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Abstract. We prove that any metric surface (that is, metric space homeomor-
phic to a 2-manifold with boundary) with locally finite Hausdorff 2-measure

is the Gromov–Hausdorff limit of polyhedral surfaces with controlled geom-

etry. We use this result, together with the classical uniformization theorem,
to prove that any metric surface homeomorphic to the 2-sphere with finite

Hausdorff 2-measure admits a weakly quasiconformal parametrization by the

Riemann sphere, answering a question of Rajala–Wenger. These results have
been previously established by the authors under the assumption that the met-

ric surface carries a length metric. As a corollary, we obtain new proofs of the

uniformization theorems of Bonk–Kleiner for quasispheres and of Rajala for
reciprocal surfaces. Another corollary is a simplification of the definition of

a reciprocal surface, which answers a question of Rajala concerning minimal

hypotheses under which a metric surface is quasiconformally equivalent to a
Euclidean domain.
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1. Introduction

We say that a metric surface is a metric space homeomorphic to a 2-manifold,
possibly with non-empty boundary. In our paper [40], we give results on two related
problems for metric surfaces: first, approximating a given surface by polyhedral
surfaces with controlled geometry, and, second, finding a uniformizing map from a
corresponding constant curvature surface. The results in [40] are proved assuming
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that the metric on the surface is a length metric with locally finite Hausdorff 2-
measure. The length metric assumption means that the distance between two points
is the infimum of the lengths of paths connecting them; this is a natural condition
built into the definition of many standard classes of spaces, such as Riemannian or
Finsler manifolds. However, an arbitrary metric surface need not resemble a length
space. For example, one can construct a surface as a subset of some ambient space,
such as R3, and equip it with the metric inherited from this ambient space. Such a
surface may have points that are inaccessible by rectifiable curves.

The purpose of this paper is to extend our work in [40] to the case of non-length
metric surfaces. Instead, we assume merely that the Hausdorff 2-measure on the
surface is locally finite. This is the minimal assumption needed to use conformal
modulus methods, as we do in our approach to the topic of uniformization. Our
main result is a generalization of Rajala’s uniformization theorem [44], one of the
major recent works on the topic. Rajala’s theorem (Theorem 1.5 below) states that
a metric surface of locally finite Hausdorff 2-measure homeomorphic to the plane is
quasiconformally equivalent to the Euclidean plane if and only if it satisfies a geo-
metric condition called reciprocity (see Section 1.4). Our generalization gives the
existence of a weakly quasiconformal parametrization even without the reciprocity
assumption. In the case of reciprocal surfaces, such a parametrization is a quasi-
conformal homeomorphism, and hence we obtain a new proof of Rajala’s theorem
by a different method. In fact, our approach improves his result by showing that
one of the two conditions in the original definition of reciprocity is implied by the
other and hence is redundant.

These results in this paper build on a substantial literature on uniformization
of metric spaces, which will be described in more detail in Section 1.3 below. For
additional background, we recommend the original papers of Bonk–Kleiner [5] and
Rajala [44]. We also refer the reader to [34] for the classical uniformization theorem
for Riemann surfaces, [7, 8] for the fundamentals of metric geometry, and [18] for
the theory of quasiconformal mappings in metric spaces.

1.1. Polyhedral approximation. In our first result, we extend our polyhedral
approximation theorem (Theorem 1.1 in [40]) to cover the setting of non-length
surfaces as well.

Theorem 1.1. Let X be a metric surface (with boundary) of locally finite Hausdorff
2-measure. There exists a sequence of polyhedral surfaces {(Xn, dXn

)}∞n=1 each
homeomorphic to X, where dXn

is a metric that is locally isometric to the polyhedral
metric on Xn, such that the following properties hold for an absolute constant K ≥
1.

(1) There exists an approximately isometric sequence of maps fn : Xn → X,
n ∈ N. Moreover, for each n ∈ N, the map fn is a proper topological
embedding.

(2) For each compact set A ⊂ X,

lim sup
n→∞

H2(f−1
n (A)) ≤ KH2(A).

(3) There exists an approximately isometric sequence of retractions Rn : X →
fn(Xn), n ∈ N.

If X is a length space, then we may take dXn
to be the polyhedral metric on Xn.
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In particular, (1) implies that the sequence Xn converges to X in the Gromov–
Hausdorff sense. The last statement of the theorem regarding the length space
case follows from our polyhedral approximation result in [40, Thm. 1.1]. Condi-
tion (3) compensates for the lack of a length metric and is used in order to prove
the uniformization result in Theorem 1.2. See Example 8.1 for some undesirable
phenomena that may occur without condition (3).

A toy version of this theorem is the analogous 1-dimensional statement for metric
Jordan curves. Namely, if X is a rectifiable metric Jordan curve one can construct
an approximation of X by polygonal Jordan curves (Xn, dXn) that converge to Xn

in the Gromov–Hausdorff sense and the length of each arc in X is the limit of
the lengths of corresponding arcs in Xn as n → ∞; in particular, (2) holds with
equality and with K = 1. To do so, consider a sufficiently dense set {x1, . . . , xn} in
X, in cyclic order, and for each i ∈ {1, . . . , n} consider a line segment Li of length
equal to the diameter of the arc from xi−1 to xi in X, where x0 = xn. Then glue
metrically the endpoints of each Li to the points xi−1, xi. The resulting space Xn

is a polygonal Jordan curve with the desired properties.
Unlike the 1-dimensional setting, in the case of surfaces we cannot guarantee the

convergence of the Hausdorff 2-measure in (2). Indeed, if X is the unit square in
R2 with the ℓ∞ metric, then any sequence of polyhedral surfaces Xn satisfying the
conclusions of the theorem will necessarily satisfy

lim inf
n→∞

H2(Xn) ≥
4

π
H2(X).

We provide the details in Example 8.2. Based on this example, it is reasonable to
conjecture that the optimal constant K in Theorem 1.1 is 4/π.

We outline the main ideas that go into the proof of Theorem 1.1. Note that many
arguments in our paper [40] depend essentially on the length metric assumption,
and so we cannot simply reduce the general case to the case of a length metric and
appeal to the results in [40]. Nevertheless, a first observation is that the assumption
of locally finite Hausdorff 2-measure is enough to guarantee that the surface (X, d)
contains a large supply of rectifiable curves. Thus it is useful to consider the
extended length metric d̄ induced by the given metric d. The extended metric d̄
may be infinite for some pairs of points. However, a consequence of having locally
finite Hausdorff 2-measure is that d̄ must be finite for all pairs of points outside a
totally disconnected set (see Section 3). In particular, X contains many geodesics
with respect to the extended length metric d̄, which we refer to as d̄-geodesics.

The triangulation result in [10], which was the main technical ingredient for
proving the polyhedral approximation theorem in [40], adapts to give a covering of
X by non-overlapping triangular disks whose edges are d̄-geodesics. By replacing
each triangular disk with a corresponding polyhedral disk, we are able to define
the polyhedral surfaces Xn appearing in Theorem 1.1. If (X, d) is not a length
space, then we cannot give Xn the usual polyhedral metric while satisfying (1) in
Theorem 1.1. However, this is fixed by modifying the polyhedral metric on Xn

on large scales to match the original metric d. A more serious technical difficulty
is that, while the polyhedral surfaces Xn are constructed using d̄-geodesics, the
area estimate (2) in Theorem 1.1 involves the Hausdorff 2-measure for the original
metric d and not for d̄. Note that the Hausdorff 2-measure of d̄ may be much larger
than that of d and need not even be locally finite. In [40], we obtained the area
estimate as an application of a version of Besicovitch’s inequality for metric spaces,
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which no longer applies. Instead, we use a recent Lipschitz approximation result
for Sobolev functions on metric spaces due to Eriksson-Bique and Poggi-Corradini
[13] in conjunction with the co-area inequality to obtain the required inequality.

