
METRIC DEFINITION OF QUASICONFORMALITY AND

EXCEPTIONAL SETS

DIMITRIOS NTALAMPEKOS

Abstract. We show that a homeomorphism of Euclidean space is quasicon-

formal if and only if at each point there exists a sequence of uncentered open
sets with bounded eccentricity shrinking to that point whose images also have

bounded eccentricity. This generalizes the metric definition of quasiconformal-

ity of Gehring that uses balls instead. We also study exceptional sets for this
definition, in connection with sets that are negligible for extremal distances.

We introduce the class of CNED sets, generalizing the classical notion of NED

sets studied by Ahlfors–Beurling. A set A is CNED if the conformal modulus
of a curve family is not affected when one restricts to the subfamily intersect-

ing the set A at countably many points. We show as our main theorem that

CNED sets are exceptional for the definition of quasiconformality.

1. Introduction

1.1. A new definition of quasiconformality. We assume throughout that n ≥
2. Let Ω ⊂ Rn be an open set and f : Ω → Rn be a topological embedding, i.e.,
a homeomorphism onto its image, that is orientation-preserving. We say that f is
quasiconformal if f ∈ W 1,n

loc (Ω) and there exists K ≥ 1 such that

∥Df(x)∥n ≤ KJf (x)

for a.e. x ∈ Ω. In this case, we say that f is K-quasiconformal. This is known as the
analytic definition of quasiconformality. In what follows all topological embeddings
are implicitly assumed to be orientation-preserving.

We define the metric distortion of f at a point x ∈ Ω by

Hf (x) = lim sup
r→0

Lf (x, r)

lf (x, r)
,(1.1)

where, for r > 0,

Lf (x, r) = sup{|f(x)− f(y)| : y ∈ Ω, |x− y| ≤ r} and

lf (x, r) = inf{|f(x)− f(y)| : y ∈ Ω, |x− y| ≥ r}.

By a result of Gehring [Geh62, Corollary 3], f is quasiconformal if and only if
there exists H ≥ 1 such that Hf (x) ≤ H for every x ∈ Ω. This is known as
the metric definition of quasiconformality. Geometrically, it says that f maps all
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sufficiently small balls centered at x to topological balls with bounded eccentricity.
The eccentricity of a bounded open set A ⊂ Rn is by definition

E(A) = inf{M ≥ 1 : there exists an open ball B such that B ⊂ A ⊂ MB}.

Observe that the eccentricity of a ball is 1 and if B(x, r) ⊂ B(x, r) ⊂ Ω, then

E(f(B(x, r))) ≤ Lf (x, r)

lf (x, r)
.

The reverse inequality is not true in general. If f is quasiconformal then

lim sup
r→0

E(f(B(x, r)))

is uniformly bounded in Ω.
A fundamental theorem proved by Heinonen–Koskela [HK95] is that the “limsup”

in the definition of Hf in (1.1) can be replaced by “liminf”. Thus, only a sequence
of balls centered at x and shrinking to x is required to be mapped under f to
sets with bounded eccentricity. This significant result was immediately applied in
rigidity problems in complex dynamics in the work of Przytycki–Rohde [PR99] and
in further works that we mention below.

One natural question is whether one can define quasiconformality by requiring
the symmetric condition that arbitrary sets of bounded eccentricity and not neces-
sarily balls are mapped to sets of bounded eccentricity. We prove here that this is
indeed the case. We first provide a definition.

Definition 1.1. Let Ω ⊂ Rn be an open set and f : Ω → Rn be a topological
embedding. The eccentric distortion of f at a point x ∈ Ω is defined by

Ef (x) = inf{M ≥ 1 : there exists a sequence of open sets Ak ⊂ Ω, k ∈ N,
with x ∈ Ak, k ∈ N, and diam(Ak) → 0 as k → ∞
such that E(Ak) ≤ M and E(f(Ak)) ≤ M for all k ∈ N},

Observe that

Ef (x) ≤ Hf (x)

for each x ∈ Ω, thus, quasiconformal maps have uniformly bounded eccentric dis-
tortion. We prove that the converse is true.

Theorem 1.2. Let Ω ⊂ Rn be an open set and f : Ω → Rn be a topological em-
bedding. Suppose that there exists a constant H ≥ 1 such that for all x ∈ Ω we
have

Ef (x) ≤ H.(1.2)

Then f is quasiconformal in Ω.

Equivalently, f is quasiconformal if for each x ∈ Ω there exists a sequence of
open sets Ak, k ∈ N, containing x and shrinking to x such that Ak and f(Ak)
have uniformly bounded eccentricity, not depending on k or x. One advantage of
this condition, compared to the classical metric definition, is that it is completely
symmetric with respect to f and f−1:

Ef (x) = Ef−1(f(x)).

Another advantage is that the sets Ak shrinking to x are uncentered, as opposed to
the balls in the metric definition. This feature makes Theorem 1.2 very powerful, as
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illustrated by a compelling application in the problem of rigidity of circle domains
that we discuss below.

The proof of the theorem of Heinonen–Koskela, replacing “limsup” with “liminf”
in (1.1), cannot be used for the proof of Theorem 1.2. The reason is that it relies
crucially on the Besicovitch covering theorem (see Theorem 2.2), which roughly
asserts that a cover by open balls can be replaced by a subcover that has bounded
multiplicity. This powerful tool can be used only for coverings by geometric balls
and not by arbitrary sets of bounded eccentricity. Thus, for the proof of Theorem
1.2 we need a new technical covering lemma, which is one of the innovations of the
current work and we term the egg-yolk covering lemma. We present this lemma in
Section 2. Theorem 1.2 is a special case of the more general Theorem 1.3, in which
we allow for some exceptional sets as well, instead of requiring (1.2) at all points.

1.2. Exceptional sets for the definition of quasiconformality. By a result of
Gehring [Geh62, Theorem 8], in order to establish quasiconformality one does not
need to verify condition (1.1) at all points x ∈ Ω, but can allow for some exceptional
sets: a set of σ-finite Hausdorff (n − 1)-measure, where we could have Hf = ∞,
and a set of n-measure zero, where Hf could be finite but unbounded. On the
other hand, the result and methods of Heinonen–Koskela [HK95] do not allow for
an exceptional set, if one replaces “limsup” with “liminf” in (1.1).

Later Kallunki–Koskela [KK00,KK03] proved a significant generalization of the
theorems of Gehring and Heinonen–Koskela, replacing “limsup” with “liminf” in
(1.1) and allowing for the same type of exceptional sets as Gehring’s theorem. The
possibility of an exceptional set in the Heinonen–Koskela theorem was immedi-
ately exploited for resolving rigidity problems in complex dynamics [GS09,Häı01,
KSvS07,Sma07].

There has been a long line of research in obtaining such results for Sobolev
functions in Euclidean space and for Sobolev and quasiconformal maps in metric
spaces; see [HK98,BK00,KST00,KM02,KR05,BKR07,Wil14].

Our main result, Theorem 1.3, is a further generalization of above results and
allows for a much larger class of exceptional sets than sets of σ-finite Hausdorff
(n− 1)-measure. Namely, sets that are “negligible for extremal distances” in some
weak sense are exceptional for the definition of quasiconformality. We introduce
some terminology before stating the result.

