CNED SETS: COUNTABLY NEGLIGIBLE FOR EXTREMAL
DISTANCES

DIMITRIOS NTALAMPEKOS

ABSTRACT. The author has recently introduced the class of CNED sets in
Euclidean space, generalizing the classical notion of NED sets, and shown
that they are quasiconformally removable. A set E is CNED if the conformal
modulus of a curve family is not affected when one restricts to the subfamily
intersecting E at countably many points. We prove that several classes of sets
that were known to be removable are also CNED, including sets of o-finite
Hausdorff (n — 1)-measure and boundaries of domains with n-integrable quasi-
hyperbolic distance. Thus, this work puts in common framework many known
results on the problem of quasiconformal removability and suggests that the
CNED condition should also be necessary for removability. We give a new
necessary and sufficient criterion for closed sets to be (C)NED. Applying this
criterion, we show that countable unions of closed (C)NED sets are (C)NED.
Therefore we enlarge significantly the known classes of quasiconformally re-
movable sets.
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1. INTRODUCTION

1.1. Definitions. Before presenting our results, we first discuss some background.
We assume throughout that n > 2. For an open set U C R" and two con-
tinua Fp, Fy C U the family of curves joining F; and F3 inside U is denoted by
D(Fy, F5;U). For a set E C R™ we denote by Fo(FE) the family of curves in R™ that
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do not intersect F, except possibly at the endpoints, and by F,(F) the family of
curves in R™ that intersect F at countably many points, not counting multiplicity.

A set E C R"™ is negligible for extremal distances if for every pair of non-empty,
disjoint continua Fy, F5 C R™ we have

Mod,, I'(F1, Fo; R™) = Mod,, (T'(Fy, Fo; R™) N Fo(E)).

In this case, we write £ € NED; note that we suppress the dimension n in this
notation. If, instead, there exists a uniform constant M > 1 such that

MOdn F(Fl,Fg,Rn) S M - MOdn(F(Fl,FQ,Rn) N .Fo(E)),

we say that F is weakly NED and we write E € NED". We remark that we do not
require F to be closed. For closed sets, the classes NED and NED" agree [AST74].

The author in [Nta] introduced the class of CNED sets, that is, countably negli-
gible for extremal distances. We say that a set E C R" is of class CNED if

Mod,, T'(Fy, Fo; R™) = Mod,, (L'(Fy, Fo; R™) N F,(E))

for every pair of non-empty, disjoint continua Fi, F5 C R™. In this case we write
E € CNED. As above, we also define the class CNED"™ in the obvious manner.
Again, FE need not be closed and the dimension n is suppressed in this notation.
For closed sets we show in Theorem [4.1] that the classes CNED and CNED"™ agree.
The monotonicity of modulus implies that NED ¢ CNED ¢ CNED™ .

1.2. Properties of negligible sets. Closed NED sets have been studied exten-
sively in the plane by Ahlfors and Beurling in [AB50], where they proved that these
sets coincide with the closed sets £ C C that are remowvable for conformal embed-
dings or else S-removable; that is, every conformal embedding of C\ E into C is
the restriction of a Mébius transformation. See also Pesin’s work [Pes56]. Equiva-
lently, we may replace conformal with quasiconformal maps in this definition. See
[Youl)| for a survey. Véiséld initiated the study of closed NED sets in higher di-
mensions [Vai62], proving that closed sets of Hausdorff (n — 1)-measure zero are of
class NED. The result of Ahlfors—Beurling was partially generalized in higher di-
mensions by Aseev—Sycev |[AS74] and Vodopyanov—Goldshtein [VG77|, who proved
that if a closed set E C R", n > 3, is of class NED, then it is removable for quasi-
conformal embeddings. The converse is not known in dimensions n > 3. Finally, a
characterization of closed NED sets in R™ was provided by Vodopyanov—Goldshtein
[VGTT], who proved that closed NED sets coincide with sets that are removable for
the Sobolev space W1, We direct the reader to the introduction of [Ase09] for a
survey of the known results. NED sets are closely related to quasiextremal distance
(QED) exceptional sets, introduced by Gehring—Martio [GMS85]. As remarked, here
we will work with NED sets that are not necessarily closed.

The relation between CNED sets and quasiconformal maps was unveiled in [Nta].
We state a special case of the main theorem.

Theorem 1.1. Let E C R" be a closed CNED set. Then every homeomorphism
of R™ that is quasiconformal on R™ \ E is quasiconformal on R™.

In fact, in [Nta, Theorem 1.3] the set E is not assumed to be closed, in which
case the quasiconformality of f in the set 2\ E has to be interpreted appropriately,
using the metric definition or a variant.
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Closed sets E satisfying the conclusion of Theorem are called removable
for quasiconformal homeomorphisms or else QCH -removable. The difference to S-
removable sets that we discuss above is that here we study global homeomorphisms
of R™, instead of topological embeddings of R™\ E. Moreover, note that if a planar
set is S-removable, then it is QCH-removable. Although we have satisfactory char-
acterizations of the former sets by Ahlfors-Beurling [AB50] in dimension 2, it is a
notoriously difficult problem to characterize QCH-removable sets even in dimension
2. The current work suggests that CNED sets could provide a characterization.

There are many open problems related to QCH-removable sets, one of which
is the problem of local removability |Bis94, Question 4], [Ntal9, Question 2J: if a
closed set E is QCH-removable, is it true that every topological embedding of an
open set  C R™ into R™ that is quasiconformal in Q\ E, is quasiconformal in 7
For CNED sets an affirmative answer is provided by [Nta, Theorem 1.3].

Another open problem is whether the union of two QCH-removable closed sets
is removable [JS00]. While for disjoint sets the answer is affirmative, in general,
for intersecting sets this is known only in the cases of totally disconnected sets and
quasicircles [Youl6, Theorem 4]. We prove here that countable unions of closed
NED and CNED sets are NED and CNED, respectively.

Theorem 1.2. Let E;, i € N, be a countable collection of closed subsets of R™.

(i) If E; is NED for each i € N, then U E; is NED .
i€N
(ii) If E; is CNED for each i € N, then U E; is CNED .
iEN
In the case that a countable union of closed NED sets is closed, this result follows

from the Baire category theorem [Yould Section 4]. The case of non-closed unions
is significantly more complicated, since they could even be dense. The proof is
given in Section [5| and relies on an intricate characterization of NED and CNED
sets from Section [d] We give a vague formulation of this characterization here.

Theorem 1.3. A closed set E C R™ is NED (resp. CNED) if and only if for
every n-integrable metric pds, almost every path v in R™ can be perturbed by an
arbitrarily small amount of p-length to avoid the set E (resp. to intersect the set E
at countably many points).

See Theorem for a precise statement. Another application of this charac-
terization is the removability of CNED sets for continuous Sobolev functions. The
proof is given in Section [£.4]

Theorem 1.4. Let E C R™ be a closed CNED set. Then every continuous function
f:R" = R with f € Wh(R" \ E) lies in WH™(R").

1.3. Examples of negligible sets. So far we understand some general classes of
QCH -removable sets. First, sets of o-finite Hausdorff (n—1)-measure are removable
as shown by Besicovitch |[Bes31] in dimension 2 and by Gehring [Geh62] in higher
dimensions. Thus, we can say that such sets are removable for rectifiability reasons.

Next, it is known that sets with good geometry, such as quasicircles, are re-
movable in dimension 2. More generally, in all dimensions, boundaries of John
domains, Holder domains, and domains with n-integrable quasihyperbolic distance
are removable [Jon95|JSOOLKNO5|. Roughly speaking, all of these sets have either
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no outward cusps or some outward cusps, but not too many on average. Thus,
these sets are removable for geometric reasons.

Finally, NED sets are removable as well due to [AB50] in dimension 2 and [AS74]
VG77) in higher dimensions. Thus, one could say that NED sets are removable
because they are small in a potential theoretic sense. Note that all NED sets are
necessarily totally disconnected in dimension 2.

The three classes of sets are mutually singular in a sense. Namely, there are
rectifiable sets that have bad geometry and are large from a potential theoretic
point of view. For example, consider a rectifiable curve with a dense set of both
inward and outward cusps. Likewise, there are sets with good geometry that are
not rectifiable and are large for potential theory. As an example, take a quasicircle
of Hausdorff dimension larger than 1. Finally, there are sets that are small in
a potential theoretic sense, but are large in terms of rectifiability and have bad
geometry. For example, consider a Cantor set £ C R of measure zero and Hausdorff
dimension 1, and then take the set E x E; this is an NED set by [AB50, Theorem
10] since its projections to the coordinate directions have measure zero.

A natural question is whether one can reconcile these three different worlds. In
other words, is there a common reason for which all of the above classes of sets are
QCH-removable? We provide an affirmative answer to this question.

Theorem 1.5. The following sets are of class CNED in R™.

(i) Sets of class NED.
(ii) Sets of o-finite Hausdorff (n — 1)-measure.
(iii) Boundaries of domains with n-integrable quasihyperbolic distance.

The class of sets in is defined and discussed in Section where we also
give the proof. This class includes quasicircles, boundaries of John domains, and
boundaries of Holder domains. As discussed earlier, is immediate; however,
the other conclusions are new. The technique used for the proof of allows us
to generalize a result of Viisdld [Vai62], stating that a closed set E C R™ with
Hausdorff (n — 1)-measure zero is of class NED, to non-closed sets.

Theorem 1.6. Let E C R™ be a set of Hausdorff (n —1)-measure zero. Then E is
NED.

Theorem and Theorem are proved in Section (3| with the aid of the
notion of a family of curve perturbations; see Theorem [3.11] Roughly speaking,
such curve families contain almost every parallel translate of a curve and almost
every radial segment. The main theorem of that section is Theorem 3.4 which
asserts that the modulus of a curve family remains unaffected, if one restricts to
the intersection of that family with a family of curve perturbations.

Combining Theorems and we obtain the next removability result.

Theorem 1.7. Let E C R" be a closed set that admits a decomposition into count-
ably many sets E;, i € N, each of which is contained in a closed set that is either
NED, or has o-finite Hausdorff (n — 1)-measure, or is the boundary of a domain
with n-integrable quasihyperbolic distance. Then E is CNED and QCH -removable.

We also present some further examples. We show in Theorem [6.6]that planar sets
(not necessarily closed) whose projection to each coordinate axis has measure zero
are NED" | generalizing a result of Ahlfors—Beurling for closed sets [AB50, Theorem
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10]. Theorem is used in the proof of Theorem below. In Section we
present an example of a non-measurable CNED set, constructed by Sierpinski.

The results of this paper have already found an application in the problem of
rigidity of circle domains. A connected open set ) in the Riemann sphere Cisa
circle domain if each boundary component of €2 is either a circle or a point. A circle
domain Q is conformally rigid if every conformal map from 2 onto another circle
domain is the restriction of a Mébius transformation of C. He-Schramm [HS94]
proved that circle domains whose boundary has o-finite Hausdorff 1-measure are
rigid. Later, Younsi and the author [NY20] proved the rigidity of circle domains
with n-integrable quasihyperbolic distance (as in Theorem . It is conjec-
tured that rigidity of a circle domain is equivalent to QCH-removability of the
boundary. The next result incorporates all previous results and provides strong
evidence towards this conjecture.

Theorem 1.8 ([Nta23|). A circle domain is conformally rigid if every compact
subset of its point boundary components is CNED.

The proof features especially Theorem [I.2] and the characterization of CNED
sets given in Theorem

1.4. Examples of non-negligible sets. We remark that in Theorem [I.2] we are
not requiring that the union of the closed sets E; be closed. However, both cases
of the theorem fail without assuming that each individual set F; is closed.

Theorem 1.9. There exist Borel NED sets Ei, Ey C R? such that F1 U Es is a
closed set that is neither NED nor CNED nor QCH -removable.

The proof is given in Section [7} One can construct a more basic example with
EyUE; ¢ NED as follows. Tukia [Tuk89|] gives an example of a set E; C [0,1]
of full measure that can be mapped under a quasiconformal map of C onto a set
of 1-measure zero in the real line. Note that sets of 1-measure zero are NED by
Theorem and such NED sets are quasiconformally invariant by Corollary
Thus, Ey is NED. Also, E; = [0,1] \ E; is NED because it has measure zero.
However, Ey U E5 = [0,1], which is not totally disconnected, so it is not NED.

Compared to NED sets, it is significantly harder to produce sets that are not
CNED. For the proof of Theorem [I.0 we use tools from the existing literature,
and in particular from a work of Wu [Wu98|, to construct NED sets E; and Ej
such that E7 U Ej is the product of a Cantor set in R with [0, 1]. Such sets are not
QCH-removable (see [Carb1| or the Introduction of [Nta20]) and thus they are not
CNED by Theorem this can be proved directly in this simple situation.

As a corollary of Theorem and [Nta, Theorem 1.3], we obtain that unions of
exceptional sets for the metric definition of quasiconformality are not necessarily
exceptional. Here H; denotes the metric distortion of a map f; see |[Ntaj.

Corollary 1.10. There exist Borel sets Ei, By C R? such that E1 U E is closed
and for each i € {1,2}, every homeomorphism f of R? with

sup Hy(z) < oo
z€R\ E;

is quasiconformal, but there exists a homeomorphism g of R? that is quasiconformal
in R?\ (E1 U E) and not quasiconformal in R?.
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Finally, we end the introduction with some remarks on non-removable sets. In
dimension 2 it is known that all sets of positive area are not QCH-removable
[KW96]. There are Jordan curves of Hausdorff dimension 1 that are non-removable
[Kau84,[Bis94]. Moreover, if C' C R is a Cantor set, then C x [0, 1] is non-removable
as we discussed above. More interestingly, Wu [Wu98| proved that if E, F C R are
Cantor sets and E ¢ NED, then E x F is non-removable; the converse is not true
since NED sets can have positive length |[AB50]. More recently, the current author
studied the problem of removability for fractals with infinitely many complemen-
tary components and proved that the Sierpinski gasket and all Sierpinski carpets
are non-removable [Ntal9,[Nta21]. The latter result was generalized to higher di-
mensional carpets, known as Sierpiriski spaces, by the author and Wu [NW20].

Gaskets and carpets fall into the general class of residual sets of packings. A
packing P in R™ is a collection of bounded, connected open sets D;, i € NU {0},
such that D; C Dy for every i € N and D; N D; = for ¢,j € N with ¢ # j. The
residual set of the packing P is the set

Dy \ U D;.
ieN

We observe below that in many cases such residual sets are not CNED.

Proposition 1.11. Let P = {D;};enuqoy be a packing in R™ such that 0D; N 0D;
is countable for i # j, i,5 € NU{0}. Then the residual set of P is not CNED.

It was earlier observed that such residual sets in the plane can have Hausdorff
dimension 1 but not o-finite Hausdorfl 1-measure [MN22]. Proposition covers
the Sierpinski gasket and all Sierpinski carpets.

1.5. Open problems. Based on the results of this work, it is natural to propose
the following problem, whose resolution would answer many of the open questions
related to removable sets.

Problem 1.12. Do QCH -removable sets coincide with closed CNED sets?
We also formulate a series of questions for CNED sets.

Question 1.13. If E C R” is a closed set that is not CNED, does there exist a
homeomorphism of R™ that is quasiconformal in R” \ E and maps E to a set of
positive n-measure?

A positive answer to this question would resolve Problem and thus it would
also resolve among others the problems of local removability and of removability
of unions of removable sets mentioned earlier. For closed NED sets in the plane
the answer to the corresponding question is already known to be affirmative by
Ahlfors—Beurling [AB50]: if E ¢ NED, then there exists a conformal embedding
f:R?\ E — R? such that the complement of f(R?\ E) has positive area.

Question 1.14. If £ C R™ is a closed set that is not CNED, does there exist a
totally disconnected closed subset of E that is not CNED?

If yes, it would suffice to answer Question [[.13] for totally disconnected sets,
which could be more approachable. Note that NED sets in the plane are already
totally disconnected, so this makes the study of these sets more accessible.

Problem 1.15. Do removable sets for continuous WH™ functions coincide with

closed CNED sets?
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This problem is motivated by Theorem Obviously, the answer would be
positive if the answer to Problem [I.12] were positive, in which case, QCH-removable
sets would coincide with removable sets for continuous W' functions. This is
another open problem discussed in [Bis94}JS00].

Acknowledgements. The author would like to thank Hrant Hakobyan and Malik
Younsi for their comments and corrections.

2. PRELIMINARIES

2.1. Notation and definitions. We denote the Euclidean distance between points
z,y € R" by |z —y|. For z € R™ and 0 < r < R we denote by B(z, R) the open
ball {y € R" : |x —y| < R} and by A(z;r, R) the open ring {y e R" : r < |z —y| <
R}. The corresponding closed ball and ring are denoted by B(z,7) and A(x;r, R),
respectively. If B is an open (resp. closed) ball, then for A > 0 we denote by AB
the open (resp. closed) ball with the same center as B and radius multiplied by .
We also set S~ !(z,r) = dB(x,7). The open e-neighborhood of a set £ C R" is
denoted by N.(E).