1.2. Uniformization of metric surfaces. The uniformization problem asks one
to determine which metric spaces admit a geometrically well-behaved parametriza-
tion by a canonical model space such as the n-sphere or n-dimensional Euclidean
space. Most commonly, we are interested in parametrizations by quasiconformal
maps or their generalizations; roughly speaking, these are maps that infinitesimally
distort relative distances within some prescribed amount.

Our main result in this direction is concerned with the two-dimensional case
of the uniformization problem under the minimal geometric assumption of merely
locally finite area.

Theorem 1.2. Let X be a metric surface of locally finite Hausdorff 2-measure

homeomorphic to ˆ︁C, D, or C. Then there is a continuous, surjective, proper, and

cell-like map h : Ω → X, where Ω is ˆ︁C, D, or D or C, respectively, satisfying the
modulus inequality

(1.1) modΓ ≤ 4

π
modh(Γ)

for every path family Γ in Ω.

Here D denotes the open unit disk in the complex plane C, and ˆ︁C is the Riemann
sphere equipped with the spherical distance. A map is cell-like if the preimage of
each point is a continuum that is contractible in all small neighborhoods; see Section
6.2. A continuous, surjective, proper, and cell-like map h : X → Y between metric
surfaces of locally finite Hausdorff 2-measure is called weakly quasiconformal if there
exists K ≥ 1 such that

modΓ ≤ Kmodh(Γ)(1.2)

for every path family Γ in X; here mod refers to 2-modulus (see Section 2.3). For
surjective maps between homeomorphic compact surfaces the topological assump-
tion of cell-likeness is equivalent to the weaker requirement that h is a monotone
map; that is, the preimage of each point is a continuum. The topological assump-
tions on a weakly quasiconformal map h ensure that it is very close to being a
homeomorphism; for example, if X,Y have no boundary or if X,Y are compact
and homeomorphic to each other, then h is the uniform limit of homeomorphisms.
See Section 6.2 for more details. It was shown in [40, Thm. 1.4] that (1.2) may be

replaced with the equivalent statement that h lies in the Sobolev space N1,2
loc (X,Y )

and

gh(x)
2 ≤ KJh(x)

for a.e. x ∈ X, where gh denotes the minimal weak upper gradient of h (see Sect.
2.3) and Jh is the Jacobian of the map h, i.e., the Radon–Nikodym derivative of
the measure H2 ◦ h with respect to H2.

Theorem 1.2 seems to be essentially the strongest result possible for the non-
fractal case of the uniformization problem for surfaces, i.e., where the Hausdorff
2-measure is locally finite. It verifies a conjecture of Rajala and Wenger found as
Question 1.1 in [24]. Theorem 1.2 with the additional assumption that the metric
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on X is a length metric was recently proved by the authors in [40], as well as
independently by Meier–Wenger [36].

In contrast with the classical uniformization theorem, the map h of Theorem 1.2
may fail to be unique up to precomposition by conformal maps. In fact, [40, Prop.
1.5] gives an example of a metric surface X of locally finite Hausdorff 2-measure
admitting weakly quasiconformal parametrizations both by D and C.

Theorem 1.2 deals with the case of simply connected surfaces whose boundary
is a Jordan curve or empty. Using the classical uniformization theorem, we also
establish the following general uniformization result for all metric surfaces of locally
finite Hausdorff 2-measure.

Theorem 1.3. Let X be a metric surface (with boundary) of locally finite Hausdorff
2-measure. Then there exists a complete Riemannian surface of constant curvature
(Z, g) that is homeomorphic to X and a weakly (4/π)-quasiconformal map from Z
onto X.

The value 4/π is sharp in both Theorems 1.2 and 1.3, as was observed in [44, Ex-
ample 2.2]. A version of this theorem has been proved by Ikonen [23] for reciprocal
surfaces (see Section 1.4) without boundary, using local quasiconformal coordinates
in order to construct isothermal coordinates. This approach cannot be employed
in our case, since metric surfaces do not have local quasiconformal coordinates, but
only weakly quasiconformal parametrizations that are generally not homeomorphic,
as provided by Theorem 1.2. We note that our theorem also covers surfaces with
boundary.

1.3. Previous uniformization results. If the space X in Theorem 1.2 satisfies
additional good geometric assumptions, then the uniformizing map h can also be
shown to satisfy stronger properties. In particular, as an application, we are able to
deduce from Theorem 1.2 two of the main uniformization theorems in the existing
literature. The first is the Bonk–Kleiner theorem characterizing Ahlfors 2-regular
quasispheres [5].

Theorem 1.4 (Bonk–Kleiner). Let X be a metric space homeomorphic to ˆ︁C that

is Ahlfors 2-regular. Then there is a quasisymmetric homeomorphism from X to ˆ︁C
if and only if X is linearly locally connected.

It is the case that any metric space X as in Theorem 1.4 is quasiconvex and
hence bi-Lipschitz equivalent to a surface with a length metric that is also Ahlfors
2-regular and linearly locally connected; see [47] or [51] for a proof. Thus Theo-
rem 1.4 can also be derived from the weaker version of Theorem 1.2 as given in [36]
or [40]. However, our approach allows one to avoid this technical point regarding
quasiconvexity. That Theorem 1.4 follows from Theorem 1.2 is an immediate con-
sequence the considerations in [40, Sect. 6.2], which are based on classical results
that allow the upgrade of quasiconformal maps to quasisymmetric maps; see [32,
Thm. 2.5].

The second uniformization theorem, due to Rajala [44], characterizes the situa-

tion when there is a quasiconformal homeomorphism from X to ˆ︁C.
Theorem 1.5 (Rajala). Let X be a metric surface of locally finite Hausdorff 2-

measure homeomorphic to ˆ︁C, D, or C. Then there is a quasiconformal map h : Ω →
X, where Ω is ˆ︁C, D, or D or C, respectively, if and only if X is locally reciprocal.
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Here, quasiconformality is defined using the so-called geometric definition, which
requires the conformal modulus of curve families to be quasipreserved. See Sec-
tion 5.2 below. We give the definition of reciprocity below in the next subsection.
The necessity of the theorem follows from the fact that reciprocity is invariant under
quasiconformal maps and all Riemannian surfaces are reciprocal. The sufficiency
follows from Theorem 1.2 together with the observation of Meier–Wenger [36] that
the local reciprocity of a space allows one to upgrade weak quasiconformality of
a local parametrization to quasiconformality. We refer the reader to Section 3 of
[36] for the argument. Analogously, under the reciprocity assumption, we obtain
a strengthening of Theorem 1.3 that has been proved by Ikonen [23] for surfaces
without boundary.

Theorem 1.6. Let X be a metric surface (with boundary) of locally finite Hausdorff
2-measure. Then there exists a complete Riemannian surface of constant curvature
(Z, g) that is homeomorphic to X and a quasiconformal map from Z onto X if and
only if X is locally reciprocal.

The results of this paper concern the non-fractal case of the uniformization prob-
lem, meaning that the Hausdorff 2-measure on the surface is locally finite. We also
hope that the ideas of this paper can give insight into the uniformization of fractal
surfaces. We briefly discuss this topic of current interest. One motivation comes
from Cannon’s conjecture in geometric group theory, which predicts that every hy-
perbolic group having the 2-sphere as its boundary at infinity is a Kleinian group.
This is equivalent to the statement that every such 2-sphere, equipped with some vi-
sual metric, is a quasisphere. A seminal work on fractal uniformization is Cannon’s
combinatorial Riemann mapping theorem [9], which gives an abstract procedure
for uniformizing 2-spheres. The Bonk–Kleiner paper contains, in addition to The-
orem 1.4, a characterization of quasispheres without any restriction. Both of these
results, however, seem difficult to apply in practice. Various constructions have
been studied in detail, including Meyer’s snowspheres [37] as well as spheres aris-
ing from expanding Thurston maps [6]. See also [45] for an approach to fractal
uniformization by adapting conformal modulus methods.

1.4. Reciprocal surfaces. As mentioned above, a further consequence of Theo-
rem 1.2 is a simplification of Rajala’s definition of reciprocal surface.

