alignment tracks 

of many reads aligned to a reference region (Fig. 1d) and the browser 

command runs a local Dash web server that displays an interactive 

alignment track thatcan be clicked to display summary statistics, a 

dotplot and per-reference statistics distributions (Fig. 1e).

The align command is described in the following ‘Signal preproc-

essing’ and ‘Basecaller-guided DTW’ sections, convert in the ‘Alignment 

encoding and formats’ section, train in ‘Pore model training’, analysis 

commands in ‘Analysis of signal alignments’ and visualization com-

mands in ‘Visualizations’.

Signal preprocessing
Before alignment, the raw nanopore electrical signal must be preproc-

essed to reduce noise and correct for systematic bias in the current 

levels. First, the individual sensor readings (raw samples) are seg-

mented into ‘events’ using the same algorithm as UNCALLED8, which 

uses rolling t-tests to group samples with similar current levels. This 

groups signal representing the same nucleotides, although variable 

sequencing speeds result in frequent ‘stays’ (consecutive events rep-

resenting the same k-mer, roughly 50% of events) and fewer frequent 

‘skips’ (an event representing multiple k-mers, ~1–5% of events). These 

events are stored with their sample start, length (proportional to dwell 

time), current mean and current standard deviation. Event detection 

parameters are chosen depending on the sequencing chemistry, where 

RNA uses longer t-test window lengths than DNA to adjust for the slower 

sequencing speed.

After event detection, the event current means are iteratively 

normalized to correct for systematic deviation from the pore model. 

Each iteration performs a linear transformation of the read signal 

defined by a multiplicative scale factor and an additive shift. The first 

iteration transforms the event mean currents (E) such that their distri-

bution has the same mean and variance as the pore model k-mer mean 

currents within the reference coordinates (K) indicated by the base-

caller alignments: scale = σ (K) /σ (E) ; shift = μ (K) − scale × μ (E)

 (where σ 

is the standard deviation and μ is the mean). This is similar to the 

‘method-of-moments’ widely used as a simple normalization 

method8,46,47, but using the reference sequence rather than assuming 

a random k-mer distribution. The second iteration performs linear 

regression between the aligned current means and the corresponding 

reference k-mer model current, where scale is the output slope and 

shift is the intercept, importantly averaging all raw samples aligning 

to each k-mer such that each k-mer contributes to the regression 

equally regardless of dwell time. This second iteration is not performed 

in the train subcommand by default to avoid over-fitting to an 

error-prone model. The Theil–Sen estimator, a nonparametric regres-

sion algorithm used by Tombo, was also tested, but this was found to 

be less accurate and slower than simple linear regression.

bgDTW
Uncalled4 uses DTW to align preprocessed signal to a reference 

sequence guided by basecalled read alignments. DTW is a widely used 

dynamic programming algorithm that has previously been applied to 

nanopore sequencing by Tombo and others23,46. Nanopolish uses a hid-

den Markov model for alignment, which uses more complex transition 

probabilities that are trained on real data, but is otherwise similar to 

DTW in time and space complexity. The most basic form of DTW has 

O(N × M) complexity, where N is the number of read events and M is the 

number of reference k-mers. This can be improved using banded align-

ment, where the dynamic programming matrix is only filled in along the 

diagonal where the optimal alignment path is usually found. Tombo, 

Nanopolish and f5c both use adaptive banded alignment, where the 

band position is adjusted as alignment progresses to always be centered 

on the currently most probable path. Uncalled4 uses the standard DTW 

recursive cost function to fill the dynamic programming matrix with 

the addition of a multiplicative penalty for ‘skips’:

D [i, j] = cost (i, j) +

⎧

⎪

⎨

⎪

⎩

0i = 0 ∧ j = 0

∞i < 0 ∨ j < 0

min (D [i − 1, j − 1] ,D [i − 1, j] , skip ∗ D [i, j − 1]) else

⎫

⎪

⎬

⎪

⎭

where cost(i,j) is the difference between the normalized mean current 

of event i and the model k-mer at index j, and skip = 2 by default.

Uncalled4 uses a dynamic banding algorithm similar to that 

described by f5c (ref. 22), but the band placement is chosen before 

alignment begins using the basecaller ‘moves’ metadata. Basecallers 

such as Guppy and Dorado can optionally output ‘moves’ that represent 

approximate alignments between the signal and the basecalled read. 

These moves have low-resolution (five samples for DNA, ten for RNA), 

and often deviate from the true alignment by one or more reference 

positions. Uncalled4 projects these basecaller moves into reference 

coordinates based on the basecalled alignment cigar string, then cent-

ers the DTW bands on the ref-moves (Extended Data Fig. 2). This allows 

Uncalled4 to use a much narrower bandwidth (25 by default) than Nano-

polish or Tombo, making alignment faster and preventing alignments 

from straying too far from the truth. Insertions and deletions (indels) 

that are larger than the bandwidth would cause a discontinuity in the 

band placement, so these are ‘spliced’ out of the read or reference, 

respectively, if they are above a threshold (ten by default) based on the 

ref-moves coordinates. Note Uncalled4 does not disrupt alignments 

over small indels, as these are a frequent basecaller error that can often 

be accurately aligned over. For deletions, the ‘splicing’ generates k-mers 

that are not present in the reference, which many downstream tools 

cannot handle, so these are masked and not included in the output by 

default. However, this can be disabled with the ‘–unmask-splice’ option.

