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Abstract. The author has recently introduced the class of CNED sets in

Euclidean space, generalizing the classical notion of NED sets, and shown
that they are quasiconformally removable. A set E is CNED if the conformal

modulus of a curve family is not affected when one restricts to the subfamily

intersecting E at countably many points. We prove that several classes of sets
that were known to be removable are also CNED , including sets of σ-finite

Hausdorff (n−1)-measure and boundaries of domains with n-integrable quasi-

hyperbolic distance. Thus, this work puts in common framework many known
results on the problem of quasiconformal removability and suggests that the

CNED condition should also be necessary for removability. We give a new

necessary and sufficient criterion for closed sets to be (C )NED. Applying this
criterion, we show that countable unions of closed (C )NED sets are (C )NED.

Therefore we enlarge significantly the known classes of quasiconformally re-
movable sets.
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1. Introduction

1.1. Definitions. Before presenting our results, we first discuss some background.
We assume throughout that n ≥ 2. For an open set U ⊂ Rn and two con-
tinua F1, F2 ⊂ U the family of curves joining F1 and F2 inside U is denoted by
Γ(F1, F2;U). For a set E ⊂ Rn we denote by F0(E) the family of curves in Rn that
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do not intersect E, except possibly at the endpoints, and by Fσ(E) the family of
curves in Rn that intersect E at countably many points, not counting multiplicity.

A set E ⊂ Rn is negligible for extremal distances if for every pair of non-empty,
disjoint continua F1, F2 ⊂ Rn we have

Modn Γ(F1, F2;Rn) = Modn(Γ(F1, F2;Rn) ∩ F0(E)).

In this case, we write E ∈ NED ; note that we suppress the dimension n in this
notation. If, instead, there exists a uniform constant M ≥ 1 such that

Modn Γ(F1, F2;Rn) ≤ M ·Modn(Γ(F1, F2;Rn) ∩ F0(E)),

we say that E is weakly NED and we write E ∈ NEDw. We remark that we do not
require E to be closed. For closed sets, the classes NED and NEDw agree [AS74].

The author in [Nta] introduced the class of CNED sets, that is, countably negli-
gible for extremal distances. We say that a set E ⊂ Rn is of class CNED if

Modn Γ(F1, F2;Rn) = Modn(Γ(F1, F2;Rn) ∩ Fσ(E))

for every pair of non-empty, disjoint continua F1, F2 ⊂ Rn. In this case we write
E ∈ CNED . As above, we also define the class CNEDw in the obvious manner.
Again, E need not be closed and the dimension n is suppressed in this notation.
For closed sets we show in Theorem 4.1 that the classes CNED and CNEDw agree.
The monotonicity of modulus implies that NED ⊂ CNED ⊂ CNEDw .

1.2. Properties of negligible sets. Closed NED sets have been studied exten-
sively in the plane by Ahlfors and Beurling in [AB50], where they proved that these
sets coincide with the closed sets E ⊂ C that are removable for conformal embed-
dings or else S-removable; that is, every conformal embedding of C \ E into C is
the restriction of a Möbius transformation. See also Pesin’s work [Pes56]. Equiva-
lently, we may replace conformal with quasiconformal maps in this definition. See
[You15] for a survey. Väisälä initiated the study of closed NED sets in higher di-
mensions [Väi62], proving that closed sets of Hausdorff (n− 1)-measure zero are of
class NED . The result of Ahlfors–Beurling was partially generalized in higher di-
mensions by Aseev–Syčev [AS74] and Vodopyanov–Goldshtein [VG77], who proved
that if a closed set E ⊂ Rn, n ≥ 3, is of class NED , then it is removable for quasi-
conformal embeddings. The converse is not known in dimensions n ≥ 3. Finally, a
characterization of closed NED sets in Rn was provided by Vodopyanov–Goldshtein
[VG77], who proved that closed NED sets coincide with sets that are removable for
the Sobolev space W 1,n. We direct the reader to the introduction of [Ase09] for a
survey of the known results. NED sets are closely related to quasiextremal distance
(QED) exceptional sets, introduced by Gehring–Martio [GM85]. As remarked, here
we will work with NED sets that are not necessarily closed.

The relation between CNED sets and quasiconformal maps was unveiled in [Nta].
We state a special case of the main theorem.

Theorem 1.1. Let E ⊂ Rn be a closed CNED set. Then every homeomorphism
of Rn that is quasiconformal on Rn \ E is quasiconformal on Rn.

In fact, in [Nta, Theorem 1.3] the set E is not assumed to be closed, in which
case the quasiconformality of f in the set Ω\E has to be interpreted appropriately,
using the metric definition or a variant.
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Closed sets E satisfying the conclusion of Theorem 1.1 are called removable
for quasiconformal homeomorphisms or else QCH-removable. The difference to S-
removable sets that we discuss above is that here we study global homeomorphisms
of Rn, instead of topological embeddings of Rn \E. Moreover, note that if a planar
set is S-removable, then it is QCH -removable. Although we have satisfactory char-
acterizations of the former sets by Ahlfors–Beurling [AB50] in dimension 2, it is a
notoriously difficult problem to characterize QCH -removable sets even in dimension
2. The current work suggests that CNED sets could provide a characterization.

There are many open problems related to QCH -removable sets, one of which
is the problem of local removability [Bis94, Question 4], [Nta19, Question 2]: if a
closed set E is QCH -removable, is it true that every topological embedding of an
open set Ω ⊊ Rn into Rn that is quasiconformal in Ω \ E, is quasiconformal in Ω?
For CNED sets an affirmative answer is provided by [Nta, Theorem 1.3].

Another open problem is whether the union of two QCH -removable closed sets
is removable [JS00]. While for disjoint sets the answer is affirmative, in general,
for intersecting sets this is known only in the cases of totally disconnected sets and
quasicircles [You16, Theorem 4]. We prove here that countable unions of closed
NED and CNED sets are NED and CNED , respectively.

Theorem 1.2. Let Ei, i ∈ N, be a countable collection of closed subsets of Rn.

(i) If Ei is NED for each i ∈ N, then
⋃︂
i∈N

Ei is NED .

(ii) If Ei is CNED for each i ∈ N, then
⋃︂
i∈N

Ei is CNED .

In the case that a countable union of closed NED sets is closed, this result follows
from the Baire category theorem [You15, Section 4]. The case of non-closed unions
is significantly more complicated, since they could even be dense. The proof is
given in Section 5 and relies on an intricate characterization of NED and CNED
sets from Section 4. We give a vague formulation of this characterization here.

Theorem 1.3. A closed set E ⊂ Rn is NED (resp. CNED) if and only if for
every n-integrable metric ρ ds, almost every path γ in Rn can be perturbed by an
arbitrarily small amount of ρ-length to avoid the set E (resp. to intersect the set E
at countably many points).

See Theorem 4.1 for a precise statement. Another application of this charac-
terization is the removability of CNED sets for continuous Sobolev functions. The
proof is given in Section 4.4.

Theorem 1.4. Let E ⊂ Rn be a closed CNED set. Then every continuous function
f : Rn → R with f ∈ W 1,n(Rn \ E) lies in W 1,n(Rn).

1.3. Examples of negligible sets. So far we understand some general classes of
QCH -removable sets. First, sets of σ-finite Hausdorff (n−1)-measure are removable
as shown by Besicovitch [Bes31] in dimension 2 and by Gehring [Geh62] in higher
dimensions. Thus, we can say that such sets are removable for rectifiability reasons.

Next, it is known that sets with good geometry, such as quasicircles, are re-
movable in dimension 2. More generally, in all dimensions, boundaries of John
domains, Hölder domains, and domains with n-integrable quasihyperbolic distance
are removable [Jon95,JS00,KN05]. Roughly speaking, all of these sets have either
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no outward cusps or some outward cusps, but not too many on average. Thus,
these sets are removable for geometric reasons.

Finally, NED sets are removable as well due to [AB50] in dimension 2 and [AS74,
VG77] in higher dimensions. Thus, one could say that NED sets are removable
because they are small in a potential theoretic sense. Note that all NED sets are
necessarily totally disconnected in dimension 2.

The three classes of sets are mutually singular in a sense. Namely, there are
rectifiable sets that have bad geometry and are large from a potential theoretic
point of view. For example, consider a rectifiable curve with a dense set of both
inward and outward cusps. Likewise, there are sets with good geometry that are
not rectifiable and are large for potential theory. As an example, take a quasicircle
of Hausdorff dimension larger than 1. Finally, there are sets that are small in
a potential theoretic sense, but are large in terms of rectifiability and have bad
geometry. For example, consider a Cantor set E ⊂ R of measure zero and Hausdorff
dimension 1, and then take the set E ×E; this is an NED set by [AB50, Theorem
10] since its projections to the coordinate directions have measure zero.

A natural question is whether one can reconcile these three different worlds. In
other words, is there a common reason for which all of the above classes of sets are
QCH -removable? We provide an affirmative answer to this question.

Theorem 1.5. The following sets are of class CNED in Rn.

(i) Sets of class NED.
(ii) Sets of σ-finite Hausdorff (n− 1)-measure.
(iii) Boundaries of domains with n-integrable quasihyperbolic distance.

The class of sets in (iii) is defined and discussed in Section 6.1, where we also
give the proof. This class includes quasicircles, boundaries of John domains, and
boundaries of Hölder domains. As discussed earlier, (i) is immediate; however,
the other conclusions are new. The technique used for the proof of (ii) allows us
to generalize a result of Väisälä [Väi62], stating that a closed set E ⊂ Rn with
Hausdorff (n− 1)-measure zero is of class NED , to non-closed sets.

Theorem 1.6. Let E ⊂ Rn be a set of Hausdorff (n− 1)-measure zero. Then E is
NED.

Theorem 1.5 (ii) and Theorem 1.6 are proved in Section 3 with the aid of the
notion of a family of curve perturbations; see Theorem 3.11. Roughly speaking,
such curve families contain almost every parallel translate of a curve and almost
every radial segment. The main theorem of that section is Theorem 3.4, which
asserts that the modulus of a curve family remains unaffected, if one restricts to
the intersection of that family with a family of curve perturbations.

Combining Theorems 1.1, 1.2, and 1.5, we obtain the next removability result.

Theorem 1.7. Let E ⊂ Rn be a closed set that admits a decomposition into count-
ably many sets Ei, i ∈ N, each of which is contained in a closed set that is either
NED, or has σ-finite Hausdorff (n − 1)-measure, or is the boundary of a domain
with n-integrable quasihyperbolic distance. Then E is CNED and QCH -removable.

We also present some further examples. We show in Theorem 6.6 that planar sets
(not necessarily closed) whose projection to each coordinate axis has measure zero
are NEDw, generalizing a result of Ahlfors–Beurling for closed sets [AB50, Theorem
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10]. Theorem 6.6 is used in the proof of Theorem 1.9 below. In Section 6.3 we
present an example of a non-measurable CNED set, constructed by Sierpiński.

The results of this paper have already found an application in the problem of

rigidity of circle domains. A connected open set Ω in the Riemann sphere ˆ︁C is a
circle domain if each boundary component of Ω is either a circle or a point. A circle
domain Ω is conformally rigid if every conformal map from Ω onto another circle

domain is the restriction of a Möbius transformation of ˆ︁C. He–Schramm [HS94]
proved that circle domains whose boundary has σ-finite Hausdorff 1-measure are
rigid. Later, Younsi and the author [NY20] proved the rigidity of circle domains
with n-integrable quasihyperbolic distance (as in Theorem 1.5 (iii)). It is conjec-
tured that rigidity of a circle domain is equivalent to QCH -removability of the
boundary. The next result incorporates all previous results and provides strong
evidence towards this conjecture.

Theorem 1.8 ([Nta23]). A circle domain is conformally rigid if every compact
subset of its point boundary components is CNED.

The proof features especially Theorem 1.2 and the characterization of CNED
sets given in Theorem 4.1.

1.4. Examples of non-negligible sets. We remark that in Theorem 1.2 we are
not requiring that the union of the closed sets Ei be closed. However, both cases
of the theorem fail without assuming that each individual set Ei is closed.

Theorem 1.9. There exist Borel NED sets E1, E2 ⊂ R2 such that E1 ∪ E2 is a
closed set that is neither NED nor CNED nor QCH -removable.

The proof is given in Section 7. One can construct a more basic example with
E1 ∪ E2 /∈ NED as follows. Tukia [Tuk89] gives an example of a set E1 ⊂ [0, 1]
of full measure that can be mapped under a quasiconformal map of C onto a set
of 1-measure zero in the real line. Note that sets of 1-measure zero are NED by
Theorem 1.6 and such NED sets are quasiconformally invariant by Corollary 4.2.
Thus, E1 is NED . Also, E2 = [0, 1] \ E1 is NED because it has measure zero.
However, E1 ∪ E2 = [0, 1], which is not totally disconnected, so it is not NED .

Compared to NED sets, it is significantly harder to produce sets that are not
CNED . For the proof of Theorem 1.9 we use tools from the existing literature,
and in particular from a work of Wu [Wu98], to construct NED sets E1 and E2

such that E1 ∪E2 is the product of a Cantor set in R with [0, 1]. Such sets are not
QCH -removable (see [Car51] or the Introduction of [Nta20]) and thus they are not
CNED by Theorem 1.1; this can be proved directly in this simple situation.

As a corollary of Theorem 1.9 and [Nta, Theorem 1.3], we obtain that unions of
exceptional sets for the metric definition of quasiconformality are not necessarily
exceptional. Here Hf denotes the metric distortion of a map f ; see [Nta].

Corollary 1.10. There exist Borel sets E1, E2 ⊂ R2 such that E1 ∪ E2 is closed
and for each i ∈ {1, 2}, every homeomorphism f of R2 with

sup
x∈R2\Ei

Hf (x) < ∞

is quasiconformal, but there exists a homeomorphism g of R2 that is quasiconformal
in R2 \ (E1 ∪ E2) and not quasiconformal in R2.
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Finally, we end the introduction with some remarks on non-removable sets. In
dimension 2 it is known that all sets of positive area are not QCH -removable
[KW96]. There are Jordan curves of Hausdorff dimension 1 that are non-removable
[Kau84,Bis94]. Moreover, if C ⊂ R is a Cantor set, then C× [0, 1] is non-removable
as we discussed above. More interestingly, Wu [Wu98] proved that if E,F ⊂ R are
Cantor sets and E /∈ NED , then E × F is non-removable; the converse is not true
since NED sets can have positive length [AB50]. More recently, the current author
studied the problem of removability for fractals with infinitely many complemen-
tary components and proved that the Sierpiński gasket and all Sierpiński carpets
are non-removable [Nta19,Nta21]. The latter result was generalized to higher di-
mensional carpets, known as Sierpiński spaces, by the author and Wu [NW20].

Gaskets and carpets fall into the general class of residual sets of packings. A
packing P in Rn is a collection of bounded, connected open sets Di, i ∈ N ∪ {0},
such that Di ⊂ D0 for every i ∈ N and Di ∩Dj = ∅ for i, j ∈ N with i ̸= j. The
residual set of the packing P is the set

D0 \
⋃︂
i∈N

Di.

We observe below that in many cases such residual sets are not CNED .

Proposition 1.11. Let P = {Di}i∈N∪{0} be a packing in Rn such that ∂Di ∩ ∂Dj

is countable for i ̸= j, i, j ∈ N ∪ {0}. Then the residual set of P is not CNED.

It was earlier observed that such residual sets in the plane can have Hausdorff
dimension 1 but not σ-finite Hausdorff 1-measure [MN22]. Proposition 1.11 covers
the Sierpiński gasket and all Sierpiński carpets.

1.5. Open problems. Based on the results of this work, it is natural to propose
the following problem, whose resolution would answer many of the open questions
related to removable sets.

Problem 1.12. Do QCH -removable sets coincide with closed CNED sets?

We also formulate a series of questions for CNED sets.

Question 1.13. If E ⊂ Rn is a closed set that is not CNED , does there exist a
homeomorphism of Rn that is quasiconformal in Rn \ E and maps E to a set of
positive n-measure?

A positive answer to this question would resolve Problem 1.12 and thus it would
also resolve among others the problems of local removability and of removability
of unions of removable sets mentioned earlier. For closed NED sets in the plane
the answer to the corresponding question is already known to be affirmative by
Ahlfors–Beurling [AB50]: if E /∈ NED , then there exists a conformal embedding
f : R2 \ E → R2 such that the complement of f(R2 \ E) has positive area.

Question 1.14. If E ⊂ Rn is a closed set that is not CNED , does there exist a
totally disconnected closed subset of E that is not CNED?

If yes, it would suffice to answer Question 1.13 for totally disconnected sets,
which could be more approachable. Note that NED sets in the plane are already
totally disconnected, so this makes the study of these sets more accessible.

Problem 1.15. Do removable sets for continuous W 1,n functions coincide with
closed CNED sets?
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This problem is motivated by Theorem 1.4. Obviously, the answer would be
positive if the answer to Problem 1.12 were positive, in which case, QCH -removable
sets would coincide with removable sets for continuous W 1,n functions. This is
another open problem discussed in [Bis94,JS00].

Acknowledgements. The author would like to thank Hrant Hakobyan and Malik
Younsi for their comments and corrections.

2. Preliminaries

2.1. Notation and definitions. We denote the Euclidean distance between points
x, y ∈ Rn by |x − y|. For x ∈ Rn and 0 ≤ r < R we denote by B(x,R) the open
ball {y ∈ Rn : |x− y| < R} and by A(x; r,R) the open ring {y ∈ Rn : r < |x− y| <
R}. The corresponding closed ball and ring are denoted by B(x, r) and A(x; r,R),
respectively. If B is an open (resp. closed) ball, then for λ > 0 we denote by λB
the open (resp. closed) ball with the same center as B and radius multiplied by λ.
We also set Sn−1(x, r) = ∂B(x, r). The open ε-neighborhood of a set E ⊂ Rn is
denoted by Nε(E).

We use the notation mn for the n-dimensional Lebesgue measure in Rn, m∗
n for

the outer n-dimensional Lebesgue measure, and
�
Rn ρ(x) dx or simply

�
ρ for the

Lebesgue integral of a Lebesgue measurable extended function ρ : Rn → [−∞,∞],
if it exists. For such a function ρ, if B is a measurable set with mn(B) ∈ (0,∞),
we define  

B

ρ =
1

mn(B)

�
B

ρ.

For simplicity, extended functions will be called functions. A non-negative function
is assumed to take values in [0,∞].

The cardinality of a set E is denoted by #E. For quantities A and B we write
A ≲ B if there exists a constant c > 0 such that A ≤ cB. If the constant c
depends on another quantity H that we wish to emphasize, then we write instead
A ≤ c(H)B or A ≲H B. Moreover, we use the notation A ≃ B if A ≲ B and
B ≲ A. As previously, we write A ≃H B to emphasize the dependence of the
implicit constants on the quantity H. All constants in the statements are assumed
to be positive even if this is not stated explicitly and the same letter may be used
in different statements to denote a different constant.

For s ≥ 0 the s-dimensional Hausdorff measure H s(E) of a set E ⊂ Rn is
defined by

H s(E) = lim
δ→0

H s
δ (E) = sup

δ>0
H s

δ (E),

where

H s
δ (E) = inf

{︃
c(s)

∞∑︂
j=1

diam(Uj)
s : E ⊂

⋃︂
j

Uj , diam(Uj) < δ

}︃
for a normalizing constant c(s) > 0 so that the n-dimensional Hausdorff measure
agrees with Lebesgue measure in Rn. Note that c(1) = 1. The quantity H s

δ (E),
δ ∈ (0,∞], is called the s-dimensional Hausdorff δ-content of E. If δ = ∞ we
simply call this quantity the s-dimensional Hausdorff content of E. A standard
fact that we will use is that

H s(E) = 0 if and only if H s
∞(E) = 0.
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We note that if E ⊂ Rn is a connected set, then (see [BBI01, Lemma 2.6.1, p. 53])

H 1(E) ≥ H 1
∞(E) = diam(E).