For an open set U ⊂ Rn and two continua F1, F2 ⊂ U the family of curves joining
F1 and F2 inside U is denoted by Γ(F1, F2;U). For a set A ⊂ Rn we denote by
F0(A) the family of curves in Rn that do not intersect A, except possibly at the
endpoints, and by Fσ(A) the family of curves in Rn that intersect A at countably
many points, not counting multiplicity.

A set A ⊂ Rn is negligible for extremal distances if for every pair of non-empty,
disjoint continua F1, F2 ⊂ Rn we have

Modn Γ(F1, F2;Rn) = Modn(Γ(F1, F2;Rn) ∩ F0(A)).

In this case, we write A ∈ NED . We remark that we do not require A to be closed.
Closed NED sets in the plane were studied and characterized in the seminal work
of Ahlfors–Beurling [AB50]. Specifically, a closed set A is NED if and only if every
conformal embedding f : C \ A → C is the restriction of a linear map. The role of
NED sets in higher dimensions and their connection to removable sets for Sobolev
functions were studied in [Väi62,AS74,VG77].



4 DIMITRIOS NTALAMPEKOS

We introduce in this paper a significantly larger class of sets and show that they
are exceptional for the definition of quasiconformality. We say that a set A ⊂ Rn

is countably negligible for extremal distances if

Modn Γ(F1, F2;Rn) = Modn(Γ(F1, F2;Rn) ∩ Fσ(A))

for every pair of non-empty, disjoint continua F1, F2 ⊂ Rn. In this case we write
A ∈ CNED . Again, the set A need not be closed. The monotonicity of modulus
implies that NED ⊂ CNED . We now state our main theorem.

Theorem 1.3. Let Ω ⊂ Rn be an open set and f : Ω → Rn be a topological embed-
ding. Let A,G ⊂ Ω be sets such that

A ∈ CNED and either mn(G) = 0 or mn(f(G)) = 0.

Suppose that there exists a constant H ≥ 1 such that for all x ∈ Ω \ (A ∪ G) we
have

Ef (x) ≤ H,

and for all x ∈ G we have

Ef (x) < ∞.

Then f is K-quasiconformal in Ω, for some K ≥ 1 depending only on n and H.

Here mn denotes the n-dimensional Lebesgue measure. If A = G = ∅, then
we obtain Theorem 1.2. The proof of Theorem 1.3 is presented in Section 3. The
central technical device for the proof is Theorem 3.1.

We remark that Theorem 1.3 is innovative in three different directions, compared
to previous results of Gehring, Heinonen–Koskela, and Kallunki–Koskela. First, we
assume upper bounds for the eccentric distortion Ef rather than the metric distor-
tion Hf ; recall that Ef ≤ Hf . Second, our proof gives a new perspective and allows
the possibility that either mn(G) = 0 or mn(f(G)) = 0, while in previous works
only the first assumption was considered. Third, the set A is assumed to be CNED ,
while in the past only sets of σ-finite Hausdorff (n − 1)-measure were considered.
In [Nta23a] the current author shows that the class of CNED sets includes sets of
σ-finite Hausdorff (n− 1)-measure, as well as, many other known classes of quasi-
conformally removable sets. A closed set A ⊂ Rn is quasiconformally removable if
every homeomorphism of Rn that is quasiconformal in Rn \A is quasiconformal in
Rn. Thus, we have the following consequence of Theorem 1.3.

Corollary 1.4. Closed CNED sets are quasiconformally removable.

It is an open problem to characterize such sets even in dimension 2. Known
classes of removable sets include sets of σ-finite Hausdorff (n− 1)-measure [Bes31,
Geh62], sets with good geometry, such as boundaries of John and Hölder domains
[Jon95,JS00], and NED sets [AB50]. In the subsequent work [Nta23a] the current
author shows that the above-mentioned classes of sets are also in the CNED class,
suggesting that closed CNED sets characterize quasiconformally removable sets.

Theorem 1.3 has already found an application in the deep problem of rigid-
ity of circle domains. A circle domain in the plane is conformally rigid if every
conformal map onto another circle domain is the restriction of a Möbius transfor-
mation. It is conjectured by He–Schramm [HS94] that a circle domain is rigid if
and only if its boundary is quasiconformally removable. The conjecture has been
established in some cases by He–Schramm and by the author in joint work with
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Younsi [NY20]. With the aid of Theorem 1.3 the current author [Nta23b] is able to
establish that circle domains with CNED boundary are rigid, a result that features
not only CNED sets, but also the use of the eccentric distortion in the definition of
quasiconformality. This development is the strongest so far and provides substan-
tial evidence for the conjecture of He–Schramm; for example, if one can show that
CNED sets coincide with quasiconformally removable sets, then the conjecture is
true for domains with totally disconnected boundary as a consequence of [Nta23b].

We expect that our results will find further applications in rigidity problems
in complex dynamics, where often one has no geometric information about the
distortion of balls, but can control the distortion of non-round dynamical objects,
such as puzzle pieces.

2. The egg-yolk covering lemma

For quantities A and B we write A ≲ B if there exists a constant c > 0 such
that A ≤ cB. If the constant c depends on another quantity H that we wish to
emphasize, then we write instead A ≤ c(H)B or A ≲H B. Moreover, we use the
notation A ≃ B if A ≲ B and B ≲ A. As previously, we write A ≃H B to emphasize
the dependence of the implicit constants on the quantity H. All constants in the
statements are assumed to be positive even if this is not stated explicitly and the
same letter may be used in different statements to denote a different constant.

2.1. Known covering results. We first state a classical covering result.

Lemma 2.1 (5B-covering lemma, [Hei01, Theorem 1.2, p. 2]). Let X be a metric
space and B be a collection of open balls in X with uniformly bounded radii. Then
there exists a disjointed subcollection B′ of B such that⋃︂

B∈B
B ⊂

⋃︂
B∈B′

5B.

For an open ball B = B(x0, r0) and λ > 0 we denote by λB the ball B(x0, λr0).
Note that in metric spaces the center and radius of a ball need not be unique, so we
regard the ball B(x0, r0) not only as a set, but also as a pair (x0, r0). Then there
is no ambiguity in the definition of λB.

The power of the 5B-covering lemma lies on the fact that it allows us to replace
arbitrary covers by balls with covers by essentially disjoint balls. One drawback of
the 5B-covering lemma, however, is that if f is an arbitrary homeomorphism on
X, then there is no relation between the sizes of f(B) and f(5B). In particular,
rescaling the family {f(5B)}B∈B′ by a uniform fixed factor will not give a disjointed
family in general; more specifically, one cannot find a scaling factor λ ∈ (0, 1) and
points xB ∈ f(5B) so that the family {B(xB , λdiam(f(5B)))}B∈B′ is disjointed.
For this reason, when working with homeomorphisms of Euclidean space, one can
instead use the Besicovitch covering theorem.