We use the notation m,, for the n-dimensional Lebesgue measure in R™, m} for
the outer n-dimensional Lebesgue measure, and fRn p(x) dz or simply [ p for the
Lebesgue integral of a Lebesgue measurable extended function p: R™ — [—o0, o0],
if it exists. For such a function p, if B is a measurable set with m,(B) € (0, c0),

we define .
= — p,
ﬁp m(B) /B

For simplicity, extended functions will be called functions. A non-negative function
is assumed to take values in [0, 0o].

The cardinality of a set E is denoted by #FE. For quantities A and B we write
A < B if there exists a constant ¢ > 0 such that A < ¢B. If the constant ¢
depends on another quantity H that we wish to emphasize, then we write instead
A < ¢(H)B or A <y B. Moreover, we use the notation A ~ B if A < B and
B < A. As previously, we write A ~y B to emphasize the dependence of the
implicit constants on the quantity H. All constants in the statements are assumed
to be positive even if this is not stated explicitly and the same letter may be used
in different statements to denote a different constant.

For s > 0 the s-dimensional Hausdorff measure s°(E) of a set E C R" is
defined by

H°(F) = lim 5 (E) = sup 4 (E),
§—0 §>0

where
5 (E) = inf {c(s) > diam(U;)* : E < | JU;, diam(U;) < 5}
j=1 J

for a normalizing constant c¢(s) > 0 so that the n-dimensional Hausdorff measure
agrees with Lebesgue measure in R™. Note that ¢(1) = 1. The quantity J°(E),
d € (0,00], is called the s-dimensional Hausdorff 6-content of E. If § = oo we
simply call this quantity the s-dimensional Hausdorff content of E. A standard
fact that we will use is that

H°(E) =0 if and only if 5 (F) = 0.
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We note that if E C R™ is a connected set, then (see [BBIO1, Lemma 2.6.1, p. 53])
HNE) > AL(E) = diam(E).

Lemma 2.1 ([Boj88|). Let p > 1 and A > 0. Suppose that {B;}ien is a collection
of balls in R™ and a;, i € N, is a sequence of non-negative numbers. Then

Z @i X AB, Z @iXB,

i€N €N

< c(n,p, \)
LP(R™)

Lr(R)

2.2. Rectifiable paths. A path or curve is a continuous function v: I — R™,
where I C R is a compact interval. The trace of a path v is the image v(I) and will
be denoted by |y|. The endpoints of a path 7: [a,b] — R™ are the points y(a),v(b)
and we set 0y = {v(a),v(b)}. We say that a path 7 is a weak subpath of a path ~
if #771(x) < #y71(x) for every z € R™. In particular, this implies that |¥] C |v]|.
A path 7 is a (strong) subpath of a path v: I — R™ if ¥ is the restriction of ¥ to a
closed subinterval of I. Note that a strong subpath is always a weak subpath, but
not vice versa. A path « is simple if it is injective. Equivalently, #v~!(x) = 1 for
each x € |v|. It is well-known that every path has a simple weak subpath with the
same endpoints [Wil70, Theorem 31.2, p. 219].

If v is a path and E C R" is a set, then we say that v avoids the set F if
EN|y| =0 and intersects E at (e.g.) finitely many points if E N |y| is a finite set;
note that we are not taking into account the multiplicity in the latter case.

If 4;: [a;, b;] — R™, i = 1,2, are paths such that v, (b1) = 72(az2), then we can
define the concatenation of the two paths to be the path «: [a1,bs] — R™ such that
Yar 1] = 71 and Y|(ay,5,] = V2. If 2,5 € R", then we denote the line segment from
z to y by [z,y].

The length of a path - is the total variation of the function v and is denoted
by £(v). A path is rectifiable if it has finite length. Let 7: [a,b] — R™ be a path
and s: [¢,d] — [a,b] be an increasing or decreasing continuous surjection. Then
the path v o s: [¢,d] — R™ is called a reparametrization of v (by the function s).
Every rectifiable path v admits a unique reparametrization 7: [0, £(v)] — R™ by an
increasing function so that £(|j4) = ¢t for all £ € [0,£(v)]. The path 7 is called
the arclength parametrization of -.

If p: R" — [0,00] is a Borel function and + is a rectifiable path, then one
can define the line integral fv pds using the arclength parametrization of ~; see
[Vai7l, Chapter 1, pp. 8-9]. Namely, if v: [0,4(7)] — R"™ is parametrized by

arclength, then
£(7)
[pas= [ sttt
¥ 0

We gather some properties of line integrals below.

Lemma 2.2. Let v be a rectifiable path, v be a weak subpath of v, and p: R™ —
[0,00] be a Borel function. The following statements are true.

() / pis = [ plo)tty @) A ).

(ii) / pdAt < /pds with equality if v is simple.
vl ¥
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(iii) /pdsg/pds.
¥ Y

(iv) If G C R™ is a Borel set such that (G N|y|) =0, then

/pdS:/pXRn\GdS.
¥ ¥

In particular, the above statements hold for p =1, in which case /pds =L(7).
¥

Proof. Part |(i)| follows from |[Fed69, Theorem 2.10.13, p. 177]. The inequality and
equality in follow from Since 7 is a weak subpath of «, we have #7~!(z) <
#~y~1(x). Thus|(i)|implies Part also follows from |(i){ upon observing that
Xen\g(@)#7~ (@) = #77(2) for 2 ¢ G N |y and thus for #'-a.e. z € R™ O

2.3. Modulus. Let I be a family of curves in R”. A Borel function p: R™ — [0, o]
is admissible for the path family I' if

/pdszl
.

for all rectifiable paths v € I'. For p > 1 we define the p-modulus of T as
Mod, I' = inf/pp7
P

where the infimum is taken over all admissible functions p for I'. By convention,
Mod, I' = oo if there are no admissible functions for I'. Note that unrectifiable
paths do not affect modulus. Hence, we will assume that families of p-modulus
zero appearing in the next considerations contain all unrectifiable paths. We will
use the following standard facts about modulus:

(M1) The modulus Mod,, is an outer measure in the space of all curves in R™. In
particular, it obeys the monotonicity and countable subadditivity laws.

(M2) If every path of a family I'y has a subpath lying in a family I's, then
Mod, I'1 < Mod,, I';.

(M3) If I'y is a path family with Mod, 'y = 0, then the family of paths + that
have a weak subpath in I'y also has n-modulus zero (by Lemma [2.2][(iii)).
Moreover, the family of paths that have a reparametrization contained in
I'p also has p-modulus zero.

(M4) If p: R™ — [0,00] is a Borel function with p = 0 a.e., then for the family
I’y of paths v with f,y pds > 0 we have Mod,, I'y = 0.

(M5) The modulus Mod,, obeys the serial law: if I';, ¢ € N, are curve families
supported in disjoint Borel sets, then

MOdp ([j Fl> Z i MOdp Fl
i=1 i=1

(M6) Let E C R™ be a set with m,,(E) = 0. Let I'g be the family of paths v such
that 7' (|y| N E) > 0. Then Mod, I'g = 0.
(M7) For p = n the modulus Mod,, is invariant under conformal maps.
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(M8) Let I = T'(A(z; 7, R)) be the family of curves in R™ joining the boundary
components of the ring A(z;r, R). Then

1—n
Mod,,I' = w,,—1 <log R> .
r

Here wy,—1 is the area of the unit sphere in R™. See [Vai71, Chapter 1] and [HKST15|
Sections 5.2-5.3] for more details about modulus and proofs of these facts.
For a path v: T — R™ and € R™ we define y+1 to be the path I 3 ¢t — ~(t)+x.

Lemma 2.3. Let I' be a family of paths in R™ with Mod, I' = 0.

(i) For each rectifiable path v and for a.e. x € R™ we have vy +x ¢ T.
(ii) For each line segment L parallel to a direction v € R™ and for " ‘-a.e.
x € {v}t we have L+z ¢ T.
(iii) For each x € R™ and w € S"1(0,1) define v, (t) = x + tw, t > 0. Then
for 0 <r < R we have yyljp g € L for A" t-a.e. w e S"71(0,1).

Proof. For each £ > 0 there exists a function p that is admissible for I with [ p? < e.

For (i), let v be a rectifiable path in R™, parametrized by arclength. Let r > 0
and G, be the set of x € B(0,r) such that v + 2 € I'. We also fix R > 0 such
that |y + 2| C B(0, R) whenever x € B(0,r). Then by Chebychev’s inequality and
Fubini’s theorem we have

£(v)
my(Gy) < my <{x € B(0,7) : / pds > 1}) < / / p(y(t) + ) dtdx
y+x B(0,r) JO
£(v)
— [ [ s + oy dedt < )l o0.0,
0 B(0,r)

As ¢ — 0, we have |[pl[zr(B(0,r)) — 0, s0 |lpllL1(B(0,r)) — 0. This shows that
my(G,) =0 for all » > 0. Thus, v+ x ¢ T for a.e. x € R™.
For part (ii), let G, be the set of x € B(0,7) N {v}* such that L + 2 € I'. Then

) <o ({eeponngt: [ pasz1}) <ol
L+x

where D is the cylinder of radius r with axis L. We now let € — 0 as above.
Finally, for (iii), let G be the set of w € $"~!(0, 1) such that v, |, g € I'. Then,
using polar integration we have

2" NG < ! ({w € S"710,1) : / pds > 1})
wl [ R

R
<[ e e w) S ol
Sn=1(0,1) Jr
As before, we let € — 0 to obtain the conclusion. O

2.4. Elementary properties of NED and CNED sets. We first recall the def-
initions. For an open set U C R™ and for any two closed sets Fi, F5 C R™ the
family of curves joining F; and F5 inside U is denoted by I'(Fy, F;U). In other
words, this family contains the curves v: [a,b] — U with v(a) € Fy, v(b) € Fy, and
v((a,b)) C U. For a set E C R™ we denote by Fo(E) the family of curves in R”
that do not intersect E, except possibly at the endpoints; that is, Fo(E) contains
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the curves «: [a,b] — R™ such that |v|\ v({a, b}) does not intersect E. Moreover,
we define F,(E) to be the family of curves in R™ that intersect F in countably
many points; that is, the set F N |y| is countable (finite or infinite).

Let E C R™ be a set and Q C R™ be an open set. The set E lies in NED(Q) if
for every pair of non-empty, disjoint continua Fi, Fo C £ we have

MOdn F(Fl, FQ; Q) = MOdn(F(Fl, FQ; Q) n .Fo(E))
If we have instead
MOdn F(Fl, FQ; Q) S M - Modn(F(Fl, FQ; Q) N fo(E))

for a uniform constant M > 1, then E lies in NED" (). A set E C R lies in
CNED(Q) and CNED"Y () if the above equality and inequality, respectively, hold
with F,(E) in place of Fo(E). In the case that {2 = R™, we simply use the notation
NED, NEDY, CNED, and CNED"™.

We will use the notation *NED(Q2) and F..(E) for NED(Q?) or CNED(2) and for
Fo(E) or Fy(E), respectively. Similarly, we will use the notation *NED™(Q) for
NED™(2) or CNED™(2). By the monotonicity of modulus, if £ € *NED() (resp.
*NEDY(Q)) and F C E, then F lies in %¥NED(Q) (resp. *NED"(Q)). Moreover,
if E € xNED"(Q), it is immediate that E N must have empty interior.

A set is non-degenerate if it contains more than one points. For two non-
degenerate sets Fy, Fy C R™ we define the relative distance A(Fy, Fs) by

dist(Fy, )

A(Fy, Fp) = min{diam(F}), diam(F)}

Lemma 2.4. Let E C R™ be a set with the following property. There exist constants
t,¢ > 0 such that for each ro € R™ there exists ro > 0 with the property that for
every pair of non-degenerate, disjoint continua Fy, Fo C B(xg,ro) with A(Fy, Fy) <
t we have

Mod,, (I'(Fy, Fo; R") N Fi(E)) > ¢.
If, in addition, E is Lebesque measurable, then m,(E) = 0.

Proof. Since E is measurable, it differs from a Borel subset by a set of measure
zero. Note also that the family F,.(FE) increases when we pass to a subset of E.
Thus, we assume that F is Borel itself. Suppose that m,,(E) > 0 and that z¢ is a
Lebesgue density point of E. Let ry be as in the assumption and consider r < ry.
Define Fy = 0B(xzg,r) and Fy = 0B(zg, ar), where a € (0,1) is chosen so that

1-a
A(Fy, Fy) = <t.
( 1 2) 2
Consider the function
1
p(.’E) - |JI — xO‘ 1Og(a_1)XA(wo;ar,7') (ZC)

Then p is admissible for T'(Fy, Fa; R™); see for example [HeiO1} 7.14, pp. 52-53]. We
set p1 = pXgn\ g, Which is Borel measurable. If v is a curve in [(Fy, Fo; R")NF.(E),
then v intersects E at countably many points, so by Lemma we have

/plds:/pdszl.
¥ ¥
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Hence, p; is admissible for T'(Fy, Fo; R™) N F.(E). We conclude that

¢ < Mod,,(T'(Fy, Fo; R") N Fu(E)) < /W\E pr < ZZéﬁz(—xloj)?a\"rE’?

Letting » — 0 contradicts the assumption that zq is a density point of F. O

Lemma 2.5. Let Q C R™ be an open set and E C Q be a set with E € XNED"(Q).

(i) If E C Q, then E satisfies the assumption of Lemma .
(ii) If E is Lebesgue measurable, then m,(F) = 0.

It was proved in [V&i62, Theorem 1] that closed NED sets have measure zero.
However, we remark that there exists a non-measurable set, constructed by Sierpin-
ski for a different purpose, that is of class CNED; see the discussion in Section

Proof. Let E C Q as in If x¢ ¢ E, there exists a ball B(xg,79) C R" \ E. For
any pair of non-degenerate, disjoint continua Fy, F» C B(xg,79) we have

MOdn(F(Fl,FQ;Rn) n ]:*(E)) Z MOdn F(Fl, FQ; B(.’Eo,T‘o))

by the monotonifity of modulus. If 2y € E, consider a ball B(xq,79) C §2. Since
E € *NED"(Q), there exists a uniform constant M > 1 such that for Fy, F» C
B(xg,70) as above, we have

Mod,,(T(Fy, Fo; R™) N F.(E)) > Mod,, (T'(Fy, F»; Q) N F.(E))
> M~'-Mod, T(Fy, F»; Q)
> M~'-Mod, T'(Fy, Fy; B(zo,70))-

Each open ball in Euclidean space is a Loewner space |Hei0l, Example 8.24 (a),
p. 65], so the latter modulus is uniformly bounded from below, provided that
A(Fy, Fy) < 1. Therefore the assumption of Lemma is satisfied.

For [(ii)} note that each closed set K C F is contained in 2, lies in *NED" (Q),
and by part |(i)| satisfies the assumption of Lemma By Lemma my(K) = 0.
Since E is measurable, m,(E) = 0. O

2.5. Comparison to classical definition of NED sets. According to the clas-
sical definition, a closed set E C R™ is NED if for every pair of non-empty, disjoint
continua Fy, F» C R™\ E we have

Mod,, T'(Fy, F5; R™) = Mod,, L'(Fy, F»; R™ \ E) = Mod,,(T'(Fy, Fo; R™) N Fo(E)).

In our definition, we required the stronger condition that the above equality holds
for all disjoint continua Fi, Fo C R™ regardless of whether they intersect the set
E. The reason for allowing such a generality in our approach is that we impose no
topological assumptions on E, which could be even dense in R™; therefore it would
be too restrictive and unnatural to work with continua Fy, F» C R™\ E.

We show that the two definitions agree. The proof relies on some results relating
n-modulus with n-capacity. Let U C R™ be an open set and Fy, F, C U be disjoint
continua. The n-capacity of the condenser (Fy, Fo;U) is defined as

Capn(Fl,Fg;U)zinf/ [Vul|™,
v Ju

where the infimum is taken over all functions u that are continuous in U U F} U Fy,
ACL in U [VaiTl, Section 26, p. 88], with u = 0 in a neighborhood of F; and
u = 1 in a neighborhood of F5 [Hes75, Theorem 3.3]. Equivalently, one can replace
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in this definition continuous ACL functions with the Dirichlet space L'"(U) of
locally integrable functions in U with distributional derivatives of first order lying
in L™(U). It has been shown by Hesse [Hes75, Theorem 5.5] that whenever F, I
are continua in U (specifically, not intersecting OU), then

Cap,,(F1, F»;U) = Mod,, T'(Fy, Fa; U).

This result was generalized to the case that Fy, Fy C U, provided that U is a QED
domain, by Herron-Koskela [HK90|; see also the work of Shlyk [Shl193] for a more
general result. By definition, a connected open set U C R” is a QFED domain if
there exists a constant M > 1 such that

Mod,, T(Fy, Fy; R"™) < M - Mod,, T'(Fy, Fy; U)

for all pairs of non-empty, disjoint continua Fy, Fo C U.