Lemma 2.1 ([Boj88]). Let p ≥ 1 and λ > 0. Suppose that {Bi}i∈N is a collection
of balls in Rn and ai, i ∈ N, is a sequence of non-negative numbers. Then⃦⃦⃦⃦

⃦∑︂
i∈N

aiχλBi

⃦⃦⃦⃦
⃦
Lp(Rn)

≤ c(n, p, λ)

⃦⃦⃦⃦
⃦∑︂
i∈N

aiχBi

⃦⃦⃦⃦
⃦
Lp(Rn)

.

2.2. Rectifiable paths. A path or curve is a continuous function γ : I → Rn,
where I ⊂ R is a compact interval. The trace of a path γ is the image γ(I) and will
be denoted by |γ|. The endpoints of a path γ : [a, b] → Rn are the points γ(a), γ(b)
and we set ∂γ = {γ(a), γ(b)}. We say that a path ˜︁γ is a weak subpath of a path γ
if #˜︁γ−1(x) ≤ #γ−1(x) for every x ∈ Rn. In particular, this implies that |˜︁γ| ⊂ |γ|.
A path ˜︁γ is a (strong) subpath of a path γ : I → Rn if ˜︁γ is the restriction of γ to a
closed subinterval of I. Note that a strong subpath is always a weak subpath, but
not vice versa. A path γ is simple if it is injective. Equivalently, #γ−1(x) = 1 for
each x ∈ |γ|. It is well-known that every path has a simple weak subpath with the
same endpoints [Wil70, Theorem 31.2, p. 219].

If γ is a path and E ⊂ Rn is a set, then we say that γ avoids the set E if
E ∩ |γ| = ∅ and intersects E at (e.g.) finitely many points if E ∩ |γ| is a finite set;
note that we are not taking into account the multiplicity in the latter case.

If γi : [ai, bi] → Rn, i = 1, 2, are paths such that γ1(b1) = γ2(a2), then we can
define the concatenation of the two paths to be the path γ : [a1, b2] → Rn such that
γ|[a1,b1] = γ1 and γ|[a2,b2] = γ2. If x, y ∈ Rn, then we denote the line segment from
x to y by [x, y].

The length of a path γ is the total variation of the function γ and is denoted
by ℓ(γ). A path is rectifiable if it has finite length. Let γ : [a, b] → Rn be a path
and s : [c, d] → [a, b] be an increasing or decreasing continuous surjection. Then
the path γ ◦ s : [c, d] → Rn is called a reparametrization of γ (by the function s).
Every rectifiable path γ admits a unique reparametrization ˜︁γ : [0, ℓ(γ)] → Rn by an
increasing function so that ℓ(˜︁γ|[0,t]) = t for all t ∈ [0, ℓ(γ)]. The path ˜︁γ is called
the arclength parametrization of γ.

If ρ : Rn → [0,∞] is a Borel function and γ is a rectifiable path, then one
can define the line integral

�
γ
ρ ds using the arclength parametrization of γ; see

[Väi71, Chapter 1, pp. 8–9]. Namely, if γ : [0, ℓ(γ)] → Rn is parametrized by
arclength, then �

γ

ρ ds =

� ℓ(γ)

0

ρ(γ(t)) dt.

We gather some properties of line integrals below.

Lemma 2.2. Let γ be a rectifiable path, ˜︁γ be a weak subpath of γ, and ρ : Rn →
[0,∞] be a Borel function. The following statements are true.

(i)

�
γ

ρ ds =

�
Rn

ρ(x)#γ−1(x) dH 1(x).

(ii)

�
|γ|

ρ dH 1 ≤
�
γ

ρ ds with equality if γ is simple.
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(iii)

�
˜︁γ ρ ds ≤

�
γ

ρ ds.

(iv) If G ⊂ Rn is a Borel set such that H 1(G ∩ |γ|) = 0, then
�
γ

ρ ds =

�
γ

ρχRn\G ds.

In particular, the above statements hold for ρ = 1, in which case

�
γ

ρ ds = ℓ(γ).

Proof. Part (i) follows from [Fed69, Theorem 2.10.13, p. 177]. The inequality and
equality in (ii) follow from (i). Since ˜︁γ is a weak subpath of γ, we have #˜︁γ−1(x) ≤
#γ−1(x). Thus (i) implies (iii). Part (iv) also follows from (i) upon observing that
χRn\G(x)#γ−1(x) = #γ−1(x) for x /∈ G ∩ |γ| and thus for H 1-a.e. x ∈ Rn. □

2.3. Modulus. Let Γ be a family of curves in Rn. A Borel function ρ : Rn → [0,∞]
is admissible for the path family Γ if

�
γ

ρ ds ≥ 1

for all rectifiable paths γ ∈ Γ. For p ≥ 1 we define the p-modulus of Γ as

Modp Γ = inf
ρ

�
ρp,

where the infimum is taken over all admissible functions ρ for Γ. By convention,
Modp Γ = ∞ if there are no admissible functions for Γ. Note that unrectifiable
paths do not affect modulus. Hence, we will assume that families of p-modulus
zero appearing in the next considerations contain all unrectifiable paths. We will
use the following standard facts about modulus:

(M1) The modulus Modp is an outer measure in the space of all curves in Rn. In
particular, it obeys the monotonicity and countable subadditivity laws.

(M2) If every path of a family Γ1 has a subpath lying in a family Γ2, then
Modp Γ1 ≤ Modp Γ2.

(M3) If Γ0 is a path family with Modp Γ0 = 0, then the family of paths γ that
have a weak subpath in Γ0 also has n-modulus zero (by Lemma 2.2 (iii)).
Moreover, the family of paths that have a reparametrization contained in
Γ0 also has p-modulus zero.

(M4) If ρ : Rn → [0,∞] is a Borel function with ρ = 0 a.e., then for the family
Γ0 of paths γ with

�
γ
ρ ds > 0 we have Modn Γ0 = 0.

(M5) The modulus Modp obeys the serial law: if Γi, i ∈ N, are curve families
supported in disjoint Borel sets, then

Modp

(︄ ∞⋃︂
i=1

Γi

)︄
≥

∞∑︂
i=1

Modp Γi.

(M6) Let E ⊂ Rn be a set with mn(E) = 0. Let Γ0 be the family of paths γ such
that H 1(|γ| ∩ E) > 0. Then Modp Γ0 = 0.

(M7) For p = n the modulus Modn is invariant under conformal maps.



10 DIMITRIOS NTALAMPEKOS

(M8) Let Γ = Γ(A(x; r,R)) be the family of curves in Rn joining the boundary
components of the ring A(x; r,R). Then

Modn Γ = ωn−1

(︃
log

R

r

)︃1−n

.

Here ωn−1 is the area of the unit sphere in Rn. See [Väi71, Chapter 1] and [HKST15,
Sections 5.2–5.3] for more details about modulus and proofs of these facts.

For a path γ : I → Rn and x ∈ Rn we define γ+x to be the path I ∋ t ↦→ γ(t)+x.

Lemma 2.3. Let Γ be a family of paths in Rn with Modp Γ = 0.

(i) For each rectifiable path γ and for a.e. x ∈ Rn we have γ + x /∈ Γ.
(ii) For each line segment L parallel to a direction v ∈ Rn and for H n−1-a.e.

x ∈ {v}⊥ we have L+ x /∈ Γ.
(iii) For each x ∈ Rn and w ∈ Sn−1(0, 1) define γw(t) = x + tw, t ≥ 0. Then

for 0 < r < R we have γw|[r,R] /∈ Γ for H n−1-a.e. w ∈ Sn−1(0, 1).

Proof. For each ε > 0 there exists a function ρ that is admissible for Γ with
�
ρp < ε.

For (i), let γ be a rectifiable path in Rn, parametrized by arclength. Let r > 0
and Gr be the set of x ∈ B(0, r) such that γ + x ∈ Γ. We also fix R > 0 such
that |γ + x| ⊂ B(0, R) whenever x ∈ B(0, r). Then by Chebychev’s inequality and
Fubini’s theorem we have

m∗
n(Gr) ≤ mn

(︃{︃
x ∈ B(0, r) :

�
γ+x

ρ ds ≥ 1

}︃)︃
≤
�
B(0,r)

� ℓ(γ)

0

ρ(γ(t) + x) dtdx

=

� ℓ(γ)

0

�
B(0,r)

ρ(γ(t) + x) dxdt ≤ ℓ(γ)∥ρ∥L1(B(0,R)).

As ε → 0, we have ∥ρ∥Lp(B(0,R)) → 0, so ∥ρ∥L1(B(0,R)) → 0. This shows that
mn(Gr) = 0 for all r > 0. Thus, γ + x /∈ Γ for a.e. x ∈ Rn.

For part (ii), let Gr be the set of x ∈ B(0, r) ∩ {v}⊥ such that L+ x ∈ Γ. Then

H n−1(Gr) ≤ H n−1

(︃{︃
x ∈ B(0, r) ∩ {v}⊥ :

�
L+x

ρ ds ≥ 1

}︃)︃
≤ ∥ρ∥L1(D),

where D is the cylinder of radius r with axis L. We now let ε → 0 as above.
Finally, for (iii), let G be the set of w ∈ Sn−1(0, 1) such that γw|[r,R] ∈ Γ. Then,

using polar integration we have

H n−1(G) ≤ H n−1

(︄{︄
w ∈ Sn−1(0, 1) :

�
γw|[r,R]

ρ ds ≥ 1

}︄)︄

≤
�
Sn−1(0,1)

� R

r

ρ(x+ tw) dtdH n−1(w) ≲n r−n+1∥ρ∥L1(B(x,R)).

As before, we let ε → 0 to obtain the conclusion. □

2.4. Elementary properties of NED and CNED sets. We first recall the def-
initions. For an open set U ⊂ Rn and for any two closed sets F1, F2 ⊂ Rn the
family of curves joining F1 and F2 inside U is denoted by Γ(F1, F2;U). In other
words, this family contains the curves γ : [a, b] → U with γ(a) ∈ F1, γ(b) ∈ F2, and
γ((a, b)) ⊂ U . For a set E ⊂ Rn we denote by F0(E) the family of curves in Rn

that do not intersect E, except possibly at the endpoints; that is, F0(E) contains
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the curves γ : [a, b] → Rn such that |γ| \ γ({a, b}) does not intersect E. Moreover,
we define Fσ(E) to be the family of curves in Rn that intersect E in countably
many points; that is, the set E ∩ |γ| is countable (finite or infinite).

Let E ⊂ Rn be a set and Ω ⊂ Rn be an open set. The set E lies in NED(Ω) if
for every pair of non-empty, disjoint continua F1, F2 ⊂ Ω we have

Modn Γ(F1, F2; Ω) = Modn(Γ(F1, F2; Ω) ∩ F0(E)).

If we have instead

Modn Γ(F1, F2; Ω) ≤ M ·Modn(Γ(F1, F2; Ω) ∩ F0(E))

for a uniform constant M ≥ 1, then E lies in NEDw(Ω). A set E ⊂ Rn lies in
CNED(Ω) and CNEDw(Ω) if the above equality and inequality, respectively, hold
with Fσ(E) in place of F0(E). In the case that Ω = Rn, we simply use the notation
NED , NEDw, CNED , and CNEDw.

We will use the notation ∗NED(Ω) and F∗(E) for NED(Ω) or CNED(Ω) and for
F0(E) or Fσ(E), respectively. Similarly, we will use the notation ∗NEDw(Ω) for
NEDw(Ω) or CNEDw(Ω). By the monotonicity of modulus, if E ∈ ∗NED(Ω) (resp.
∗NEDw(Ω)) and F ⊂ E, then F lies in ∗NED(Ω) (resp. ∗NEDw(Ω)). Moreover,
if E ∈ ∗NEDw(Ω), it is immediate that E ∩ Ω must have empty interior.

A set is non-degenerate if it contains more than one points. For two non-
degenerate sets F1, F2 ⊂ Rn we define the relative distance ∆(F1, F2) by

∆(F1, F2) =
dist(F1, F2)

min{diam(F1),diam(F2)}
.

Lemma 2.4. Let E ⊂ Rn be a set with the following property. There exist constants
t, ϕ > 0 such that for each x0 ∈ Rn there exists r0 > 0 with the property that for
every pair of non-degenerate, disjoint continua F1, F2 ⊂ B(x0, r0) with ∆(F1, F2) ≤
t we have

Modn(Γ(F1, F2;Rn) ∩ F∗(E)) ≥ ϕ.

If, in addition, E is Lebesgue measurable, then mn(E) = 0.

Proof. Since E is measurable, it differs from a Borel subset by a set of measure
zero. Note also that the family F∗(E) increases when we pass to a subset of E.
Thus, we assume that E is Borel itself. Suppose that mn(E) > 0 and that x0 is a
Lebesgue density point of E. Let r0 be as in the assumption and consider r < r0.
Define F1 = ∂B(x0, r) and F2 = ∂B(x0, ar), where a ∈ (0, 1) is chosen so that

∆(F1, F2) =
1− a

2a
≤ t.

Consider the function

ρ(x) =
1

|x− x0| log(a−1)
χA(x0;ar,r)

(x).

Then ρ is admissible for Γ(F1, F2;Rn); see for example [Hei01, 7.14, pp. 52–53]. We
set ρ1 = ρχRn\E , which is Borel measurable. If γ is a curve in Γ(F1, F2;Rn)∩F∗(E),

then γ intersects E at countably many points, so by Lemma 2.2 (iv) we have�
γ

ρ1 ds =

�
γ

ρ ds ≥ 1.
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Hence, ρ1 is admissible for Γ(F1, F2;Rn) ∩ F∗(E). We conclude that

ϕ ≤ Modn(Γ(F1, F2;Rn) ∩ F∗(E)) ≤
�
Rn\E

ρn ≤ mn(B(x0, r) \ E)

(log(a−1))nanrn
.

Letting r → 0 contradicts the assumption that x0 is a density point of E. □

Lemma 2.5. Let Ω ⊂ Rn be an open set and E ⊂ Ω be a set with E ∈ ∗NEDw(Ω).

(i) If E ⊂ Ω, then E satisfies the assumption of Lemma 2.4.
(ii) If E is Lebesgue measurable, then mn(E) = 0.

It was proved in [Väi62, Theorem 1] that closed NED sets have measure zero.
However, we remark that there exists a non-measurable set, constructed by Sierpiń-
ski for a different purpose, that is of class CNED ; see the discussion in Section 6.3.

Proof. Let E ⊂ Ω as in (i). If x0 /∈ E, there exists a ball B(x0, r0) ⊂ Rn \ E. For
any pair of non-degenerate, disjoint continua F1, F2 ⊂ B(x0, r0) we have

Modn(Γ(F1, F2;Rn) ∩ F∗(E)) ≥ Modn Γ(F1, F2;B(x0, r0))

by the monotonifity of modulus. If x0 ∈ E, consider a ball B(x0, r0) ⊂ Ω. Since
E ∈ ∗NEDw(Ω), there exists a uniform constant M ≥ 1 such that for F1, F2 ⊂
B(x0, r0) as above, we have

Modn(Γ(F1, F2;Rn) ∩ F∗(E)) ≥ Modn(Γ(F1, F2; Ω) ∩ F∗(E))

≥ M−1 ·Modn Γ(F1, F2; Ω)

≥ M−1 ·Modn Γ(F1, F2;B(x0, r0)).

Each open ball in Euclidean space is a Loewner space [Hei01, Example 8.24 (a),
p. 65], so the latter modulus is uniformly bounded from below, provided that
∆(F1, F2) ≤ 1. Therefore the assumption of Lemma 2.4 is satisfied.

For (ii), note that each closed set K ⊂ E is contained in Ω, lies in ∗NEDw(Ω),
and by part (i) satisfies the assumption of Lemma 2.4. By Lemma 2.4, mn(K) = 0.
Since E is measurable, mn(E) = 0. □

2.5. Comparison to classical definition of NED sets. According to the clas-
sical definition, a closed set E ⊂ Rn is NED if for every pair of non-empty, disjoint
continua F1, F2 ⊂ Rn \ E we have

Modn Γ(F1, F2;Rn) = Modn Γ(F1, F2;Rn \ E) = Modn(Γ(F1, F2;Rn) ∩ F0(E)).

In our definition, we required the stronger condition that the above equality holds
for all disjoint continua F1, F2 ⊂ Rn regardless of whether they intersect the set
E. The reason for allowing such a generality in our approach is that we impose no
topological assumptions on E, which could be even dense in Rn; therefore it would
be too restrictive and unnatural to work with continua F1, F2 ⊂ Rn \ E.

We show that the two definitions agree. The proof relies on some results relating
n-modulus with n-capacity. Let U ⊂ Rn be an open set and F1, F2 ⊂ U be disjoint
continua. The n-capacity of the condenser (F1, F2;U) is defined as

Capn(F1, F2;U) = inf
u

�
U

|∇u|n,

where the infimum is taken over all functions u that are continuous in U ∪F1 ∪F2,
ACL in U [Väi71, Section 26, p. 88], with u = 0 in a neighborhood of F1 and
u = 1 in a neighborhood of F2 [Hes75, Theorem 3.3]. Equivalently, one can replace



CNED SETS: COUNTABLY NEGLIGIBLE FOR EXTREMAL DISTANCES 13

in this definition continuous ACL functions with the Dirichlet space L1,n(U) of
locally integrable functions in U with distributional derivatives of first order lying
in Ln(U). It has been shown by Hesse [Hes75, Theorem 5.5] that whenever F1, F2

are continua in U (specifically, not intersecting ∂U), then

Capn(F1, F2;U) = Modn Γ(F1, F2;U).

This result was generalized to the case that F1, F2 ⊂ U , provided that U is a QED
domain, by Herron–Koskela [HK90]; see also the work of Shlyk [Shl93] for a more
general result. By definition, a connected open set U ⊂ Rn is a QED domain if
there exists a constant M ≥ 1 such that

Modn Γ(F1, F2;Rn) ≤ M ·Modn Γ(F1, F2;U)

for all pairs of non-empty, disjoint continua F1, F2 ⊂ U .
Suppose that E is an NED set according to the classical definition. Then U =

Rn \ E is a QED domain, whose closure is Rn; classical NED sets have empty
interior [Väi62]. Thus, the result of Herron–Koskela gives

Capn(F1, F2;Rn \ E) = Modn Γ(F1, F2;Rn \ E)

for all non-empty, disjoint continua F1, F2 ⊂ Rn. Summarizing, in order to show
the equivalence of the classical definition to the current one, it suffices to show that

Capn(F1, F2;Rn) = Capn(F1, F2;Rn \ E)

for all non-empty, disjoint continua F1, F2 ⊂ Rn. Observe that this equality already
holds if F1, F2 ⊂ Rn \ E. Hence, E is removable for n-capacity, in the sense of
Vodopyanov–Goldshtein [VG77]. By [VG77, Theorem 3.1, p. 46], such sets coincide
with the sets that are removable for the Dirichlet space L1,n. That is, mn(E) = 0
and if u ∈ L1,n(Rn \ E), then u ∈ L1,n(Rn) and the distributional derivatives of u
are the same in both spaces. Now, let F1, F2 be any non-empty, disjoint continua
in Rn; in particular, they might intersect the set E, as in the current definition of
NED sets. We trivially have

Capn(F1, F2;Rn \ E) ≤ Capn(F1, F2;Rn).

Since E is removable for the Dirichlet space L1,n, we also have the reverse inequality,
completing the proof.