Theorem 2.2 (Besicovitch covering theorem, [Mat95, Theorem 2.7]). Let A ⊂ Rn

be a bounded set and B be a family of closed balls such that each point of A is the
center of a ball in B. Then there exists a subcollection B′ of B such that

A ⊂
⋃︂

B∈B′

B and
∑︂
B∈B′

χB ≤ c(n).
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Obviously, if f is a homeomorphism of Rn, then the family {f(B)}B∈B′ covers
the set f(A) with uniformly bounded multiplicity. Hence, unlike the 5B-covering
lemma, here we obtain information for both {B}B∈B′ and {f(B)}B∈B′ . The draw-
back of this theorem is that it only works with geometric balls in Euclidean space
and there is no generalization for covers by sets of bounded eccentricity, as defined
in the Introduction, or for balls in metric spaces.

The egg-yolk covering lemma that we prove in this section can be regarded as
a generalization of the 5B-covering lemma and the Besicovitch covering theorem,
giving favorable covers that encode geometric information both in the domain and
the range of a homeomorphism between metric spaces.

Before moving to the statement of the egg-yolk covering lemma, we state a well-
known inequality that is often used in combination with covering lemmas.

Lemma 2.3 ([Boj88]). Let p ≥ 1 and λ > 0. Suppose that {Bi}i∈N is a collection
of balls in Rn and ai, i ∈ N, is a sequence of non-negative numbers. Then⃦⃦⃦⃦

⃦∑︂
i∈N

aiχλBi

⃦⃦⃦⃦
⃦
Lp(Rn)

≤ c(n, p, λ)

⃦⃦⃦⃦
⃦∑︂
i∈N

aiχBi

⃦⃦⃦⃦
⃦
Lp(Rn)

.

2.2. Egg-yolk pairs. Let (X, d) be a connected metric space. For a ball B =
B(x0, r0) ⊂ X, we define r(B) = r0. We always have diam(B) ≤ 2r(B) and if
X \B ̸= ∅, since X is connected, we have

r(B) ≤ diam(B) ≤ 2r(B).

Let A ⊂ X be a bounded open set and M ≥ 2. Suppose that there exists an open
ball B = B(x0, r0) such that B ⊂ 2B ⊂ A ⊂ MB. Then we call (A,B) an M -
egg-yolk pair ; see Figure 1. If (A,B) is an M -egg-yolk pair, we have the following
immediate properties.

(EY1) diam(A) ≤ 2Mr(B).
(EY2) If X \A ̸= ∅, then

diam(B) ≤ 2r(B) ≤ diam(2B) ≤ diam(A) ≤ 2Mr(B) ≤ 2M diam(B).

(EY3) If X \A ̸= ∅, then dist(B,X \A) ≥ r(B).
(EY4) If x ∈ B and y ∈ A, then d(x, y) ≤ (M + 1)r(B).

Moreover, the following statements are true.

(EY5) Let (Ai, Bi) be M -egg-yolk pairs, for i = 1, 2, such that B1 ∩ B2 ̸= ∅ and
A2 ̸⊂ A1. Then

diam(A2) ≥ c(M) diam(A1).

Proof of (EY5). If A2 = X there is nothing to prove, so we assume that X \A2 ̸= ∅.
Also, since A2 ̸⊂ A1, we cannot have A1 = X; thus X \A1 ̸= ∅. If (M +1)r(B2) <
dist(B1, X \ A1), then by (EY4) for x ∈ B1 ∩ B2 and y ∈ A2 we have d(x, y) ≤
(M + 1)r(B2) < dist(B1, X \A1). Thus, by the triangle inequality,

dist(y,X \A1) ≥ dist(B1, X \A1)− d(x, y) > 0.

It follows that A2 ⊂ A1, a contradiction. Therefore, by (EY3) and (EY2),

(M + 1)r(B2) ≥ dist(B1, X \A1) ≥ r(B1) ≥ 2−1M−1 diam(A1)
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Figure 1. An M -egg-yolk pair.

and, by (EY2) again,

diam(A2) ≥ 2r(B2) ≥
1

M(M + 1)
diam(A1). □

(EY6) Let (Ai, Bi), i ∈ I, be a family of M -egg-yolk pairs and suppose that there
exists i0 ∈ I such that Ai ∩ Ai0 ̸= ∅ and diam(Ai) ≤ adiam(Ai0) for each
i ∈ I and for some a > 0. We set AI =

⋃︁
i∈I Ai. Then (AI , Bi0) is a

c(a,M)-egg-yolk pair.

Proof of (EY6). Note that Bi0 ⊂ 2Bi0 ⊂ Ai0 ⊂ AI and Ai ⊂ (2a + 1)MBi0 for
each i ∈ I. Thus, AI ⊂ (2a+ 1)MBi0 . □

2.3. The egg-yolk covering lemma.

Lemma 2.4 (Egg-yolk covering lemma). Let X,Y be compact, connected met-
ric spaces, f : X → Y be a homeomorphism, and M ≥ 2. Let {(Ai, Bi)}i∈I

and {(A′
i, B

′
i)}i∈I be families of M -egg-yolk pairs in X and Y , respectively, with

f(Ai) = A′
i for each i ∈ I. Then there exists a set J ⊂ I and families {(Dj , Bj)}j∈J

and {(D′
j , B

′
j)}j∈J of c(M)-egg-yolk pairs in X and Y , respectively, such that

(i)
⋃︁

j∈J Dj =
⋃︁

i∈I Ai,

(ii) f(Dj) = D′
j for each j ∈ J , and

(iii) the balls Bj, j ∈ J , are pairwise disjoint and the balls B′
j, j ∈ J , are

pairwise disjoint.

The remaining of the section is devoted to the proof of the egg-yolk covering
lemma. The reader interested in the proof of the main theorem of the paper,
Theorem 1.3, may skip the rest of Section 2 and proceed with Section 3.

It is crucial for the application of the lemma that we are not requiring Bi to be
related to B′

i; we are only assuming that f(Ai) = A′
i. In the case that X = Y , f is

the identity map, and B′
i = Bi, compare this lemma to the 5B-covering lemma.

The main idea of the proof is to create the sets Dk with the aid of property
(EY6), by taking the union of sets Ai, Aj whenever Bi ∩ Bj ̸= ∅. The essential
difficulty is that the diameters of Ai and Aj might not be comparable. We first
establish an auxiliary result, which allows us to reduce to the case that Ai and Aj

have comparable diameters whenever Bi ∩Bj ̸= ∅.
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Lemma 2.5. Under the assumptions of Lemma 2.4, there exists a set J ⊂ I
and families {(Fj , Bj)}j∈J and {(F ′

j , B
′
j)}j∈J of c(M)-egg-yolk pairs in X and Y ,

respectively, such that

(i)
⋃︁

j∈J Fj =
⋃︁

i∈I Ai,

(ii) f(Fj) = F ′
j for each j ∈ J , and

(iii) if Bi ∩Bj ̸= ∅ (resp. B′
i ∩B′

j ̸= ∅) for some i, j ∈ J , then

c(M)−1 ≤ diam(Fi)

diam(Fj)
≤ c(M)

(︄
resp. c(M)−1 ≤ diam(F ′

i )

diam(F ′
j)

≤ c(M)

)︄
.