Suppose that E is an NED set according to the classical definition. Then U =
R™ \ E is a QED domain, whose closure is R"™; classical NED sets have empty
interior [V&i62|. Thus, the result of Herron—-Koskela gives

Cap,, (F1, Fy;R" \ E) = Mod,, [(F}, Fy; R" \ E)

for all non-empty, disjoint continua Fy, F5 C R™. Summarizing, in order to show
the equivalence of the classical definition to the current one, it suffices to show that

Capn(Fl,Fg;R”) = Capn(Fl,Fg;R” \ E)

for all non-empty, disjoint continua F}, F» C R™. Observe that this equality already
holds if Fy, F, C R" \ E. Hence, E is removable for n-capacity, in the sense of
Vodopyanov—Goldshtein [VGT77]. By [VG77, Theorem 3.1, p. 46], such sets coincide
with the sets that are removable for the Dirichlet space L''™. That is, m,,(E) = 0
and if u € LV (R" \ E), then u € LY™(R™) and the distributional derivatives of u
are the same in both spaces. Now, let F}, F5 be any non-empty, disjoint continua
in R™; in particular, they might intersect the set E, as in the current definition of
NED sets. We trivially have

Cap,,(F1, Fo;R" \ E) < Cap,,(F1, Fo; R™).

Since E is removable for the Dirichlet space L™, we also have the reverse inequality,
completing the proof.

3. FAMILIES OF CURVE PERTURBATIONS

Let F be a path family in R™. We define 0.F to be the set of points € R™ that
are endpoints of some path of F and z ¢ |y| \ 0y for any path v € F. In other
words, OF contains endpoints of paths in F that are not interior points of any path
of F. For example, if F is the family I'(Fy, F»; U), where U is a ring A(0;r, R) and
Fy, Fy are the boundary components of U, then OF = Fj U F5. Another example is
the family Fo(E) for some set E C R"™; recall its definition from Section Then,
0Fo(E) D E. Indeed, every point « € E can be considered as a constant path in
Fo(E); recall that paths of Fo(E) can have endpoints in E. Moreover, if z € E,
then x ¢ |y|\ 0y for any v € Fo(E); thus x € 0F(E).

Definition 3.1. We say that a path family F in R™ is a family of curve perturba-
tions, or else, a P-family, if
(P1) for all non-constant rectifiable paths v in R™ we have v+ x € F for a.e.
r €R”,
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(P2) for every x € R™ and r > 0, the radial segment ¢ — x + tw, 0 < t < r, lies
in F for A" la.e. we S"1(0,1),

(P3) F is closed under strong subpaths and reparametrizations, and

(P4) if two paths 71,72 € F have a common endpoint that does not lie in O.F,
then the concatenation of «; with 75 on that endpoint lies in F.

Property holds always for families that are closed under concatenations; for
example the family F,(FE) of curves intersecting a given set F at countably many
points is such. The reason for requiring that the common endpoint of v; and v,
does not lie in OF is that we wish to accommodate curve families such as Fo(E),
which contains paths that do not intersect E except possibly at the endpoints. Since
0Fo(E) D E, we remark that Fy(E) always satisfies Finally, we note that
always holds for Fy(FE) and F,(E). We summarize these remarks below.

Remark 3.2. Properties |(P3)| and [(P4)| always hold for the families Fo(F) and
F,(E), for each E C R™.

Lemma 3.3. The intersection of countably many P-families F;, i € N, is again a
P-family.

Proof. Let F = [,y Fi- Properties|(P1)}|(P2), and|(P3)|are immediate for 7. For
note that every constant path in R™ lies in F; for each i € N; this follows by
combining with Thus, if z € 0F; for some i € N, then « is the endpoint
of a (constant) path in F. Moreover, x ¢ |y| \ 07 for any path v of F; D F, so

Jor cor.
1EN

Now, if 1,72 € F have a common endpoint that does not lie in 0F, then it also
does not lie in O.F; for any ¢ € N. Hence, by the concatenation of v; with o
lies in F; for each ¢ € N. This proves that holds for F. O

In Section [3:2] we will see important examples of such families. Specifically, if
A" HE) = 0, then the family Fo(E) is a P-family and if E has o-finite Hausdorff
(n — 1)-measure, then F,(E) is a P-family.

3.1. The invariance theorem. The main result of the section states that n-
modulus is not affected if we restrict a path family to a P-family.

Theorem 3.4. Let F be a family of curve perturbations in R™. Then for every
open set U C R™ and all pairs of non-empty, disjoint continua Fy, Fy C U we have
Mod,, T'(Fy, F»; U) = Mod, (T'(Fy, Fo; U) N F)

We first establish several auxiliary results.

Lemma 3.5. Let F be a family of curve perturbations in R™. Let A = A(0;r, R),
0 <7r <R, and Fy, F» C R™ be disjoint continua such that every sphere S"~1(0, p),
r < p < R, intersects both Fy and F. Then
R
Mod,, (T'(Fy, Fo; A)NF) > ¢(n) log () .
T
The statement is also true for » < R < 7r but we do not prove this for the sake

of brevity. The statement without restricting to the family F is classical and can
be found in [V&ai71l, Theorem 10.12, p. 31]. Our proof relies on the next lemma.
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FIGURE 1

Lemma 3.6 (JKKO00, Lemma 2.1]). Let u: R™ — [0,00] be a Borel function and
F C R" be a continuum. Suppose that for each y € F there exists a set D, C
Sy, 1) with A"~ (Dy) > a > 0 for some a > 0 such that

/ uds >1
[y,w]

/ "> e{n,a) diam(F).

Proof of Lemma[3.5 We will first prove the statement for R = 7r. We will perform
several normalizations and reductions. By applying a scaling, we may assume that
r = 1; note that n-modulus is unaffected by scaling and that the family F is
mapped to a possibly different family of curve perturbations, which we denote by
F for simplicity. There exist closed balls B; = B(z;,1/2) with z; € F;nS"~1(0,9/2),
and disjoint continua F} C F; N B; with diam(F}) > 1/2 for i = 1,2. We will find a
uniform lower bound for Mod,, (I'(Fy, F3; A) N F), which will give a uniform lower
bound for Mod,, (T'(F1, Fa; A) N F) by the monotonicity of modulus. From now on,
we denote F} by F;, i = 1,2, for simplicity.

By applying an isometry, we assume that By and By are symmetric with respect
to the hyperplane R"~! x {0} and their centers have non-negative first coordinate.
The choice of the balls and of the normalization is such that for all points w in the
(n — 1)-dimensional disk S = B((6,0,...,0),1) N ({6} x R*™!) and for all y € B;,
i = 1,2, the segment [y, w] lies in the original ring A; see Figure

We remark that 1/2 < diam(F;) < 1, diam(S) = 2, and 1 < dist(F;,S) < 14 =
2R for ¢ = 1,2. Thus, diam(S) ~ diam(F;) ~ dist(F;,S) ~ 1. For y € F}, w € S,
and z € Fy consider the concatenation y(y,w,z) of the line segments [y, w] and
[w, z]. Note that y(y,w, z) C A and v(y,w, z) € ['(Fy, Fy; A) N F for each y € F7,
z € Fy, and a.e. w € S, by the properties of a P-family. Indeed, and

for each w € Dy. Then
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imply that for a.e. w € S the segments [y, w] and [w, 2] lie in F. Moreover, the
same properties imply that a.e. w € S does not lie in dF. Hence, by the
concatenation of the segments [y, w] and [w, 2] lies in F.

For each fixed y € F; consider the map S 5 w — ®,(w) = —%. By the

relative position of y and S, this map is uniformly bi-Lipschitz. T‘hus?j| it s csS
and "~ 1(S’) > a for some a > 0, then J#"~1(®,(5")) =, a. We note that the
implicit constants are independent of the point y € F;.

Now, let p be an admissible function for I'(Fy, Fy; A) N F. We have

/ pds > 1
Y(y,w,z)

for all y € Fy, z € F5 and a.e. w € S. Suppose that for each y € F; there exists
S, C S with s#"~1(S,) > 1#~1(S) such that we have

/ pds >1/2
[y, w]

for all w € S,. Then for the set D, = ®,(S,) we have #"~(D,) 2, 1. Lemma
[3:6] now implies that
/ p" Zn 1.

The other case is that there exists y € Fj such that there exists a subset S’ of S
with s#"=1(S) > 2.m71(S5), and

/ pds <1/2
[y,w]

for each w € S’. This implies that for each z € F» and for a.e. w € S’ we have

/[ ]pds >1/2.
As before, Lemma [3.6] gives that
/ p" Zn 1.
Therefore, we have shown that
Mod,,(T'(Fy, Fo; A)NF) > ¢(n) >0

for a uniform constant ¢(n) depending only on n, whenever R = Tr.
In the general case, let k& € N be the largest integer such that R > 7%r. Consider
the rings A; = A(0; 7", 7'r), i € {1,...,k}. By the serial law we have

k
Mod, (T(Fy, Fo; A) NV F) > Y " Mod,, (T(Fy, Fo; Ai) N F) 2 k 2 log(R/r). O
=1

Lemma 3.7. Let x € R", R > 0, and p: R™ — [0,00] be a Borel function with
p e LM(R™).
(i) For M > 0, let T'ps be the family of paths v that intersect the ball B(x, R)
and satisfy £(y) > MR. Then Mod, T'pyy — 0 as M — oo.
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(ii) Let T be a path family with Mod,, T’ > a for some a > 0 such that each path
v € I intersects the ball B(x, R). Then there exists a path v € T with

1/n
/ pds < ¢(n,a) </ p”) and () < ¢(n,a)R.
gl B(z,c(n,a)R)

Proof. Both statements are conformally invariant. Hence, using a conformal trans-
formation, we may assume that x = 0 and R = 1. For M > 1, the family I"j; is
contained in the union of the families

Iy ={y:£(y)>M and |y| c B(0,VM)},
Ty ={y:|y|NdB(0,1) #0 and |y|NOB(0,VM) # 0}

By the subadditivity of modulus, it suffices to show that Mod, I'; converges to
0as M — oo for i = 1,2. The function M_IXB(O /a7 is admissible for Ty,

so Mod,, I'; < c(n)M’”/z. The modulus of I'y is given by the explicit formula

Mod,, 'y = ¢(n)(log vV M) ~";:see property This proves part
Now we prove Let M = M(n,a) be sufficiently large, so that Mod,, I'y; <
a/2. Define p; = PXB(0,m+1) and let I'y be the family of paths v € T" such that

/ p1ds > 21/"a_1/”||:01||Ln(Rn).
v

Then the function
271 | oy s

is admissible for I';, provided that ||p1 || L ®n) # 0, in which case we have Mod,, T'y <
a/2. If ||p1]|»®ny = 0, then Mod,, I'y = 0 by property Also, let T'y be the
family of paths v € T such that £(y) > M, so Mod,, T's < Mod,, I'ys < a/2. By the
subadditivity of modulus we have Mod,,(I';y UT3) < a < Mod, T'. It follows that
I'\ (T';y UT2) has positive modulus, and in particular it is non-empty. Thus, there
exists a path v € I' with £(y) < M and

/ prds < 21/"a_1/"|\p1||Ln(Rn).
~y

Finally, note that |y| C B(0, M + 1) since |y| N B(0,1) # 0 and ¢(y) < M. Thus,

/pds:/plds,
v gl

which completes the proof, with ¢(n,a) = max{M(n,a) + 1,2'/"a=1/"}. O

- For a continuum F C R”jnd r > 0 we define F" to be the continuum F' +
B0,7r)={x+y:x € F,ye B(0,r)}.

Lemma 3.8. Let F be a family of curve perturbations in R™. Then for every open
set U C R™ and all pairs of non-empty, disjoint continua Fy, Fo C U we have

Mod,, (I'(Fy, Fy; U) N F) = lim Mod,,(I'(FY, 5 U) N F).

Our proof relies on the properties of P-families, which is a new concept, but the
main ideas originate in the proof of [Vai62, Lemma 2].
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Proof. Note that T'(Fy, Fo; U) N F C T(F],Fy;U) N F for every r > 0, so one
inequality is immediate. Also, if F; is a point x( for some ¢ = 1,2, then there exists

R > 0 such that by properties |(M2)| and we have
R 1-n
Mod,, (T(FY, F5; U) N F) < Mod,, T'(A(xg; 7, R)) = ¢(n) <log >
r

for all sufficiently small r > 0. Taking r — 0, we obtain the desired conclusion.
We suppose that diam(F;) > 0 for ¢ = 1,2. Let p € L™(R"™) be admissible for
['(Fy, Fo;U) N F. We will show that for each g < 1 we have

/pdSZq
v

for all sufficiently small » > 0 and v € T'(FY, F§;U) N F. This will imply that

lim sup Mod,, (T'(Fy, F5; U)NF) < q_"/p".

r—0
Letting ¢ — 1 and then infimizing over p gives the desired
lim sup Mod,,(T'(FY, F5;U) N F) < Mod,,(T'(F1, Fo; U) N F).

r—0

Arguing by contradiction, assume that there exists 0 < ¢ < 1 and ry — 07 such
that for each k € N there exists a path v,, € T'(F[*, Fy*;U) N F with

/ pds < g <1.
¥

Tk
By passing to a subpath, we assume in addition that |v,, | is disjoint from F; U Fb;
here we use property We fix Ry > 0 such that FlR0 C U, diam(F;) > 2Ry
for ¢ = 1,2, and Ff{o N F2R0 = (. For each r, < Ry and 7 = 1,2, there exists
x; ) € F; such that |y,,| connects the boundary components of the ring A;j; =
A(x; gk, Ro). Note that F; also connects the boundary components of the ring
A; i, since diam(F;) > diam(A4, ). By passing to a further subpath, we assume in
addition that the endpoints of +,, lie in the inner boundary components of A; j.
We fix e = (1 — ¢)/2 > 0. By Lemma [3.5| we have that if rj, < Ro/8, then

Mody, (T(|ry |, Fis Ai k) N F) = c(n)log(Ro/Tk) Zn 1.

Lemma implies that if 7y is sufficiently small, depending on ¢, then there
exists a path v; € I'(|yy, |, Fi; Ai k) N F such that

1/n
/ pds < c(n) / o <e.
i B(zi,k,c(n)ri)

We concatenate v;, ¢ = 1,2, with a suitable subpath of «,, ; note that the endpoint
of v; that lies in |v,,| is not in OF because it is an interior point of a path of
F. By property - )l the concatenation lies in F. In this way, we obtain a path
v € I'(Fy, F»; U) N F such that

/pds</ pder/ pds+/ pds < qg+2=1
72

This contradicts the admlss1b1hty of p. g
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Remark 3.9. From the proof we see that Lemma [3.8] is valid more generally for
families F satisfying [(P3)] [(P4)] and the conclusion of Lemma (or a variant of
it, such as Lemma [6.7] which uses rectangular instead of spherical rings). Recall

that F.(FE) always satisfies |(P3)| and [(P4)} see Remark

Our ultimate preliminary result before the proof of Theorem is the following
theorem, which is a version of the Lebesgue differentiation theorem for line integrals.

Theorem 3.10. Let p: R® — [—o0,00] be a Borel function with p € LY. (R™) for

loc

some p > 1. Then there exists a path family I'y with Mod, ' = 0 such that for
every rectifiable path v ¢ Ty we have f7 lp|ds < oo and

(3.1) lim][ / pds:/pds.
r—0 B(0,r) Jy+z o

Proof. By the subadditivity of modulus, it suffices to prove the statement for paths
v contained in a compact set. Thus, we may assume that p € LP(R™). Note
that f,y |p|ds < oo for all paths v outside a curve family of p-modulus zero. For
continuous functions p with compact support is trivially true for all rectifiable
paths, by uniform continuity. For the general case, for fixed A > 0 consider the
family I'y of rectifiable paths v with fv |p| ds < oo and

][ / pds—/pds
B(0,r) Jy+x 5

It suffices to show that Mod, I'y = 0 for each A > 0. Let ¢ be a continuous function
with compact support. Then, I'y C I'y Uy, where I'; is the family of rectifiable

paths v with
limsup][ / lo—¢lds > A\/2
r—0 B(0,r) Jy+x

and I's is the family of rectifiable paths v with
/ lp— ¢ ds > A/2.
.

lim sup > A

r—0

We note that
Mod, T < 2°A7lp = 0l .

Moreover, if v is parametrized by arclength, we have

]{3(0’” <L+x Ip—¢|d5) de = /OM) (éwm lp— ¢>|> dt < AM(/}-d)) ds,

where M (-) denotes the centered Hardy-Littlewood maximal function. Hence,
/M(p—d))ds > \/2
.
for v € I'y. The Hardy—Littlewood maximal LP-inequality |Zie89, Theorem 2.8.2,
p. 84] implies that
Mod, Ty < 22X M (p = 6) %, gy < (mp)2PA 10 = 6112 g
Altogether,
Mod, I'y < Mod,, I't +Mod, I's Snpx [lp — d)Hip(Rn)
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Since ¢ was arbitrary, we conclude that Mod, I'y = 0, as desired. ([

Proof of Theorem[3.4. By the monotonicity of modulus, it suffices to prove that
Mod, T'(Fy, F»; U) < Mod, (D(Fy, Fa; U) N F).