Uncalled4 encodes alignments as per-reference-coordinate sta-

tistics (‘layers’, below), at a minimum consisting of raw sample coordi-

nates assigned to each site. This is unlike Nanopolish eventalign, which 

outputs multiple consecutive events aligning to the same reference 

position. The first step of most modification detection algorithms is 

to average these statistics on the nucleotide level, which is straight-

forward for the average current, but notably the current standard 

deviation cannot be accurately computed without re-analyzing the 

original raw signal. Uncalled4 outputs accurate per-nucleotide current 

standard deviations, which Tombo can also do via an optional flag. A 

consequence of this encoding is that ‘stays’ and ‘skips’ are not explicitly 

encoded by default. Skips can be identified by multiple consecutive 

reference positions having the same signal coordinates. Nanopolish 

masks skips and represents them as missing data. Uncalled4 penalizes 
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skips in the DTW cost function (2× for standard alignment, 4× for pore 

model training), and they can be masked via the ‘–mask-skips [all|keep_

best]’ option, which removes either all grouped positions or all but the 

closest to the reference current. Skips are masked during pore model 

training to reduce alignment errors, however, for modification detec-

tion we found that simply assigning the same values for each skipped 

position resulted in much higher recall with little change in precision. 

This reflects that modifications inherently disrupt signal alignment 

by deviating from the expected current, sometimes resulting in skips, 

and so masking skips removes useful information. This effect was most 

marked in RNA, where the motor speed is less consistent and skips may 

be caused by motor ‘slippage’. Stay and skip rate can be computed by 

including the command ‘uncalled4 align–count-events –tsv-out …’, 

which includes the number of events aligned to each reference posi-

tion. Counts greater than one indicate stays, while fractional counts 

indicate the inverse of the number of skipped positions (for example, 

0.5 indicates two positions, 0.25 means two positions).

Alignment encoding and formats
Uncalled4 represents each signal alignment as a set of 

per-reference-position statistics called alignment ‘layers’. All align-

ments must include the ‘length’ layer, which indicates how many raw 

samples were aligned to each reference position, and usually include 

the current mean and standard deviation (‘current’ and ‘current_sd’). 

Reference coordinates are defined relative to the ‘central base’ in the 

pore model, determined by the highest average per-position change 

in the model’s substitution matrix (Fig. 2a). The current statistics are 

omitted for ref-moves due to their inaccuracy, and Tombo does not 

compute ‘current_sd’ by default. Additional layers can be derived from 

the base layers and/or the reference sequence, such as ‘seq.kmer’ (ref-

erence k-mer), ‘dtw.model_diff’ (absolute difference between the read 

current and model current) or ‘mvcmp.dist’ (distance from ref-moves) 

(Supplementary Table 6). Layer coordinates are defined relative to the 

pore model’s central position determined by its substitution profile 

(Fig. 2a). Layers can also be offset from this position by a fixed num-

ber of reference coordinates (for example, dtw.dwell-11), facilitating 

generation of dwell time models at different pore offsets, for example 

(Fig. 2e). One minor limitation of this reference-oriented encoding is 

that Uncalled4 cannot output event-level statistics, but rather averages 

over multiple events aligned to the same position. Tombo stores align-

ments in a similar manner, while Nanopolish outputs per-event statis-

tics. Most modification detection tools simply average these statistics 

over reference coordinates, and in doing so cannot accurately compute 

the true per-base current standard deviation without re-querying the 

raw signal file (that is FAST5, SLOW5 or POD5). Uncalled4 computes the 

true current standard deviation at each position, and can optionally 

output the number of events aligned to each position.

Uncalled4 primarily stores signal alignments in BAM tags, along-

side the conventional basecalled alignments that were used to guide 

bcDTW. This format differs from Nanopolish basecalled read and 

alignment paths are fully preserved, and unlike f5c’s similar format, 

Uncalled4 includes current means and standard deviations required 

for modification detection. This is accomplished in a space-efficient 

manner by storing the alignment layers in 16-bit integers. Raw signal 

coordinates (‘us:’ tag) are encoded as positive values indicating the 

number of aligned samples at each consecutive reference position, 

negative values indicating masked signal (that is no reference k-mers 

assigned to that stretch of signal), and zeros indicating ‘skip’ events 

(that is, no signal assigned to that reference position). Most positions 

fit within 16-bit integers, and for the few outliers that cannot, we reserve 

the maximum value of 216-1 to be grouped with the subsequent length 

entry. Reference coordinates (‘ur’: tag) are encoded as a series of ‘start’ 

and ‘stop’ values indicating stretches of continuous alignment, with 

breaks caused by introns or deletions greater than ‘–del-max’ (10 nt 

by default). The total span of the reference coordinate blocks should 

be equal to the number of nonzero elements in the ‘us:’ tag, and the 

sum of the absolute values of ‘us:’ should equal the length of the raw 

signal. Current means (‘uc:’ tag) and standard deviations (‘ud:’ tag) 

are represented as 16-bit fixed-precision floating point values cor-

responding to normalized current levels ranging from −5.0 to 5.0 by 

default, representing a range of five standard deviations from the mean. 