Let X be a metric surface of locally finite Hausdorff 2-measure. For a subset
G ⊂ X and disjoint subsets E,F ⊂ G, we define Γ(E,F ;G) to be the family
of curves in G joining E and F . A (topological) quadrilateral in X is a closed
Jordan region Q together with a partition of ∂Q into four edges ζ1, ζ2, ζ3, ζ4 ⊂ ∂Q
enumerated in cyclic order that are non-overlapping, i.e., they can only intersect at
the endpoints. When we refer to a quadrilateral Q, it will be implicitly understood
that there exists such a marking on its boundary. We define Γ(Q) = Γ(ζ1, ζ3;Q)
and Γ∗(Q) = Γ(ζ2, ζ4;Q). We state the definition of reciprocity as originally given
in [44].

Definition 1.7. A metric surface X is reciprocal if there exist constants κ, κ′ ≥ 1
such that

κ−1 ≤ modΓ(Q) ·modΓ∗(Q) ≤ κ′ for each quadrilateral Q ⊂ X(1.3)
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and

lim
r→0

modΓ(B(a, r), X \B(a,R);X) = 0 for each ball B(a,R).(1.4)

A metric surface X is locally reciprocal if each point has an open neighborhood that
is reciprocal.

Roughly speaking, a surface is reciprocal if the modulus of non-constant curves
passing through a point is zero and the modulus of curves joining two opposite
sides of every quadrilateral is reciprocal, up to a uniform multiplicative constant,
to the modulus of curves joining the other two opposite sides. Note that condition
(1.4) can be regarded as a pointwise condition on the surface. In the definition of
local reciprocity we do not require that the constants are uniform throughout the
surface X; however, this is a consequence of a result of Rajala [44, Thm. 1.5].

It was shown in [46] by Rajala and the second-named author that the lower
bound in (1.3) always holds for some universal constant κ−1 independent of the
surface X. Later, Poggi-Corradini and Eriksson-Bique [13] found the sharp value
of this constant to be κ−1 = π2/16; this also follows from Theorem 1.2. The
sharpness is seen by taking X to be the plane with the ℓ∞ metric. See Example
2.2 in [44] for details.

As a consequence of Theorem 1.2, we can further improve Rajala’s uniformiza-
tion theorem by showing that (1.4) follows from the upper bound in (1.3). Thus
condition (1.4) is redundant. This answers affirmatively a question of Rajala [44,
Question 17.4]. We say that a metric surface is upper reciprocal if there exists κ′ ≥ 1
such that the upper bound in (1.3) holds for each quadrilateral.

Theorem 1.8. A metric surface (with boundary) of locally finite Hausdorff 2-
measure is reciprocal if and only if it is upper reciprocal.

Combining this with Theorem 1.6, we see that in order to verify the reciprocity
of a surface we only need to check upper reciprocity locally. The idea of the proof
of Theorem 1.8 is to show that upper reciprocity by itself is sufficient to promote
the weakly quasiconformal parametrization h given by Theorem 1.2 to a homeo-
morphism. In [36] (applying Theorem 3.6 in [32]) and also in [40, Thm. 7.4], this
is accomplished by applying condition (1.4) in the definition of reciprocity instead.
Once h is shown to be a homeomorphism, the upper reciprocity condition can be
used to upgrade it to a quasiconformal map, as was shown by Meier–Wenger [36,
Sect. 3]. Our task then is, assuming a non-homeomorphic weakly quasiconformal
parametrization, to find a sequence of quadrilaterals Q such that the product of
the moduli of Γ(Q) and Γ∗(Q) are unbounded. The proof of Theorem 1.8 would be
simpler if we knew that condition (1.4) can only fail on a totally disconnected set.
However, we show in Example 8.4 that this is not the case.

Proposition 1.9. There exists a metric surface of locally finite Hausdorff 2-measure
such that (1.4) fails at all points in a non-degenerate continuum.

Whether such a space exists had been asked by the second-named author as
Question 5.6 in [45], and this construction provides an affirmative answer.

Moreover, combining Theorem 1.8 with the uniformization result of Theorem
1.2 or Theorem 1.5 and with a result of Ikonen [22], we also show that in order to
obtain reciprocity at points of ∂X it suffices to verify condition (1.4) rather than
upper reciprocity.
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Theorem 1.10. A metric surface X of locally finite Hausdorff 2-measure is re-
ciprocal if and only if int(X) is upper reciprocal and (1.4) holds at each point of
∂X.

We remark that without requiring any condition on ∂X, the reciprocity of int(X)
does not imply the reciprocity of X in general; this was observed in [22, Sect. 1.1].

Conversely, it is natural to ask whether upper reciprocity is implied by condition
(1.4). We show in Example 8.3 that this is not the case.

Proposition 1.11. There exists a metric surface X of locally finite Hausdorff 2-
measure such that (1.4) holds at each point, but X is not reciprocal. Moreover, X
can be written as the union of two reciprocal surfaces.

1.5. Minimal surfaces. As a corollary to Theorem 1.2, we obtain a result on the
existence of minimal disks or solutions to Plateau’s problem in metric spaces. This
topic has been studied in great depth by Lytchak–Wenger and collaborators in
[16, 17, 29, 30, 31], and we direct the reader to these references for definitions. The
following corollary was established in [40] for length surfaces and in fact was derived
from the version Theorem 1.2 for length surfaces. Its proof remains unchanged
under the more general setting.

Corollary 1.12. Let X be a metric surface of finite Hausdorff 2-measure homeo-
morphic to a topological closed disk and let Γ = ∂X. Then Plateau’s problem for Γ
has a solution.

We pose the following natural question.

Question 1.13. Does Plateau’s problem have a solution for every metric Jordan
curve Γ of finite Hausdorff 2-measure?

This was established for metric Jordan curves of finite length by Lytchak–Wenger
[29, Cor. 1.5]. In order to answer the question, by Corollary 1.12 it suffices to solve
the following problem.

Problem 1.14. Let Γ be a metric Jordan curve of finite Hausdorff 2-measure.
Does there exist a metric space X homeomorphic to a topological closed disk with
H2(X) ≤ K(diam(∂X)2 + H2(∂X)) for an absolute constant K > 0 such that Γ
embeds isometrically into ∂X?

1.6. Outline. Section 2 contains the required preliminaries. In Section 3 we in-
troduce the extended length metric d̄ associated to a metric surface (X, d) and we
study its relation to d. The main result in this section is Theorem 3.4, which pro-
vides an estimate for the area of triangles in X whose edges are d̄-geodesics. In
Section 4, we first sketch an argument for triangulating metric surfaces of locally
finite area, by modifying slightly the argument of [10] for triangulating length sur-
faces. Then, we use the triangulation result to prove the polyhedral approximation
theorem, Theorem 1.1. This completes the first half of the paper, which can be
read independently of the later sections.

In Section 5, we establish the uniformization result of Theorem 1.2 in the case
of compact surfaces. In this section we also include several further required pre-
liminaries in Gromov–Hausdorff convergence, weakly quasiconformal maps, and
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classical uniformization theory. Section 6 establishes the global uniformization re-
sult of Theorem 1.3, based on the local results of Section 5. Moreover, we show how
to obtain the minimal value 4/π of the quasiconformal dilatation. This section also
contains several topological preliminaries related to cell-like and monotone maps
between surfaces. The results of Sections 5 and 6 rely only on the statement of the
polyhedral approximation theorem (Theorem 1.1) and can be read independently
of the previous sections.

In Section 7 we prove Theorem 1.8 and Theorem 1.10. This section relies only on
Theorem 1.2 and can also be read independently. Finally, in Section 8 we present
four examples. The first two examples are related to the polyhedral approximation
theorem and show the importance of the retractions in conclusion (3) of Theo-
rem 1.1, as well as the sharpness of conclusion (2), in the sense that the areas of
the approximating surfaces need not converge to the area of the limiting surface.
The last two examples of the section justify Proposition 1.11 and Proposition 1.9,
respectively.

Acknowledgments. We thank Paul Creutz, Toni Ikonen, and Damaris Meier for
their valuable comments and corrections.