By Lemma [3.8] it suffices to prove that
Mod,, I'(F1, F5; U) < Mod, (T'(FY, F5; U) N F)

for all sufficiently small » > 0. We fix r > 0 so that F}, Fy C U. Let p: R™ — [0, x]
be an admissible function for I'(FYy, F5;U) N F with p € L™(R™). Consider the
curve family I'g with Mod,, I'g = 0, given by Theorem [3.10| and corresponding to
p. Let v € T'(Fy, F5;U) \ T'g be a rectifiable path. Since F is a family of curve
perturbations, by for a.e. x € B(0,r) we have y+x € T'(F], F5; U)NF. Now,
the admissibility of p for I'(FY, F3; U)NF and Theoremimply that fv pds > 1,
so p is admissible for I'(Fy, F»; U) \ I'g. Therefore,

Mod,, T'(Fy, Fo; U) = Mod,, (I'(Fy, Fa; U) \ To) < Mod,,(I'(F!, F};U) N F). O

3.2. Examples of families of curve perturbations. The next theorem, com-
bined with Theorem (3.4} gives Theorem and Theorem

Theorem 3.11. Let E C R” be a set.
(i) If " 1(E) =0, then Fo(E) is a P-family.
(ii) If E has o-finite Hausdorff (n — 1)-measure, then F,(E) is a P-family.

The case of Hausdorff (n—1)-measure zero, as in[(i)] has already been considered
by Viisala [Vai62, Lemma 5], where it is proved that for a.e. x € R™ we have

v+ z € Fo(E); that is, is satisfied. Recall also that [(P3)|and [(P4) are always
satisfied for Fo(E) and F,(E); see Remark We first prove two preliminary

lemmas that will be used in the proof of both cases and of the theorem.

Lemma 3.12. Let E C R™ and v be a non-constant rectifiable path. For N € N,
let Fiy be the set of x € R™ such that E N |y + x| contains at least N points. Then
m?(Fy) < e(n) max{f(v),diam(FE)} diam(E)"~" and

5 (Fy) < en)() N~ 2" (B).

Proof. First we show the second inequality. For k& € N we define Fyy ; to be the
set of z € Fy such that E N |y + | contains N points with mutual distances
bounded below by 1/k. We have Fn y+1 D Fn g, Fv = Uje; Fnk, and mi (Fy) =
limy s 00 m% (F 1 ); see |Bog07, Proposition 1.5.12]. We estimate m} (Fn ). We fix
a large k € N so that 5= < diam(|y|)/4. Consider an arbitrary cover of E by sets
U;, i € I, with diam(U;) < i For each ¢ € I there exists a closed ball B; D U; of
radius r; = diam(U;) < 5= < diam(|y|)/4. Define the function

1 1
p= NZEXQB;

el

If z € Fy i, then |y + x| intersects at least IV balls B; and is not contained in any

ball 2B;. Therefore,
/ pds > 1.
vtz
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By Chebychev’s inequality and Fubini’s theorem, we have
mi(Fy i) <L) pllz ey 2 L(y)N ™)~ diam(U;)" "
il
The cover of E by sets U;, i € I, of diameter less than i was arbitrary, so

m;kz(FN,k) Sn K(V)N_ljf(gg)l—l (E)

Letting k — oo gives
Mo (Fi) Sn L) NT1 ().

For the first inequality, consider two cases. If diam(|y|) > 4diam(F), then we
cover E by a closed ball B of radius r with 0 < diam(E) < r < diam(|y|)/4.
If x € Fy, then |y + x| intersects B and is not contained in 2B. The above ar-
gument for N = 1 gives m}(Fy) <, £(y)r"~'. Now, we let r — diam(E) to
obtain m%(Fy) <, () diam(E)"~!. Next, assume that diam(|y|) < 4 diam(FE). In
this case, if # € Fy, then |y + 2| C B(xg,5diam(E)) for a fixed zp € E. Thus,

mk (F1) < my(B(xg,5diam(E))) = ¢(n) diam(E)". O
Lemma 3.13. Let E C R*, 2 € R®, r > 0, and for w € S" (0,1) define
Yw(t) =z +tw, /2 <t <r. For N €N, let Fy be the set of w € S"71(0,1) such
that E N |y| contains at least N points. Then

A" F) < e(n)r” " min{r, diam(E)}*!  and

AN Fy) < c(n)r " TINTL"Y(E).
Proof. For the first inequality, note that F; + x is equal to the radial projection of
En{yeR":r/2 <|z—y| <7} to the sphere S"~1(x,1). This projection is the
composition of a uniformly Lipschitz map (projection of {y € R™ : r/2 < |[x—y| < r}
to S"~1(x,r)) with a scaling by 1/r. Thus,

diam(F) <rtdiam(En{y e R" :r/2 < |z —y| < r}) <~ min{r,diam(E)}.

Moreover, Fy is contained in the intersection of a ball By = B(zo, diam(F})), where
xo € Fy, with S"71(0,1). Thus,
AN F) < "By S"H0,1)) ~, diam(Fy)"
This completes the proof of the first inequality.
For the second inequality, we proceed as in the proof of Lemma by defining
Fy i to be the set of w € S"71(0,1) such that E N |y,| contains N points with
mutual distances bounded below by 1/k. We define the function p exactly as in

Lemma [3.12] using an arbitrary cover of E by sets U; and corresponding balls
B; D U; with r; = diam(U;) < i < g. Note that if w € Fi x, then

/pds:/ p(x + tw)ds > 1.

w /2
By Chebychev’s inequality and polar integration, it follows that
AN (Fy) < / / o+ tw) dtd A" (w)
Sn=1(0,1) Jr/2
ST lpll ey o rTMTINTES  diam(U)"
icl
We now proceed as before, infimizing over the covers of E and letting k — co. [
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Proof of Theorem [3.11. By Remark and [(P4)] are automatically satisfied
for Fo(FE) and F,(F). We will establish below properties [(P1)| and [(P2)]

Suppose first that #"~1(E) = 0 as in If v is a non-constant rectifiable path,
by the second inequality of Lemma (for N = 1) we have that EN|y+ z| = 0,
ie., v+ z € Fo(E), for a.e. z € R". Hence, [P1)] holds.

Next, if x € R®, r > 0, and w € S"1(0,1), define v,(t) = = + tw, 0 <
t < r. By applying Lemma countably many times (for N = 1) to the paths
Yol-rra-k+1,], we have E N v, ([27Fr, 278+ 1)) = () for all k € N and for a.e.
w € S"71(0,1). Hence, E N ~,((0,7]) = 0 for a.e. w € S"71(0,1). Recall that a
path in Fo(E), by definition, is allowed to intersect F only at the endpoints. Hence,
Y € Fo(E) for a.e. w € S"71(0,1). This completes the proof of and of

Next, we suppose that E has o-finite Hausdorff (n — 1) measure, as in We
write E = Uy, Ex, where " 1(E)) < oo for each k € N. If we show that
F5(FEy) is a P-family for each k € N, then F,(F) will also be a P-family, since the
intersection of countably many P-families is a P-family by Lemma [3.3] Hence, for
[(ii)] it suffices to assume that #"~(E) < co.

Let v be a non-constant rectifiable path. We define F' to be the set of x € R”
such that E'N|y+ x| is infinite and consider the set Fiy as in Lemma Observe
that F = (-, Fn. Since

Mo (Fi) Sn Ly)N I H(E),

by letting N — oo we obtain m,,(F) = 0. This proves

For we fix £ € R", r > 0, and for w € S"71(0,1) consider the segment
Yw(t) = x +tw, 0 < t < r, as above. For fixed ¥ € N we apply Lemma
to the paths 7y|2—#p,2-++1,] and conclude (by letting N — oo) that the set E'N
Yo ([27%r, 275 1)) is finite for a.e. w € S"71(0,1). Hence, for a.e. w € S"71(0,1)
the set E N |vyy| is countable, i.e., v, € Fo(E). O

4. CRITERIA FOR NEGLIGIBILITY

In this section we prove criteria for the membership of a set E in NED or CNED.
The first of these criteria is crucially used in the proof of Theorem regarding
the unions of NED and CNED sets. Recall that %*NED denotes either NED or
CNED. Also, recall from Section the definitions of *NED(Q2) and *NED" (Q0),
and the definition of the relative distance A(Fy, F5) of two sets Fy, F» C R™. Let
v: [a,b] — R™ be a non-constant path. If [¢,d] C (a,b), then the strong subpath
Ylje,q) of v is called strict.

Theorem 4.1 (Main criterion). Let E C R™ be a set such that either E is closed
or my(E) = 0. The following are equivalent.

(I) E € XNED(Q) for all open sets Q C R™.
(II) E € XNED.

(IIT) E € *NED™(Q) for some open set Q C R™ with Q D E.

(IV) There exist constants t,¢ > 0 such that for each xo € R™ there exists g > 0

with the property that for every pair of non-degenerate, disjoint continua
Fi, F» C B(xg,79) with A(Fy, Fy) <t we have

Mod, (T'(Fy, Fo; R™) N Fiu(E)) > o.
(V) For each Borel function p: R™ — [0,00] with p € L' (R™) there exists a

loc

path family Ty with Mod,, Ty = 0 such that Conclusion [4] below holds for
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each rectifiable path v ¢ Ty with distinct endpoints. Moreover, Ty has the
property that if {n;};cs is a finite collection of paths outside 'y and v is a
path with [y| C U,y Injl, then v ¢ To.

(VI) For each Borel function p: R™ — [0,00] with p € L} .(R™) there exists a
path family Ty with Mod,, Ty = 0 such that Conclusion [B below holds for
each rectifiable path v ¢ T'g with distinct endpoints.

Moreover, the following implications are true for all sets E C R™.

[V = [(VI)] = [@] = [A1)] = [A)] = [AV]

Conclusion A (A(FE, p,7)). For each open neighborhood U of ||\ dv and for each
e > 0 there exists a collection of paths {+;}:c; and a simple path 7 such that

(A-) 7 € F.(E),

(A-ii) 07 =y, {1\ 9y € (W\E) U vl, and U, 1l € U,
iel
(A-iii) Zé(%) < e, and

iel

(A-iv) Z/pds<€

i€l
The paths v;, i € I, may be taken to lie outside a given path family IV with
Mod,, IV = 0. If ENdy = (), then I may be taken to be finite. In general, the trace
of each strict subpath of ¥ intersects finitely many traces |7y;|, ¢ € I.

Conclusion B (B(E, p,v)). For each open neighborhood U of |y| and for each
€ > 0 there exists a simple path 7 such that

(B) 7 € Fu(B),

(B-ii) &y = 9y and 7| C U,
(B-iii) £(7) < +¢, and
)

t(v)
(B-iv /p /pders

Note that the implications|(I)| = [(II)| = |(II])| are trivial. Moreover, [(III)[=-|(IV)
follows immediately from Lemma Conclusion [B|in |(VI)|is only a less technical

statement that follows easily from Conclusion |A|in [(V)} Indeed, |[(B-iii)| and |(B-iv)|
follow from |(A-ii)} |(A-iii), and |(A-iv), using Lemma Hence, we will show
implications |(IV)| = |(V)} which is the most technical one, and =

Roughly speaking, Conclusions [A] and [B] say that with small cost we can alter
the path v to bring it inside the curve family F,(E). The assumption that E is
closed or m,,(E) = 0 will be crucially used in the proof of = (see Lemma
and it is doubtful whether this implication holds without that assumption.

An immediate corollary of Theorem is the quasiconformal and bi-Lipschitz
invariance of compact ¥ NED sets.

Corollary 4.2. Let E C R" be a bounded set such that either E is closed or
mup(E) = 0. Let Q@ C R™ be an open set with E C Q, and f: Q@ — R” be a
quasiconformal embedding. If E € ¥*NED, then f(E) € *NED.

Proof. Under either assumption, we have m,,(E) = 0 by Lemma Observe that
f(E) = f(E) and that this is a compact subset of f(€2) having n-measure zero by
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quasiconformality. Since f distorts the n-modulus of each curve family in Q) by a
bounded multiplicative factor, we see that f(E) € *NED"(f(€)). By Theorem
[4.1] we conclude that f(FE) € *NED. O

We also prove an alternative criterion in terms of P-families; recall the definition
of a P-family from Section [3] The result is also true for the case of NED sets but
we do not prove it here to avoid some technicalities.

Theorem 4.3 (P-family criterion). Let E C R™ be a set such that either E is

closed or m,(F) = 0. The following are equivalent.

(I) E € CNED.
(IT) For each Borel function p: R™ — [0,00] with p € L™(R™) the following
statements are true.
(II-1) For each rectifiable path v, a.e. x € R™, and every strong subpath n of
v 4+ x with distinct endpoints, Conclusion @(E,p, n) is true.
(II-2) Forz € R", 0 <r < R, and w € S"71(0,1) define v,(t) = = + tw,
t € [r,R]. Then for " t-a.e. w € S"1(0,1), and for every strong
subpath n of vy, Conclusion @(E,p, n) is true.
(IIT) For each Borel function p: R™ — [0, 00] with p € L™(R™) there exists a P-
family F such that if v € F is a rectifiable path, then Conclusion @(E, 2,M)
is true for each strong subpath m of v with distinct endpoints.

Ahlfors-Beurling [AB50, Theorem 10] proved that if a closed set E C R™ is NED
then any two points in R™ \ F can be joined by a curve in R™ \ E of short length.
The analogous statement is true for closed CNED sets.

Corollary 4.4. Let E C R™ be a closed set with E € CNED. Then for every
e > 0 and points x,y € R™ there exists a path v € F5(E) connecting x and y with
ly) <lz—y[+e.

Proof. Let x,y € R™ be distinct points, v be the line segment [z,y], and ¢ > 0.
Let p = 0 and consider the P-family F given by Theorem By property
of the P-family F, for a.e. z € R™ the path v + z lies in F. Using spherical
coordiantes we see that for a.e. 7 > 0 and for J#" !-a.e. w € S"71(0,1) the above
is true for z = rw. We fix < £/5 such that this is true. Using property
of a P-family, for " !-a.e. w € S"71(0,1) the radial segments 72 (t) = z + tw
and 7Y (t) = y+tw, 0 < t < r, lie in F. Thus, there exists w € S"~1(0,1) such
that both radial segments lie in F and v+ rw € F. We now apply Conclusion
(B-iii)| (with € = r) to each of 4%, 4¥, and v + rw, to conclude that there exist
paths 7,,1y,1 € F,(E) with the same endpoints as v, Y,y + rw, respectively,
such that £(n,) < 2r, €(n,) < 2r, and ¢(y + rw) < |z — y| + r. Concatenating
these paths gives a path in F,(F) connecting & and y with length bounded by
|z —y|+5r < |z —y|+e. O

4.1. Auxiliary results. We will need some auxiliary results before we prove The-
orems [4.1] and The following lemma is elementary.

Lemma 4.5. Let E C R™ be a compact set with m,(E) = 0, g: R™ — [0, 00] be
a function in L*(R™), and X > 0. For each ¢ > 0 there exists § > 0 such that if
0<r<d and B; = B(z;,r), i € {1,...,N}, is a family of pairwise disjoint balls
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centered at E, then

N
z;/wig<e.

Proof. Let \,e > 0. Since E is compact with m,,(E) = 0 and g € L'(R"), there
exists § > 0 such that

(4.1) / g<C(n,\)"'e
Nxs(E)

for a constant C(n,\) > 0 to be determined. Let 0 < r < ¢ and consider a
family of finitely many disjoint balls B; = B(x;,r), i € {1,..., N}, centered at E.
Suppose that A > 1. If z € AB;, then B; C AB; C B(x,2Ar). Since the balls B;,
1€ {l,...,N}, are disjoint, by volume comparison we see that

N
ZX)\Bi < 2n)‘nXLJg\’:l ag; < 2"A" Xy (B

i=1
The same inequality is trivially true when 0 < A < 1 with constant 1 in place of
2"\, We now set C'(n,\) = max{1,2"A"} and by (4.1) we obtain

N N
Z/ g:/gZX/\BiSC(na)‘)/ g<e O
i=1"ABi i=1 Nar(E)
Lemma 4.6. Let E C R™ be a closed set with m,(E) = 0. Then for each non-
negative function p € LY (R™) and for each A >0
(i) there exists a path family Ty with Mod,, T'v = 0 and
(ii) for each m € N there exists a family of balls {B; m = B(Tim:Tim)tiel,,
covering E with r; ., <1/m, i € I,

such that for every non-constant curve v ¢ T'y we have

1/n
lim Tim ][ p" =0 and
g S w(f, o)

(4.2) 5By 7120
n}gnoo Z Tim = 0.
1By, m N|y|#0

Proof. First, we reduce to the case that E is compact. Suppose that the statement
is true for compact sets. For k € N, let Ay, = {z € R" : k — 1 < |z| < k}. Then for
each k € N, there exists a curve family I'y, with Mod,, 'y = 0 and for each m € N
there exists a family of balls {B; n}icr,,, covering E N Ay, with radii less than
1/m, so that is true for non-constant paths v ¢ T'y,. We discard the balls not
intersecting £ N Ay, if any. Let I, = Upey Imk and To = Ugen k- Note that
Mod,, I'g = 0 by the subadditivity of modulus. We claim that is true for the
balls {Bi,M}iEIm .