Masked positions can be assigned a ‘null’ value equal to −216-1, allowing 

for representation of masked signal aligned to a mask reference posi-

tion, which is necessary to mask large insertions or deletions and to 

represent pervasive masking in Nanopolish alignments. Normalized 

units can be converted to picoamps, or whichever units are defined by 

the pore model, using parameters stored in JSON format in the BAM 

header. This JSON header stores additional information on the tag 

labels, fixed-point scaling factors, reference and raw signal paths, and 

other pore model metadata. Normalization parameters are stored in 

the ‘un’ tag (that is scale and shift), which can be used to linearly scale 

the calibrated raw signal into the normalized signal that corresponds 

to the normalized mean values in the ‘uc’ tag. The addition of the signal 

alignment tags increases the BAM file size by 2–4-fold, but is still several 

times smaller than the Nanopolish and Tombo formats (Table 1).

In addition to the BAM format, Uncalled4 supports two text-based 

output formats: ‘eventalign’ and ‘TSV’. Eventalign is based on Nano-

polish’s default tab-delimited output format, and is mainly included 

for compatibility with modification detection tools such as xPore 

and m6Anet. ‘TSV’ is a customizable tab-delimited format, which can 

include any of the alignment layers or comparison statistics (below). 

These formats can be written directly by the ‘uncalled4 align’ com-

mand, or can be derived from an Uncalled4 BAM file via the ‘uncalled4 

convert’ command with the ‘–bam-in’ option. ‘uncalled4 convert’ can 

also convert Nanopolish eventalign files or Tombo FAST5 files into the 

BAM format, which is necessary for analysis and visualization of these 

alignments by Uncalled4.

Finally, to expedite m6Anet analysis and demonstrate the utility of 

the BAM alignment format, Uncalled4 includes a conversion function 

from a sorted BAM file to the m6Anet ‘dataprep’ format that collects 

signal features in a per-reference-coordinate JSON format. This can 

also be accomplished by first converting the BAM file to ‘eventalign’ 

format and using ‘m6anet dataprep’, however we found conversion 

from eventalign format was by far the largest bottleneck in m6Anet 

analysis. The sorted BAM format enables conversion in a single linear 

read of the file, making conversion many times faster than the random 

parallel file access required to convert from eventalign, especially on a 

shared compute cluster where parallel disk access is slow.

Analysis of signal alignments
Uncalled4 can perform analysis on any signal alignments in the BAM 

format, which can be divided into reference-level (refstats command), 

read-level (readstats command) and read-base-level (convert and 

compare). Reference-level analysis includes simple summary statistics 

such as mean and standard deviation of current levels and dwell times, 

or comparative statistics such as KS statistics between two samples. 

Similarly, read-level analysis outputs summary statistics of layers over 

entire reads, or segments of reads defined by reference coordinates. 

Basic and derived layers of individual reads at each reference coordi-

nate can be output in TSV format via the convert command. If basecaller 

moves are included in the BAM file, this can include ref-moves distance 

metrics (described below).

Uncalled4 can compare two different alignment methods 

applied to the same set of reads by inputting two sorted sig-

nal alignment BAM files to the compare command, producing a 

table of per-reference-coordinate signal Jaccard distances and 

signal-to-reference distances. These can also be visualized via the 

dotplot command (Fig. 1c). Signal Jaccard distance, the inverse of the 

Jaccard similarity, measures the degree of overlap between raw samples 

aligned to each reference coordinate: 1 − (A U B)/(A ∩ B), where A and B 
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are the sets of raw samples aligned to each reference coordinate. This 

varies between 0 and 1, where 1 indicates no overlap and 0 indicates 

perfect overlap. Signal-to-reference distance measures the average 

number of reference bases between the raw samples aligned to each 

coordinate. This is computed reciprocally for each method, computing 

the nucleotide distance for each raw sample aligned to each reference 

coordinate and then averaged between the two methods. These metrics 

can also be computed between a signal alignment method and the 

ref-moves used to guide Uncalled4 alignment, via the convert com-

mand or in any of the visualizations. In this case, signal-to-reference 

distance is not computed reciprocally, instead only averaging over the 

alignment method raw samples and not the low-resolution ref-moves.

Visualizations
All visualizations produced directly by Uncalled4 are implemented in 

Python using Plotly, which produces interactive web browser-based 

plots that were exported to SVG format. The three main alignment 

visualizations (trackplot, dotplot and refplot) and also integrated into 

an interactive signal genome browser using Dash, a local web server 

designed for Plotly. Pore model profiles (Fig. 1a) are generated using 

pore models only by computing the absolute change in current gener-

ated substituting each base for each other base at every possible k-mer. 