2. Preliminaries

2.1. Metric spaces. We refer the reader to [7] and [8] for the basics of metric
geometry. Let X be a set. A function d : X ×X → [0,∞) is a metric on X if it is
symmetric, satisfies the triangle inequality, and has the property that d(x, y) = 0
if and only if x = y. A function d satisfying the same properties but potentially
taking the value ∞ is called an extended metric.

Let γ : I → X be a curve in a metric space X, where I is an interval. The length
of γ with respect to d, denoted by ℓd(γ), is defined as

ℓd(γ) = sup

n∑︂
i=1

d(γ(ti−1), γ(ti)),

the supremum taken over all finite increasing sequences t0 < t1 < · · · < tn in I. If
the metric is clear from the context, we may write ℓ(γ) in place of ℓd(γ). A curve
is rectifiable if it has finite length. A rectifiable curve γ : [a, b] → X is a geodesic
between two points x, y ∈ X if γ(a) = x, γ(b) = y and ℓ(γ) = d(x, y). A curve
γ : I → X is piecewise geodesic if its restriction to any compact subinterval of I is
the concatenation of finitely many geodesics. A metric d on X is a length metric if
d(x, y) = inf ℓd(γ) for all x, y ∈ X, the infimum taken over all curves γ from x to y.

A Jordan curve (resp. Jordan arc) in X is an embedding of the unit circle S1
(resp. the unit interval [0, 1]) intoX. We also use the alternative terminology simple
curve and simple arc, respectively. The trace of a path γ : I → X is the set γ(I)
and is denoted by |γ|.

We use the notation Bd(x, r) for the open ball {y ∈ X : d(x, y) < r}, Bd(x, r)
for the closed ball, and Sd(x, r) for the sphere {y ∈ X : d(x, y) = r}. Again, the
subscript d may be dropped if the metric is clear from the context.

For any metric space X and s > 0, the Hausdorff s-measure of a set A ⊂ X is
defined by

Hs(A) = lim
δ→0

Hs
δ(A),
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where

Hs
δ(A) = inf

⎧⎨⎩
∞∑︂
j=1

C(s) diam(Aj)
s

⎫⎬⎭
and the infimum is taken over all collections of sets {Aj}∞j=1 such that A ⊂

⋃︁∞
j=1Aj

and diam(Aj) < δ for each j. Here C(s) is a positive normalization constant, chosen
so that the Hausdorff n-measure coincides with Lebesgue measure in Rn. The
quantity Hs

δ(A) is called the δ-Hausdorff s-content of A. If we need to emphasize
the metric d being used for the Hausdorff s-measure, we write Hs

d instead of Hs.
A map f : X → Y between metric spaces is bi-Lipschitz if there exists L ≥ 1

such that

L−1dX(x, y) ≤ dY (f(x), f(y)) ≤ LdX(x, y)

for all x, y ∈ X. In this case, we say that f is L-bi-Lipschitz. A map f : X → Y is
Lipschitz if the right inequality holds for all x, y ∈ X. In this case, we say that f
is L-Lipschitz.

We use ∂X to denote the boundary of a manifold X and int(X) to denote its
interior. Throughout this paper, unless otherwise specified, the terms boundary and
interior refer to manifold boundary and interior rather than topological boundary
and interior.

2.2. Convergence. Let X be a metric space and let E ⊂ X and ε > 0. We denote
by Nε(E) the open ε-neighborhood of E. We say that E is ε-dense (in X) if for each
x ∈ X we have d(x,E) < ε or equivalently Nε(E) = X. A map f : X → Y (not
necessarily continuous) between metric spaces is an ε-isometry if f(X) is ε-dense
in Y and |dX(x, y)− dY (f(x), f(y))| < ε for each x, y ∈ X.

We define the Hausdorff distance of two sets E,F ⊂ X to be the infimal value
r > 0 such that E ⊂ Nr(F ) and F ⊂ Nr(E). We denote the Hausdorff distance by
dH(E,F ). A sequence of sets En ⊂ X converges in the Hausdorff sense to a set
E ⊂ X if dH(En, E) → 0 as n→ ∞.

The Gromov–Hausdorff distance between two metric spaces X,Y is defined as

the infimal value r > 0 such that there is a metric space Z with subsets ˜︁X, ˜︁Y ⊂ Z

such that X and Y are isometric to ˜︁X and ˜︁Y , respectively, and dH( ˜︁X, ˜︁Y ) < r. This
is denoted by dGH(X,Y ). We say that a sequence of metric spaces Xn converges in
the Gromov–Hausdorff sense to a metric space X if dGH(Xn, X) → 0 as n → ∞.
By [8, Cor. 7.3.28], this is equivalent to the property that there exists a sequence
of εn-isometries fn : Xn → X, where εn > 0 and εn → 0 as n → ∞. In this case,
we say that fn, n ∈ N, is an approximately isometric sequence.

2.3. Metric Sobolev spaces. Let X be a metric space and Γ be a family of
curves in X. A Borel function ρ : X → [0,∞] is admissible for the path family Γ if∫︁
γ
ρ ds ≥ 1 for all locally rectifiable paths γ ∈ Γ. For p ≥ 1, we define the p-modulus

of Γ as

modp Γ = inf
ρ

∫︂
X

ρp dH2,

where the infimum is taken over all admissible functions ρ for Γ. By convention,
modp Γ = ∞ if there are no admissible functions for Γ. Observe that we consider
X to be equipped with the Hausdorff 2-measure. Throughout the paper we will
only focus on the case p = 2 and for simplicity we write modp Γ = modΓ.
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Let h : X → Y be a map between metric spaces. We say that a Borel function
g : X → [0,∞] is an upper gradient of h if

dY (h(a), h(b)) ≤
∫︂
γ

g ds(2.1)

for all a, b ∈ X and every locally rectifiable path γ in X joining a and b. This is
called the upper gradient inequality. If, instead, the above inequality holds for all
curves γ outside a curve family of p-modulus zero, then we say that g is a p-weak
upper gradient of h. In this case, there exists a curve family Γ0 with modp Γ0 = 0
such that all paths outside Γ0 and all subpaths of such paths satisfy the upper
gradient inequality. In what follows, we will be mostly interested in the case p = 2
and for simplicity we use the terminology weak upper gradient, without mentioning
the number 2. If a map h has a p-weak upper gradient that lies in Lp(X), then
it also has a minimal p-weak upper gradient that we denote by gh; see [20, Thm.
6.3.20].

We equip the space X with the Hausdorff 2-measure H2. For p ≥ 1, let Lp(X)

denote the space of p-integrable functions from X to the extended real line ˆ︁R,
where two functions are identified if they agree H2-almost everywhere. The Sobolev
space N1,p(X,Y ) is defined as the space of measurable maps h : X → Y that are
essentially separably valued (see [20, Sect. 3.1]) and have a weak upper gradient g
in Lp(X) such that the function x ↦→ dY (y, h(x)) is in L

p(X) for some y ∈ Y , again
where two maps are identified if they agree almost everywhere. The assumption
on essentially separable values is automatically true when Y is a separable space,
which will be the case in all considerations below. If Y = R, we simply write
N1,p(X). The spaces Lploc(X) and N1,p

loc (X,Y ) are defined in the obvious manner.
See the monograph [20, Chap. 7] for background on metric Sobolev spaces.

3. The extended length metric

In this section, we develop the properties of the extended length metric, which
are all new ingredients in this paper. The main result in this section, Theorem 3.4,
gives an estimate on the area enclosed by a triangle whose edges are d̄-geodesics.
This estimate plays the same role as the Besicovitch inequality in [40]. As in [40],
this estimate is based on bi-Lipschitz embedding an arbitrary triangle into the plane.
The innovation here is that, although the bi-Lipschitz embedding is with respect
to the extended length metric d̄, our area estimate uses the Hausdorff 2-measure
derived from the original metric d.