We remark that {Bj}j∈J and {B′
j}j∈J are just subcollections of {Bi}i∈I and

{B′
i}i∈I , respectively, which are given in the assumptions of Lemma 2.4.
If I were a finite index set, then one could choose {Fj}j∈J to be a subcollection

of {Ai}i∈I satisfying (i) and with the property that Fi ̸⊂ Fj whenever i ̸= j. Then
(EY5) would immediately give the crucial property (iii) in Lemma 2.5. In the case
that I is infinite, the idea is the same, but the proof is more involved.

Proof of Lemma 2.5. Note that the collection {Ai}i∈I is partially ordered with re-
spect to inclusion. By the Hausdorff maximal principle [Mun75, §1.11, p. 69], for
each k ∈ I there exists a maximal totally ordered set W (k) = {Aj}j∈J(k) ⊂ {Ai}i∈I

containing Ak. Since f is injective and f(Ai) = A′
i, the collection {A′

j}j∈J(k) is also
a maximal totally ordered subcollection of {A′

i}i∈I . Define AW (k) =
⋃︁

j∈J(k) Aj and

A′
W (k) = f(AW (k)) =

⋃︁
j∈J(k) A

′
j . Obviously,

⋃︁
k∈I AW (k) =

⋃︁
i∈I Ai. We define

L(W (k)) = sup{diam(Aj) : Aj ∈ W (k)} and

L′(W (k)) = sup{diam(A′
j) : Aj ∈ W (k)}.

Note that both numbers are finite since Aj ⊂ X, A′
j ⊂ Y , and X,Y are bounded

spaces. We fix Ai1 , Ai2 ∈ W (k) such that diam(Ai1) ≥ L(W (k))/2 and diam(A′
i2
) ≥

L′(W (k))/2. Since W (k) is totally ordered, we have Ai1 ⊃ Ai2 or Ai2 ⊃ Ai1 .
Without loss of generality, assume that Ai1 ⊃ Ai2 . Since f(Ai) = A′

i for each i ∈ I,
we have A′

i1
⊃ A′

i2
. Thus, diam(A′

i1
) ≥ diam(A′

i2
) ≥ L′(W (k))/2. Summarizing,

there exists Ai(k) ∈ W (k) such that diam(Ai(k)) ≥ L(W (k))/2 and diam(A′
i(k)) ≥

L′(W (k))/2. Note that diam(Aj) ≤ L(W (k)) ≤ 2 diam(Ai(k)) and diam(A′
j) ≤

L′(W (k)) ≤ 2 diam(A′
i(k)) for each Aj ∈ W (k). Moreover, for each Aj ∈ W (k), we

have Aj ∩Ai(k) ̸= ∅ and A′
j ∩A′

i(k) ̸= ∅ by the total ordering of W (k). By property

(EY6) we conclude that (AW (k), Bi(k)) and (A′
W (k), B

′
i(k)) are c(M)-egg-yolk pairs

for each k ∈ I.
If AW (k) = X for some k ∈ I, then we set j = i(k), J = {j}, Fj = AW (k),

F ′
j = f(Fj), and we have nothing to prove. Hence, we suppose that X \AW (k) ̸= ∅,

and thus X \Ak ̸= ∅, for each k ∈ I.
We claim that

diam(AW (k)) ≃M diam(AW (l)) whenever Bi(k) ∩Bi(l) ̸= ∅.(2.1)

The same is true for (A′
W (k), B

′
i(k)), k ∈ I. To see this, suppose that Bi(k)∩Bi(l) ̸= ∅.

If AW (k) ⊂ AW (l) =
⋃︁

j∈J(l) Aj , then by the compactness of AW (k) and the total

ordering of W (l), there exists an open set Aj ∈ W (l) such that AW (k) ⊂ Aj . If

Aj ∈ W (k), then AW (k) = Aj , so Aj is clopen. By the connectedness of X, Aj = X,
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a contradiction. Therefore, Aj ∈ W (l) \W (k). This implies that W (k) ∪ {Aj} is

totally ordered, which contradicts the maximality of W (k). Therefore, AW (k) ̸⊂
AW (l) and by (EY5) we have diam(AW (k)) ≳M diam(AW (l)). By reversing the roles
of k and l, we see that diam(AW (k)) ≃M diam(AW (l)).

If the mapping k ↦→ i(k) were injective on I, then the proof would have been
completed with J = i(I) ⊂ I. In general, this might not be the case. For j ∈
J = i(I), we define Fj to be the union of all sets AW (k) such that i(k) = j. Since
(AW (k), Bj) is a c(M)-egg-yolk pair whenever i(k) = j, we conclude by (EY2) that

diam(AW (k)) ≃M diam(Bj).

By property (EY6), (Fj , Bj) is a c′(M)-egg-yolk pair. We also set F ′
j = f(Fj) and

similarly, (F ′
j , B

′
j) is a c′(M)-egg-yolk pair. Without loss of generality, assume that

X \ Fj ̸= ∅ for each j ∈ J . We only have to justify (iii). Suppose Bj1 ∩Bj2 ̸= ∅ for
some j1, j2 ∈ J and consider k, l ∈ I with i(k) = j1 and i(l) = j2. Then, by (EY2)
and (2.1), we have

diam(Fj1) ≃M diam(Bj1) ≃M diam(AW (k)) ≃M diam(AW (l))

≃M diam(Bj2) ≃M diam(Fj2).

The same argument applies to (F ′
j , B

′
j), j ∈ J . This completes the proof. □

Proof of Lemma 2.4. We will show that given {(Ai, Bi)}i∈I and {(A′
i, B

′
i)}i∈I as in

the statement, there exist families {(Dj , Ej)}j∈J and {(D′
j , E

′
j)}j∈J of c(M)-egg-

yolk pairs, where {Ej}j∈J and {E′
j}j∈J are subcollections of {Bi}i∈I and {B′

i}i∈I ,
respectively, satisfying conclusions (i), (ii), and such that the sets {E′

j}j∈J are
pairwise disjoint; that is, only one half of conclusion (iii) is satisfied. Then us-
ing this statement for f−1 and for the given {(Dj , Ej)}j∈J and {(D′

j , E
′
j)}j∈J (in

place of {(Ai, Bi)}i∈I and {(A′
i, B

′
i)}i∈I), we may find families {( ˜︁Dj , ˜︁Ej)}j∈ ˜︁J and

{( ˜︁D′
j ,
˜︁E′
j)}j∈ ˜︁J of ˜︁c(M)-egg-yolk pairs, satisfying the full conclusions of the lemma.

If diam(Ai) = 0 for some i ∈ I, then Ai is a singleton and is clopen. The
connectedness of X implies that X is a singleton. In this case there is nothing to
prove, so we assume that diam(Ai) > 0 for each i ∈ I.