This is efficiently implemented in Python and C++ using the ‘buffer 

protocol’, which allows for vectorization of k-mer operations. Some 

figures were also generated by the Python matplotlib library, in cases 

where reproducible interactivity is not necessary.

IGV visualizations were generated by encoding the per-read 

modifications defined m6Anet’s ‘data.indiv_proba.csv’ file into BAM 

modification tags. The reference coordinates were translated to read 

coordinates using the cigar string, and positions where an ‘A’ was not 

present in the read sequence were excluded. Site-level probabilities 

were multiplied by a constant factor (4) for visualization purposes. 

The IGV screenshots were exported to the SVG format and edited in 

Inkscape for clarity.

Pore model training
Pore model training is an iterative process, where in each iteration 

reads are aligned until every k-mer is represented a minimum number 

of times (500 by default), after which summary statistics (median 

and standard deviation) of signal characteristics (current mean, cur-

rent standard deviation and dwell time) are recorded and used as the 

pore model for the next iteration. In each training iteration, only posi-

tions with low signal-to-reference distance to ref-moves are included 

(mvcmp.dist <= 1, by default), which eliminates many alignment errors. 

Only one normalization iteration is applied during training, since linear 

regression is sensitive to outliers that are frequent in early training 

iterations. A higher skip penalty is also used for pore model training, 

and skipped positions are masked to further reduce alignment errors 

(equivalent to ‘uncalled4 align–skip-cost 4 –mask-skips keep_best’). 

This process requires an initial ‘draft’ model to use in the first itera-

tion. This draft model could be a canonical nucleotide model, for 

example with the goal of retraining it for modified nucleotides. We also 

developed a de novo initialization method, not requiring a previous 

k-mer pore model beforehand, using the ref-moves used in Uncalled4’s 

bcDTW algorithm. The ref-moves can be treated as standard signal 

alignments, although they are frequently one or two bases from their 

true position. To mitigate these inaccuracies, we began training using 

a short k-mer length to average-out the initial errors (1-mers for r9.4, 

4-mers for r10.4) and increased the k-mer length every n training itera-

tions (two iterations for DNA, three for RNA) until the desired k-mer 

length was reached.

The Uncalled4 train subcommand runs the training procedure 

for a specified k-mer length and number of iterations. It outputs a 

directory with the pore model for each iteration in a binary NumPy 

format, along with indexed alignment statistics used to generate each 

model. To progressively increase the k-mer length, the command was 

run once per-k-mer length, each time using the last pore model output 

in the previous iteration as the new initialization model. This training 

procedure is flexible, allowing for alternate initialization methods or 

k-mer expanding methods to be tested. We evaluated the effective-

ness of each training procedure based on the Pearson’s correlation 

coefficient between the trained model and ONT’s pore models. Inter-

mediate models with shorter k-mer lengths can also be evaluated by 

‘reducing’ ONT’s models by averaging the values of k-mers that share 

central bases, implemented in Uncalled4’s ‘PoreModel.reduce’ method.

The align subcommand will attempt to automatically detect 

the appropriate pore model to use based on metadata in the raw 

signal FAST5/POD5/SLOW5 files. If this cannot be detected, the user 

can specify a preset pore model (‘dna_r10.4.1_400bps_9mer’, ‘dna_

r9.4.1_400bps_6mer’ or ‘rna_r9.4.1_70bps_5mer’) using ‘–pore-model’ 

flag or by defining the ‘–flowcell’ and ‘–kit’ used for basecalling or a 

custom pore model can be provided. The default r9.4.1 DNA and RNA 

pore models are provided by ONT (https://github.com/nanoporetech/

kmer_models) under ‘legacy’ models, while for r10.4.1 DNA we use 

the Uncalled4 model trained on unmodified D. melanogaster data, as 

described above.

Modification detection, training and assessment
Comparative KS statistics were computed by the Uncalled4 refstats 

command (‘uncalled4 refstats current.mean ks …’), which uses the 

Python Scipy (v.1.10.1) package’s ‘ks_2samp’ function to compute 

two-sample KS statistics over per-k-mer mean currents between two 

samples. For Tombo alignments, we compared the output to the Tombo 

KS statistic output, with highly similar results. xPore was run on Nano-

polish using recommended parameters, and on Uncalled4 via conver-

sion to the eventalign format. Transcript-level modification calls were 

translated to the gene level using a custom Python script (‘t2g.py’) 

provided with Uncalled4 (Extended Data Fig. 8), which uses a GTF anno-

tation to add gene IDs and coordinates to a tab- or comma-delimited 

file, and these values were averaged over each gene using the Pandas 

‘groupby’ operation to take the mean of site-level probabilities. Unless 

otherwise specified, only sites with at least 20× coverage by basecalled 

reads were considered for modification detection.

m6Anet was trained for Uncalled4 alignments on the HCT116 cell 

line from the Singapore Nanopore Expression Project (replicate 3)48, 

which was originally used for the default m6Anet model31. These data 

were re-basecalled using Guppy v.6.4.8, and we also retrained Nanopol-

ish to assess the effect of re-basecalling. m6A labels obtained from ref. 