If «y is a non-constant path outside Iy, then y is contained in the union of finitely
many sets Ay, k € N. Moreover, there exists ky € N such that B;,, N |y| = 0 for
all i € I, 1, m € N, and k£ > ky. Thus, in , the sums over the indices i € I, 1
such that B;,, N |y| # 0 are zero for all k > ko. For k < ko, the limits of the
corresponding sums vanish, since v ¢ I'y. Since limits commute with finite sums,

we obtain (4.2)) for the family of balls {B; , }ier,, -
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Suppose now that E is compact. Let g € L™(R™) be a non-negative function,
to be specified later. By the 5B-covering lemma (|[Hei0l, Theorem 1.2]) for each
r > 0 we can find a cover of E by finitely many balls of radius r centered at E so
that the balls with the same centers and radius r/5 are disjoint. Combining this
with Lemma (for 5X in place of A), for each m € N we may find a cover of E
by balls B; 1, = B(Zim,Tm), ¢ € L, centered at E, such that r,, < 1/m, the balls

%Bi,m are disjoint, and

1
> / 9" < o
€L, ABi m

For m € N, we define the Borel function

1/n
hm = Z (]{\B gn> X2Bi,m'

i€l

By Lemma we have

1/n
S Mol ey Sn 3 Z(fw. g") Xin,

meN meN |[i€1,,

L’IL(RH)
1/n 1
n
X (T f, ) 2 e
meN \i€l,, Y ABi,m meN

By a variant of Fuglede’s lemma [V&i71, Theorem 28.1], there exists a curve family
Ty with Mod,, Ty = 0 such that for each path vy ¢ I'y we have

lim | Ay, ds=0.

m—oo
ol

Implicitly we assume that I'g contains all curves that are not rectifiable.

Note that if v is a non-constant rectifiable curve, B;,, N |y| # 0, and m is
sufficiently large so that diam(|y|) > 4m~! > 4r,,, then |y| is not contained in
2B; m, s0

/XZB,i . ds > r,,.
. .

1/n
hon ds > Tm ][ qg" .
/7 Z ( ABi m >

i:Bi,mml'Yl#@

We conclude that if v is a non-constant curve outside I'g, then

1/n
3 Jim > (J[ g") = 0.
B Ny |#£0 ABi m

We finally set g = (p+1)x B(0,R) in the above manipulations, where p is the given

function from the statement and B(0, R) is a large ball containing the compact set
E. Note that for all large m € N we have AB;,,, C B(0,R) for all i € I,,,. Then for
every non-constant curve vy ¢ I’y we obtain (4.2) from (4.3). O

Thus,
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Lemma 4.7. Let E C R™ be a set, p: R™ — [0,00] be a Borel function, and v be a
rectifiable path with distinct endpoints such that |y| N E is totally disconnected. If
Conclusion |A E ,p,m) is true for each strict subpath n of’y with distinct endpoints
that do mot lie in the set E, then Conclusion A .(E p,7) is also true. The above
statement remains true for C’oncluswn@ in place of C’onclusion [4

Proof. We only present the argument for Conclusion [A] since the argument for
Conclusion [B] is similar and less technical. Let U be an open neighborhood of
|v] \ 07 and € > 0. It suffices to prove that a strong subpath of v with the same
endpoints satisfies Conclusion Consider a parametrization v: [a,b] — R™. Then
there exists an open subinterval J of [a,b] such that v(J) C U and ~5 has the
same endpoints as y. Without loss of generality, we assume that J = (0,1) and we
denote the path 7|1 by 7.

Suppose first that ENdy = (. Since E is closed, there exist paths Yot Vita1]
that do not intersect E, and a strict subpath n = 7|, 4,) with ENdn = 0. By
assumption, there exists a simple path 77 with the same endpoints as 7 and finitely
many paths n;, ¢ € I, inside U as in Conclusion |A| E ,p,n). Concatenating 1 with
Yljo,t,] and 7|, 1), and then passing to a simple weak Subpauth7 gives the desired
path 7 that verifies Conclusion (E7 0,7)

Next, suppose that ENdy # (. Consider a sequence a; € (0,1), j € Z, such that
aj-1 < a; for each j € Z and U;czlaj-1,a;] = (0,1). Let v = »y| [a;_1,a,), Which
is a strict subpath of . Since v((0,1)) is disjoint from {v(0),~(1)}, the points a;
can be chosen so that 47 has distinct endpoints for j € Z. Since |y| N E is totally
disconnected, we may further choose the points a; so that v(a;) ¢ E for each j € Z.

By assumption, the strict subpath ~7 of ~ satisfies Conclusion [A E ,p,Y7) for
each j € Z. Thus, we obtain paths 37 and 'sz i€ {l,...,N;}, as in the conclusion,
for €271 in place of ¢, and such that val Iv/| € U. In particular, by we
have 37 € F.(E). If F.(E) = Fo(FE), since the endpoints of 37 do not lie in F, we
have |3/|N E = (). By discarding some paths 77, we assume that |% | intersects |¥7|
for all i € {1,...,N;}.

We consider parametrizations 39 laj_1,aj] — U with ﬁj\{aj_l,aj} = 'yj|{aj_17aj},
j € Z. Then we create a curve 5: [0,1] — U such that 5((0,1)) C U, by concatenat-
ing these paths. Namely, we define 5(0) = ~(0), (1) = (1), and |(,_, .a,] = 7’
for j € Z. Note that £(37) < £(+?) 4+ 279!, which follows from Conclusion [Al We
conclude that diam(|77]) — 0, as |j| — oo, so 7 is continuous. By passing to a
weak subpath that has the same endpoints, we assume that 7 is simple.

Property is immediate for 5. Property also holds if {~;}ies is the
family {'yf }jeZ,z’e{l,...,Nj}- Indeed, all these paths are contained in U, and by the
properties of the paths 77 we have

Ao c U cU [ (WINE)U UI% c(h\E)U UUI%-

JEZL JEZ JEZi=1

Finally, we have

szé(% 252 Ul =3¢ and ZZ/ pds < 3e.

JEZ i=1 JEZ JEZ i=1
Thus |(A-iii)| and |(A-iv)| hold as well.
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Now, we verify the last part of Conclusion The paths %j may be taken to
lie outside a given curve family IV with Mod,, I = 0, since they were obtained via
Conclusion |Al If i is a strict subpath of 7, then |n| intersects Uf\gl |vf | for finitely
many j € Z. Indeed, as |j| — oo, the paths {’Yg}ie{l,.“,Nj} have arbitrarily small
lengths by the above, and their traces intersect |37, which is contained in arbitrarily
small neighborhoods of the endpoints of 4. Since |7| has positive distance from the
endpoints of 7, we conclude that |v/| cannot intersect || if |j| is sufficiently large.
This completes the proof. ([

4.2. Proof of the main criterion. As we have discussed, it suffices to show

implication |(VI)| = for all sets F, and implication |(IV)| = |(V), which is the

most technical one, for sets E that are closed or whose closure has measure zero.

Proof of Theorem [{.1]: [[VI)] = [T)} Let Q C R™ be an open set and Fy, F, C  be
a pair of non-empty, disjoint continua. By the monotonicity of modulus, it suffices

to show that
MOan(Fl,FQ, Q) S MOdn(F(Fl,FQ,Q) ﬁ]-'*(E))

Let p € L™(R™) be an admissible function for I'(Fy, F»; Q) NF.(E). We consider an
exceptional curve family I'g with Mod,, 'y = 0 as in Let v € T'(Fy, Fy; Q) \ Ty,
so Conclusion E7 p,7) is true. Thus, for any € > 0 there exists a rectifiable path

1§/pds§/pds+5.
¥ ¥

Letting € — 0 shows that p is admissible for T'(F, F3; Q) \ T'g. Since Mod,, Ty = 0,
the proof is completed. (I

Proof of Theorem [{.1] = [(V)] By the assumption which coincides with
the assumption of Lemma we have my,(E) = 0. Therefore, under either of

the initial assumptions of Theorem we have m,(FE) = 0. Let p: R™ — [0, 0]
be a Borel function in L} (R™). By Lemma for each m € N there exists a
family of balls {B; ., }icr,, covering the set E, with radii converging uniformly in
I, to 0 as m — oo, and such that is true for all paths outside an exceptional
family with n-modulus zero and for a value of A > 0 to be specified. Let I'y be the
exceptional family of paths v that either do not satisfy [{.2), or J#*(|y|NE) > 0.
By Lemma [4.6|and property Mod,, T'y = 0. Note that the path family 'y has
the required property for t if {n;}jes is a finite collection of paths outside
I and v is a path with |y[ C ¢, [n;], then v ¢ To.

We will show that Conclusion E7 p,7) holds for all paths v ¢ T’y with distinct
endpoints. For v ¢ Ty, the set |y|NE is totally disconnected. In view of Lemma
it suffices to show that Conclusion E, p,m) is true for each subpath n of v with
distinct endpoints not lying in the closed set E. By the defining properties of the
curve family I'y, all subpaths of v also lie outside I'g. Therefore, it suffices to show
that Conclusion E ,p,7) is true for each path v ¢ I'y with distinct endpoints not
lying in E.

Let v ¢ I'y be a path with distinct endpoints not lying in E. As a final reduc-
tion, we consider a simple weak subpath 7 of v that has the same endpoints. Note
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that n ¢ T'o by the defining properties of T'y and that is suffices to show Conclu-
sion (E,p,n), which implies Conclusion E, p,7). Hence, we may impose the
additional restriction that v is simple.

We fix a simple path v ¢ Ty with distinct endpoints not lying in E, ¢ > 0, and an
open neighborhood U of |y|\ 0y. We fix an injective parametrization v: [0,1] — R
and note that v(0),v(1) ¢ E and v((0,1)) C U.

By the compactness of |y| N E and the assumption there exists a finite
cover of |y| N E by open balls Vi,. ..,V such that for every i € {1,..., L} and for
any non-degenerate, disjoint continua F, F» C 2V},

(4.4) if A(Fy,F,) <t then Mod, (I'(Fy, Fy;R") N F.(E)) > ¢.

Observe that if a set D intersects |y| N £ and has sufficiently small diameter,
namely diam(D) < min{27!diam(V;) : i € {1,..., L}}, then D C 2V; for some i €
{1,...,L}. Hence, holds for any non-degenerate, disjoint continua Fy, F» C D.
We also fix a > 1, depending on ¢, so that if A = A(x;r,ar) is any ring and
F1,F, C A are disjoint continua connecting the boundary components of A, then

If m € N is fixed and sufficiently large, by (4.2) we have

1/n
(4.5) Z Tim (7[ p") <e and Z Tiom < €.
AB;i m

i:Bi,mN|y|F#0 ©:Bi,mN|y|#0

By the compactness of |y| N E, there exists a finite subcollection Dy, ..., Dy of
{Bi m}ier, covering the set |y| N E. We also assume that D; intersects |y| N E for
each i € {1,..., N} and we denote the radius of D; by r;. Since the endpoints of ~
do not lie in E, we have |y|N E C U. Thus,

§ = dist(|y| N E,dvuUdU) > 0.

If m is sufficiently large so that 2(a + \)r; < ¢ for each i € {1,..., N}, we have

N N
(4.6) U(a +AM)D; CcU and U aD; N Oy = 0.

i=1 i=1

Finally, we choose an even larger m, so that holds for any non-degenerate,
disjoint continua Fy, Fy» C (a+1)D;, i € {1,...,N}.

We set 79 = 7. We will define inductively simple paths 7, k& € {0,..., N}, with
the same endpoints as . Once 7;_1 has been defined for some k € {1,..., N} and
has the same endpoints as vy, we define 7 as follows. If Dy N [Fx—1| = 0, then
we set v, = 0 (i.e., the empty path) and 7, = Fx_1. Suppose Dy N [Fx_1| # 0.
Consider an injective parametrization Jx_1: [0,1] — R™. By the endpoints
of 4x_1 do not lie in aDy, thus there exist two moments 0 < s; < sy < 1 such
that Jx_1(51),Vk—1(s2) € 9Dy and F%_1([0,1] \ (s1,82)) N Dy = 0. Moreover,
there exist moments sj < s; and s > so such that 7,_1(s}), Yk—1(s5) € 9(aDy),
G1 = Yk-1([s],51]) C aDy \ Di and G2 = _1([s2,5]) C aDy \ Dg; see Figure
Note that G; and G9 are disjoint since the path 7;_ is simple, and that they
connect the boundary components of the ring aDy, \ D. Since A(Gy,G2) <t (by
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FI1GURE 2. The construction of 4, from ~;_1.

the choice of a) and G1,Go C (a + 1)Dy, by (4.4) we have
Mod,, (T'(G1, G2; R™) N Fu(E)) > ¢.

Note that if I is a given path family with Mod,, I = 0 as in the end of Conclusion
[A] then we also have

Mod,, (T(G1, Go; R™) N F.(E) \T') > 6.

Each path of I'(G1, G2; R™) N F.(E) \ I intersects the ball (a + 1)Dj. By Lemma
[3.7 there exists a path v € I'(G1, G2; R™) N Fy(E) \ I” such that

1/n
(4.7 / pds Sp.pa Tk <][ p") and  L(vg) < c(n, ¢, a)ry.
Yk c(n,¢,a) Dy

We now set A = c¢(n, ¢, a) and note that |y;| C (a+ A)Dy C U by (A.6). Also, the
endpoints of 7 lie in |[J5_1]|. We concatenate ~y; with suitable subpaths of Jx_1
that do not intersect Dy to obtain a path 7 that has the same endpoints as . If
necessary, we replace 7, with a simple weak subpath that has the same endpoints.
By construction we have

V| € ([Fe—1] \ Dr) U (|7&] \ Ovk)-

Inductively, we see that

i=1 i=1

k k
(4.8) 7| € <|7| U Di) U J vl \ o).
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For k = N we obtain a simple path ¥ = 4 with the same endpoints as . Since
Y|NE C Ufil D;, by we have
N N
(4.9) Al (W\E)uJ(l\ov) and FINE C|J(l\dv) N E.

i=1 i=1
If 7. (E) = Fo(E), then (|;]\0v:)NE = { since y; € Fo(E) foreachi € {1,...,N}.
Thus, [§|NE =0 and 5 € Fo(E). If Fu(E) = F,(F), then |3;| N E is countable for
each i € {1,..., N}, so |§|NE is countable and ¥ € F,(FE). Thus, is satisfied.
From we obtain immediately

N

71 < (v EYU U bl

i=1

By construction, we have [\, || € UY, (a+A)D; C U. Thus, we have established

property [(A-ii)} Finally, by (4.5) and (4.7)) we have
N N N N 1/n
St synseama Y [ passYn(f o)z
i=1 i=1 =177 i=1 AD;

These inequalities address |(A-iii)| and |(A-iv)} The last part of Conclusion |Al as-
serting that the collection {v;}; is finite, whenever E N dvy = 0, is also true. ([l

4.3. Proof of the P-family criterion.

Proof of Theorem[{.5: = |(II)} Let p be a non-negative Borel function with p €
L™(R™). By Theorem (VD) there exists a path family I'y with Mod,, Iy = 0
such that Conclusion [B(E, p,~) is true for all paths v ¢ 'y with distinct endpoints.
Moreover, by enlarging I'g while still requiring that Mod,, I'y = 0, we may assume
that if v ¢ T, then all subpaths of v also have this property; see By Lemma
for each rectifiable path v and for a.e. z € R™ we have y+x ¢ T'y; in particular,
the same holds for all strong subpaths of v+ z, as required in part Moreover,
if 7, is as in by the same lemma, for " 1-a.e. w € S"~1(0, 1) the path 7,
and all of its strong subpaths lie outside I'g. This completes the proof. (I

Proof of Theorem [4.3; [IIT)] = [T)} Let p € L"(R™) be an admissible function for
I(Fy, Fo; R")NF,(E), where Fy, Fy are disjoint continua. Consider the P-family F

with the given properties; note that F depends on p. Let v € T'(Fy, Fo; R*) N F be
a rectifiable path. By the properties of F, each strong subpath of « with distinct
endpoints, and in particular ~, satisfies Conclusion [B] Hence, for each ¢ > 0 there
exists a rectifiable path 7 € I'(Fy, F»; R™) N F,(E) such that

1§/pds§/pds+5.
¥ v

As € — 0, this shows that p is admissible for T'(Fy, Fy; R™) N F. Hence,

Mod,, (T(Fy, Fo; R™) N F) < /p”.
Since F is a P-family, by Theorem we have

Mod,, T(F}, Fy; R"™) = Mod,, (T (Fy, Fy; R") N F) < /pn.
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Infimizing over p, gives Mod,, I'(F, F»; R™) < Mod,, (I'(F1, F2;R™) N Fr(E)), so E
is CNED. (]

For the proof of the last implication [(IL)] = [(TIT)} it is crucial that F,(E) is closed
under concatenations, a fact that is not true for Fo(E). Although the result is true
for Fo(E), the proof is more involved and we only present the argument for F, (E).

Proof of Theorem [4.3: = [(III)} First, we show that m,(E) = 0 in the case
that E is closed. Fix an open ball B and consider the Borel function p = (1 —

X)X g, which lies in L"™(R™). By Conclusion [B[E, p,~) is true for a.e. line
segment 7y parallel to a given coordinate direction. Let v be such a line segment
that is contained in the ball B. For each £ > 0 there exists a path ¥ € F,(E)
contained in B, with the same endpoints as -, and

/pdsg/,ods—ke.
¥ v

By Lemma we have f:y X g ds = 0 since |y| N E is countable. Thus,

6(7)<€(§):Alds:épds</Wpds—ks:[(v)—/yxEds—ks.