By Lemma 2.5, we may assume that the given {(Ai, Bi)}i∈I and {(A′
i, B

′
i)}i∈I

are families of c′(M)-egg-yolk pairs with f(Ai) = A′
i for each i ∈ I and with the

additional property that

diam(A′
i) ≃M diam(A′

j) whenever B′
i ∩B′

j ̸= ∅.(2.2)

We set L = supi∈I diam(Ai), which is positive and finite, since the space X is
bounded. Define F0 = ∅ and k0 = 0. Suppose that Fj ⊂ I and kj ∈ Z have been
defined for j ∈ {0, . . . ,m} such that kj is increasing in j ∈ {0, . . . ,m} and suppose
that we have obtained c(M)-egg-yolk pairs (Di, Ei) and (D′

i, E
′
i) for i ∈ {1, . . . , km},

where Ei ∈ {Bj}j∈I and E′
i ∈ {B′

j}j∈I , such that

(1) F0∪· · · ∪Fm ⊂ {i ∈ I : diam(Ai) > 2−mL} ⊂ {i ∈ I : Ai ⊂ Dj for some j ∈
{1, . . . , km}} and

⋃︁km

i=1 Di ⊂
⋃︁

i∈I Ai,

(2) f(Di) = D′
i, i ∈ {1, . . . , km},

(3) the sets E′
i, i ∈ {1, . . . , km}, are pairwise disjoint, and

(4) {i ∈ I : B′
i ∩ E′

j ̸= ∅ for some j ∈ {1, . . . , km}} ⊂ {i ∈ I : Ai ⊂ Dj for some
j ∈ {1, . . . , km}}.
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Note that all of these statements are vacuously true for m = 0. Assuming that the
above statements are true for each m ∈ N ∪ {0}, we see that (1), (2), and (3) give
(i), (ii), and (iii), respectively, completing the proof of the lemma.

Now we show the inductive step. We define

Fm+1 = {i ∈ I : 2−m−1L < diam(Ai) ≤ 2−mL and Ai ̸⊂ Dj , j ∈ {1, . . . , km}}.
If Fm+1 = ∅, we define km+1 = km. Suppose that Fm+1 ̸= ∅ and let i1 ∈ Fm+1.
Since Ai1 ̸⊂ Dj for all j ∈ {1, . . . , km}, we conclude by the induction assumption
(4) that B′

i1
∩ E′

j = ∅ for all j ∈ {1, . . . , km}. Suppose that B′
i1

∩ B′
j ̸= ∅ for

some j ∈ I with Aj ̸⊂ Di for all i ∈ {1, . . . , km}. By (2.2) we conclude that
diam(A′

i1
) ≃M diam(A′

j). We define E′
km+1 = B′

i1
and D′

km+1 to be the union of
A′

i1
with the sets A′

j such that B′
i1
∩ B′

j ̸= ∅ and Aj ̸⊂ Di for all i ∈ {1, . . . , km};
see Figure 2. By (EY6), we conclude that (D′

km+1, E
′
km+1) is a c(M)-egg-yolk pair.

Define Dkm+1 = f−1(D′
km+1) and Ekm+1 = Bi1 . Note that Dkm+1 is the union of

Ai1 with some sets Aj such that Ai1 ∩ Aj ̸= ∅ (since A′
i1
∩ A′

j ⊃ B′
i1
∩ B′

j ̸= ∅)
and Aj ̸⊂ Di for i ∈ {1, . . . , km}; thus, by the induction assumption (1) we have
diam(Aj) ≤ 2−mL < 2 diam(Ai1). It follows that (Dkm+1, Ekm+1) is a c(M)-egg-
yolk pair by (EY6). We remark that by construction we have {i ∈ I : B′

i∩E′
km+1 ̸=

∅} ⊂ {i ∈ I : Ai ⊂ Dj for some j ∈ {1, . . . , km + 1}}.
We continue in the same way, by picking i2 ∈ Fm+1\{i1} such that Ai2 ̸⊂ Dkm+1.

If no such i2 exists, we define km+1 = km + 1. Note that B′
i2
∩ E′

km+1 = ∅ by the
choice of E′

km+1, and B′
i2

∩ E′
j = ∅ for each j ∈ {1, . . . , km} by the induction

assumption (4). We define E′
km+2 = B′

i2
and D′

km+2 to be the union of A′
i2

with
the sets A′

j such that B′
i2
∩ B′

j ̸= ∅ and Aj ̸⊂ Di for i ∈ {1, . . . , km + 1}. Also,

set Dkm+2 = f−1(D′
km+2) and Ekm+2 = Bi2 . In this way we produce c(M)-egg-

yolk pairs (D′
km+2, E

′
km+2) and (Dkm+2, Ekm+2) such that E′

km+2 ∩ E′
j = ∅ for

j ∈ {1, . . . , km + 1}. As before, by construction we have {i ∈ I : B′
i ∩ E′

km+2 ̸=
∅} ⊂ {i ∈ I : Ai ⊂ Dj for some j ∈ {1, . . . , km + 2}}.

We claim that this process will stop after finitely many steps. That is, there
exists km+1 > km with the property that there is no i ∈ Fm+1 \ {i1, . . . , ikm+1−km

}
such that Ai ̸⊂ Dj for each j ∈ {km + 1, . . . , km+1}. Indeed, by the uniform
continuity of f−1, we have

inf
i∈Fm+1

diam(A′
i) > 0.(2.3)

Each E′
i, i = km + 1, km + 2, . . . , is a ball of radius comparable to diam(D′

i);
thus, diam(E′

i) is bounded below away from 0 by (2.3). Moreover, the balls E′
i are

disjoint and are contained in the compact space Y . This shows that this process
will necessarily end after a number km+1 − km of steps. We also conclude that if
i ∈ Fm+1 \ {i1, . . . , ikm+1−km}, then Ai ⊂ Dj for some j ∈ {km+1, . . . , km+1}; this
is also trivially true for i ∈ {i1, . . . , ikm+1−km

}.
We first verify (1) for the index m + 1. By the definition of Dj , j ∈ {km +

1, . . . , km+1}, and the induction assumption (1) it is clear that
⋃︁km+1

i=1 Di ⊂
⋃︁

i∈I Ai.
This explains the last part of (1). If i ∈ Fm+1, then by the definition of Fm+1 we
have diam(Ai) > 2−m−1L. If 2−m−1L < diam(Ai) ≤ 2−mL, then either i ∈ Fm+1,
so Ai ⊂ Dj for some j ∈ {km + 1, . . . , km+1}, or Ai ⊂ Dj for some j ≤ km. In
combination with the induction assumption, this shows the inclusions in (1). By
construction and the induction assumption, (2) and (3), and (4) are automatically
satisfied for the index m+1. Thus, the proof of the inductive step is completed. □
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Bi1

Ai1

A′
i1

Aj

A′
j

−→
f

Ekm+1

Dkm+1

D′
km+1

E′
km+1

−→
f

Figure 2. Top figure: B′
i1
∩B′

j ̸= ∅, so diam(A′
i1
) ≃M diam(A′

j).
On the other hand, Bi1 need not intersect Bj and diam(Aj) might
be much smaller than diam(Ai1). Bottom figure: Formation of
Dkm+1 by taking the union of Ai1 with sets Aj such that B′

i1
∩B′

j ̸=
∅.