31 were provided in transcript coordinates, with sites divided by-gene 

into ‘train’, ‘test’ and ‘validation’ sites. The recommended training 

procedure only included primary transcriptome alignments, and we 

noted that many reads aligned to a different transcript from the same 

gene than was listed in the training data. We therefore mapped the 

training data to gene-level coordinates, then back to transcript level 

using the transcripts present in the re-basecalled data, maintaining the 

same ‘train’, ‘test’ and ‘validation’ gene assignments.

Precision-recall curves and receiver operator characteristic (ROC) 

curves were visualized and the corresponding area under the curve 

were computed using Scipy. Both these metrics measure recall, also 

known as true positive rate, defined as TP/(TP + FN) (TP is true posi-

tive count, FN is false-negative count). Accurate estimation of false 

negative is complicated by prefiltering performed by tools such as 

xPore and m6Anet, where many sites are not assigned a probability and 

excluded from the output. We found many of these sites are actually 

modified, and so not counting these decreases the false-negative count 

and thus falsely increases the recall (Fig. 4b and Extended Data Fig. 7). 

We used two strategies to compensate for this. For the transcript-level 

HEK293T results, we computed coverage from minimap2 alignments 

of basecalled reads, only considering read endpoints and not internal 

deletions, and included all sufficiently covered (20×) sites by filling in 
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a probability of zero. For the gene-level results, different alignment 

strategies cover different sites, and so we simply took the union of all 

sites covered by each tool and filled missing values with probability 

zero. Many sites with probability zero can generate a large ‘jump’ at 

the end of precision-recall and ROC curves, making the area under 

the curve estimate less informative. For precision-recall, we use the 

‘average precision’ definition of AUPRC, which essentially treats the 

curve as a stepwise function rather than using the trapezoidal rule for 

area calculation, which is more robust to skewed datasets. There is no 

comparable alternative for AUROC, but visual inspection suggests the 

overall trends would be the same regardless.

Data processing
All nanopore read data were basecalled with Guppy v.6.4.8 using 

high-accuracy models with the ‘–moves_out’ option, with the exception 

of Tombo alignments where an earlier version of Guppy (v.6.0.1) that sup-

ported output of basecalled FAST5 files required for Tombo. 5mCpG call-

ing was also performed using the Guppy 5mCpG high-accuracy model. 

Reads were aligned using Guppy’s builtin minimap2 alignment option, 

which encodes the ‘moves’ basecaller metadata in primary alignment 

tags. We also provide a Python script that copies these tags into supple-

mental and secondary alignments for efficient alignment with Uncalled4 

(‘bamprep.py’). To re-align reads while preserving basecaller metadata, 

for example to compare spliced genome alignments with transcriptome 

alignment, we converted the primary BAM alignments to FASTQ with the 

relevant tags in the header using the command ‘samtools fastq -T mv,ts’, 

then aligned using minimap2 (v.2.16) with the ‘-y’ option to copy tags 

from the headers. Coverage of minimap2 basecalled read alignments 

was computed using the bedtools49 command ‘bedtools genomecov -d 

-pc’ to count the number of reads overlapping each adenine or DRACH 

site, only considering read start and end sites and not internal deletions.

The D. melanogaster data were aligned to the D. melanogaster 

ISO1 release 6 reference genome (RefSeq GCF_000001215.4). The E. 

coli rRNA data were aligned to the 16S and 23S transcripts from the E. 

coli transcriptome (GenBank NC_000913.3), with modification labels 

obtained from ref. 28. All human datasets were aligned to a transcrip-

tome derived from GRCh38 Ensembl annotations v.91 obtained from 

ref. 30, or directly aligned to GRCh38 for spliced genome alignments 

(GCF_000001405.26). HEK293T METTL3-sensitive m6A labels were 

also obtained from ref. 30. HCT116 m6A training labels were obtained 

from ref. 31. All other m6A labels are from the m6A-Atlas v.2 (ref. 15) 

(accessed 12 May 2023).

Uncalled4 signal alignments were compared to Nanopolish 

(v.0.13.3), Tombo (v.1.5.1) and f5c (v.1.3). Nanopolish and f5c were run 

using the ‘–scale-events–signal-index’ options, which are required 

for Uncalled4, xPore and m6Anet. Timing was measured using a sin-

gle central processing unit thread, and f5c additionally used a Nvidia 

Quadro P5000 GPU with default parameters. KS statistics were pri-

marily computed with Uncalled4, and produced similar results to 

Tombo’s builtin KS statistic output, with minor differences attributed 

to read filtering and rounding error. We also compared Uncalled4 and 

Nanopolish RNA modification detection performance using xPore 

(v.2.1) and m6Anet (v.2.0.2). m6Anet was retrained using Uncalled4 

and Nanopolish alignments on re-basecalled HCT116 cell line data 

and labels originally used for m6Anet. GNU parallel was also used to 

efficiently run tasks in parallel.

