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Fractional Sobolev isometric immersions
of planar domains

SIRAN L1, MOHAMMAD REZA PAKZAD AND ARMIN SCHIKORRA

Abstract. We discuss C ! regularity and developability of isometric immersions

of flat domains into R3 enjoying a local fractional Sobolev WH'S’% regularity
for2/3 < s < 1, generalizing the known results on Sobolev and Holder regimes.
Ingredients of the proof include analysis of the weak Codazzi-Mainardi equations

of the isometric immersions and study of WZ’% planar deformations with sym-
metric Jacobian derivative and vanishing distributional Jacobian determinant. On
the way, we also show that the distributional Jacobian determinant, conceived
as an operator defined on the Jacobian matrix, behaves like the determinant of
gradient matrices under products by scalar functions.

Mathematics Subject Classification (2020): 35D30 (primary); 46F10, 53C24,
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1. Introduction

In this article we prove the C! regularity and developability of isometric immer-
sions of class W!T5? of two-dimensional domains  into R for 2/3 < s < 1
and sp > 2, thereby generalizing the results of [42] for the Sobolev regime s = 1,
p > 2 and of [13] for the Holder regime s > 2/3, p = oo. The proofs are obtained
by adapting the ideas of a few of the results appearing in [13, 35,36, 42] to the
fractional Sobolev case.
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1.1. Background

There are several motivations for the study of isometric immersions of low regu-
larity. A first one arises from the strong divergence in the respective behaviors of
C! and C? isometric immersions of two-dimensional domains. This phenomenon,
known as the flexibility and rigidity dichotomy, has other parallels, e.g., for the so-
lutions of the Euler equations in fluid dynamics. We shall direct the readers to [13]
and the references therein for a survey of the literature on the historic problem of
developability in differential geometry, alongside its connections to the above men-
tioned dichotomy in nonlinear PDEs and convex integration and to a conjecture by
Misha Gromov [20, Section 3.5.5.C, Open Problems 34-36].

The second motivation stems from the calculus of variations and nonlinear
elastic plate theory. Surfaces with L? integrable second fundamental form and cur-
vature functionals such as the Willmore energy have a long history in geometric
analysis and calculus of variations. In the context of nonlinear elasticity, the Kirch-
hoff model stipulates that the deformation of a piece of paper under body forces
or boundary conditions minimizes the Willmore functional subject to the isometric
constraint. In this context, and following the methods of Kirchheim [31], the C!
regularity and developability of isometric immersions with L? integrable second
fundamental form were proved by the second author in [42]. This result has had
many applications in nonlinear elastic plate theory, namely in proving density of
smooth isometries in the class of W22 isometric immersions [24,42], in derivation
and regularity analysis of the Euler-Lagrange equations for the Kirchhoft’s models
on plates [25,26], in derivation of plate and shell theories from 3d nonlinear elas-
ticity via I'-convergence [17,27], in stability analysis for nonlinear plates [33], and
finally in the confinement problem for unstretchable elastic sheets [12,52].

The results of this paper give us the possibility to broaden the analysis by
proposing similar models involving deformations of lower regularities, but with
still some control on the curvature of the image surfaces. Indeed, as shown in
Section 5, an isometric immersion u of regularity W 1757 admits a second funda-
mental form II(u) of regularity W*~1:2 if 1/2 < s < 1 and p > 2/s. This way we
can define a fractional Willmore-like curvature functional

T() = |[T)]|yys—1.r

on the class of such immersions. This variational model, which we can justifi-
ably name the fractional Kirchhoff plate model, is rather phenomenological; nev-
ertheless, mathematically, many of the above mentioned problems on the standard
model can be reformulated in this new context and explored. As an example, it
can be asked whether its minimizers will enjoy the same regularity as those of
the standard model established in [25], or will develop new types of singularities.
The results of the present article concern the class of admissible deformations of
this model in the regularity regime s > 2/3 and could pave the way for proving
regularity of the minimizers in the footsteps of [25].

Finally, our last motivation for the study of weakly regular isometric immer-
sions is that it is connected to many interesting problems in nonlinear and geomet-
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ric analysis: It has lead to the development of interesting methods in geometric
measure theory and geometric function theory [29, 30, 35,36], and as we shall see
below, to problems on the distributional Jacobian determinant, see also [18,36] in
this regard.

1.2. Main results

Our first result is complementary to a theorem of Pakzad [42, Theorem II], which is
the case s = 1 of our Theorem 1.1, and to the recent work for u € cl% (2, R3) D
Cl’%+€(Q,R3) by De Lellis—Pakzad [13, Theorem 1]. Following [13, Defini-
tion 1], we say a C! mapping u of a two-dimensional domain 2 is developable
if given any point x € €2, u is either affine around x, or its Jacobian derivative
Vu is constant along the connected component of the intersection of a line passing
through x with €. See also [13, Section 2] for equivalent conditions. We refer to
Subsection 2.1 for definitions and notation regarding fractional Sobolev spaces.

. 14s5,2 . .
Theorem 1.1. Let Q C R? be an open set. Consider the class of W ° isometric
immersions:

1+s
loc

1+s
loc

S(Q,R?) = SQURY: (V)TVu =1d ace. in Q

1+s
loc

2 s
Thenanyu € I, | ° (Q,R3) with % < s < 1iscb2-regular and developable.
Remark 1.2. Here c!* denotes all mappings whose derivatives of components lie
locally in the little Holder space ¢%%, which is the closure of smooth functions in
the C%* norm.

As a consequence we also obtain the extension of [42, Corollary 1.1] to frac-
tional Sobolev spaces, cf. [12,52].

Corollary 1.3. There exists pg > 0 such that whenever s > % there is no WlOC
isometric immersion of the 2-dimensional disk into a three-dimensional Euclidean

ball of radius r < py.

Note that pg < 5, as the images of such immersions will always contain segments
larger than the umt segment.

Remark 1.4. The same statements hold true for isometric immersions of W1 +$:7.
regularity with s > 2/3,sp > 2. If s > 2/3, p > 3, this fact follows from Theo-
rem 1.1 by the embedding of W, :? into I/I/igc/3’3. In the case s = 2/3, p > 3 this
embedding fails, but following the footsteps of [13], a proof for the developability
statement can be achieved, which we leave to the reader. We have concentrated on
the more challenging borderline case sp = 2.
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Remark 1.5. Theorem 1.1 may fail for isometric immersions of W *5:7_regularity
if sp < 2. Indeed, forany 0 < s < 1 and p < 2/s, the 1-homogeneous map
u : B! — R3 expressed in polar coordinates as

u(r,0) = (%r cos(26), rsm(29) —«/_r)

is a W1T5? jsometric immersion of the 2-dimensional disk into R3 but has a con-
ical singularity at the origin. It clearly does not belong to C'! and fails to be devel-
opable.

Remark 1.6. Following [41] for s = 1, p = 2, we expect that the isometric

immersion can be shown to be C! up to the boundary if its W1TS 5 (£2) norm is
finite and 9L is of class C 1'% for some & > 0. This boundary regularity fails if 92
is merely of class C'! [41, Remark 7].

Remark 1.7. To establish the result, directly following the arguments of [13] is
not enough. Indeed, observe that u is a priori not even assumed to be in C!. But
this is not the only difficulty, as we will explain in Section 4 and Appendix A.
We will hence adapt a new approach. In particular, Theorem 1.10 below is a new
contribution devised to bypass the new obstacles for the case s = 2/3.

To set up our second and third results, we first remind following Brezis-
Nguyen [7] that for any domain 2 C R”, and f belonging to the optimal space

W 7" (Q,R"), the Jacobian determinant Jac( f) := Det(V[f) is well defined
as a distribution in D’(£2), see also Sickel-Youssfi [48]. We also refer to the
fundamental works on the distributional Jacobian developed by Reshetnyak [43],
Wente [53], Ball [2], Tartar [50], Miiller [40], Coifman-Lions-Meyer-Semmes [9],
and Brezis-Nirenberg [8]. In view of the embedding theorems for the fractional
Sobolev spaces Jac(f) is well defined for f € W P(,R") if ”_1 <s <1

r +1 In particular, it can be established by the methods of [7] that if

p =n/s,Jac(f) € Wl"(s D, 1/S(SZ), — the proof is explained in [36, Lemma 1.3],
cf. Lemma 8.1.

Our analysis establishes a connection between isometric immersions of frac-
tional Sobolev regularity and deformations of plane domains f with symmetric
Jacobians V f and vanishing distributional Jacobian determinants Jac( f). In par-
ticular, the developability of isometric immersions is proved using the following
similar statement for these deformations.

and p >

Theorem 1.8. Let @ C R? be an open set. Assume that s > 2/3 and f €
(SZ R?) with its distributional Jacobian satisfying

curl f =0 and Jac(f) =0 inD'(Q).

loc

s . . .
Then, f € ¢®2(Q) and for any point x € Q, f is either constant around x, or
it is constant along the connected component of the intersection of a line passing
through x with Q.
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See statements similar to Theorem 1.8 in [31, Proposition 2.29] (for Lipschitz
maps), [42, Proposition 1.1] (for W 2-maps), and [35, Theorem 1.3] for Holder
continuous maps. The continuity of any f as in Theorem 1.8 was already shown
in [36, Theorem 1.6].

Remark 1.9. As in Remark 1.5, Theorem 1.8 fails for f € W*? with 5 sil <
p < % even for s = 1. We refer to the so-called “fish-like example” discussed
in [16]: Letting ¢ = 0, f = Vu satisfies curl (f) = 0 and Jac(f) = Hu = 0,
however f is not even continuous.

Another new contribution of this article, which will turn out to be crucial in
proving Theorem 1.1 in the critical threshold s = %, directly regards the properties
of distributional Jacobian determinants. As we shall see in Proposition 2.5 the
distributional product AVg is well defined provided A € L*® N W5 (2) and
g € W5 (Q:R") if s > 1/2. In view of this fact, the following seemingly natural
behavior of the distributional Jacobian determinant can be proven:

Theorem 1.10. Let n > 2, and let Q@ C R" be a bounded smooth domain, or
Q = R". Assume that s € [25.1), A € L® N WS5(Q), f.g € WSS (Q:R),
and that

Vf =AVg. (1.1)

Then for any ¢ € CX°(2),

Jac(f)[¢] = Jac(g)[A" ).