3.1. Definition and basic properties. Let (X, d) be a metric space. One can
obtain an extended length metric d̄ : X ×X → [0,∞] by defining

d̄(x, y) = inf ℓd(γ),

where the infimum is taken over all curves from x to y. One can check that d̄ is
indeed an extended length metric. It may be that there are no rectifiable curves
between two given points x, y ∈ X, in which case we have d̄(x, y) = ∞.

IfX is a surface with locally finite Hausdorff 2-measure, then, as shown by Rajala
[44, Lemma 4.1], there is a set E ⊂ X such that X \E is dense and any two points
x, y ∈ X \ E can be joined by a rectifiable curve. Namely, E is the set of points
that cannot be accessed by a non-constant rectifiable curve. A consequence of [44,
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Prop. 3.5] is that any two points x, y ∈ X \ E can be connected by a rectifiable
curve and, in particular, that d̄(x, y) < ∞ for all x, y ∈ X \ E. The proof of [44,
Prop. 3.5] utilizes the co-area inequality. A simple further application of the co-area
inequality actually shows that E is totally disconnected; namely, as a consequence
of Lemma 3.3 below, any two points of X can be separated by a rectifiable curve.

Hence the co-area inequality connects the assumption of locally finite Hausdorff
2-measure to the geometry of the metric space. We state a 2-dimensional version
of the co-area inequality sufficient for our purposes. See [12], [15, Theorem 2.10.25]
or [14] for a proof of the co-area inequality.

Lemma 3.1 (Co-area inequality). Let X be a metric space and L > 0. For any
L-Lipschitz function f : X → R and any Borel function g : X → [0,∞],∫︂

R

∫︂
f−1(t)

g(s) dH1(s) dt ≤ 4L

π

∫︂
X

g(x) dH2(x).(3.1)

Given thatX has locally finite Hausdorff 2-measure, a consequence of Lemma 3.1
is that for each point x ∈ X, almost every metric sphere S(x, r) has finite Hausdorff
1-measure and hence contains rectifiable curves; see also Lemma 3.3 below. This
guarantees an abundance of rectifiable curves in X.

Throughout this entire section, distances are measured with respect to the orig-
inal metric d of X, unless otherwise indicated. For example, B(x, r) denotes the
ball {y ∈ X : d(x, y) < r} and Bd̄(x, r) = {y ∈ X : d̄(x, y) < r}.

Recall that a geodesic between two points x, y ∈ X is a curve γ : [a, b] → X of
finite length such that γ(a) = x, γ(b) = y and ℓ(γ) = d(x, y). On a metric space
(X, d), our main interest will be in geodesics with respect to the induced length
metric d̄. We will refer to such a curve as a d̄-geodesic. Note that a d̄-geodesic
may fail to exist between two given points, either because no curve of finite length
connecting x and y exists or because there is no curve having minimal length.
Moreover, a d̄-geodesic between a given pair of points is not necessarily unique,
as is the case for geodesics in general. However, as observed, the assumption of
locally finite Hausdorff 2-measure is enough to guarantee that a surface carries
many rectifiable curves. In particular, it is shown in [44, Prop. 3.5] that for any
two disjoint continua the family of curves connecting them has positive modulus.

In general, d̄ may fail to be continuous with respect to the metric d. However, a
consequence of the Arzelà–Ascoli theorem is that d̄ is lower semi-continuous with
respect to d in the following sense.

Lemma 3.2. Let (X, d) be a metric surface of locally finite Hausdorff 2-measure.
For each x0 ∈ X the function u : X → [0,∞] defined by u(x) = d̄(x, x0) is lower
semi-continuous. Moreover, for each r > 0 the set Bd̄(x0, r) is connected and
Bd̄(x0, r) is the closure of Bd̄(x0, r). In particular, Bd̄(x0, r) is also connected.

All topological notions in the statement refer to the original topology of X in-
duced by d. The proof relies on the following separation lemma.

Lemma 3.3. Let X be a metric surface that is homeomorphic to a topological closed
disk. Let f : X → [0,∞) be a continuous function such that f−1(0) is non-empty
and f−1(t) has finite Hausdorff 1-measure for a.e. t > 0. Then for each component
A of f−1(0), each x0 ∈ ∂X \A, and for a.e. r ∈ (0, f(x0)) there exists a continuum
E ⊂ f−1(r) with H1(E) < ∞ that separates A from x0. Moreover, there exists a
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closed Jordan region U ⊂ X \ {x0} containing a neighborhood of A such that ∂U
coincides with E or is the union of E and an arc of ∂X.

This lemma can be applied to Lipschitz functions on metric spaces of finite
Hausdorff 2-measure, since the co-area inequality of Lemma 3.1 implies that a.e.
level set of a Lipschitz function has finite Hausdorff 1-measure.

Proof. Let δ0 = f(x0). We apply [39, Thm. 1.5] (see also [35, Cor. 2.5]), which
implies that for a.e. r ∈ (0, δ0), each component of f−1(r) is either a point or a
rectifiable Jordan curve or a rectifiable Jordan arc. We fix such r and let E be
a component of f−1(r) that separates A from x0; such a component exists since
f−1(r) separates A from x0 (see [50, Lemma II.5.20, p. 61]). If E is a Jordan curve,
then it necessarily bounds a closed Jordan region U ⊂ X \ {x0} containing A in its
interior. If E is a Jordan arc, then by passing to a subarc we may assume that only
the endpoints of E lie in ∂X and E still separates A from x0. The arc E, together
with an arc of ∂X bound a closed Jordan region U ⊂ X \ {x0} that contains a
neighborhood of A. □

Proof of Lemma 3.2. Let xn ∈ X, n ∈ N, be a sequence converging to a point
x ∈ X. Our goal is to show that u(x) ≤ lim infn→∞ u(xn). By passing to a
subsequence, suppose that limn→∞ u(xn) exists. The statement is trivial if x = x0
or if limn→∞ u(xn) = ∞, so suppose that x ̸= x0 and limn→∞ u(xn) = M for
some M ∈ (0,∞). Let γn be a sequence of paths joining x0 to xn such that
limn→∞ ℓ(γn) =M .

Suppose first that x ∈ int(X). Consider a closed Jordan region Y ⊂ int(X)\{x0}
containing x in its interior and define the Lipschitz function f(y) = d(x, y) on Y .
Let y0 ∈ ∂Y be arbitrary and r0 = dist(x, ∂Y ). By Lemma 3.3, there exists r < r0
and a rectifiable Jordan curve E ⊂ f−1(r) ⊂ Y that bounds a closed Jordan
region U ⊂ Y \ {y0} containing x. If x ∈ ∂X, we consider a closed Jordan region
Y ⊂ X \ {x0} such that Y ∩ ∂X is a non-degenerate Jordan arc containing x in
its interior. Define r0 = dist(x, ∂Y ∩ int(X)) > 0. Again, we let f(y) = d(x, y)
on Y and fix a point y0 ∈ ∂Y ∩ int(X). By Lemma 3.3, there exists r < r0 and a
rectifiable Jordan arc E ⊂ f−1(r) with endpoints on ∂Y that separates x from y0.
The endpoints of E necessarily lie on ∂Y ∩ ∂X since r < r0. The arc E together
with an arc of ∂X bound a closed Jordan region U ⊂ Y that contains an open
neighborhood of x.

Summarizing, in both cases there exists a continuum E that is a rectifiable
Jordan curve or a Jordan arc and separates x from x0. Moreover, the curve E is
the topological boundary of a compact neighborhood U of x.