DNA extraction
Genomic DNA was extracted from 15 newly eclosed D. melanogaster 

males of the Oregon-R strain (Bloomington stock center number 5, 

RRID BDSC_5). After selection, males were immobilized by freezing at 

−80 °C for 5 min. Next, the flies were crushed with a pipette tip in 200 μl 

of Buffer A (100 mM Tris-HCl, pH 7.5, 100 mM EDTA, 100 mM NaCl, 0.5% 

SDS). This was followed by a 30-min incubation at 65 °C. After incuba-

tion, 400 μl of KOAc:LiCl (prepared by combining one part of 5 M KOAc 

with two parts of 6 M LiCl) was added and the mixture was allowed to pre-

cipitate on ice for 10 min and then the precipitate was pelleted at room 

temperature at 14,000 rpm for 15 min. The supernatant containing  

nucleic acids was transferred to a clean microcentrifuge tube and 

isopropanol was added at a ratio of 600 μl per 1 ml of supernatant. The 

DNA was then precipitated by centrifuging at 14,000 rpm for 15 min at 

room temperature. Afterward, the supernatant was removed, and the 

pellet was washed with 1 ml of cold ethanol (70–75%). The pellet was 

then centrifuged again for 5 min before removing the ethanol wash. 

After air drying, the pellet was resuspended in ultra-pure water.

Genomic DNA shearing and amplification
D. melanogaster genomic DNA (roughly 500 ng) was diluted into a total 

volume of 49 μl of ultra-pure water. To shear the genomic DNA to 8-kb 

fragments, DNA was transferred to a g-Tube (Covaris, 520079) and 

centrifuged at room temperature for 1 min at 6,000 rpm. The g-Tube 

was then inverted and centrifuged again at room temperature for 

1 min at 6,000 rpm. Centrifugation was carried out on an Eppendorf 

Centrifuge 5425 (Eppendorf, 5405000646).

Sheared DNA was then amplified using the ONT protocol for 

low-input PCR (low-input-genomic-dna-with-pcr-sqk-lsk110-LWP_9117_

v110_revJ_10Nov2020-minion). First, the sheared DNA was mixed 

with NEBNext Ultra II End Prep Enzyme Mix and Reaction Buffer (NEB, 

E7180S) and incubated at 20 °C for 5 min followed by 65 °C for 5 min to 

repair fragment ends. DNA was then purified using 1× AMPure XP beads 

(Beckman Coulter, A63881) along with 70% ethanol. DNA was eluted 

in 31 μl of nuclease-free water and quantified with the Qubit broad 

range double-stranded DNA (dsDNA) assay (ThermoFisher Scientific, 

Q32850). Next, end-prepped fragments were mixed with PCR adapters 

(ONT, EXP-PCA001) and Blunt/TA Ligase Master Mix (NEB, M0367S) and 

incubated for 15 min at room temperature. DNA was then purified using 

0.4× AMPure XP beads and 70% ethanol. DNA was eluted in 26 μl of 

nuclease-free water at room temperature and quantified with the Qubit 

broad range dsDNA assay. DNA was then diluted to 10 ng μl−1 in water.

Twelve PCRs were then performed by combining 20 ng of diluted 

DNA, 46 μl of water, 2 μl of Primer Mix (ONT, EXP-PCA001) and 50 μl of 

LongAmp Taq 2× master mix (NEB, M0287S) (Supplementary Table 7).

Pairs of PCR reactions were then combined and DNA was purified 

using 0.4× AMPure XP beads and 70% ethanol. DNA was eluted at room 

temperature in 30 μl of nuclease-free water and quantified with the Qubit 

broad range dsDNA assay. Fragment size was quantified using a Genomic 

DNA ScreenTape (Agilent, 5067–5365) on a TapeStation 4200 (Agilent, 

G2991BA). All DNA was then pooled and stored at −20 °C until use.

5mCpG labeling
Labeling of CpGs with 5mC to create a training dataset was performed 

similarly to previous work21,50. Two labeling reactions were set up as 

follows. Amplified DNA (4 μg) was combined with 40 μl of water, 8 μl of 

10× NEB Buffer 2 (NEB, B7002S), 8 μl of 1.6 mM S-adenosylmethionine 

(SAM) (NEB, B9003S) and 16 units of M.SssI (NEB, M0226S). Reactions 

were incubated for 4 h at 37 °C. After 2 h of incubation, both 1.6 mM SAM 

(8 μl) and M.SssI (16 units) were added to the reactions to replenish 

enzyme activity. DNA was then purified using 0.8× AMPure XP beads 

along with 70% ethanol and eluted in 22 μl of nuclease-free water. 

DNA was then quantified with the Qubit broad range dsDNA assay and 

fragment size was quantified using a Genomic DNA ScreenTape on a 

TapeStation 4200. DNA from the two reactions were then pooled and 

stored at −20 °C until further use. A second round of M.SssI labeling 

on the pooled DNA was performed identically to the labeling reaction 

above. After final DNA purification and quantification, the DNA was 

stored at −20 °C until sequencing.

