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Nanopore signal analysis enables detection of nucleotide modifications
from native DNA and RNA sequencing, providing both accurate genetic

or transcriptomic and epigenetic information without additional library
preparation. At present, only alimited set of modifications can be directly
basecalled (for example, 5-methylcytosine), while most others require
exploratory methods that often begin with alignment of nanopore signal to
anucleotide reference. We present Uncalled4, a toolkit for nanopore signal
alignment, analysis and visualization. Uncalled4 features an efficient banded
signal alignment algorithm, BAM signal alignment file format, statistics for
comparing signal alignment methods and a reproducible de novo training
method for k-mer-based pore models, revealing potential errors in Oxford
Nanopore Technologies’ state-of-the-art DNA model. We apply Uncalled4 to
RNA 6-methyladenine (m6A) detectionin seven human cell lines, identifying
26% more modifications than Nanopolish using mé6Anet, including in several
genes where m6A has known implicationsin cancer. Uncalled4 is available
opensource at github.com/skovaka/uncalled4.

Long-read single-molecule sequencers from Oxford Nanopore Tech-
nologies (ONT) and Pacific Biosciences (PacBio) have increasing utility
in generating complete genomes and transcriptomes by improving
resolution of complex DNA and RNA sequences'™. These sequenc-
ers can also detect nucleotide modifications without any special-
ized library preparation, enabling genome-wide epigenetic profiling
including within highly repetitive regions that could not be accurately
aligned to with short reads*. Nanopore sequencing is unique in not
relying onsequencing-by-synthesis, instead measuring electric current
that varies over time as nucleotides pass through a pore. While many
analyses only use the basecalled sequence, inclusion of the electric
current can improve fidelity in several applications, including error
correction®®, real-time targeted sequencing™® and nucleotide modifica-
tion detection’. Furthermore, ONT is currently the only commercially
available platform for directly sequencing RNA without generation

of complementary DNA (cDNA), enabling detection of epitranscrip-
tomic modifications. Over 150 known RNA modifications are known
to exist, although only a few can be comprehensively detected at the
single-nucleotide level, with varying accuracy™.

Early nanopore sequencers exhibited a high error rate, which
could beimproved viasignal-based polishing’ or advanced basecalling
algorithms. However, acombination of improvements to sequencing
chemistry and computational methods have decreased the average
ONT DNA sequencing error rate to nearly 1%, making signal-based
polishing largely unnecessary for DNA. This was achieved, in part,
by a recent major DNA chemistry update to the r10.4.1 pore, which
features two ‘reader heads’ rather thanthe one presentinthe previous
standard, r9.4.1(Fig.1a). Direct RNA accuracy haslagged behind, where
signal-based polishing can stillimprove splice site identification®. On
the software side, modern basecallers use neural networks trained
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Fig.1|Pore model and alignment methods overview. a, Schematics of ONT
sequencing chemistries, their pore k-mer model current distributions, and
nucleotide compositions of k-mers within current ranges indicated by dashed
lines. b, A signal-to-reference dotplot of an Escherichia coli16S rRNA read
sequenced using ONT r9.4 direct RNA sequencing. Top panel shows the raw
samples (black) plotted over the reference base it was aligned to, with the
expected pore model currentin white. Main panel shows the Uncalled4 read
alignment (purple line) over the projected basecaller metadata alignment
(orange dots). Side panels show per-reference coordinate summary statistics
for the alignment. ¢, Schematic of Uncalled4 inputs, outputs and subcommands

(Methods). d, Atrackplot displaying heatmaps of many native (bottom) and

IVT (top) E. coli16S rRNA reads aligned by Uncalled4, colored by the difference
between the observed and expected normalized current level. Top bar is colored
by reference base, and an 06-methylguanine site is known to occur at position
526.e, Arefplot summarizing the distributions of differences between observed
and expected normalized current levels for native (purple) and IVT (green) reads.
e, Acomparative signal-to-reference dotplot alongside distance (dist.) metrics
between Uncalled4 and Nanopolish alignments of the same read, where line
breaks in the distance plots correspond to regions masked by Nanopolish. norm.,
normalized.
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on known sequences to translate the electrical signal into nucleotide
reads, with the network architecture and training data being major
factorsintheiraccuracy”. However, ONT basecallers do not provide an
accurate mapping between individual bases and the signal segments
thatrepresent them, instead requiring signal alignment to obtain such
amapping.

The latest ONT basecallers can directly detect 5-methylcytosine
(5mC) and 5-hydroxymethylcytosine (5ShmC) from individual DNA
reads™. In humans, 5mC is the most common DNA modification, with
wide-ranging effects in cellular development usually via suppression
of transcription, with aberrant DNA methylation a frequent hallmark
of several types of cancer™". Progress has also been reported from
ONT on direct RNA basecalling for 6-methyladenine (m6A), the most
common RNA modificationin humans, using the early accessRNA004
sequencing chemistry, currently limited to DRACH motifs (D=A, G
orT;R=Aor G;H=A, CorT) where over 60% of m6A sites occur in
humans®. méA is one of several known epitranscriptomic modifica-
tions, with diverse effects including transcript decay'®”, transcript
stabilization'®'"” and increased translational efficiency®. Beyond 5mC,
5hmC and mé6A in limited contexts, detection of other modifications
requires specialized computational methods run after basecalling.
Some methods infer modifications from basecaller errors, but these
are highly derived results that are sensitive to changes in basecalling
models™. Instead, the most advanced methods analyze the raw signal
directly, usually in combination with basecalled reads and beginning
with alignment between the signal and a nucleotide reference.

Nanopore signal alignment (also known as event alignment*?,
segmentation’ and resquiggling®) is analogous to standard nucleotide
alignment in variant calling, where the read aligner is often separate
fromthe variantcaller. Thisis also the case for many RNA modification
callers thatrely on Nanopolish? or Tombo?, the two most commonly
used signal aligners'. Signal alignment begins by translating the refer-
encesequenceinto electrical current using a k-mer pore model, which
maps each k-mer to the current expected when that combination of
basesareinthe pore.Processed read signal (for example, normalized)
is then aligned to the expected reference current using a dynamic
programming algorithm, such as dynamic time warping (DTW), as
used by Tombo, or hidden Markov models, used by Nanopolish. The
different methods generally produce similar, although slightly dif-
ferent alignments, with low-complexity sequences or noisy signal
often resulting in large-scale disagreements. ONT basecallers can
also output low-resolution signal alignments called ‘moves’, which
approximately map blocks of 5-10 signal timepoints to basecalled read
bases. Moves can be used in modification detection to approximately
identify signal corresponding to a particular sequence, for example
to extractsignals representing 21-31bases surrounding CpG sites®*?,
however, moves lack single-nucleotide resolution and thus require
correction for more comprehensive analysis. Comparisons between
signal alignment methods are hindered by the lack of a ground truth
or a shared file format, causing most modification detectors to only
supportonealigner. More substantially, Nanopolishand Tombo have
also not been updated for recent changes to ONT software and chem-
istry: neither supports the newr10.4.1 DNA or RNAOO4 chemistries or
PODS signal format, and Tombo relies on deprecated single FAST5 files.
A more up-to-date alternative to Nanopolish is provided by f5c (ref.
22), a GPU implementation of the Nanopolish ‘eventalign’ algorithm
with additional features including r10.4.1 DNA and RNAOO4 support,
signal-to-read alignment, support for the open source SLOWS5 format
and an alternate BAM alignment encoding.

Here we present Uncalled4, asoftware toolkit for nanopore signal
alignment, analysis and visualization (Fig.1). Uncalled4 features com-
mand line tools and interactive visualizations for signal-to-reference
alignments, methods for training new pore models, comparisons
between alignment methods and modification level statistics.
Uncalled4 uses a banded alignment algorithm guided by basecaller

metadata, making it several times faster than Nanopolish or Tombo,
and outputs an efficient and indexable BAM file that is directly con-
vertible to widely supported and human-readable file formats. We use
Uncalled4 to train a DNA pore model for the r10.4.1 pore, and apply
this model to 5SmC detection in CpG contexts (SmCpG). We also show
Uncalled4 outperforms Nanopolish and Tombo in RNA modifica-
tion detection using several different detection methods. We apply
Uncalled4 and m6Anet to seven normal and cancer human cell lines
and find 26% more sites supported by the m6A-Atlas than Nanopolish
with equivalent precision, highlighting increased sensitivity in several
genes with known méA-related functions. Uncalled4 isimplemented in
C++and Python, andis available opensource at github.com/skovaka/
uncalled4.

Results

Alignment efficiency, accuracy and visualization

Analogous to Nanopore read mapping, Nanopore signal alignment
produces a mapping between stretches of nanopore electrical cur-
rent and reference nucleotides. Conventional nucleotide alignments
of basecalled reads (that is, from minimap2, ref. 26) determine the
coordinates of the reference sequence, whichisencoded into expected
current using a k-mer pore model. Each pore model is specific to a
particular sequencing chemistry, defined by molecule type (RNA or
DNA), pore version (for example, r9.4.1, r10.4.1), sequencing speed
(forexample, 400 bases per second (bps)) and the output nucleotides,
including possibly one or more modifications (for example, 5SmCpG).
The number of nucleotides affecting the current level varies by pore,
withrl0.4.1'sdouble reader head necessitating longer k-mers thanr9.4.1
and reduced noise in RNAOO4 enabling longer k-mers than RNAOO1
(Fig. 1a). Inboth DNA models, we find purines (A and G) at the central
base enriched atlow current levels and pyrimidines (Cand T) enriched
at high current levels, while the exact effect at each position varies
between r9.4.1 and r10.4.1. RNA has a weaker high-level relationship
between nucleotide contentand current, with less consistency inwhich
base has the dominant effect. We also note that all direct RNA pores
(RNA0O1,RNA002 and RNA004) have highly similar current character-
istics (Extended DataFig. 1), although they differin sequencing speed,
yield and basecalling accuracy (Supplementary Note 1).