For each n ∈ N, we parametrize the curve γn : [0, ℓ(γn)] → X by arclength so
that γn(0) = x0 and γn(ℓ(γn)) = xn. If n is sufficiently large so that xn ∈ U , then
γn intersects E at a point yn = γn(tn); we assume that tn is the largest possible
parameter with this property, so that the trace of ηn := γn|[tn,ℓ(γn)] is contained in
U . By the Arzelà–Ascoli theorem [8, Thm. 2.5.14] and the compactness of U , after
passing to a subsequence, we may assume that the paths ηn converge uniformly
(in an appropriate sense since the domains are variable) to a path η : [t,M ] → U ,
where t is an accumulation point of tn. Moreover, ℓ(η) ≤ M − t. We note that
η(t) ∈ E and yn = ηn(tn) → η(t) as n → ∞. If we parametrize E injectively by
arclength, then we see that there exists a subpath ζn of E that connects yn to η(t)
with ℓ(ζn) → 0 as n → ∞. We now concatenate γn|[0,tn] with ζn and with η to
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obtain a path γ that connects x0 to x and satisfies

d̄(x0, x) ≤ ℓ(γ) = tn + ℓ(ζn) + ℓ(η) ≤ tn + ℓ(ζn) +M − t

By letting n→ ∞ we see that d̄(x0, x) ≤M . This completes the proof of the lower
semi-continuity.

For the second part of the lemma, note that for each r > 0, if d̄(x, x0) < r,
then there exists a rectifiable curve γ connecting x0 to x with ℓ(γ) < r. It is
trivial that for each point y ∈ |γ| we have d̄(y, x0) < r, so |γ| ⊂ Bd̄(x0, r) and the
open ball Bd̄(x0, r) is connected. By the lower semi-continuity of u, the closed ball
Bd̄(x0, r) = {y ∈ X : d̄(x0, y) ≤ r} is a closed set that contains Bd̄(x0, r), so it
also contains its closure. Conversely, if d̄(x, x0) ≤ r, then there exists a sequence
of curves γn connecting x0 to x with ℓ(γn) < r + 1/n. It follows that there exists
a sequence of subcurves ηn of γn connecting x0 to points yn with ℓ(ηn) < r and
d(x, yn) < 1/n. Therefore, yn ∈ Bd̄(x0, r) and yn → x as n→ ∞, which shows that
x lies in the closure of Bd̄(x0, r), as desired. □

3.2. Basic area estimate. The use of d̄-geodesics allows us to extend various
standard geometric notions for length spaces to the non-length space case. We
define a triangular disk to be a closed Jordan domain in a metric surface whose
boundary consists of three d̄-geodesics as defined above. Similarly, a polygonal disk
is a closed Jordan domain whose boundary consists of finitely many non-overlapping
d̄-geodesics. Each boundary d̄-geodesic is called an edge, and each endpoint is called
a vertex. Where there is no room for confusion, we will sometimes refer to triangular
and polygonal disks as simply triangles and polygons. The next theorem is the main
result of this section and gives a statement about the Hausdorff 2-measure of an
arbitrary triangular disk.

Theorem 3.4. Let (X, d) be a metric surface of locally finite Hausdorff 2-measure
and let T be a triangular disk in X. If Ω ⊂ R2 is a closed Jordan region such
that for some L > 0 there exists an L-Lipschitz map f : (∂T, d̄) → ∂Ω of non-zero
topological degree, then

H2(Ω) ≤ KL2H2(T )

for some uniform constant K > 0.

For the proof we will need to employ a co-area type result for functions f : X → R
contained in the Sobolev space N1,p(X) for some p ≥ 1 but not necessarily Lips-
chitz. We are not aware of any generalization of Lemma 3.1 for N1,p(X) functions
that covers our situation; presumably, the L in (3.1) would be replaced by the
minimal weak upper gradient of f inside the integral on the right-hand side. How-
ever, a weaker recent result of Eriksson-Bique–Poggi-Corradini [13] turns out to be
sufficient. We state a restricted version that covers our situation.

Lemma 3.5. Let X be a compact metric space of finite Hausdorff 2-measure and
E,F ⊂ X be disjoint continua. Suppose that u : X → R is a function in N1,1(X)
with E ⊂ u−1(a) and F ⊂ u−1(b) for some a < b. Then there exists a Lipschitz
function v : X → R such that E ⊂ v−1(a), F ⊂ v−1(b), and

(3.2)

∫︂ b

a

H1(v−1(t)) dt ≤ 2

∫︂
gu dH2

X .
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x

ˆ︁I(x)

F (x)

x̄∆
∆̄

F

Figure 3.1. The embedding F from an arbitrary metric triangle
∆ into the plane.

In fact, the formulation in [13] involves ∂(v−1((−∞, t))) instead of v−1(t) in the
integral. However, the two sets coincide for a.e. t ∈ R, because the set of local
extremal values of a real-valued function on a separable space is countable [39,
Lemma 2.10].

Our method of proof of Theorem 3.4 is based on a particular bi-Lipschitz em-
bedding of an arbitrary metric triangle into the plane that we gave in [40, Sect. 3],
which we now review. A metric triangle ∆ is by definition a metric space home-
omorphic to a Jordan curve that consists of three non-overlapping edges I1, I2, I3
in cyclic order, each isometric to an interval. Suppose that the endpoints of the
edges are p1, p2, p3, where Ij joins pj to pj+1; here and below the indices are taken

mod 3. For each x ∈ Ij , let ˆ︁I(x) denote the union of the other two edges of ∆. If x
belongs to two edges, then assign x to one of the Ij arbitrarily. Note in particular

that x ∈ ˆ︁I(x) in this case. Let ∆̄ denote a corresponding tripod in C having central
vertex 0 and outer vertices uj = (pj+1 · pj+2)pje

(2j−2)πi/3, where (p · q)r denotes
the Gromov product

(p · q)r =
1

2
(d(p, r) + d(q, r)− d(p, q)).

There is a unique 1-Lipschitz projection map from ∆ to ∆̄ taking each vertex pj to

the vertex uj ; we denote the image of x under this map by x̄. Let vj = eπ(2j−1)i/3

for j ∈ {1, 2, 3}. As shown in [40, Sect. 3], there exists an embedding F : ∆ → C
given by the formula

F (x) = x̄+ dist(x, ˆ︁I(x))vj ,
where x ∈ Ij ; see Figure 3.1. Proposition 3.2 in [40] states that the map F is
4-bi-Lipschitz for any metric triangle ∆.

Observe that if T is a triangular disk in a metric surface (X, d) of locally finite
Hausdorff 2-measure, then (∂T, d̄) is a metric triangle. Thus, we can exploit the
above device to embed such metric triangles into the plane.

Proof of Theorem 3.4. We remark that all metric notions in the proof refer to the
metric d and all topological notions refer to the original topology of X induced by
d, whenever there is no explicit reference to the metric d̄.
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Let F : (∂T, d̄) → R2 be the 4-bi-Lipschitz embedding given above and Ω be the
closed Jordan domain bounded by F (∂T ). Suppose for the moment that H2(Ω) ≤
KH2(T ) for a uniform constant K > 0. Let f : (∂T, d̄) → ∂Ω′ be an arbitrary
L-Lipschitz map of non-zero topological degree, where Ω′ ⊂ R2 is a closed Jordan
region. Then f ◦ F−1 : ∂Ω → ∂Ω′ is 4L-Lipschitz and has non-zero topological
degree. By the McShane–Whitney extension theorem [19, Cor. 2.4], there exists

an extension g : R2 → R2 of f ◦ F−1 that is 4
√
2L-Lipschitz. Note that g(Ω) ⊃ Ω′

since g|∂Ω : ∂Ω → ∂Ω′ has non-zero topological degree. Therefore,

H2(Ω′) ≤ 32L2H2(Ω) ≤ 32KL2H2(T ).

Now, we focus on showing the statement for the map F . For a given point

x ∈ ∂T , we write ˜︁x = F (x) and B˜︁x = B(˜︁x, rx), where rx = distd̄(x, ˆ︁I(x)). Note
that rx > 0 unless x is a vertex of T . It follows directly from the definition of
F that the collection B = {B˜︁x : x ∈ ∂T} covers Ω. We apply the basic covering
lemma (see [18, Thm. 1.2, p. 2]) to find a disjoint subcollection B′ ⊂ B such that
{5B : B ∈ B′} also covers Ω. It follows that

H2(Ω) ≤
∑︂
B˜︁x∈B′

25πr2x.

We next pass to a finite subcollection B′′ ⊂ B′ so that {5B : B ∈ B′′} covers “most
of Ω” and, specifically, satisfies

(3.3) H2(Ω) ≤
∑︂

B˜︁x∈B′′

30πr2x.