. n
Note that since s > 77,

n — 1 — 1
Mpe Wyt (@) = W T T (@) = Wy VT (),

and so the right-hand side in the above Jacobian determinant identity is well de-
fined.

The outline of this paper is as follows. In Section 2 we begin with some pre-
liminaries on fractional Sobolev spaces and gather some important statements to
be used later in the article. In Section 3 we discuss developability of fractional
Sobolev 2d deformations with symmetric Jacobian derivative and vanishing dis-
tributional Jacobian determinant. In the subsequent Sections 4 and 5, we will set
out to define a notion of second fundamental form for fractional Sobolev isome-
tries and to derive a weak version of Codazzi-Mainardi system of equations for it.
In Section 6 the developabilty and regularity of each component are shown. We
will complete the proof of Theorem 1.1 in Section 7 and present a proof of The-
orem 1.10 in Section 8. In Appendix A, it is briefly shown, as a side-note, how
Theorem 1.10 can be bypassed in case s > 2/3. In Appendix B we introduce
a notion of fractional absolute continuity in order to give a simple proof of the
known fact from [23] that the image of a W*? (R, R?) deformation is of Lebesgue
measure zero provided s > 1/2 and sp > 1.
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2. Fractional Sobolev spaces, an overview and some facts

2.1. Notation

We will work with the Slobodeckij or Gagliardo fractional Sobolev space, also
sometimes referred to as the Besov space. Namely, for any open set 2 C R”,
non-negative integer k, 0 < s < l and 1 < p < oo, we define the fractional
WP -seminorm of a mapping f € L. (Q,RY) by

loc

_ p 1/p
[quapgn;::(/; (L= dxa@) |

e =yl
and we set for any integer k > 0 (identifying W%? with L? when k = 0),
Wh+s.p(Q) = {f eW P (@) [DFf]yimg < oo},
which is a Banach space with the norm
I/ lwr+s.p@y = 1/ lwk.r@) + [Dkf]Ws.ﬁ(Q)‘

W0k+s’p () is defined to be the closure of C2°(£2) in this space. Note that C>°(R")
is dense in WK+ (R") [14, Theorem 2.4]. If © is a bounded smooth domain,
there is a bounded linear extension operator mapping W7 () to W5-?(R") [14,
54]. For any such €, or for 2 = R", and 1 < p < o0, these spaces coincide with
the Besov-Triebel-Lizorkin type spaces Bj, ,(2) = F, ,(S2) according to [44,
Proposition 2.1.2 and Section 2.4]. Indeed the identification can be established as
these spaces are the real (s, p)-interpolation between L? and W -7 spaces, see [38,
Example 1.8] and [3, Theorem 6.2.4].

When 1 < p < oo, the Lions-Magenes Sobolev space Wokoﬂ’p (R2) introduced
in [37] is the closed subspace of W*+5:7(R") defined by

k , J—
Wy TP (Q) = {f e WkSP(R") : supp f C Q}

equipped with the induced seminorm [ f ]W(;COJF‘Y. @) and norm || f ||Wéc0+s, r(gy We
refer to [51, Section 4.3.2] for more references and for the following properties:
Woli)ﬂ’p (R2) can also be identified as the set of those elements of W0k+s’p (RQ)
whose extensions by 0 outside of Q belong to W +5:P(R"). CX(2) is dense
in WOIE)H’I’ (£2) and we have

”f”W(;H‘SsP(Q) 3 ”f”WéfO‘f‘SsP(Q)-
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If sp # 1 and 02 is sufficiently regular the linear operator extending f € C2°(2)
by 0 outside of Q to f, € W*T5:P(R") satisfies

| follwi+s.o@ny Z IS lwr+s.p(g)s

which implies WOIBH’p(Q) = W0k+s’p(§2). If sp = 1 this is not the case and

1 1

WOIBJFS’E (R2) is a proper dense subspace of W0k+s’5 () when Q # R”.

If Q2 is a bounded smooth domain or if = R”, weset for 0 < s < 1,
1 <p<oo:

WHP(Q) = (W ()

with 1/p 4+ 1/p’ = 1, as a subset of distributions in D’(£2). Our definition departs
from [44, Section 2.1.1 and Section 2.4.1] but by [51, Theorem 4.8.1], these two
definitions coincide. Therefore the extension property is still valid for negative
differentiability exponent: For a bounded smooth domain €2, and 0 < s < 1, any

element of W ™57 can be extended by a bounded linear operator to an element of
W=5P(R") [44, Theorem 2.4.2/2]. Moreover by [44, Propostion 2.1.4/2]

WSP(Q)={f eD(Q): feW"P(Q) and Df € W 1P(Q,R")},
with equivalence of norms
I/ lws.r@) = | fllws—1.0(@) + I1Df llws—1.0(0)- 2.1

For t > —1, the vector-valued spaces W7 (Q,]RN ) are defined to be all RN
valued mappings whose components lie in W2 (Q). We will omit the target R
when there is no ambiguity.

It is also useful to define for 0 < s < 1 and 1 < p < oo the homogenous
norm

1f sy = sup 18]+ ¢ € CE(R) and [l < 1]

z ”f”W—S,P/(Q)’

(2.2)

where here and throughout the article f[¢] denotes the action of the distribu-
tion f on ¢. We denote the corresponding space of finite-norm distributions by
W—=s:2'(Q), and note that C>(R2) is dense in W—s:P'(Q). 1t follows from (2.1)
through a standard scaling argument that

flwso@ny 3 1DS lyis-1.0qn)- 23)

We conclude our presentation of fractional Sobolev spaces by a final useful ob-
servation. For n > 2 let the differential and integral operators Arn, Ag; and the
Riesz transform R be respectively defined by the Fourier symbols |£|?, |£|~2 and
i&/|€]. It is known that Agt is a well-defined operator and coincides (modulo a
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conventional sign) with the Newtonian potential on L2(R") D C°(R"). By aclas-
sical theorem [19, Corollary 5.2.8] the Riesz transform is a bounded operator from
L?(R") into L?(R",R") when 1 < p < oo. Itis a linear operator commuting
with differentiation, hence, via the interpolation property [38, Theorem 1.6] and a
scaling argument, and in view of the fact that R - R f = — f we obtain that

[Rfws.p@n rny = [flws.r@n)
forany 0 < s < land 1 < p < oo. An argument by duality yields the similar
estimate
”Rf”W—S,p/(Rn,Rn) ~ ”f”W—s,p/(Rn)-
Combining this fact with (2.3), we obtain

[DAHE'}f]W&p(R”) ,5 ||D (DAHEI%) fH Ws—1.0(Rn)

2.4)
= ”R®Rf”Ws—l,p(Rn) ~ ||f||Ws—1.p(Rn)-

2.2. Mollification and commutator estimates

For a given smooth bounded domain 2 C R” we fix an extension operator and for
any f € W*P(Q), we still denote its extension by f € W*P?(R"). Throughout
the paper, we fix a standard mollifier ¢ € C2°(B), [ g1 ¢ = 1. For any mapping
f € WSP(Q) with Q as above, we let f, be the mollifications of the extension
fe = f * @, where pq(x) = },,(p(f). The following estimates, which are
reminiscent of [10, 11, 13] will be used in our analysis:

Lemma 2.1. Let 0 < s < 1, f,g € WSP(Q), where either Q@ C R" is smooth and
bounded or Q = R". Then:

) I fe— flliLr <o(e);
(i) Yk > 1[V¥ fillLr < o(e57%);

(i) 1 p = 2, VK = 0 [ VR (fuge — (f9)) o2 < 0(27F),
where the bound function o(-) depends on p, ¢ and the extension constant of 2.

Proof. (i) By the extension property of smooth bounded domains it is sufficient to
prove the estimates for 2 = R”. Let for x, y € R”

Sx f(y) = f(y—x)= ().
We have by Holder’s inequality

Ife = fIZ»
Z/Rn /R e e d| dy = /R

TR g )( G+, ,,/)p d
<[ (] oo Pigonra) ([ g Piacon”)

<Ce” / / 6P| £y — x) — ()| dxdy < ePo(1),
R J{|x|<e}

p

dy

/ 5 f(¥)pe(x) dx
{lx|<e}

IS
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where % + # = 1, and the last inequality is a consequence of the dominated

convergence and Fubini theorems, in view of the fact that the integrand belongs to
LY (R" x R™).
(i1) Similarly as for (i) we write:

7

14
:/Rn dy =/Rn
E[l;n (/{llxlss} (|x|_(s+%)|8xf(y)|>p dx)
§ (/{|x|<s} (8_k|x|(s+%)| (Vk“”)s (x)|)p/);:/ dy

csb 0 [ - - f)IP dady < £ Do)
R J{|x|<e}

V4
LP
V4

dy

| 10=09* g dx

| 8t (94) (o dx

which is the desired estimate.
(iii) First we observe that for all k > 0

| 8701850 @)1

=/ Sx f(y) Sxg(y) |x|26+n/p) gk (vk<p) (x)dx
o &

n |x|s+n/p |x|s+n/p

< Sxf(y) ng(y) H |x|2(5+n/P)8—k (Vk(p) (X) H »

= |x|s+n/17 |x|s+n/P L%({lese}) e L 72 ({|x|<e})
<2k | 5xSO) 8xg(y) 25)
- X2 L i zen IHREF2 Lo i <eny

For k = 0 we write for all y € R":

(fige = (fD00) = (s = Nlgs =00 = [ 5 S0IBeg st d.

The L?/2 norms of the first term is estimated by o(¢2%), using part (i), (ii) and
Holder’s inequality. Now, integrating the %th power of the second term over the
parameter y, and using (2.5) will yield the o(1) factor and complete the proof.



774 SIRAN LI, MOHAMMAD REZA PAKZAD AND ARMIN SCHIKORRA

If k£ > 1, it is sufficient to note that for all y € R":

k
VE(fege = (fR)) ) = DV e ® V¥ ge(y) = VE(f2)e(y)
j=0
k—1 . )
=Y V@ Vi) + (fe— /IVFE()

=1
+ (g — 9V £o(y)

~ [, 8 S0V ) dix.