Uncalled4 uses basecaller-guided DTW (bcDTW) to rapidly
and accurately align nanopore signals either to a reference genome
and/or transcriptome (signal-to-reference) or to basecalled reads
(signal-to-read) (Fig.1b and Extended Data Fig. 2). While signal-to-read
alignmentis a promising method that avoids errors caused by genetic
variation between the sample and the reference, most modification
detection methods take advantage of the shared coordinate system
and lack of basecaller errors provided by signal-to-reference alignment
(Extended DataFig. 3 and Supplementary Note 1).

Uncalled4 encodes signal alignments as per-reference-position
statistics (thatis current mean, current standard deviation and dwell
time; Fig. 1b), which are efficiently stored in BAM tags alongside con-
ventional nucleotide alignments. These BAM files can be either pro-
duced by Uncalled4’s bcDTW algorithm via the align subcommand,
or by Nanopolish, f5c or Tombo via the convert subcommand (Fig. 1c).
We compare Uncalled4 with Nanopolish, Tombo and f5c alignments
of DNA from Drosophila melanogaster (r9.4.1 and r10.4.1) and RNA
fromthe humanembryonickidney 293T (HEK293T) cell line (RNA0OO1
and RNA0O4). Uncalled is substantially faster than Tombo (2.9-6.8x),
Nanopolish (1.7-1.9x) and f5c (1.3-2.7%, using a GPU with default param-
eters) (Table 1). The computational performance of Uncalled4 varies
by molecule and pore type, and the file sizes grow linearly with the
number of reads (Supplementary Fig. 1). The Uncalled4 compressed
andindexable BAM formatis over 20 times smaller than the Nanopol-
ish or f5c raw eventalign format and six times smaller than eventalign
with gzip compression (Table 1 and Supplementary Fig.1). Uncalled4
also supports read signal input from FAST5, SLOW5/BLOWS (ref. 27)
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Table 1| Alignment time, disk space usage and distance from projected basecaller alignments for Uncalled4 and

comparable Nanopore signal aligners

Sequencing chemistry Signal aligner File size (MB) Time Percentage of sites Model MAD Median ref-moves distance
masked (%) N
Sig-to-ref Jaccard
Uncalled4 131.04 350.6 3.36 0.0908 0.3750 0.6000
f5¢c 3,212.52 530.0 14.03 0.0865 0.3750 0.5833
DNA 9.4
Nanopolish 3,212.52 653.8 14.03 0.0865 0.3750 0.5833
Tombo 389.45/640.26 1015.0 23.66 0.2899 0.7000 0.8148
Uncalled4 132.25 2447 2.62 0.1017 0.6429 0.7500
DNA r10.4
f5¢ 3,706.41 574.4 10.54 0.0977 0.6429 0.7500
Uncalled4 31.97 13.9 1.27 0.1355 0.5714 0.7222
f5¢c 737.39 1447 9.29 0.1369 0.5333 0.7143
RNAOO1
Nanopolish 737.50 194.9 9.29 0.1369 0.5333 0.7143
Tombo 95.07 / 254.95 772.8 1.69 01317 0.6897 0.8182
Uncalled4 32.91 63.7 1.96 0.0937 0.2500 0.5000
RNAOO4
f5¢c 541.68 70.6 9.50 0107 01304 0.5500

Tombo stores signal alignments alongside raw signal data in single FASTS5 files, so space usage is reported as ‘additional space’/‘total FAST5 size'. ‘Percentage of sites masked’ indicates the
fraction of per-read reference positions that were covered by basecalled read alignments but not by the signal aligner. ‘Model MAD’ is the MAD between per-read k-mer current means and the

pore model. Sig, signal. Bold indicates the best performing method in each category.

and POD5files, the last of whichis the new ONT standard and not sup-
ported by Nanopolish, Tombo or f5c.

Themedian absolute difference (MAD) between per-k-mer normal-
ized meanread current and the pore model can be used as an approxi-
mate measure of alignment quality, where values closer to zeroindicate
acloser matchbetweenthe read and reference (Extended Data Fig. 3a).
Uncalled4 has the lowest MAD for RNAOO4, and is within 0.004 nor-
malized units of the lowest MAD for RNAOO1, r9.4.1 DNA and r10.4.1
DNA (Table 1 and Supplementary Table 1). Nanopolish and f5c fail to
output 9-14% of sites that are covered by basecalled alignments, mostly
due to masking sites that match the model poorly, which reduces
the model MAD but also reduces sensitivity around modifications
that strongly affect the current (Extended Data Fig. 4). Uncalled4 and
Tombo perform less site-level masking, with Uncalled4 only masking
sitesaround large insertions or deletions (>10 nt by default), however,
Tombo only outputs 76% of basecaller-covered r9.4.1 DNA sites, mostly
due read-level filtering likely caused by low-complexity sequences.
Model MAD is therefore a limited metric, since higher MAD should
be tolerated to accommodate nucleotide modifications and other
‘noisy’ signals.

We also compare Uncalled4 to other signal aligners by measur-
ing distances between alignment coordinates of pairs of alignment
methods (Fig. 1e and Supplementary Table 2), or between each align-
ment method and the basecaller ref-moves (Table 1 and Supplemen-
tary Table 1). Uncalled4 alignments consistently average within one
nucleotide of the ref-moves and consistently perform best in mean
signal-to-reference distance due to a higher frequency of large-scale
alignment errors in Nanopolish, Tombo and f5c alignments (Supple-
mentary Fig. 2and Supplementary Note 2).

Read signal and pore model characteristics

The nucleotide composition of k-mers at different current levels
(Fig.1a) demonstrate a complex relationship between nucleotide posi-
tion and current. This can be quantitatively summarized by comput-
ing its ‘substitution profile’: the average normalized current change
observed by substituting each base at each position for every k-merin
the model (Fig. 2a). We call the k-mer position with the most influence
oncurrentlevel the ‘central base’, and observe generally less influence
atpositions further fromthe central base, with the exception of r10.4.1
where a secondary reader head generates a smaller, but consistent

secondary effect near the beginning of the k-mer. In contrast to the
DNA models, the profile of the RNAOO1 model is highly similar to the
central five bases of RNA0O4, suggesting that the two RNA pores are
structurally similar (Fig. 1a).

Thereportedintent of r10.4.1'sdouble reader head is better accu-
racy around homopolymers. Homopolymers longer than the span of
the reader head register little-to-no change as the same bases repeat-
edly pass throughthe pore, generating a higher frequency of deletions
(Fig.2b).Supporting thisintent, we find r10.4.1has alower frequency of
deletions inhomopolymers nine nucleotides or longer in the Drosoph-
ila melanogaster genome compared tor9.4.1(Fig. 2c). The deletionrate
varies depending on which nucleotide the homopolymeris composed
of, more so than the overall difference betweenr9.4.1and r10.4.1, and
is highestin cytosine with 26% of reads containing a deletion.

The length of homopolymers longer than the span of the pore
(for example, 9-mers) can be estimated based on the dwell time, which
measures how long the homopolymer occupied the pore. Such esti-
mates are complicated by the high variability of dwell time, where the
standard deviation of per-k-mer dwell times (14 raw samples for r10.4.1)
islarger than the median (eight raw samples forr10.4.1) (Fig. 2d). Dwell
time is also affected by sequence identity, depending both on the
sequence at the pore and upstream where the motor proteinis bound?.
The position-specific influence of sequence on dwell time can be quan-
tified by computing the median dwell time for each 5-mer at each offset
relative to the central pore position, then computing the standard
deviation of median dwell times for each set of 5-mers at each offset
(Fig.2e). Dwelltimeis usually most affected by the sequence 11-13 bases
upstream, likely due to interactions with the motor protein, exceptin
r10.4.1DNA where the effect s slightly stronger within the pore. Dwell
time standard deviation correlates with the mean dwell time, with
the slowest sequencing speed (RNA0O1 70 bps) yielding the high-
est overall standard deviation. Guanine (G) generally increases dwell
time, while cytosine (C) generally decreases dwell time, although the
effect depends on the position relative to the pore and motor protein
(Supplementary Fig. 3). These dwell time effects likely influence base-
calling, particularly in homopolymers where it is the primary feature
that determines length.