Nanopore library preparation
Four ONT sequencing runs were performed. Both unlabeled and labeled 

DNA were sequencing on r9.4.1 pores as well as r10.4.1 pores at 400bps. 
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Libraries for r9.4.1 pores were constructed using the LSK110 ligation 

sequencing kit (ONT, SQK-LSK110) and r10.4.1 pore libraries were con-

structed using the LSK114 ligation sequencing kit (ONT, SQK-LSK114). 

Both LSK110 (genomic-dna-by-ligation-sqk-lsk110-GDE_9108_v110_

revV_10Nov2020-minion) and LSK114 (genomic-dna-by-ligation-sqk-lsk

114-GDE_9161_v114_revG_29Jun2022-minion) have similar protocols so 

only one set of steps will be described below with notes on kit specific 

changes.

First, DNA fragments (1.25 μg) were mixed with NEBNext Ultra II 

End Prep Enzyme Mix and Reaction Buffer and incubated at 20 °C for 

5 min followed by 65 °C for 5 min to repair fragment ends. DNA was then 

purified using 1× AMPure XP beads along with 70% ethanol, eluted in 

61 μl of nuclease-free water at room temperature, and quantified with 

the Qubit broad range dsDNA assay. End-prepped DNA was then mixed 

with Ligation Buffer (ONT, SQK-LSK110 and SQK-LSK114), NEBNext 

Quick T4 DNA ligase (NEB, E7180S), and either Adapter Mix F for r9.4.1 

pores (ONT, SQK-LSK110) or Ligation Adapter for r10.4.1 pores (ONT, 

SQK-LSK114). Reactions were incubated for 15 min at room tempera-

ture. DNA was purified using 0.4× AMPure XP beads and Long Fragment 

Buffer (ONT, SQK-LSK110 and SQK-LSK114). DNA was eluted in 15 μl of 

Elution Buffer (ONT, SQK-LSK110 and SQK-LSK114) at 37 °C for 10 min. 

DNA was then quantified with the Qubit broad range dsDNA assay.

Nanopore sequencing
R9.4.1 pore sequencing was performed using ~40–50 fmol of library on 

r9.4.1 MinION flow cells (ONT, FLO-MIN106D). R10.4.1 pore sequencing 

was performed using ~20 fmol of library on r10.4.1 MinION flow cells 

(ONT, FLO-MIN114) using either 260 or 400 bases per second mode. 

According to the manufacturer’s recommendations, bovine serum 

albumin (Invitrogen, AM2616) was added to the sequencing flush buffer 

at a concentration of 0.2 mg ml−1 for all r10.4.1 flow cell sequencing runs. 

All sequencing runs were performed on a GridION Mk1 sequencing 

device (ONT, GRD-MK1) and run for 72 h.

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
The D. melanogaster ONT sequencing data described above are depos-

ited on the sequence read archive (SRA) bioproject PRJNA1082764. All 

other datasets were obtained from publicly available sources. The E. coli 

rRNA data were obtained from ref. 28 (SRA bioproject PRJNA634693). 

The constitutively incorporated BrdU dataset and matched control 

were from ref. 29 (SRR8991355 and SRR8991351). The IVT HeLa cell 

direct RNA sequencing data used to train the RNA002 model were 

obtained from ref. 50 (SRR23950400). HEK293T wild-type and METTL3 

knockouts were obtained from ref. 30 (PRJEB40872). NA12878 data were 

obtained from ref. 51 (https://github.com/nanopore-wgs-consortium/

NA12878). HMEC data were obtained from ref. 52 (GEO accession 

GSE132971). All other human cell line data are from the Singapore 

Nanopore Expression Project (PRJEB40872, Supplementary Table 2).

Code availability
Uncalled4 is available open source at github.com/skovaka/uncalled4. 

Trained pore models, the Uncalled4 m6Anet model and data used to 

generate the main figures are available at https://github.com/skovaka/

uncalled4_supplemental_data.
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Extended Data Fig. 1 | Comparisons between RNA pore model per-k-mer 

current means. (a) Comparison between the five central bases of ONT’s 9-mer 

RNA004 model and an Uncalled4-trained RNA002 5-mer model. (b) Uncalled4-

trained RNA002 model compared with and ONT ‘rna_r9.4_180mv_70bps’ model, 

which is the default model that Uncalled4 and Nanopolish use for RNA001 or 

RNA002. (c) Boxplots showing distribution of differences between the mean 

current of signal aligned to the HEK293T reference and the current predicted 

by the k-mer model. Boxes span the first and third quartiles with the median 

indicated by the horizontal line, and whiskers extend to 1.5 times the interquartile 

range.
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Extended Data Fig. 2 | Illustration of basecaller-guided DTW. (a) Generating of 

ref-moves from raw basecaller moves and a minimap2 alignment. The minmap2 

‘CIGAR’ corresponding to the basecalled read alignment is ‘9M1I6M1D3M’. 

