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Fractional Sobolev isometric immersions

of planar domains

SIRAN LI, MOHAMMAD REZA PAKZAD AND ARMIN SCHIKORRA

Abstract. We discuss C 1 regularity and developability of isometric immersions

of flat domains into R
3 enjoying a local fractional Sobolev W 1Cs; 2

s regularity
for 2=3  s < 1, generalizing the known results on Sobolev and Hölder regimes.
Ingredients of the proof include analysis of the weak Codazzi-Mainardi equations

of the isometric immersions and study of W 2; 2
s planar deformations with sym-

metric Jacobian derivative and vanishing distributional Jacobian determinant. On
the way, we also show that the distributional Jacobian determinant, conceived
as an operator defined on the Jacobian matrix, behaves like the determinant of
gradient matrices under products by scalar functions.

Mathematics Subject Classification (2020): 35D30 (primary); 46F10, 53C24,
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1. Introduction

In this article we prove the C 1 regularity and developability of isometric immer-

sions of class W 1Cs;p of two-dimensional domains � into R
3 for 2=3  s < 1

and sp � 2, thereby generalizing the results of [42] for the Sobolev regime s D 1,

p � 2 and of [13] for the Hölder regime s > 2=3; p D 1. The proofs are obtained

by adapting the ideas of a few of the results appearing in [13, 35, 36, 42] to the

fractional Sobolev case.
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1.1. Background

There are several motivations for the study of isometric immersions of low regu-

larity. A first one arises from the strong divergence in the respective behaviors of

C 1 and C 2 isometric immersions of two-dimensional domains. This phenomenon,

known as the flexibility and rigidity dichotomy, has other parallels, e.g., for the so-

lutions of the Euler equations in fluid dynamics. We shall direct the readers to [13]

and the references therein for a survey of the literature on the historic problem of

developability in differential geometry, alongside its connections to the above men-

tioned dichotomy in nonlinear PDEs and convex integration and to a conjecture by

Misha Gromov [20, Section 3.5.5.C, Open Problems 34-36].

The second motivation stems from the calculus of variations and nonlinear

elastic plate theory. Surfaces with L2 integrable second fundamental form and cur-

vature functionals such as the Willmore energy have a long history in geometric

analysis and calculus of variations. In the context of nonlinear elasticity, the Kirch-

hoff model stipulates that the deformation of a piece of paper under body forces

or boundary conditions minimizes the Willmore functional subject to the isometric

constraint. In this context, and following the methods of Kirchheim [31], the C 1

regularity and developability of isometric immersions with L2 integrable second

fundamental form were proved by the second author in [42]. This result has had

many applications in nonlinear elastic plate theory, namely in proving density of

smooth isometries in the class ofW 2;2 isometric immersions [24,42], in derivation

and regularity analysis of the Euler-Lagrange equations for the Kirchhoff’s models

on plates [25, 26], in derivation of plate and shell theories from 3d nonlinear elas-

ticity via Ä-convergence [17,27], in stability analysis for nonlinear plates [33], and

finally in the confinement problem for unstretchable elastic sheets [12, 52].

The results of this paper give us the possibility to broaden the analysis by

proposing similar models involving deformations of lower regularities, but with

still some control on the curvature of the image surfaces. Indeed, as shown in

Section 5, an isometric immersion u of regularity W 1Cs;p admits a second funda-

mental form II.u/ of regularity W s�1;p if 1=2 < s < 1 and p � 2=s. This way we

can define a fractional Willmore-like curvature functional

I.u/ WD kII.u/kW s�1;p

on the class of such immersions. This variational model, which we can justifi-

ably name the fractional Kirchhoff plate model, is rather phenomenological; nev-

ertheless, mathematically, many of the above mentioned problems on the standard

model can be reformulated in this new context and explored. As an example, it

can be asked whether its minimizers will enjoy the same regularity as those of

the standard model established in [25], or will develop new types of singularities.

The results of the present article concern the class of admissible deformations of

this model in the regularity regime s � 2=3 and could pave the way for proving

regularity of the minimizers in the footsteps of [25].

Finally, our last motivation for the study of weakly regular isometric immer-

sions is that it is connected to many interesting problems in nonlinear and geomet-
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ric analysis: It has lead to the development of interesting methods in geometric

measure theory and geometric function theory [29, 30, 35, 36], and as we shall see

below, to problems on the distributional Jacobian determinant, see also [18, 36] in

this regard.

1.2. Main results

Our first result is complementary to a theorem of Pakzad [42, Theorem II], which is

the case s D 1 of our Theorem 1.1, and to the recent work for u 2 c1; 2
3 .�;R3/ �

C 1; 2
3 C".�;R3/ by De Lellis–Pakzad [13, Theorem 1]. Following [13, Defini-

tion 1], we say a C 1 mapping u of a two-dimensional domain � is developable

if given any point x 2 �, u is either affine around x, or its Jacobian derivative

ru is constant along the connected component of the intersection of a line passing

through x with �. See also [13, Section 2] for equivalent conditions. We refer to

Subsection 2.1 for definitions and notation regarding fractional Sobolev spaces.

Theorem 1.1. Let � ⇢ R
2 be an open set. Consider the class ofW

1Cs; 2
s

loc isometric

immersions:

I
1Cs; 2

s

loc .�;R3/ WD
⇢

u 2 W 1Cs; 2
s

loc .�;R3/ W .ru/T ru D Id a.e. in �

�

:

Then any u 2 I 1Cs; 2
s

loc .�;R3/ with 2
3

 s < 1 is c1; s
2 -regular and developable.

Remark 1.2. Here c1;˛ denotes all mappings whose derivatives of components lie

locally in the little Hölder space c0;˛ , which is the closure of smooth functions in

the C 0;˛ norm.

As a consequence we also obtain the extension of [42, Corollary 1.1] to frac-

tional Sobolev spaces, cf. [12, 52].

Corollary 1.3. There exists ⇢0 > 0 such that whenever s �
2
3

there is no W
1Cs; 2

s

loc

isometric immersion of the 2-dimensional disk into a three-dimensional Euclidean

ball of radius r < ⇢0.

Note that ⇢0 <
1
2

, as the images of such immersions will always contain segments

larger than the unit segment.

Remark 1.4. The same statements hold true for isometric immersions ofW 1Cs;p-

regularity with s � 2=3, sp > 2. If s > 2=3, p > 3, this fact follows from Theo-

rem 1.1 by the embedding of W
s;p

loc into W
2=3;3

loc . In the case s D 2=3, p > 3 this

embedding fails, but following the footsteps of [13], a proof for the developability

statement can be achieved, which we leave to the reader. We have concentrated on

the more challenging borderline case sp D 2.
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Remark 1.5. Theorem 1.1 may fail for isometric immersions ofW 1Cs;p-regularity

if sp < 2. Indeed, for any 0 < s  1 and p < 2=s, the 1-homogeneous map

u W B1 ! R
3 expressed in polar coordinates as

u.r; ✓/ WD
✓

1

2
r cos.2✓/;

1

2
r sin.2✓/;

1

2

p
3r

◆

is a W 1Cs;p isometric immersion of the 2-dimensional disk into R
3 but has a con-

ical singularity at the origin. It clearly does not belong to C 1 and fails to be devel-

opable.

Remark 1.6. Following [41] for s D 1; p D 2, we expect that the isometric

immersion can be shown to be C 1 up to the boundary if its W 1Cs; 2
s .�/ norm is

finite and @� is of class C 1;˛ for some ˛ > 0. This boundary regularity fails if @�
is merely of class C 1 [41, Remark 7].

Remark 1.7. To establish the result, directly following the arguments of [13] is

not enough. Indeed, observe that u is a priori not even assumed to be in C 1. But

this is not the only difficulty, as we will explain in Section 4 and Appendix A.

We will hence adapt a new approach. In particular, Theorem 1.10 below is a new

contribution devised to bypass the new obstacles for the case s D 2=3.

To set up our second and third results, we first remind following Brezis-

Nguyen [7] that for any domain � ⇢ R
n, and f belonging to the optimal space

W
n�1

n ;n

loc .�;Rn/, the Jacobian determinant Jac.f / WD Det.rf / is well defined

as a distribution in D0.�/, see also Sickel-Youssfi [48]. We also refer to the

fundamental works on the distributional Jacobian developed by Reshetnyak [43],

Wente [53], Ball [2], Tartar [50], Müller [40], Coifman-Lions-Meyer-Semmes [9],

and Brezis-Nirenberg [8]. In view of the embedding theorems for the fractional

Sobolev spaces, Jac.f / is well defined for f 2 W
s;p

loc .�;R
n/ if n�1

n
< s  1

and p �
n2

nsC1
. In particular, it can be established by the methods of [7] that if

p D n=s, Jac.f / 2 W n.s�1/;1=s
loc .�/, – the proof is explained in [36, Lemma 1.3],

cf. Lemma 8.1.

Our analysis establishes a connection between isometric immersions of frac-

tional Sobolev regularity and deformations of plane domains f with symmetric

Jacobians rf and vanishing distributional Jacobian determinants Jac.f /. In par-

ticular, the developability of isometric immersions is proved using the following

similar statement for these deformations.

Theorem 1.8. Let � ⇢ R
2 be an open set. Assume that s � 2=3 and f 2

W
s; 2

s

loc .�;R
2/ with its distributional Jacobian satisfying

curl f D 0 and Jac.f / D 0 in D
0.�/:

Then, f 2 c0; s
2 .�/ and for any point x 2 �, f is either constant around x, or

it is constant along the connected component of the intersection of a line passing

through x with �.
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See statements similar to Theorem 1.8 in [31, Proposition 2.29] (for Lipschitz

maps), [42, Proposition 1.1] (for W 1;2-maps), and [35, Theorem 1.3] for Hölder

continuous maps. The continuity of any f as in Theorem 1.8 was already shown

in [36, Theorem 1.6].

Remark 1.9. As in Remark 1.5, Theorem 1.8 fails for f 2 W s;p with 4
2sC1



p < 2
s
, even for s D 1. We refer to the so-called “fish-like example” discussed

in [16]: Letting c D 0, f D ru satisfies curl .f / D 0 and Jac.f / D Hu D 0,

however f is not even continuous.

Another new contribution of this article, which will turn out to be crucial in

proving Theorem 1.1 in the critical threshold s D 2
3

, directly regards the properties

of distributional Jacobian determinants. As we shall see in Proposition 2.5 the

distributional product �rg is well defined provided � 2 L1 \ W s; n
s .�/ and

g 2 W s; n
s .�IRn/ if s > 1=2. In view of this fact, the following seemingly natural

behavior of the distributional Jacobian determinant can be proven:

Theorem 1.10. Let n � 2, and let � ⇢ R
n be a bounded smooth domain, or

� D R
n. Assume that s 2 Œ n

nC1
; 1/, � 2 L1 \ W s; n

s .�/, f; g 2 W s; n
s .�IRn/,

and that

rf D �rg: (1.1)

Then for any � 2 C1
c .�/,

Jac.f /Œ�ç D Jac.g/Œ�n�ç:

Note that since s �
n

nC1
,

�n� 2 W s; n
s

0 .�/ ,! W
.1�s/n; 1

1�s

0 .�/ D W
.1�s/n; 1

1�s

00 .�/;

and so the right-hand side in the above Jacobian determinant identity is well de-

fined.

The outline of this paper is as follows. In Section 2 we begin with some pre-

liminaries on fractional Sobolev spaces and gather some important statements to

be used later in the article. In Section 3 we discuss developability of fractional

Sobolev 2d deformations with symmetric Jacobian derivative and vanishing dis-

tributional Jacobian determinant. In the subsequent Sections 4 and 5, we will set

out to define a notion of second fundamental form for fractional Sobolev isome-

tries and to derive a weak version of Codazzi-Mainardi system of equations for it.

In Section 6 the developabilty and regularity of each component are shown. We

will complete the proof of Theorem 1.1 in Section 7 and present a proof of The-

orem 1.10 in Section 8. In Appendix A, it is briefly shown, as a side-note, how

Theorem 1.10 can be bypassed in case s > 2=3. In Appendix B we introduce

a notion of fractional absolute continuity in order to give a simple proof of the

known fact from [23] that the image of a W s;p.R;R2/ deformation is of Lebesgue

measure zero provided s > 1=2 and sp > 1.
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2. Fractional Sobolev spaces, an overview and some facts

2.1. Notation

We will work with the Slobodeckij or Gagliardo fractional Sobolev space, also

sometimes referred to as the Besov space. Namely, for any open set � ⇢ R
n,

non-negative integer k, 0 < s < 1 and 1  p < 1, we define the fractional

W s;p-seminorm of a mapping f 2 L1
loc.�;R

N / by

Œf çW s;p.�/ WD
✓Z

�

Z

�

jf .x/ � f .y/jp
jx � yjnCsp

dx dy

◆1=p

;

and we set for any integer k � 0 (identifying W 0;p with Lp when k D 0),

W kCs;p.�/ WD
n
f 2 W k;p.�/ W

⇥

Dkf
⇤

W s;p.�/
< 1

o
;

which is a Banach space with the norm

kf kW kCs;p.�/ WD kf kW k;p.�/ C
⇥

Dkf
⇤

W s;p.�/
:

W
kCs;p

0 .�/ is defined to be the closure ofC1
c .�/ in this space. Note thatC1

c .Rn/

is dense in W kCs;p.Rn/ [14, Theorem 2.4]. If � is a bounded smooth domain,

there is a bounded linear extension operator mapping W s;p.�/ to W s;p.Rn/ [14,

54]. For any such �, or for � D R
n, and 1  p < 1, these spaces coincide with

the Besov-Triebel-Lizorkin type spaces Bs
p;p.�/ D F s

p;p.�/ according to [44,

Proposition 2.1.2 and Section 2.4]. Indeed the identification can be established as

these spaces are the real .s; p/-interpolation betweenLp andW 1;p spaces, see [38,

Example 1.8] and [3, Theorem 6.2.4].