Uncalled4 provides amethod toiteratively train pore models by
repeatedly aligning signal and averaging signal characteristics for
each k-mer (Methods and Supplementary Note 3). We use this training
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Fig. 2| Current distribution and nucleotide composition of k-mersin
Uncalled4-trained pore models. a, Pore model k-mer substitution profile
heatmaps: the mean normalized current difference observed by substituting
each base (y axis) at each k-mer position (x axis) averaged over all k-mersinthe
model. b, Mean and standard deviation of current surrounding a 9-mer adenine
homopolymer in the D. melanogaster genome, based on Uncalled4 alignments
of r9.4.1and r10.4.1 DNA reads. Solid lines show the mean normalized current
of allreads aligned at each position, and the shaded region shows the standard
deviation of the mean current levels. ¢, Fraction of basecalled reads containing

Offset from central pore position

adeletion within homopolymers of length nine or longer in the D. melanogaster
X chromosome, computed using samtools mpileup. d, Distributions of per-read
k-mer dwell times output by Uncalled4 alignments of 4,000 randomly sampled
reads from D. melanogaster DNA and human HEK293T RNA. Boxes span the first
and third quartiles with the medianindicated by the horizontal line, and whiskers
extend to 1.5 times the interquartile range. e, Standard deviation of per-k-mer
dwell times relative to central pore position, where each offset along the x axis
indicates the standard deviation of median dwell times for each 5-mer at that
position.

procedure on PCR-amplified D. melanogaster DNA sequenced using
r9.4.1and r10.4.1 pores, showing strong agreement with correspond-
ing pore models released by ONT (Extended Data Fig. 5). A notable
set of outlier k-mers between the Uncalled4 and ONT r10.4.1400-bps
model have a consistent NNNNTVTTN motif (N, any base; V, not T),
possibly caused by errorsinthe ONT model as evidenced by the k-mer
substitution profile, comparison to ONT’s r10.4.1260-bps model and
modification detection performance (Extended Data Fig. 5b-d and
Supplementary Note 8). We also trained ar9.4.1direct RNA (RNA0O2)
model using in vitro transcribed (IVT) human Hela cell line data, and
the resulting model strongly correlates with both ONT’s legacy ‘rna_
r9.4_180mv_70bps’ and the RNAOO4 model, again demonstrating high
similarity in current characteristics of these sequencing chemistries
(Supplementary Note 3 and Extended Data Fig. 1b).

DNA modification model training and detection

To explore the effect of DNA modifications on ther10.4.1DNA sequenc-
ing, we sequenced D. melanogaster DNA treated with CpG methyltrans-
ferase M.Sssl to broadly modify CpG sites with 5SmC (SmCpG), with

an average per-site methylation rate of 88% estimated by the Guppy
basecaller (v.6.4.8, high-accuracy model). We trained a 9-mer model
onthe 5SmCpG D. melanogaster dataset and compared the current lev-
els to the unmodified model, confirming that k-mers with CpG in the
central position were the most divergent (Fig. 3a and Supplementary
Fig.4a-c).Incontrast, CpGsinthefirst five k-mer positions (secondary
reader head) provide almost no information (Supplementary Fig. 4a).
We also used Uncalled4 and f5c to directly detect 5SmCpG methylation
by comparing currentlevels between PCR and 5mCpG D. melanogaster
r10.4.1 data using two-sample Kolmogorov-Smirnov (KS) test statistics
or z-scores to compare current distributions surrounding CpG sites
(Supplementary Note 4). The pattern of KS statistics and z-scores was
highly similar for Uncalled4 and f5c, both showing a primary and sec-
ondary peak in each statistic, consistent with r10.4.1’s double reader
head (Fig. 3b and Supplementary Fig. 4d,e).

In addition to naturally occurring DNA and RNA modifications,
Uncalled4 can train models including artificial modifications. We
demonstrate this by training a pore model on Saccharomyces cerevisiae
DNA with constitutive incorporation of BrdU, athymine analog used to
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label newly synthesized DNA% (Fig. 3c and Supplementary Fig. 5a,b).
We compare this toamodel trained on the same data using DNAscent”
by aligning a mixture of BrdU-modified and unmodified reads using
each BrdU pore model and a control DNA model, and find that the
Uncalled4 model can better classify reads as BrdU by comparing cur-
rent levels in k-mers with a single ‘T’ in their central position (Fig. 3d,
Supplementary Fig. 5¢c and Supplementary Note 5). We acknowledge
that DNAscent uses amore sophisticated classification approach that
enables classification of k-mers with “T’s outside the central position;
our analysis demonstrates that model training improves accuracy for
Uncalled4 alignments using this simple statistic.

Comparative RNA modification detection

To measure the effectiveness of Uncalled4, Nanopolish and Tomboin
RNA modification detection, we begin with a comparative approach
using two-sample KS statistics to measure dissimilarity of per-reference
currentdistributionsin two datasets with differing modification rates.
We limit our analyses to RNAOO1and RNAOO2, as there are currently far
fewer publicly available RNA004 datasets and modification detection
methods. We first use each aligner to compute KS statistics to detect
adiverse set of 36 annotated Escherichia coli ribosomal RNA (rRNA)
modifications by comparing native and IVT datasets, showing that
Uncalled4 has consistently higher areas under the receiving-operator
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curve (AUROC) and precision-recall curve (AUPRC) using 100 coverage
ateachsite (Supplementary Fig. 6).

We next apply comparative methods to detect m6A using two
human HEK293T cell line samples: wild-type and METTL3 m6A methyl-
transferase knockout (KO). Accuracy was estimated using m6ACE-seq
labels filtered for METTL3-sensitive sites®. Using transcript-level KS
statistics, Uncalled4 outperforms Nanopolish and Tombo in AUPRC
and AUROC, bothin all contexts and limited to DRACH motifs (Fig. 4a
and Extended Data Fig. 6). We also input the Uncalled4 and Nanopolish
alignmentsinto xPore®°, againyielding higher AUPRC and AUROC for
Uncalled4 (Fig. 4a, Extended Data Fig. 6 and Supplementary Fig. 7).
We additionally tested two methods for calling gene-level mé6A sites:
transcript-to-gene averaging and spliced genome alignment, the lat-
ter of which is a unique capability of Uncalled4 (Extended Data Fig. 7
and Supplementary Note 6). Uncalled4 performs best in both AUPRC
and AUROC using either gene-level detection method (Fig. 4a and
Extended DataFig. 8).

RNA modification detection with m6Anet

To detect RNA m6A sites without a matched control dataset we input
Uncalled4 alignments to mé6Anet (ref. 31), a specialized m6A detec-
tion method designed for Nanopolish that uses a neural network to
call m6A modifications at DRACH sites on individual reads before
aggregating them to the transcript level. We retrained mé6Anet using
Uncalled4 alignments of the same HCT116 dataset that was used in the
default m6Anet model for Nanopolish (Methods). We then compare
mo6Anet performance on a single wild-type HEK293T sample aligned
with Uncalled4 or Nanopolish with previously published HEK293T
GLORIlabels® to estimate accuracy, demonstrating higher AUPRC and
AUROC (Fig. 4b and Supplementary Fig. 8). Uncalled4 with m6Anet
outputs 17% more candidate sites than Nanopolish due to less read-
and site-level filtering, and Uncalled4 has consistently higher AUPRC
when only including sites output by both aligners (intersection), by
either aligner (union), or all sites sufficiently covered by basecalled
alignments (cov = 20x, Fig. 4b). Uncalled4 finds disproportionately
more mo6A sites in low-coverage regions (Fig. 4c and Supplementary
Note 7), and the same trends are observed when sites are averaged to
the genelevel (Extended DataFig. 9). We also used m6Anet to compare
wild-type and METTL3-KO samples (Supplementary Note 7 and Sup-
plementary Fig. 9), and found Uncalled4 + mé6Anet outperforms KS
statistics and xPore in DRACH contexts using any aligner (Fig. 4a and
Extended Data Figs. 6 and 8).

We next compared the prevalence of m6A modifications using
meé6Anet in seven human cell lines, consisting of three normal and
four cancer tissues (Fig. 5a). We used two replicates for most samples,
except for the human mammary epithelial cell (HMEC) line where
only onereplicate was available, and HEK293T where three were used
(Supplementary Table 3). We used m6A-Atlas v.2 as our set of puta-
tively m6A-positive sites, noting that while thisisanimperfect ground
truth, the relative performance between different methods is similar
whether GLORIor m6A-Atlas labels are used, showing it canbe used to
identify putative true positive (pTP) sites. (Supplementary Fig. 10 and
Supplementary Note 8).

Beginning with transcript-level mé6Anet calls on primary align-
ments, we find that Uncalled4 alignments yield consistently higher
AUPRC and AUROC than Nanopolish on all samples (Supplementary
Table 4). Uncalled4 also has generally higher recall and precision using
the default probability cutoff of 0.9, with 18% more true positive m6A
sites on average. The same patterns are observed when probabilities
are averaged to the gene level, with more sites found by both aligners
in every sample and Uncalled4 again finding 18% more true positives
on average (Fig. 5a,b and Supplementary Table 5). Precision is lowest
for NA12878 using either aligner, even more so than the other samples
absent from méA-atlas (HMEC and K562), likely because NA12878 has
the lowest data quality as measured by observed yield, basecaller pass

and fail rate and quality scores (Supplementary Table 3). To correct the
variable precision estimates, we adjusted the probability thresholds
for each sample such that each has equal precision of either 80, 85 or
90% (Supplementary Table 4). Uncalled4 finds 27.3 and 28.1% more
pTP sites on average at 80 and 85% precision respectively, but finds
0.1% fewer pTP sites at 90% precision. The lesser performance at 90%
precision is likely due to the unreliability of m6A-Atlas labels at this
threshold, where notably Uncalled4 finds more pTP sitesin HEK293T,
the most represented cell line in the m6A-Atlas. We therefore use the
set of modifications found at 85% precision for further analysis, yield-
ing higher recall than the default threshold in every cell line except
NA12872 (Fig. 5a).