K-mers coordinates are defined relative to the central base, which is defined for 

each pore model based on its substitution matrix (Fig. 2a). (b) A standard NxM 

DTW matrix, where N = M = 5. Cells are colored by their Manhattan distance from 

(1,1), which corresponds to the band which they will be contained in. The red line 

represents the ref-moves which will guide band placement. (c) The same DTW 

matrix overlaid with bands centered on the ref-moves (band width W = 3). (d) The 

DTW band matrix with each row offset by its location in the NxM matrix, which is 

shaded in the background and rotated 45o. White cells indicate out-of-bounds 

coordinates. Band start coordinates are indicated by the colored numbers to the 

left. (e) The DTW band matrix, represented as a standard two-dimensional array. 

Note that the start coordinates are required to reconstruct the original matrix 

structure.
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Extended Data Fig. 3 | Signal-to-read and signal-to-reference alignment.  

(a) Per-k-mer current means from signal-to-read and signal-to-reference 

Uncalled4 alignments and uncorrected basecaller moves. (b) Alignment dotplot 

of a D. melanogaster r10.4.1 read to a reference containing a spiked-in G- > T 

substitution at the location indicated by the red lines, causing increased read-

model current MAD. (c) Alignment dotplot of the same read to a reference with a 

10 nucleotide deletion with boundaries indicated by red lines. Uncalled4 masks 

signal around insertions or deletions 10 nucleotides or larger based on the ref-

moves coordinates, meaning the signal corresponding to the deleted sequence 

is not included. (d) Reference- and read-aligned signal of a read which features 

a likely sequencing error causing a two nucleotide insertion in the basecalled 

sequence. A slight jump in signal is observed within the signal mapping to ‘A’ in 

the signal-to-reference alignment, indicated by the green arrow. This nucleotide 

is broken into ‘GAG’ in the basecalled sequence, making the signal-to-read 

alignment erroneously more similar to the pore model.
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Extended Data Fig. 4 | Modification signal trackplots. Trackplots displaying 

per-read-k-mer mean current levels for Uncalled4 and Nanopolish in-vitro 

transcribed and native E. coli ribosomal RNA sequenced with ONT RNA002. An O6-

methylguanine site is present in the native dataset at position 526, causing a drop 

in current. White cells indicate masked positions, where Uncalled4 performs no 

masking in this dataset because there were no large insertions or deletions, while 

Nanopolish masks many positions particularly around the modification site.
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Extended Data Fig. 5 | DNA model training results. (a) Current levels from 

Uncalled4 and ONT r9.4.1 6-mer DNA models. (b) Current levels from Uncalled4 

and ONT r10.4.1 400 bps 9-mer DNA models. Inset displays sequence logo for 

k-mers with more than 0.5 normalized units of difference between the models 

(indicated on main plot by dashed line). (c) Current distributions for k-mers with 

each base fixed at the 6th and 5-th positions for r10.4.1 models, including both 

400 bps and 260 bps ONT models. Most distributions are unimodal, except 

for ONT 400 bps which has outliers caused by ‘TVTT’ k-mers. (d) Comparison 

between Uncalled4’s r10.4.1 400 bps model and ONT’s 260 bps model, which 

lacks the outliers seen in ONT’s 400 bps model.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-025-02631-4

a. b.

c. d.

Extended Data Fig. 6 | Transcript-level comparative m6A detection. Precision recall and ROC curves for transcript-level comparative m6A detection in HEK293t in all 

contexts (a-b) and limited to DRACH sites (c-d).
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Extended Data Fig. 7 | Gene-level modification detection methods.  

(a) Illustration of transcript-level modification calling, genome-level calling, and 

translation of transcript-level calls to the gene-level (t2g). (b) Precision-recall and 

(c) ROC curves of Uncalled4 and Nanopolish gene-level calls using KS statistics. 

‘Splice’ indicates Uncalled4 spliced genome alignment. ‘Multi t2g’ indicates 

transcript-to-gene averaging using all multi-mapping reads, while ‘pri t2g’ 

indicates the same but only using primary alignments.
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Extended Data Fig. 8 | Gene-level comparative m6A detection. Precision recall and ROC curves for gene-level comparative m6A detection in HEK293t in all contexts 

(a-b) and limited to DRACH sites (c-d). ‘splice’ indicates Uncalled4 spliced genome alignment. All other methods used transcriptome alignments with all multi-

mappers included, averaged to the gene-level.
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Extended Data Fig. 9 | Gene-level HEK293T m6Anet. Gene-level HEK293T m6Anet calls via transcript-to-genome (t2g) averaging. (a) Precision-recall and (b) ROC 

curves using GLORI labels with no level threshold. (c) Areas under the precision-recall and (d) ROC curves using different thresholds on GLORI levels.
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Extended Data Fig. 10 | Cell line m6Anet analysis. (a) Distance from annotated 

stop codon for transcript-level m6A sites found by Uncalled4 (purple) and 

Nanopolish (green) with m6Anet at matched 85% precision. (b) Metagene plot 

of the same m6A sites, with the distribution of reference DRACH sites (gray) 

and DRACH sites covered by the nanopore reads (orange). (c) Gene-level m6A 

counts by the number of cell lines they were found in, divided into putative ‘true 

positives’ (TP, in the m6A-Atlas) and putative ‘false positives’ (FP, missing from 

the m6A-Atlas).
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