Moreover, we require that rx > 0 for each B˜︁x ∈ B′′.
On the other hand, we consider the collection

A′′ = {Bd̄(x, rx/4) : B(˜︁x, rx) ∈ B′′}.

We claim that any two distinct balls in A′′ are disjoint. Otherwise, there are two
balls A1, A2 ∈ A′′, where Ai = Bd̄(xi, rxi

/4), that intersect in a point y. Then
d̄(x1, x2) ≤ d̄(x1, y)+ d̄(y, x2) ≤ (rx1

+ rx2
)/4. However, |˜︁x1 − ˜︁x2| > rx1

+ rx2
since

the balls B(˜︁x1, rx1
) and B(˜︁x2, rx2

) are disjoint. This contradicts the fact that F is
a 4-bi-Lipschitz embedding with respect to d̄.

We now want to obtain a lower bound for the Hausdorff 2-measure on T . We
observe first that, by Lemma 3.2, each ball Ai = Bd̄(xi, si) in A′′ is closed with
respect to the topology onX given by d and is connected. SinceAi∩∂T is connected,
we see that Ai ∩ T is connected. Moreover, Ai does not intersect the edges of ∂T
that do not contain xi; hence, ∂T \ Ai is connected. Using Lemma 3.3 (in fact we
only need the topological consequences and not the rectifiability) for the function
x ↦→ dist(Ai ∩ T, x) on T , one can find a Jordan arc Fi ⊂ T \ Ai, arbitrarily close
to Ai ∩ T (in the metric d), whose endpoints lie on the edge of T that contains xi
and with the property that the arc Fi together with a subarc of ∂T bound a closed
Jordan region Ui that contains Ai ∩ T . Since Fi can be taken arbitrarily close to
Ai ∩ T , we may have that the regions Ui are mutually disjoint.

Next, we take Ei = Bd̄(xi, si/2) ∩ ∂T , which is a subarc of Ai ∩ ∂T of length
si centered at xi. We use Lemma 3.5 to give a lower bound on the Hausdorff
2-measure of Ui as follows. Define the function ui : Ui → [si/2, si] by ui(y) =
min{max{d̄(xi, y), si/2}, si}. Then ui is in L1(Ui), and moreover the constant



POLYHEDRAL APPROXIMATION AND UNIFORMIZATION 17

function χUi
is an upper gradient of ui also in the space L1(Ui). We conclude that

ui ∈ N1,1(Ui). Moreover, Ei ⊂ u−1
i (si/2) and Fi ⊂ u−1

i (si).
Let vi be the Lipschitz function given by Lemma 3.5 with respect to the continua

Ei and Fi, so that Ei ⊂ v−1
i (si/2) and Fi ⊂ v−1

i (si). By Lemma 3.3, for a.e.

r ∈ (si/2, si) we can find a Jordan arc Gr ⊂ v−1
i (r) ⊂ Ui that separates Ei from

Fi and therefore intersects both components of (Ai ∩ ∂T ) \ Ei. Since Ai ∩ ∂T is
a d̄-geodesic, it follows that H1(Gr) ≥ H1(Ei) ≥ si for a.e. r ∈ (si/2, si). By
Lemma 3.5, we have

s2i /2 ≤
∫︂ si

si/2

H1(v−1
i (t)) dt ≤ 2

∫︂
Ui

1 dH2 = 2H2(Ui).

Since the sets Ui are disjoint, we have∑︂
B˜︂xi

∈B′′

r2xi

64
≤
∑︂
i

s2i
4

≤
∑︂
i

H2(Ui) ≤ H2(T ).

This inequality combines with (3.3) to establish the lemma for K = 64 · 30π. □

3.3. Polyhedral fillings of triangular disks. The following lemma is an adap-
tation of Theorem 4.2 in [40]. One feature is the interplay of the metrics d and
d̄.

Lemma 3.6. Let (X, d) be a metric surface of locally finite Hausdorff 2-measure,
and let T be a triangular disk in X with edges αj, j ∈ {1, 2, 3}. There exists a
polyhedral surface (S, dS) that is a triangular disk with edges βj, j ∈ {1, 2, 3}, and
a homeomorphism φ : S → T such that the following hold for an absolute constant
L > 0.

(1) diamdS (S) ≤ Ldiamd̄(∂T ).
(2) H2

dS
(S) ≤ LH2

d(T ).

(3) φ||βj | maps |βj | isometrically onto |αj | (with respect to d̄) for each j ∈
{1, 2, 3}. In particular, φ|∂S is length-preserving.

(4) For all x, y ∈ ∂S, dS(x, y) ≥ d̄(φ(x), φ(y)) ≥ d(φ(x), φ(y)).

The only essential difference between the statement of this lemma and the state-
ment of Theorem 4.2 in [40] is that in (1), (3) and (4) we use the metric d̄ here
instead of the metric d. The construction of the surface S is exactly the same as
in [40], where we use the metric d̄ on ∂T instead of the metric d. Namely, S is
constructed as follows. We consider the 4-bi-Lipschitz embedding F : (∂T, d̄) → R2

given by [40, Prop. 3.2] and define Ω ⊂ R2 to be the closed Jordan region bounded
by F (∂T ). Then the surface S is constructed by taking a fine polygonal approx-
imation of the region Ω, replacing each polygon with a certain small polyhedron,
and then rescaling appropriately the Euclidean metric.

Properties (1), (3) and (4) follow immediately from the construction. On the
other hand, property (2) requires more work since we consider the Hausdorff mea-
sure on T with respect to the original metric d rather than the length metric d̄. In
[40], we obtain (2) as a consequence of the Besicovitch inequality; see Theorem 2.1
in [40]. Here, the same relationship follows, with a larger constant as a consequence
of Theorem 3.4. Indeed, by the construction of S, H2

dS
(S) is comparable to H2(Ω).

Using Theorem 3.4, applied to the embedding F , we obtain H2(Ω) ≤ 16KH2
d(T ).

This implies the inequality in (2).
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4. Triangulations of surfaces and polyhedral approximation

4.1. Triangulations. The triangle decomposition theorem in [10] extends to our
situation with small modifications. First we introduce the relevant terminology.
Let (X, d) be a metric surface of locally finite Hausdorff 2-measure and consider
the extended length metric d̄. Recall that a polygonal disk is a closed Jordan domain
with piecewise d̄-geodesic boundary. Two polygonal disks are non-overlapping if
their interiors are disjoint. If every boundary component of the surface X is a
piecewise d̄-geodesic curve, we say that X has polygonal boundary. A set A is
convex if every pair of points in the topological boundary of A can be connected by
a d̄-geodesic contained in A. Note that we restrict to connecting boundary points
because we cannot expect that all points of A are accessible by rectifiable curves.
Observe that any two points of a rectifiable curve that are sufficiently close to each
other can be joined by a d̄-geodesic. It is evident that, if a polygonal disk A is
convex, then both the metric d on X and the restriction of d to A induce the same
extended length metric when restricted to A.

The following theorem is a version of the conclusion of Theorem 1.2 in [10], where
the assumption of a length metric is replaced with the assumption that the surface
has locally finite Hausdorff 2-measure.

Theorem 4.1. Let (X, d) be a metric surface of locally finite Hausdorff 2-measure
such that every boundary component of X is a piecewise d̄-geodesic curve, and let
ε > 0. Then X may be covered by a locally finite collection of non-overlapping
triangular disks {Ti}i∈I such that each disk Ti is convex and has diameter and
perimeter at most ε.

The basic idea is that the Hausdorff 2-measure assumption guarantees enough
rectifiable curves to find for any point a neighborhood consisting of finitely many
polygonal disks of arbitrarily small diameter and perimeter. Then, all the op-
erations in the proof of the version of Theorem 4.1 in [10] necessarily avoid the
non-rectifiably connected points. Note that Theorem 4.1 does not necessarily yield
a triangulation in the usual topological sense, since we do not require adjacent tri-
angular disks to intersect along entire edges or at only a vertex. We remark that
convexity does not play a direct role in the proof of Theorem 1.1, although con-
vexity is used in obtaining Theorem 4.1 itself since it enables one to decompose an
arbitrary polygon into triangles.