3. Proof of Theorem 1.3

3.1. Preliminaries. The 1-dimensional Hausdorff measure H 1(A) of a set A ⊂
Rn is defined by

H 1(A) = lim
δ→0

H 1
δ (A) = sup

δ>0
H 1

δ (A),

where

H 1
δ (A) = inf

⎧⎨⎩
∞∑︂
j=1

diam(Uj) : A ⊂
⋃︂
j

Uj , diam(Uj) < δ

⎫⎬⎭ .

If δ = ∞, the quantity H 1
∞(A) is called the 1-dimensional Hausdorff content of A

and is an outer measure on subsets of Rn. An elementary fact is that

H 1(A) = 0 if and only if H 1
∞(A) = 0.
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We always have

min{H 1(A),diam(A)} ≥ H 1
∞(A)

and if the set A is connected, then

H 1
∞(A) = diam(A).

See [BBI01, Lemma 2.6.1, p. 53] for an argument.
A path or curve is a continuous function γ : I → Rn, where I ⊂ R is a compact

interval. The trace of a path γ is the image γ(I) and will be denoted by |γ|. The
endpoints of a path γ : [a, b] → Rn are the points γ(a), γ(b).

Let Γ be a family of curves in Rn. A Borel function ρ : Rn → [0,∞] is admissible
for the path family Γ if ∫︂

γ

ρ ds ≥ 1

for all rectifiable paths γ ∈ Γ. We define the n-modulus of Γ as

Modn Γ = inf
ρ

∫︂
ρn,

where the infimum is taken over all admissible functions ρ for Γ. By convention,
Modn Γ = ∞ if there are no admissible functions for Γ. Note that unrectifiable
paths do not affect modulus. Hence, we will assume that families of n-modulus zero
appearing in the next considerations contain all unrectifiable paths; for example,
see (M3) below. We will use the following standard facts about modulus:

(M1) The modulus Modn is an outer measure in the space of all curves in Rn. In
particular, it obeys the monotonicity and countable subadditivity laws.

(M2) If Γ0 is a path family with Modn Γ0 = 0, then the family of paths γ that
have a subpath in Γ0 also has n-modulus zero.

(M3) If Ω ⊂ Rn is an open set and ρ : Ω → [0,∞] is a Borel function with
ρ ∈ Ln

loc(Ω), then there exists a path family Γ0 with Modn Γ0 = 0 such
that for each path γ /∈ Γ0 with trace in Ω we have

∫︁
γ
ρ ds < ∞; here we

implicitly assume that if γ /∈ Γ0, then γ is rectifiable.
(M4) If ρ : Rn → [0,∞] is a Borel function with ρ = 0 a.e., then there exists a

path family Γ0 with Modn Γ0 = 0 such that for each path γ /∈ Γ0 we have∫︁
γ
ρ ds = 0.

See [Väi71, Chapter 1, pp. 16–20] and [HKST15, Section 5.2] for more details about
modulus and proofs of these facts.

3.2. Finite distortion implies absolute continuity. The next theorem is the
main technical result leading to the proof of the main theorem, Theorem 1.3. We
use the notation m∗

n for the n-dimensional outer Lebesgue measure in Rn.

Theorem 3.1. Let Ω ⊂ Rn be an open set and f : Ω → Rn be a topological embed-
ding. Let X ⊂ Ω be a set and suppose that there exists a constant H ≥ 1 such that
for all x ∈ X we have

Ef (x) ≤ H.

Then there exists a Borel function ρf : Ω → [0,∞] with the following properties.

(i) (Support) There exists a Borel set U ⊂ Ω such that X ⊂ U , mn(U) =
m∗

n(X), mn(f(U)) = m∗
n(f(X)), and ρf is supported on U .



METRIC DEFINITION OF QUASICONFORMALITY AND EXCEPTIONAL SETS 13

(ii) (Upper gradient) There exists a path family Γ0 with Modn Γ0 = 0 such that
for all paths γ /∈ Γ0 with trace in Ω we have

H 1
∞(f(|γ| ∩X)) ≤

∫︂
γ

ρf ds.

(iii) (Quasiconformality) For every Borel set V ⊂ Ω we have∫︂
V

ρnf ≤ C(n,H)mn(f(U ∩ V )).

Proof. We split the proof into several parts for the convenience of the reader.

Reduction to a connected domain. First, we reduce to the case that Ω is
connected. Suppose that Ω is disconnected and that the theorem is true in each
connected component Ωj , j ∈ J , of Ω. That is, there exists a Borel function ρf on
Ω satisfying (i)–(iii) in each Ωj . We verify that these properties hold in all of Ω.
By (i), for each j ∈ J , there exists a Borel set Uj ⊂ Ωj such that X ∩ Ωj ⊂ Uj ,
mn(Uj) = m∗

n(X ∩ Ωj), mn(f(Uj)) = m∗
n(f(X ∩ Ωj)), and ρf |Ωj

is supported on
Uj . We set U =

⋃︁
j∈J Uj and observe that

m∗
n(X) =

∑︂
j∈J

m∗
n(X ∩ Ωj) =

∑︂
j∈J

mn(Uj) = mn(U)

and similar equalities hold for m∗
n(f(X)) and mn(f(U)). This verifies (i). By (ii),

for each j ∈ J , there exists a curve family Γj of n-modulus zero such that for all
paths γ /∈ Γj with trace in Ωj we have

H 1
∞(f(|γ| ∩X)) ≤

∫︂
γ

ρf ·χΩj
ds.

We let Γ0 =
⋃︁

j∈J Γj , which is a family of n-modulus zero by the subadditivity of

modulus. Then the inequality in (ii) is true for all curves γ in Ω that are outside
Γ0. Finally, (iii) is an elementary consequence of the countable additivity of mn.

Construction of approximate gradients. From now on, we assume that Ω is
connected. Let {Vk}k∈N be an exhaustion of Ω by connected open sets such that
Vk ⊂⊂ Vk+1 ⊂ Ω for each k ∈ N. We write X =

⋃︁∞
k=1 Xk, where Xk = X ∩ Vk,

k ∈ N. Consider a sequence of open sets Uk+1 ⊂ Uk ⊂ Ω, k ∈ N, such that
X ⊂ U :=

⋂︁∞
k=1 Uk, m

∗
n(X) = mn(U), and m∗

n(f(X)) = m∗
n(f(U)).

We fix k ∈ N. Since Ef ≤ H on X, for each x ∈ Xk there exists an arbitrarily
small open set Ax ⊂ Uk ∩ Vk containing x such that

E(Ax) < 2H and E(f(Ax)) < 2H;

recall Definition 1.1. These conditions imply that there exists an open ball Bx such
that Bx ⊂ 2Bx ⊂ Ax ⊂ 4HBx and an open ball B′

x such that B′
x ⊂ 2B′

x ⊂ A′
x ⊂

4HB′
x. By considering a smaller set Ax, we may also require that

c2(H)Bx ⊂ Uk ∩ Vk and diam(Bx) < c2(H)−1k−1

where c2(H) is a positive constant, to be specified. Thus, {(Ax, Bx)}x∈Xk
and

{(A′
x, B

′
x)}x∈Xk

are families of (4H)-egg-yolk pairs (recall the definition from Sec-
tion 2) in the compact, connected sets Vk and f(Vk), respectively.