Uncalled4 finds disproportionately more mé6A at sites at low cov-
erage due to Nanopolish’s pervasive masking (Fig. 5b). Sites found by
eitheraligner are generally enriched around stop codons andin the 3’
untranslated region, consistent with previous findings (Extended Data
Fig.10a,b). Most mé6A sites that are only found by Uncalled4 areinthe
m6A-Atlas, and most sites not present in the mé6A-Atlas are found by
both Nanopolish and Uncalled4 (Fig. 5¢). For both methods, approxi-
mately half of all sites were only identified in one sample, 30-32% of
which are absent from the m6A-Atlas. The total number of m6A sites
generally decreases with the number of supporting samples, as does
the putative false positive rate, with the notable exception of sites
shared by all seven samples, whichis greater than those shared by only
six samples (Extended Data Fig. 10c). This set of m6A sites shared by
all samplesindicates transcripts that are broadly modified; for exam-
ple, the gene c-Myc has seven modifications found by Uncalled4 in all
samples, where m6A has a well studied stabilizing effect on the c-Myc
messenger RNA (MRNA)S,

Aggregating the per-sample gene counts further, we compute the
total number of modifications found across all samples for each gene
by Uncalled4 and Nanopolish, revealing Uncalled4 broadly finds more
modifications than Nanopolish (Supplementary Table 5). Specifically,
we find more m6Ain 66% of genes, fewer in 18% of genes and an equal
numberin16% of genes (Fig. 5d). To further explore differencesin m6A
countingenesacrossthe healthy and cancerous cell lines, we focus our
analysis on COSMIC Census tier 1genes®, which identifies genes with
mutations implicated in cancer development, and specifically only
those with m6A presentin all samples (Fig. 5e). Among this subset, the
gene with the largest increase in m6A count between Uncalled4 and
Nanopolishis ABLI,an oncogene that fuses with BCRin chronic myeloid
leukemia (CML). ABLI has been identified as a potential target of the
ALKBH5 demethylase®, and it has been observed that méA contributes
toaberrant translation in BCR-ABL1 positive CML cases®. Incidentally,
we find multiple m6A-containing reads that support the BCR-ABL1
fusion in the CML K562 cell line, demonstrating the long-range infor-
mation provided by Nanopore sequencing (Fig. 5f). The gene with the
next-highest increase in m6A count is the oncogene JUN, which is a
known target of the METTL3 methyltransferase and its translation is
promoted by m6A modification®. Several other genesin this subset are
knownto be transcriptionally destabilized by m6A: STK11 (ref.16), /D3
(ref.36), AKT1,AKT2 (ref.17) and NCOR2 (ref. 34). Others are known to
be stabilized by m6A, such as c-MYC'® and THRAP3 (ref.19).

Furthermore, among the top ten genes ranked by increase in m6A
siteswithUncalled4 is TTC4, withatotal 60sites identified by Uncalled4
and 35 by Nanopolishacross all cell lines, notably none of which arein
the m6A-Atlas (Supplementary Table 5). However, closer inspection
revealed that m6A-Atlas assigned all TTC4 labels to the MROH7-TTC4
readthrough transcript, which entirely contains TTC4 (Fig. 5g). Most
reads thatalignto MROH7-TTC4 also multimap to TTC4,and TTC4 m6A
modification has been implicated in lung sepsis response in mice”,
suggesting that m6A-Atlas has mislabeled which gene the genomic
coordinates should correspond to. TTC4 contains a 34 amino acid
tetratricopeptide repeat, which makes short-read alignment less reli-
able and may contribute to inaccuracies in its m6A-Atlas labels.
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by atleast 20 reads, where sites not output by either tool are assigned a score of
zero, generating a large discontinuity for Nanopolish due to pervasive masking.
The dashed curves include all sites output by either aligner (union), while dotted
curves only include sites output by both aligners (intersection). ¢, True positive
rate and precision binned by basecalled read coverage. mé6Anet probability
threshold was selected such that the overall precision for each aligner equals 90%
(dashed horizontal lineinb).

Discussion

Nanopore signal is information rich, encoding much more than
the four canonical bases obtained from standard basecalling.
Signal-to-nucleotide alignment is a critical step in extracting this
information, but the process is error prone and few standards exist
for comparing alignment methods. Uncalled4 features a rapid and
highly accurate alignment algorithm guided by basecaller metadata, a
compressed and indexed BAM-based signal alignment file format, and
analyses to facilitate comparisons between signal alignment methods.
Uncalled4’s pore model training method is fully reproducible, requires
no previous k-mer based model and reveals potential errors in ONT’s
official r10.4.1 DNA model. Accurate signal alignment enables more
sensitive DNA and RNA modification detection than comparable signal
aligners, enablingit to find substantially more RNA m6A sites in several
disease-relevant genes using méAnetin healthy and cancer human cell
lines compared to Nanopolish.

A major benefit of epigenetic profiling with long reads is that the
geneticidentity ismaintained, in contrast to short-read methods that
involve base substitutions or read truncation, making it possible to
comprehensively measure single-nucleotide, structural and epigenetic
variationin oneassay. In principle, these methods could be applied to
awide variety of samples with publicly available nanopore sequencing
data, however, the raw signal required to identify modifications is often
not made available, mostly due to large file sizes and lack of database
support. Uncalled4’s BAM format efficiently provides the statistics
required by most signal-based detection methodsinawidely supported
format. A similar BAM tag was recently introduced by Squiguliser®, a
nanopore signal alignment visualizer in part inspired by an early ver-
sion of Uncalled4, however, this only stores signal coordinates and not
the current-level datarequired for modification detection. The use of
efficient and indexable data representations will become even more
critical as long-read sequencing becomes more widely adopted. In
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Fig. 5| RNA modification detection across seven human cell lines. a, Number

of mé6A sites found in each cell line that occur in the m6A-Atlas v.2 pTPs. Solid
barsindicate the number of sites found with the default probability threshold
0.9, and shaded bars indicate the count at threshold where the putative positive
predictive values (pPPV) is 85%. Uncalled4 with NA12878 has reduced recall at 85%
pPPV, asindicated by dashed line. b, Coverage distribution of true positive (pTP)
sites (top) and pPPV of sites within coverage bins. ¢, Number of sites shared by
Uncalled4, Nanopolish and mé6A-atlas v.2 across all cell lines. d, Difference in

per-gene m6A count found by Uncalled4 and Nanopolish across all seven cell
lines. e, Difference in aggregated gene mé6A count found by Uncalled4 versus
Nanopolish alignments, limited to COSMIC tier 1genes where at least one m6A
modificationis found in every cell line by either tool (51 genes). Negative (green)
valuesindicate genes where more mé6A sites were found by Nanopolish, and
positive (purple) values indicate more méA sites found by Uncalled4.

f, Transcript-level m6A calls in an ABL1 transcript alongside BCR fusion.

g, Gene-level m6A callsin the TTC4 gene.

additionto widespread clinical sequencing with long reads, the Human
Pangenome Reference Consortium is using both ONT and PacBio
sequencing to assemble a haplotype-resolved human pangenome®.
Long-read pangenomes present the opportunity and challenge of
pan-epigenomic analysis, complicated by every cell having a potentially
unique and dynamic epigenome, and multiple types of nucleotide
modification present across species. Uncalled4 provides astep toward
scaling such analyses as more data becomes available.

Even more daunting than pan-epigenomics, a pan-epitranscriptomic
catalog would need to account for the underlying dynamic nature of

the transcriptome and amuch wider array of RNA modifications. The
most well studied RNA modifications play an important role in RNA
stability, mRNA splicing, mRNA export, translation efficiency and
several other important roles*°. The lack of training data is now the
major factor preventing identification of most of the over 150 known
RNA modifications. Certain modifications may also generate minute
changes in signal, meaning accurate signal alignment is necessary to
reveal these subtle changes. For modifications that can be detected
but notidentified for lack of accurate labels, Uncalled4’s visualizations
(Fig. 1) and analyses can serve as useful exploratory tools.
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Our work showed that aggregating transcript-level méA calls to
the genelevelisastraightforward approach toimprove accuracy, how-
ever, this eliminates potentially interesting transcript-specific results.
Detailed exploration of transcript-level modifications cannot rely
solely onlabels from short-read assays, which generally do not provide
transcript-level specificity. Long-read methods must also be improved
to accurately assign reads to transcripts in multi-isoform genes. Con-
ventional transcriptome alignment often mapsreads toincorrecttran-
scripts by trimming alternatively spliced regions, or fails to include all
potential mappings of fragmented reads, asshown here and in previous
work*. Spliced genome alignment is an alternative approach that avoids
isoformalignment ambiguity, but fully interpreting genome alignments
would require mapping and disambiguating reads from the genome to
transcriptome, similar to reference-guided transcriptome assembly*. If
transcript-level modifications could be accurately identified, such meth-
ods could be applied to allele-specific modifications, similar to recent
work in conventional transcriptomics?. Long reads are also well-suited
for characterizing unannotated transcripts, or noncanonical transcripts
generated by structural variation or circular RNAs, the last of which are
associated with RNA modifications such as m6A (ref. 43).

We have presented a toolkit for nanopore signal alignment and
analysis, focusingonapplicationsin nucleotide modification detection.
Signalalignmentisusefulin other applications, for example in several
recent rapid signal mappers designed for targeted sequencing”®***,
Uncalled4 could be useful in optimization of suchapproaches, and the
Python module is already used by Sigmoni for basic signal process-
ing**. Uncalled4 will also be valuable in understanding future updates
to nanopore sequencing chemistry, and will aid other signal-based
methods in adapting to those changes.

Online content
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Methods

Uncalled4 overview

Uncalled4 is a Python module and command line utility, with many
computationally intensive subroutines implemented in C++ with
Python bindings provided via PyBind11. The command line function-
alitiesare splitinto several subcommands (Fig. If): ‘align’implements
thebasecaller-guided signal alignment algorithm, which outputsaBAM
file by default: ‘convert’ converts between signal alignment formats,
where BAM and eventalign formats supportinput and output, Tombo
FASTS5s only support input, and m6Anet and TSV files only support
output; and ‘train’iteratively applies the alignment algorithm to train
pore models and outputs a directory with k-mer models produced
in each iteration.The remaining commands are divided into analysis
and visualization. The analysis commands are refstats, which outputs
reference-level statistics (for example, KS statistics), readstats, which
outputs read-level statistics (for example, mean normalized model
difference) and compare, which compares two BAM files containing
the same set of reads aligned using difference methods (for example,
Uncalled4 and Nanopolish). Visualization commands display interac-
tive Plotly visualization, either as HTML files exportable to SVG or PNG,
orasweb browser sessions: dotplot displays one or more alignments of
asignalread (Fig.1b,c), trackplot displays one or more alignment tracks
of many reads aligned to a reference region (Fig. 1d) and the browser
command runs a local Dash web server that displays an interactive
alignment track thatcan be clicked to display summary statistics, a
dotplot and per-reference statistics distributions (Fig. 1e).