3. Families of curve perturbations

Let F be a path family in Rn. We define ∂F to be the set of points x ∈ Rn that
are endpoints of some path of F and x /∈ |γ| \ ∂γ for any path γ ∈ F . In other
words, ∂F contains endpoints of paths in F that are not interior points of any path
of F . For example, if F is the family Γ(F1, F2;U), where U is a ring A(0; r,R) and
F1, F2 are the boundary components of U , then ∂F = F1 ∪F2. Another example is
the family F0(E) for some set E ⊂ Rn; recall its definition from Section 2.4. Then,
∂F0(E) ⊃ E. Indeed, every point x ∈ E can be considered as a constant path in
F0(E); recall that paths of F0(E) can have endpoints in E. Moreover, if x ∈ E,
then x /∈ |γ| \ ∂γ for any γ ∈ F0(E); thus x ∈ ∂F0(E).

Definition 3.1. We say that a path family F in Rn is a family of curve perturba-
tions, or else, a P -family, if

(P1) for all non-constant rectifiable paths γ in Rn we have γ + x ∈ F for a.e.
x ∈ Rn,
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(P2) for every x ∈ Rn and r > 0, the radial segment t ↦→ x+ tw, 0 ≤ t ≤ r, lies
in F for H n−1-a.e. w ∈ Sn−1(0, 1),

(P3) F is closed under strong subpaths and reparametrizations, and
(P4) if two paths γ1, γ2 ∈ F have a common endpoint that does not lie in ∂F ,

then the concatenation of γ1 with γ2 on that endpoint lies in F .

Property (P4) holds always for families that are closed under concatenations; for
example the family Fσ(E) of curves intersecting a given set E at countably many
points is such. The reason for requiring that the common endpoint of γ1 and γ2
does not lie in ∂F is that we wish to accommodate curve families such as F0(E),
which contains paths that do not intersect E except possibly at the endpoints. Since
∂F0(E) ⊃ E, we remark that F0(E) always satisfies (P4). Finally, we note that
(P3) always holds for F0(E) and Fσ(E). We summarize these remarks below.

Remark 3.2. Properties (P3) and (P4) always hold for the families F0(E) and
Fσ(E), for each E ⊂ Rn.

Lemma 3.3. The intersection of countably many P -families Fi, i ∈ N, is again a
P -family.

Proof. Let F =
⋂︁

i∈N Fi. Properties (P1), (P2), and (P3) are immediate for F . For
(P4), note that every constant path in Rn lies in Fi for each i ∈ N; this follows by
combining (P2) with (P3). Thus, if x ∈ ∂Fi for some i ∈ N, then x is the endpoint
of a (constant) path in F . Moreover, x /∈ |γ| \ ∂γ for any path γ of Fi ⊃ F , so⋃︂

i∈N
∂Fi ⊂ ∂F .

Now, if γ1, γ2 ∈ F have a common endpoint that does not lie in ∂F , then it also
does not lie in ∂Fi for any i ∈ N. Hence, by (P4), the concatenation of γ1 with γ2
lies in Fi for each i ∈ N. This proves that (P4) holds for F . □

In Section 3.2 we will see important examples of such families. Specifically, if
H n−1(E) = 0, then the family F0(E) is a P -family and if E has σ-finite Hausdorff
(n− 1)-measure, then Fσ(E) is a P -family.

3.1. The invariance theorem. The main result of the section states that n-
modulus is not affected if we restrict a path family to a P -family.

Theorem 3.4. Let F be a family of curve perturbations in Rn. Then for every
open set U ⊂ Rn and all pairs of non-empty, disjoint continua F1, F2 ⊂ U we have

Modn Γ(F1, F2;U) = Modn(Γ(F1, F2;U) ∩ F)

We first establish several auxiliary results.

Lemma 3.5. Let F be a family of curve perturbations in Rn. Let A = A(0; r,R),
0 < 7r ≤ R, and F1, F2 ⊂ Rn be disjoint continua such that every sphere Sn−1(0, ρ),
r < ρ < R, intersects both F1 and F2. Then

Modn(Γ(F1, F2;A) ∩ F) ≥ c(n) log

(︃
R

r

)︃
.

The statement is also true for r < R < 7r but we do not prove this for the sake
of brevity. The statement without restricting to the family F is classical and can
be found in [Väi71, Theorem 10.12, p. 31]. Our proof relies on the next lemma.
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Figure 1

Lemma 3.6 ([KK00, Lemma 2.1]). Let u : Rn → [0,∞] be a Borel function and
F ⊂ Rn be a continuum. Suppose that for each y ∈ F there exists a set Dy ⊂
Sn−1(y, 1) with H n−1(Dy) ≥ a > 0 for some a > 0 such that�

[y,w]

u ds ≥ 1

for each w ∈ Dy. Then �
Rn

un ≥ c(n, a) diam(F ).

Proof of Lemma 3.5. We will first prove the statement for R = 7r. We will perform
several normalizations and reductions. By applying a scaling, we may assume that
r = 1; note that n-modulus is unaffected by scaling and that the family F is
mapped to a possibly different family of curve perturbations, which we denote by
F for simplicity. There exist closed ballsBi = B(zi, 1/2) with zi ∈ Fi∩Sn−1(0, 9/2),
and disjoint continua F ′

i ⊂ Fi ∩Bi with diam(F ′
i ) ≥ 1/2 for i = 1, 2. We will find a

uniform lower bound for Modn(Γ(F
′
1, F

′
2;A) ∩ F), which will give a uniform lower

bound for Modn(Γ(F1, F2;A)∩F) by the monotonicity of modulus. From now on,
we denote F ′

i by Fi, i = 1, 2, for simplicity.
By applying an isometry, we assume that B1 and B2 are symmetric with respect

to the hyperplane Rn−1 ×{0} and their centers have non-negative first coordinate.
The choice of the balls and of the normalization is such that for all points w in the
(n− 1)-dimensional disk S = B((6, 0, . . . , 0), 1) ∩ ({6} × Rn−1) and for all y ∈ Bi,
i = 1, 2, the segment [y, w] lies in the original ring A; see Figure 1.

We remark that 1/2 ≤ diam(Fi) ≤ 1, diam(S) = 2, and 1 ≤ dist(Fi, S) ≤ 14 =
2R for i = 1, 2. Thus, diam(S) ≃ diam(Fi) ≃ dist(Fi, S) ≃ 1. For y ∈ F1, w ∈ S,
and z ∈ F2 consider the concatenation γ(y, w, z) of the line segments [y, w] and
[w, z]. Note that γ(y, w, z) ⊂ A and γ(y, w, z) ∈ Γ(F1, F2;A) ∩ F for each y ∈ F1,
z ∈ F2, and a.e. w ∈ S, by the properties of a P -family. Indeed, (P2) and (P3)



16 DIMITRIOS NTALAMPEKOS

imply that for a.e. w ∈ S the segments [y, w] and [w, z] lie in F . Moreover, the
same properties imply that a.e. w ∈ S does not lie in ∂F . Hence, by (P4), the
concatenation of the segments [y, w] and [w, z] lies in F .

For each fixed y ∈ Fi consider the map S ∋ w ↦→ Φy(w) = w−y
|w−y| . By the

relative position of y and S, this map is uniformly bi-Lipschitz. Thus, if S′ ⊂ S
and H n−1(S′) ≥ a for some a > 0, then H n−1(Φy(S

′)) ≳n a. We note that the
implicit constants are independent of the point y ∈ Fi.

Now, let ρ be an admissible function for Γ(F1, F2;A) ∩ F . We have�
γ(y,w,z)

ρ ds ≥ 1

for all y ∈ F1, z ∈ F2 and a.e. w ∈ S. Suppose that for each y ∈ F1 there exists
Sy ⊂ S with H n−1(Sy) ≥ 1

2H n−1(S) such that we have�
[y,w]

ρ ds ≥ 1/2

for all w ∈ Sy. Then for the set Dy = Φy(Sy) we have H n−1(Dy) ≳n 1. Lemma
3.6 now implies that �

ρn ≳n 1.

The other case is that there exists y ∈ F1 such that there exists a subset S′ of S
with H n−1(S′) ≥ 1

2H n−1(S), and�
[y,w]

ρ ds < 1/2

for each w ∈ S′. This implies that for each z ∈ F2 and for a.e. w ∈ S′ we have�
[z,w]

ρ ds ≥ 1/2.

As before, Lemma 3.6 gives that �
ρn ≳n 1.

Therefore, we have shown that

Modn(Γ(F1, F2;A) ∩ F) ≥ c(n) > 0

for a uniform constant c(n) depending only on n, whenever R = 7r.
In the general case, let k ∈ N be the largest integer such that R ≥ 7kr. Consider

the rings Ai = A(0; 7i−1r, 7ir), i ∈ {1, . . . , k}. By the serial law (M5), we have

Modn(Γ(F1, F2;A) ∩ F) ≥
k∑︂

i=1

Modn(Γ(F1, F2;Ai) ∩ F) ≳n k ≳n log(R/r). □

Lemma 3.7. Let x ∈ Rn, R > 0, and ρ : Rn → [0,∞] be a Borel function with
ρ ∈ Ln(Rn).

(i) For M > 0, let ΓM be the family of paths γ that intersect the ball B(x,R)
and satisfy ℓ(γ) > MR. Then Modn ΓM → 0 as M → ∞.
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(ii) Let Γ be a path family with Modn Γ > a for some a > 0 such that each path
γ ∈ Γ intersects the ball B(x,R). Then there exists a path γ ∈ Γ with

�
γ

ρ ds ≤ c(n, a)

(︄�
B(x,c(n,a)R)

ρn

)︄1/n

and ℓ(γ) ≤ c(n, a)R.

Proof. Both statements are conformally invariant. Hence, using a conformal trans-
formation, we may assume that x = 0 and R = 1. For M > 1, the family ΓM is
contained in the union of the families

Γ1 = {γ : ℓ(γ) > M and |γ| ⊂ B(0,
√
M)},

Γ2 = {γ : |γ| ∩ ∂B(0, 1) ̸= ∅ and |γ| ∩ ∂B(0,
√
M) ̸= ∅}.

By the subadditivity of modulus, it suffices to show that Modn Γi converges to
0 as M → ∞ for i = 1, 2. The function M−1χB(0,

√
M) is admissible for Γ1,

so Modn Γ1 ≤ c(n)M−n/2. The modulus of Γ2 is given by the explicit formula

Modn Γ2 = c(n)(log
√
M)1−n;see property (M8). This proves part (i).

Now we prove (ii). Let M = M(n, a) be sufficiently large, so that Modn ΓM <
a/2. Define ρ1 = ρχB(0,M+1) and let Γ1 be the family of paths γ ∈ Γ such that

�
γ

ρ1 ds > 21/na−1/n∥ρ1∥Ln(Rn).

Then the function

2−1/na1/n∥ρ1∥−1
Ln(Rn)ρ1

is admissible for Γ1, provided that ∥ρ1∥Ln(Rn) ̸= 0, in which case we have Modn Γ1 ≤
a/2. If ∥ρ1∥Ln(Rn) = 0, then Modn Γ1 = 0 by property (M4). Also, let Γ2 be the
family of paths γ ∈ Γ such that ℓ(γ) > M , so Modn Γ2 ≤ Modn ΓM < a/2. By the
subadditivity of modulus we have Modn(Γ1 ∪ Γ2) < a < Modn Γ. It follows that
Γ \ (Γ1 ∪ Γ2) has positive modulus, and in particular it is non-empty. Thus, there
exists a path γ ∈ Γ with ℓ(γ) ≤ M and�

γ

ρ1 ds ≤ 21/na−1/n∥ρ1∥Ln(Rn).

Finally, note that |γ| ⊂ B(0,M + 1) since |γ| ∩B(0, 1) ̸= ∅ and ℓ(γ) ≤ M . Thus,�
γ

ρ ds =

�
γ

ρ1 ds,

which completes the proof, with c(n, a) = max{M(n, a) + 1, 21/na−1/n}. □

For a continuum F ⊂ Rn and r > 0 we define F r to be the continuum F +
B(0, r) = {x+ y : x ∈ F, y ∈ B(0, r)}.

Lemma 3.8. Let F be a family of curve perturbations in Rn. Then for every open
set U ⊂ Rn and all pairs of non-empty, disjoint continua F1, F2 ⊂ U we have

Modn(Γ(F1, F2;U) ∩ F) = lim
r→0

Modn(Γ(F
r
1 , F

r
2 ;U) ∩ F).

Our proof relies on the properties of P -families, which is a new concept, but the
main ideas originate in the proof of [Väi62, Lemma 2].
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Proof. Note that Γ(F1, F2;U) ∩ F ⊂ Γ(F r
1 , F

r
2 ;U) ∩ F for every r > 0, so one

inequality is immediate. Also, if Fi is a point x0 for some i = 1, 2, then there exists
R > 0 such that by properties (M2) and (M8) we have

Modn(Γ(F
r
1 , F

r
2 ;U) ∩ F) ≤ Modn Γ(A(x0; r,R)) = c(n)

(︃
log

R

r

)︃1−n

for all sufficiently small r > 0. Taking r → 0, we obtain the desired conclusion.
We suppose that diam(Fi) > 0 for i = 1, 2. Let ρ ∈ Ln(Rn) be admissible for

Γ(F1, F2;U) ∩ F . We will show that for each q < 1 we have�
γ

ρ ds ≥ q

for all sufficiently small r > 0 and γ ∈ Γ(F r
1 , F

r
2 ;U) ∩ F . This will imply that

lim sup
r→0

Modn(Γ(F
r
1 , F

r
2 ;U) ∩ F) ≤ q−n

�
ρn.

Letting q → 1 and then infimizing over ρ gives the desired

lim sup
r→0

Modn(Γ(F
r
1 , F

r
2 ;U) ∩ F) ≤ Modn(Γ(F1, F2;U) ∩ F).

Arguing by contradiction, assume that there exists 0 < q < 1 and rk → 0+ such
that for each k ∈ N there exists a path γrk ∈ Γ(F rk

1 , F rk
2 ;U) ∩ F with�

γrk

ρ ds < q < 1.

By passing to a subpath, we assume in addition that |γrk | is disjoint from F1 ∪ F2;

here we use property (P3). We fix R0 > 0 such that FR0
i ⊂ U , diam(Fi) > 2R0

for i = 1, 2, and FR0
1 ∩ FR0

2 = ∅. For each rk < R0 and i = 1, 2, there exists
xi,k ∈ Fi such that |γrk | connects the boundary components of the ring Ai,k =
A(xi,k; rk, R0). Note that Fi also connects the boundary components of the ring
Ai,k, since diam(Fi) > diam(Ai,k). By passing to a further subpath, we assume in
addition that the endpoints of γrk lie in the inner boundary components of Ai,k.

We fix ε = (1− q)/2 > 0. By Lemma 3.5 we have that if rk < R0/8, then

Modn(Γ(|γrk |, Fi;Ai,k) ∩ F) ≥ c(n) log(R0/rk) ≳n 1.

Lemma 3.7 (ii) implies that if rk is sufficiently small, depending on ε, then there
exists a path γi ∈ Γ(|γrk |, Fi;Ai,k) ∩ F such that

�
γi

ρ ds ≤ c(n)

(︄�
B(xi,k,c(n)rk)

ρn

)︄1/n

< ε.

We concatenate γi, i = 1, 2, with a suitable subpath of γrk ; note that the endpoint
of γi that lies in |γrk | is not in ∂F because it is an interior point of a path of
F . By property (P4), the concatenation lies in F . In this way, we obtain a path
γ ∈ Γ(F1, F2;U) ∩ F such that�

γ

ρ ds ≤
�
γrk

ρ ds+

�
γ1

ρ ds+

�
γ2

ρ ds < q + 2ε = 1.

This contradicts the admissibility of ρ. □
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Remark 3.9. From the proof we see that Lemma 3.8 is valid more generally for
families F satisfying (P3), (P4), and the conclusion of Lemma 3.5 (or a variant of
it, such as Lemma 6.7, which uses rectangular instead of spherical rings). Recall
that F∗(E) always satisfies (P3) and (P4); see Remark 3.2.

Our ultimate preliminary result before the proof of Theorem 3.4 is the following
theorem, which is a version of the Lebesgue differentiation theorem for line integrals.

Theorem 3.10. Let ρ : Rn → [−∞,∞] be a Borel function with ρ ∈ Lp
loc(Rn) for

some p > 1. Then there exists a path family Γ0 with Modp Γ0 = 0 such that for
every rectifiable path γ /∈ Γ0 we have

�
γ
|ρ| ds < ∞ and

lim
r→0

 
B(0,r)

�
γ+x

ρ ds =

�
γ

ρ ds.(3.1)

Proof. By the subadditivity of modulus, it suffices to prove the statement for paths
γ contained in a compact set. Thus, we may assume that ρ ∈ Lp(Rn). Note
that

�
γ
|ρ| ds < ∞ for all paths γ outside a curve family of p-modulus zero. For

continuous functions ρ with compact support (3.1) is trivially true for all rectifiable
paths, by uniform continuity. For the general case, for fixed λ > 0 consider the
family Γλ of rectifiable paths γ with

�
γ
|ρ| ds < ∞ and

lim sup
r→0

⃓⃓⃓⃓
⃓
 
B(0,r)

�
γ+x

ρ ds−
�
γ

ρ ds

⃓⃓⃓⃓
⃓ > λ.

It suffices to show that Modp Γλ = 0 for each λ > 0. Let ϕ be a continuous function
with compact support. Then, Γλ ⊂ Γ1 ∪ Γ2, where Γ1 is the family of rectifiable
paths γ with

lim sup
r→0

 
B(0,r)

�
γ+x

|ρ− ϕ| ds > λ/2

and Γ2 is the family of rectifiable paths γ with�
γ

|ρ− ϕ| ds > λ/2.

We note that
Modp Γ2 ≤ 2pλ−p∥ρ− ϕ∥pLp(Rn).

Moreover, if γ is parametrized by arclength, we have
 
B(0,r)

(︃�
γ+x

|ρ− ϕ| ds
)︃
dx =

� ℓ(γ)

0

(︄ 
B(γ(t),r)

|ρ− ϕ|

)︄
dt ≤

�
γ

M(ρ− ϕ) ds,

where M(·) denotes the centered Hardy–Littlewood maximal function. Hence,�
γ

M(ρ− ϕ) ds > λ/2

for γ ∈ Γ1. The Hardy–Littlewood maximal Lp-inequality [Zie89, Theorem 2.8.2,
p. 84] implies that

Modp Γ1 ≤ 2pλ−p∥M(ρ− ϕ)∥pLp(Rn) ≤ c(n, p)2pλ−p∥ρ− ϕ∥pLp(Rn).

Altogether,

Modp Γλ ≤ Modp Γ1 +Modp Γ2 ≲n,p,λ ∥ρ− ϕ∥pLp(Rn)
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Since ϕ was arbitrary, we conclude that Modp Γλ = 0, as desired. □

Proof of Theorem 3.4. By the monotonicity of modulus, it suffices to prove that

Modn Γ(F1, F2;U) ≤ Modn(Γ(F1, F2;U) ∩ F).