By the egg-yolk covering lemma, Lemma 2.4, there exist families {(Ai, Bi)}i∈I

and {(A′
i, B

′
i)}i∈I of c1(H)-egg-yolk pairs in Vk and f(Vk), respectively, such that
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f(Ai) = A′
i for each i ∈ I, Xk ⊂

⋃︁
i∈I Ai ⊂ Uk ∩ Vk, and the families {Bi}i∈I and

{B′
i}i∈I are disjointed. Moreover, {Bi}i∈I is a subcollection of {Bx}x∈Xk

. We now
choose c2(H) = c1(H) + 1, so

(c1(H) + 1)Bi ⊂ Uk ∩ Vk and (c1(H) + 1) diam(Bi) < k−1.(3.1)

We note that

Ai ⊂ c1(H)Bi and A′
i ⊂ c1(H)B′

i.(3.2)

In addition, since B′
i is a ball, we have

diam(A′
i)

n ≤ c1(H)n diam(B′
i)

n ≲n,H mn(B
′
i).(3.3)

We set ri to be the radius of the ball Bi, i ∈ I. Consider the function

ρk =
∑︂
i∈I

diam(A′
i)

ri
χ(c1(H)+1)Bi

.

By (3.1), we see that ρk is supported on Uk. Note that if Ai ∩ |γ| ̸= ∅ for some
rectifiable curve γ with diam(|γ|) > 1/k, then by (3.2) we have∫︂

γ

χ(c1(H)+1)Bi
ds ≥ ri,

provided that |γ| is not contained in (c1(H) + 1)Bi, which is guaranteed by (3.1).
In addition, if K ⊂ Ω is a compact set and Ai ∩ K ̸= ∅, then by (3.1) the set
(c1(H) + 1)Bi is contained in the open (1/k)-neighborhood of K, which we denote
by N1/k(K). Therefore, ∫︂

γ

χ(c1(H)+1)Bi
χN1/k(K) ds ≥ ri.

We conclude that for each compact set K ⊂ Ω and every rectifiable curve γ with
diam(|γ|) > 1/k we have

H 1
∞(f(|γ| ∩Xk ∩K)) ≤

∑︂
i:Ai∩|γ|≠∅
Ai∩K ̸=∅

diam(A′
i) ≤

∫︂
γ

ρkχN1/k(K) ds.(3.4)

By Lemma 2.3, the fact that {Bi}i∈I is disjointed, (3.3), and the fact that
{B′

i}i∈I is disjointed, we have∫︂
ρnk ≲n,H

∫︂ (︄∑︂
i∈I

diam(A′
i)

ri
χBi

)︄n

≃n,H

∫︂ ∑︂
i∈I

diam(A′
i)

n

rni
χBi

≃n,H

∑︂
i∈I

diam(A′
i)

n ≲n,H

∑︂
i∈I

mn(B
′
i) ≲n,H mn(f(Uk)).

Moreover, for each compact set K ⊂ Ω, the same computation shows that∫︂
K

ρnk ≲n,H mn(f(Uk ∩N1/k(K))).(3.5)

Observe that the latter measure is finite for large k ∈ N and bounded as k → ∞.

Compactness argument. The uniform upper bounds of (3.5), combined with
the Banach–Alaoglu theorem [HKST15, Theorem 2.4.1] and a diagonal argument
imply that there exists a Borel function ρf : Ω → [0,∞] with ρf ∈ Ln

loc(Ω) and
a subsequence of ρk that converges to ρf weakly in Ln(K) for each compact set
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K ⊂ Ω; see [HKST15, Lemma 3.3.19] for a variant of this statement. For simplicity,
we denote the subsequence by ρk, k ∈ N.

The fact that Uk+1 ⊂ Uk, k ∈ N, implies that ρk is supported on Uk, k ∈ N.
Passing to the weak limit, we conclude that ρf is supported on U =

⋂︁∞
k=1 Uk, as

required in (i). Let V ⊂ Ω be a Borel set and K ⊂ V be a compact set. By the
weak convergence of ρk to ρf in Ln(K) and (3.5) we have∫︂

K

ρnf ≤ lim inf
k→∞

∫︂
K

ρnk ≲n,H mn(f(U ∩K)) ≲n,H mn(f(U ∩ V )).

The inner regularity of Lebesgue measure completes the proof of (iii).
Finally, we show (ii). By Mazur’s lemma [HKST15, Section 2.3], for each com-

pact set K ⊂ Ω there exist convex combinations ˜︁ρk of ρk, ρk+1, . . . , ρm(k), where
m(k) ≥ k, such that ˜︁ρk converges strongly to ρf in Ln(V ) for some neighborhood
V of K. By (3.4) and the fact that Xk ⊂ Xk+1, k ∈ N, we have

H 1
∞(f(|γ| ∩Xk ∩K)) ≤

∫︂
γ

˜︁ρkχN1/k(K) ds

whenever diam(|γ|) > 1/k. Moreover, X ∩K ⊂ Xk for all sufficiently large k ∈ N,
so

H 1
∞(f(|γ| ∩X ∩K)) ≤

∫︂
γ

˜︁ρkχN1/k(K) ds

whenever diam(|γ|) > 1/k. Observe that ˜︁ρkχN1/k(K) converges to ρfχK in Ln(Rn).

By Fuglede’s lemma [Väi71, Theorem 28.1] there exists a path family Γ(K) of n-
modulus zero such that for all paths γ /∈ Γ(K) we have∫︂

γ

˜︁ρkχN1/k(K) ds →
∫︂
γ

ρfχK ds

as k → ∞. Given a non-constant path γ /∈ Γ(K), we then have

H 1
∞(f(|γ| ∩X ∩K)) ≤

∫︂
γ

ρf ds.

Let Γ0 =
⋃︁∞

k=1 Γ(Vk), which is a family of n-modulus zero. If γ /∈ Γ0 is a non-

constant path with trace in Ω, then there exists k ∈ N such that |γ| ⊂ Vk, so

H 1
∞(f(|γ| ∩X)) = H 1

∞(f(|γ| ∩X ∩ Vk)) ≤
∫︂
γ

ρf ds.

Constant paths satisfy as well this inequality trivially. □

3.3. Completing the proof of Theorem 1.3. The following statement is a con-
sequence of Theorem 3.1.

Corollary 3.2. Let Ω ⊂ Rn be an open set and f : Ω → Rn be a topological
embedding. Let G ⊂ Ω be a set such that for all x ∈ G we have

Ef (x) < ∞

and either mn(G) = 0 or mn(f(G)) = 0. Then there exists a path family Γ0 with
Modn Γ0 = 0 such that for all paths γ /∈ Γ0 with trace in Ω we have

H 1(f(|γ| ∩G)) = 0.
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Proof. We write G =
⋃︁∞

k=1 Gk, where Ef (x) ≤ k for x ∈ Gk. We fix k ∈ N
and consider the function ρk given by Theorem 3.1 and corresponding to the set
X = Gk. If mn(G) = 0, then ρk = 0 a.e. by part (i). If mn(f(G)) = 0, then ρk = 0
a.e. by part (iii). In both cases, ρk = 0 a.e. By property (M4), this implies that
there exists a path family Γk of n-modulus zero such that for γ /∈ Γk we have∫︂

γ

ρk ds = 0.