When 1 < p < 1, the Lions-Magenes Sobolev spaceW
kCs;p

00 .�/ introduced

in [37] is the closed subspace of W kCs;p.Rn/ defined by

W
kCs;p

00 .�/ WD
n
f 2 W kCs;p.Rn/ W supp f ⇢ �

o
;

equipped with the induced seminorm Œf ç
W

kCs;p
00

.�/
and norm kf k

W
kCs;p
00

.�/
. We

refer to [51, Section 4.3.2] for more references and for the following properties:

W
kCs;p

00 .�/ can also be identified as the set of those elements of W
kCs;p

0 .�/

whose extensions by 0 outside of � belong to W kCs;p.Rn/. C1
c .�/ is dense

in W
kCs;p

00 .�/ and we have

kf k
W

kCs;p
0

.�/
- kf k

W
kCs;p

00
.�/
:
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If sp ¤ 1 and @� is sufficiently regular the linear operator extending f 2 C1
c .�/

by 0 outside of � to f0 2 W kCs;p.Rn/ satisfies

kf0kW kCs;p.Rn/ - kf kW kCs;p.�/;

which implies W
kCs;p

00 .�/ D W
kCs;p

0 .�/. If sp D 1 this is not the case and

W
kCs; 1

s

00 .�/ is a proper dense subspace of W
kCs; 1

s

0 .�/ when � ¤ R
n.

If � is a bounded smooth domain or if � D R
n, we set for 0 < s < 1,

1 < p < 1:

W �s;p0

.�/ WD
�

W
s;p

00 .�/
�0
;

with 1=pC 1=p0 D 1, as a subset of distributions in D0.�/. Our definition departs

from [44, Section 2.1.1 and Section 2.4.1] but by [51, Theorem 4.8.1], these two

definitions coincide. Therefore the extension property is still valid for negative

differentiability exponent: For a bounded smooth domain �, and 0 < s < 1, any

element of W �s;p can be extended by a bounded linear operator to an element of

W �s;p.Rn/ [44, Theorem 2.4.2/2]. Moreover by [44, Propostion 2.1.4/2]

W s;p.�/ D
˚
f 2 D

0.�/ W f 2 W s�1;p.�/ and Df 2 W s�1;p.�;Rn/
 

;

with equivalence of norms

kf kW s;p.�/ ⇡ kf kW s�1;p.�/ C kDf kW s�1;p.�/: (2.1)

For t > �1, the vector-valued spaces W t;p.�;RN / are defined to be all RN -

valued mappings whose components lie in W t;p.�/. We will omit the target RN

when there is no ambiguity.

It is also useful to define for 0 < s < 1 and 1 < p < 1 the homogenous

norm

kf k PW �s;p0
.�/ WD sup

n
f Œ�ç W � 2 C1

c .�/ and Œ�çW s;p
00

.�/  1
o

� kf kW �s;p0
.�/;

(2.2)

where here and throughout the article f Œ�ç denotes the action of the distribu-

tion f on �. We denote the corresponding space of finite-norm distributions by
PW �s;p0

.�/, and note that C1
c .�/ is dense in PW �s;p0

.�/. It follows from (2.1)

through a standard scaling argument that

Œf çW s;p.Rn/ - kDf k PW s�1;p.Rn/: (2.3)

We conclude our presentation of fractional Sobolev spaces by a final useful ob-

servation. For n � 2 let the differential and integral operators ÅRn , Å�1
Rn and the

Riesz transform R be respectively defined by the Fourier symbols j⇠j2, j⇠j�2 and

i⇠=j⇠j. It is known that Å�1
Rn is a well-defined operator and coincides (modulo a
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conventional sign) with the Newtonian potential onL2.Rn/ � C1
c .Rn/. By a clas-

sical theorem [19, Corollary 5.2.8] the Riesz transform is a bounded operator from

Lp.Rn/ into Lp.Rn;Rn/ when 1 < p < 1. It is a linear operator commuting

with differentiation, hence, via the interpolation property [38, Theorem 1.6] and a

scaling argument, and in view of the fact that R � Rf D �f we obtain that

ŒRf çW s;p.Rn;Rn/ ⇡ Œf çW s;p.Rn/

for any 0 < s < 1 and 1 < p < 1. An argument by duality yields the similar

estimate

kRf k PW �s;p0
.Rn;Rn/ ⇡ kf k PW �s;p0

.Rn/:

Combining this fact with (2.3), we obtain

ŒDÅ�1
Rnf çW s;p.Rn/ -

�

�D
�

DÅ�1
Rn

�

f
�

�

PW s�1;p.Rn/

D kR ˝ Rf k PW s�1;p.Rn/ ⇡ kf k PW s�1;p.Rn/:
(2.4)

2.2. Mollification and commutator estimates

For a given smooth bounded domain � ⇢ R
n we fix an extension operator and for

any f 2 W s;p.�/, we still denote its extension by f 2 W s;p.Rn/. Throughout

the paper, we fix a standard mollifier ' 2 C1
c .B1/,

R
B1 ' D 1. For any mapping

f 2 W s;p.�/ with � as above, we let f" be the mollifications of the extension

f" WD f ⇤ '", where '".x/ WD 1
"n'.

x
"
/. The following estimates, which are

reminiscent of [10, 11, 13] will be used in our analysis:

Lemma 2.1. Let 0 < s < 1, f; g 2 W s;p.�/, where either � ⇢ R
n is smooth and

bounded or � D R
n. Then:

(i) kf" � f kLp  o."s/;
(ii) 8k � 1 krkf"kLp  o."s�k/;

(iii) If p � 2, 8k � 0 krk.f"g" � .fg/"/kLp=2  o."2s�k/,

where the bound function o.�/ depends on p; ' and the extension constant of �.

Proof. (i) By the extension property of smooth bounded domains it is sufficient to

prove the estimates for � D R
n. Let for x; y 2 R

n

ıxf .y/ WD f .y � x/ � f .y/:

We have by Hölder’s inequality

kf" � f kp
Lp

D
Z

Rn

ˇ̌
ˇ̌
Z

Rn

ıxf .y/'".x/ dx

ˇ̌
ˇ̌
p

dy D
Z

Rn

ˇ̌
ˇ̌
Z

fjxj"g

ıxf .y/'".x/ dx

ˇ̌
ˇ̌
p

dy



Z

Rn

✓Z

fjxj"g

.jxj�.sC n
p /jıxf .y/j/p dx

◆✓Z

fjxj"g

.jxj.sC n
p /j'".x/j/p

0

◆
p

p0

dy

C"sp

Z

Rn

Z

fjxj"g

jxj�.spCn/jf .y � x/ � f .y/jp dxdy  "spo.1/;
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where 1
p

C 1
p0 D 1, and the last inequality is a consequence of the dominated

convergence and Fubini theorems, in view of the fact that the integrand belongs to

L1.Rn
⇥ R

n/.

(ii) Similarly as for (i) we write:

�

�

�
rkf"

�

�

�

p

Lp

D
Z

Rn

ˇ̌
ˇ̌
Z

Rn

f .y�x/rk.'"/.x/ dx

ˇ̌
ˇ̌
p

dyD
Z

Rn

ˇ̌
ˇ̌
Z

Rn

ıxf .y/"
�k

⇣

rk'
⌘

"
.x/ dx

ˇ̌
ˇ̌
p

dy



Z

Rn

✓Z

fjxj"g

⇣

jxj�.sC n
p /jıxf .y/j

⌘p

dx

◆

⇥

✓Z

fjxj"g

⇣

"�kjxj.sC n
p /j

⇣

rk'
⌘

"
.x/j

⌘p0
◆

p

p0

dy

C".s�k/p

Z

Rn

Z

fjxj"g

jxj�.spCn/jf .y � x/ � f .y/jp dxdy  ".s�k/po.1/;

which is the desired estimate.

(iii) First we observe that for all k � 0

ˇ̌
ˇ̌
Z

Rn

ıxf .y/ıxg.y/rk.'"/.x/dx

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
Z

Rn

ıxf .y/

jxjsCn=p

ıxg.y/

jxjsCn=p
jxj2.sCn=p/"�k

⇣

rk'
⌘

"
.x/dx

ˇ̌
ˇ̌



�

�

�

�

ıxf .y/

jxjsCn=p

ıxg.y/

jxjsCn=p

�

�

�

�

L
p
2 .fjxj"g/

�

�

�
jxj2.sCn=p/"�k

⇣

rk'
⌘

"
.x/

�

�

�

L
p

p�2 .fjxj"g/

C"2s�k

�

�

�

�

ıxf .y/

jxjsCn=p

�

�

�

�

Lp.fjxj"g/

�

�

�

�

ıxg.y/

jxjsCn=p

�

�

�

�

Lp.fjxj"g/

: (2.5)

For k D 0 we write for all y 2 R
n:

.f"g" � .fg/"/.y/ D .f" � f /.g" � g/.y/ �

Z

Rn

ıxf .y/ıxg.y/'".x/ dx:

The Lp=2 norms of the first term is estimated by o."2s/, using part (i), (ii) and

Hölder’s inequality. Now, integrating the p
2

th power of the second term over the

parameter y, and using (2.5) will yield the o.1/ factor and complete the proof.
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If k � 1, it is sufficient to note that for all y 2 R
n:

rk.f"g" � .fg/"/.y/ D
kX

j D0

rjf" ˝ rk�jg".y/ � rk.fg/".y/

D
k�1X

j D1

rjf" ˝ rk�jg".y/C .f" � f /rkg".y/

C .g" � g/rkf".y/

�

Z

Rn

ıxf .y/ıxg.y/rk.'"/.x/ dx:

The Lp=2 norms of the terms in the first summation are estimated by o."2s�k/,
using part (ii) and Hölder’s inequality. The second and third terms are estimated

using (i). Finally, integrating its p
2

th power of the last term and once more applying

(2.5) leads to an o."2s�k/ control as desired.

Remark 2.2. The estimates in Lemma 2.1 are not optimal and seem to characterize

the spaces bs
p;1 [44, Definition 2.1.3/1], which are larger thanW s;p . We conjecture

that results of the paper can still be achieved for the borderline space b
2=3
3;1 through

the same approach.

Corollary 2.3. Let s 2 .0; 1/ and p � 2. If f; g 2 W s;p.�/, where either � is

smooth and bounded or � D R
n, then

lim
"!0

kf"g" � .fg/"k
W

2s;
p
2

D 0:

Proof. The idea is to use the interpolation inequality [38, Corollary 1.1.7]

khk
W

✓;
p
2
- khk1�✓

L
p
2

khk✓

W
1;

p
2

for all h 2 W 1; p
2 and 0  ✓  1. For 0 < s 

1
2

, we apply Lemma 2.1(iii) for

k D 0 and k D 1 to h WD f"g" � .fg/" with ✓ D 2s to obtain:

kf"g" � .fg/"k
W

2s;
p
2

 o
⇣

".1�2s/2sC2s.2s�1/
⌘

D o.1/:

Similarly, if 1
2
< s < 1, we let h WD r.f"g" � .fg/"/ and ✓ D 2s � 1 and we

apply again Lemma 2.1(iii) for k D 0; 1; 2, and the interpolation estimate, which

together yield:

kf"g" � .fg/"/k
L

p
2

 o
�

"2s
�

and

kr.f"g" � .fg/"/k
W

2s�1;
p
2

 o
⇣

".1�.2s�1//.2s�1//C.2s�1/.2s�2/
⌘

D o.1/:
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We will also need the following elementary estimate, which in fact states the

known embedding of W s; n
s .Rn/ into VMO [8, Section I.2, Example 2]:

Lemma 2.4. Let � ⇢ R
n be an open set and f 2 W s; n

s .�/. Then for all x 2 �,

and " < dist.x; @�/,

lim
"!0

«

B".x/

jf � f".x/j
n
s D 0:

Proof. It is sufficient to show that

kf � f".x/kL
n
s .B".x//

 o."s/;

which follows from the a variant of fractional Poincaré inequality which is valid

for all s 2 .0; 1/ and 1  p < 1:

kf � f".x/kLp.B".x//  C"sŒf çW s;p.B".x//;

and can be proved similarly as in [15, Proposition 2.1], where we have replaced the

average of f on the ball by f".x/.
Here we provide another proof. For a fixed x 2 � we have by Lemma 2.1(i)

and p D n
s

:

kf � f".x/kL
n
s .B".x//

 kf � f"kL
n
s .B".x//

C kf" � f".x/kL
n
s .B".x//

 o."s/C kf" � f".x/kL
n
s .B".x//

:

It remains to bound the second term, for which can apply the standard Poincaré

inequality for any f 2 L1.�/ with the proper scaling on the ball B".x/

kf" � f".x/kL
n
s .B".x//

 C"krf"kL
n
s .B".x//

; (2.6)

to obtain, this time via Lemma 2.1(ii) the desired estimate. Note that we have the

right to use f".x/ as the normalization constant since n
s
> n and W 1; n

s embeds in

C 0;1�s .