Thealign command is described in the following ‘Signal preproc-
essing’ and ‘Basecaller-guided DTW’ sections, convertin the ‘Alignment
encoding and formats’ section, trainin ‘Pore model training’, analysis
commands in ‘Analysis of signal alignments’ and visualization com-
mands in ‘Visualizations'.

Signal preprocessing

Before alignment, the raw nanopore electrical signal must be preproc-
essed to reduce noise and correct for systematic bias in the current
levels. First, the individual sensor readings (raw samples) are seg-
mented into ‘events’ using the same algorithm as UNCALLED®, which
uses rolling ¢-tests to group samples with similar current levels. This
groups signal representing the same nucleotides, although variable
sequencing speeds result in frequent ‘stays’ (consecutive events rep-
resenting the same k-mer, roughly 50% of events) and fewer frequent
‘skips’ (an event representing multiple k-mers, ~1-5% of events). These
eventsare stored with their sample start, length (proportional to dwell
time), current mean and current standard deviation. Event detection
parameters are chosen depending on the sequencing chemistry, where
RNA uses longer t-test window lengths than DNA to adjust for the slower
sequencing speed.

After event detection, the event current means are iteratively
normalized to correct for systematic deviation from the pore model.
Eachiteration performs a linear transformation of the read signal
defined by a multiplicative scale factor and an additive shift. The first
iteration transforms the event mean currents (E) such that their distri-
bution has the same mean and variance as the pore model k-mer mean
currents within the reference coordinates (K) indicated by the base-
caller alignments: scale = o(K) /o (E); shift = u (K) — scale x p (E)(Where o
is the standard deviation and yu is the mean). This is similar to the
‘method-of-moments’ widely used as a simple normalization
method®***, but using the reference sequence rather than assuming
arandom k-mer distribution. The second iteration performs linear
regression betweenthe aligned current means and the corresponding
reference k-mer model current, where scale is the output slope and
shift is the intercept, importantly averaging all raw samples aligning
to each k-mer such that each k-mer contributes to the regression
equally regardless of dwell time. This second iterationis not performed
in the train subcommand by default to avoid over-fitting to an

error-prone model. The Theil-Sen estimator, anonparametric regres-
sion algorithm used by Tombo, was also tested, but this was found to
beless accurate and slower than simple linear regression.

bgDTW

Uncalled4 uses DTW to align preprocessed signal to a reference
sequence guided by basecalled read alignments. DTW is awidely used
dynamic programming algorithm that has previously been applied to
nanopore sequencing by Tombo and others?*°, Nanopolish uses a hid-
denMarkov modelfor alignment, which uses more complex transition
probabilities that are trained on real data, but is otherwise similar to
DTW in time and space complexity. The most basic form of DTW has
O(N x M) complexity, where Nisthe number of read events and Mis the
number of reference k-mers. This can be improved using banded align-
ment, where the dynamic programming matrixis onlyfilled inalong the
diagonal where the optimal alignment path is usually found. Tombo,
Nanopolish and f5c both use adaptive banded alignment, where the
band positionis adjusted asalignment progresses to always be centered
onthecurrently most probable path. Uncalled4 uses the standard DTW
recursive cost function to fill the dynamic programming matrix with
the addition of a multiplicative penalty for ‘skips’:

0i=0Aj=0
w0i<0Vj<0

min(D[i-1,j-1],D[i—1,j],skip = D[i,j —1]) else

DIi,j] = cost (i,j) +

where cost(i,j) is the difference between the normalized mean current
of eventiand the model k-mer atindexj, and skip = 2 by default.
Uncalled4 uses a dynamic banding algorithm similar to that
described by f5c (ref. 22), but the band placement is chosen before
alignment begins using the basecaller ‘moves’ metadata. Basecallers
suchas Guppy and Dorado can optionally output ‘moves’ that represent
approximate alignments between the signal and the basecalled read.
These moves have low-resolution (five samples for DNA, ten for RNA),
and often deviate from the true alignment by one or more reference
positions. Uncalled4 projects these basecaller moves into reference
coordinates based on the basecalled alignment cigar string, then cent-
ersthe DTWbands on the ref-moves (Extended Data Fig. 2). This allows
Uncalled4 to useamuchnarrower bandwidth (25 by default) than Nano-
polish or Tombo, making alignment faster and preventing alignments
fromstraying too far fromthe truth. Insertions and deletions (indels)
that are larger than the bandwidth would cause a discontinuity in the
band placement, so these are ‘spliced’ out of the read or reference,
respectively, ifthey are above athreshold (ten by default) based on the
ref-moves coordinates. Note Uncalled4 does not disrupt alignments
oversmallindels, as these are afrequent basecaller error that can often
beaccurately aligned over. For deletions, the ‘splicing’ generates k-mers
that are not present in the reference, which many downstream tools
cannot handle, so these are masked and not included in the output by
default. However, this canbe disabled with the ‘~unmask-splice’ option.
Uncalled4 encodes alignments as per-reference-coordinate sta-
tistics (‘layers’,below), at aminimum consisting of raw sample coordi-
nates assigned to eachsite. Thisis unlike Nanopolish eventalign, which
outputs multiple consecutive events aligning to the same reference
position. The first step of most modification detection algorithms is
to average these statistics on the nucleotide level, which is straight-
forward for the average current, but notably the current standard
deviation cannot be accurately computed without re-analyzing the
original raw signal. Uncalled4 outputs accurate per-nucleotide current
standard deviations, which Tombo can also do via an optional flag. A
consequence of this encodingis that ‘stays’and ‘skips’ are not explicitly
encoded by default. Skips can be identified by multiple consecutive
reference positions having the same signal coordinates. Nanopolish
masks skips and represents them as missing data. Uncalled4 penalizes
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skipsinthe DTW cost function (2x for standard alignment, 4x for pore
model training), and they can be masked via the ‘~mask-skips [all|keep_
best]’ option, which removes either all grouped positions or all but the
closest to the reference current. Skips are masked during pore model
training toreduce alignmenterrors, however, for modification detec-
tion we found that simply assigning the same values for each skipped
positionresulted in much higher recall with little change in precision.
This reflects that modifications inherently disrupt signal alignment
by deviating from the expected current, sometimes resultingin skips,
and so masking skips removes useful information. This effect was most
markedin RNA, where the motor speed is less consistent and skips may
be caused by motor ‘slippage’. Stay and skip rate can be computed by
including the command ‘uncalled4 align-count-events -tsv-out ...,
which includes the number of events aligned to each reference posi-
tion. Counts greater than one indicate stays, while fractional counts
indicate the inverse of the number of skipped positions (for example,
0.5indicates two positions, 0.25 means two positions).

Alignment encoding and formats

Uncalled4 represents each signal alignment as a set of
per-reference-position statistics called alignment ‘layers’. All align-
ments must include the ‘length’ layer, which indicates how many raw
samples were aligned to each reference position, and usually include
the current mean and standard deviation (‘current’ and ‘current_sd’).
Reference coordinates are defined relative to the ‘central base’ in the
pore model, determined by the highest average per-position change
inthe model’s substitution matrix (Fig. 2a). The current statistics are
omitted for ref-moves due to their inaccuracy, and Tombo does not
compute ‘current_sd’ by default. Additional layers can be derived from
the base layers and/or the reference sequence, such as ‘seq.kmer’ (ref-
erence k-mer), ‘dtw.model_diff’ (absolute difference betweenthe read
currentand model current) or ‘mvemp.dist’ (distance from ref-moves)
(Supplementary Table 6). Layer coordinates are defined relative to the
pore model’s central position determined by its substitution profile
(Fig. 2a). Layers can also be offset from this position by a fixed num-
ber of reference coordinates (for example, dtw.dwell-11), facilitating
generation of dwell time models at different pore offsets, forexample
(Fig. 2e). One minor limitation of this reference-oriented encoding is
thatUncalled4 cannot output event-level statistics, but rather averages
over multiple events aligned to the same position. Tombo stores align-
mentsinasimilar manner, while Nanopolish outputs per-event statis-
tics. Most modification detectiontools simply average these statistics
over reference coordinates, and in doing so cannot accurately compute
the true per-base current standard deviation without re-querying the
raw signal file (thatis FASTS5, SLOWS5 or PODS). Uncalled4 computes the
true current standard deviation at each position, and can optionally
output the number of events aligned to each position.