By Lemma 3.8, it suffices to prove that

Modn Γ(F1, F2;U) ≤ Modn(Γ(F
r
1 , F

r
2 ;U) ∩ F)

for all sufficiently small r > 0. We fix r > 0 so that F r
1 , F

r
2 ⊂ U . Let ρ : Rn → [0,∞]

be an admissible function for Γ(F r
1 , F

r
2 ;U) ∩ F with ρ ∈ Ln(Rn). Consider the

curve family Γ0 with Modn Γ0 = 0, given by Theorem 3.10 and corresponding to
ρ. Let γ ∈ Γ(F1, F2;U) \ Γ0 be a rectifiable path. Since F is a family of curve
perturbations, by (P1), for a.e. x ∈ B(0, r) we have γ+x ∈ Γ(F r

1 , F
r
2 ;U)∩F . Now,

the admissibility of ρ for Γ(F r
1 , F

r
2 ;U)∩F and Theorem 3.10 imply that

�
γ
ρ ds ≥ 1,

so ρ is admissible for Γ(F1, F2;U) \ Γ0. Therefore,

Modn Γ(F1, F2;U) = Modn(Γ(F1, F2;U) \ Γ0) ≤ Modn(Γ(F
r
1 , F

r
2 ;U) ∩ F). □

3.2. Examples of families of curve perturbations. The next theorem, com-
bined with Theorem 3.4, gives Theorem 1.5 (ii) and Theorem 1.6.

Theorem 3.11. Let E ⊂ Rn be a set.

(i) If H n−1(E) = 0, then F0(E) is a P -family.

(ii) If E has σ-finite Hausdorff (n− 1)-measure, then Fσ(E) is a P -family.

The case of Hausdorff (n−1)-measure zero, as in (i), has already been considered
by Väisälä [Väi62, Lemma 5], where it is proved that for a.e. x ∈ Rn we have
γ + x ∈ F0(E); that is, (P1) is satisfied. Recall also that (P3) and (P4) are always
satisfied for F0(E) and Fσ(E); see Remark 3.2. We first prove two preliminary
lemmas that will be used in the proof of both cases (i) and (ii) of the theorem.

Lemma 3.12. Let E ⊂ Rn and γ be a non-constant rectifiable path. For N ∈ N,
let FN be the set of x ∈ Rn such that E ∩ |γ + x| contains at least N points. Then

m∗
n(F1) ≤ c(n)max{ℓ(γ),diam(E)} diam(E)n−1 and

m∗
n(FN ) ≤ c(n)ℓ(γ)N−1H n−1(E).

Proof. First we show the second inequality. For k ∈ N we define FN,k to be the
set of x ∈ FN such that E ∩ |γ + x| contains N points with mutual distances
bounded below by 1/k. We have FN,k+1 ⊃ FN,k, FN =

⋃︁∞
k=1 FN,k, and m∗

n(FN ) =
limk→∞ m∗

n(FN,k); see [Bog07, Proposition 1.5.12]. We estimate m∗
n(FN,k). We fix

a large k ∈ N so that 1
2k < diam(|γ|)/4. Consider an arbitrary cover of E by sets

Ui, i ∈ I, with diam(Ui) <
1
2k . For each i ∈ I there exists a closed ball Bi ⊃ Ui of

radius ri = diam(Ui) <
1
2k < diam(|γ|)/4. Define the function

ρ =
1

N

∑︂
i∈I

1

ri
χ2Bi

.

If x ∈ FN,k, then |γ + x| intersects at least N balls Bi and is not contained in any
ball 2Bi. Therefore, �

γ+x

ρ ds ≥ 1.
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By Chebychev’s inequality and Fubini’s theorem, we have

m∗
n(FN,k) ≤ ℓ(γ)∥ρ∥L1(Rn) ≃n ℓ(γ)N−1

∑︂
i∈I

diam(Ui)
n−1.

The cover of E by sets Ui, i ∈ I, of diameter less than 1
2k was arbitrary, so

m∗
n(FN,k) ≲n ℓ(γ)N−1H n−1

(2k)−1(E).

Letting k → ∞ gives

m∗
n(FN ) ≲n ℓ(γ)N−1H n−1(E).

For the first inequality, consider two cases. If diam(|γ|) > 4 diam(E), then we
cover E by a closed ball B of radius r with 0 ≤ diam(E) < r < diam(|γ|)/4.
If x ∈ F1, then |γ + x| intersects B and is not contained in 2B. The above ar-
gument for N = 1 gives m∗

n(F1) ≲n ℓ(γ)rn−1. Now, we let r → diam(E) to
obtain m∗

n(F1) ≲n ℓ(γ) diam(E)n−1. Next, assume that diam(|γ|) ≤ 4 diam(E). In
this case, if x ∈ F1, then |γ + x| ⊂ B(x0, 5 diam(E)) for a fixed x0 ∈ E. Thus,
m∗

n(F1) ≤ mn(B(x0, 5 diam(E))) = c(n) diam(E)n. □

Lemma 3.13. Let E ⊂ Rn, x ∈ Rn, r > 0, and for w ∈ Sn−1(0, 1) define
γw(t) = x+ tw, r/2 ≤ t ≤ r. For N ∈ N, let FN be the set of w ∈ Sn−1(0, 1) such
that E ∩ |γw| contains at least N points. Then

H n−1(F1) ≤ c(n)r−n+1 min{r, diam(E)}n−1 and

H n−1(FN ) ≤ c(n)r−n+1N−1H n−1(E).

Proof. For the first inequality, note that F1 + x is equal to the radial projection of
E ∩ {y ∈ Rn : r/2 ≤ |x − y| ≤ r} to the sphere Sn−1(x, 1). This projection is the
composition of a uniformly Lipschitz map (projection of {y ∈ Rn : r/2 ≤ |x−y| ≤ r}
to Sn−1(x, r)) with a scaling by 1/r. Thus,

diam(F1) ≲ r−1 diam(E ∩ {y ∈ Rn : r/2 ≤ |x− y| ≤ r}) ≲ r−1 min{r, diam(E)}.

Moreover, F1 is contained in the intersection of a ball B0 = B(x0,diam(F1)), where
x0 ∈ F1, with Sn−1(0, 1). Thus,

H n−1(F1) ≤ H n−1(B0 ∩ Sn−1(0, 1)) ≃n diam(F1)
n−1.

This completes the proof of the first inequality.
For the second inequality, we proceed as in the proof of Lemma 3.12, by defining

FN,k to be the set of w ∈ Sn−1(0, 1) such that E ∩ |γw| contains N points with
mutual distances bounded below by 1/k. We define the function ρ exactly as in
Lemma 3.12, using an arbitrary cover of E by sets Ui and corresponding balls
Bi ⊃ Ui with ri = diam(Ui) <

1
2k < r

8 . Note that if w ∈ FN,k, then�
γw

ρ ds =

� r

r/2

ρ(x+ tw) ds ≥ 1.

By Chebychev’s inequality and polar integration, it follows that

H n−1(FN,k) ≤
�
Sn−1(0,1)

� r

r/2

ρ(x+ tw) dtdH n−1(w)

≲n r−n+1∥ρ∥L1(Rn) ≃n r−n+1N−1
∑︂
i∈I

diam(Ui)
n−1.

We now proceed as before, infimizing over the covers of E and letting k → ∞. □
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Proof of Theorem 3.11. By Remark 3.2, (P3) and (P4) are automatically satisfied
for F0(E) and Fσ(E). We will establish below properties (P1) and (P2).

Suppose first that H n−1(E) = 0 as in (i). If γ is a non-constant rectifiable path,
by the second inequality of Lemma 3.12 (for N = 1) we have that E ∩ |γ + x| = ∅,
i.e., γ + x ∈ F0(E), for a.e. x ∈ Rn. Hence, (P1) holds.

Next, if x ∈ Rn, r > 0, and w ∈ Sn−1(0, 1), define γw(t) = x + tw, 0 ≤
t ≤ r. By applying Lemma 3.13 countably many times (for N = 1) to the paths
γw|[2−kr,2−k+1r], we have E ∩ γw([2

−kr, 2−k+1r]) = ∅ for all k ∈ N and for a.e.

w ∈ Sn−1(0, 1). Hence, E ∩ γw((0, r]) = ∅ for a.e. w ∈ Sn−1(0, 1). Recall that a
path in F0(E), by definition, is allowed to intersect E only at the endpoints. Hence,
γw ∈ F0(E) for a.e. w ∈ Sn−1(0, 1). This completes the proof of (P2) and of (i).

Next, we suppose that E has σ-finite Hausdorff (n− 1) measure, as in (ii). We
write E =

⋃︁∞
k=1 Ek, where H n−1(Ek) < ∞ for each k ∈ N. If we show that

Fσ(Ek) is a P -family for each k ∈ N, then Fσ(E) will also be a P -family, since the
intersection of countably many P -families is a P -family by Lemma 3.3. Hence, for
(ii) it suffices to assume that H n−1(E) < ∞.

Let γ be a non-constant rectifiable path. We define F to be the set of x ∈ Rn

such that E ∩ |γ+x| is infinite and consider the set FN as in Lemma 3.12. Observe
that F =

⋂︁∞
N=1 FN . Since

m∗
n(FN ) ≲n ℓ(γ)N−1H n−1(E),

by letting N → ∞ we obtain mn(F ) = 0. This proves (P1).
For (P2) we fix x ∈ Rn, r > 0, and for w ∈ Sn−1(0, 1) consider the segment

γw(t) = x + tw, 0 ≤ t ≤ r, as above. For fixed k ∈ N we apply Lemma 3.13
to the paths γw|[2−kr,2−k+1r] and conclude (by letting N → ∞) that the set E ∩
γw([2

−kr, 2−k+1r]) is finite for a.e. w ∈ Sn−1(0, 1). Hence, for a.e. w ∈ Sn−1(0, 1)
the set E ∩ |γw| is countable, i.e., γw ∈ Fσ(E). □

4. Criteria for negligibility

In this section we prove criteria for the membership of a set E in NED or CNED .
The first of these criteria is crucially used in the proof of Theorem 1.2 regarding
the unions of NED and CNED sets. Recall that ∗NED denotes either NED or
CNED . Also, recall from Section 2.4 the definitions of ∗NED(Ω) and ∗NEDw(Ω),
and the definition of the relative distance ∆(F1, F2) of two sets F1, F2 ⊂ Rn. Let
γ : [a, b] → Rn be a non-constant path. If [c, d] ⊂ (a, b), then the strong subpath
γ|[c,d] of γ is called strict.

Theorem 4.1 (Main criterion). Let E ⊂ Rn be a set such that either E is closed
or mn(E) = 0. The following are equivalent.

(I) E ∈ ∗NED(Ω) for all open sets Ω ⊂ Rn.
(II) E ∈ ∗NED.
(III) E ∈ ∗NEDw(Ω) for some open set Ω ⊂ Rn with Ω ⊃ E.
(IV) There exist constants t, ϕ > 0 such that for each x0 ∈ Rn there exists r0 > 0

with the property that for every pair of non-degenerate, disjoint continua
F1, F2 ⊂ B(x0, r0) with ∆(F1, F2) ≤ t we have

Modn(Γ(F1, F2;Rn) ∩ F∗(E)) ≥ ϕ.

(V) For each Borel function ρ : Rn → [0,∞] with ρ ∈ Ln
loc(Rn) there exists a

path family Γ0 with Modn Γ0 = 0 such that Conclusion A below holds for
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each rectifiable path γ /∈ Γ0 with distinct endpoints. Moreover, Γ0 has the
property that if {ηj}j∈J is a finite collection of paths outside Γ0 and γ is a
path with |γ| ⊂

⋃︁
j∈J |ηj |, then γ /∈ Γ0.

(VI) For each Borel function ρ : Rn → [0,∞] with ρ ∈ Ln
loc(Rn) there exists a

path family Γ0 with Modn Γ0 = 0 such that Conclusion B below holds for
each rectifiable path γ /∈ Γ0 with distinct endpoints.

Moreover, the following implications are true for all sets E ⊂ Rn.

(V) ⇒ (VI) ⇒ (I) ⇒ (II) ⇒ (III) ⇒ (IV)

Conclusion A (A(E, ρ, γ)). For each open neighborhood U of |γ|\∂γ and for each
ε > 0 there exists a collection of paths {γi}i∈I and a simple path ˜︁γ such that

(A-i) ˜︁γ ∈ F∗(E),

(A-ii) ∂˜︁γ = ∂γ, |˜︁γ| \ ∂γ ⊂ (|γ| \ E) ∪
⋃︂
i∈I

|γi|, and
⋃︁

i∈I |γi| ⊂ U ,

(A-iii)
∑︂
i∈I

ℓ(γi) < ε, and

(A-iv)
∑︂
i∈I

�
γi

ρ ds < ε.

The paths γi, i ∈ I, may be taken to lie outside a given path family Γ′ with
Modn Γ

′ = 0. If E ∩ ∂γ = ∅, then I may be taken to be finite. In general, the trace
of each strict subpath of ˜︁γ intersects finitely many traces |γi|, i ∈ I.

Conclusion B (B(E, ρ, γ)). For each open neighborhood U of |γ| and for each
ε > 0 there exists a simple path ˜︁γ such that

(B-i) ˜︁γ ∈ F∗(E),

(B-ii) ∂˜︁γ = ∂γ and |˜︁γ| ⊂ U ,

(B-iii) ℓ(˜︁γ) ≤ ℓ(γ) + ε, and

(B-iv)

�
˜︁γ ρ ds ≤

�
γ

ρ ds+ ε.

Note that the implications (I) ⇒ (II) ⇒ (III) are trivial. Moreover, (III) ⇒ (IV)
follows immediately from Lemma 2.5. Conclusion B in (VI) is only a less technical
statement that follows easily from Conclusion A in (V). Indeed, (B-iii) and (B-iv)
follow from (A-ii), (A-iii), and (A-iv), using Lemma 2.2 (ii). Hence, we will show
implications (IV) ⇒ (V), which is the most technical one, and (VI) ⇒ (I).

Roughly speaking, Conclusions A and B say that with small cost we can alter
the path γ to bring it inside the curve family F∗(E). The assumption that E is
closed or mn(E) = 0 will be crucially used in the proof of (IV) ⇒ (V) (see Lemma
4.6) and it is doubtful whether this implication holds without that assumption.

An immediate corollary of Theorem 4.1 is the quasiconformal and bi-Lipschitz
invariance of compact ∗NED sets.

Corollary 4.2. Let E ⊂ Rn be a bounded set such that either E is closed or
mn(E) = 0. Let Ω ⊂ Rn be an open set with E ⊂ Ω, and f : Ω → Rn be a
quasiconformal embedding. If E ∈ ∗NED, then f(E) ∈ ∗NED.

Proof. Under either assumption, we have mn(E) = 0 by Lemma 2.5. Observe that

f(E) = f(E) and that this is a compact subset of f(Ω) having n-measure zero by
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quasiconformality. Since f distorts the n-modulus of each curve family in Ω by a
bounded multiplicative factor, we see that f(E) ∈ ∗NEDw(f(Ω)). By Theorem
4.1, we conclude that f(E) ∈ ∗NED . □

We also prove an alternative criterion in terms of P -families; recall the definition
of a P -family from Section 3. The result is also true for the case of NED sets but
we do not prove it here to avoid some technicalities.

Theorem 4.3 (P -family criterion). Let E ⊂ Rn be a set such that either E is
closed or mn(E) = 0. The following are equivalent.

(I) E ∈ CNED.
(II) For each Borel function ρ : Rn → [0,∞] with ρ ∈ Ln(Rn) the following

statements are true.
(II-1) For each rectifiable path γ, a.e. x ∈ Rn, and every strong subpath η of

γ + x with distinct endpoints, Conclusion B(E, ρ, η) is true.
(II-2) For x ∈ Rn, 0 < r < R, and w ∈ Sn−1(0, 1) define γw(t) = x + tw,

t ∈ [r,R]. Then for H n−1-a.e. w ∈ Sn−1(0, 1), and for every strong
subpath η of γw, Conclusion B(E, ρ, η) is true.

(III) For each Borel function ρ : Rn → [0,∞] with ρ ∈ Ln(Rn) there exists a P -
family F such that if γ ∈ F is a rectifiable path, then Conclusion B(E, ρ, η)
is true for each strong subpath η of γ with distinct endpoints.

Ahlfors–Beurling [AB50, Theorem 10] proved that if a closed set E ⊂ Rn is NED
then any two points in Rn \ E can be joined by a curve in Rn \ E of short length.
The analogous statement is true for closed CNED sets.

Corollary 4.4. Let E ⊂ Rn be a closed set with E ∈ CNED. Then for every
ε > 0 and points x, y ∈ Rn there exists a path γ ∈ Fσ(E) connecting x and y with
ℓ(γ) ≤ |x− y|+ ε.

Proof. Let x, y ∈ Rn be distinct points, γ be the line segment [x, y], and ε > 0.
Let ρ ≡ 0 and consider the P -family F given by Theorem 4.3 (III). By property
(P1) of the P -family F , for a.e. z ∈ Rn the path γ + z lies in F . Using spherical
coordiantes we see that for a.e. r > 0 and for H n−1-a.e. w ∈ Sn−1(0, 1) the above
is true for z = rw. We fix r < ε/5 such that this is true. Using property (P2)
of a P -family, for H n−1-a.e. w ∈ Sn−1(0, 1) the radial segments γx

w(t) = x + tw
and γy

w(t) = y + tw, 0 ≤ t ≤ r, lie in F . Thus, there exists w ∈ Sn−1(0, 1) such
that both radial segments lie in F and γ + rw ∈ F . We now apply Conclusion B
(B-iii) (with ε = r) to each of γx

w, γ
y
w, and γ + rw, to conclude that there exist

paths ηx, ηy, η ∈ Fσ(E) with the same endpoints as γx
w, γ

y
w, γ + rw, respectively,

such that ℓ(ηx) ≤ 2r, ℓ(ηy) ≤ 2r, and ℓ(γ + rw) ≤ |x − y| + r. Concatenating
these paths gives a path in Fσ(E) connecting x and y with length bounded by
|x− y|+ 5r < |x− y|+ ε. □

4.1. Auxiliary results. We will need some auxiliary results before we prove The-
orems 4.1 and 4.3. The following lemma is elementary.

Lemma 4.5. Let E ⊂ Rn be a compact set with mn(E) = 0, g : Rn → [0,∞] be
a function in L1(Rn), and λ > 0. For each ε > 0 there exists δ > 0 such that if
0 < r < δ and Bi = B(xi, r), i ∈ {1, . . . , N}, is a family of pairwise disjoint balls
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centered at E, then

N∑︂
i=1

�
λBi

g < ε.

Proof. Let λ, ε > 0. Since E is compact with mn(E) = 0 and g ∈ L1(Rn), there
exists δ > 0 such that �

Nλδ(E)

g < C(n, λ)−1ε(4.1)

for a constant C(n, λ) > 0 to be determined. Let 0 < r < δ and consider a
family of finitely many disjoint balls Bi = B(xi, r), i ∈ {1, . . . , N}, centered at E.
Suppose that λ > 1. If x ∈ λBi, then Bi ⊂ λBi ⊂ B(x, 2λr). Since the balls Bi,
i ∈ {1, . . . , N}, are disjoint, by volume comparison we see that

N∑︂
i=1

χλBi
≤ 2nλnχ⋃︁N

i=1 λBi
≤ 2nλnχNλr(E).

The same inequality is trivially true when 0 < λ ≤ 1 with constant 1 in place of
2nλn. We now set C(n, λ) = max{1, 2nλn} and by (4.1) we obtain

N∑︂
i=1

�
λBi

g =

�
g

N∑︂
i=1

χλBi
≤ C(n, λ)

�
Nλr(E)

g < ε. □

Lemma 4.6. Let E ⊂ Rn be a closed set with mn(E) = 0. Then for each non-
negative function ρ ∈ Ln

loc(Rn) and for each λ > 0

(i) there exists a path family Γ0 with Modn Γ0 = 0 and
(ii) for each m ∈ N there exists a family of balls {Bi,m = B(xi,m, ri,m)}i∈Im

covering E with ri,m < 1/m, i ∈ Im,

such that for every non-constant curve γ /∈ Γ0 we have

lim
m→∞

∑︂
i:Bi,m∩|γ|≠∅

ri,m

(︄ 
λBi,m

ρn

)︄1/n

= 0 and

lim
m→∞

∑︂
i:Bi,m∩|γ|≠∅

ri,m = 0.