2.3. Distributional products in fractional Sobolev spaces

In Section 5 we will define a notion of second fundamental form for fractional

Sobolev isometries through the first part of the following result. We will present

a proof following the methodology of [34], which then is adapted to subsequently

show the complementary second part, which, in particular, will be used in proving

Theorem 1.10 in Section 8.

Proposition 2.5. Let n � 2, 1=2 < s < 1, f 2 W s; n
s .Rn/.

(i) Let � 2 W s; n
s .Rn/ \ L1.Rn/. Then, for any ˛ 2 f1; : : : ; ng, the product

�@˛f is well defined as a distribution on R
n, and

k�@˛f k PW s�1; n
s .Rn/

- Œf ç
W s; n

s .Rn/

⇣

Œ�ç
W s; n

s .Rn/
C k�kL1.Rn/

⌘

I
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(ii) Let �k 2 W s; n
s .Rn/ \ L1.Rn/ with

sup
k

⇣

k�kk
L

n
s .Rn/

C k�kkL1.Rn/

⌘

< 1:

Assume moreover that Œ�kç
W s; n

s .Rn/

k!1
����! 0. Then, for any ˛ 2 f1; : : : ; ng,

k�k@˛f k PW s�1; n
s .Rn/

k!1
����! 0:

Proof. We will first show (i). Remember that the harmonic extension of f 2
L1.Rn/ \ L1.Rn/ to R

nC1
C is defined by the Poisson extension operator [19, Ex-

ample 2.1.13]

f h.t; x/ WD Cn

Z

Rn

t

.jx � zj2 C t2/
nC1

2

f .z/ dz (2.7)

and the operator can be extended to W s; n
s .Rn/ [28, 34]. Let � 2 C1

c .Rn/ and

let �h, f h, and �h be the harmonic extensions of �, f , and �, respectively, on to

R
nC1
C .

The one-dimensional integration by parts [34] allows us to define

�@˛f Œ�ç WD �

Z

R
nC1
C

@nC1

⇣

�h@˛f
h �h

⌘

: (2.8)

By (2.2), we are going to estimate

k�@˛f k PW s�1; n
s .Rn/

Dsup
n
�@˛f Œ�ç W � 2 C1

c .Rn/ and Œ�ç
W 1�s; n

n�s .Rn/
 1

o
:

So let us fix one � 2 C1
c .Rn/ with Œ�ç

W 1�s; n
n�s .Rn/

 1. We bound

ˇ̌
ˇ�@˛f Œ�ç

ˇ̌
ˇ -

Z

R
nC1
C

ˇ̌
ˇD�h

ˇ̌
ˇ
ˇ̌
ˇDf h

ˇ̌
ˇ
ˇ̌
ˇ�h

ˇ̌
ˇC

ˇ̌
ˇ�h

ˇ̌
ˇ
ˇ̌
ˇDf h

ˇ̌
ˇ
ˇ̌
ˇD�h

ˇ̌
ˇ ;

as we can always tackle the @˛ term (which is in R
n-direction) via integration by

parts. Here and hereafter, D is the R
nC1-dimensional gradient.

We first claim that

Z

R
nC1
C

ˇ̌
ˇD�h

ˇ̌
ˇ
ˇ̌
ˇDf h

ˇ̌
ˇ
ˇ̌
ˇ�h

ˇ̌
ˇ - Œ�ç

W s; n
s .Rn/

Œf ç
W s; n

s .Rn/
Œ�ç

W 1�s; n
n�s .Rn/

: (2.9)
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We have

Z

R
nC1
C

ˇ̌
ˇD�h

ˇ̌
ˇ
ˇ̌
ˇDf h

ˇ̌
ˇ
ˇ̌
ˇ�h

ˇ̌
ˇ



Z

Rn

jM�.x/j
Z 1

0

ˇ̌
ˇD�h.x; t/

ˇ̌
ˇ
ˇ̌
ˇDf h.x; t/

ˇ̌
ˇ dt dx



Z

Rn

jM�.x/j
✓Z 1

0

jD�h.x; t/j2 dt

◆
1
2
✓Z 1

0

jDf h.x; t/j2 dt

◆
1
2

dx

- kM�k
L

n
n�1 .Rn/

 Z

Rn

✓Z 1

0

jD�h.x; t/j2 dt

◆
2n
2

dx

! 1
2n

⇥

 Z

Rn

✓Z 1

0

jDf h.t; x/j2 dt

◆
2n
2

dx

! 1
2n

:

Here we have used, for the Hardy-Littlewood maximal function M, the fact that

j�h.x; t/j - M�.x/:

Also recall the characterization of the homogeneous Triebel-Lizorkin spaces (listed,

e.g., in [28, 34]):

kf k PF ˛
p;q

⇡

 Z

Rn

✓Z 1

0

jt1�
1
q �˛Df hjqdt

◆
p
q

dx

! 1
p

:

So, in light of the maximal theorem, we have shown that

Z

R
nC1
C

ˇ̌
ˇD�h

ˇ̌
ˇ
ˇ̌
ˇDf h

ˇ̌
ˇ
ˇ̌
ˇ�h

ˇ̌
ˇ - k�k

L
n

n�1 .Rn/
k�k

PF
1
2

2n;2
.Rn/

kf k
PF

1
2

2n;2
.Rn/

:

Thus, we can immediately conclude (2.9) from the embeddings [44, Proposi-

tion 2.2.1 and Theorem 2.2.3(ii)] and scaling arguments:

k�k
L

n
n�1 .Rn/

 Œ�ç
W 1�s; n

n�s .Rn/
 1;

k�k
PF

1
2

2n;2
.Rn/

- k�k PF s
n
s ; n

s
.Rn/ D Œ�ç

W s; n
s .Rn/

;

kf k
PF

1
2

2n;2
.Rn/

- Œf ç
W s; n

s .Rn/
;

as long as s > 1=2.
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Next we estimate

Z

R
nC1
C

j�hjjDf hjjD�hj



✓Z

Rn

✓Z 1

0

jt1�
n�s

n �.1�s/D�hj n
n�s dt

◆

dx

◆
n�s

n

⇥

✓Z

Rn

✓Z 1

0

j�ht1�
s
n �sDf hj n

s dt

◆

dx

◆
s
n



�

�

�
�h

�

�

�

L1.R
nC1
C

/
Œ�ç

W 1�s; n
n�s .Rn/„ ƒ‚ …

1

Œf ç
W s; n

s .Rn/
:

(2.10)

Now it is sufficient to observe that by the maximum principle

k�hk
L1.R

nC1
C

/
 k�kL1.Rn/

to conclude together with (2.8) and (2.9) with

k�@˛f k PW s�1; n
s .Rn/

- Œ�ç
W s; n

s .Rn/
Œf ç

W s; n
s .Rn/

C k�kL1.Rn/Œf ç
W s; n

s .Rn/
;

which finishes the proof of (i).

(ii) does not directly follow from (i). We first analyse the asymptotic behavior

of �k . Note that since W s; s
n .Rn/ is reflexive, �k is weakly sequentially compact

inW s; n
s . We shall see that �k * 0 weakly in W s; n

s .Rn/. Indeed, take any weakly

convergent subsequence, relabelled �k , �k * � 2 W s; n
s .Rn/. Let BR be the

open ball of radius R > 0 centered at origin in R
n. For any R > 0, �kjBR

is a

bounded sequence in W s; n
s .BR/ and hence by [14, Theorem 7.1], it is precompact

in Ln=s.BR/. Since the limit of convergent subsequences cannot be anything other

than �jBR
, we conclude that for each R > 0, �k ! � strongly in L

n
s .BR/, and so

for some subsequence, �kj
converges almost everywhere in BR to �. This implies

that

lim
j !1

�kj
.x/ � �kj

.y/

jx � yj2s
D �.x/ � �.y/

jx � yj2s

for almost every .x; y/ 2 BR ⇥ BR. On the other hand,

⇥

�kj

⇤

W s; n
s .BR/


⇥

�kj

⇤

W s; n
s .Rn/

! 0

by the main assumption, which implies, again up to a subsequence of �kj
, that the

same limit vanishes for almost every .x; y/ 2 BR ⇥ BR. As a consequence �jBR

must be constant for all R > 0, and since � 2 W s; n
s .Rn/, we obtain that � ⌘ 0

is the unique weak accumulation point of the original sequence �k . We finally

conclude that for all R > 0, k�kk
L

n
s .BR/

! 0.
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In order to prove (ii), we note that it is sufficient to assume f 2 C1
c .Rn/.

Indeed, let fj 2 C1.Rn/ be such that Œfj � f ç
W s; n

s .Rn/
! 0. If

lim
k!1

k�k@˛fj k
W s�1; s

n .Rn/
D 0; (2.11)

as proved below, then

k�k@˛f k
W s�1; s

n .Rn/
 k�k@˛.f � fj /kW s�1; s

n .Rn/
C k�k@˛fj k

W s�1; s
n .Rn/

converges to 0 too since because of (i) and the uniform boundedness of �k the first

term on the right-hand side is arbitrarily small for large j .

Now we prove (2.11). Let f 2 C1
c .Rn/ and assume that supp f lies in the

open ball B⇢ in R
n. Fix a smooth cut-off function ⌘ 2 C1

c .B⇢C1/ such that ⌘ ⌘ 1
on B⇢. We observe that for all k and for all � 2 C1

c .Rn/

.⌘�k/@˛f Œ�ç D
Z

Rn

.@˛f /⌘�k� D
Z

B⇢

.@˛f /⌘�k� D
Z

B⇢

@˛f��

D
Z

Rn

@˛f�� D �@˛f Œ�ç:

This implies �@˛f D .⌘�k/@˛f and it is sufficient now to prove that

lim
k!1

k.⌘�k/@˛f k
W s�1; s

n .Rn/
D 0: (2.12)

In order to do so, we have to analyse the sequence ⌘�k and its harmonic extension

.⌘�k/
h to R

nC1
C . We have

k⌘�kk
L

n
s .Rn/

 k⌘kL1.Rn/k�kk
L

n
s .B⇢C1/

k!1
����! 0;

and

Œ⌘�kç
W s; n

s .Rn/
 k⌘kL1.Rn/Œ�kç

W s; n
s .Rn/

C 2

 Z

B⇢C1

j�k.y/j
n
s

Z

Rn

j⌘.x/ � ⌘.y/j n
s

jx � yj2n
dx dy

! s
n

- Œ�kç
W s; n

s .Rn/
C k�kk

L
n
s .B⇢C1/

k!1
����! 0:

Now, following the first inequality in (2.10), applied to f and to the sequence ⌘�k ,

together with (2.8) and (2.9), we obtain:

k⌘�k@˛f k PW s�1; n
s .Rn/

- Œ⌘�kç
W s; n

s .Rn/
Œf ç

W s; n
s .Rn/

C
�

�

�
.⌘�k/

ht1�
s
n �sDf h

�

�

�

L
n
s .R

nC1
C

/
:
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Since Œ⌘�kç
W s; n

s .Rn/

k!1
����! 0, we conclude the proof of the theorem once we show

lim
k!1

�

�

�
.⌘�k/

ht1�
s
n �sDf h

�

�

�

L
n
s .R

nC1
C

/
D 0: (2.13)

For this, we observe that
�

�

�
t1�

s
n �sDf h

�

�

�

L
n
s .R

nC1
C

/
- Œf ç

W s; n
s .Rn/

< 1

and by the maximum principle

sup
k

�

�

�
.⌘�k/

h
�

�

�

L1.R
nC1
C

/
 sup

k

k⌘�kkL1.Rn/ < 1:

Let

Gk WD .⌘�k/
ht1�

s
n �s

ˇ̌
ˇDf h

ˇ̌
ˇ :

Then we have

sup
k

jGk.x; t/j - t1�
s
n �s

ˇ̌
ˇDf h.x; t/

ˇ̌
ˇ 8x; t 2 R

nC1
C :

On the other hand, we have from the convergence ⌘�k ! 0 in L
n
s .Rn/ that every

subsequence of ⌘�k has a subsequence ⌘�kj

j !1
����! 0 almost everywhere in R

n.