Uncalled4 primarily stores signal alignments in BAM tags, along-
side the conventional basecalled alignments that were used to guide
bcDTW. This format differs from Nanopolish basecalled read and
alignment paths are fully preserved, and unlike f5c’s similar format,
Uncalled4 includes current means and standard deviations required
for modification detection. This is accomplished in a space-efficient
manner by storing the alignment layers in 16-bit integers. Raw signal
coordinates (‘us:’ tag) are encoded as positive values indicating the
number of aligned samples at each consecutive reference position,
negative values indicating masked signal (that is no reference k-mers
assigned to that stretch of signal), and zeros indicating ‘skip’ events
(thatis, nosignal assigned to that reference position). Most positions
fit within16-bitintegers, and for the few outliers that cannot, wereserve
the maximum value of 2'°-1to be grouped with the subsequent length
entry. Reference coordinates (‘ur’:tag) are encoded as aseries of ‘start’
and ‘stop’ values indicating stretches of continuous alignment, with
breaks caused by introns or deletions greater than ‘~del-max’ (10 nt
by default). The total span of the reference coordinate blocks should

be equal to the number of nonzero elements in the ‘us:’ tag, and the
sum of the absolute values of ‘us:” should equal the length of the raw
signal. Current means (‘uc:’ tag) and standard deviations (‘ud:’ tag)
are represented as 16-bit fixed-precision floating point values cor-
responding to normalized current levels ranging from -5.0 to 5.0 by
default, representing arange of five standard deviations from the mean.
Masked positions can be assigned a‘null’ value equal to —2'-1, allowing
for representation of masked signal aligned to a mask reference posi-
tion, which is necessary to mask large insertions or deletions and to
represent pervasive masking in Nanopolish alignments. Normalized
units can be converted to picoamps, or whichever units are defined by
the pore model, using parameters stored in JSON format in the BAM
header. This JSON header stores additional information on the tag
labels, fixed-point scaling factors, reference and raw signal paths, and
other pore model metadata. Normalization parameters are stored in
the ‘un’ tag (that is scale and shift), which can be used to linearly scale
the calibrated raw signal into the normalized signal that corresponds
tothe normalized meanvaluesinthe ‘uc’ tag. The addition of the signal
alignment tags increases the BAM file size by 2-4-fold, but is still several
times smaller than the Nanopolish and Tombo formats (Table 1).

Inadditionto the BAM format, Uncalled4 supports two text-based
output formats: ‘eventalign’ and ‘TSV". Eventalign is based on Nano-
polish’s default tab-delimited output format, and is mainly included
for compatibility with modification detection tools such as xPore
and mé6Anet. ‘TSV’is a customizable tab-delimited format, which can
include any of the alignment layers or comparison statistics (below).
These formats can be written directly by the ‘uncalled4 align’ com-
mand, or canbe derived froman Uncalled4 BAM file via the ‘uncalled4
convert’command with the ‘~bam-in’ option. ‘uncalled4 convert’ can
also convert Nanopolish eventalign files or Tombo FASTS5 filesinto the
BAM format, whichis necessary for analysis and visualization of these
alignments by Uncalled4.

Finally, to expedite m6Anet analysis and demonstrate the utility of
the BAM alignment format, Uncalled4 includes a conversion function
from a sorted BAM file to the m6Anet ‘dataprep’ format that collects
signal features in a per-reference-coordinate JSON format. This can
also be accomplished by first converting the BAM file to ‘eventalign’
format and using ‘mé6anet dataprep’, however we found conversion
from eventalign format was by far the largest bottleneck in mé6Anet
analysis. The sorted BAM format enables conversion in a single linear
read of the file, making conversion many times faster than the random
parallelfile access required to convert from eventalign, especiallyona
shared compute cluster where parallel disk access is slow.

Analysis of signal alignments

Uncalled4 can perform analysis on any signal alignments in the BAM
format, which can be divided intoreference-level (refstats command),
read-level (readstats command) and read-base-level (convert and
compare). Reference-level analysis includes simple summary statistics
such asmean andstandard deviation of currentlevels and dwell times,
or comparative statistics such as KS statistics between two samples.
Similarly, read-level analysis outputs summary statistics of [ayers over
entire reads, or segments of reads defined by reference coordinates.
Basic and derived layers of individual reads at each reference coordi-
nate canbe outputin TSV formatviathe convert command. Ifbasecaller
movesareincludedinthe BAMfile, this caninclude ref-moves distance
metrics (described below).

Uncalled4 can compare two different alignment methods
applied to the same set of reads by inputting two sorted sig-
nal alignment BAM files to the compare command, producing a
table of per-reference-coordinate signal Jaccard distances and
signal-to-reference distances. These can also be visualized via the
dotplot command (Fig. 1c). Signal Jaccard distance, the inverse of the
Jaccard similarity, measures the degree of overlap betweenraw samples
alignedto eachreference coordinate:1- (A UB)/(AnB),where Aand B
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arethe sets of raw samples aligned to each reference coordinate. This
varies between 0 and 1, where 1indicates no overlap and O indicates
perfect overlap. Signal-to-reference distance measures the average
number of reference bases between the raw samples aligned to each
coordinate. This is computed reciprocally for each method, computing
the nucleotide distance for each raw sample aligned to eachreference
coordinate and then averaged between the two methods. These metrics
can also be computed between a signal alignment method and the
ref-moves used to guide Uncalled4 alignment, via the convert com-
mand or in any of the visualizations. In this case, signal-to-reference
distanceis not computed reciprocally,instead only averaging over the
alignment method raw samples and not the low-resolution ref-moves.

Visualizations

Allvisualizations produced directly by Uncalled4 areimplementedin
Python using Plotly, which produces interactive web browser-based
plots that were exported to SVG format. The three main alignment
visualizations (trackplot, dotplot and refplot) and also integrated into
an interactive signal genome browser using Dash, a local web server
designed for Plotly. Pore model profiles (Fig. 1a) are generated using
pore models only by computing the absolute change in current gener-
ated substituting each base for each other base at every possible k-mer.
This is efficiently implemented in Python and C++ using the ‘buffer
protocol’, which allows for vectorization of k-mer operations. Some
figures were also generated by the Python matplotlib library, in cases
where reproducible interactivity is not necessary.

IGV visualizations were generated by encoding the per-read
modifications defined m6Anet’s ‘data.indiv_proba.csv’ file into BAM
modification tags. The reference coordinates were translated to read
coordinates using the cigar string, and positions where an ‘A’ was not
present in the read sequence were excluded. Site-level probabilities
were multiplied by a constant factor (4) for visualization purposes.
The IGV screenshots were exported to the SVG format and edited in
Inkscape for clarity.

Pore model training
Pore model training is an iterative process, where in each iteration
reads arealigned until every k-mer is represented aminimum number
of times (500 by default), after which summary statistics (median
and standard deviation) of signal characteristics (current mean, cur-
rent standard deviation and dwell time) are recorded and used as the
pore model for the nextiteration. In each training iteration, only posi-
tions with low signal-to-reference distance to ref-moves are included
(mvemp.dist <=1, by default), which eliminates many alignment errors.
Only one normalization iterationis applied during training, since linear
regression is sensitive to outliers that are frequent in early training
iterations. A higher skip penalty is also used for pore model training,
and skipped positions are masked to further reduce alignment errors
(equivalent to ‘uncalled4 align-skip-cost 4 -mask-skips keep_best’).
This process requires an initial ‘draft’ model to use in the first itera-
tion. This draft model could be a canonical nucleotide model, for
example withthe goal of retraining it for modified nucleotides. We also
developed a de novo initialization method, not requiring a previous
k-mer pore model beforehand, using the ref-moves used in Uncalled4’s
bcDTW algorithm. The ref-moves can be treated as standard signal
alignments, although they are frequently one or two bases from their
true position. Tomitigate these inaccuracies, we began training using
ashort k-mer length to average-out the initial errors (1-mers for r9.4,
4-mersforrl0.4) andincreased the k-mer length every n training itera-
tions (two iterations for DNA, three for RNA) until the desired k-mer
length was reached.

The Uncalled4 train subcommand runs the training procedure
for a specified k-mer length and number of iterations. It outputs a
directory with the pore model for each iteration in a binary NumPy
format, along withindexed alignment statistics used to generate each

model. To progressively increase the k-mer length, the command was
runonce per-k-mer length, each time using the last pore model output
inthe previous iteration as the new initialization model. This training
procedure is flexible, allowing for alternate initialization methods or
k-mer expanding methods to be tested. We evaluated the effective-
ness of each training procedure based on the Pearson’s correlation
coefficient between the trained model and ONT’s pore models. Inter-
mediate models with shorter k-mer lengths can also be evaluated by
‘reducing’ ONT’s models by averaging the values of k-mers that share
central bases,implemented in Uncalled4’s ‘PoreModel.reduce’ method.

The align subcommand will attempt to automatically detect
the appropriate pore model to use based on metadata in the raw
signal FAST5/POD5/SLOWS files. If this cannot be detected, the user
can specify a preset pore model (‘dna_r10.4.1 400bps_9mer’, ‘dna_
19.4.1. 400bps_6mer’ or ‘rna_r9.4.1_70bps_5mer’) using ‘~pore-model’
flag or by defining the ‘~flowcell” and ‘~kit’ used for basecalling or a
custom pore model can be provided. The default r9.4.1 DNA and RNA
pore models are provided by ONT (https://github.com/nanoporetech/
kmer_models) under ‘legacy’ models, while for r10.4.1 DNA we use
the Uncalled4 model trained on unmodified D. melanogaster data, as
described above.