(4.2)

Proof. First, we reduce to the case that E is compact. Suppose that the statement
is true for compact sets. For k ∈ N, let Ak = {x ∈ Rn : k − 1 ≤ |x| ≤ k}. Then for
each k ∈ N, there exists a curve family Γk with Modn Γk = 0 and for each m ∈ N
there exists a family of balls {Bi,m}i∈Im,k

covering E ∩ Ak, with radii less than
1/m, so that (4.2) is true for non-constant paths γ /∈ Γk. We discard the balls not
intersecting E ∩ Ak, if any. Let Im =

⋃︁
k∈N Im,k and Γ0 =

⋃︁
k∈N Γk. Note that

Modn Γ0 = 0 by the subadditivity of modulus. We claim that (4.2) is true for the
balls {Bi,m}i∈Im .

If γ is a non-constant path outside Γ0, then γ is contained in the union of finitely
many sets Ak, k ∈ N. Moreover, there exists k0 ∈ N such that Bi,m ∩ |γ| = ∅ for
all i ∈ Im,k, m ∈ N, and k > k0. Thus, in (4.2), the sums over the indices i ∈ Im,k

such that Bi,m ∩ |γ| ̸= ∅ are zero for all k > k0. For k ≤ k0, the limits of the
corresponding sums vanish, since γ /∈ Γk. Since limits commute with finite sums,
we obtain (4.2) for the family of balls {Bi,m}i∈Im .
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Suppose now that E is compact. Let g ∈ Ln(Rn) be a non-negative function,
to be specified later. By the 5B-covering lemma ([Hei01, Theorem 1.2]) for each
r > 0 we can find a cover of E by finitely many balls of radius r centered at E so
that the balls with the same centers and radius r/5 are disjoint. Combining this
with Lemma 4.5 (for 5λ in place of λ), for each m ∈ N we may find a cover of E
by balls Bi,m = B(xi,m, rm), i ∈ Im, centered at E, such that rm < 1/m, the balls
1
5Bi,m are disjoint, and ∑︂

i∈Im

�
λBi,m

gn <
1

2m
.

For m ∈ N, we define the Borel function

hm =
∑︂
i∈Im

(︄ 
λBi,m

gn

)︄1/n

χ2Bi,m
.

By Lemma 2.1, we have

∑︂
m∈N

∥hm∥Ln(Rn) ≲n

∑︂
m∈N

⃦⃦⃦⃦
⃦⃦∑︂
i∈Im

(︄ 
λBi,m

gn

)︄1/n

χ 1
5Bi,m

⃦⃦⃦⃦
⃦⃦
Ln(Rn)

≲n,λ

∑︂
m∈N

(︄∑︂
i∈Im

�
λBi,m

gn

)︄1/n

≲n,λ

∑︂
m∈N

1

2m/n
< ∞.

By a variant of Fuglede’s lemma [Väi71, Theorem 28.1], there exists a curve family
Γ0 with Modn Γ0 = 0 such that for each path γ /∈ Γ0 we have

lim
m→∞

�
γ

hm ds = 0.

Implicitly we assume that Γ0 contains all curves that are not rectifiable.
Note that if γ is a non-constant rectifiable curve, Bi,m ∩ |γ| ̸= ∅, and m is

sufficiently large so that diam(|γ|) > 4m−1 > 4rm, then |γ| is not contained in
2Bi,m, so �

γ

χ2Bi,m
ds ≥ rm.

Thus,
�
γ

hm ds ≥
∑︂

i:Bi,m∩|γ|≠∅

rm

(︄ 
λBi,m

gn

)︄1/n

.

We conclude that if γ is a non-constant curve outside Γ0, then

lim
m→∞

∑︂
i:Bi,m∩|γ|≠∅

rm

(︄ 
λBi,m

gn

)︄1/n

= 0.(4.3)

We finally set g = (ρ+1)χB(0,R) in the above manipulations, where ρ is the given

function from the statement and B(0, R) is a large ball containing the compact set
E. Note that for all large m ∈ N we have λBi,m ⊂ B(0, R) for all i ∈ Im. Then for
every non-constant curve γ /∈ Γ0 we obtain (4.2) from (4.3). □
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Lemma 4.7. Let E ⊂ Rn be a set, ρ : Rn → [0,∞] be a Borel function, and γ be a
rectifiable path with distinct endpoints such that |γ| ∩ E is totally disconnected. If
Conclusion A(E, ρ, η) is true for each strict subpath η of γ with distinct endpoints
that do not lie in the set E, then Conclusion A(E, ρ, γ) is also true. The above
statement remains true for Conclusion B in place of Conclusion A.

Proof. We only present the argument for Conclusion A since the argument for
Conclusion B is similar and less technical. Let U be an open neighborhood of
|γ| \ ∂γ and ε > 0. It suffices to prove that a strong subpath of γ with the same
endpoints satisfies Conclusion A. Consider a parametrization γ : [a, b] → Rn. Then
there exists an open subinterval J of [a, b] such that γ(J) ⊂ U and γJ has the
same endpoints as γ. Without loss of generality, we assume that J = (0, 1) and we
denote the path γ|[0,1] by γ.

Suppose first that E ∩∂γ = ∅. Since E is closed, there exist paths γ|[0,t1], γ|[t2,1]
that do not intersect E, and a strict subpath η = γ|[t1,t2] with E ∩ ∂η = ∅. By
assumption, there exists a simple path ˜︁η with the same endpoints as η and finitely
many paths ηi, i ∈ I, inside U as in Conclusion A(E, ρ, η). Concatenating ˜︁η with
γ|[0,t1] and γ|[t2,1], and then passing to a simple weak subpath, gives the desired
path ˜︁γ that verifies Conclusion A(E, ρ, γ).

Next, suppose that E∩∂γ ̸= ∅. Consider a sequence aj ∈ (0, 1), j ∈ Z, such that
aj−1 < aj for each j ∈ Z and

⋃︁
j∈Z[aj−1, aj ] = (0, 1). Let γj = γ|[aj−1,aj ], which

is a strict subpath of γ. Since γ((0, 1)) is disjoint from {γ(0), γ(1)}, the points aj
can be chosen so that γj has distinct endpoints for j ∈ Z. Since |γ| ∩ E is totally
disconnected, we may further choose the points aj so that γ(aj) /∈ E for each j ∈ Z.

By assumption, the strict subpath γj of γ satisfies Conclusion A(E, ρ, γj) for

each j ∈ Z. Thus, we obtain paths ˜︁γj and γj
i , i ∈ {1, . . . , Nj}, as in the conclusion,

for ε2−|j| in place of ε, and such that
⋃︁Nj

i=1 |γ
j
i | ⊂ U . In particular, by (A-i) we

have ˜︁γj ∈ F∗(E). If F∗(E) = F0(E), since the endpoints of ˜︁γj do not lie in E, we

have |˜︁γj | ∩E = ∅. By discarding some paths γj
i , we assume that |γj

i | intersects |˜︁γj |
for all i ∈ {1, . . . , Nj}.

We consider parametrizations ˜︁γj : [aj−1, aj ] → U with ˜︁γj |{aj−1,aj} = γj |{aj−1,aj},

j ∈ Z. Then we create a curve ˜︁γ : [0, 1] → U such that ˜︁γ((0, 1)) ⊂ U , by concatenat-
ing these paths. Namely, we define ˜︁γ(0) = γ(0), ˜︁γ(1) = γ(1), and ˜︁γ|[aj−1,aj ] = ˜︁γj

for j ∈ Z. Note that ℓ(˜︁γj) ≤ ℓ(γj) + ε2−|j|, which follows from Conclusion A. We
conclude that diam(|˜︁γj |) → 0, as |j| → ∞, so ˜︁γ is continuous. By passing to a
weak subpath that has the same endpoints, we assume that ˜︁γ is simple.

Property (A-i) is immediate for ˜︁γ. Property (A-ii) also holds if {γi}i∈I is the

family {γj
i }j∈Z,i∈{1,...,Nj}. Indeed, all these paths are contained in U , and by the

properties of the paths ˜︁γj we have

|˜︁γ| \ ∂˜︁γ ⊂
⋃︂
j∈Z

|˜︁γj | ⊂
⋃︂
j∈Z

⎛⎝(|γj | \ E) ∪
Nj⋃︂
i=1

|γj
i |

⎞⎠ ⊂ (|γ| \ E) ∪
⋃︂
j∈Z

Nj⋃︂
i=1

|γj
i |.

Finally, we have∑︂
j∈Z

Nj∑︂
i=1

ℓ(γj
i ) ≤

∑︂
j∈Z

ε2−|j| = 3ε and
∑︂
j∈Z

Nj∑︂
i=1

�
γj
i

ρ ds ≤ 3ε.

Thus (A-iii) and (A-iv) hold as well.
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Now, we verify the last part of Conclusion A. The paths γj
i may be taken to

lie outside a given curve family Γ′ with Modn Γ
′ = 0, since they were obtained via

Conclusion A. If η is a strict subpath of ˜︁γ, then |η| intersects
⋃︁Nj

i=1 |γ
j
i | for finitely

many j ∈ Z. Indeed, as |j| → ∞, the paths {γj
i }i∈{1,...,Nj} have arbitrarily small

lengths by the above, and their traces intersect |˜︁γj |, which is contained in arbitrarily
small neighborhoods of the endpoints of ˜︁γ. Since |η| has positive distance from the

endpoints of ˜︁γ, we conclude that |γj
i | cannot intersect |η| if |j| is sufficiently large.

This completes the proof. □

4.2. Proof of the main criterion. As we have discussed, it suffices to show
implication (VI) ⇒ (I) for all sets E, and implication (IV) ⇒ (V), which is the
most technical one, for sets E that are closed or whose closure has measure zero.

Proof of Theorem 4.1: (VI) ⇒ (I). Let Ω ⊂ Rn be an open set and F1, F2 ⊂ Ω be
a pair of non-empty, disjoint continua. By the monotonicity of modulus, it suffices
to show that

Modn Γ(F1, F2; Ω) ≤ Modn(Γ(F1, F2; Ω) ∩ F∗(E)).

Let ρ ∈ Ln(Rn) be an admissible function for Γ(F1, F2; Ω)∩F∗(E). We consider an
exceptional curve family Γ0 with Modn Γ0 = 0 as in (VI). Let γ ∈ Γ(F1, F2; Ω)\Γ0,
so Conclusion B(E, ρ, γ) is true. Thus, for any ε > 0 there exists a rectifiable path˜︁γ ∈ Γ(F1, F2; Ω) ∩ F∗(E) with

1 ≤
�
˜︁γ ρ ds ≤

�
γ

ρ ds+ ε.

Letting ε → 0 shows that ρ is admissible for Γ(F1, F2; Ω) \ Γ0. Since Modn Γ0 = 0,
the proof is completed. □

Proof of Theorem 4.1: (IV) ⇒ (V). By the assumption (IV), which coincides with
the assumption of Lemma 2.4, we have mn(E) = 0. Therefore, under either of
the initial assumptions of Theorem 4.1, we have mn(E) = 0. Let ρ : Rn → [0,∞]
be a Borel function in Ln

loc(Rn). By Lemma 4.6, for each m ∈ N there exists a

family of balls {Bi,m}i∈Im covering the set E, with radii converging uniformly in
Im to 0 as m → ∞, and such that (4.2) is true for all paths outside an exceptional
family with n-modulus zero and for a value of λ > 0 to be specified. Let Γ0 be the
exceptional family of paths γ that either do not satisfy (4.2), or H 1(|γ| ∩ E) > 0.
By Lemma 4.6 and property (M6), Modn Γ0 = 0. Note that the path family Γ0 has
the required property for (V), that if {ηj}j∈J is a finite collection of paths outside
Γ0 and γ is a path with |γ| ⊂

⋃︁
j∈J |ηj |, then γ /∈ Γ0.

We will show that Conclusion A(E, ρ, γ) holds for all paths γ /∈ Γ0 with distinct
endpoints. For γ /∈ Γ0, the set |γ|∩E is totally disconnected. In view of Lemma 4.7,
it suffices to show that Conclusion A(E, ρ, η) is true for each subpath η of γ with
distinct endpoints not lying in the closed set E. By the defining properties of the
curve family Γ0, all subpaths of γ also lie outside Γ0. Therefore, it suffices to show
that Conclusion A(E, ρ, γ) is true for each path γ /∈ Γ0 with distinct endpoints not
lying in E.

Let γ /∈ Γ0 be a path with distinct endpoints not lying in E. As a final reduc-
tion, we consider a simple weak subpath η of γ that has the same endpoints. Note
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that η /∈ Γ0 by the defining properties of Γ0 and that is suffices to show Conclu-
sion A(E, ρ, η), which implies Conclusion A(E, ρ, γ). Hence, we may impose the
additional restriction that γ is simple.

We fix a simple path γ /∈ Γ0 with distinct endpoints not lying in E, ε > 0, and an
open neighborhood U of |γ|\∂γ. We fix an injective parametrization γ : [0, 1] → Rn

and note that γ(0), γ(1) /∈ E and γ((0, 1)) ⊂ U .
By the compactness of |γ| ∩ E and the assumption (IV), there exists a finite

cover of |γ| ∩E by open balls V1, . . . , VL such that for every i ∈ {1, . . . , L} and for
any non-degenerate, disjoint continua F1, F2 ⊂ 2Vi,

if ∆(F1, F2) ≤ t then Modn(Γ(F1, F2;Rn) ∩ F∗(E)) ≥ ϕ.(4.4)

Observe that if a set D intersects |γ| ∩ E and has sufficiently small diameter,
namely diam(D) ≤ min{2−1 diam(Vi) : i ∈ {1, . . . , L}}, then D ⊂ 2Vi for some i ∈
{1, . . . , L}. Hence, (4.4) holds for any non-degenerate, disjoint continua F1, F2 ⊂ D.
We also fix a > 1, depending on t, so that if A = A(x; r, ar) is any ring and
F1, F2 ⊂ A are disjoint continua connecting the boundary components of A, then

∆(F1, F2) ≤
2

a− 1
≤ t.

If m ∈ N is fixed and sufficiently large, by (4.2) we have

∑︂
i:Bi,m∩|γ|≠∅

ri,m

(︄ 
λBi,m

ρn

)︄1/n

< ε and
∑︂

i:Bi,m∩|γ|≠∅

ri,m < ε.(4.5)

By the compactness of |γ| ∩ E, there exists a finite subcollection D1, . . . , DN of
{Bi,m}i∈Im covering the set |γ| ∩E. We also assume that Di intersects |γ| ∩E for
each i ∈ {1, . . . , N} and we denote the radius of Di by ri. Since the endpoints of γ
do not lie in E, we have |γ| ∩ E ⊂ U . Thus,

δ = dist(|γ| ∩ E, ∂γ ∪ ∂U) > 0.

If m is sufficiently large so that 2(a+ λ)ri < δ for each i ∈ {1, . . . , N}, we have

N⋃︂
i=1

(a+ λ)Di ⊂ U and

N⋃︂
i=1

aDi ∩ ∂γ = ∅.(4.6)

Finally, we choose an even larger m, so that (4.4) holds for any non-degenerate,
disjoint continua F1, F2 ⊂ (a+ 1)Di, i ∈ {1, . . . , N}.

We set ˜︁γ0 = γ. We will define inductively simple paths ˜︁γk, k ∈ {0, . . . , N}, with
the same endpoints as γ. Once ˜︁γk−1 has been defined for some k ∈ {1, . . . , N} and
has the same endpoints as γ, we define ˜︁γk as follows. If Dk ∩ |˜︁γk−1| = ∅, then
we set γk = ∅ (i.e., the empty path) and ˜︁γk = ˜︁γk−1. Suppose Dk ∩ |˜︁γk−1| ̸= ∅.
Consider an injective parametrization ˜︁γk−1 : [0, 1] → Rn. By (4.6) the endpoints
of ˜︁γk−1 do not lie in aDk, thus there exist two moments 0 < s1 < s2 < 1 such
that ˜︁γk−1(s1), ˜︁γk−1(s2) ∈ ∂Dk and ˜︁γk−1([0, 1] \ (s1, s2)) ∩ Dk = ∅. Moreover,
there exist moments s′1 < s1 and s′2 > s2 such that ˜︁γk−1(s

′
1), ˜︁γk−1(s

′
2) ∈ ∂(aDk),

G1 = ˜︁γk−1([s
′
1, s1]) ⊂ aDk \ Dk and G2 = ˜︁γk−1([s2, s

′
2]) ⊂ aDk \ Dk; see Figure

2. Note that G1 and G2 are disjoint since the path ˜︁γk−1 is simple, and that they
connect the boundary components of the ring aDk \Dk. Since ∆(G1, G2) ≤ t (by
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•
γ(0) = ˜︁γk−1(0)

•
γ(1) = ˜︁γk−1(1)

•
•

• •

Dk

aDk

G1

G2

γk

˜︁γk−1

Figure 2. The construction of ˜︁γk from ˜︁γk−1.

the choice of a) and G1, G2 ⊂ (a+ 1)Dk, by (4.4) we have

Modn(Γ(G1, G2;Rn) ∩ F∗(E)) ≥ ϕ.

Note that if Γ′ is a given path family with Modn Γ
′ = 0 as in the end of Conclusion

A, then we also have

Modn(Γ(G1, G2;Rn) ∩ F∗(E) \ Γ′) ≥ ϕ.

Each path of Γ(G1, G2;Rn) ∩ F∗(E) \ Γ′ intersects the ball (a+ 1)Dk. By Lemma
3.7 there exists a path γk ∈ Γ(G1, G2;Rn) ∩ F∗(E) \ Γ′ such that

�
γk

ρ ds ≲n,ϕ,a rk

(︄ 
c(n,ϕ,a)Dk

ρn

)︄1/n

and ℓ(γk) ≤ c(n, ϕ, a)rk.(4.7)

We now set λ = c(n, ϕ, a) and note that |γk| ⊂ (a+ λ)Dk ⊂ U by (4.6). Also, the
endpoints of γk lie in |˜︁γk−1|. We concatenate γk with suitable subpaths of ˜︁γk−1

that do not intersect Dk to obtain a path ˜︁γk that has the same endpoints as γ. If
necessary, we replace ˜︁γk with a simple weak subpath that has the same endpoints.
By construction we have

|˜︁γk| ⊂ (|˜︁γk−1| \Dk) ∪ (|γk| \ ∂γk).

Inductively, we see that

|˜︁γk| ⊂ (︄|γ| \ k⋃︂
i=1

Di

)︄
∪

k⋃︂
i=1

(|γi| \ ∂γi).(4.8)
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For k = N we obtain a simple path ˜︁γ = ˜︁γN with the same endpoints as γ. Since

|γ| ∩ E ⊂
⋃︁N

i=1 Di, by (4.8) we have

|˜︁γ| ⊂ (|γ| \ E) ∪
N⋃︂
i=1

(|γi| \ ∂γi) and |˜︁γ| ∩ E ⊂
N⋃︂
i=1

(|γi| \ ∂γi) ∩ E.(4.9)

If F∗(E) = F0(E), then (|γi|\∂γi)∩E = ∅ since γi ∈ F0(E) for each i ∈ {1, . . . , N}.
Thus, |˜︁γ| ∩E = ∅ and ˜︁γ ∈ F0(E). If F∗(E) = Fσ(E), then |˜︁γi| ∩E is countable for
each i ∈ {1, . . . , N}, so |˜︁γ|∩E is countable and ˜︁γ ∈ Fσ(E). Thus, (A-i) is satisfied.
From (4.9) we obtain immediately

|˜︁γ| ⊂ (|γ| \ E) ∪
N⋃︂
i=1

|γi|.