The L?/? norms of the terms in the first summation are estimated by o(g257%),
using part (ii) and Holder’s inequality. The second and third terms are estimated
using (i). Finally, integrating its %th power of the last term and once more applying

(2.5) leads to an 0(¢2~K) control as desired. O

Remark 2.2. The estimates in Lemma 2.1 are not optimal and seem to characterize
the spaces by, ., [44, Definition 2.1.3/1], which are larger than W*-7. We conjecture

that results of the paper can still be achieved for the borderline space b through
the same approach.

Corollary 2.3. Lets € (0,1) and p > 2. If f,g € W*5P(Q), where either Q is
smooth and bounded or Q2 = R", then

lim || foge — (f8)e =

WZS
Proof. The idea is to use the interpolation inequality [38, Corollary 1.1.7]

1Al 0.2 2 ||h||1 Zlnl? |

y
*2

g%

, we apply Lemma 2.1(iii) for

forallh € Wh% and0 <6 < 1. For0 < s < 1
= 2s to obtain:

k=0andk =1toh:= f;g. — (fg)s with 6
| fege = ([l g = 0 (e17202F2CD) — (1),

Similarly, if 3 < s < 1, we let & := V(f.ge — (fg)e) and 6 = 25 — 1 and we
apply again Lemma 2.1(iii) for k = 0, 1,2, and the interpolation estimate, which

together yield:
| fege = (/D)) 5 < 0(c*)

and

IV(fege = (R aimr g = 0 (£07CIEIHEDCD) — (1) [
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We will also need the following elementary estimate, which in fact states the
known embedding of W*'s (R") into VMO [8, Section 1.2, Example 2]:

Lemma 2.4. Let Q@ C R be an open set and f € W5 (Q). Then for all x € S,
and ¢ < dist(x, 0€2),

um][ If — @)% =o.

e—0 B.(x)

Proof. 1t is sufficient to show that
S
”f - fs(x)”L%(Bg(x)) = 0(8 )v

which follows from the a variant of fractional Poincaré inequality which is valid
foralls € (0,1)and 1 < p < oc:

| f — fe)LrB.x)) < CELflws.r(Box))

and can be proved similarly as in [15, Proposition 2.1], where we have replaced the
average of f on the ball by f:(x).

Here we provide another proof. For a fixed x € € we have by Lemma 2.1(i)
n

andp =12

SI
L = L L% gy = I = Tell L2 goayy T 1o = e L2 5, (1
<o(s®) + I fe — fS(x)”L%(Bs(x))'

It remains to bound the second term, for which can apply the standard Poincaré
inequality for any f € L'(2) with the proper scaling on the ball B (x)

”fé‘ - fg(x)”L%(Bs(x)) = C‘g”Vfb‘”L%(Bs(x))’ (26)

to obtain, this time via Lemma 2.1(ii) the desired estimate. Note that we have the
right to use fz(x) as the normalization constant since % > n and W5 embeds in

CO,I—S. O

2.3. Distributional products in fractional Sobolev spaces

In Section 5 we will define a notion of second fundamental form for fractional
Sobolev isometries through the first part of the following result. We will present
a proof following the methodology of [34], which then is adapted to subsequently
show the complementary second part, which, in particular, will be used in proving
Theorem 1.10 in Section 8.

Proposition 2.5. Letn >2,1/2 <s <1, f € WS’%(]R”).
() Let u € W55 (R") N L®(R"). Then, for any o € {1,....n}, the product
Wiy [ is well defined as a distribution on R", and

||:U“aaf||Ws—l.%(Rn) j [f]Wb%(R”) ([I‘L]Ws.%(Rn) + ”/’L”LOO(]R”))7
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(ii) Let jux € W5 (R™) N L(R") with

Sl]ip (”lu’k”L%(Rn) + ||/Lk||Loo(Rn)) < Q.

k
Assume moreover that [jix] “%0. Then, foranya € {1,...,n},

ws % (R™)

k—o00

2B S st Gy o 0

Proof. We will first show (i). Remember that the harmonic extension of f €
LY(R™) N L*®(R") to R:’L“ is defined by the Poisson extension operator [19, Ex-
ample 2.1.13]

i, x) = C, / ! — f(2)dz (2.7)

B (lx —z]> +12) 2

and the operator can be extended to W5 (R") [28,34]. Let ¢ € C >°(R") and

let ,uh, f h and ¢h be the harmonic extensions of w, f, and ¢, respectively, on to
R’H—l
il

The one-dimensional integration by parts [34] allows us to define

poa f191:= - [

n+1
Ry

Ot (1"0a 1" ") (2.8)
By (2.2), we are going to estimate

1890 f 1.3 ey =509 {10 f19] = ¢ € CER™) and B,y ey = 1}

So let us fix one ¢ € C°(R") with [¢] < 1. We bound

Wl—s,nﬂs (R”) =

M%f@ﬂiAT1

2| ][]+ [*] |pr*] P

as we can always tackle the d, term (which is in R”-direction) via integration by
parts. Here and hereafter, D is the R”*!-dimensional gradient.
We first claim that

/n+l
Ry

Dﬂh‘ ‘th’ ’¢h‘ 2 lys s gy U s @y [ @)1= tts gy (29)
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‘We have

/n+l
Ry

< /R |M¢>(x)|/0oo ’D,uh(x,t)’ ’th(x,t)‘ dr dx

i | o] fo*

= h 2 : oo h 2 2
< [ voeon ([T iputopa) ([Tioftwopa) o
UM oy o) (/Rn (/o |D/Lh(x,t)|2dz) 2 dx)
X (/R (/000|th(z,x)|2dt)2dx) .

Here we have used, for the Hardy-Littlewood maximal function M, the fact that

9" (x.1)] T Me(x).

Alsorecall the characterization of the homogeneous Triebel-Lizorkin spaces (listed,
e.g.,in [28,34]):

00 . z2 3
”f”Fg.q%(/l%n (/0 Itl_q_"‘Df”l"dt) dx) :

So, in light of the maximal theorem, we have shown that

/n+l
Ry

Thus, we can immediately conclude (2.9) from the embeddings [44, Proposi-
tion 2.2.1 and Theorem 2.2.3(ii)] and scaling arguments:

h || ah| < .,
D | DA 04| U0ty g Wl g WD

n

||¢||Lﬁ(RH) 5 [¢]W175‘~n—s (R") 5 1’

”l’l’” .2% ) ) j ”/’L”F%’%(Rn) = [M]WS.%(RH)?

1A,y S s @y

2
F2n.2(Rn)

aslongass > 1/2.
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Next we estimate

[ 01D
Ry

n—s

(L[ omna )’
R”7 0
x(/ (/ |M”z1—2—sz)fh|’s’dz)dx)"
R” 0

=]

(2.10)

L“(R’i—i_l) [(P]Wl—x,ﬁ (]R”)[f]W-‘V%(R”)'

<1

Now it is sufficient to observe that by the maximum principle
||/'Lh||Loo(R1+1) = ”/’L”LOO(R”)
to conclude together with (2.8) and (2.9) with
”/“Laaf”Ws—l,%(Rn) /5 [M]WS%(R") [f]Ws,f%(Rn) + ”M”LOO(R”)[f]Ws,%(Rn)’

which finishes the proof of (i).

(i) does not directly follow from (i). We first analyse the asymptotic behavior
of ug. Note that since WSn (R") is reflexive, ux is weakly sequentially compact
in W* . We shall see that i — 0 weakly in W*5 (R"). Indeed, take any weakly
convergent subsequence, relabelled ftg, iy — w € W55 (R"). Let Bg be the
open ball of radius R > 0 centered at origin in R”. For any R > 0, ux|p is a
bounded sequence in W*s (Bg) and hence by [14, Theorem 7.1], it is precompact
in L"/$(BR). Since the limit of convergent subsequences cannot be anything other
than | g, we conclude that for each R > 0, s — w strongly in L% (BRr), and so
f}olr some subsequence, jif ; converges almost everywhere in Bg to w. This implies
that

i P ) = 1 ) (%) — ()
jmeo x—yP T |x—yPs

for almost every (x, y) € Br X Bg. On the other hand,

by the main assumption, which implies, again up to a subsequence of jix ;, that the
same limit vanishes for almost every (x, y) € Bg x Bg. As a consequence [4|B,
must be constant for all R > 0, and since u € WS’%(IR”), we obtain that © = 0
is the unique weak accumulation point of the original sequence py. We finally

conclude that for all R > 0, ||k ”L%(BR) — 0.
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In order to prove (ii), we note that it is sufficient to assume f € CX(R").

Indeed, let f; € C*°(R") be such that [ f; — f]W-‘*%(R") — 0. If

as proved below, then
ke f Nl ps—1.5 gy = Nk BaCf = Fidllyyrsmrs gy + 11k 0a fi g1 5 gy

converges to 0 too since because of (i) and the uniform boundedness of pix the first
term on the right-hand side is arbitrarily small for large ;.

Now we prove (2.11). Let f € C>°(R") and assume that supp f lies in the
open ball B, in R". Fix a smooth cut-off function n € C°(B,+1) such that n = 1
on B,. We observe that for all k and for all ¢ € C°(R")

ataf 81 = [ @ty = [ Gutynas = [ afus

= [ bt = i /161,
This implies ndy f = (g )9y f and it is sufficient now to prove that

Jim [ (1) 0o f | ys=1.5 oy = 0- (2.12)

In order to do so, we have to analyse the sequence 7% and its harmonic extension
(nux) to R’fl. We have

k—o00

bl gy < Mooy Nitiell 2 g,y =0
and

[n/fl“k]Wv% (R") = ” 7’”L°°(R”) [Mk]Wv% (RM)

w [ G — ()l "
12 (/M D e dy)

k—o0

j [/’Lk]Ws.%(Rn) + ”/’Lk”L%(BD_H) — 0.

Now, following the first inequality in (2.10), applied to f and to the sequence i,
together with (2.8) and (2.9), we obtain:

10 f 1.2 oy 5 D102y s(Rnﬂf Iws %y

hl —s h
of'|
+H(nuk) Ui Tty
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k
Since [nu] W% ) == 0, we conclude the proof of the theorem once we show

H (U/Lk)htl_%_sthH (2.13)

lim =
k—o00 LY ®1TY

For this, we observe that

1-3—s h < n
”t bf ”L’}(Rf‘ﬁ‘) ~ [f]WS’T(R") =

and by the maximum principle

< sup [|npk || oo wry < 0.

hH
su
kp H (nﬂk) L°°(RZ_+1) i

Let
Gy = ()t —n—*

th).