Modification detection, training and assessment

Comparative KS statistics were computed by the Uncalled4 refstats
command (‘uncalled4 refstats current.mean ks ..."), which uses the
Python Scipy (v.1.10.1) package’s ‘ks_2samp’ function to compute
two-sample KS statistics over per-k-mer mean currents between two
samples. For Tombo alignments, we compared the output to the Tombo
KS statistic output, with highly similar results. xPore was runon Nano-
polish using recommended parameters, and on Uncalled4 viaconver-
siontothe eventalign format. Transcript-level modification calls were
translated to the gene level using a custom Python script (‘t2g.py’)
provided with Uncalled4 (Extended Data Fig. 8), which usesa GTF anno-
tation to add gene IDs and coordinates to a tab- or comma-delimited
file, and these values were averaged over each gene using the Pandas
‘eroupby’ operation to take the mean of site-level probabilities. Unless
otherwise specified, only sites with at least 20x coverage by basecalled
reads were considered for modification detection.

mé6Anet was trained for Uncalled4 alignments on the HCT116 cell
line from the Singapore Nanopore Expression Project (replicate 3)*,
which was originally used for the default m6Anet model®. These data
werere-basecalled using Guppy v.6.4.8, and we also retrained Nanopol-
ishto assess the effect of re-basecalling. m6A labels obtained fromref.
31were provided in transcript coordinates, with sites divided by-gene
into ‘train’, ‘test’ and ‘validation’ sites. The recommended training
procedure only included primary transcriptome alignments, and we
noted that many reads aligned to adifferent transcript from the same
gene than was listed in the training data. We therefore mapped the
training data to gene-level coordinates, then back to transcript level
using the transcripts present in the re-basecalled data, maintaining the
same ‘train’, ‘test’and ‘validation’ gene assignments.

Precision-recall curves and receiver operator characteristic (ROC)
curves were visualized and the corresponding area under the curve
were computed using Scipy. Both these metrics measure recall, also
known as true positive rate, defined as TP/(TP + FN) (TP is true posi-
tive count, FN is false-negative count). Accurate estimation of false
negative is complicated by prefiltering performed by tools such as
xPore and mé6Anet, where many sites are not assigned a probability and
excluded from the output. We found many of these sites are actually
modified, and so not counting these decreases the false-negative count
andthusfalselyincreases therecall (Fig. 4b and Extended Data Fig. 7).
We used two strategies to compensate for this. For the transcript-level
HEK293T results, we computed coverage from minimap2 alignments
ofbasecalled reads, only considering read endpoints and not internal
deletions, and included all sufficiently covered (20x) sites by fillingin
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a probability of zero. For the gene-level results, different alignment
strategies cover different sites, and so we simply took the union of all
sites covered by each tool and filled missing values with probability
zero. Many sites with probability zero can generate a large ‘jump’ at
the end of precision-recall and ROC curves, making the area under
the curve estimate less informative. For precision-recall, we use the
‘average precision’ definition of AUPRC, which essentially treats the
curve asastepwise function rather than using the trapezoidal rule for
area calculation, whichis more robust to skewed datasets. There is no
comparable alternative for AUROC, but visual inspection suggests the
overall trends would be the same regardless.

Data processing

All nanopore read data were basecalled with Guppy v.6.4.8 using
high-accuracy models with the ‘~-moves_out’ option, with the exception
of Tombo alignments where an earlier version of Guppy (v.6.0.1) that sup-
ported output of basecalled FAST5 files required for Tombo. SmCpG call-
ing was also performed using the Guppy SmCpG high-accuracy model.
Reads were aligned using Guppy’s builtin minimap2 alignment option,
which encodes the ‘moves’ basecaller metadata in primary alignment
tags. We also provide a Python script that copies these tagsinto supple-
mental and secondary alignments for efficient alignment with Uncalled4
(‘bamprep.py’). Tore-align reads while preserving basecaller metadata,
forexample to compare spliced genome alignments with transcriptome
alignment, we converted the primary BAM alignments to FASTQ with the
relevant tags in the header using the command ‘samtools fastq-T mv,ts,
then aligned using minimap2 (v.2.16) with the -y’ option to copy tags
from the headers. Coverage of minimap2 basecalled read alignments
was computed using the bedtools*’ command ‘bedtools genomecov -d
-pc’ to count the number of reads overlapping each adenine or DRACH
site, only considering read start and end sites and not internal deletions.

The D. melanogaster data were aligned to the D. melanogaster
ISO1 release 6 reference genome (RefSeq GCF_000001215.4). The £.
colirRNA data were aligned to the 16S and 23S transcripts from the E.
colitranscriptome (GenBank NC_000913.3), with modification labels
obtained fromref. 28. All human datasets were aligned to a transcrip-
tome derived from GRCh38 Ensembl annotations v.91 obtained from
ref. 30, or directly aligned to GRCh38 for spliced genome alignments
(GCF_000001405.26). HEK293T METTL3-sensitive m6A labels were
also obtained fromref. 30. HCT116 mé6A training labels were obtained
from ref. 31. All other m6A labels are from the m6A-Atlas v.2 (ref. 15)
(accessed 12 May 2023).

Uncalled4 signal alignments were compared to Nanopolish
(v.0.13.3), Tombo (v.1.5.1) and f5c (v.1.3). Nanopolish and f5c were run
using the ‘-scale-events-signal-index’ options, which are required
for Uncalled4, xPore and m6Anet. Timing was measured using a sin-
gle central processing unit thread, and f5c additionally used a Nvidia
Quadro P5000 GPU with default parameters. KS statistics were pri-
marily computed with Uncalled4, and produced similar results to
Tombo’s builtin KS statistic output, with minor differences attributed
toreadfilteringand rounding error. We also compared Uncalled4 and
Nanopolish RNA modification detection performance using xPore
(v.2.1) and mé6Anet (v.2.0.2). m6Anet was retrained using Uncalled4
and Nanopolish alignments on re-basecalled HCT116 cell line data
and labels originally used for m6Anet. GNU parallel was also used to
efficiently run tasks in parallel.

DNA extraction

Genomic DNA was extracted from 15 newly eclosed D. melanogaster
males of the Oregon-R strain (Bloomington stock center number 5,
RRID BDSC_5). After selection, males wereimmobilized by freezing at
-80 °C for 5 min. Next, the flies were crushed with a pipette tipin200 pl
of Buffer A (100 mM Tris-HCI, pH 7.5,100 mM EDTA,100 mM Nacl, 0.5%
SDS). This was followed by a 30-min incubation at 65 °C. After incuba-
tion, 400 pl of KOAc:LiCl (prepared by combining one part of 5 M KOAc

with two parts of 6 MLiCl) was added and the mixture was allowed to pre-
cipitateonice for 10 minand thenthe precipitate was pelleted at room
temperature at 14,000 rpm for 15 min. The supernatant containing
nucleic acids was transferred to a clean microcentrifuge tube and
isopropanolwas added ataratio of 600 pl per 1 mlof supernatant. The
DNA was then precipitated by centrifuging at 14,000 rpm for 15 min at
roomtemperature. Afterward, the supernatant was removed, and the
pellet was washed with 1 ml of cold ethanol (70-75%). The pellet was
then centrifuged again for 5 min before removing the ethanol wash.
After air drying, the pellet was resuspended in ultra-pure water.

Genomic DNA shearing and amplification

D. melanogaster genomic DNA (roughly 500 ng) was diluted into a total
volume of 49 pl of ultra-pure water. To shear the genomic DNA to 8-kb
fragments, DNA was transferred to a g-Tube (Covaris, 520079) and
centrifuged at room temperature for 1 min at 6,000 rpm. The g-Tube
was then inverted and centrifuged again at room temperature for
1min at 6,000 rpm. Centrifugation was carried out on an Eppendorf
Centrifuge 5425 (Eppendorf, 5405000646).

Sheared DNA was then amplified using the ONT protocol for
low-input PCR (low-input-genomic-dna-with-pcr-sqk-Isk110-LWP_9117_
v110_rev] 10Nov2020-minion). First, the sheared DNA was mixed
with NEBNext UltrallEnd Prep Enzyme Mix and Reaction Buffer (NEB,
E7180S) and incubated at 20 °C for 5 min followed by 65 °C for 5 min to
repair fragment ends. DNA was then purified using 1x AMPure XP beads
(Beckman Coulter, A63881) along with 70% ethanol. DNA was eluted
in 31 pl of nuclease-free water and quantified with the Qubit broad
range double-stranded DNA (dsDNA) assay (ThermoFisher Scientific,
Q32850). Next, end-prepped fragments were mixed with PCR adapters
(ONT, EXP-PCA001) and Blunt/TA Ligase Master Mix (NEB, M0367S) and
incubated for 15 minatroom temperature. DNA was then purified using
0.4x AMPure XP beads and 70% ethanol. DNA was eluted in 26 pl of
nuclease-free water at room temperature and quantified with the Qubit
broad range dsDNA assay. DNA was then diluted to 10 ng pl™ in water.

Twelve PCRs were then performed by combining 20 ng of diluted
DNA, 46 pl of water, 2 pl of Primer Mix (ONT, EXP-PCA001) and 50 pl of
LongAmp Taq2x master mix (NEB, M0287S) (Supplementary Table 7).

Pairs of PCR reactions were then combined and DNA was purified
using 0.4x AMPure XP beads and 70% ethanol. DNA was eluted at room
temperaturein 30 plof nuclease-free water and quantified with the Qubit
broad range dsDNA assay. Fragment size was quantified using a Genomic
DNA ScreenTape (Agilent, 5067-5365) on a TapeStation 4200 (Agilent,
G2991BA). Al DNA was then pooled and stored at —20 °C until use.

5mCpG labeling

Labeling of CpGs with5mCto create atraining dataset was performed
similarly to previous work®"*°. Two labeling reactions were set up as
follows. Amplified DNA (4 pg) was combined with 40 pl of water, 8 pl of
10x NEB Buffer 2 (NEB, B7002S), 8 pl of 1.6 mM S-adenosylmethionine
(SAM) (NEB, B9003S) and 16 units of M.Sssl (NEB, M0226S). Reactions
wereincubated for4 hat37 °C. After 2 hofincubation, both1.6 mM SAM
(8 pl) and M.Sssl (16 units) were added to the reactions to replenish
enzyme activity. DNA was then purified using 0.8x AMPure XP beads
along with 70% ethanol and eluted in 22 pl of nuclease-free water.
DNA was then quantified with the Qubit broad range dsDNA assay and
fragment size was quantified using a Genomic DNA ScreenTape on a
TapeStation 4200. DNA from the two reactions were then pooled and
stored at —20 °C until further use. A second round of M.Sssl labeling
onthe pooled DNA was performed identically to thelabeling reaction
above. After final DNA purification and quantification, the DNA was
stored at 20 °C until sequencing.