Since ⌘�k are compactly supported in B⇢C1, they belong to L1.Rn/ \ L1.Rn/
and hence the Poisson integral formula (2.7) is valid. Now, the uniform bound-

edness of ⌘�k in L1.Rn/ and dominated convergence applied to (2.7) imply that

.⌘�kj
/h, and henceGkj

, converge to 0 almost everywhere in R
nC1
C . By dominated

convergence we then find

lim
j !1

�

�Gkj

�

�

L
n
s .R

nC1
C

/
D 0:

A standard argument now implies (2.13) and we conclude the proof as (2.12) is

shown.

The following corollary is a local version of Proposition 2.5:

Corollary 2.6. Let n � 2 and 1=2 < s < 1. Assume that � ⇢ R
n is a bounded

smooth domain and f 2 W s; n
s .�/.

(i) Let � 2 W s; n
s .�/\L1.�/. Then, for any ˛ 2 f1; : : : ; ng, the product �@˛f

is well defined as a distribution on � and

k�@˛f k PW s�1; n
s .�/

- Œf ç
W s; n

s .�/
.Œ�ç

W s; n
s .�/

C k�kL1.�//:

Moreover, for any � 2 C1.�/ and � 2 W 1�s; n
n�s

00 .�/ we have

�@˛f Œ�ç D @˛f Œ��çI (2.14)
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(ii) Let �k 2 W s; n
s .�/ \ L1.�/ be such that

sup
k

k�kkL1.�/ < 1 and lim
k!1

k�kk
W s; n

s .�/
D 0: (2.15)

Then, for any ˛ 2 f1; : : : ; ng,

k�k@˛f k PW s�1; n
s .�/

k!1
����! 0:

Remark 2.7. Note that the mere boundedness of k�kk
L

n
s .�/

is no more sufficient

for the local version of Proposition 2.5-(ii) to be true. �k ⌘ 1 is a trivial coun-

terexample.

Proof. Given f 2 W s; n
s .�/ and � 2 W s; n

s .�/\L1.�/, we extend them to Qf ; Q�
using a bounded linear operator to the whole R

n and we consider the mollified

sequence Qf" and Q�". By Proposition 2.5 we have for any � 2 C1
c .�/, extended

by 0 outside � to Q� over Rn,

Z

�

Q�"@˛
Qf"� D

Z

Rn

Q�"@˛
Qf"

Q� �! Q�@˛
Qf Œ Q�ç as " ! 0:

We define for � 2 C1
c .�/

�@˛f Œ�ç WD Q�@˛
Qf Œ Q�ç; (2.16)

which, in view of the fact that

Œ Q�çW s;p.Rn/ - Œ�çW s;p
00

.�/;

satisfies the desired estimate in (i). Approximating f and � in their respective

spaces by smooth sequences Qfk 2 C1.�/ and Q�k 2 C1
c .�/ and passing to the

limit using the newly established estimates on � yields (2.14).

As for (ii), Proposition 2.5-(ii) is applicable to the extensions Q�k because of

the assumptions in (2.15) since in that case k Q�kkL1.Rn/ are uniformly bounded

and we have

k Q�kk
W s; n

s .Rn/
- k�kk

W s; n
s .�/

k!1
����! 0:

This impies (ii) as formulated.

Note that a diagonal argument and part (ii) also prove the independence of the

definition from the choice of extensions.

Corollary 2.8. Let n � 2 and let � ⇢ R
n be a bounded smooth domain or � D

R
n. Assume that 1=2 < s < 1, g 2 PW s�1; n

s .�/ and � 2 W s; n
s .�/ \ L1.�/.

Then the product �g is well defined as a distribution on � and

k�gk PW s�1; n
s .�/

- kgk PW s�1; n
s .�/

⇣

Œ�ç
W s; n

s .�/
C k�kL1.�/

⌘

:
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Moreover, if �k 2 W s; n
s .�/ \ L1.�/ with

sup
k

k�kkL1.�/ < 1 and

8
<
:

lim
k!1

k�kk
W s; n

s .�/
D 0 if � ¤ R

n

sup
k

k�kk
L

n
s .Rn/

< 1 and lim
k!1

Œ�kç
W s; n

s .Rn/
D 0 otherwise;

then

k�kgk PW s�1; n
s .�/

k!1
����! 0:

Remark 2.9. When � D R
n, 1=2 < s < 1 and g belongs to the larger space

W s�1; n
s .Rn/, the product �g can be defined as an element of W s�1; n

s .Rn/ and its

continuity can be shown using [44, Theorem 4.6.2/2], where the Triebel-Lizorkin

theory of spaces and the notion of paraproducts are used. Another proof can be

given through duality based on [6, Lemma 6]. Indeed, for 1=2 < s < 1, let

1 < t D n=s < 1, 0 < ✓ D .1 � s/=s < 1, 1 < p D n=.n � s/ < 1, and

1 < r D n=.n � 1/ < 1, and note that

1

r
C ✓

t
D 1

p
:

Hence, [6, Lemma 6] implies that for all � 2 W 1�s; n
n�s .Rn/

k��k
W 1�s; n

n�s .Rn/

-k�kL1.Rn/k�k
W 1�s; n

n�s .Rn/
C k�k✓

W s; n
s .Rn/

k�k1�✓
L1.Rn/k�k

L
n

n�1 .Rn/

-k�k
2s�1

s

L1.Rn/

✓

k�k
1�s

s

L1.Rn/
C k�k

1�s
s

W s; n
s .Rn/

◆

k�k
W 1�s; n

n�s .Rn/
:

Now it is sufficient to define, for g 2 W s�1; n
s .Rn/,

�gŒ�ç WD gŒ��ç;

and we obtain the estimate

k�gk
W s�1; n

s .Rn/
- k�k

2s�1
s

L1.Rn/

✓

k�k
1�s

s

L1.Rn/
C k�k

1�s
s

W s; n
s .Rn/

◆

kgk
W s�1; n

s .Rn/

by duality.

Proof. If � D R
n, in view of (2.4), it suffices to apply Proposition 2.5 to com-

ponents of f WD DÅ�1
Rng, if necessary by approximating g in PW s�1; n

s .Rn/ by

a sequence of C1
c .Rn/ functions. If � is a bounded smooth domain, we fix an
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extension operator g ! Qg from W s�1; n
s .�/ into W s�1;p.Rn/, and a function

⌘ 2 C1
c .Rn/ such that ⌘ ⌘ 1 on �. We have

k⌘ Qgk PW s�1; n
s .Rn/

- k Qgk
W s�1; n

s .Rn/
- kgk

W s�1; n
s .�/

 kgk PW s�1; n
s .�/

:

Hence ⌘ Qg 2 PW s�1; n
s .Rn/ is a bounded extension of g to the whole Rn and for any

extension Q� 2 W s; n
s \ L1.Rn/ of �, the product Q�.⌘ Qg/ is well defined. We set

�gŒ�ç WD . Q�.⌘ Qg//Œ�ç for all � 2 C1
c .�/. We can now argue as in the proof of

Corollary 2.6 in order to establish the properties of the distributional product �g
and its independence from the choice of the extension operators or ⌘.

3. A Proof of Theorem 1.8

Our reasoning for proving Proposition 3.2 is a combination of the arguments used

in the proofs of [42, Proposition 1.1] and [35, Theorem 1.3]. First, analogous to [35,

Proposition 7.1], we show that assuming the proper fractional Sobolev regularity,

the degree formula is valid for f :

Lemma 3.1. Assume � ⇢ R
2 is an open smooth bounded set, or � D R

2, and fix

s � 2=3 and f 2 W s;2=s \ C 0.�;R2/. For any e� b � and any g 2 C1
c .R2 n

f .@e�//, one has
Z

R2

g.y/ deg.f;e�Iy/ dy D Jac.f /Œg ı f ç:

In particular, if Jac.f/ > 0, then deg.f;e�Iy/ is non-negative whenever it is well

defined and moreover

8y 2 f .e�/ n f .@e�/ deg.f;e�Iy/ � 1; (3.1)

since the degree must be positive for such y.

By definition Jac.f / > 0 if, for all non-negative � 2 C1
c .�/, Jac.f /Œ�ç > 0,

unless � ⌘ 0.

Proof. Consider the mollified functions f" WD f ⇤ '" 2 C1.�;R2/, as defined

in Subsection 2.2. Since f" converges locally uniformly to f , similar as in [35,

Proposition 7.1] we have

deg.f;e�Iy/ D deg.f";e�Iy/ for all y 2 suppgIZ

e�

�

g ı f".z/
�

det rf".z/ dz D
Z

R2

g.y/ deg.f";e�Iy/ dy;

for small enough ". So it suffices to show that
Z

e�

�

g ı f".z/
�

det rf".z/ dz �! Jac.f /Œg ı f ç as " ! 0: (3.2)

But the left-hand side of (3.2) equals Jac.f"/Œgıf"ç, which converges to Jac.f /Œgı
f ç by Lemma 8.1. This proves (3.2), and hence the assertion follows.
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Next we show that if further Jac.f / ⌘ 0 and curl f D 0, then the image

f .�/ is of zero measure. In view of [32, Corollary 1.1.2] (since f is curl-free,

f has locally a gradient structure) and [13, Proposition 2.1], it follows that f is

either locally constant around a point or constant in segments joining the boundary

of � on both sides. The local Hölder regularity C 0;s=2 is a straightforward con-

sequence of the Fubini theorem for fractional Sobolev spaces [44, 2.3.4/2] and the

Sobolev embedding theorem in one dimensions [14, Theorem 8.2] after the appli-

cation of the local bilipschitz change of variable introduced in the proof of [13,

Lemma 2.11]. The little Hölder regularity follows in view of density of smooth

mappings in W s; 2
s .R/ for s > 0. This will conclude the proof of Theorem 1.8.

Proposition 3.2. Let �, s, and f be as in the assumptions of Theorem 1:8. Then

f .�/ has zero Lebesgue measure. In particular it has empty interior.

Proof. Without loss of generality and by considering compactly contained subsets

of � we can assume that � is bounded and smooth. Following Kirchheim [31]

and as in the arguments of Pakzad [42, Lemma 2.1] and Li-Schikorra [36, Theo-

rem 1.6], consider the auxiliary maps

f .ı/.x; y/ WD f .x; y/C ı.�y; x/>: (3.3)

Let e� b � be an open set. Since f .ı/ ! f uniformly as ı & 0, there exists a

number ı small enough such that

�

�

�
f � f .ı/

�

�

�

C 0.e�/
 :

One may choose ı to be decreasing in . As a consequence, f .e�/ lies in the

-neighbourhood of f .ı/.e�/. Thus

L
2
⇣

f .e�/Åf .ı/.e�/
⌘

 C2

for some constant C depending only on e�. Therefore, by sending  ! 0, we may

infer that

lim
ı&0

L
2
⇣

f .ı/.e�/
⌘

D L
2
⇣

f .e�/
⌘

: (3.4)

On the other hand, once again by setting f" WD f ⇤'" and f
.ı/

" .x; y/ WD f".x; y/C
ı.�y; x/>, we note that f .ı/ is the W s;2=s-limit of f

.ı/
" and hence for all � 2

C1
c .�/:

Jac.f .ı//Œ�ç D lim
"!0

Z

�

det.rf .ı/
" /� D lim

"!0

Z

�

det.rf"/� C
Z

�

ı2� D
Z

�

ı2�;

where we used the facts that curl f" D 0 and Jac.f / D 0. We deduce that

Jac.f .ı// ⌘ ı2 > 0. Note that by [36, Theorem 1.1] f .ı/ is continuous.
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We take a nondecreasing sequence of non-negative gk 2 C1
c .R2 nf .ı/.@e�//

converging pointwise to �
R2nf .ı/.@e�/. Applying Lemma 3.1 and the monotone

convergence theorem we have

Z

R2nf .ı/.@e�/

deg
⇣

f .ı/;e�Iy
⌘

dy

D lim
k!1

Z

R2

gk.y/ deg
⇣

f .ı/;e�Iy
⌘

dy D lim
k!1

Z

e�

⇣

gk ı f .ı/
⌘

ı2

D ı2
L

2
⇣

e� n .f .ı//�1.f .ı/.@e�//
⌘

 ı2
L

2
�e�

�

:

(3.5)

For any x 2 �, we let Bx b � be a disk centered at x in a manner so that f .ı/ 2
W s;2=s.@Bx/. This is possible by the Fubini theorem for fractional Sobolev spaces,

which is a well-known fact, see [49] in view of [1, Lemma 7.68]. A similar proof

recently appeared in [36, Lemma 2.2]; for other proofs see [44, Theorem 2.3.4/2]

or [45, Lemma 2.6]. Now, Theorem B.1 yields L2
�

f .ı/.@Bx/
�

D 0. Therefore,

applying (3.1) and (3.5) to e� D Bx we have:

L
2
⇣

f .ı/.Bx/
⌘

D
Z

R2

�f .ı/.Bx/ D
Z

R2nf .ı/.@Bx/

�f .ı/.Bx/



Z

R2nf .ı/.@Bx/

deg
⇣

f .ı/; BxIy
⌘

dy  ı2
L

2
�

Bx

�

:

It follows by (3.4) that for all x 2 �, L2
�

f .Bx/
�

D 0. The conclusion follows.