By letting ¢ — 0, we obtain f7 Xgds = 0, so #'(|y|NE) = 0 by Lemma 2.2
This is true for a.e. line segment v in B parallel to a coordinate direction, so
my,(E N B) =0 by Fubini’s theorem. The ball B was arbitrary, so m,(E) = 0.

Let p be a non-negative Borel function in L™(R™) and let F be the family of
rectifiable paths v such that Conclusion E , p,1) holds for each strong subpath
of v with distinct endpoints. We show that F is a P-family.

First, we see that is satisfied. That is, if 7: [a,b] — R™ is a non-constant
rectifiable path, then v + =z € F for a.e. x € R™. This is true by the assumption
[TI-T)] For [[P2)] we fix 2 € R™ and R > 0, and we have to show that for a.e.
w € S"71(0,1) the radial segment 7,,(t) = = + tw, t € [0, R], lies in F. By the
assumption for each 0 < 7 < R and for a.e. w € S"71(0,1) the radial
segment |, g) lies in F. For ry, = 27*R, k € N, we see that Yol r) € F for a.e.
w € S"71(0,1) and for all k € N. We fix w € S"~1(0,1) such that 7 (|y,|NE) =0
and vy l(,, 5 € F for all k € N. Since m,(E) = 0, these statements hold for a.e.
w € S"71(0,1). Our goal is to show that Conclusion E,p, 7n) is true for every
strong subpath 7 of ~,,; this will imply that ~, € F, as desired. Every strict
subpath of 7 is a strong subpath of 7, |[, ) for some k € N. Since vyl .7 € F,
every strict subpath of 7 satisfies Conclusion Since |n|NE is totally disconnected,
we conclude from Lemma [£.7] that 7 satisfies Conclusion [B]

From the definition of F it is clear that [(P3)|is always satisfied. We finally have
to prove Note that F,(E) = ]-'U(E) Let 1,72 be two paths in F
that have a common endpoint and let v be their concatenation. Consider a strong
subpath 7 of v that has distinct endpoints. Then 7 is either a strong subpath of
~1 or 72, or 1 is the concatenation of strong subpaths 77 of v and 7y of 7. In the
latter case, which is the nontrivial one, since 7; and 7 satisfy Conclusion [B] and in
particular there exists paths 71,72 € F,(F) as in Conclusion with the same
endpoints as 11,12, by Concatenating 7; with 75 gives a path 77 € F,(E),
which shows that 1 also satisfies Conclusion [B] Thus, v € F, as desired. O
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4.4. Application to Sobolev removability. We prove Theorem [[.4] as an ap-
plication of Theorem Specifically, we show that closed CNED sets E C R”
are removable for continuous W' functions; that is, every continuous function
f:R" = R with f € WL (R" \ E) lies in WHm(R™).

Proof of Theorem[I.]} Let f: R™ — R be continuous with f € W'"(R"\ E). Then
the classical gradient Vf exists almost everywhere in R™ \ E. Since m,(E) = 0,
there exists a Borel representative of |V f| on R™. By Fuglede’s theorem [V&i71l,
Theorem 28.2, p. 95], there exists a curve family T'; with Mod,, I'; = 0 such that
for each v ¢ I'; we have fv |V f]ds < oo and the function f is absolutely continuous
on every subpath |, 5 of v with v((a,b)) C R™ \ E. Moreover,

(b)) — F(r(a))] < / V£ ds.

Yl (ab)

Let 7: [a,b] — R™ be a path outside I'y. The set (a,b) \ v~ }(E) is a countable
union of disjoint open intervals (a;,b;), ¢ € N. Using the continuity of f and the
above inequality, we have

mi(F(\E)) <D ma(f(y(lai, b)) < D (max fory — min fo)
1€EN

e [@i,b;] [ai,b;
(4.10)
<> [ wslds< [ viias
ieN 7 Vi) v
In particular, if v € F,(E) \ 'y, then
(a.11) ma(F(31) = ma(F 1\ E)) < [ 197]ds
¥

Since m,,(E) = 0, in order to show that f € WHm(R"), it suffices to show that
there exists a path family I'y with Mod,, 'y = 0, such that f is absolutely continuous
along each path v ¢ T'y. Let I's be the path family given by Theorem with
Mod,, I'y = 0 and let T’y = T'; UT'y. We fix a path v ¢ I'g and a subpath 3 = v|(4 3.
Note that 8 ¢ T's by the properties of I'y in Theorem Hence, Conclusion
E, [V £l, 8) is true. For each ¢ > 0 there exists a path 3 € F,(E) with the same
endpoints as § and a collection of paths 3; ¢ 'y, ¢ € I, such that

BvoB s mulisl anad Y [ vsas<e.
i€l ier 7 Bi
Thus, using and , we have
|F(BB)) = £(B(a))] < ma(f(IB]) = ma(f(1B]\ 9B))
<mi(F(IBI\E)) + > ma(£(18:]))

icl

< [1wsias+ 3 [ 19s1ds

il
§/|Vf|ds+<€.
B

Letting € — 0 shows that f is absolutely continuous along ~. (I
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5. UNIONS OF NEGLIGIBLE SETS

In this section we prove Theorem [1.2] which asserts that the union of countably
many closed NED (resp. CNED) sets is NED (resp. CNED). The proof is based
on Theorem from the preceding section. We first prove an auxiliary lemma.

Lemma 5.1. Let G;, i € N, be a sequence of continua in R™ with G; C Giy1,1 €N,
and sup;ey A (G;) < 0o. If G = U,y Gi, then (G \ G) = 0. In particular if
v:[0,1] = G is a rectifiable path and p: R™ — [0, 00] is a Borel function, then

/pds:/pXGds.
¥ ¥

See Proposition 4A and Corollary 41 in [Fre92| for a more general result.

Proof. Without loss of generality, diam(G;) > 0. Let d = diam(G;) and we fix
k € N. Since Gy is closed, for each # € G\ G C G \ G}, there exists r, > 0 such
that B(x,r;) NGy = (. By the 5B-covering lemma ([Hei01, Theorem 1.2]), there
exists family of balls B; = B(z;,r;) with 2; € G\ G and r; < d, i € N, such that
G\ G C ;e Bi, the balls 1 B; are disjoint, and +B; NG, = 0 for each i € N.

Fix i € N. Since z; € G, there exists a point y € TloBi N G. The sequence
{G,}jen is increasing, so there exists j > k such that y € 1—108,- N G;. Since
diam(G;) > d > diam(1B;) and G; is a continuum, there exists a connected set
in $B; NG, that connects dB(x;,7;/10) to dB(z;,7;/5). In combination with the
fact that %Bi NGy = 0, we obtain

1 1
1 ((G \Gx) N 5&) > 0 (Gj N 5Bi> > r;/10.
‘We now have

_ 1
HLG\G) < Z% < 202%1 <(G\Gk) N 531-) < 201G\ Gy).
1€N 1€N
Since H#1(G) = sup;ey 1 (Gi) < 0o and G\ Gy, decreases to () as k — oo, we have

HHNG\G) = #L(G\ G) = 0. This completes the proof of the first statement.
The last statement follows from Lemma O

Proof of Theorem[I.3. We split the proof into several parts.
Initial setup. Define E = ;. £; and let p € Lj} (R™) be a non-negative Borel
function. For each i € N there exists an exceptional family I'; with Mod,, I'; = 0,
given by Theorem Also by property the family IV of paths v with
A (|y| N E) > 0 has n-modulus zero. Define I'y = I U,y I'i- By the properties
of I';, the path family I'g has the property that if {n;};cs is a finite collection of
paths outside I'o and 7 is a path with [y| C U,c; |n;|, then v ¢ I'o. Moreover
|v| N E is totally disconnected for all paths v ¢ T'o.

Our goal is to show that Conclusion E, p,7) is true for each v ¢ I'y. By the
last part of Theorem and this suffices for E to be *NED. We fix a path
v ¢ Ty with distinct endpoints, € > 0, and a neighborhood U of |v|. It suffices to
show Conclusion [B| for a weak subpath of v with the same endpoints; also all weak
subpaths of « lie outside I'g by the properties of I'y. Thus, by replacing v with a
simple weak subpath, we assume that ~y is simple and v ¢ T'y.
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We introduce some notation. Define W, = (J7-_; N and W, = N. We use the
notation W, for W, or W, depending on whether we are working with CNED or
NED sets, respectively. Each element w € N™ C W, is called a word of length
l(w) = m. For w € Wy we also define I(w) = w. The empty word ) has length 0.

Induction assumption. Set 7y = ay = v and note that ay ¢ T'g. Let Uy be a
neighborhood of |ap| \ Oy with diam(Up) < 2diam(|ag|) and Uy C U. Suppose
that for m > 0 we have defined simple paths i, k € {0,...,m}, and collections of
paths {7 }ier, for I(w) < m — 1 such that

(A-1) 7 € Fu(Ul_, Ei) for k € {0,...,m},
(A-2) Oy = Oy and [Ye| C YU Uywy<—1 User, il for k € {0,...,m},
(A_?’) Zl(w)gm—l Zie[m g(%) < 67 a‘nd

(A-4) 3y <m—1 2oier., f% pds <e.

Moreover, suppose we have defined the following objects:

(A-5) Simple paths {v }i(w)y<m such that {au, }i(w)=r is a collection of parametri-
zations of the closures of the components of ||\ (E1 U ---U Ey), for each
k € {0,...,m}. In addition, for [(w) < m, each strict subpath of «,, lies
outside I'y. We remark that in the case of W, = W, there is only one
component of [5| \ (E1 U---U E) and oy = .

(A-6) Open sets {Uy }i(w)<m such that U, is a neighborhood of |ay,| \ O, with
diam(U,) < 2diam(|ay,|) for I(w) < m and the collection {Uy }i(uw)=r is
disjointed for each k € {0,...,m}. Moreover, if m > 1 and l(w) < m — 1,
then U, jy C U, for j € N in the case W, = W, and Uy41 C Uy in
the case W, = W,. Finally, U,, does not intersect F; U --- U Ej(w), except
possibly at the endpoints of a,, for I(w) < m.

Finally, we require the compatibility property
(A7) |\ U=k Uw = Pkl \ Uy =i Uw for k € {0,...,m}.

Inductive step. We now define 7,,11 as follows. Fix w € W, with l(w) = m.
By each strict subpath 7 of a,, avoids the path family I'y; thus Conclusion
Em+1, p,n) is true and S (|n| N Ep,q1) = 0. The latter implies that |, | N Ep1
is totally disconnected. By Lemma Conclusion (Em+1, P, ) is true. Thus,
for each d,, > 0 there exists a simple path &, and paths ~; ¢ T'g, i € I, such that

(A’-1) @y € Fu(Emt1),

(A-2) Jay, = Oy and |G| C [aw| U Uer,
(A-3) Zielw £(v;) < 0y, and

(A4) Yieq, [, pds < bu.

If we choose a sufficiently small é,,, we can ensure that and are true for
the index m + 1 in place of m. By the path a,, is obtained by modifying v,
within U,,. By U, does not intersect £y U ---U E,,, except possibly at the
endpoints of a,,. Therefore, &, € F.(E1 U---U E,,). Combining this with
we obtain @, € Fu(E1U---UE;p41).

Using we define 7,11 by replacing each a,, in 7,,, where l(w) = m, with
Qy; see Figure [3l In the case of W,, we need to ensure that this procedure gives
a path. Indeed, by |[(A’-2)| and |(A’-3)| we have (&) < (ay) + 0w, so if &y, is
sufficiently small, then we obtain a path 7,,,1. By the endpoints of 7, do

’Yil and Uie[m /71‘ C Uwu
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FI1GURE 3. Construction of 7,41 from 7,,. Top figure: the case
of Wy. Bottom figure: the case of W,. The red curve is a,, and
the green points denote the set (|¥m+1| N Emy1) N Uy, which is
countable. In fact, a large part of a,, should be shared with «,, by
but we do not indicate this to simplify the figure.

not lie in |y, | \ Oy, for any w with I(w) = m, so they are not modified. Thus,
Ym+1 has the same endpoints as 7. Moreover, by the regions {Uuy }i(w)=m,
where the paths a,, differ from «,, are pairwise disjoint. Hence 7,,+1 is a simple
path, since 7, is simple.

We now verify |(A-1)[and [(A-2)| By construction and |(A-5)| we have

i=1

s\ U (8 030) = Fal\ <|aw|\aaw>avu<wmmUEi>.

l(w)=m l(w)=m

In the case of W, since 7,, € Fo(E1U---UE,,) and ay € Fo(E1U---U Ep41)
for [(w) = m, we conclude that ¥,,,11 € Fo(E1U---U Ep,41), as required in |(A-1)
In the case W, = W, we simply have 7,, = a,, (see [(A-5)) and Fn41 = G, SO
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Ym+1 € Fo(Er U---U Ep11), as desired. By construction and we have

|'Ym+1| C |'7m| U U U |’72

l(w)=mi€ly

Thus, by the induction assumption we obtain |[(A-2)|for the index m + 1.
Since J,+1 is obtained by modifying 7, in the open sets U,,, [(w) = m, we have

Wm+1|\ U Uw:|§m|\ U Uy -

l(w)=m l(w)=m
By for kK < m we have Ul(w):k Uy D Ul(w):m Uy, so
T\ Uw =0\ U U=\ U U

l(w)=k l(w)=k l(w)=k

where the last equality follows from the induction assumption This proves
the equality in for the index m + 1.

Next, we verify Note that the paths {&y }i(w)=m, Parametrize the closures
of the components of |y, 41|\ (E1U- - -UEy,); this follows from the construction and
For I(w) = m, let {a(y, ;) }jen be a collection of simple paths parametrizing
the closures of the components of |qy,| \ Epq1; see Figure |3l Then {av, }i(w)=m+1
gives a collection that parametrizes the closures of the components of |Y,,41] \
(E1U---UE;,4+1). This verifies the first part of Moreover, if W, = W, for
I(w) = m and j € N, each strict subpath 7 of o, ;) is a strict subpath of . If
W, = W, each strict subpath 77 of a1 is a strict subpath of &,,. In either case,
by there exists a strict subpath n of a., such that |7] C || UU,c; [7il- By
the induction assumption [(A-5)} n ¢ I'g. By the last part of Conclusion [A] (see the
statement in Theorem intersects finitely many of the traces |v;|, ¢ € L.
Recall that +; ¢ T'g, i € I,. The properties of the family T’y imply that 77 ¢ T.
This completes the proof of the second part of

We now discuss If W, = Wy, we define U,,+1 to be a neighborhood
of |ama1| \ @ma1 such that diam(U,,41) < 2diam(|am41]), Unse1 € Un, and
Upm+1 does not intersect Ey U --- U Ej, 41, except possibly at the endpoints of
Qm1; this uses that By U --- U Ep,41 is closed and does not intersect |ou,11],
except possibly at the endpoints. If W, = W, for I(w) = m we define U, 1) to
be a neighborhood of |a(y,1)| \ Oay,1) such that diam(U,,1)) < 2diam(|ag,,1y]),

Uw,1) C Uw, and U, 1) does not intersect £y U---U Ep, 11, except possibly at the
endpoints of a(y,1). Moreover, since a,, is simple, we may require that U, 1) is
disjoint from oy 5)[\Oa(w,j) for j > 1. Next, we define U, 2) to be a neighborhood
of |ar(w,2)| \ Ocv(u,2) With the same properties as Up,,,1) and with Ugy,1) MU,y = 0.
Inductively, we define Uy, ;) for all j € N with the desired properties; see Figure@
We have completed the proof of the inductive step.

Completion of the proof. Now we will show that Conclusion E, p,7) is true.
For m € N define G, = ], [7x]. This is a continuum, since || contains the
endpoints of «y for each k € N by |(A-2)l We have G,,, C G,,41 and

Guchiu U U

l(w)<m—114€Ly
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for m € N. By Lemma and property we have
AN Cr) U+ D D ) <) e

l(w)<m—11€ly
Thus sup,,cy 1 (Gy) < 00, as required in Lemma We set G = ,,en G-
Since 7, is a simple path for each m € N, by Lemma we have
{Fm) = A (Fml) < AN (G) <L) + e

By the Arzela—Ascoli theorem, there exists a subsequence of 7,,, parametrized by
arclength, that converges uniformly to a path 7 with the same endpoints as v and

(7)< liminf £(F,) < €(7) +<.
m— 00

Hence, holds. Since [3,,| C Uy for each m € N by we have [§| C Uy C
U, as required in|(B-ii), We assume that 7 is simple by considering a weak subpath
if necessary. Since || C G, by Lemma and Lemma we have

/pds:/pXGds:/ pd%ﬂlg/pdf%ﬂl
y y NG G

g/pds—i— Z Z/ pdsﬁ/pds—ks,
v WEW, €L, ¥ i v
where the last inequality follows from [(A-4)] This shows [(B-iv)|
Finally, we argue for |(B-i)} By |(A-7)|for m >k > 0 we have

(5.1) Fml € el U

l(w)=k
By diam(U,,) < 2diam(|ay,|). If there are infinitely many non-empty sets
U, with l(w) = k, only finitely many curves v, can have diameter larger than a
given number; indeed by these are subpaths of 7, that have pairwise disjoint
traces, except possibly at the endpoints. It follows that U, is contained in a small
neighborhood of |7;| for all but finitely many w with {(w) = k. Hence, we see that

U vwchrlu |J T

l(w)=k l(w)=k
By letting m — oo in (5.1)), we conclude that

Alchxlu | Uwchlu |J T
l(w)=k l(w)=k
In the case of W, the set in the right-hand side intersects £1U- - -UFE} at countably
many points by |(A-1)| and |(A-6)l Thus, ¥ € F,(E1 U---U E}) for each k € N, so
5 € Fy(E). In the case of Wy, we have || C |Jx| U U C Uy, and the set Uy does
not intersect £y U --- U Ej, except possibly at the endpoints of oy = 7. Thus, |7]
does not intersect E7 U --- U E}, except possibly at the endpoints, for each k € N.
We conclude that ¥ € Fo(E). We have completed the verification of Conclusion
E7 p,7), and thus, the proof of Theorem O

6. EXAMPLES OF NEGLIGIBLE SETS

Recall that all sets of o-finite (resp. zero) Hausdorff (n — 1) measure are CNED
(resp. NED), by Theorem In this section we will discuss further examples.
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6.1. A quasihyperbolic condition for CNED sets. Let 2 C R™ be a domain,
i.e., a connected open set. For a point = € €2, define i (z) = dist(z, 9). We define
the quasihyperbolic distance of two points z1,29 € Q by

1
kq(x1,22) :inf/—ds,
vy ,Y(SQ

where the infimum is taken over all rectifiable paths « in € that connect z; and x-.