By construction, we have
⋃︁N

i=1 |γi| ⊂
⋃︁N

i=1(a+λ)Di ⊂ U . Thus, we have established
property (A-ii). Finally, by (4.5) and (4.7) we have

N∑︂
i=1

ℓ(γi) ≲
N∑︂
i=1

ri ≲ ε and

N∑︂
i=1

�
γi

ρ ds ≲
N∑︂
i=1

ri

(︃ 
λDi

ρn
)︃1/n

≲ ε.

These inequalities address (A-iii) and (A-iv). The last part of Conclusion A, as-
serting that the collection {γi}i is finite, whenever E ∩ ∂γ = ∅, is also true. □

4.3. Proof of the P -family criterion.

Proof of Theorem 4.3: (I) ⇒ (II). Let ρ be a non-negative Borel function with ρ ∈
Ln(Rn). By Theorem 4.1 (VI), there exists a path family Γ0 with Modn Γ0 = 0
such that Conclusion B(E, ρ, γ) is true for all paths γ /∈ Γ0 with distinct endpoints.
Moreover, by enlarging Γ0 while still requiring that Modn Γ0 = 0, we may assume
that if γ /∈ Γ0, then all subpaths of γ also have this property; see (M3). By Lemma
2.3, for each rectifiable path γ and for a.e. x ∈ Rn we have γ+x /∈ Γ0; in particular,
the same holds for all strong subpaths of γ+x, as required in part (II-1). Moreover,
if γw is as in (II-2), by the same lemma, for H n−1-a.e. w ∈ Sn−1(0, 1) the path γw
and all of its strong subpaths lie outside Γ0. This completes the proof. □

Proof of Theorem 4.3: (III) ⇒ (I). Let ρ ∈ Ln(Rn) be an admissible function for
Γ(F1, F2;Rn)∩Fσ(E), where F1, F2 are disjoint continua. Consider the P -family F
with the given properties; note that F depends on ρ. Let γ ∈ Γ(F1, F2;Rn)∩F be
a rectifiable path. By the properties of F , each strong subpath of γ with distinct
endpoints, and in particular γ, satisfies Conclusion B. Hence, for each ε > 0 there
exists a rectifiable path ˜︁γ ∈ Γ(F1, F2;Rn) ∩ Fσ(E) such that

1 ≤
�
˜︁γ ρ ds ≤

�
γ

ρ ds+ ε.

As ε → 0, this shows that ρ is admissible for Γ(F1, F2;Rn) ∩ F . Hence,

Modn(Γ(F1, F2;Rn) ∩ F) ≤
�

ρn.

Since F is a P -family, by Theorem 3.4, we have

Modn Γ(F1, F2;Rn) = Modn(Γ(F1, F2;Rn) ∩ F) ≤
�

ρn.
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Infimizing over ρ, gives Modn Γ(F1, F2;Rn) ≤ Modn(Γ(F1, F2;Rn) ∩ Fσ(E)), so E
is CNED . □

For the proof of the last implication (II) ⇒ (III), it is crucial that Fσ(E) is closed
under concatenations, a fact that is not true for F0(E). Although the result is true
for F0(E), the proof is more involved and we only present the argument for Fσ(E).

Proof of Theorem 4.3: (II) ⇒ (III). First, we show that mn(E) = 0 in the case
that E is closed. Fix an open ball B and consider the Borel function ρ = (1 −
χE)χB , which lies in Ln(Rn). By (II-1), Conclusion B(E, ρ, γ) is true for a.e. line
segment γ parallel to a given coordinate direction. Let γ be such a line segment
that is contained in the ball B. For each ε > 0 there exists a path ˜︁γ ∈ Fσ(E)
contained in B, with the same endpoints as γ, and�

˜︁γ ρ ds ≤
�
γ

ρ ds+ ε.

By Lemma 2.2 (iv) we have
�˜︁γ χE ds = 0 since |γ| ∩ E is countable. Thus,

ℓ(γ) ≤ ℓ(˜︁γ) = �
˜︁γ 1 ds =

�
˜︁γ ρ ds ≤

�
γ

ρ ds+ ε = ℓ(γ)−
�
γ

χE ds+ ε.

By letting ε → 0, we obtain
�
γ
χE ds = 0, so H 1(|γ| ∩ E) = 0 by Lemma 2.2

(ii). This is true for a.e. line segment γ in B parallel to a coordinate direction, so
mn(E ∩B) = 0 by Fubini’s theorem. The ball B was arbitrary, so mn(E) = 0.

Let ρ be a non-negative Borel function in Ln(Rn) and let F be the family of
rectifiable paths γ such that Conclusion B(E, ρ, η) holds for each strong subpath η
of γ with distinct endpoints. We show that F is a P -family.

First, we see that (P1) is satisfied. That is, if γ : [a, b] → Rn is a non-constant
rectifiable path, then γ + x ∈ F for a.e. x ∈ Rn. This is true by the assumption
(II-1). For (P2), we fix x ∈ Rn and R > 0, and we have to show that for a.e.
w ∈ Sn−1(0, 1) the radial segment γw(t) = x + tw, t ∈ [0, R], lies in F . By the
assumption (II-2), for each 0 < r < R and for a.e. w ∈ Sn−1(0, 1) the radial
segment γw|[r,R] lies in F . For rk = 2−kR, k ∈ N, we see that γw|[rk,R] ∈ F for a.e.

w ∈ Sn−1(0, 1) and for all k ∈ N. We fix w ∈ Sn−1(0, 1) such that H 1(|γw|∩E) = 0
and γw|[rk,R] ∈ F for all k ∈ N. Since mn(E) = 0, these statements hold for a.e.

w ∈ Sn−1(0, 1). Our goal is to show that Conclusion B(E, ρ, η) is true for every
strong subpath η of γw; this will imply that γw ∈ F , as desired. Every strict
subpath of η is a strong subpath of γw|[rk,R] for some k ∈ N. Since γw|[rk,R] ∈ F ,

every strict subpath of η satisfies Conclusion B. Since |η|∩E is totally disconnected,
we conclude from Lemma 4.7 that η satisfies Conclusion B.

From the definition of F it is clear that (P3) is always satisfied. We finally have
to prove (P4). Note that F∗(E) = Fσ(E) in (B-i). Let γ1, γ2 be two paths in F
that have a common endpoint and let γ be their concatenation. Consider a strong
subpath η of γ that has distinct endpoints. Then η is either a strong subpath of
γ1 or γ2, or η is the concatenation of strong subpaths η1 of γ1 and η2 of γ2. In the
latter case, which is the nontrivial one, since η1 and η2 satisfy Conclusion B, and in
particular (B-i), there exists paths ˜︁η1, ˜︁η2 ∈ Fσ(E) as in Conclusion B with the same
endpoints as η1, η2, by (B-ii). Concatenating ˜︁η1 with ˜︁η2 gives a path ˜︁η ∈ Fσ(E),
which shows that η also satisfies Conclusion B. Thus, γ ∈ F , as desired. □
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4.4. Application to Sobolev removability. We prove Theorem 1.4 as an ap-
plication of Theorem 4.1. Specifically, we show that closed CNED sets E ⊂ Rn

are removable for continuous W 1,n functions; that is, every continuous function
f : Rn → R with f ∈ W 1,n(Rn \ E) lies in W 1,n(Rn).

Proof of Theorem 1.4. Let f : Rn → R be continuous with f ∈ W 1,n(Rn\E). Then
the classical gradient ∇f exists almost everywhere in Rn \ E. Since mn(E) = 0,
there exists a Borel representative of |∇f | on Rn. By Fuglede’s theorem [Väi71,
Theorem 28.2, p. 95], there exists a curve family Γ1 with Modn Γ1 = 0 such that
for each γ /∈ Γ1 we have

�
γ
|∇f | ds < ∞ and the function f is absolutely continuous

on every subpath γ|[a,b] of γ with γ((a, b)) ⊂ Rn \ E. Moreover,

|f(γ(b))− f(γ(a))| ≤
�
γ|(a,b)

|∇f | ds.

Let γ : [a, b] → Rn be a path outside Γ1. The set (a, b) \ γ−1(E) is a countable
union of disjoint open intervals (ai, bi), i ∈ N. Using the continuity of f and the
above inequality, we have

m1(f(|γ| \ E)) ≤
∑︂
i∈N

m1(f(γ([ai, bi]))) ≤
∑︂
i∈N

(max
[ai,bi]

f ◦ γ − min
[ai,bi]

f ◦ γ)

≤
∑︂
i∈N

�
γ|(ai,bi)

|∇f | ds ≤
�
γ

|∇f | ds.
(4.10)

In particular, if γ ∈ Fσ(E) \ Γ1, then

m1(f(|γ|)) = m1(f(|γ| \ E)) ≤
�
γ

|∇f | ds.(4.11)

Since mn(E) = 0, in order to show that f ∈ W 1,n(Rn), it suffices to show that
there exists a path family Γ0 with Modn Γ0 = 0, such that f is absolutely continuous
along each path γ /∈ Γ0. Let Γ2 be the path family given by Theorem 4.1 (V), with
Modn Γ2 = 0 and let Γ0 = Γ1 ∪Γ2. We fix a path γ /∈ Γ0 and a subpath β = γ|[a,b].
Note that β /∈ Γ2 by the properties of Γ2 in Theorem 4.1 (V). Hence, Conclusion

A(E, |∇f |, β) is true. For each ε > 0 there exists a path ˜︁β ∈ Fσ(E) with the same
endpoints as β and a collection of paths βi /∈ Γ1, i ∈ I, such that

|˜︁β| \ ∂ ˜︁β ⊂ (|β| \ E) ∪
⋃︂
i∈I

|βi| and
∑︂
i∈I

�
βi

|∇f | ds < ε.

Thus, using (4.10) and (4.11), we have

|f(β(b))− f(β(a))| ≤ m1(f(|˜︁β|)) = m1(f(|˜︁β| \ ∂β))
≤ m1(f(|β| \ E)) +

∑︂
i∈I

m1(f(|βi|))

≤
�
β

|∇f | ds+
∑︂
i∈I

�
βi

|∇f | ds

≤
�
β

|∇f | ds+ ε.

Letting ε → 0 shows that f is absolutely continuous along γ. □
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5. Unions of negligible sets

In this section we prove Theorem 1.2, which asserts that the union of countably
many closed NED (resp. CNED) sets is NED (resp. CNED). The proof is based
on Theorem 4.1 from the preceding section. We first prove an auxiliary lemma.

Lemma 5.1. Let Gi, i ∈ N, be a sequence of continua in Rn with Gi ⊂ Gi+1, i ∈ N,
and supi∈N H 1(Gi) < ∞. If G =

⋃︁
i∈N Gi, then H 1(G \ G) = 0. In particular if

γ : [0, 1] → G is a rectifiable path and ρ : Rn → [0,∞] is a Borel function, then�
γ

ρ ds =

�
γ

ρχG ds.

See Proposition 4A and Corollary 4I in [Fre92] for a more general result.

Proof. Without loss of generality, diam(G1) > 0. Let d = diam(G1) and we fix
k ∈ N. Since Gk is closed, for each x ∈ G \ G ⊂ G \ Gk there exists rx > 0 such
that B(x, rx) ∩ Gk = ∅. By the 5B-covering lemma ([Hei01, Theorem 1.2]), there
exists family of balls Bi = B(xi, ri) with xi ∈ G \ G and ri < d, i ∈ N, such that
G \G ⊂

⋃︁
i∈N Bi, the balls 1

5Bi are disjoint, and 1
5Bi ∩Gk = ∅ for each i ∈ N.

Fix i ∈ N. Since xi ∈ G, there exists a point y ∈ 1
10Bi ∩ G. The sequence

{Gj}j∈N is increasing, so there exists j > k such that y ∈ 1
10Bi ∩ Gj . Since

diam(Gj) ≥ d > diam( 15Bi) and Gj is a continuum, there exists a connected set

in 1
5Bi ∩Gj that connects ∂B(xi, ri/10) to ∂B(xi, ri/5). In combination with the

fact that 1
5Bi ∩Gk = ∅, we obtain

H 1

(︃
(G \Gk) ∩

1

5
Bi

)︃
≥ H 1

(︃
Gj ∩

1

5
Bi

)︃
≥ ri/10.

We now have

H 1
∞(G \G) ≤

∑︂
i∈N

2ri ≤ 20
∑︂
i∈N

H 1

(︃
(G \Gk) ∩

1

5
Bi

)︃
≤ 20H 1(G \Gk).

Since H 1(G) = supi∈N H 1(Gi) < ∞ and G\Gk decreases to ∅ as k → ∞, we have

H 1(G \ G) = H 1
∞(G \ G) = 0. This completes the proof of the first statement.

The last statement follows from Lemma 2.2 (iv). □

Proof of Theorem 1.2. We split the proof into several parts.

Initial setup. Define E =
⋃︁

i∈N Ei and let ρ ∈ Ln
loc(Rn) be a non-negative Borel

function. For each i ∈ N there exists an exceptional family Γi with Modn Γi = 0,
given by Theorem 4.1 (V). Also by property (M6) the family Γ′ of paths γ with
H 1(|γ| ∩E) > 0 has n-modulus zero. Define Γ0 = Γ′ ∪

⋃︁
i∈N Γi. By the properties

of Γi, the path family Γ0 has the property that if {ηj}j∈J is a finite collection of
paths outside Γ0 and γ is a path with |γ| ⊂

⋃︁
j∈J |ηj |, then γ /∈ Γ0. Moreover

|γ| ∩ E is totally disconnected for all paths γ /∈ Γ0.
Our goal is to show that Conclusion B(E, ρ, γ) is true for each γ /∈ Γ0. By the

last part of Theorem 4.1 and (VI), this suffices for E to be ∗NED . We fix a path
γ /∈ Γ0 with distinct endpoints, ε > 0, and a neighborhood U of |γ|. It suffices to
show Conclusion B for a weak subpath of γ with the same endpoints; also all weak
subpaths of γ lie outside Γ0 by the properties of Γ0. Thus, by replacing γ with a
simple weak subpath, we assume that γ is simple and γ /∈ Γ0.
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We introduce some notation. Define Wσ =
⋃︁∞

m=1 Nm and W0 = N. We use the
notation W∗ for Wσ or W0, depending on whether we are working with CNED or
NED sets, respectively. Each element w ∈ Nm ⊂ Wσ is called a word of length
l(w) = m. For w ∈ W0 we also define l(w) = w. The empty word ∅ has length 0.

Induction assumption. Set ˜︁γ0 = α∅ = γ and note that α∅ /∈ Γ0. Let U∅ be a
neighborhood of |α∅| \ ∂α∅ with diam(U∅) ≤ 2 diam(|α∅|) and U∅ ⊂ U . Suppose
that for m ≥ 0 we have defined simple paths ˜︁γk, k ∈ {0, . . . ,m}, and collections of
paths {γi}i∈Iw for l(w) ≤ m− 1 such that

(A-1) ˜︁γk ∈ F∗(
⋃︁k

i=1 Ei) for k ∈ {0, . . . ,m},
(A-2) ∂˜︁γk = ∂γ and |˜︁γk| ⊂ |γ| ∪

⋃︁
l(w)≤k−1

⋃︁
i∈Iw

|γi| for k ∈ {0, . . . ,m},
(A-3)

∑︁
l(w)≤m−1

∑︁
i∈Iw

ℓ(γi) < ε, and

(A-4)
∑︁

l(w)≤m−1

∑︁
i∈Iw

�
γi
ρ ds < ε.

Moreover, suppose we have defined the following objects:

(A-5) Simple paths {αw}l(w)≤m such that {αw}l(w)=k is a collection of parametri-
zations of the closures of the components of |˜︁γk| \ (E1 ∪ · · · ∪Ek), for each
k ∈ {0, . . . ,m}. In addition, for l(w) ≤ m, each strict subpath of αw lies
outside Γ0. We remark that in the case of W∗ = W0, there is only one
component of |˜︁γk| \ (E1 ∪ · · · ∪ Ek) and αk = ˜︁γk.

(A-6) Open sets {Uw}l(w)≤m such that Uw is a neighborhood of |αw| \ ∂αw with
diam(Uw) ≤ 2 diam(|αw|) for l(w) ≤ m and the collection {Uw}l(w)=k is
disjointed for each k ∈ {0, . . . ,m}. Moreover, if m ≥ 1 and l(w) ≤ m − 1,
then U(w,j) ⊂ Uw for j ∈ N in the case W∗ = Wσ and Uw+1 ⊂ Uw in

the case W∗ = W0. Finally, Uw does not intersect E1 ∪ · · · ∪ El(w), except
possibly at the endpoints of αw, for l(w) ≤ m.

Finally, we require the compatibility property

(A-7) |˜︁γm| \
⋃︁

l(w)=k Uw = |˜︁γk| \⋃︁l(w)=k Uw for k ∈ {0, . . . ,m}.

Inductive step. We now define ˜︁γm+1 as follows. Fix w ∈ W∗ with l(w) = m.
By (A-5) each strict subpath η of αw avoids the path family Γ0; thus Conclusion
A(Em+1, ρ, η) is true and H 1(|η|∩Em+1) = 0. The latter implies that |αw|∩Em+1

is totally disconnected. By Lemma 4.7, Conclusion A(Em+1, ρ, αw) is true. Thus,
for each δw > 0 there exists a simple path ˜︁αw and paths γi /∈ Γ0, i ∈ Iw, such that

(A’-1) ˜︁αw ∈ F∗(Em+1),

(A’-2) ∂˜︁αw = ∂αw and |˜︁αw| ⊂ |αw| ∪
⋃︁

i∈Iw
|γi| and

⋃︁
i∈Iw

|γi| ⊂ Uw,

(A’-3)
∑︁

i∈Iw
ℓ(γi) < δw, and

(A’-4)
∑︁

i∈Iw

�
γi
ρ ds < δw.

If we choose a sufficiently small δw, we can ensure that (A-3) and (A-4) are true for
the index m+1 in place of m. By (A’-2), the path ˜︁αw is obtained by modifying αw

within Uw. By (A-6), Uw does not intersect E1 ∪ · · · ∪ Em, except possibly at the
endpoints of αw. Therefore, ˜︁αw ∈ F∗(E1 ∪ · · · ∪Em). Combining this with (A’-1),
we obtain ˜︁αw ∈ F∗(E1 ∪ · · · ∪ Em+1).

Using (A-5), we define ˜︁γm+1 by replacing each αw in ˜︁γm, where l(w) = m, with˜︁αw; see Figure 3. In the case of Wσ, we need to ensure that this procedure gives
a path. Indeed, by (A’-2) and (A’-3) we have ℓ(˜︁αw) ≤ ℓ(αw) + δw, so if δw is
sufficiently small, then we obtain a path ˜︁γm+1. By (A-5), the endpoints of ˜︁γm do
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• •

Um

Um+1˜︁γm+1

˜︁γm

Uw

U(w,j)

α(w,j)

αw

Figure 3. Construction of ˜︁γm+1 from ˜︁γm. Top figure: the case
of W0. Bottom figure: the case of Wσ. The red curve is ˜︁αw and
the green points denote the set (|˜︁γm+1| ∩ Em+1) ∩ Uw, which is
countable. In fact, a large part of ˜︁αw should be shared with αw by
(A’-2) but we do not indicate this to simplify the figure.

not lie in |αw| \ ∂αw for any w with l(w) = m, so they are not modified. Thus,˜︁γm+1 has the same endpoints as γ. Moreover, by (A-6), the regions {Uw}l(w)=m,
where the paths ˜︁αw differ from αw are pairwise disjoint. Hence ˜︁γm+1 is a simple
path, since ˜︁γm is simple.