4. Mollifying WWW 111CCCsss;;;222===sss isometric immersions

Given an isometric immersion u 2 I 1Cs; 2
s .�;R3/ on a bounded smooth domain

� ⇢ R
2 , with s > 1=2, we will study the geometry of a sequence of mollified

mappings u" WD u ⇤ '". One difficulty is that the mapping u" is not isometric

anymore, and a priori might fail to be an immersion. We will also need to define

the Gauss map En" by the formula

En" WD @1u" ^ @2u"

j@1u" ^ @2u"j
:

But En" is well defined only if j@1u" ^ @2u"j.x/ ¤ 0 for a.e. x 2 e�. Actually, for

En" to be smooth we need a uniform lower bound on j@1u" ^ @2u"j; in other words

we need that u" is an immersion at least for small enough " > 0, a fact that is true

but by no means trivial. This is the subject of the following lemma, which also

discusses the behavior of the pull-back metric induced by u", i.e.:

g" WD .ru"/
T ru" D u⇤

" e:
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Lemma 4.1. Let � ⇢ R
2 be a bounded smooth domain, 0 < s < 1 and u 2

I 1Cs; 2
s .�;R3/. Let e� b �. Then there exists "0 > 0 such that, for all 0 < " < "0,

8x 2 e� j@1u" ^ @2u"j.x/ D
p

det g" >
1

2
(4.1)

and as a consequence g" is a Riemannian metric, u" W e� ! R
3 is a smooth

immersion on e� and the unit normal En" and the second fundamental form II"
ij WD

@iju" � En" are well defined. Moreover, the following statements hold true:

(i) lim
"!0

kg"
� ekC 0.e�/ D 0;

(ii) lim
"!0

k.g"/�1
� ekC 0.e�/ D 0;

(iii) kg"
� ek

L
2
s .e�/

 o."s/ and krg"k
L

2
s .e�/

C kr.g"/�1k
L

2
s .e�/

 o."s�1/;

(iv) kg"
� ek

L
1
s .e�/

 o."2s/ and for k � 1, krkg"k
L

1
s .e�/

 o."2s�k/;

(iv) lim
"!0

kg"
� ek

W 2s; 1
s .e�/

D 0.

Remark 4.2. W s; 2
s barely fails to embed in L1 in two dimensions and the C 0

convergence of the metrics g", which is a key feature of the statement, is not trivial.

Proof. Consider the smooth manifold

O.2; 3/ WD
˚
A 2 R

3⇥2 W ATA D Id
 

;

and note that if u 2 I 1Cs; 2
s .�/, then ru 2 O.2; 3/ a.e. in �. We claim that

the Jacobian derivatives ru" of the mollified sequence u" are uniformly close to

O.2; 3/ on e�. Note that W s; 2
s .e�/ does not embed in L1.e�/ and so ru" are not

necessarily uniformly close to ru.

Lacking an L1 estimate, the main idea is to use the approach of Schoen and

Uhlenbeck [46] and to apply the standard BMO estimate

kru" � rukBMO  kru" � ruk
W s; 2

s
;

on small balls around a point x 2 �. See also [8, Section I.1] for a discussion of

this topic and its applications in a larger context and [5] regarding its application in

approximating fractional Sobolev mappings into manifolds.

Indeed, applying Lemma 2.4 we have for all x 2 e� and " < dist.e�; @�/

jdist.ru".x/;O.2; 3//j
n
s 

«

B".x/

jru.y/ � ru".x/j
n
s dy  o.1/;

where

dist.ru".x/;O.2; 3// WD inf
A2O.2;3/

jru".x/ � Aj;
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and jAj denotes the Hilbert-Schmidt norm of a matrix A. Let A.x/ 2 O.2; 3/ be

the matrix for which the infimum is attained. Therefore

kg"
� ekC 0.e�/ D sup

x2e�

ˇ̌
ˇ.ru".x//

T ru".x/ � Id

ˇ̌
ˇ

D sup
x2e�

ˇ̌
ˇ.ru"/

T ru" � ATA
ˇ̌
ˇ .x/  o.1/;

which proves (i). In particular, since j@1u" ^ @2u"j D p
det g" we also obtain

lim
"!0

kj@1u" ^ @2u"j � 1kC 0.e�/ D lim
"!0

�

�

�

p
det g" � 1

�

�

�

C 0.e�/
D 0:

This establishes (4.1). Statement (ii) follows by straightforward calculations using

the above uniform estimates. Since ru" stays uniformly bounded in L1.e�/, ap-

plying Lemma 2.1(ii) to the sequence r2u" yields (iii). Finally (iv) and (v) follow

respectively from the commutator estimate Lemma 2.1(iii) and Corollary 2.3 since

�

.ru/T ru
�

⇤ '" D e ⇤ '" D e in e�

for all " < dist.e�; @�/.

We can therefore define the second fundamental form of g" on e� by

II"
ij WD @iju" � En": (4.2)

Also, remember that for any Riemannian metric g 2 R
2⇥2
symC, its Christoffel symbols

are defined by

Ä l
ij .g/ WD 1

2
glm

�

@igmj C @j gim � @mgij

�

;

with the Einstein summation convention, where glm are the components of g�1.

We define therefore the tensor Ä" by:

Ä" WD
h
Ä

l;"
ij

i
i;j;l2f1;2g

; Ä
l;"
ij WD Ä l

ij .g
"/;

with the usual convention jÄ"j WD .
P2

i;j;lD1 jÄ l;"
ij j2/ 1

2 .

Corollary 4.3. Let �;e�; s and u be as in Lemma 4:1. Then:

(i) kII"k
L

2
s .e�/

 o."s�1/ and kII"k
PW s�1; 2

s .e�/
 C ;

(ii) kÄ"k
L

1
s .e�/

 o."2s�1/ and krÄ"k
L

1
s .e�/

 o."2s�2/;

(iii) If s �
1
2

, then lim
"!0

kÄ"k
W 2s�1; 1

s .e�/
D 0.
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Proof. (i) follows from Lemma 2.1(ii) applied to r2u" and from Corollary 2.6 with

the estimate

kII"k
PW s�1; 2

s .e�/


⇣

kEn"kL1.e�/ C ŒEn"ç
W s; 2

s .e�/

⌘

Œru"ç
W s; 2

s .e�/
 C;

where the uniform bounds on En" are obvious from (4.1) and the similar bounds on

ru". Applying Lemma 4.1(iii)-(iv) we obtain (ii) on e�:

kÄ"k
L

1
s


�

�.g"/�1
�

�

L1 krgk
L

1
s

 o
�

"2s�1
�

;

and

krÄ"k
L

1
s


�

�r.g"/�1
�

�

L
2
s

krg"k
L

2
s

C
�

�.g"/�1
�

�

L1 kr2g"k
L

1
s

 o
�

"2s�2
�

:

Interpolating these two estimates as in Corollar 2.3 yields (iii).

Our next statements regard the asymptotic behavior of det II", which enjoys a

better than expected convergence due to its almost Jacobian determinant structure,

and of curl II":

Proposition 4.4. Let �;e�; u be as in Lemma 4:1 with s � 1=2. Then for all

� 2 C1
c .e�/

ˇ̌
ˇ̌
Z

e�
.det II"/�

ˇ̌
ˇ̌  o

�

"2s�1
�

kr�k
L

1
1�s .e�/

C o.1/k�kL1.e�/:

Proof. By [22, Equations (2.1.2)] and the Gauss equation [22, Equations (2.1.7)]

we have on e�:

det II" D R2121.g
"/ D g"

1m

�

@1Ä
m;"
22 � @2Ä

m;"
21 C Ä

m;"
1s Ä

s;"
22 � Ä

m;"
2s Ä

s;"
21

�

D @1

�

g"
1mÄ

m;"
22

�

� @2

�

g"
1mÄ

m;"
21

�

CO
�

jÄ"j2
�

D 2@12g
"
12 � @11g

"
22 � @22g

"
11 CO

�

jÄ"j2
�

D �curlT curl g" CO
�

jÄ"j2
�

:

Hence, using the embedding of W 2s�1; 1
s .R2/ into L2.R2/ and Corollary 4.3(iii)

for s �
1
2

we obtain:

ˇ̌
ˇ̌
Z

e�
.det II"/�

ˇ̌
ˇ̌ -

Z

e�

ˇ̌
ˇ.curlT curl g"/�

ˇ̌
ˇC kÄ"k2

L2.e�/
k�kL1.e�/

-

ˇ̌
ˇ̌
Z

e�
.curl g"/ � r?�

ˇ̌
ˇ̌C kÄ"k2

W 2s�1; 1
s .e�/

k�kL1.e�/

- krg"k
L

1
s .e�/

kr�k
L

1
1�s .e�/

C o.1/k�kL1.e�/;

which concludes the proof in view of Lemma 4.1(iii).
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Proposition 4.5. Let �;e�; u be as in Lemma 4:1 with 2
3

 s < 1. Then

�

�@2II"
i1 � @1II"

i2

�

�

L1.e�/
 o.1/ for i 2 f1; 2g: (4.3)

Remark 4.6. An L1 estimate for curl II" is not enough for a Hodge decomposition

for II", hence a better than L1 estimate is crucial for completing the same proof as

in [13] for our main theorem. We will hence adapt a new approach as explained in

the following section.

Proof. The Codazzi-Mainardi equations [22, Equation (2.1.6)] for the immersion

u" read

@2II"
i1 � @1II"

i2 D II"
l1Ä

l;"
i2 � II"

l2Ä
l;"
i1 :

Now since s �
2
3

, 1
2
< s0 WD 2�s

2
 s, the embedding

W s; 2
s .R2/ ,! W s0; 2

s0

implies that u 2 I 1Cs0; 2
s0 .�;R3/. Applying Corollary 4.3(i) for s and Corol-

lary 4.3(ii) for s0 yields, for any � 2 C1
c .�/,

�

�@2II"
i1 � @1II"

i2

�

�

L1.e�/
-kII"k

L
2
s .e�/

kÄ"k
L

1
s0 .e�/

o
�

"s�1
�

o
⇣

"2s0
�1

⌘

Do.1/:

5. Second fundamental form for WWW 111CCCsss;;;222===sss isometric immersions
for 111

222
<<< sss <<< 111

Given an isometric immersion u 2 I 1Cs; 2
s

loc .�;R3/ and a bounded smooth domain
e� b �, with s > 1=2, we shall define a weak notion of the second fundamental

form II as a distribution in PW s�1; 2
s .e�; gl.2//. In order to apply the results of

Section 4, note that for a ı > 0 small enough e� b e�ı b e�2ı b � and u 2
I 1Cs; 2

s .e�2ı ;R
3/, where e�ı WD fx 2 R

2 W dist.x;e�/ < ıg:
The second fundamental form of a given immersion u W e� ! R

3 in the chart

defined by u itself is expressed by the product

IIij WD @iju � En; (5.1)

where for all x 2 e�, En.x/ is the unit normal to the immersed surface u.e�) at

u.x/. Under our regularity assumptions, and since by the isometry condition for

a.e. x 2 e� we have j@iu.x/j D 1, we have ru 2 L1.e�;R3⇥2/, and so the unit

normal

En WD @1u ^ @2u belongs to W s; 2
s \ L1.e�/: (5.2)

On the other hand, @iju 2 W s�1; 2
s

loc .e�;R3/, and could be a mere distribution. How-

ever, the existence of the distributional product IIij under these regularity assump-

tions is justified by Proposition 2.5. To summarize we state the following defini-

tion:
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Definition 5.1. Let � ⇢ R
2 be an open set and let u 2 I

1Cs; 2
s

loc .�;R3/ with 1
2
<

s < 1. Then, through Proposition 2.5, we define its (weak) second fundamental

form

II D II.u/ WD ŒIIij çi;j 2f1;2g 2 W s�1; 2
s

loc

�

�; gl.2/
�

;

by (5.1), namely,

IIij Œ�ç WD
3X

kD1

⇣

Enk@iju
k
⌘

Œ�ç

for all � 2 W 1�s; 2
2�s

0 .�/ with supp � b �.

Proposition 5.2. Let � ⇢ R
2 be an open set, 2

3
 s < 1 and u 2 I 1Cs; 2

s

loc .�;R3/.

For all bounded smooth domain e� b � the following holds.

(i) lim
"!0

kEn"
� Enk

W s; 2
s .e�/

D 0;

(ii) lim
"!0

kII"
� IIk

PW s�1; 2
s .e�/

D 0.

Proof. Note that for any subsequence, we can always find a subsequence of ru"

converging point-wise to ru and that ru" are uniformlyL1-bounded in ". Hence,

a straightforward norm calculation and dominated convergence theorem implies (i).

To show (ii), we write

II"
ij � IIij D

3X

kD1

En";k@iju
k
" � Enk@iju

k D
3X

kD1

En";k
⇣

@iju
k
" � @iju

k
⌘

C
3X

kD1

⇣

En";k
� Enk

⌘

@iju
k;

where En" D .En";1; En";2; En";3/. Now in view of (i), the convergence of each summing

term in the PW s�1; 2
s .e�/ norm follows in order from the first and second parts of

Corollary 2.6.