Theorem 6.1. Let Q C R™ be a domain such that kq(-,zo) € L"(Q2) for some
xg € Q. Then 02 € CNED. In particular, boundaries of John and Hélder domains
are CNED.

See [SS90] for the definitions of the latter two classes of domains. The condition
ka(-,x0) € L™(9) appeared in the work of Jones—Smirnov [JS00], who showed its
sufficiency for 992 to be QCH-removable. The same condition has also been used
in recent work of the current author [Nta20] to establish the removability of certain
fractals with infinitely many complementary components for Sobolev spaces; in
addition, it has appeared in work of the current author and Younsi [NY20| in
establishing the rigidity of circle domains under this condition. We will use some
auxiliary results from [NY20], which have been proved there in dimension 2, but
the proofs apply to all dimensions.

Remark 6.2. Domains satisfying the condition of the theorem are bounded [N'Y20,
Lemma 2.6] and thus have finite n-measure. Using this, one can show that an
equivalent condition is ko € L™ (2 x Q), so the base point x¢ is not of importance.

We will prepare the necessary background before proving the theorem. For a
domain Q@ C R™ we consider the Whitney cube decomposition W(2), which is a
collection of closed dyadic cubes @ C €2, called Whitney cubes, such that

(1) the cubes of W((2) have disjoint interiors and Jgeyy(n) @ = €2

(2) diam(Q) < dist(Q, 09) < 4diam(Q) for all Q@ € W(Q), and

(3) if Q1NQ2 # 0, then 1/4 < diam(Q1)/ diam(Q2) < 4, for all Q1, Q2 € W(Q).
See [Ste70, Theorem 1 and Prop. 1, pp. 167-169] for the existence of the decomposi-
tion. We denote by £(Q) the side length of a cube Q; this is not to be confused with

the length ¢(7) of a path . Two Whitney cubes Q1, Q2 € W(Q) with £(Q1) > £(Q2)
are adjacent if a face of 5 is contained in a face of Q.

Lemma 6.3. Let Q C R™ be a domain and Q1,Q2 € W(Q) be adjacent cubes.
Let F1 C Q1 and Fy C Q2 be continua with diam(F;) > al(Q;) for some a > 0,
i=1,2, and let p: R™ — [0, 00] be a Borel function. Then there exists a rectifiable
path v € T'(F1, Fa;int(Q1 U Q2)) such that

/pds < c(n,a) (Ipllze @) + lellzr(@y) and £(y) < e(n, a)(UQ1) + £(Q2)).

Proof. By Lemma it suffices to show that Mod,, I'(Fy, F»;int(Q1 U Q2)) is uni-
formly bounded from below, depending only on n and a. This can be shown by
mapping 1 U @2 with a uniformly bi-Lipschitz map onto a ball. Euclidean balls
are Loewner spaces; see [Hei0l, Chapter 8] for the definition and properties. Hence,
the desired lower bound is satisfied. (]
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Lemma 6.4. Let Q C R" be a domain, y: [0,1] — Q be a path such that v((0,1)) C
Q and v(0),v(1) € 09, and p: R™ — [0,00] be a Borel function. Then there ezists

|
a path 5+ [0,1] = Q with v/(0) = ~(0), 7'(1) = ~(1), ¥((0,1)) C U?\E%% Q,

[ pts<cn) ¥ lolie) and 6) <ctn) 3 U@
u QEW(Q) QEW(Q)
v INQ=0 17 1NQ#0
Proof. There exists a sequence @Q;, © € Z, of distinct Whitney cubes such that Q;
is adjacent to Q; 41 for each i € Z, |y| N Q; # () for each i € Z, and Q; — 7(0) as
i — —oo and Q; — v(1) as i — oo; see [NY20, p. 143] for an argument.

Consider the adjacent cubes Qg and (1. Let F; be the face of Qg that is opposite
to the common face of @y, Q1 and F, be the corresponding face of (1. We apply
Lemma [6.3] to obtain a path 7y in Qo U Q1 connecting Fy with F, and satisfying
the conclusions of the lemma with a = 1/2. We now consider @; and Q2. Let Fj
be a subcontinuum of || connecting opposite sides of @1 and let Fy be the face of
Q2 opposite to the common face between Q1 and Q5. Applying Lemma with
a = 1/2, we obtain a path v, connecting Fy with F» in Q1 U Q2. Inductively, for
each ¢ € Z we obtain a path v; in @; U @;11 as in the conclusions of Lemma @
such that |v;| N|vyi+1]| # 0. Since diam(Q;) — 0 as |i| — oo, we can concatenate the
paths 7; to obtain a path +" with the desired properties. O

Suppose that there exists a base point zy € Q with kq(-,z0) € L™(Q2). It is shown
in |JS00, pp. 273-274] that there exists a tree-like family G of curves starting at
xg, connecting centers of adjacent Whitney cubes, and landing at 02, that behave
essentially like quasihyperbolic geodesics and so that each point of 92 is the landing
point of a curve of G. For each cube @ € W(Q2) we define the shadow SH(Q) of Q
to be the set of points x € 92 such that there exists a curve of G starting at xg,
passing through @ and landing at z. We define

5(Q) = diam(SH(Q)).

The set SH(Q) is a compact subset of 99 for each @ € W(Q); see [NY20, Lemma
2.7]. Moreover, it is shown in [JSO0, p. 275] that

(6.1) > s@Qn §n/k(x,x0)"dz.

QEW(Q) @

Lemma 6.5 ([NY20, Lemma 2.10]). Let Q C R™ be a domain such that kq(-, zo) €
L™(Q) for some xg € Q. For each simple path ~: [0,1] = R™ and ¢ > 0 there exists
a finite collection of paths {~;: [0,1] — Q}ser such that

(i) Ov; C O and either ; is constant or v;((0,1)) C Q for each i € I,
(ii) there exists a path ¥ with 0y = 0y and |y] C (|| \ 02) U U,c; [l
(iil) if Q € W(Q) is a Whitney cube with |v;| N Q # O for some i € I, then
HINSHQ) £0 and (Q) <,
(iv) |y and |v;| intersect disjoint sets of Whitney cubes Q € W(Q) for i # j.
Moreover, if one replaces v;, for each i € I, with a path ~.: [0,1] — Q such that
7;(0) = :(0), vi(1) = (1), and either ~; is constant or v;((0,1)) C Ugew(o) @;

[7: INQ#0
then conclusions also hold for the collection {v,}icr.
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FIGURE 4. The path v (blue) and the paths ; given by Lemma
There are three constant paths ;. The path 7 arises by
replacing the arcs of 4 between the endpoints of v; with ~;.

See Figure@lfor an illustration. The formulation of this lemma in Lemma
2.10] is slightly different; however, the proof of and is identical. The
paths 7; are concatenations of subpaths of paths of G and are replacing finitely many
arcs of v that cover the set |y| N 9Q. Hence, using the path ¥ arising from these
replacements one essentially avoids the set |y| N 92, except at the endpoints of ;.
We provide a sketch of the proof of One needs to concatenate appropriately
the paths ~; that satisfy If two paths ~;, v;, ¢ # j, meet a common
Whitney cube @, then one can concatenate these paths with a line segment inside
Q. Then one considers a subpath 7;; of the concatenation so that and are
satisfied with ;; in place of ; and ;. After finitely many concatenations, one can
obtain the family {7;}, <7 that satisfies all conditions The last part of the
lemma provides some extra freedom in the choice of the paths ~;; conclusion for
the collection {7}};er follows from the construction and the other conclusions are
immediate since 97, = 0v; and the trace of the path v, intersects no more Whitney
cubes than ~; does.

Proof of Theorem[6.1. We will verify Theorem to show that 9 is CNED.
Let p: R® — [0,00] be a Borel function with p € L™(R™). We check condition

The proof of [(II-2)|is very similar and we omit it. Let v be a non-constant
rectifiable path, and set g = p+ X . Since € is bounded (see Remark, we have

g € L™(R"). By Lemma we have

[ loli@di= 3 lolen: malla: b+ 210 SH@) £ 0)

£{(Q)<e L(Q)<e
[v+z|NSH(Q)#D

Sn > lgllong) - max{e(y), s(Q)}s(Q)" .

{(Q)<e
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Since s(+) € £*(W(Q)) by (6.1)), we have s(Q) < £(v) if £(Q) < € and ¢ is sufficiently
small. Using this fact and Hoélder’s inequality, we bound the above sum by

o > fo) (2

L(Q)<e

s@r) o

0(Q)<e

As e — 0, this converges to 0. We conclude that as ¢ — 0 along a sequence, for a.e.
x € R™ we have

(6.2) > lolln@) = o(1) and > 6(Q) = o(1).
{(Q)<e {Q)<e
[v+z|NSH(Q)#0 [v+z|NSH(Q)#0

Let x € R™ such that holds. Let 1 be a strong subpath of v+ x with distinct
endpoints. We claim that Conclusion 8(2, p,m) is true. It suffices to prove this
for a simple weak subpath of n with the same endpoints that we still denote by 7.

For € > 0 we apply Lemma to the path 1 and obtain a finite collection of
paths {n; }ier. To each non-constant path n; we apply Lemma and we obtain a
path 7 that has the same endpoints as n; and if |n}| N Q # @ for some Q € W(Q),
then |n;| N Q # 0. If n; is constant, we set 1, = 7;. The last part of Lemma
allows us to replace each 7; with n} while retaining properties |(i)H(iv)} By Lemma
and there exists a simple path 77 such that

(1) || N 0N is a finite set (only the endpoints of 1} can lie in 9Q), and
(2) On = o and [7)] C (In] \ 9) UUie; Inil-

We discard the paths 7, whose trace does not intersect |7j]. Furthermore, since the
paths 7; satisfy the conclusions of Lemma in combination with Lemma[6.5) mm
and m we have

) > U <em)d ] D> UQ)<c(n) Y. LQ), and

el el L(Q)<e (Q)<e
[n; INQ#AD [nINSH(Q)#0
@Y [ pis<cny 3 lolr@zem Y ol
el /i i€l (Q)<e 0Q)<e
[ni|NQ#D [nINSH (Q)#0

Note that (1) implies and (2), (3), (4), together with (6.2)), imply |(B-iii)| and
Finally, given an open neighborhood U of ||, if ¢ is sufficiently small, the
sum of the lengths of 7 is small, and thus (J,.; [7;| C U; this proves O

6.2. Projections to axes and NED sets. We present a result for sets whose
projections to the coordinate axes have measure zero. This result will be crucial
for the proof of Theorem

Theorem 6.6. Let E C R? be a set whose projection to each coordinate direction
has 1-measure zero. Then E € NEDY. If, in addition, ma(E) = 0, then E € NED.

This was proved for closed sets by Ahlfors—Beurling [AB50, Theorem 10]. For
sets that are not closed the proof is substantially more complicated. Note that F
is not NED in general even if it has measure zero. For example take F = Q x {0},
which is NED by Theorem However, its closure is £ = R x {0}, which has
measure zero, but it is not NED since it is not totally disconnected.
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We prove Theorem [6.6] only in dimension 2, because of the following lemma,
whose statement is very similar to Lemma |3.5] Except for that lemma, none of the
arguments in the proof of Theorem depend on the dimension.

Lemma 6.7. Let E C R? be a set whose projection to each coordinate direction has
1-measure zero. Fort > 0, denote by Q: the open square centered at the origin with
side length t and sides parallel to the coordinate axes. Let 0 < r < R and suppose
that Fi, F» C R? are disjoint continua such that 0Q; intersects both F\ and Fy for
every r <t < R. Then

Mod, (I(F1, Fa; Qr \ Qr) N Fo(E)) > ilog (R> ,

Proof. We have 9Q; N E = ) for a.e. t € (r, R). Let p be an admissible function for
L(F1, Fo;Qr \ Qr) N Fo(E). Then

1/2
1§/ pdsﬁ(/ p2d5> Vat
BQt 6Qf

for a.e. t € (r, R). By integration and Fubini’s theorem, we have

1 R |
- log <) :/ —dtﬁ/ p2.
4 r A4t Qr\Or

Infimizing over p gives the conclusion. O

The proof of the following lemma is exactly the same as the proof of Lemma|3.8
where one uses Lemma [6.7] in place of Lemma see Remark

Lemma 6.8. Let E C R? be a set whose projection to each coordinate direction has
1-measure zero. Then for every open set U C R? and for every pair of non-empty,
disjoint continua Fy, Fo C U we have

Mody (I'(F1, F2; U) N Fo(E)) = lim Mody(I'(FY, 53 U) N Fo(E)).-

Proof of Theorem[6.6, Let Fy, F, C R? be non-empty, disjoint continua. We fix a
small r > 0 so that FY N Fy = () and let p: R? — [0, 00] be a Borel function with
p € L?(R?) that is admissible for T'(F7, F3;R?) N Fo(E).

Consider a sequence of open sets {Vi,}men, such that E C V41 C Vi C
Ni/m(E) and such that the projection of V;,, to each coordinate axis has measure
less than 1/m for each m € N. Observe that () °_, Vi, has 2-measure zero. For each
m € N define the closed set X,,, = (R?\V,,,)UF7 UF5. Note that a.e. line parallel to
a coordinate direction does not intersect the set ﬂf::l V. Hence, a.e. line parallel
to a coordinate direction lies in |J,-_; X,,,. Moreover, if y is a rectifiable path in
X,, joining FJ to Fy, then « has a subpath in R?\ V,,, C R? \ E joining F7 to Fj.
By the admissibility of p, we obtain

/pdle.
.

For each m € N, we define on X,,, the function

gm(x):min{inf/ pds,l}
Ve Sy,

where the infimum is taken over all rectifiable paths v, in X,, that connect FY
to x. By [JJRT07, Corollary 1.10], the function g,, is measurable; the fact that
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X, is closed, thus complete, is important here. One can alternatively argue using
[HKST15, Lemma 7.2.13, p. 187]. Moreover, we have 0 < g,, < 1, g,, = 0 on FY,
and g, = 1 on Fy. Next, we show that p is an upper gradient of g,,. That is,

19m (y) = gm(2)] < /pds
¥
for every rectifiable path +v: [0,1] — X, with v(0) = z and (1) = y. Since the
roles of x and y are symmetric, we will only show that

gm(Y) = gm () < /pd&
¥
If gm(y) = 1, then this inequality is immediate, since then g, (y) — gm(z) < 0.
Suppose gm(y) = inf,, f7 pds. We fix a curve v, joining F] to z. Define a curve
Y
vy by concatenating 7, with v. Then

gm(y)é/ pd8=/pds+/ pds.
ot vy

Infimizing over ~, gives the desired inequality.

The sequence of sets { Xy }ren is increasing. Thus, if k > m, then g is defined
by infimizing over a larger collection of paths compared to the definition of g,.
It follows that 0 < gx < gm in X,,. Therefore, for each m € N, g; converges
pointwise as £ — oo to a measurable function g in X,,,. Moreover, by the pointwise
convergence, for each m € N the function p is an upper gradient of g in X,,,
0<g<1inU;_, X, g = 0in aneighborhood of Fi, and g = 1 in a neighborhood
of F5. On R*\ U;>_; X, C oo_y Vi we define g = 0. Thus, we have extended g
to a measurable function in R2.

We claim that g is absolutely continuous in a.e. line segment parallel to a coordi-
nate direction. Let L be a line segment parallel to e; = (1,0). By construction, for
Htae. z € {e1}* the line segment L + z lies in X, for some m € N. Moreover,
since p € L?(R?), we have fL+z pds < oo for a.e. z € {e;}+. By the upper gradient

Yy

inequality we conclude that g is absolutely continuous in L + z for a.e. z € {e;}*+
and |g,;| < p almost everywhere on L 4 z. This implies that |g.| < p a.e. Similarly,
g, < p a.e. Thus, g lies in the classical Sobolev space W,L?(R?) and |Vg| < v2p
a.e. in R?; see |Zie89, Theorem 2.1.4, p. 44].