Then we have

sup |G (x, 1) 3 1175 th(x,t)| V.t e R
k

On the other hand, we have from the convergence nu; — 0 in L5 (R") that every

Jj—o0 .
subsequence of Ny has a subsequence nug; — 0 almost everywhere in R".

Since nu are compactly supported in B,y 1, they belong to L'(R") N L>(R")
and hence the Poisson integral formula (2.7) is valid. Now, the uniform bound-
edness of nug in L>°(R") and dominated convergence applied to (2.7) imply that
(n Mk, )h, and hence Gy, converge to 0 almost everywhere in Rﬁ_“. By dominated
convergence we then find

jlinolo | G, HL%(R’_’;FI) = 0.

A standard argument now implies (2.13) and we conclude the proof as (2.12) is
shown. O

The following corollary is a local version of Proposition 2.5:

Corollary 2.6. Letn > 2 and 1/2 < s < 1. Assume that Q@ C R" is a bounded
smooth domain and f € W5 ().

(i) Let p € W55 ()N L®(K). Then, forany o € {1, ...,n}, the product udy f
is well defined as a distribution on Q2 and

1090/ et gy = L Dot i (et oy + I8l zowien):
Moreover, for any u € C®(Q) and ¢ € WOIO_S’"L_S (R2) we have
Maaf[d)] = aaf[ﬂd’]; (2.14)
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(ii) Let g € W5 () N L®() be such that

sup lakl o) <00 and i il =0.  @13)

Then, forany a € {1,...,n},

k—o00
||Mk8af||W.s—l,%(Q) — 0

Remark 2.7. Note that the mere boundedness of || k||, 2 @ is no more sufficient

for the local version of Proposition 2.5-(ii) to be true. ur = 1 is a trivial coun-
terexample.

Proof. Given f € W55 (Q)and u € W55 (Q)NL®(S), we extend them to [, fi
using a bounded linear operator to the whole R” and we consider the mollified
sequence fg and ji;. By Proposition 2.5 we have for any ¢ € CZ°(£2), extended
by 0 outside 2 to ¢ over R”,

/Q/laaocf;¢ = llsaocf;d; - llaa];w;] as ¢ — 0.

Rn

We define for ¢ € C°(2)

1100 [ 9] := 10 fP]. (2.16)

which, in view of the fact that
[¢]W-\‘»P(R") 3 [¢]W(‘)‘61’(Q),

satisfies the desired estimate in (i). Approximating f and ¢ in their respective
spaces by smooth sequences fr € C®(Q) and ¢ € C2°(2) and passing to the
limit using the newly established estimates on €2 yields (2.14).

As for (ii), Proposition 2.5-(ii) is applicable to the extensions fi; because of
the assumptions in (2.15) since in that case ||fix||zoo(r) are uniformly bounded
and we have .

—00
This impies (ii) as formulated.

Note that a diagonal argument and part (ii) also prove the independence of the

definition from the choice of extensions. O

Corollary 2.8. Letn > 2 and let Q@ C R" bf a bounded smoothndomain or Q2 =
R”. Assume that 1/2 < s <1, g € WS™L5(Q) and p € WSs(Q) N L2(Q).
Then the product g is well defined as a distribution on Q2 and

liglloit gy 3 &l 2 gy (It gy + Mooy )
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Moreover; if . € W's () N L®(Q) with
sup || ik | Loo(@) < 00 and
k

sup ”’uk”Ls @y < X and hm [,uk]WY 2 @) =0 otherwise,

then
k—o00 0

Remark 2.9. When @ = R”, 1/2 < s < 1 and g belongs to the larger space
WS—L5 (R™), the product g can be defined as an element of W* ~L5 (R") and its
continuity can be shown using [44, Theorem 4.6.2/2], where the Triebel-Lizorkin
theory of spaces and the notion of paraproducts are used. Another proof can be
given through duality based on [6, Lemma 6]. Indeed, for 1/2 < s < 1, let
l<t=n/s<o0,0<60=(0=s)/s <1, <p=n/(n—s) < oo, and
1 <r=n/(n—1) < oo, and note that

+

N | =
~ |
—

>
Hence, [6, Lemma 6] implies that for all ¢ € W 1=57= (R")

||/’L¢||W1*Y n"TS(Rn)

Slelzoo @91y 1-s. e oy + 111G p g I ESm 191 2 2y
S0 ey (10 o 007 ) 19 ey
Now it is sufficient to define, for g € WS~1:5 (R"),

uglpl := glugl,

and we obtain the estimate

||/’Lg||WY 1, S (R7) ~ —< ”:u“”Loo(Rn) (”M”Loo(Rn) + ”M”WY (R")) ”g”WSfl.%(Rn)

by duality.

Proof. If Q = R”, in view of (2.4), it suffices to apply Proposition 2.5 to com-
ponents of f := DAgig, if necessary by approximating g in Ws—L5 (R™) by
a sequence of C>°(R") functions. If € is a bounded smooth domain, we fix an
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extension operator g — g from_Ws_l’%(SZ) into WS~1:P(R"), and a function
n € C°(R") such that n = 1 on 2. We have

||77§||Ws—1.%(Rn) r_j ”g”Ws—l.%(Rn) r_j ”g”Ws—l%(Q) = ||g||Ws—l¥(Q)

Hence g € W*~1:5 (R") is a bounded extension of g to the whole R” and for any
extension /i € W*s N L(R") of p, the product fi(ng) is well defined. We set
nglel = (i(ng))[¢] for all ¢ € C°(S2). We can now argue as in the proof of
Corollary 2.6 in order to establish the properties of the distributional product g
and its independence from the choice of the extension operators or 7. O

3. A Proof of Theorem 1.8

Our reasoning for proving Proposition 3.2 is a combination of the arguments used
in the proofs of [42, Proposition 1.1] and [35, Theorem 1.3]. First, analogous to [35,
Proposition 7.1], we show that assuming the proper fractional Sobolev regularity,
the degree formula is valid for f:

Lemma 3.1. Assume Q C R? is an open smooth bounded set, or Q2 = R?, and fix
s>2/3and f € W25 0 CO(Q2,R2). Forany Q € Q and any g € C2(R?\
f(8§2)), one has

|, £ deet . i) dy = sac( g )

In particular, if Jac(f) > 0, then deg( f, Q: ¥) is non-negative whenever it is well
defined and moreover

Yy e f@)\ f(0Q) deg(f2iy) =1, 3.1
since the degree must be positive for such y.

By definition Jac(f) > 0 if, for all non-negative ¢ € C°(R2), Jac(f)[¢p] > O,
unless ¢ = 0.

Proof. Consider the mollified functions f; := f * ¢, € C*®(2,R?), as defined
in Subsection 2.2. Since f. converges locally uniformly to f, similar as in [35,
Proposition 7.1] we have

deg(f.2:y) = deg(f;, i) forall y € suppg:
| (o i) denv fieraz = [ e dentfe i)y,
for small enough ¢. So it suffices to show that
/ﬁ(go fe(2)) det V fo(z) dz —> Jac(f)[g o f] ase — 0. (3.2)

But the left-hand side of (3.2) equals Jac( fz)[g o f¢], which converges to Jac( f)[g o
f] by Lemma 8.1. This proves (3.2), and hence the assertion follows. O
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Next we show that if further Jac(f) = 0 and curl f = 0, then the image
f(R2) is of zero measure. In view of [32, Corollary 1.1.2] (since f is curl-free,
f has locally a gradient structure) and [13, Proposition 2.1], it follows that f is
either locally constant around a point or constant in segments joining the boundary
of Q on both sides. The local Holder regularity C /2 is a straightforward con-
sequence of the Fubini theorem for fractional Sobolev spaces [44, 2.3.4/2] and the
Sobolev embedding theorem in one dimensions [14, Theorem 8.2] after the appli-
cation of the local bilipschitz change of variable introduced in the proof of [13,
Lemma 2.11]. The little Holder regularity follows in view of density of smooth

mappings in W 3 (R) for s > 0. This will conclude the proof of Theorem 1.8.

Proposition 3.2. Let 2, s, and [ be as in the assumptions of Theorem 1.8. Then
f(2) has zero Lebesgue measure. In particular it has empty interior.

Proof. Without loss of generality and by considering compactly contained subsets
of €2 we can assume that €2 is bounded and smooth. Following Kirchheim [31]
and as in the arguments of Pakzad [42, Lemma 2.1] and Li-Schikorra [36, Theo-
rem 1.6], consider the auxiliary maps

FO@p) = fx.y) +8(=y.x)T. (3.3)

Let @ € Q be an open set. Since f® — f uniformly as § \ 0, there exists a
number §, small enough such that

Hf_ﬂm

- =<k
co@Q) —

One may choose §, to be decreasing in k. As a consequence, [ (5) lies in the
k-neighbourhood of @) (). Thus

L2(f@ar®@) = o

for some constant C depending only on Q. Therefore, by sending k — 0, we may
infer that

lim £2(fO@) = £2(f@). 34
lim 22(19@) = £2(/@ (3:4)
On the other hand, once again by setting f, := f *¢, and fg(s)(x, y) = felx,y)+
§(—y.x)T, we note that £ @ is the W*2/S-limit of fs(s) and hence for all ¢ €
C(8):

(©)) — 1 Gy — 15 2, 2
sacl £ D) = tim [ de(¥ 1020 = lim [ aen¥pp+ [ 20 = [ 9.

where we used the facts that curl f; = 0 and Jac(f) = 0. We deduce that
Jac(f @) = §2 > 0. Note that by [36, Theorem 1.1] f® is continuous.
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We take a nondecreasing sequence of non-negative g € C°(R?\ f (3)(85))
converging pointwise to Ypa\ £ (pg)- Applying Lemma 3.1 and the monotone
convergence theorem we have

/ _ deg (f(‘”ﬁ;y) dy
B2\ 7O (93)

:klim / gr(y)deg (f(‘s), §;y> dy = klim /ﬁ (gk o f(‘s)) §2 (3.5)
—o00 JR2 —00
=82L2 (Q\ (fO) 7 (FP0R)) = £2L2(@).