An immediate conclusion of Proposition 4.5 is the following statement regard-

ing the second fundamental form of u when s �
2
3

:

Lemma 5.3. Let 2
3

 s < 1 and u 2 I
1Cs; 2

s

loc .�;R3/. Assume that e� b � is a

simply connected bounded smooth domain and let II be as in Definition 5:1. Then

there exists f 2 W s; 2
s .e�;R2/ such that II D rf in the sense of distributions.

Proof. An immediate consequence of Proposition 4.5 is that II satisfies the Codazzi

equations in the sense of distributions, i.e., curl II D 0:

@2II11 � @1II12 D 0 and @2II21 � @1II22 D 0 in D
0.e�ı/: (5.3)
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Let us consider a direct regularisation of the second fundamental form II. With II

defined as in Definition 5.1, we set

II" WD II ⇤ '" 2 C1
�e�ı I gl.2/

�

: (5.4)

Here II" ! II in W s�1; 2
s .e�ı/ as " ! 0. The order of convolution and differentia-

tion can be interchanged, so II" satisfies (5.3) in D0.e�/ for " < ı. Therefore, since
e� is simply-connected, there exists f " 2 C1.�;R2/ such that II" D rf ". By

standard elliptic regularity theory we may choose f " to be convergent to some f

in W s; 2
s . Since II" converges only in a very weak norm, and we must be careful

that the traces of the solutions are well defined on the boundary, hereby we justify

these estimates.

In order to find the sequence f ", we first solve for
8
<
:

ÅeII" D II" in e�
curleII" D @⌫

eII � ⌧ � @⌧
eII � ⌫ D 0 on @e�

eII � ⌫ D 0 on @e�
where ⌫ and ⌧ WD ⌫? are respectively the outward normal and tangential fields to

@e�. Note that the above system is a basic elliptic system discussed at length in

the literature of elliptic systems for differential forms, see, e.g., [47, Lemma 1.6.5].

However, from another point of view, if we flatten the boundary the Dirichlet and

Neumann boundary conditions decouple and so there is no problem in directly

applying the theory of elliptic equations. By [44, Theorem 3.4.3/3(i)], eII" satisfies

the estimate

keII"k
W 1Cs; 2

s .e�/
- kII"k

W
s�1; 2

s .e�/

 C:

Taking the curl of the equation, we note that curleII" is harmonic and vanishes on

the boundary, hence curleII" ⌘ 0 in e�. Now we use the identity

rdiveII" � ÅeII" D �r?curleII";

to deduce that f " WD diveII" satisfies rf " D II" with the estimate

kf "k
W s; 2

s .e�/
- keII"k

W 1Cs; 2
s .e�/

- 1:

Therefore f " converges in the sense of distributions to some f 2 W s; 2
s .e�/ satis-

fying rf D II.

6. Developability of components and ccc111;;; sss
222 -regularity

Theorem 6.1. Let � ⇢ R
2 be a bounded smooth domain and assume that u 2

I
1Cs; 2

s

loc .�;R3/ with 2
3

 s < 1. Then, for each m 2 f1; 2; 3g, the component um

satisfies

Jac.rum/ ⌘ 0 in D
0.�/

and as a consequence it is c1; s
2 -regular and developable by Theorem 1:8.
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Proof. The argument follows closely that of [13, Theorem 3]. Let us fix m 2
f1; 2; 3g and set

g WD rum 2 W s; 2
s

loc

�

�;R2
�

:

Let e� b �. For ı > 0 small enough we have u 2 I 1Cs; 2
s .e�ı ;R

3/. For " < ı
we let u" be the mollified sequence of immersions with the properties discussed in

Section 4. Note that by [22, Equation (2.1.3)] we have

@iju
m
" D Ä

k;"
ij @ku

m
" C II"

ij En";m: (6.1)

Obviously g" D rum
" and hence, for all � 2 C1

c .e�/,
Z

e�
Jac.g"/� D

Z

e�
det.r2um

" /� D
Z

�

det.Ä"
� rum

" C II" En";m/�

D
Z

�

det.II"/.En";m/2� C
Z

�

det
�

Ä"
� rum

"

�

�

C
Z

�

En";mII" W cof
�

Ä"
� rum

"

�

�

D I "
1 C I "

2 C I "
3 :

We claim that as " ! 0 the limit of each term I "
j is 0, which will complete the proof

as Jac.g/ is the distributional limit of Jac.g"/ [36, Lemma 1.3]. By Proposition 4.4

jI "
1 jo

�

"2s�1
�

✓

k.r En";m/�k
L

1
1�s .e�/

Ckr�k
L

1
1�s .e�/

◆

Co.1/k.En";m/2�kL1.e�/

 o
�

"2s�1
�

kr En";mk
L

1
1�s .e�/

k�kL1.e�/

C o
�

"2s�1
�

kr�k
L

1
1�s .e�/

C o.1/k�kL1.e�/:

However note for s �
2
3

the embedding

kru"k
W

2.1�s/; 1
1�s .e�/

- kru"k
W s; 2

s .e�/
- 1:

Therefore applying Lemma 2.1(ii) to ru" and in view of (4.1) we obtain

kr En";mk
L

1
1�s .e�/

 o
⇣

"2.1�s/�1
⌘

 o
�

"1�2s
�

:

We conclude for I "
1 that

ˇ̌
I "

1

ˇ̌
 o.1/k�kL1.e�/ C o

�

"2s�1
�

kr�k
L

1
1�s .e�/

! 0:

Now, regarding I "
2 observe that ru" is uniformly bounded inL1 and as previously

observed we can obtain by the embedding of W 2s�1; 1
s into L2, through Corol-

lary 4.3(iii): ˇ̌
I "

2

ˇ̌
- kÄ"k2

L2.e�/
k�kL1.e�/ D o.1/:
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Finally, to finish the proof of our claim, we estimate once again similar as in Propo-

sition 4.5

jI "
3 j-

Z

e�
jÄ"jjII"jj�j  kII"k

L
2
s .e�/

kÄ"k
L

1
s0 .e�/

k�kL1.e�/ o.1/; for s�
2

3
:

7. Developability

We already know by Theorem 6.1 that each component of u is independently de-

velopable and has the required regularity. What remains to be shown is that the

constancy segments and regions of the developability are the same for the three

components.

Let e� be any smooth bounded domain supported in � and let f be defined as

in Lemma 5.3. We first claim that any such f is developable.

Proposition 7.1. Let �;e�; s; u; f be as in Lemma 5:3. Then Jac.f / D 0 in

D0.e�/. In particular, since rf D II is symmetric, the conclusions of Theorem 1:8
hold true for f .

Proof. We will once again use equation (6.1), but this time we will directly pass to

the limit as " ! 0. Applying Corollary 2.8 in view of Proposition 5.2, we note that

II"
ij En";m

�! IIij Enm in D
0.e�/ as " ! 0:

Also, Corollary 4.3(iii) implies that the first term in the right-hand side of (6.1)

converges to 0 in D0.e�/. Since @iju" converges to @iju, we conclude with the

following identity for any pair .i; j / 2 f1; 2g2:

@iju
m D IIij Enm:

Letting gm WD rum, this identity reads

rgm D EnmII D Enmrf: (7.1)

Note that f; gm 2 W s; 2
s .e�/ and En 2 W s; 2

s \L1.e�/. Hence Theorem 1.10 yields

that for any � 2 C1
c .e�/

Jac.gm/Œ�ç D Jac.f /
⇥

.Enm/2�
⇤

:

On the other hand by Theorem 6.1 we have Jac.gm/ D 0, therefore for all � 2
C1

c .e�/

Jac.f /Œ�ç D Jac.f /

"
3X

mD1

.Enm/2�

#

D
3X

mD1

Jac.f /
⇥

.Enm/2�
⇤

D
3X

mD1

Jac.gm/Œ�ç D 0:
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We complete the proof of Theorem 1.1. We have shown that f is contin-

uous, and for any x 2 e�, it is either constant around x, or it is constant along

the connected component of the intersection of a line passing through x with e�.

By [13, Corollary 2.10 and Lemma 2.11], for any x 2 e�, there exists a diskBx 3 x
in e� and Lipschitz unit vector field E⌘ on Bx such that for all  2 C1

c .Bx/

.rf / � Œ E⌘ç D
Z

Bx

f div. E⌘/ D 0:

Note that the vector field E⌘ determines the constancy directions for f . We claim

that for each m and for all  2 C1
c .Bx/

Z

Bx

div. E⌘/rum D 0: (7.2)

We remark that proving this claim and applying [13, Lemma 2.11 and Proposi-

tion 2.1] yields the desired simultaneous constancy of rum along the segments

defined by E⌘ and completes the proof of our main theorem.

To prove (7.2), first note that by Proposition 5.2-(i) and Corollary 2.6 we obtain

lim
"!0

kEn";mrf � Enmrf k
PW s�1; 2

s .e�/
D 0;

which implies through (2.14)

.Enmrf / � Œ E⌘ç D lim
"!0

.En";mrf / � Œ E⌘ç D lim
"!0

rf � Œ.En";m/ E⌘ç D 0:

Combined with (7.1) we obtain that for m D 1; 2; 3

Z

Bx

div. E⌘/gm D .rgm/ � Œ E⌘ç D .Enmrf / � Œ E⌘ç D 0;

which establishes (7.2) as claimed.

8. The distributional Jacobian determinant behaves like a determinant

In this section we will prove Theorem 1.10. We first gather some known prelimi-

nary results regarding the statement of the theorem.

8.1. Preliminaries

The following useful lemmas are well-known facts. They can be derived via a

tedious argument based on Littlewood-Paley theory and paraproducts [48] which

extends an earlier work on the limiting case s D 1 by [9]. Much more elegant

proofs can be achieved following [7] based on the harmonic extension, see also [4],

and we refer to [34] for generalizations.
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Lemma 8.1 (Distributional Jacobian). Let n � 2, � ⇢ R
n be a bounded

smooth domain or � D R
n. Assume that n�1

n
< s < 1, f 2 W s; n

s .�;Rn/,

 2 W .1�s/n; 1
1�s

0 .�/. Then

Jac.f /Œ ç WD lim
k!1

Jac.fk/Œ kç

is well defined as a distribution in W n.s�1/; 1
s , where fk 2 C1.�/ and  k 2

C1
c .�/ are any two sequences of functions converging to f and  in their respec-

tive norms.

See, e.g., [36, Lemma 1.3] for a proof.

Lemma 8.2 ([34, Theorem 3.2]). Let n � 1, �; g 2 W
n

nC1
;nC1.Rn/ and � 2

C1
c .Rn;

Vn�2
.Rn//. Then

ˇ̌
ˇ̌
Z

Rn

�dg ^ d�

ˇ̌
ˇ̌ - Œ�ç

W
n

nC1
;nC1

.Rn/
Œgç

W
n

nC1
;nC1

.Rn/
Œ�ç

W
2

nC1
;

nC1
n�1 .Rn/

:

In particular, by the Stokes theorem for differential forms, and by choosing suitable

test forms � we have the following estimates for the components:

kd.�dg/k
PW

�
2

nC1
;

nC1
2 .Rn/

D kd.�dg/k⇣
PW

2
nC1

;
nC1
n�1 .Rn/

⌘0

- Œ�ç
W

n
nC1

;nC1
.Rn/

Œgç
W

n
nC1

;nC1
.Rn/

:

8.2. A determinant estimate

Proposition 8.3. For any k 2 f0; : : : ; ng and � 2 C1
c .Rn/, scalar functions

aj 2 W n
nC1

;nC1.Rn/ and 1-forms ˇj 2 W n�1
nC1

; nC1
2 .Rn;

V1
.Rn//,

ˇ̌
ˇ̌
Z

Rn

.da1 ^ : : : ^ dak ^ ˇkC1 ^ : : : ^ ˇn/�

ˇ̌
ˇ̌

-
⇣

k�kL1 C Œ�ç
W

n
nC1

;nC1

⌘

kY

j D1

Œaj ç
W

n
nC1

;nC1

nY

j DkC1

Œˇj ç
W

n�1
nC1

;
nC1

2
:

Remark 8.4. The proposition is indeed a determinant estimate:

ˇ̌
ˇ̌
Z

Rn

det.ra1; : : : ;rak; BkC1; : : : ; Bn/�

ˇ̌
ˇ̌

-
⇣

k�kL1 C Œ�ç
W

n
nC1

;nC1

⌘

kY

j D1

Œaj ç
W

n
nC1

;nC1

nY

j DkC1

ŒBj ç
W

n�1
nC1

;
nC1

2

for scalar functions and vector fields of appropriate regularity.
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Proof. This can be proven by the tedious arguments in [48] using Littlewood-Paley

decomposition and paraproducts. Instead we follow an argument inspired by [7],

with the adaptations from [34] (see also [28]). Let ah, ˇh, �h be the harmonic

extensions of the corresponding forms or vectors to R
nC1
C .