Combining this with part (ii) of Theorem 3.1, we see that there exists a path family
Γ′
k with n-modulus zero such that

H 1(f(|γ| ∩Gk)) = H 1
∞(f(|γ| ∩Gk)) = 0

for all paths γ /∈ Γ′
k with trace in Ω. The desired path family is Γ0 =

⋃︁∞
k=1 Γ

′
k. □

With the aid of Corollary 3.2 one can immediately deduce Theorem 1.3 from the
following slightly more general statement.

Theorem 3.3. Let Ω ⊂ Rn be an open set and f : Ω → Rn be a topological embed-
ding. Let A,G ⊂ Ω be sets such that A ∈ CNED and assume that there exists a
path family Γ0 with Modn Γ0 = 0 such that for all paths γ /∈ Γ0 with trace in Ω we
have

H 1(f(|γ| ∩G)) = 0.

Suppose that there exists a constant H ≥ 1 such that for all x ∈ Ω \ (A ∪ G) we
have

Ef (x) ≤ H,

and for all x ∈ G we have

Ef (x) < ∞.

Then f is K-quasiconformal in Ω, for some K ≥ 1 depending only on n and H.

We finally focus on proving Theorem 3.3. We require the next lemma on maps
that are absolutely continuous along paths.

Lemma 3.4 ([Väi71, Theorem 5.3]). Let Ω ⊂ Rn be an open set, f : Ω → Rn

be a continuous map, ρf : Ω → [0,∞] be a Borel function, and γ : [a, b] → Ω be a
rectifiable path. Suppose that for every interval [s, t] ⊂ [a, b] we have

|f(γ(t))− f(γ(s))| ≤
∫︂
γ|[s,t]

ρf ds < ∞.

Then for every Borel function ρ : f(Ω) → [0,∞] we have∫︂
f◦γ

ρ ds ≤
∫︂
γ

(ρ ◦ f) · ρf ds.

A topological ring R is a bounded open set in Rn whose boundary has two
components, say F1 and F2. For a topological ring R we denote by Γ(R) the family
of curves joining F1 and F2 in R; that is, the curves of Γ(R) are contained in R,
except for the endpoints, which lie in different components of ∂R. We will use the
fact that if F is a family of curves that is closed under subpaths, then

Modn(Γ(R) ∩ F) = Modn(Γ(F1, F2;Rn) ∩ F).
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In particular, this is true if F = Fσ(A) for some set A; recall that Fσ(A) is the
family of curves meeting A at countably many points. Hence, if A ∈ CNED ,

Modn(Γ(R) ∩ Fσ(A)) = Modn(Γ(F1, F2;Rn) ∩ Fσ(A))

= Modn Γ(F1, F2;Rn) = Modn Γ(R).
(3.6)

In order to show that the map f of Theorem 3.3 is quasiconformal, we will use
the ring definition of quasiconformality as stated in the next theorem.

Theorem 3.5 ([Väi71, Theorem 36.1]). Let Ω ⊂ Rn be an open set and f : Ω → Rn

be a topological embedding. If there exists K ≥ 1 such that for each topological ring
R ⊂ R ⊂⊂ Ω we have ModΓ(R) ≤ KModΓ(f(R)), then f is K-quasiconformal.

Proof of Theorem 3.3. We apply Theorem 3.1 with X = Ω \ (A ∪ G). Denote by
Γ′
0 the union of the exceptional path families given by Theorem 3.1 (ii) and by the

statement of Theorem 3.3, and note that Modn Γ
′
0 = 0. By Theorem 3.1, there

exists a Borel function ρf : Ω → [0,∞] with ρf ∈ Ln
loc(Ω) such that for all paths

γ /∈ Γ′
0 with trace in Ω we have

H 1
∞(f(|γ| \A)) = H 1

∞(f(|γ| ∩ (Ω \ (A ∪G)))) ≤
∫︂
γ

ρf ds(3.7)

and ∫︂
V

ρnf ≤ C(n,H)mn(f(V ))

for each Borel set V ⊂ Ω. The latter implies that for every Borel function ρ : f(Ω) →
[0,∞] we have ∫︂

(ρ ◦ f) · ρnf ≤ C(n,H)

∫︂
ρ.(3.8)

By enlarging the exceptional family Γ′
0, still requiring that Modn Γ

′
0 = 0, we may

assume that it has the additional properties that∫︂
γ

ρf ds < ∞

for each γ /∈ Γ′
0 with trace in Ω and that if γ /∈ Γ′

0 then all subpaths of γ have the
same property; see properties (M2) and (M3).

Let R ⊂ R ⊂⊂ Ω be a topological ring. Let γ : [a, b] → Ω be a path in (Γ(R) ∩
Fσ(A)) \ Γ′

0. By (3.7) and the fact that every subpath of γ lies outside Γ′
0 we have

|f(γ(t))− f(γ(s))| ≤ diam(f(γ([s, t]))) = H 1
∞(f(γ([s, t])))

= H 1
∞(f(γ([s, t]) \A)) ≤

∫︂
γ|[s,t]

ρf ds < ∞

for every interval [s, t] ⊂ [a, b]. Let ρ : f(Ω) → [0,∞] be admissible for Γ(f(R)).
Then by Lemma 3.4 we have∫︂

γ

(ρ ◦ f) · ρf ds ≥
∫︂
f◦γ

ρ ds ≥ 1.
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This shows that (ρ ◦ f) · ρf is admissible for (Γ(R)∩Fσ(A)) \Γ′
0, so using (3.8), we

arrive at

Modn(Γ(R) ∩ Fσ(A)) = Modn((Γ(R) ∩ Fσ(A)) \ Γ′
0)

≤
∫︂
(ρ ◦ f)n · ρnf ≤ C(n,H)

∫︂
ρn.

We conclude that

Modn(Γ(R) ∩ Fσ(A)) ≤ C(n,H)Modn Γ(f(R)).

Finally, the assumption that A ∈ CNED and (3.6) imply that

Modn(Γ(R) ∩ Fσ(A)) = Modn Γ(R).

An application of Theorem 3.5 completes the proof. □
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[BKR07] Z. M. Balogh, P. Koskela, and S. Rogovin, Absolute continuity of quasiconformal map-

pings on curves, Geom. Funct. Anal. 17 (2007), no. 3, 645–664.

[Boj88] B. Bojarski, Remarks on Sobolev imbedding inequalities, Complex analysis, Joensuu
1987, Lecture Notes in Mathematics, Springer, Berlin, 1988, pp. 52–68.

[Geh62] F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc.
103 (1962), 353–393.

[GS09] J. Graczyk and S. Smirnov, Non-uniform hyperbolicity in complex dynamics, Invent.

Math. 175 (2009), no. 2, 335–415.
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