For any x € @, we let B, € 2 be a disk centered at x in a manner so that f @) ¢
W$2/5(dBy). This is possible by the Fubini theorem for fractional Sobolev spaces,
which is a well-known fact, see [49] in view of [1, Lemma 7.68]. A similar proof
recently appeared in [36, Lemma 2.2]; for other proofs see [44, Theorem 2.3.4/2]
or [45, Lemma 2.6]. Now, Theorem B.1 yields £? ( f (5)(8Bx)) = 0. Therefore,

applying (3.1) and (3.5) to Q= B, we have:

r2 <f(5)(B )) =/ X r® =/ X @
x 2 OB = g OB

deg (f(s), By; y) dy < §>L*(By).

<

/IRZ\f(‘” (3Bx)

It follows by (3.4) that for all x € €, £? (f(Bx)) = 0. The conclusion follows. [

4. Mollifying W' *5:2/5 jsometric immersions

Given an isometric immersion u € IS 2 (2, R3) on a bounded smooth domain
Q C R?, with s > 1/2, we will study the geometry of a sequence of mollified
mappings u, := u * ¢@.. One difficulty is that the mapping u, is not isometric
anymore, and a priori might fail to be an immersion. We will also need to define
the Gauss map 72° by the formula

812/!8 A\ Bzus
T 01ue A Doug|

—E .

But 7¢ is well defined only if [d1us A d2ug|(x) # O for a.e. x € Q. Actually, for
7 to be smooth we need a uniform lower bound on |d{u, A 0»u¢|; in other words
we need that v, is an immersion at least for small enough ¢ > 0, a fact that is true
but by no means trivial. This is the subject of the following lemma, which also
discusses the behavior of the pull-back metric induced by u,, i.e.:

g° = (Vue) Ve = ute.
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Lemma 4.1. Let Q C R2 be a bounded smooth domain, 0 < s < 1 and u €
2 ~
11755 (Q,R3). Let Q € Q. Then there exists g9 > 0 such that, for all 0 < & < g,

~ 1
Vx € Q [01ug A daugl(x) = /detgé > 3 4.1)

and as a consequence g is a Riemannian metric, u, : Q@ — R3 is a smooth
immersion on Q2 and the unit normal 1n° and the second fundamental form Hfj =

jjue - 1i¥ are well defined. Moreover, the following statements hold true:
) lim lg® —ellco) = 05
(if) lim [|(g") ™" — el co) = 0;

(i) lo° = el 3 g, < 0(6") and [ Vel 3 o + V(@) 7l 3 5, < 0"
W) llg° —ell 1 g, < 0(>) and fork = 1, [V¥g°ll 1 g < 0(7);

li — ~ =0.
(1V) SI_I)I’(I) ”g e”WZs,T(Q) O

2 . . . . .
Remark 4.2. W55 barely fails to embed in L in two dimensions and the C°
convergence of the metrics g¢, which is a key feature of the statement, is not trivial.

Proof. Consider the smooth manifold

02,3):={AeR¥>?: AT4=1d},

and note that if u € 11“’%({2), then Vu € 0O(2,3) ae. in Q. We claim that
the Jacobian derivatives Vu, of the mollified sequence u, are uniformly close to
0(2,3) on Q. Note that WS’%(ﬁ) does not embed in L°°(§) and so Vu, are not
necessarily uniformly close to Vu.

Lacking an L°° estimate, the main idea is to use the approach of Schoen and
Uhlenbeck [46] and to apply the standard BMO estimate

IVue = Vullzmo < [|Vue = Vul
on small balls around a point x € 2. See also [8, Section I.1] for a discussion of
this topic and its applications in a larger context and [5] regarding its application in
approximating fractional Sobolev mappings into manifolds.

Indeed, applying Lemma 2.4 we have for all x € Q and & < dist(2, 9Q)

dist(Vus (x), 02.3)[* < ][B V) = Vel dy = o),

where
dist(Vue(x), 0(2,3)) := inf |Vus(x) — A,
A€0(2,3)
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and | A| denotes the Hilbert-Schmidt norm of a matrix A. Let A(x) € O(2,3) be
the matrix for which the infimum is attained. Therefore

lo” — ellco = sup | (Vate ()T Vute(x) — 1d

xeQ

sup )(Vug)TVug _ ATA‘ (x) < o(1),

xeQ

which proves (i). In particular, since |0;u; A d2u,| = +/det g¢ we also obtain

Tim [[8114s A datte| = lcoggy = lim | V/detg® — 1|

coO@

This establishes (4.1). Statement (ii) follows by straightforward calculations using
the above uniform estimates. Since Vu, stays uniformly bounded in L°°(§2) ap-
plying Lemma 2.1(ii) to the sequence V?u, yields (iii). Finally (iv) and (v) follow
respectively from the commutator estimate Lemma 2.1(iii) and Corollary 2.3 since

(V)T Vu) % ge = ex . = ¢ in Q
forall ¢ < dist(?i, 0Q2). O
We can therefore define the second fundamental form of g® on Q by

Hfj = Bijug-fz‘g. (4-2)

Also, remember that for any Riemannian metric g € Rszyfnz -, » its Christoffel symbols
are defined by

1
I (@) = 50" (0i0m) + 0 8im — Imgi)

with the Einstein summation convention, where g/ are the components of g~'.

We define therefore the tensor I'® by:
re = [rj] B
Yo dijlet1,2) ().

with the usual convention |T¢| := (}_7 =1 |Fl e

Corollary 4.3. Let 2, 5, s and u be as in Lemma 4.1. Then:

3 s—l 3 .

3 25— £ 25—2
aonr|u m)<o@ )and |11, ()so@ )
(iii) If's = 3, then hm 1T ~ =0.

W2.s 1, 7(9)
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Proof. (i) follows from Lemma 2.1(ii) applied to V?u, and from Corollary 2.6 with
the estimate

&
1012 ) = (”nsnLOO(Q) + [”s]Ws,%@) Vitel o2 ) = €

where the uniform bounds on 7, are obvious from (4.1) and the similar bounds on
Vu,. Applying Lemma 4.1(iii)-(iv) we obtain (ii) on 2:

L < @) e IVl 1 <0 (27,

&
e,

and
IVEEl 1 < V@)™ 2 19600, 2 + @7 e IV20°0 1 <0 (272).
Interpolating these two estimates as in Corollar 2.3 yields (iii). O

Our next statements regard the asymptotic behavior of det IT®, which enjoys a
better than expected convergence due to its almost Jacobian determinant structure,
and of curl IT®:

Proposition 4.4. Let €2, Q u be as in Lemma 4.1 with s > 1/2. Then for all
¢ € C2(Q)

/(detlls)gb‘ <o (> 1)||v¢|| Lq T oWl Le@)-

T=s(

Proof. By [22, Equations (2.1.2)] and the Gauss equation [22, Equations (2.1.7)]
we have on Q:

detIl® = Ry121(g°%) = g5, (01 T5%° — 0210 + TV T5F — TUV°TSY)
= 01 (07 22°) — 92 (91 T51°) + 0 (|F %)
= 201207, — 01105, — 822911 +0 (|F8| )
= —curl” curl g° + O (|F8|2) )

Hence, using the embedding of W25~13 (R2) into L2(R?) and Corollary 4.3(iii)

fors > % we obtain:

' /5 (detIIS)qb‘ = f~ |(curchurl ga)qb) + ||F8||iz(§)||¢|| L&)

J_
'/ (curlg®) -V w1k @)
= ~
IV6°l, 1 1991, 1. ) 0Dl

+ T2 Pl oo &)

which concludes the proof in view of Lemma 4.1(iii). ]
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Proposition 4.5. Let €2, 5, u be as in Lemma 4.1 with % <s < 1. Then

02115, — 94117 <o(l) forie{l,2}. 4.3)

2@ =
Remark 4.6. An L! estimate for curl II° is not enough for a Hodge decomposition
for II¢, hence a better than L' estimate is crucial for completing the same proof as
in [13] for our main theorem. We will hence adapt a new approach as explained in
the following section.

Proof. The Codazzi-Mainardi equations [22, Equation (2.1.6)] for the immersion
U, read
o115, — 91112, = 115, T — 112, T/

Now since s > 2

33 < s = Z%S < s, the embedding

(SIE

2

S5 (R?) > W9

implies that u € [ 1+S,’%(Q,R3). Applying Corollary 4.3(i) for s and Corol-
lary 4.3(ii) for s’ yields, for any ¢ € C°(2),

| 92107, — 0411} )], 2 o, 1Tl Ld

L3 @) ~ 50(85_1)0(825/_1)=0(1). O

2||L1(sz)~| @)

5. Second fundamental form for W1¥52/5 jsometric immersions
forl <s<1

Given an isometric immersion u € [ lcﬂ’ % (£2,R?) and a bounded smooth domain
Qe Q, with s > 1/2, we shall define a weak notion of the second fundamental
form II as a distribution in Ws_l’%(ﬁ, gl(2)). In order to apply the results of
Section 4, note that for a § > 0 small enough Q € Q5 € Qys € Qand u €
11453 (R4, R3), where Q5 := {x € R2: dist(x, Q) < 8.

The second fundamental form of a given immersion u : Q — R? in the chart
defined by u itself is expressed by the product

Hij = 8iju -fi, (51)

where for all x € €, 7i(x) is the unit normal to the immersed surface u($2) at
u(x). Under our regularity assumptions, and since by the isometry condition for
a.e. x € Q we have |[0;u(x)| = 1, we have Vu € L°°(Q R3*2), and so the unit
normal 5 _

n:= 01u A du belongs to W5 N L*®(Q). (5.2)

1.2 ~
loc b3 (2, R3), and could be a mere distribution. How-
ever, the existence of the distributional product II;; under these regularity assump-
tions is justified by Proposition 2.5. To summarize we state the following defini-
tion:

On the other hand, 9;;u € W'
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Definition 5.1. Let 2 C R? be an open set and let u € Ials’A (2, R3) with % <
s < 1. Then, through Proposition 2.5, we define its (weak) second fundamental
form

_1’%
= 1) = [l jega € W (R.0102).

by (5.1), namely,
3

w8 = Y (1508 0

k=1
_¢ 2
forall ¢ € W, *2= (Q) with supp ¢ € Q.