If R?\ E # (), then each 2 € R?\ E has a bounded open neighborhood Y that is
disjoint from V;, for sufficiently large m, since V,,, C Ny, (E). Thus, Y C X,,, and
g € WH2(Y). Since p is an upper gradient of g in Y, by [Haj03), Corollary 7.15] we
conclude that |Vg| < p a.e. in Y. Therefore, |Vg| < p a.e. in R?\ E. Summarizing,
at a.e. point of R? we have

Vgl < pXparm + V20X

Since g = 0 in a neighborhood of F; and g = 1 in a neighborhood of F5, for
each ¢ > 0 there exists (by mollification) a smooth function g. on R? with the same
properties and with ||Vg5||%2(R2) < ||Vg||%2(R2) +¢; see |Zie89, Lemma 2.1.3, p. 43].
It is immediate that |Vg.| is admissible for T'(Fy, Fy; R?). Thus,

Mod; T'(Fy, F: B) < Vg [3aga) < 1ol o + 2ol + <
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First we let ¢ — 0, and then we infimize over p to obtain
Mody I'(Fy, Fy; R?) < co Modo(T(FY, Fy; R?) N Fo(E)),

where ¢y = 1 if mo(F) = 0 and ¢y = 2 otherwise. Now, we let r — 0 and by Lemma
[6.8 we obtain

Mody I'(Fy, Fy; R?) < co Mody(T'(Fy, Fa; R?) N Fy(E)). O

6.3. A non-measurable CNED set. Sierpinski [Sie20], using the axiom of choice
but not the continuum hypothesis, constructed a striking example of a non-mea-
surable set £ C R? such that every line intersects £ in at most two points. This
example served at that time as a counterexample to the converse of Fubini’s theo-
rem: if the slices of a planar set are measurable, then is the whole set measurable?
‘We show here that Sierpinski’s set is CNED. Thus, the assumption of measurability
in Lemma [2.5] is necessary in order to derive that CNED sets have measure zero.

Proposition 6.9. There exists a non-measurable set E C R? that is CNED.

Proof. Let E be the non-measurable set of Sierpinski. Let Fj, F» C R? be non-
empty, disjoint continua. We will show that

Mody I'(Fy, Fy; R?) < Mody(T(F, Fo; R?) N Fy (E)).
According to a remarkable result of Aseev [Ase09, Theorem 2.1], we have
Mods I'(Fy, F2; R?) = Moda(I'(Fy, Fo; R?) N F),

where F is the family of piecewise linear curves with respect to R?\ (Fy U Fy); that
is, v € F if each point of |y|\ (Fy U F3) has a neighborhood V such that |y| NV
consists of finitely many straight line segments. Hence, it suffices to show that

F(Fl,FQ;RQ) NnFC F(F17F2;R2) mJT.'O_(E)

Let v € T'(Fy, F»; R?) N F. By the properties of the set E, and since v is piecewise
linear, the set |y| N E is countable. Hence, v € F,(F), as desired. O

7. EXAMPLES OF NON-NEGLIGIBLE SETS

Proof of Proposition|1.11. Let E be the residual set of a packing as in the state-
ment. Let I'g denote the family of non-constant curves that intersect the set

S= |J (@D;noD;).
i,jEN
i#]
Since S is countable, we have Mod,, I'g = 0. Consider continua Fy, F5, contained
in Dy, Dy, respectively. The claim that E ¢ CNED follows once we establish that

(71) F(Fl,FQ;Do)ﬂ]:U(E) cTy.

Let v € T'(F1, F»; Dg) \ Ty. By considering a weak subpath, we assume that v is
a simple path with the same properties. We consider an injective parametrization
v:[0,1] = Dy. Let A be the set of t € [0, 1] such that there exists 6 > 0 and ¢ € N
with the property that y((¢t — d,t) U (t,t + 0)) C D; and ~(t) € dD;; that is,
“bounces” on dD; at time t. Then A is countable and relatively open in v~!(E).

We claim that the compact set B = v~ !(E) \ A is non-empty and perfect, in
which case, it is uncountable. Therefore, |y| N E is uncountable and v ¢ F,(E),
which completes the proof of . To see that B is non-empty, let ¢ = sup{a €
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[0,1] : v(a) € D1}. Then () € dD1, sot € v~ H(E), v((t —6,t)) N Dy # () for every
6 >0, and y((t,1])N Dy = 0. Thus, t ¢ A and t € B, showing that B # (). We now
show perfectness. Let t € B and let I C [0,1] be an open interval containing ¢.

Case 1: Suppose that v(I) C E. Since A is countable, there exists s € I\ A, s # ¢,
with v(s) € E. Hence, (I\ {t})N B # 0.

Case 2: Suppose that v(I) N D;, # () for some ig € N and ~(t) ¢ 9D;,. Without
loss of generality v(s) € D;, for some s € I with s < t. Let s; = sup{a € (s,t) :
v(a) € D;y}. Then ~(s1) € 0D;,, s1 # t, v((s1 — d,s1)) N Dy, # 0 for every 6 > 0,
and v((s1,t)) N D;, = 0. Thus, s; ¢ A and we have s; € INB,so (I\{t})NB # 0.
Case 3: Suppose (t) € dD;, for some ig € N. Since t ¢ A, there exists an open
subinterval of I, say J = (s,t), such that v(.J) intersects the complement of D, . If
v(J) C E, then by Case 1 we have (J \ {t}) N B # (). Suppose that v(J) N D;, # 0
for some i1 # ig. Then y(t) ¢ 0D;,, since v ¢ I'g and  avoids the set 9D;, NID;,.
We are now reduced to Case 2 with i; in place of ig and J in place of I. ]

Remark 7.1. One can relax the assumption of the proposition to requiring that
0D; N 0D, i # j, has Sobolev n-capacity zero (see [HKST15, Section 7.2]). Then
the family of curves passing through 0D; N dD; has n-modulus zero.

Next, we establish a preliminary elementary result before proving Theorem [1.9

Lemma 7.2. Let U C R be an open set and E C R be a compact set with mq(E) >

0. Then there exists a sequence of similarities T7,: R - R, ¢ € N, and a set N C R
with my(N) = 0 such that

U=NulJn(®).
ieN
Proof. Suppose that E C (a,b) and set A = m1(E)/(b—a). Moreover, suppose that
U is bounded. Let Uy = U and let Ip;, ¢ € N, be the connected components of Uy,

which are bounded open intervals. For each ¢ € N, define 79 ; to be the similarity
that maps (a,b) onto Iy ;. Then mq(m9,:(E))/m1(Lo) = A and

miq (U 7'071'(E)> = /\ml(Uo)
i€N

We now define Uy = Up \ U,y 70,i(E), which is open, and note that m;(U;) =

(1 — X)mq(Uy). We proceed in the same way to obtain similarities 71 ;, ¢ € N, that

map (a,b) to the connected components of U;. In the k-th step, we obtain the set

k—1
Up=Uo\ |J (B

7=01ieN

with m,, (Ug) = (1 — X\)¥my (Up). Thus, N = Up \ U;io Uien 75,i(E) is a null set, as
desired. If U is unbounded, we can simply write it as a countable union of bounded
open sets and apply the previous result to each of them. O

Proof of Theorem[I.9 According to a construction of Wu [Wu98, Example 2], there
exist Cantor sets G, F C R such that m1(G) = 0, m1(F) > 0, and G x F is
removable for the Sobolev space W12, Thus, G x F is of class NED C CNED; this
follows from |[VGT77].
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By Lemma [7.2] there exist countably many scaled and translated copies F; C
(0,1), 7 € N, of F, such that the set Ey = [0,1] \ U,y Fi has 1-measure zero. We
let By = [0,1]\ By = ;e Fi- We have

€N

GX[O,l]:GX(EluEQ):(GXEl)U(GXEQ).

The set G x [0, 1] is not QCH-removable (recall the discussion in the Introduction),
so it is not CNED by Theorem this can also be proved directly.

On the other hand, for each ¢ € N the set G x F; is the quasiconformal image
of G x F, which is NED. Compact NED sets are invariant under quasiconformal
maps by Corollary (this also follows from [AB50, Theorem 4]). Thus, G x F; is
NED for each i € N. By Theorem [I.2] we conclude that

GxEy=|JGxF; e NED.
ieN
Finally, note that the projections of the set G x E; to the coordinate axes have

measure zero. Moreover, G X E; C G x [0, 1], and the latter has 2-measure zero.
By Theorem [6.6] we conclude that G x E; € NED. O

REFERENCES

[AB50] L. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null-sets,
Acta Math. 83 (1950), 101-129.

[AST4] V. V. Aseev and A. V. Sycev, Sets that are removable for quasiconformal mappings in
space, Sibirsk. Mat. Z. 15 (1974), 1213-1227.

[Ase09] V. V. Aseev, NED sets lying in a hyperplane, Sibirsk. Mat. Zh. 50 (2009), no. 5, 967—
986.

[BBIO1] D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Graduate Studies
in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001.

[Bes31] A. S. Besicovitch, On Sufficient Conditions for a Function to be Analytic, and on Be-
haviour of Analytic Functions in the Neighbourhood of Non-Isolated Singular Points,
Proc. London Math. Soc. (2) 32 (1931), no. 1, 1-9.

[Bis94] C. J. Bishop, Some homeomorphisms of the sphere conformal off a curve, Ann. Acad.
Sci. Fenn. Ser. A I Math. 19 (1994), no. 2, 323-338.

[Bog07] V. I. Bogachev, Measure theory. Vol. I, Springer-Verlag, Berlin, 2007.

[Boj88] B. Bojarski, Remarks on Sobolev imbedding inequalities, Complex analysis, Joensuu
1987, Lecture Notes in Mathematics, Springer, Berlin, 1988, pp. 52—68.

[Carb1] L. Carleson, On null-sets for continuous analytic functions, Ark. Mat. 1 (1951), 311—
318.

[Fed69] H. Federer, Geometric measure theory, Grundlehren der mathematischen Wis-
senschaften, vol. 153, Springer-Verlag New York Inc., New York, 1969.

[Fre92] D. H. Fremlin, Spaces of finite length, Proc. London Math. Soc. (3) 64 (1992), no. 3,
449-486.

[Geh62] F. W. Gehring, Rings and gquasiconformal mappings in space, Trans. Amer. Math. Soc.
103 (1962), 353-393.

[GM85] F. W. Gehring and O. Martio, Quasieztremal distance domains and extension of qua-
siconformal mappings, J. Analyse Math. 45 (1985), 181-206.

[Hajo3] P. Hajlasz, Sobolev spaces on metric-measure spaces, Heat kernels and analysis on
manifolds, graphs, and metric spaces (Paris, 2002), Contemp. Math., Amer. Math.
Soc., Providence, RI, 2003, pp. 173-218.

[HeiO1] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New
York, 2001.

[Hes75] J. Hesse, A p-extremal length and p-capacity equality, Ark. Mat. 13 (1975), 131-144.

[HK90] D. A. Herron and P. Koskela, Quasieztremal distance domains and conformal mappings
onto circle domains, Complex Variables Theory Appl. 15 (1990), no. 3, 167-179.



48

[HKST15)

[HS94]

[JIR+07]

[Jon95]

[JS00]
[Kaus4]
[KK00]
[KNO5]
[KW96]
[MN22]
[Nta19]
[Nta20]
[Nta21]
[Nta23]
[Nta]
[NW20]
[NY20]
[Pes56]
[Sh193)
[Sie20]
[SS90]
[Ste70]
[Tuks9)
[V&i62]
[V&iT1)

VGT7]

[Wil70]

DIMITRIOS NTALAMPEKOS

J. Heinonen, P. Koskela, N. Shanmugalingam, and J. T. Tyson, Sobolev spaces on
metric measure spaces. An approach based on upper gradients, New Mathematical
Monographs, vol. 27, Cambridge University Press, Cambridge, 2015.

Z.-X. He and O. Schramm, Rigidity of circle domains whose boundary has o-finite
linear measure, Invent. Math. 115 (1994), no. 2, 297-310.

E. Jarvenpaa, M. Jarvenpad, K. Rogovin, S. Rogovin, and N. Shanmugalingam, Mea-
surability of equivalence classes and MECy-property in metric spaces, Rev. Mat.
Iberoam. 23 (2007), no. 3, 811-830.

P. W. Jones, On removable sets for Sobolev spaces in the plane, Essays on Fourier anal-
ysis in honor of Elias M. Stein (Princeton, NJ, 1991), Princeton Math. Ser., Princeton
Univ. Press, Princeton, NJ, 1995, pp. 250-267.

P. W. Jones and S. K. Smirnov, Removability theorems for Sobolev functions and
quasiconformal maps, Ark. Mat. 38 (2000), no. 2, 263-279.

R. Kaufman, Fourier-Stieltjes coefficients and continuation of functions, Ann. Acad.
Sci. Fenn. Ser. A T Math. 9 (1984), 27-31.

S. Kallunki and P. Koskela, FExzceptional sets for the definition of quasiconformality,
Amer. J. Math. 122 (2000), no. 4, 735-743.

P. Koskela and T. Nieminen, Quasiconformal removability and the quasihyperbolic
metric, Indiana Univ. Math. J. 54 (2005), no. 1, 143-151.

R. Kaufman and J.-M. Wu, On remowvable sets for quasiconformal mappings, Ark. Mat.
34 (1996), no. 1, 141-158.

S. Maio and D. Ntalampekos, On the Hausdorff dimension of the residual set of a
packing by smooth curves, J. London Math. Soc. 105 (2022), no. 3, 1752-1786.

D. Ntalampekos, Non-removability of the Sierpiriski gasket, Invent. Math. 216 (2019),
no. 2, 519-595.

D. Ntalampekos, A removability theorem for Sobolev functions and detour sets, Math.
Z. 296 (2020), 41-72.

D. Ntalampekos, Non-removability of Sierpiniski carpets, Indiana Univ. Math. J. 70
(2021), no. 3, 847-854.

D. Ntalampekos, Rigidity and continuous extension for conformal maps of circle do-
mains, Trans. Amer. Math. Soc. 376 (2023), no. 7, 5221-5239.

D. Ntalampekos, Metric definition of quasiconformality and exceptional sets, Math.
Ann. To appear.

D. Ntalampekos and J.-M. Wu, Non-removability of Sierpiniski spaces, Proc. Amer.
Math. Soc. 148 (2020), 203-212.

D. Ntalampekos and M. Younsi, Rigidity theorems for circle domains, Invent. Math.
220 (2020), no. 1, 129-183.

1. N. Pesin, Metric properties of Q-quasiconformal mappings, Mat. Sb. N.S. 40(82)
(1956), 281-294.

V. A. Shlyk, On the equality between p-capacity and p-modulus, Sibirsk. Mat. Zh. 34
(1993), no. 6, 216-221.

W. Sierpinski, Sur un probléme concernant les ensembles mesurables superficiellement,
Fund. Math. 1 (1920), no. 1, 112-115.

W. Smith and D. A. Stegenga, Hélder domains and Poincaré domains, Trans. Amer.
Math. Soc. 319 (1990), no. 1, 67-100.

E. M. Stein, Singular integrals and differentiability properties of functions, Princeton
Mathematical Series, vol. 30, Princeton University Press, Princeton, NJ, 1970.

P. Tukia, Hausdorff dimension and quasisymmetric mappings, Math. Scand. 65 (1989),
no. 1, 152-160.

J. Viisala, On the null-sets for extremal distances, Ann. Acad. Sci. Fenn. Ser. A T No.
322 (1962), 1-12.

J. Viiséla, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in
Mathematics, vol. 229, Springer-Verlag, Berlin-New York, 1971.

S. K. Vodopyanov and V. M. Goldshtein, A test of the removability of sets for L}D
spaces of quasiconformal and quasi-isomorphic mappings, Sibirsk. Mat. 7.18 (1977),
no. 1, 48-68.

S. Willard, General topology, Addison-Wesley Publishing Co., Reading, Mass.-London-
Don Mills, Ont., 1970.



CNED SETS: COUNTABLY NEGLIGIBLE FOR EXTREMAL DISTANCES 49

[Wu98] J.-M. Wu, Removability of sets for quasiconformal mappings and Sobolev spaces, Com-
plex Variables Theory Appl. 37 (1998), no. 1-4, 491-506.

[Youl5] M. Younsi, On remowvable sets for holomorphic functions, EMS Surv. Math. Sci. 2
(2015), no. 2, 219-254.

[Youl6] M. Younsi, Removability, rigidity of circle domains and Koebe’s conjecture, Adv. Math.
303 (2016), 1300-1318.

[Zie89] W. P. Ziemer, Weakly differentiable functions: Sobolev spaces and functions of bounded
variation, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989.

MATHEMATICS DEPARTMENT, STONY BROOK UNIVERSITY, STONY BROOK, NY 11794, USA.
Email address: dimitrios.ntalampekos@stonybrook.edu



	1. Introduction
	2. Preliminaries
	3. Families of curve perturbations
	4. Criteria for negligibility
	5. Unions of negligible sets
	6. Examples of negligible sets
	7. Examples of non-negligible sets
	References