We now verify (A-1) and (A-2). By construction and (A-5), we have

|˜︁γm+1| \
⋃︂

l(w)=m

(|˜︁αw| \ ∂˜︁αw) = |˜︁γm| \
⋃︂

l(w)=m

(|αw| \ ∂αw) = ∂γ ∪

(︄
|˜︁γm| ∩

m⋃︂
i=1

Ei

)︄
.

In the case of Wσ, since ˜︁γm ∈ Fσ(E1 ∪ · · · ∪ Em) and ˜︁αw ∈ Fσ(E1 ∪ · · · ∪ Em+1)
for l(w) = m, we conclude that ˜︁γm+1 ∈ Fσ(E1 ∪ · · · ∪Em+1), as required in (A-1).
In the case W∗ = W0 we simply have ˜︁γm = αm (see (A-5)) and ˜︁γm+1 = ˜︁αm, so



CNED SETS: COUNTABLY NEGLIGIBLE FOR EXTREMAL DISTANCES 37

˜︁γm+1 ∈ F0(E1 ∪ · · · ∪ Em+1), as desired. By construction and (A’-2) we have

|˜︁γm+1| ⊂ |˜︁γm| ∪
⋃︂

l(w)=m

⋃︂
i∈Iw

|γi|.

Thus, by the induction assumption we obtain (A-2) for the index m+ 1.
Since ˜︁γm+1 is obtained by modifying ˜︁γm in the open sets Uw, l(w) = m, we have

|˜︁γm+1| \
⋃︂

l(w)=m

Uw = |˜︁γm| \
⋃︂

l(w)=m

Uw.

By (A-6), for k ≤ m we have
⋃︁

l(w)=k Uw ⊃
⋃︁

l(w)=m Uw, so

|˜︁γm+1| \
⋃︂

l(w)=k

Uw = |˜︁γm| \
⋃︂

l(w)=k

Uw = |˜︁γk| \ ⋃︂
l(w)=k

Uw,

where the last equality follows from the induction assumption (A-7). This proves
the equality in (A-7) for the index m+ 1.

Next, we verify (A-5). Note that the paths {˜︁αw}l(w)=m, parametrize the closures
of the components of |˜︁γm+1|\(E1∪· · ·∪Em); this follows from the construction and
(A-5). For l(w) = m, let {α(w,j)}j∈N be a collection of simple paths parametrizing
the closures of the components of |˜︁αw| \ Em+1; see Figure 3. Then {αw}l(w)=m+1

gives a collection that parametrizes the closures of the components of |˜︁γm+1| \
(E1 ∪ · · · ∪Em+1). This verifies the first part of (A-5). Moreover, if W∗ = Wσ, for
l(w) = m and j ∈ N, each strict subpath ˜︁η of α(w,j) is a strict subpath of ˜︁αw. If
W∗ = W0, each strict subpath ˜︁η of αw+1 is a strict subpath of ˜︁αw. In either case,
by (A’-2), there exists a strict subpath η of αw such that |˜︁η| ⊂ |η| ∪

⋃︁
i∈Iw

|γi|. By
the induction assumption (A-5), η /∈ Γ0. By the last part of Conclusion A (see the
statement in Theorem 4.1), |˜︁η| intersects finitely many of the traces |γi|, i ∈ Iw.
Recall that γi /∈ Γ0, i ∈ Iw. The properties of the family Γ0 imply that ˜︁η /∈ Γ0.
This completes the proof of the second part of (A-5).

We now discuss (A-6). If W∗ = W0, we define Um+1 to be a neighborhood
of |αm+1| \ αm+1 such that diam(Um+1) ≤ 2 diam(|αm+1|), Um+1 ⊂ Um, and
Um+1 does not intersect E1 ∪ · · · ∪ Em+1, except possibly at the endpoints of
αm+1; this uses that E1 ∪ · · · ∪ Em+1 is closed and does not intersect |αm+1|,
except possibly at the endpoints. If W∗ = Wσ, for l(w) = m we define U(w,1) to
be a neighborhood of |α(w,1)| \ ∂α(w,1) such that diam(U(w,1)) ≤ 2 diam(|α(w,1)|),
U(w,1) ⊂ Uw, and U(w,1) does not intersect E1 ∪ · · · ∪Em+1, except possibly at the

endpoints of α(w,1). Moreover, since αw is simple, we may require that U(w,1) is
disjoint from |α(w,j)|\∂α(w,j) for j > 1. Next, we define U(w,2) to be a neighborhood
of |α(w,2)| \∂α(w,2) with the same properties as U(w,1) and with U(w,1) ∩U(w,2) = ∅.
Inductively, we define U(w,j) for all j ∈ N with the desired properties; see Figure 3.
We have completed the proof of the inductive step.

Completion of the proof. Now we will show that Conclusion B(E, ρ, γ) is true.
For m ∈ N define Gm =

⋃︁m
k=0 |˜︁γk|. This is a continuum, since |˜︁γk| contains the

endpoints of γ for each k ∈ N by (A-2). We have Gm ⊂ Gm+1 and

Gm ⊂ |γ| ∪
⋃︂

l(w)≤m−1

⋃︂
i∈Iw

|γi|
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for m ∈ N. By Lemma 2.2 (ii) and property (A-3) we have

H 1(Gm) ≤ ℓ(γ) +
∑︂

l(w)≤m−1

∑︂
i∈Iw

ℓ(γi) ≤ ℓ(γ) + ε.

Thus supm∈N H 1(Gm) < ∞, as required in Lemma 5.1. We set G =
⋃︁

m∈N Gm.
Since ˜︁γm is a simple path for each m ∈ N, by Lemma 2.2 (ii) we have

ℓ(˜︁γm) = H 1(|˜︁γm|) ≤ H 1(Gm) ≤ ℓ(γ) + ε.

By the Arzelà–Ascoli theorem, there exists a subsequence of ˜︁γm, parametrized by
arclength, that converges uniformly to a path ˜︁γ with the same endpoints as γ and

ℓ(˜︁γ) ≤ lim inf
m→∞

ℓ(˜︁γm) ≤ ℓ(γ) + ε.

Hence, (B-iii) holds. Since |˜︁γm| ⊂ U∅ for each m ∈ N by (A-6), we have |˜︁γ| ⊂ U∅ ⊂
U , as required in (B-ii). We assume that ˜︁γ is simple by considering a weak subpath
if necessary. Since |˜︁γ| ⊂ G, by Lemma 5.1 and Lemma 2.2 (ii) we have�

˜︁γ ρ ds =
�
˜︁γ ρχG ds =

�
|˜︁γ|∩G

ρ dH 1 ≤
�
G

ρ dH 1

≤
�
γ

ρ ds+
∑︂

w∈W∗

∑︂
i∈Iw

�
γi

ρ ds ≤
�
γ

ρ ds+ ε,

where the last inequality follows from (A-4). This shows (B-iv).
Finally, we argue for (B-i). By (A-7) for m ≥ k ≥ 0 we have

|˜︁γm| ⊂ |˜︁γk| ∪ ⋃︂
l(w)=k

Uw.(5.1)

By (A-6), diam(Uw) ≤ 2 diam(|αw|). If there are infinitely many non-empty sets
Uw with l(w) = k, only finitely many curves αw can have diameter larger than a
given number; indeed by (A-5) these are subpaths of ˜︁γk that have pairwise disjoint
traces, except possibly at the endpoints. It follows that Uw is contained in a small
neighborhood of |˜︁γk| for all but finitely many w with l(w) = k. Hence, we see that⋃︂

l(w)=k

Uw ⊂ |˜︁γk| ∪ ⋃︂
l(w)=k

Uw.

By letting m → ∞ in (5.1), we conclude that

|˜︁γ| ⊂ |˜︁γk| ∪ ⋃︂
l(w)=k

Uw ⊂ |˜︁γk| ∪ ⋃︂
l(w)=k

Uw.

In the case of Wσ, the set in the right-hand side intersects E1∪· · ·∪Ek at countably
many points by (A-1) and (A-6). Thus, ˜︁γ ∈ Fσ(E1 ∪ · · · ∪ Ek) for each k ∈ N, so˜︁γ ∈ Fσ(E). In the case of W0, we have |˜︁γ| ⊂ |˜︁γk| ∪ Uk ⊂ Uk and the set Uk does
not intersect E1 ∪ · · · ∪ Ek, except possibly at the endpoints of αk = ˜︁γk. Thus, |˜︁γ|
does not intersect E1 ∪ · · · ∪ Ek, except possibly at the endpoints, for each k ∈ N.
We conclude that ˜︁γ ∈ F0(E). We have completed the verification of Conclusion
B(E, ρ, γ), and thus, the proof of Theorem 1.2. □

6. Examples of negligible sets

Recall that all sets of σ-finite (resp. zero) Hausdorff (n− 1) measure are CNED
(resp. NED), by Theorem 3.11. In this section we will discuss further examples.
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6.1. A quasihyperbolic condition for CNED sets. Let Ω ⊊ Rn be a domain,
i.e., a connected open set. For a point x ∈ Ω, define δΩ(x) = dist(x, ∂Ω). We define
the quasihyperbolic distance of two points x1, x2 ∈ Ω by

kΩ(x1, x2) = inf
γ

�
γ

1

δΩ
ds,

where the infimum is taken over all rectifiable paths γ in Ω that connect x1 and x2.

Theorem 6.1. Let Ω ⊂ Rn be a domain such that kΩ(·, x0) ∈ Ln(Ω) for some
x0 ∈ Ω. Then ∂Ω ∈ CNED. In particular, boundaries of John and Hölder domains
are CNED.

See [SS90] for the definitions of the latter two classes of domains. The condition
kΩ(·, x0) ∈ Ln(Ω) appeared in the work of Jones–Smirnov [JS00], who showed its
sufficiency for ∂Ω to be QCH -removable. The same condition has also been used
in recent work of the current author [Nta20] to establish the removability of certain
fractals with infinitely many complementary components for Sobolev spaces; in
addition, it has appeared in work of the current author and Younsi [NY20] in
establishing the rigidity of circle domains under this condition. We will use some
auxiliary results from [NY20], which have been proved there in dimension 2, but
the proofs apply to all dimensions.

Remark 6.2. Domains satisfying the condition of the theorem are bounded [NY20,
Lemma 2.6] and thus have finite n-measure. Using this, one can show that an
equivalent condition is kΩ ∈ Ln(Ω×Ω), so the base point x0 is not of importance.

We will prepare the necessary background before proving the theorem. For a
domain Ω ⊊ Rn we consider the Whitney cube decomposition W(Ω), which is a
collection of closed dyadic cubes Q ⊂ Ω, called Whitney cubes, such that

(1) the cubes of W(Ω) have disjoint interiors and
⋃︁

Q∈W(Ω) Q = Ω,

(2) diam(Q) ≤ dist(Q, ∂Ω) ≤ 4 diam(Q) for all Q ∈ W(Ω), and

(3) ifQ1∩Q2 ̸= ∅, then 1/4 ≤ diam(Q1)/ diam(Q2) ≤ 4, for allQ1, Q2 ∈ W(Ω).

See [Ste70, Theorem 1 and Prop. 1, pp. 167–169] for the existence of the decomposi-
tion. We denote by ℓ(Q) the side length of a cube Q; this is not to be confused with
the length ℓ(γ) of a path γ. TwoWhitney cubesQ1, Q2 ∈ W(Ω) with ℓ(Q1) ≥ ℓ(Q2)
are adjacent if a face of Q2 is contained in a face of Q1.

Lemma 6.3. Let Ω ⊂ Rn be a domain and Q1, Q2 ∈ W(Ω) be adjacent cubes.
Let F1 ⊂ Q1 and F2 ⊂ Q2 be continua with diam(Fi) ≥ aℓ(Qi) for some a > 0,
i = 1, 2, and let ρ : Rn → [0,∞] be a Borel function. Then there exists a rectifiable
path γ ∈ Γ(F1, F2; int(Q1 ∪Q2)) such that�

γ

ρ ds ≤ c(n, a)
(︁
∥ρ∥Ln(Q1) + ∥ρ∥Ln(Q2)

)︁
and ℓ(γ) ≤ c(n, a)(ℓ(Q1) + ℓ(Q2)).

Proof. By Lemma 3.7, it suffices to show that Modn Γ(F1, F2; int(Q1 ∪Q2)) is uni-
formly bounded from below, depending only on n and a. This can be shown by
mapping Q1 ∪ Q2 with a uniformly bi-Lipschitz map onto a ball. Euclidean balls
are Loewner spaces; see [Hei01, Chapter 8] for the definition and properties. Hence,
the desired lower bound is satisfied. □
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Lemma 6.4. Let Ω ⊂ Rn be a domain, γ : [0, 1] → Ω be a path such that γ((0, 1)) ⊂
Ω and γ(0), γ(1) ∈ ∂Ω, and ρ : Rn → [0,∞] be a Borel function. Then there exists
a path γ′ : [0, 1] → Ω with γ′(0) = γ(0), γ′(1) = γ(1), γ′((0, 1)) ⊂

⋃︁
Q∈W(Ω)
|γ|∩Q ̸=∅

Q,

�
γ′
ρ ds ≤ c(n)

∑︂
Q∈W(Q)
|γ′|∩Q ̸=∅

∥ρ∥Ln(Q) and ℓ(γ′) ≤ c(n)
∑︂

Q∈W(Q)
|γ′|∩Q̸=∅

ℓ(Q).

Proof. There exists a sequence Qi, i ∈ Z, of distinct Whitney cubes such that Qi

is adjacent to Qi+1 for each i ∈ Z, |γ| ∩ Qi ̸= ∅ for each i ∈ Z, and Qi → γ(0) as
i → −∞ and Qi → γ(1) as i → ∞; see [NY20, p. 143] for an argument.

Consider the adjacent cubes Q0 and Q1. Let F1 be the face of Q0 that is opposite
to the common face of Q0, Q1 and F2 be the corresponding face of Q1. We apply
Lemma 6.3 to obtain a path γ0 in Q0 ∪ Q1 connecting F1 with F2 and satisfying
the conclusions of the lemma with a = 1/2. We now consider Q1 and Q2. Let F1

be a subcontinuum of |γ0| connecting opposite sides of Q1 and let F2 be the face of
Q2 opposite to the common face between Q1 and Q2. Applying Lemma 6.3 with
a = 1/2, we obtain a path γ1 connecting F1 with F2 in Q1 ∪ Q2. Inductively, for
each i ∈ Z we obtain a path γi in Qi ∪ Qi+1 as in the conclusions of Lemma 6.3
such that |γi| ∩ |γi+1| ≠ ∅. Since diam(Qi) → 0 as |i| → ∞, we can concatenate the
paths γi to obtain a path γ′ with the desired properties. □

Suppose that there exists a base point x0 ∈ Ω with kΩ(·, x0) ∈ Ln(Ω). It is shown
in [JS00, pp. 273–274] that there exists a tree-like family G of curves starting at
x0, connecting centers of adjacent Whitney cubes, and landing at ∂Ω, that behave
essentially like quasihyperbolic geodesics and so that each point of ∂Ω is the landing
point of a curve of G. For each cube Q ∈ W(Ω) we define the shadow SH (Q) of Q
to be the set of points x ∈ ∂Ω such that there exists a curve of G starting at x0,
passing through Q and landing at x. We define

s(Q) = diam(SH (Q)).

The set SH (Q) is a compact subset of ∂Ω for each Q ∈ W(Ω); see [NY20, Lemma
2.7]. Moreover, it is shown in [JS00, p. 275] that∑︂

Q∈W(Ω)

s(Q)n ≲n

�
Ω

k(x, x0)
n dx.(6.1)

Lemma 6.5 ([NY20, Lemma 2.10]). Let Ω ⊂ Rn be a domain such that kΩ(·, x0) ∈
Ln(Ω) for some x0 ∈ Ω. For each simple path γ : [0, 1] → Rn and ε > 0 there exists
a finite collection of paths {γi : [0, 1] → Ω}i∈I such that

(i) ∂γi ⊂ ∂Ω and either γi is constant or γi((0, 1)) ⊂ Ω for each i ∈ I,

(ii) there exists a path ˜︁γ with ∂˜︁γ = ∂γ and |˜︁γ| ⊂ (|γ| \ ∂Ω) ∪
⋃︁

i∈I |γi|,
(iii) if Q ∈ W(Ω) is a Whitney cube with |γi| ∩Q ̸= ∅ for some i ∈ I, then

|γ| ∩ SH (Q) ̸= ∅ and ℓ(Q) ≤ ε,

(iv) |γi| and |γj | intersect disjoint sets of Whitney cubes Q ∈ W(Ω) for i ̸= j.

Moreover, if one replaces γi, for each i ∈ I, with a path γ′
i : [0, 1] → Ω such that

γ′
i(0) = γi(0), γ

′
i(1) = γi(1), and either γ′

i is constant or γ′
i((0, 1)) ⊂

⋃︁
Q∈W(Ω)
|γi|∩Q̸=∅

Q,

then conclusions (i)–(iv) also hold for the collection {γ′
i}i∈I .
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γ(0)
γ(1)

γ1

γ2

γ3

γ4

γ5

γ6

Ω ∂Ω

Figure 4. The path γ (blue) and the paths γi given by Lemma
6.5. There are three constant paths γi. The path ˜︁γ arises by
replacing the arcs of γ between the endpoints of γi with γi.

See Figure 4 for an illustration. The formulation of this lemma in [NY20, Lemma
2.10] is slightly different; however, the proof of (i), (ii), and (iii) is identical. The
paths γi are concatenations of subpaths of paths of G and are replacing finitely many
arcs of γ that cover the set |γ| ∩ ∂Ω. Hence, using the path ˜︁γ arising from these
replacements one essentially avoids the set |γ| ∩ ∂Ω, except at the endpoints of γi.
We provide a sketch of the proof of (iv). One needs to concatenate appropriately
the paths γi that satisfy (i)–(iii). If two paths γi, γj , i ̸= j, meet a common
Whitney cube Q, then one can concatenate these paths with a line segment inside
Q. Then one considers a subpath γij of the concatenation so that (i) and (ii) are
satisfied with γij in place of γi and γj . After finitely many concatenations, one can
obtain the family {˜︁γi}i∈˜︁I that satisfies all conditions (i)–(iv). The last part of the
lemma provides some extra freedom in the choice of the paths γi; conclusion (ii) for
the collection {γ′

i}i∈I follows from the construction and the other conclusions are
immediate since ∂γ′

i = ∂γi and the trace of the path γ′
i intersects no more Whitney

cubes than γi does.

Proof of Theorem 6.1. We will verify Theorem 4.3 (II) to show that ∂Ω is CNED .
Let ρ : Rn → [0,∞] be a Borel function with ρ ∈ Ln(Rn). We check condition
(II-1). The proof of (II-2) is very similar and we omit it. Let γ be a non-constant
rectifiable path, and set g = ρ+χΩ. Since Ω is bounded (see Remark 6.2), we have
g ∈ Ln(Rn). By Lemma 3.12 we have�

Rn

∑︂
ℓ(Q)≤ε

|γ+x|∩SH (Q)̸=∅

∥g∥Ln(Q) dx =
∑︂

ℓ(Q)≤ε

∥g∥Ln(Q) ·mn({x : |γ + x| ∩ SH (Q) ̸= ∅})

≲n

∑︂
ℓ(Q)≤ε

∥g∥Ln(Q) ·max{ℓ(γ), s(Q)}s(Q)n−1.
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Since s(·) ∈ ℓn(W(Ω)) by (6.1), we have s(Q) ≤ ℓ(γ) if ℓ(Q) ≤ ε and ε is sufficiently
small. Using this fact and Hölder’s inequality, we bound the above sum by

ℓ(γ)

(︃ ∑︂
ℓ(Q)≤ε

�
Q

gn
)︃1/n

·
(︃ ∑︂

ℓ(Q)≤ε

s(Q)n
)︃1−1/n

.