Z

Rn

.da1 ^ : : : ^ dak ^ ˇkC1 ^ : : : ^ ˇn/�

D
Z

R
nC1
C

d
⇣

.dah
1 ^ : : : ^ dah

k ^ ˇh
kC1 ^ : : : ^ ˇh

n/�
h
⌘

:

Since dd D 0 we find
ˇ̌
ˇ̌
Z

Rn

.da1 ^ : : : dak ^ ˇkC1 ^ : : : ^ ˇn/�

ˇ̌
ˇ̌

-

nX

`DkC1

Z

R
nC1
C

ˇ̌
ˇDah

1

ˇ̌
ˇ � : : : �

ˇ̌
ˇDah

k

ˇ̌
ˇ
ˇ̌
ˇˇh

kC1

ˇ̌
ˇ : : :

ˇ̌
ˇDˇh

`

ˇ̌
ˇ : : :

ˇ̌
ˇˇh

n

ˇ̌
ˇ
ˇ̌
ˇ�h

ˇ̌
ˇ

C
Z

R
nC1
C

ˇ̌
ˇDah

1

ˇ̌
ˇ � : : : �

ˇ̌
ˇDah

k

ˇ̌
ˇ
ˇ̌
ˇˇh

kC1

ˇ̌
ˇ : : :

ˇ̌
ˇˇh

n

ˇ̌
ˇ
ˇ̌
ˇD�h

ˇ̌
ˇ :

(8.1)

Recall that for the Hardy-Littlewood maximal function M

ˇ̌
ˇf h.x; t/

ˇ̌
ˇ - Mf .x/; (8.2)

and for s 2 .0; 1/,

Œf çW s;p ⇡

✓Z

Rn

✓Z 1

0

jt1�
1
p �sDf hjpdt

◆

dx

◆
1
p

:

See, e.g., [28, 34]. Therefore from the Hölder inequality and Sobolev embeddings

we obtain, for the first terms in (8.1),
Z

R
nC1
C

ˇ̌
ˇDah

1

ˇ̌
ˇ � : : : �

ˇ̌
ˇDah

k

ˇ̌
ˇ
ˇ̌
ˇˇh

kC1

ˇ̌
ˇ : : :

ˇ̌
ˇDˇh

`

ˇ̌
ˇ : : :

ˇ̌
ˇˇh

n

ˇ̌
ˇ
ˇ̌
ˇ�h

ˇ̌
ˇ

-kM�kL1

 
kY

lD1

kDah
l k

LnC1.R
nC1
C

/

!

⇥

�

�

�
ˇh

kC1

�

�

�

LnC1.R
nC1
C

/
: : :

�

�

�
Dˇh

l

�

�

�

L
nC1

2 .R
nC1
C

/
: : :

�

�

�
ˇh

n

�

�

�

LnC1.R
nC1
C

/

-kM�kL1

 
kY

lD1

Œah
l çW 1;nC1

!h
ˇh

kC1

i
W

1;
nC1

2
: : :
h
ˇh

l

i
W

1;
nC1

2
: : :
h
ˇh

n

i
W

1;
nC1

2

-kM�kL1

 
kY

lD1

Œal ç
W

n
nC1

;nC1

!
nY

lDkC1

Œˇl ç
W

n�1
nC1

;
nC1

2
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which is bounded as required in view of (8.2). The last term in (8.1) is estimated

in the same manner through a Hölder estimate:

Z

R
nC1
C

ˇ̌
ˇDah

1

ˇ̌
ˇ � : : : �

ˇ̌
ˇDah

k

ˇ̌
ˇ
ˇ̌
ˇˇh

kC1

ˇ̌
ˇ : : :

ˇ̌
ˇˇh

n

ˇ̌
ˇ
ˇ̌
ˇD�h

ˇ̌
ˇ

-
�

�

�
D�h

�

�

�

LnC1.R
nC1
C

/

kY

lD1

�

�

�
Dah

l

�

�

�

LnC1.R
nC1
C

/

nY

lDkC1

�

�

�
ˇh

l

�

�

�

LnC1.R
nC1
C

/

-Œ�ç
W

n
nC1

;nC1

kY

lD1

Œal ç
W

n
nC1

;nC1

nY

lDkC1

Œˇl ç
W

n�1
nC1

;
nC1

2
:

8.3. Hodge decomposition

Proposition 8.5. Assumethat�2W n
nC1

;nC1\L1.Rn/andg2W n
nC1

;nC1.RnIRn/.
Then we can decompose

�dg D daC ˇ;

with

Œaç
W

n
nC1

;nC1
.Rn/

-
⇣

k�kL1 C Œ�ç
W

n
nC1

;nC1
.Rn/

⌘

Œgç
W

n
nC1

;nC1
.Rn/

;

Œˇç
W

n�1
nC1

;
nC1

2 .Rn/
- Œ�ç

W
n

nC1
;nC1

.Rn/
Œgç

W
n

nC1
;nC1

.Rn/
:

Proof. On R
n we let ! WD Å�1

Rn.�dg/. Hence

ÅRn! ⌘ .dd⇤ C d⇤d/! D �dg:

Set a WD d⇤! and ˇ WD d⇤d!. Observe that

ÅRnd! D dÅRn! D d.�dg/I

that is,

ˇ D d⇤d! D d⇤Å�1
Rn .d.�dg// :

Therefore in view of a component-wise application of (2.4) and Lemma 8.2 we

have

Œˇç
W

n�1
nC1

;
nC1

2 .Rn/
- kd.�dg/k

PW
n�1
nC1

�1;
nC1

2 .Rn/

D kd.�dg/k
PW

�
2

nC1
;

nC1
2 .Rn/

- Œ�ç
W

n
nC1

;nC1
.Rn/

Œgç
W

n
nC1

;nC1
.Rn/

:

Moreover,

ÅRna D d⇤ÅRn! D d⇤.�dg/;
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so again

a D Å�1
Rnd

⇤.�dg/:

Using (2.4) as before and Proposition 2.5, we obtain as claimed

Œaç
W

n
nC1

;nC1
.Rn/

- k�dgk
PW

n
nC1

�1;nC1
.Rn/

-
⇣

k�kL1 C Œ�ç
W

n
nC1

;nC1
.Rn/

⌘

Œgç
W

n
nC1

;nC1
.Rn/

:

Proposition 8.6. Assume that � 2 W n
nC1

;nC1 \ L1.Rn/ and

f 2 W n
nC1

;nC1.RnIRn/:

Then we can decompose

�"df" � .�df /" D da" C ˇ"

with

lim
"!0

Œa"ç
W

n
nC1

;nC1
.Rn/

D 0;

lim
"!0

Œˇ"ç
W

n�1
nC1

;
nC1

2 .Rn/
D 0:

Proof. Our arguments are similar to those for Proposition 8.5. First we consider

�

�d
�

�"df" � .�df /"
�
�

�

PW
�

2
nC1

;
nC1

2 .Rn/


�

�d
�

�"df" � �"df
��

�

PW
�

2
nC1

;
nC1

2 .Rn/
C

�

�d
�

�"df � �df
��

�

PW
�

2
nC1

;
nC1

2 .Rn/

C
�

�d
�

�df � .�df /"
��

�

PW
�

2
nC1

;
nC1

2 .Rn/

DWI" C II" C III":

In view of Lemma 8.2, we find that

I" C II" D
�

�d
�

�"d.f" � f /
��

�

PW
�

2
nC1

;
nC1

2 .Rn/

C
�

�d
�

.�" � �/df
�
�

�

PW
�

2
nC1

;
nC1

2 .Rn/

- Œ�"ç
W

n
nC1

;nC1
.Rn/

Œf" � f ç
W

n
nC1

;nC1
.Rn/

C Œ�" � �ç
W

n
nC1

;nC1
.Rn/

Œf ç
W

n
nC1

;nC1
.Rn/

"!0
���! 0:

In addition, we use Lemma 8.2 once again to deduce that

d.�df / 2 PW �
2

nC1
; nC1

2 .Rn/:
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Thus the convolution converges:

III" D
�

�

�
d
�

�df
�

�

⇣

d
�

�df
�

⌘

"

�

�

�

PW
�

2
nC1

;
nC1

2 .Rn/

"!0
���! 0:

Putting together the convergence results for I", II", and III", we arrive at

lim
"!0

�

�

�
d
⇣

�"df" �
�

�df
�

"

⌘
�

�

�

PW
�

2
nC1

;
nC1

2 .Rn/
D 0: (8.3)

Now we proceed as in Proposition 8.5. We first solve on R
n:

ÅRn!"
⌘ .dd⇤ C d⇤d/!" D �"df" � .�df /";

and then set a" WD d⇤!" and ˇ" WD d⇤d!". Observe that

ÅRnd!" D dÅRn!" D d.�"df" � .�df /"/:

That is,

ˇ" D d⇤d!" D d⇤Å�1
Rn

�

d
�

�"df" � .�df /"
��

:

So, with (2.4) and (8.3) we find that

Œˇ"ç
W

n�1
nC1

;
nC1

2 .Rn/
- kd.�"df" � .�df /"/k

PW
n�1
nC1

�1;
nC1

2 .Rn/

D
�

�d
�

�"df" � .�df
�

"
/
�

�

PW
�

2
nC1

;
nC1

2 .Rn/

"!0
���! 0:

Moreover, we have

ÅRna" D d⇤ÅRn!" D d⇤.�"df" � .�df /"/;

so

a" D Å�1
Rnd

⇤.�"df" � .�df /"/:

Once again (2.4) yields

Œa"ç
W

n
nC1

;nC1
.Rn/

- k�"df" � .�df /"k PW
n

nC1
�1;nC1

.Rn/

- k�"df" � �df k
PW

n
nC1

�1;nC1
.Rn/

C k.�df /" � �df k
PW

n
nC1

�1;nC1
.Rn/

:

We will use Proposition 2.5 repeatedly throughout the rest of the proof. Observe

that �df 2 PW n
nC1

�1;nC1.Rn/, so

k.�df /" � �df k
PW

n
nC1

�1;nC1
.Rn/

"!0
���! 0:
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On the other hand,

k�"df" � �df k
PW

n
nC1

�1;nC1
.Rn/

 k.�" � �/df çk
PW

n
nC1

�1;nC1
.Rn/

C k�"d.f" � f /k
PW

n
nC1

�1;nC1
.Rn/

:

The former term tends to zero as " ! 0. For the latter term, we have

k�"d.f" � f /k
PW

n
nC1

�1;nC1
.Rn/

-
⇣

k�"kL1 C Œ�"ç
W

n
nC1

;nC1
.Rn/

⌘

Œf" � f ç
W

n
nC1

;nC1
.Rn/

;

which again tends to zero.

8.4. Proof of Theorem 1.10

Proof. Fix � 2 C1
c .�/. We want to show that

Jac.f /Œ�ç � Jac.g/Œ�n�ç D 0:

We first boundedly extend g;� on the whole R
n, keeping the same names for con-

venience. We define F WD �rg as a distribution in R
n, which is well defined by

Proposition 2.5. Note that for all ⌘ 2 C1
c .�/, extending ⌘ by 0 outside � to Q⌘, we

obtain by (1.1) in view of (2.16):

F Œ Q⌘ç D rf Œ⌘ç:

Fix an open set e� b � containing supp �. For " small enough, F" WD F ⇤ '"

coincides with rf" on e� and hence applying Lemma 8.1 we have

Jac.f /Œ�ç D lim
"!0

Z

�

det.rf"/� D lim
"!0

Z

Rn

det.F"/�;

where � is extended by 0 outside � to R
n. Also, mollifying g and � and once

again applying Lemma 8.1 we obtain

Jac.g/Œ�n�ç D lim
"!0

Z

�

det.rg"/�
n
" � D lim

"!0

Z

Rn

det.rg"/�
n
" �;

since �n
" � ! �n� in W

.1�s/n; 1
1�s

00 .�/. Therefore we have

Jac.f /Œ�ç � Jac.g/Œ�n�ç

D lim
"!1

Z

Rn

.det.F"/ � det.�"rg"//�

D lim
"!1

Z

Rn

⇣

det..�rg/"/ � det.�"rg"/
⌘

�

D
nX

j D1

Z

Rn

⇣

�"dg
1
" ^ � � � ^ �"dg

j �1
" ^

h
�

�dgj
�

"
� �"dg

j
"

i
^
�

�dgj C1
�

"

^ � � � ^ .�dgn/"

⌘

�:
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In view of the Sobolev embedding

W s; s
n .Rn/ ,! W

n
nC1

;nC1.Rn/;

for s �
n

nC1
, and the fact that the distributional identity in the bigger space im-

plies the one in the smaller space, we can assume that s D n
nC1

. For each entry of

the form .�dgi /" and �"dg
i
", we shall apply Hodge decomposition as in Proposi-

tion 8.5. To the difference term .�dgj /" � �"dg
j
" we apply Hodge decomposition

as in Proposition 8.6. We then obtain terms of the form:Z

Rn

�

da"
1 ^ : : : ^ da"

k ^ ˇ"
kC1 ^ : : : ^ ˇ"

n

�

�;

where each a"
j and ˇ"

j is bounded in its corresponding seminorm. Note that, fixing

", the estimates in Proposition 8.3 are still valid for the above integral since by

construction we can approximate each a"
j (respectively ˇ"

j ) in its seminorm by a

sequence of scalar functions in W
n

nC1
;nC1.Rn/ (respectively 1-forms in

W
n�1
nC1

; nC1
2

 
R

n;

1̂

.Rn/

!
:

Therefore, to conclude, we use Proposition 8.3: one of the terms a"
j or one of ˇ"

j
converges to zero (since it comes from the difference term), in the corresponding

norm, thanks to Proposition 8.6, while the other terms are bounded by Proposi-

tion 8.5. So we obtain the claim by taking " ! 0.