1+s
ocC

2
Proposition 5.2. Let @ C R? be an open set, 2 <s < landu € I, "*(Q,R3).

For all bounded smooth domain 2 € Q2 the followmg holds.

o 1. e o _ 0
Q) Tim 17 =il g = O
.o e _

(ii) 811_{% 1T H“Wx—l,%(ﬁ) 0.

Proof. Note that for any subsequence, we can always find a subsequence of Vu,
converging point-wise to Vu and that Vu, are uniformly L°°-bounded in . Hence,
a straightforward norm calculation and dominated convergence theorem implies (i).
To show (ii), we write

3
~ek k _ -k k
I}, —1II; = an dijuk — ik d;u* Zn ( uk —9;u )
k=1
3
# 2 ( —
k=1

where 71 = (751,752, 7i%3). Now in view of (i), the convergence of each summing

term in the W*~1:3 (5) norm follows in order from the first and second parts of
Corollary 2.6. O

An immediate conclusion of Proposition 4.5 is the following statement regard-
ing the second fundamental form of ¥ when s > %:
oo UV (QL,R?). Assume that @ € Q is a
simply connected bounded smooth domain and let 11 be as in Definition 5.1. Then

there exists f € W3 (5, R?) such that 11 = V f in the sense of distributions.

1+s,2
Lemma 53. Let 2 < s < landu € I ot

Proof. Animmediate consequence of Proposition 4.5 is that II satisfies the Codazzi
equations in the sense of distributions, i.e., curl Il = O:

821111 — 811112 =0 and 821121 — 811122 =0 in D/(ﬁ(g) (53)
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Let us consider a direct regularisation of the second fundamental form II. With II
defined as in Definition 5.1, we set

I, := 1L % ¢ € C*®(25:g1(2)). (5.4)

Here II, — Il in W5~ L3 (SZ §) as & — 0. The order of convolution and differentia-
tion can be interchanged, so I, satisfies (5.3) in D’ (Q) for & < §. Therefore, since
Q is simply-connected, there exists f¢ € C*(22,R?) such that Il = V f¢. By
standard elliptic regularity theory we may choose f° to be convergent to some f

in W3 . Since Il converges only in a very weak norm, and we must be careful
that the traces of the solutions are well defined on the boundary, hereby we justify
these estimates.

In order to find the sequence f¢, we first solve for

ATl = 11, in Q
curlIIg—E)II 7:—8H v—OonBQ
M-v=0 on 9%

where v and 7 1= v+ are respectively the outward normal and tangential fields to

dQ. Note that the above system is a basic elliptic system discussed at length in
the literature of elliptic systems for differential forms, see, e.g., [47, Lemma 1.6.5].
However, from another point of view, if we flatten the boundary the Dirichlet and
Neumann boundary conditions decouple and so there is no problem in directly
applying the theory of elliptic equations. By [44, Theorem 3.4.3/3(i)], 11, satisfies
the estimate

(I | < s” _=C
A‘ (2)

W1+S < (Q) ~

Taking the curl of the equation, we note that curl 11, is harmonic and vanishes on
the boundary, hence curl Il = 0 in 2. Now we use the identity

VdivIl, — ATl = —V+eurl I,
to deduce that ¢ := div 1L, satisfies V f& = Il with the estimate

e <
1752 gy S el sz g 5 1

Therefore f¢ converges in the sense of distributions to some f € W¥ 3 () satis-
fying Vf =1L O

6. Developability of components and c!>3 -regularity

Theorem 6.1. Let Q C R? be a bounded smooth domain and assume that u €

ll:rs’s (2, R3) with 2 < s < 1. Then, for each m € {1,2,3}, the component u™

satisfies
Jac(Vu™) = 0 in D'(Q)

and as a consequence it is cL%—regular and developable by Theorem 1.8.
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Proof. The argument follows closely that of [13, Theorem 3]. Let us fix m €
{1,2,3} and set

g :=Vu" GWI”(Q R?).

Let Q@ € Q. For § > 0 small enough we have u € I'+55(Q4,R?). Fore < §
we let u, be the mollified sequence of immersions with the properties discussed in
Section 4. Note that by [22, Equation (2.1.3)] we have

djult = T ™ + 11, ™. (6.1)

Obviously g, = Vu?* and hence, forall ¢ € C CEX’('Q'),
[ sactep = [ aacruy = [ g vur+ weiemy
Q o o
= [ qearr g + [ du(re-varys
Q@ Q

+ /Qﬁa’”’lls s cof(T° - Vul')¢
— I IS4 I

We claim that as ¢ — 0 the limit of each term 7 ]s is 0, which will complete the proof
as Jac(g) is the distributional limit of Jac(g,) [36, Lemma 1.3]. By Proposition 4.4

25—1 - ) _

IR Cal )(”(V”gm)ﬂb” (Q)+||V¢||L11S(§))+0(1)||(”8m) PllLo@)
25—1\ (105 _
<o(e>7) Ivas"1, (Q)”¢||L<>°(Q)

+o () IVEl, 1 g +oDIgl @)

However note for s > % the embedding

Vel Vue|

= ~
qu—n.ﬁ@) 2 Ws.%(g) ~

Therefore applying Lemma 2.1(ii) to Vu, and in view of (4.1) we obtain
”vﬁsm” - 0( 2(1—s)—1) - 0(81—2s).
@ S =

We conclude for /7§ that

1] = oWldllLe@ +0 () IVl 1 o =

Now, regarding /5 observe that Vu, is uniformly bounded in L°° and as previously

observed we can obtain by the embedding of W25~15 into L2, through Corol-
lary 4.3(iii):
15| 3 “aniz(ﬁ)”d)”LOO(ﬁ) = o(l).
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Finally, to finish the proof of our claim, we estimate once again similar as in Propo-
sition 4.5

2
—. O
~3

Ilflifﬁ TNl < Il 2 & 1T b @llPlieo@=o(l), fors>

7. Developability

We already know by Theorem 6.1 that each component of u is independently de-
velopable and has the required regularity. What remains to be shown is that the
constancy segments and regions of the developability are the same for the three
components.

Let €2 be any smooth bounded domain supported in 2 and let f be defined as
in Lemma 5.3. We first claim that any such f is developable.

Proposition 7.1. Let Q. Q.5 u, f be as in Lemma 5.3. Then Jac(f) = 0 in
D' (). In particular, since V f = 1l is symmetric, the conclusions of Theorem 1.8
hold true for f.

Proof. We will once again use equation (6.1), but this time we will directly pass to
the limit as ¢ — 0. Applying Corollary 2.8 in view of Proposition 5.2, we note that

105,75 — 11;7"™ in D'(Q) as & — 0.

Also, Corollary 4.3(iii) implies that the first term in the right-hand side of (6.1)
converges to 0 in D'(2). Since d;ju, converges to d;;u, we conclude with the
following identity for any pair (i, j) € {1,2}?:
aiju'” = IIijﬁm.
Letting g, := Vu', this identity reads
Vgm = i™l = i™V f. (7.1)

Note that f, g, € st (5) andii € W53 N L°°(§). Hence Theorem 1.10 yields
that for any ¢ € C>°(R2)

Jac(gm)[9] = Jac(f) [(™)*¢].

On the other hand by Theorem 6.1 we have Jac(gn) = 0, therefore for all ¢ €
CE(Q)

Jac(f)[$] = Jac(f) [Z(‘"’)Z ]

m=1
3

3
Z Jac(f) [(™)?¢] = ) Jac(gm)[p] = 0. m

m=1 m=1
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We complete the proof of Theorem 1.1. We have shown that f is contin-
uous, and for any x € £, it is either constant around x, or it is constant along
the connected component of the intersection of a line passing through x with .
ByilS, Corollary 2.10 and Lemma 2.11], for any x € €2, there exists a disk Bx > x
in €2 and Lipschitz unit vector field 7 on By such that for all € C°(By)

(V£ i) = /B Fdiv(yi) = 0.

Note that the vector field 7 determines the constancy directions for /. We claim
that for each mm and for all ¥ € CZ°(By)

/ div(y i) Vu™ = 0. (1.2)

By

We remark that proving this claim and applying [13, Lemma 2.11 and Proposi-
tion 2.1] yields the desired simultaneous constancy of Vu along the segments
defined by 77 and completes the proof of our main theorem.

To prove (7.2), first note that by Proposition 5.2-(i) and Corollary 2.6 we obtain

lim 75"V f = 2™V f|| 0,
e—0

W3 @)
which implies through (2.14)

" f) - [Wi] = lim G f) - i) = lim V f - (") 7] = 0.
Combined with (7.1) we obtain that form = 1,2, 3

[ AV )gm = (Vgm) - [7] = GV 1) - [¥ 7] = O,

Bx

which establishes (7.2) as claimed.

8. The distributional Jacobian determinant behaves like a determinant

In this section we will prove Theorem 1.10. We first gather some known prelimi-
nary results regarding the statement of the theorem.

8.1. Preliminaries

The following useful lemmas are well-known facts. They can be derived via a
tedious argument based on Littlewood-Paley theory and paraproducts [48] which
extends an earlier work on the limiting case s = 1 by [9]. Much more elegant
proofs can be achieved following [7] based on the harmonic extension, see also [4],
and we refer to [34] for generalizations.
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Lemma 8.1 (Distributional Jacobian). Letr n > 2, Q C R” be a bounded
smooth domain or Q@ = R". Assume that ==L < s < 1, f e WSs(Q,R"),

v e WS (Q), Then
Jac(f)[y] := khfio Jac( fi)[Vk]

. NPT .l =

is well defined as a distribution in W"6~1D5 where fi € C®(Q) and Yy €
CX(2) are any two sequences of functions converging to f and \ in their respec-
tive norms.

See, e.g., [36, Lemma 1.3] for a proof.