As ε → 0, this converges to 0. We conclude that as ε → 0 along a sequence, for a.e.
x ∈ Rn we have∑︂

ℓ(Q)≤ε
|γ+x|∩SH (Q) ̸=∅

∥ρ∥Ln(Q) = o(1) and
∑︂

ℓ(Q)≤ε
|γ+x|∩SH (Q)̸=∅

ℓ(Q) = o(1).(6.2)

Let x ∈ Rn such that (6.2) holds. Let η be a strong subpath of γ+x with distinct
endpoints. We claim that Conclusion B(∂Ω, ρ, η) is true. It suffices to prove this
for a simple weak subpath of η with the same endpoints that we still denote by η.

For ε > 0 we apply Lemma 6.5 to the path η and obtain a finite collection of
paths {ηi}i∈I . To each non-constant path ηi we apply Lemma 6.4 and we obtain a
path η′i that has the same endpoints as ηi and if |η′i| ∩Q ̸= ∅ for some Q ∈ W(Ω),
then |ηi| ∩ Q ̸= ∅. If ηi is constant, we set η′i = ηi. The last part of Lemma 6.5
allows us to replace each ηi with η′i while retaining properties (i)–(iv). By Lemma
6.5 (i) and (ii), there exists a simple path ˜︁η such that

(1) |˜︁η| ∩ ∂Ω is a finite set (only the endpoints of η′i can lie in ∂Ω), and

(2) ∂η = ∂˜︁η and |˜︁η| ⊂ (|η| \ ∂Ω) ∪
⋃︁

i∈I |η′i|.

We discard the paths η′i whose trace does not intersect |˜︁η|. Furthermore, since the
paths η′i satisfy the conclusions of Lemma 6.4, in combination with Lemma 6.5 (iii)
and (iv), we have

(3)
∑︂
i∈I

ℓ(η′i) ≤ c(n)
∑︂
i∈I

∑︂
ℓ(Q)≤ε

|η′
i|∩Q ̸=∅

ℓ(Q) ≤ c(n)
∑︂

ℓ(Q)≤ε
|η|∩SH (Q)̸=∅

ℓ(Q), and

(4)
∑︂
i∈I

�
η′
i

ρ ds ≤ c(n)
∑︂
i∈I

∑︂
ℓ(Q)≤ε

|η′
i|∩Q̸=∅

∥ρ∥Ln(Q) ≤ c(n)
∑︂

ℓ(Q)≤ε
|η|∩SH (Q) ̸=∅

∥ρ∥Ln(Q).

Note that (1) implies (B-i), and (2), (3), (4), together with (6.2), imply (B-iii) and
(B-iv). Finally, given an open neighborhood U of |η|, if ε is sufficiently small, the
sum of the lengths of η′i is small, and thus

⋃︁
i∈I |η′i| ⊂ U ; this proves (B-ii). □

6.2. Projections to axes and NED sets. We present a result for sets whose
projections to the coordinate axes have measure zero. This result will be crucial
for the proof of Theorem 1.9.

Theorem 6.6. Let E ⊂ R2 be a set whose projection to each coordinate direction
has 1-measure zero. Then E ∈ NEDw. If, in addition, m2(E) = 0, then E ∈ NED.

This was proved for closed sets by Ahlfors–Beurling [AB50, Theorem 10]. For
sets that are not closed the proof is substantially more complicated. Note that E
is not NED in general even if it has measure zero. For example take E = Q× {0},
which is NED by Theorem 1.6. However, its closure is E = R × {0}, which has
measure zero, but it is not NED since it is not totally disconnected.
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We prove Theorem 6.6 only in dimension 2, because of the following lemma,
whose statement is very similar to Lemma 3.5. Except for that lemma, none of the
arguments in the proof of Theorem 6.6 depend on the dimension.

Lemma 6.7. Let E ⊂ R2 be a set whose projection to each coordinate direction has
1-measure zero. For t > 0, denote by Qt the open square centered at the origin with
side length t and sides parallel to the coordinate axes. Let 0 < r < R and suppose
that F1, F2 ⊂ R2 are disjoint continua such that ∂Qt intersects both F1 and F2 for
every r < t < R. Then

Modn(Γ(F1, F2;QR \Qr) ∩ F0(E)) ≥ 1

4
log

(︃
R

r

)︃
.

Proof. We have ∂Qt ∩E = ∅ for a.e. t ∈ (r,R). Let ρ be an admissible function for
Γ(F1, F2;QR \Qr) ∩ F0(E). Then

1 ≤
�
∂Qt

ρ ds ≤
(︃�

∂Qt

ρ2 ds

)︃1/2 √
4t

for a.e. t ∈ (r,R). By integration and Fubini’s theorem, we have

1

4
log

(︃
R

r

)︃
=

� R

r

1

4t
dt ≤

�
QR\Qr

ρ2.

Infimizing over ρ gives the conclusion. □

The proof of the following lemma is exactly the same as the proof of Lemma 3.8,
where one uses Lemma 6.7 in place of Lemma 3.5; see Remark 3.9.

Lemma 6.8. Let E ⊂ R2 be a set whose projection to each coordinate direction has
1-measure zero. Then for every open set U ⊂ R2 and for every pair of non-empty,
disjoint continua F1, F2 ⊂ U we have

Mod2(Γ(F1, F2;U) ∩ F0(E)) = lim
r→0

Mod2(Γ(F
r
1 , F

r
2 ;U) ∩ F0(E)).

Proof of Theorem 6.6. Let F1, F2 ⊂ R2 be non-empty, disjoint continua. We fix a
small r > 0 so that F r

1 ∩ F r
2 = ∅ and let ρ : R2 → [0,∞] be a Borel function with

ρ ∈ L2(R2) that is admissible for Γ(F r
1 , F

r
2 ;R2) ∩ F0(E).

Consider a sequence of open sets {Vm}m∈N, such that E ⊂ Vm+1 ⊂ Vm ⊂
N1/m(E) and such that the projection of Vm to each coordinate axis has measure

less than 1/m for each m ∈ N. Observe that
⋂︁∞

m=1 Vm has 2-measure zero. For each
m ∈ N define the closed set Xm = (R2\Vm)∪F r

1 ∪F r
2 . Note that a.e. line parallel to

a coordinate direction does not intersect the set
⋂︁∞

m=1 Vm. Hence, a.e. line parallel
to a coordinate direction lies in

⋃︁∞
m=1 Xm. Moreover, if γ is a rectifiable path in

Xm joining F r
1 to F r

2 , then γ has a subpath in R2 \ Vm ⊂ R2 \E joining F r
1 to F r

2 .
By the admissibility of ρ, we obtain�

γ

ρ ds ≥ 1.

For each m ∈ N, we define on Xm the function

gm(x) = min

{︃
inf
γx

�
γx

ρ ds, 1

}︃
where the infimum is taken over all rectifiable paths γx in Xm that connect F r

1

to x. By [JJR+07, Corollary 1.10], the function gm is measurable; the fact that
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Xm is closed, thus complete, is important here. One can alternatively argue using
[HKST15, Lemma 7.2.13, p. 187]. Moreover, we have 0 ≤ gm ≤ 1, gm = 0 on F r

1 ,
and gm = 1 on F r

2 . Next, we show that ρ is an upper gradient of gm. That is,

|gm(y)− gm(x)| ≤
�
γ

ρ ds

for every rectifiable path γ : [0, 1] → Xm with γ(0) = x and γ(1) = y. Since the
roles of x and y are symmetric, we will only show that

gm(y)− gm(x) ≤
�
γ

ρ ds.

If gm(y) = 1, then this inequality is immediate, since then gm(y) − gm(x) ≤ 0.
Suppose gm(y) = infγy

�
γy

ρ ds. We fix a curve γx joining F r
1 to x. Define a curve

γy by concatenating γx with γ. Then

gm(y) ≤
�
γy

ρ ds =

�
γ

ρ ds+

�
γx

ρ ds.

Infimizing over γx gives the desired inequality.
The sequence of sets {Xk}k∈N is increasing. Thus, if k ≥ m, then gk is defined

by infimizing over a larger collection of paths compared to the definition of gm.
It follows that 0 ≤ gk ≤ gm in Xm. Therefore, for each m ∈ N, gk converges
pointwise as k → ∞ to a measurable function g in Xm. Moreover, by the pointwise
convergence, for each m ∈ N the function ρ is an upper gradient of g in Xm,
0 ≤ g ≤ 1 in

⋃︁∞
m=1 Xm, g = 0 in a neighborhood of F1, and g = 1 in a neighborhood

of F2. On R2 \
⋃︁∞

m=1 Xm ⊂
⋂︁∞

m=1 Vm we define g = 0. Thus, we have extended g
to a measurable function in R2.

We claim that g is absolutely continuous in a.e. line segment parallel to a coordi-
nate direction. Let L be a line segment parallel to e1 = (1, 0). By construction, for
H 1-a.e. z ∈ {e1}⊥ the line segment L + z lies in Xm for some m ∈ N. Moreover,
since ρ ∈ L2(R2), we have

�
L+z

ρ ds < ∞ for a.e. z ∈ {e1}⊥. By the upper gradient

inequality we conclude that g is absolutely continuous in L + z for a.e. z ∈ {e1}⊥
and |gx| ≤ ρ almost everywhere on L+ z. This implies that |gx| ≤ ρ a.e. Similarly,

|gy| ≤ ρ a.e. Thus, g lies in the classical Sobolev space W 1,2
loc (R2) and |∇g| ≤

√
2ρ

a.e. in R2; see [Zie89, Theorem 2.1.4, p. 44].
If R2 \E ̸= ∅, then each x ∈ R2 \E has a bounded open neighborhood Y that is

disjoint from Vm for sufficiently large m, since Vm ⊂ N1/m(E). Thus, Y ⊂ Xm and

g ∈ W 1,2(Y ). Since ρ is an upper gradient of g in Y , by [Haj03, Corollary 7.15] we
conclude that |∇g| ≤ ρ a.e. in Y . Therefore, |∇g| ≤ ρ a.e. in R2 \E. Summarizing,
at a.e. point of R2 we have

|∇g| ≤ ρχR2\E +
√
2ρχE .

Since g = 0 in a neighborhood of F1 and g = 1 in a neighborhood of F2, for
each ε > 0 there exists (by mollification) a smooth function gε on R2 with the same
properties and with ∥∇gε∥2L2(R2) < ∥∇g∥2L2(R2)+ ε; see [Zie89, Lemma 2.1.3, p. 43].

It is immediate that |∇gε| is admissible for Γ(F1, F2;R2). Thus,

Mod2 Γ(F1, F2;R2) ≤ ∥∇gε∥2L2(R2) ≤ ∥ρ∥2
L2(R2\E)

+ 2∥ρ∥2
L2(E)

+ ε.
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First we let ε → 0, and then we infimize over ρ to obtain

Mod2 Γ(F1, F2;R2) ≤ c0 Mod2(Γ(F
r
1 , F

r
2 ;R2) ∩ F0(E)),

where c0 = 1 if m2(E) = 0 and c0 = 2 otherwise. Now, we let r → 0 and by Lemma
6.8 we obtain

Mod2 Γ(F1, F2;R2) ≤ c0 Mod2(Γ(F1, F2;R2) ∩ F0(E)). □

6.3. A non-measurable CNED set. Sierpiński [Sie20], using the axiom of choice
but not the continuum hypothesis, constructed a striking example of a non-mea-
surable set E ⊂ R2 such that every line intersects E in at most two points. This
example served at that time as a counterexample to the converse of Fubini’s theo-
rem: if the slices of a planar set are measurable, then is the whole set measurable?
We show here that Sierpiński’s set is CNED . Thus, the assumption of measurability
in Lemma 2.5 is necessary in order to derive that CNED sets have measure zero.

Proposition 6.9. There exists a non-measurable set E ⊂ R2 that is CNED.

Proof. Let E be the non-measurable set of Sierpiński. Let F1, F2 ⊂ R2 be non-
empty, disjoint continua. We will show that

Mod2 Γ(F1, F2;R2) ≤ Mod2(Γ(F1, F2;R2) ∩ Fσ(E)).

According to a remarkable result of Aseev [Ase09, Theorem 2.1], we have

Mod2 Γ(F1, F2;R2) = Mod2(Γ(F1, F2;R2) ∩ F),

where F is the family of piecewise linear curves with respect to R2 \ (F1 ∪F2); that
is, γ ∈ F if each point of |γ| \ (F1 ∪ F2) has a neighborhood V such that |γ| ∩ V
consists of finitely many straight line segments. Hence, it suffices to show that

Γ(F1, F2;R2) ∩ F ⊂ Γ(F1, F2;R2) ∩ Fσ(E).

Let γ ∈ Γ(F1, F2;R2) ∩ F . By the properties of the set E, and since γ is piecewise
linear, the set |γ| ∩ E is countable. Hence, γ ∈ Fσ(E), as desired. □

7. Examples of non-negligible sets

Proof of Proposition 1.11. Let E be the residual set of a packing as in the state-
ment. Let Γ0 denote the family of non-constant curves that intersect the set

S =
⋃︂

i,j∈N
i ̸=j

(∂Di ∩ ∂Dj).

Since S is countable, we have Modn Γ0 = 0. Consider continua F1, F2, contained
in D1, D2, respectively. The claim that E /∈ CNED follows once we establish that

Γ(F1, F2;D0) ∩ Fσ(E) ⊂ Γ0.(7.1)

Let γ ∈ Γ(F1, F2;D0) \ Γ0. By considering a weak subpath, we assume that γ is
a simple path with the same properties. We consider an injective parametrization
γ : [0, 1] → D0. Let A be the set of t ∈ [0, 1] such that there exists δ > 0 and i ∈ N
with the property that γ((t − δ, t) ∪ (t, t + δ)) ⊂ Di and γ(t) ∈ ∂Di; that is, γ
“bounces” on ∂Di at time t. Then A is countable and relatively open in γ−1(E).

We claim that the compact set B = γ−1(E) \ A is non-empty and perfect, in
which case, it is uncountable. Therefore, |γ| ∩ E is uncountable and γ /∈ Fσ(E),
which completes the proof of (7.1). To see that B is non-empty, let t = sup{a ∈
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[0, 1] : γ(a) ∈ D1}. Then γ(t) ∈ ∂D1, so t ∈ γ−1(E), γ((t− δ, t))∩D1 ̸= ∅ for every
δ > 0, and γ((t, 1])∩D1 = ∅. Thus, t /∈ A and t ∈ B, showing that B ̸= ∅. We now
show perfectness. Let t ∈ B and let I ⊂ [0, 1] be an open interval containing t.

Case 1: Suppose that γ(I) ⊂ E. Since A is countable, there exists s ∈ I \A, s ̸= t,
with γ(s) ∈ E. Hence, (I \ {t}) ∩B ̸= ∅.
Case 2: Suppose that γ(I) ∩Di0 ̸= ∅ for some i0 ∈ N and γ(t) /∈ ∂Di0 . Without
loss of generality γ(s) ∈ Di0 for some s ∈ I with s < t. Let s1 = sup{a ∈ (s, t) :
γ(a) ∈ Di0}. Then γ(s1) ∈ ∂Di0 , s1 ̸= t, γ((s1 − δ, s1)) ∩Di0 ̸= ∅ for every δ > 0,
and γ((s1, t))∩Di0 = ∅. Thus, s1 /∈ A and we have s1 ∈ I ∩B, so (I \ {t})∩B ̸= ∅.
Case 3: Suppose γ(t) ∈ ∂Di0 for some i0 ∈ N. Since t /∈ A, there exists an open
subinterval of I, say J = (s, t), such that γ(J) intersects the complement of Di0 . If
γ(J) ⊂ E, then by Case 1 we have (J \ {t}) ∩B ̸= ∅. Suppose that γ(J) ∩Di1 ̸= ∅
for some i1 ̸= i0. Then γ(t) /∈ ∂Di1 , since γ /∈ Γ0 and γ avoids the set ∂Di1 ∩ ∂Di0 .
We are now reduced to Case 2 with i1 in place of i0 and J in place of I. □

Remark 7.1. One can relax the assumption of the proposition to requiring that
∂Di ∩ ∂Dj , i ̸= j, has Sobolev n-capacity zero (see [HKST15, Section 7.2]). Then
the family of curves passing through ∂Di ∩ ∂Dj has n-modulus zero.

Next, we establish a preliminary elementary result before proving Theorem 1.9.

Lemma 7.2. Let U ⊂ R be an open set and E ⊂ R be a compact set with m1(E) >
0. Then there exists a sequence of similarities τi : R → R, i ∈ N, and a set N ⊂ R
with m1(N) = 0 such that

U = N ∪
⋃︂
i∈N

τi(E).

Proof. Suppose that E ⊂ (a, b) and set λ = m1(E)/(b−a). Moreover, suppose that
U is bounded. Let U0 = U and let I0,i, i ∈ N, be the connected components of U0,
which are bounded open intervals. For each i ∈ N, define τ0,i to be the similarity
that maps (a, b) onto I0,i. Then m1(τ0,i(E))/m1(I0,i) = λ and

m1

(︄⋃︂
i∈N

τ0,i(E)

)︄
= λm1(U0).

We now define U1 = U0 \
⋃︁

i∈N τ0,i(E), which is open, and note that m1(U1) =
(1− λ)m1(U0). We proceed in the same way to obtain similarities τ1,i, i ∈ N, that
map (a, b) to the connected components of U1. In the k-th step, we obtain the set

Uk = U0 \
k−1⋃︂
j=0

⋃︂
i∈N

τj,i(E)

with mn(Uk) = (1− λ)km1(U0). Thus, N = U0 \
⋃︁∞

j=0

⋃︁
i∈N τj,i(E) is a null set, as

desired. If U is unbounded, we can simply write it as a countable union of bounded
open sets and apply the previous result to each of them. □

Proof of Theorem 1.9. According to a construction of Wu [Wu98, Example 2], there
exist Cantor sets G,F ⊂ R such that m1(G) = 0, m1(F ) > 0, and G × F is
removable for the Sobolev space W 1,2. Thus, G×F is of class NED ⊂ CNED ; this
follows from [VG77].
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By Lemma 7.2, there exist countably many scaled and translated copies Fi ⊂
(0, 1), i ∈ N, of F , such that the set E1 = [0, 1] \

⋃︁
i∈N Fi has 1-measure zero. We

let E2 = [0, 1] \ E1 =
⋃︁

i∈N Fi. We have

G× [0, 1] = G× (E1 ∪ E2) = (G× E1) ∪ (G× E2).

The set G× [0, 1] is not QCH -removable (recall the discussion in the Introduction),
so it is not CNED by Theorem 1.1; this can also be proved directly.

On the other hand, for each i ∈ N the set G × Fi is the quasiconformal image
of G × F , which is NED . Compact NED sets are invariant under quasiconformal
maps by Corollary 4.2 (this also follows from [AB50, Theorem 4]). Thus, G×Fi is
NED for each i ∈ N. By Theorem 1.2 we conclude that

G× E2 =
⋃︂
i∈N

G× Fi ∈ NED .

Finally, note that the projections of the set G × E1 to the coordinate axes have
measure zero. Moreover, G× E1 ⊂ G × [0, 1], and the latter has 2-measure zero.
By Theorem 6.6 we conclude that G× E1 ∈ NED . □
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(2021), no. 3, 847–854.

[Nta23] D. Ntalampekos, Rigidity and continuous extension for conformal maps of circle do-

mains, Trans. Amer. Math. Soc. 376 (2023), no. 7, 5221–5239.
[Nta] D. Ntalampekos, Metric definition of quasiconformality and exceptional sets, Math.

Ann. To appear.

[NW20] D. Ntalampekos and J.-M. Wu, Non-removability of Sierpiński spaces, Proc. Amer.
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