Nanopore library preparation
Four ONT sequencing runs were performed. Both unlabeled and labeled
DNAwere sequencingonr9.4.1pores aswellasr10.4.1poresat400bps.
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Libraries for r9.4.1 pores were constructed using the LSK110 ligation
sequencing kit (ONT, SQK-LSK110) and r10.4.1 pore libraries were con-
structed using the LSK114 ligation sequencing kit (ONT, SQK-LSK114).
Both LSK110 (genomic-dna-by-ligation-sqk-1sk110-GDE_9108_v110_
revV_10Nov2020-minion) and LSK114 (genomic-dna-by-ligation-sqk-Isk
114-GDE_9161_v114_revG_29Jun2022-minion) have similar protocols so
only one set of steps will be described below with notes on kit specific
changes.

First, DNA fragments (1.25 pg) were mixed with NEBNext Ultra
End Prep Enzyme Mix and Reaction Buffer and incubated at 20 °C for
5minfollowed by 65 °C for 5 min to repair fragment ends. DNAwas then
purified using 1x AMPure XP beads along with 70% ethanol, eluted in
61 plof nuclease-free water at room temperature, and quantified with
the Qubit broad range dsDNA assay. End-prepped DNA was then mixed
with Ligation Buffer (ONT, SQK-LSK110 and SQK-LSK114), NEBNext
Quick T4 DNA ligase (NEB, E7180S), and either Adapter Mix F for r9.4.1
pores (ONT, SQK-LSK110) or Ligation Adapter for r10.4.1 pores (ONT,
SQK-LSK114). Reactions were incubated for 15 min at room tempera-
ture. DNA was purified using 0.4x AMPure XP beads and Long Fragment
Buffer (ONT, SQK-LSK110 and SQK-LSK114). DNA was eluted in 15 pl of
Elution Buffer (ONT, SQK-LSK110 and SQK-LSK114) at 37 °C for 10 min.
DNA was then quantified with the Qubit broad range dsDNA assay.

Nanopore sequencing

R9.4.1pore sequencing was performed using ~40-50 fmol of library on
r9.4.1MinlION flow cells (ONT, FLO-MIN106D). R10.4.1 pore sequencing
was performed using ~20 fmol of library on r10.4.1 MinION flow cells
(ONT, FLO-MIN114) using either 260 or 400 bases per second mode.
According to the manufacturer’s recommendations, bovine serum
albumin (Invitrogen, AM2616) was added to the sequencing flush buffer
ataconcentrationof 0.2 mg ml™forallr10.4.1flow cell sequencing runs.
All sequencing runs were performed on a GridlON Mkl sequencing
device (ONT, GRD-MK1) and runfor 72 h.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The D. melanogaster ONT sequencing data described above are depos-
ited onthe sequence read archive (SRA) bioproject PRINA1082764. All
other datasets were obtained from publicly available sources. The E. coli
rRNA datawere obtained fromref. 28 (SRA bioproject PRINA634693).
The constitutively incorporated BrdU dataset and matched control
were from ref. 29 (SRR8991355 and SRR8991351). The IVT Hela cell
direct RNA sequencing data used to train the RNA0OO2 model were
obtained fromref. 50 (SRR23950400). HEK293T wild-typeand METTL3
knockouts were obtained fromref.30 (PRJEB40872). NA12878 datawere
obtained fromref. 51 (https://github.com/nanopore-wgs-consortium/
NA12878). HMEC data were obtained from ref. 52 (GEO accession
GSE132971). All other human cell line data are from the Singapore
Nanopore Expression Project (PRJEB40872, Supplementary Table 2).

Code availability

Uncalled4 is available open source at github.com/skovaka/uncalled4.
Trained pore models, the Uncalled4 m6Anet model and data used to
generate the main figures are available at https://github.com/skovaka/
uncalled4_supplemental_data.
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Extended Data Fig. 1| Comparisons between RNA pore model per-k-mer RNAO0O2. (c) Boxplots showing distribution of differences between the mean
current means. (a) Comparison between the five central bases of ONT’s 9-mer current of signal aligned to the HEK293T reference and the current predicted
RNAO004 model and an Uncalled4-trained RNAOO2 5-mer model. (b) Uncalled4- by the k-mer model. Boxes span the first and third quartiles with the median
trained RNAOO2 model compared with and ONT ‘rna_r9.4_180mv_70bps’ model, indicated by the horizontal line, and whiskers extend to 1.5 times the interquartile
whichis the default model that Uncalled4 and Nanopolish use for RNAOO1 or range.
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Extended DataFig. 2 | Illustration of basecaller-guided DTW. (a) Generating of
ref-moves from raw basecaller moves and a minimap2 alignment. The minmap2
‘CIGAR corresponding to the basecalled read alignment is ‘9M116M1D3M".
K-mers coordinates are defined relative to the central base, which is defined for
each pore model based onits substitution matrix (Fig. 2a). (b) A standard NxM
DTW matrix, where N = M =5. Cells are colored by their Manhattan distance from
(1,1), which corresponds to the band which they will be contained in. The red line
represents the ref-moves which will guide band placement. (c) The same DTW

matrix overlaid with bands centered on the ref-moves (band width W = 3). (d) The
DTW band matrix with each row offset by its location in the NxM matrix, which is
shaded inthe background and rotated 450. White cells indicate out-of-bounds
coordinates. Band start coordinates are indicated by the colored numbers to the
left. (e) The DTW band matrix, represented as a standard two-dimensional array.
Note that the start coordinates are required to reconstruct the original matrix
structure.
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model current MAD. (c) Alignment dotplot of the same read to areference with a isbrokeninto‘GAG’in the basecalled sequence, making the signal-to-read
10 nucleotide deletion with boundaries indicated by red lines. Uncalled4 masks alignment erroneously more similar to the pore model.

signal around insertions or deletions 10 nucleotides or larger based on the ref-
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methylguanine site is present in the native dataset at position 526, causing a drop
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Uncalled4 and ONT r9.4.1 6-mer DNA models. (b) Current levels from Uncalled4

and ONT r10.4.1400 bps 9-mer DNA models. Inset displays sequence logo for
k-mers with more than 0.5 normalized units of difference between the models
(indicated on main plot by dashed line). (c) Current distributions for k-mers with
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for ONT 400 bps which has outliers caused by ‘TVTT k-mers. (d) Comparison
between Uncalled4’s r10.4.1400 bps model and ONT’s 260 bps model, which
lacks the outliers seenin ONT’s 400 bps model.
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Extended DataFig. 6 | Transcript-level comparative m6A detection. Precision recall and ROC curves for transcript-level comparative m6A detection in HEK293t in all
contexts (a-b) and limited to DRACH sites (c-d).
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translation of transcript-level calls to the gene-level (t2g). (b) Precision-recall and
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‘Splice’ indicates Uncalled4 spliced genome alignment. ‘Multi t2g’ indicates
transcript-to-gene averaging using all multi-mapping reads, while ‘pri t2g’
indicates the same but only using primary alignments.
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Extended Data Fig. 8| Gene-level comparative m6A detection. Precision recalland ROC curves for gene-level comparative mé6A detection in HEK293t in all contexts
(a-b) and limited to DRACH sites (c-d). ‘splice’ indicates Uncalled4 spliced genome alignment. All other methods used transcriptome alignments with all multi-
mappersincluded, averaged to the gene-level.
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Extended Data Fig. 9| Gene-level HEK293T m6Anet. Gene-level HEK293T m6Anet calls via transcript-to-genome (t2g) averaging. (a) Precision-recall and (b) ROC
curves using GLORI labels with no level threshold. (c) Areas under the precision-recall and (d) ROC curves using different thresholds on GLORI levels.
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Extended DataFig. 10 | Cell line m6Anet analysis. (a) Distance from annotated
stop codon for transcript-level m6A sites found by Uncalled4 (purple) and
Nanopolish (green) with mé6Anet at matched 85% precision. (b) Metagene plot
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|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Data analysis Basecalled using Guppy v6.4.8 for most data, except for Tombo where v4.0.1 was used. Basecalled alignments using minimap2 v2.16. Signal
alignments using Uncalled4 v4.0.0, Nanopolish v0.13.3, Tombo v1.5.1, and f5c v1.3.
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Drosphila sequencing data generated for this study is available at SRA bioproject PRINA634693. All other datasets were obtained from publicly available sources.
The E. coli rRNA data was obtained from [29] (SRA bioproject PRINA634693). The constitutively incorporated BrdU dataset and matched control were from [30]
(SRR8991355 and SRR8991351). The IVT Hela cell direct RNA sequencing data used to train the RNAOO2 model was obtained from [53] (SRR23950400). HEK293T
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NA12878). HMEC data was obtained from [55] (GEO accession GSE132971). All other human cell line data is from the Singapore Nanopore Expression Project
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models.

Data exclusions | We excluded Drosophila r10.4.1 260bps sequencing chemistry as this sequencing method was deprecated by ONT
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals 15 newly eclosed (one day old) D. melanogaster males of the Oregon R strain (Bloomington stock center, #5)
Wild animals Did not involve wild animals
Reporting on sex Sex was not relevant to the study, but all individuals were male according to the stock facility

Field-collected samples  Did not involve field-collected samples
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