Lemma 8.2 (34, Theorem 3.2]). Letn > 1, A, g € Watt"TL(R") and ¢ €
C®R", \"*(R")). Then

[g] n+1

[¢] 2

1 .
(R™) W n+ ni_l (R7)

(R™) Wnil’

[ 2 ndg| 301, e

In particular, by the Stokes theorem for differential forms, and by choosing suitable
test forms ¢ we have the following estimates for the components:

ld@QdON 2 gt =||d(/\dg)ll( 2 ntl )

n+l 2 (R1) W nF1 n—1 (Rn)

_< n n
~ [/\]Wm'""_l(Rn) [g]Wm,n+l(RH)-

8.2. A determinant estimate

Proposition 8.3. For any k € {0,...,n} and ¢ € CS°(R"), scalar functions
a; € W (R and 1-forms B; € Wat-"2- (R", A (R")),

(dalA...AdakAﬁk+1/\.../\ﬂn)cp‘
R}’l

k n
2 (19l + 18], ) [Tla)y e TT B poynpr-

Jj=1 j=k+1

Remark 8.4. The proposition is indeed a determinant estimate:

/ det(Val,...,Vak,Bk_,.l,...,Bn)qb'
Rn

n

k
2 (19l + 181, ) [Tla)y msn TT (B acy g

j=1 j=k+1

for scalar functions and vector fields of appropriate regularity.
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Proof. This can be proven by the tedious arguments in [48] using Littlewood-Paley
decomposition and paraproducts. Instead we follow an argument inspired by [7],
with the adaptations from [34] (see also [28]). Let a”, B", ¢" be the harmonic
extensions of the corresponding forms or vectors to ]RTLI

(dal/\.../\dak/\ﬂk+1/\---/\,3n)¢

Rﬂ

=/n+1d((da’l’/\.../\daZAﬂ,’(’H/\.../\ﬁfj)cp”).
Ry

Since dd = 0 we find

| @ar A da A B /\.../\,Bn)qb‘

Z /,m ‘Dak‘ ‘IBk—H‘ ‘Dﬁ?‘--- Bn ¢>”‘ (8.1)
+/n+1 Da’f‘-...-‘Da,’;Hﬁ,’;H‘... Bi| |pe"|.
Ry
Recall that for the Hardy-Littlewood maximal function M
| 00| 3 MA), (32)

and for s € (0, 1),

1

e ([ ([ 1))

See, e.g., [28,34]. Therefore from the Holder inequality and Sobolev embeddings
we obtain, for the first terms in (8.1),
o

/n—H
Ry

k
j”M(P”LOO (l_[ ”Da?l|L”+1(Rﬁ_+l))

=1
[t

Bl

Dal|-...-|Daf||Bh.|...| DB .

L@ty H DBt H 3t ®1+ ) "l L@t

SIMe| oo (H[a?]WWH) [ﬂﬁ—i—l]wl.”‘;l [ﬂlh]Wl% [ﬂr}i]wl%

=1

k n
j”M(ﬁ”LOO (l_[[al]Wnil’”—H) 1_[ [ﬂl]WZ-T-ll'n;l
1

=1
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which is bounded as required in view of (8.2). The last term in (8.1) is estimated
in the same manner through a Holder estimate:

/n+l
Ry

h h h
Da1‘~...-‘DakHﬂk+l‘...

k n
3|pet| |2 |et]
N ! !
k n
] N ll_[[al]W,,il.nH l l:[ LIRSS u
=1 =k+1

8.3. Hodge decomposition

Proposition 8.5. Assumethat . € W 1"+t o0 (Rm) andgeW Tt (R,
Then we can decompose

Adg = da + B,
with
< o n
@ ]W"“ M @y ~ <|M”L + 1A Wm'"H(R”)) [g]Wn—H S Ry’
n <
['B]WQ—T-%’ —51 (]er) ~ [ ]W}’l+l n+l(R”)[g]Wn+l n+1(RH)

Proof. On R" we let w := Ag}(Adg). Hence
Apnw = (dd* + d*d)w = Adg.
Seta :=d*w and B := d*dw. Observe that
Apndw = dArnw = d(Adg);

that is,
B=d*dow = d*Aﬁ} (d(Adg)) .

Therefore in view of a component-wise application of (2.4) and Lemma 8.2 we
have

Bl 451741 gy S 1O
—”W@”W—nil." |

<M

2
[g]W”f'll‘l n+1

n
w n+1 ’”+1(Rn)

Moreover,
ARna = d*ARna) = d*(kdg),



798 SIRAN LI, MOHAMMAD REZA PAKZAD AND ARMIN SCHIKORRA

SO again

= Agrd*(Adg).

Using (2.4) as before and Proposition 2.5, we obtain as claimed
@)yt 41 gy 5 IR v
3 (1202 + Ryt g ) 8y sty gy O
Proposition 8.6. Assume that A € W11 0 L°(R") and
[ e W (R RY,
Then we can decompose

Aedfe — (Adf)e = da® + B°

with
. e .
lim [a®] sty b1 gy = O
li ] a1 m = 0.
Sl—l;I(l) [’B ]Wn+}' ;I(Rn)

Proof. Our arguments are similar to those for Proposition 8.5. First we consider

[ (Redfe — df)e)] -

n+1
n+1° 2 (]R”)

<|d(redf. — A df)||W Aot g T |d (Aedf —Adf)||W,n21,n§1(Rn)
+ |d(Adf — (Adf)e )H A

=1 + I + II,.

In view of Lemma 8.2, we find that

L +1 = [d(Xd(f. — 1)) B
+ |4 ((Ae —A)df)“ -

=< n — n
~ [Ae]Wm‘"'H(R")[fS f]Wm’n—H(Rn)

+ [Ae — A] (/]

e—0

eS| T+ () — 0.

Wn+ (er) Wn+

In addition, we use Lemma 8.2 once again to deduce that

d(rdf) e WD E
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Thus the convolution converges:

e—0

L, = |d(rdf) - (d(/\df))suw_ SR )

n+1° 2 (]R")

Putting together the convergence results for I, II,, and III,, we arrive at

i 0 )5, =0

Now we proceed as in Proposition 8.5. We first solve on R”:
Apn@® = (dd* + d*d)w® = Aedfs — (Adf ),
and then set a® := d*w® and f° := d*dw®. Observe that
Arndw® = dArnw® = d(Aedfs — (AdS)e).

That is,
B¢ = d*do® = d* Agh (d (Aedfs — (Adf)e)) -

So, with (2.4) and (8.3) we find that

(B netongr 3 NdRedfe — (Adf)ol
w m) w

n+1' 2 (R

n—1_4 ntl
n+1 ) (R")

= d(redfe = df) )| 2 n

n+1°> 2 (R”)
Moreover, we have
ARnag = d*A]Rna)s = d*(kgdfg - (A,df)g),
SO
a® = Agrd* (Aedfe — (Adf)e).
Once again (2.4) yields

;j |Msdfe - (A‘df)é‘”Wn”T—l.n-i-l(Rn)

j ||/\8df8 - Adf”an}_] —1,n+1

M) = Adf vt g

&
la ]Wn"ﬁ.n-i-l(Rn)

)

l

799

(8.3)

We will use Proposition 2.5 repeatedly throughout the rest of the proof. Observe

that Adf € Wt~ I(Rn) g0

l(Adf)e — Adf ]| . 250.

Wn”ﬁ—l.n+l(Rn)
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On the other hand,

||)Ladfa - Adf”Wnil —1,n+1

< NChe = DAyttt g
+ ”Aed(fs - f)”WnnT—l,n-i-l
The former term tends to zero as € — 0. For the latter term, we have

1Aed(fe = PN, =101

—< (oo} n —_ n
3 (Mhellzos + Rl s g ) U = Fly sty ot

which again tends to zero. O

(R)

(®R")"

(®R™)

8.4. Proof of Theorem 1.10

Proof. Fix ¢ € C>°(£2). We want to show that
Jac(f)[g] — Jac(g)[A"¢] = 0.

We first boundedly extend g, A on the whole R”, keeping the same names for con-
venience. We define F' := AVg as a distribution in R”, which is well defined by
Proposition 2.5. Note that for all n € C2°(R2), extending 7 by 0 outside €2 to 7}, we
obtain by (1.1) in view of (2.16):

Flil =V finl.
Fix an open set Qe §2 containing supp ¢. For & small enough, F, := F * ¢
coincides with V f; on Q and hence applying Lemma 8.1 we have

Jae(f)[4] = lim [Q det(¥ £,)¢ = lim /R det(Fyg.

where ¢ is extended by 0 outside 2 to R”. Also, mollifying g and A and once
again applying Lemma 8.1 we obtain

Jac()A"9) = fim | deu(Veoazg = tim [ dex(Vennls.

(1-s)n, 115

since AZ¢ — A"¢ in Wy,
Jac(f)[g] —Jac(g)[A" ]
= lim [ (det(F;) —det(A:Vge)) ¢
E—>0Q0 R”7

(2). Therefore we have

— lim (det(()LVg)s) —det(ASVgs))q’)
E—>O0O R”

=Z/ (Aedg; A Adedgi ™V A [(Adgj)s—kgdgg] A (Adg™h),
j=1"%

A A (dg")e) .
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In view of the Sobolev embedding

WS,%(]Rn) s Wnn?’n-}_l(R”)’

for s > 75, and the fact that the distributional identity in the bigger space im-

plies the one in the smaller space, we can assume that s = n”? For each entry of
the form (Adg'). and A.dg!, we shall apply Hodge decomposition as in Proposi-

tion 8.5. To the difference term (Adg’), — A.dgi we apply Hodge decomposition
as in Proposition 8.6. We then obtain terms of the form:

/ (da§ A...~daf ABE A ABE) B,
Rn

where each a and B¢ is bounded in its corresponding seminorm. Note that, fixing
¢, the estimates in Proposition 8.3 are still valid for the above integral since by
construction we can approximate each aj. (respectively ,Bj) in its seminorm by a

—n_r,"_l n+1

sequence of scalar functions in W (R™) (respectively 1-forms in

1
s then (R",/\(R”)) )

Therefore, to conclude, we use Proposition 8.3: one of the terms a? or one of ﬂ‘j
converges to zero (since it comes from the difference term), in the corresponding
norm, thanks to Proposition 8.6, while the other terms are bounded by Proposi-
tion 8.5. So we obtain the claim by taking ¢ — O. O

Appendix A. A proof of Proposition 7.1 for s > 2/3

As a tangential note, in this section we will sketch how a slightly weaker statement
than Proposition 7.1 can be obtained without using Theorem 1.10. Hence, this
provides another proof of Theorem 1.1, but only for s > 2/3. Hereby, we would
like to highlight the importance of Theorem 1.10 in completing our proof for the
critical case s = 2/3.

We begin with the following observation. As a corollary of the gained regu-
larity u € ¢%% in Theorem 6.1, we can improve some of the estimates of previous
sections and prove:

Proposition A.1. Let Q2 C R2 be a bounded smooth domain, % < s < 1and
ue I'FS3(Q,R3). Let 0 € [0,1]. Forall @ € 9

. & S (146)—1y.