Appendix A. A proof of Proposition 7.1 for sss >>> 222===333

As a tangential note, in this section we will sketch how a slightly weaker statement

than Proposition 7.1 can be obtained without using Theorem 1.10. Hence, this

provides another proof of Theorem 1.1, but only for s > 2=3. Hereby, we would

like to highlight the importance of Theorem 1.10 in completing our proof for the

critical case s D 2=3.

We begin with the following observation. As a corollary of the gained regu-

larity u 2 c0; s
2 in Theorem 6.1, we can improve some of the estimates of previous

sections and prove:

Proposition A.1. Let � ⇢ R
2 be a bounded smooth domain, 2

3
 s < 1 and

u 2 I 1Cs; 2
s .�;R3/. Let ✓ 2 Œ0; 1ç. For all e� b �

(i) kII"k
L

2
s✓ .e�/

 o."
s
2 .1C✓/�1/;

(ii) kÄ"k
L

1
s✓ .e�/

 o."s.1C✓/�1/.

Proof. The estimates are obtained by interpolating the estimates in Corollary 4.3

with a new set of estimates obtained through c0; s
2 regularity in the same manner;

see [13, Equations (4.4) and (4.8)]. We leave the details to the reader.
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An immediate corollary is the following better than L1-estimate for curl II".

As we previously explained in Remark 4.6, this is the missing link for following

the steps of [13] in proving our main theorem. We can now obtain this estimate

only for the super-critical values of s > 2=3.

Corollary A.2. If s > 2
3

, there exists r > 1 such that

lim
"!0

kcurl II"kLr .e�/ D 0:

Proof. Letting
1

r
D s✓

2
C s✓ D 3s

2
✓;

we have

kcurl II"kLr .e�/  kIIk
L

2
s✓

kÄ"k
L

1
s✓

 o
⇣

"
3s
2 .1C✓/�2

⌘

:

To complete the proof we need to show that there is ✓ 2 .0; 1/ such that

r > 1 and
3s

2
.1C ✓/ � 2 � 0:

These are respectively equivalent to

✓ <
2

3s
and ✓ �

4

3s
� 1:

But if 2
3
< s < 1 we have

0 <
1

3
<
4

3s
� 1 <

2

3s
< 1;

and so we can choose any ✓ 2 Œ 4
3s

� 1; 2
3s
/.

Once the Lr vanishing estimate for curl II" is obtained, and having the usual

elliptic estimates at hand, one can proceed as in [13, Proposition 4.5] to show that

Jac.f / ⌘ 0 as required by Proposition 7.1. This completes the proof of Theo-

rem 1.1 but only for s > 2=3 as in Section 7. Once again, we will leave the details

to the interested reader.

Appendix B. Fractional absolute continuity

In proving Theorem 1.8, we used the following result, which follows by an embed-

ding theorem from a known result for Bessel-potential spaces [23, Theorem 1.1].

Theorem B.1. Let u 2 W s;p.R;Rm/ with s 2 .0; 1/, p 2 .1;1/ such that and

sp>1 and let I be a finite interval. Then the Hausdorff dimension H-dim of u⇤.I /
is at most 1

s
for any interval I ⇢ R. Here u⇤ denotes the continuous representative

of u.
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Indeed, following [1, Theorem 7.63 (g)], we note that for any p > 1 and " > 0,

W s;p.Rn/ ,! Ls�";p.Rn/:

Choosing " > 0 such that p.s � "/ � 1 > 0, and applying [23, Theorem 1.1], we

obtain Theorem B.1. (Note the notational disparity with [23], which uses W s;p for

the Bessel-potential space H s
p D Ls;p .)

Remark B.2. The typical space-filling curves provide counterexamples to Theo-

rem B.1 if sp < 1. E.g., the Peano-curve f W I ! R
2 that fills a square is of class

C 1=2, and thus belongs to W s;2 for any s < 1
2

— however H2
1.f .I // ¤ 0.

The case sp D 1 is quite curious. It is known that for u 2 W 1;1.I;RN /, if u⇤

denotes its continuous representative thenH1.u⇤.I // < 1. This is also based on the

absolute continuity of the integral, however, in the fractional case s < 1 the condition

sp D 1 does not guarantee continuity in one dimension. Indeed, it is unclear to us if

there is always a representative u⇤ for u2W s; 1
s .R;RN / such thatH

1
s .u⇤.I //<1.

We would like to note that Theorem B.1 also follows from a notion reminiscent

of absolute continuity for fractional Sobolev maps. It is well known that Theorem B.1

holds for s D 1 and p > 1, which is a consequence of absolute continuity ofW 1;1-

maps. Also it is known from the area formula and the Luzin property [21, Lemma 21]

that the continuous representative of a map u 2 W 1;p.Rn;Rm/ form � n � 2
and p > n has image with Hp.u.Rn// D 0. In this sense, Theorem B.1 is a natural

extension to maps with one-dimensional domain in fractional Sobolev spaces. In this

appendix we will further discuss this approach. The authors do not know of any

instance in the literature where the following observations are made.

One of the basic Sobolev-space results is that the continuous representative

f ⇤ of a function f 2 W 1;1 is absolutely continuous, that is for any " > 0 there

exists ı > 0 such that whenever we have a pairwise disjoint collection of intervals

.Ii /
1
iD1 with X

i

jIi j < ı

then X

i

jf ⇤.x/ � f ⇤.y/j < ":

This follows easily from the fundamental theorem of calculus (which holds for the

continuous representative f ⇤)

f ⇤.a/ � f ⇤.b/ D
Z b

a

f 0.z/ dz

and the absolute continuity of the integral, which says that if g 2 L1.�/ then for

any " > 0 there exists ı > 0 such that

kgkL1.U / < " 8U ⇢ � measurable W jU j < ı:
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By a covering argument, it is also easy to show that an absolutely continuous func-

tion f W I ⇢ R ! R
N must have a 1-dimensional finite Hausdorff content

H1
1.f .I // < 1, where

H
p
1.A/ WD inf

(
X

i

.ri /
p W there is a cover of A ⇢

[

i

B.ri /

with balls B.ri / of radius ri > 0

)
:

The underlying reason for Theorem B.1 is that there is a fractional generalization

of a sort of absolute continuity to fractional Sobolev spaces W s;p.R/ as long as

sp > 1. Observe that for s < 1 there are discontinuous functions in W s;p with

sp D 1.

Definition B.3 ((t,p)-absolute continuity). Let t � 0 and p 2 .0;1/. A contin-

uous function f W R ! R
N is called .t; p/-absolutely continuous if the following

holds. For any ✏ > 0 there exists a ı > 0 such that whenever we have a sequence

of disjoint intervals .Ii /
1
iD1 with

X

i

jIi j < ı

then X

i

sup
x¤y2Ii

jf .x/ � f .y/j
jx � yjt

p

< ✏:

For p D 1, t D 0 this is the usual absolute continuity.

The following lemmas are elementary.

Lemma B.4. If 1CQt
1Ct


Qp
p

 1, then .t; p/-absolute continuity implies .Qt ; Qp/-
absolute continuity.

Proof. Let � WD Qp=p  1. For any collection of disjoint intervals Ii we have

X

i

sup
x¤y2Ii

jf .x/ � f .y/j
jx � yjQt

Qp

D
X

i

sup
x¤y2Ii

✓ jf .x/ � f .y/j
jx � yjt

p◆�

jx � yj�t�Qt



X

i

 
sup

x¤y2Ii

jf .x/ � f .y/j
jx � yjt

p
!�

jIi j�t�Qt



 X

i

sup
x¤y2Ii

jf .x/ � f .y/j
jx � yjt

p
!�  X

i

jIi j
.�t�Qt/

1��

!1��

;
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where we used the Hölder inequality k � kl1  k � k
l

1
�

k � k
l

1
1��

. Since f is .t; p/-

absolutely continuous, given ✏ > 0, we choose ı1 > 0 such that

X

i

sup
x¤y2Ii

jf .x/ � f .y/j
jx � yjt

p

< ✏:

Note that the assumption implies

�t � Qt
1 � �

� 1:

If
P

i jIi j < ı WD minfı1; ✏g, we hence obtain, by combining the above estimates,

X

i

sup
x¤y2Ii

jf .x/ � f .y/j
jx � yjQt

Qp

< ✏�

 X

i

jIi j
!�t�Qt

1��
.1��/

< ✏�ı�t�Qt
 ✏:

Lemma B.5 (Hausdorff content of ...ttt ;;; ppp///-absolutely continuous maps). Let f W
I ! R

N be .t; p/-absolutely continuous. If t > 0, then

H
p
1.f .I // D 0:

If t D 0 we still have

H
p
1.f .I // < 1:

Proof. In the definition of .t; p/-absolute continuity let ✏ D 1 and obtain some

ı > 0. Let QI be any subinterval of I with diam . QI / < ı
2

. For any � > 0 we find

N (a finite number that depends on � ) intervals .Ii /
N
iD1 and N intervals .Ji /

N
iD1

which are pairwise disjoint, with jIi j; jJi j < � and
S

i Ii [ Ji D QI . Each f .Ii /

(respectively f .Ji /) is then contained in a ball of radius 2�
t
p supx;y2Ii

jf .x/�f .y/j

jx�yj
t
p

(centered at f .xi / for some xi 2 Ii (respectively x 2 Ji ). By .t; p/-absolute

continuity we then have

H
p
1.f .

QI // -
X

i

� t

 
sup

x;y2Ii

jf .x/ � f .y/jp
jx � yjt C sup

x;y2Ji

jf .x/ � f .y/jp
jx � yjt

!
- � t :

Since this holds for any subinterval QI of diameter ı
2

, we cover I by ⇡
1
ı

many such

intervals and obtain

H
p
1.f .I // -

1

ı
� t < 1:

If t > 0 we can take � arbitrarily small to obtain H
p
1.f .I // D 0.

In view of the above two lemmas, Theorem B.1 will follow from one last

statement.
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Lemma B.6. Let s 2 .0; 1/, p 2 .1;1/ with sp > 1. Then the continuous

representative u⇤ of any map u 2 W s;p.R/ is .sp � 1; p/-absolutely continuous.

Remark B.7. For s D 1 and p D 1 the result is still true (and it is the classical

absolute continuity result for W 1;1-maps in 1 dimension).

There cannot be such a result for when sp D 1, s < 1, since W s; 1
s does not

embed into the space of continuous functions. E.g., take s D 1
2

and p D 2: denote

by B2
⇢ R

2 the unit ball in R
2 and by B2

C WD B2 \ R
2
C the upper halfball; then

log log 2
p
.x1/2 C .x2/2 belongs to W 1;2.B2/, thus to W 1;2.B2

C/. By the trace

theorem for I D Œ�1=2; 1=2ç, we find that log log 2jx1j 2 W 1
2 ;2.I /, however this

is clearly not a continuous function (let alone absolutely continuous in any sense).

Proof of Lemma B:6. Since sp > 1, W s;p.I / embeds in C 0;s�1=p.I / for any in-

terval (see, e.g., [14, Section 8]). Indeed, for a universal constant C > 0 and all

a; b 2 I we have

ju⇤.b/ � u⇤.a/j  C ŒuçW s;p.I /ja � bjs�1=p;

which gives, for a ¤ b,

ju⇤.b/ � u⇤.a/jp
ja � bjsp�1

 C Œuç
p

W s;p.I /
:

We therefore obtain for the mutually disjoint Ii :

X

i

sup
x¤y2Ii

ju⇤.x/ � u⇤.y/jp
jx � yjsp�1

 C
X

i

Œuç
p

W s;p.Ii /
 Œuç

p

W s;p.A/
;

where A D S
Ii . Now, by the absolute continuity of the integral Œuç

p

W s;p.R/
< 1,

for any ✏ > 0, there is ı small enough such that jAj D P
i jIi j < ı implies

Œuç
p

W s;p.A/
< ✏.

Proof of Theorem B:1. By Lemma B.6, f is .sp�1; p/-absolutely continuous. Let

Qp D 1=s and Qs D s. Then

1C Qs Qp � 1

1C sp � 1
D Qp
p

D 1

sp
< 1:

The conditions of Lemma B.4 are satisfied and hencef is also.Qs Qp�1; Qp/-absolutely

continuous. Lemma B.5 implies that the Hausdorff dimension of u⇤.I / is at most

Qp D 1=s, as required.

Remark B.8. We could have also used the Sobolev embedding W
s;p

loc .R;R
m/ ,!

W
Qs; Qp

loc .R;R
m/ for any Qs<s and Qpp [44, Proposition 2.1.2 and Theorem 2.4.4/1],

but note that this is not necessarily true for Qs D s [39], and some small adjustment

would have become necessary.
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