(i) [ ||L%(§) <o(e2 );

i) e <o 85(1+0)—1 )
i) 71, 3, g < O )
Proof. The estimates are obtained by interpolating the estimates in Corollary 4.3
with a new set of estimates obtained through ¢%2 regularity in the same manner;

see [13, Equations (4.4) and (4.8)]. We leave the details to the reader. ]
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An immediate corollary is the following better than L!-estimate for curl IT¢.
As we previously explained in Remark 4.6, this is the missing link for following
the steps of [13] in proving our main theorem. We can now obtain this estimate
only for the super-critical values of s > 2/3.

Corollary A.2. Ifs > %, there exists r > 1 such that
li 1] ; » &y = O.
lim [leurl IF°[| . g

Proof. Letting

1 s6 3s
-= — 6 =—0,
;- =4
we have

. s $(1+9)—2)
leurl 1) gy < 110 5, 1T, 1, <0 (o .

To complete the proof we need to show that there is 8 € (0, 1) such that
3s
r>1 and ?(1—1—9)—220.
These are respectively equivalent to
2 4
0 <— and 6>——1.
3s 3s

Butif% < s < 1 we have

and so we can choose any 0 € [% -1, % . O

Once the L" vanishing estimate for curl II® is obtained, and having the usual
elliptic estimates at hand, one can proceed as in [13, Proposition 4.5] to show that
Jac(f) = 0 as required by Proposition 7.1. This completes the proof of Theo-
rem 1.1 but only for s > 2/3 as in Section 7. Once again, we will leave the details
to the interested reader.

Appendix B. Fractional absolute continuity

In proving Theorem 1.8, we used the following result, which follows by an embed-
ding theorem from a known result for Bessel-potential spaces [23, Theorem 1.1].

Theorem B.1. Let u € WSP(R,R™) with s € (0,1), p € (1,00) such that and
sp>1and let I be a finite interval. Then the Hausdorff dimension H-dim of u™(I)
is at most % for any interval I C R. Here u™ denotes the continuous representative

of u.



FRACTIONAL SOBOLEV ISOMETRIC IMMERSIONS OF PLANAR DOMAINS 803

Indeed, following [1, Theorem 7.63 (g)], we note that for any p > 1 and ¢ > 0,
WSP(R") — L*™%P(R").

Choosing ¢ > 0 such that p(s — &) — 1 > 0, and applying [23, Theorem 1.1], we
obtain Theorem B.1. (Note the notational disparity with [23], which uses W*:? for
the Bessel-potential space Hj, = L*7.)

Remark B.2. The typical space-filling curves provide counterexamples to Theo-
rem B.1if sp < 1. E.g., the Peano-curve f : I — IR? that fills a square is of class
C'/2, and thus belongs to W2 for any s < 3 — however 12 (f(I)) # 0.

The case sp = 1 is quite curious. It is known that foru € WL1(I,RY),if u*
denotes its continuous representative then H! (u* (1)) < oo. Thisis also based on the
absolute continuity of the integral, however, in the fractional case s < 1 the condition
sp = 1 does not guarantee continuity in one dimension. Indeed, it is unclear to us if

there is always a representative u™* foru € W 5 (R, R™) such that H u* (1)) <oo.

We would like to note that Theorem B.1 also follows from a notion reminiscent
of absolute continuity for fractional Sobolev maps. Itis well known that Theorem B. 1
holds fors = 1and p > 1, which is a consequence of absolute continuity of W 1-1-
maps. Alsoitis known from the area formula and the Luzin property [21, Lemma 21]
that the continuous representative of amapu € W1LP(R* R™)form > n > 2
and p > n has image with H? (u(R")) = 0. In this sense, Theorem B.1 is a natural
extension to maps with one-dimensional domain in fractional Sobolev spaces. In this
appendix we will further discuss this approach. The authors do not know of any
instance in the literature where the following observations are made.

One of the basic Sobolev-space results is that the continuous representative
f* of a function f € W1 is absolutely continuous, that is for any & > 0 there
exists § > 0 such that whenever we have a pairwise disjoint collection of intervals

(I, with
Soinl<s
i

SN @ - o)l <.

then

This follows easily from the fundamental theorem of calculus (which holds for the
continuous representative f*)

b
FH@) — f*b) = / £1(2) dz

and the absolute continuity of the integral, which says that if g € L'() then for
any ¢ > 0 there exists § > 0 such that

lgllLi@wy <& YU C Q2 measurable : |U| < 4.
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By a covering argument, it is also easy to show that an absolutely continuous func-
tion f : I € R — RY must have a 1-dimensional finite Hausdorff content

4

HL (f(I)) < oo, where
HE (A) := inf Z(r,-)p . there is a cover of A C U B(ri)

1

with balls B(r;) of radius r; > 0.

The underlying reason for Theorem B.1 is that there is a fractional generalization
of a sort of absolute continuity to fractional Sobolev spaces W*?(R) as long as
sp > 1. Observe that for s < 1 there are discontinuous functions in W*%? with

Definition B.3 ((t,p)-absolute continuity). Let# > 0 and p € (0, 00). A contin-

sp = 1.
uous function f : R — R¥ is called (¢, p)-absolutely continuous if the following
holds. For any € > 0 there exists a § > 0 such that whenever we have a sequence

of disjoint intervals (/;)72, with
S| <8
i

then
|f(x) = f)I?
sup . <e€.
i XFYEL; |x _y|

For p = 1, ¢ = 0 this is the usual absolute continuity
1, then (t, p)-absolute continuity implies (f, p)-

The following lemmas are elementary.

Lemma B.4. If i—i? < % =
absolute continuity.
Proof. Let A := p/p < 1. For any collection of disjoint intervals /; we have
|f(x) = fFOD)I”
; X#EYEL; lx — y[f
A
|f(x) = fO)I” P
; |x =yl
[x — |

B i x;éyeli(
A
wp OO s
; x#yel; |x_y|l
@ - o7\ wen)
Yol

< sup ;
i XFYEL; |x - y|

<
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where we used the Holder inequality || - ||;1 < || - ”l% || - ”lﬁ' Since f is (¢, p)-
absolutely continuous, given € > 0, we choose §; > 0 such that

=10 _

i XFYeEl; |X - y|t

Note that the assumption implies

At —71
> 1.
1—-1

If >, |1;| < 6 := min{d;, €}, we hence obtain, by combining the above estimates,

/@)~ f0)I? e
sup VRO Z T o (Z |Ii|) < MM <€ O

i XFYEl; |)C - ylt

Lemma B.5 (Hausdorff content of (¢, p)-absolutely continuous maps). Let | :
I — RN be (t, p)-absolutely continuous. If t > 0, then

HE(f(1)) = 0.

Ift = 0 we still have
HE(f(1)) < oo.

Proof. In the definition of (¢, p)-absolute continuity let ¢ = 1 and obtain some
§ > 0. Let  be any subinterval of / with diam (I) < %. For any 0 > 0 we find
N (a finite number that depends on o) intervals (/, i)lN: , and N intervals (J,')lN: 1
which are pairwise disjoint, with |/;],|J;| < o and | J; [; U J; = I. Bach f(I;)
/)= /O
|x=y|»
(centered at f(x;) for some x; € I; (respectively x € J;). By (¢, p)-absolute
continuity we then have

(respectively f(J;)) is then contained in a ball of radius 20 » SUPy yer;

~

HE(F(D) 2 Y o' ( sp LD ZTOI -, M) Lot

x,y€el; |X _y|t x,yeJ; |)C _y|t

Since this holds for any subinterval I of diameter %, we cover [ by &~ % many such
intervals and obtain

1
HE(f(D) 3 50" < o0
If 1 > 0 we can take o arbitrarily small to obtain H2,( f(1)) = 0. O

In view of the above two lemmas, Theorem B.1 will follow from one last
statement.
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Lemma B.6. Let s € (0,1), p € (1,00) with sp > 1. Then the continuous
representative u* of any map u € WP (R) is (sp — 1, p)-absolutely continuous.

Remark B.7. For s = 1 and p = 1 the result is still true (and it is the classical

absolute continuity result for W !-!-maps in 1 dimension).

. 1
There cannot be such a result for when sp = 1, s < 1, since W*'s does not
embed into the space of continuous functions. E.g., take s = % and p = 2: denote

by B? C R? the unit ball in R? and by B3 := B? N R? the upper halfball; then
loglog2+/(x1)? + (x2)2 belongs to W'2(B?), thus to W'2(B2). By the trace
theorem for I = [—1/2,1/2], we find that loglog 2|x| € W%’Z(I), however this
is clearly not a continuous function (let alone absolutely continuous in any sense).

Proof of Lemma B.6. Since sp > 1, WSP(I) embeds in C*$~'/?(I) for any in-
terval (see, e.g., [14, Section 8]). Indeed, for a universal constant C > 0 and all
a,b € I we have

u*(b) — u*(a)| < Clulws.ocnla —bls™7,
which gives, for a # b,

[u*(b) —u*(@)|?
la — bJsp=1

= C[”]ﬁ/s.p([)'

We therefore obtain for the mutually disjoint /;:

[ (x) —u*()[” » »
B ey = € My < Wl

where A = | J I;. Now, by the absolute continuity of the integral [u]ﬁ,s. r@®) < OO
for any € > 0, there is § small enough such that [A] = ). |I;| < & implies
[M]ﬁls.P(A) < €. [

Proof of Theorem B.1. By Lemma B.6, f is (sp—1, p)-absolutely continuous. Let
p =1/sand 5§ = s. Then

1+5p—1 p 1

L4§p-1_p_ 1 _ |

1+sp—1 p Sp
The conditions of Lemma B.4 are satisfied and hence f is also (5§ p—1, p)-absolutely
continuous. Lemma B.5 implies that the Hausdorff dimension of ©#* (/) is at most
p = 1/s, as required. O
Remark B.8. We could have also used the Sobolev embedding W,>:7 (R, R™) <

_ loc
W]g;p (R, R™) for any § <s and p < p [44, Proposition 2.1.2 and Theorem 2.4.4/1],
but note that this is not necessarily true for § = s [39], and some small adjustment
would have become necessary.
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