The proof proceeds similarly to the proof in [10] but with a pair of modifications
in the beginning stages. First, we need to modify the proof [10, Lemma 5.1] on the
existence of polygonal neighborhoods at every point, which in turn is based on [2,
Lemma III.3]. We state this lemma in slightly modified form; note that Lemma 5.1
and subsequent propositions in [10] contain a statement regarding so-called transit
points, which are not essential to the triangulation theorem itself and not necessary
for our purposes.

Lemma 4.2. Suppose that X is as in Theorem 4.1 and let x ∈ X and ε > 0. Then
there is a polygonal disk P with x ∈ int(P ) such that diam(P ) < ε and H2(P ) < ε.

The proof is the same as that of [10, Lemma 5.1] except for one step, where we
use a substitute argument based on Lemma 3.3.

Proof. Let U be a neighborhood of x homeomorphic to a closed disk such that
diamU < ε and H2(U) < ε. Note that if x ∈ ∂X, then x belongs to the manifold
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boundary of U . Assume moreover that U does not contain any vertex of ∂X except
for possibly x itself; recall that each component of ∂X is assumed to be a piecewise
d̄-geodesic.

By Lemma 3.3, there exists r > 0 with S(x, r) ⊂ U and a rectifiable Jordan
curve or Jordan arc E ⊂ S(x, r) that separates x from X \ U . Moreover, there
exists a closed Jordan region W ⊂ U containing a neighborhood of x such that ∂W
coincides with E (if x ∈ int(X)) or is the union of E with an arc of ∂X (if x ∈ ∂X).

Recall that any two points of ∂W that are sufficiently close to each other can be
joined by a d̄-geodesic. Let {wi}mi=1 be a finite collection of points in ∂W in cyclic
order such that the subarc of ∂W between wi and wi+1 has length at most δ for
some δ > 0 sufficiently small, and in particular that δ < dist(W,X \U). If x ∈ ∂X,
then we take w1 = x. Connect wi to wi+1 by a d̄-geodesic γi, where we require γi to
lie in ∂X if wi and wi+1 do. Take γ to be the concatenation γ1 ∗ γ2 ∗ · · · ∗ γm. The
final step is to extract a subcontinuum of γ bounding a polygonal neighborhood P
of x. For this step, we refer back to proof for Lemma 5.1 in [10]. The requirement
that δ < dist(W,X\U) guarantees that P is contained in U . In particular, it follows
that H2(P ) < ε. Moreover, by taking δ > 0 sufficiently small (as specified in the
proof of [10, Lemma 5.1]), we may ensure that x is indeed contained in P . □

We next record an auxiliary lemma regarding shortest paths in polygons.

Lemma 4.3. Suppose that X is as in Theorem 4.1 and let P ⊂ X be a polygonal
disk. Let x, y ∈ P and γ be a rectifiable curve that has minimum length among all
curves in P connecting x and y. Then γ is a piecewise d̄-geodesic. Moreover, one
may redefine γ so that it has the additional property that it intersects each edge of
P in a connected set.

Proof. Let γ : [a, b] → P be as in the statement. If γ intersects an edge E of ∂P , we
take t1, t2 ∈ [a, b] such that γ(t1) is the first point of intersection and γ(t2) is the
last point of intersection. By minimality, γ|[t1,t2] has length equal to the subarc of E

from γ(t1) to γ(t2), which is a d̄-geodesic, and thus γ|[t1,t2] is a d̄-geodesic. Hence,

we can decompose γ into finitely many d̄-geodesics and finitely many subcurves
γ|[s1,s2], where γ(s1), γ(s2) ∈ ∂P and γ((s1, s2)) ⊂ int(P ). It suffices to decompose

each of the latter subcurves into finitely many d̄-geodesics.
Let [s′1, s

′
2] ⊂ (s1, s2). Then any two consecutive points in a sufficiently fine

partition of γ|[s′1,s′2] can be connected by a d̄-geodesic that is contained in int(P ).
The length minimizing property of γ implies that the length of γ between two
consecutive points is equal to the length of the corresponding d̄-geodesic and hence
γ|[s′1,s′2] is a piecewise d̄-geodesic.

If γ(s1) lies in an edge E of P and is not a vertex (resp. is a common vertex
of two edges E,E′), there exists s′1 > s1 close to s1 such that γ(s1) and γ(s

′
1) can

be connected by a d̄-geodesic that is disjoint from ∂P \ E (resp. ∂P \ (E ∪ E′)).
Concatenating a subpath of this geodesic with a subarc of E (resp. of E or E′)
gives a d̄-geodesic contained in P . The length minimizing property of γ shows that
γ|[s1,s′1] is a d̄-geodesic. One treats γ(s2) similarly.

For the last part of the statement, whenever γ intersects an edge E of ∂P , we
take t1, t2 ∈ [a, b] such that γ(t1) is the first point of intersection and γ(t2) is the last
point of intersection. We redefine γ|[t1,t2] to be the subarc of E connecting γ(t1) and
γ(t2). This does not affect the length of γ or introduce new points of intersection
with other edges of P , and hence we obtain γ with the desired property. □
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The next step in the proof concerns finding a neighborhood of an arbitrary point
x consisting of finitely many polygons of small perimeter. This step is carried out
as Lemma 5.2 in [10]. Its proof is based on connecting a fixed vertex of the polygon
P given by Lemma 4.2 to the other vertices of P by geodesics to form triangles.
However, this argument does not work in our setting, since d̄-geodesics between
these vertices may fail to exist, and, even if they do exist, they might not have
small length. Instead, we can give a different proof applicable to our setting based
on the reciprocal lower bound on modulus of quadrilaterals in (1.3) as proved in
[46] and [13].

Lemma 4.4. Suppose that X is as in Theorem 4.1 and let x ∈ X and ε > 0. Then
there is a closed neighborhood P of x that is a polygonal disk such that diam(P ) < ε
and P is the union of finitely many non-overlapping polygonal disks P1, . . . , Pn,
where each Pi has perimeter at most ε.

Proof. Let ε′ = πε2/256 and consider the polygonal disk P from the previous lemma
for such ε′ so that diam(P ) < ε′ and H2(P ) < ε′. We subdivide P inductively
according to the following procedure.

Divide the boundary ∂P into four non-overlapping arcs of equal lengthH1(∂P )/4,
thus making P a topological quadrilateral. If H1(∂P ) ≤ ε, then P satisfies the con-
clusions of the lemma. Otherwise, we let Γ(P ),Γ∗(P ) denote the two families of
curves in P connecting opposite sides of the quadrilateral P . Let M = inf ℓ(γ), the
infimum taken over all curves in Γ(P )∪Γ∗(P ). Observe that the constant function
ρ = 1/M is admissible for both Γ(P ) and Γ∗(P ). Thus

modΓ(P ) ·modΓ∗(P ) ≤
(︃∫︂

P

1

M2
dH2

)︃2

=
(H2(P ))2

M4
≤ (ε′)2

M4
.

Applying the left-hand inequality in (1.3) with κ−1 = π2/16 gives the inequality
M2 ≤ 4ε′/π.

Since P is compact, as are its sides, there is a curve γ : [a, b] → P in Γ(P )∪Γ∗(P )

having length M . In particular, γ has length at most
√︁
4ε′/π = ε/8. Moreover, it

follows from the minimality of length and from Lemma 4.3 that γ is injective and
piecewise d̄-geodesic.

By Lemma 4.3, we may assume that γ intersects each edge of P in a connected
set. We see from this that γ splits P into finitely many non-overlapping polygonal
disks P1,i, i ∈ I1. The boundary of each disk P1,i is a subset of |γ| and at most
three of the sides of the quadrilateral P ; this follows from the minimality of ℓ(γ).
In particular, H1(∂P1,i) ≤ (3/4)H1(∂P ) + ε/8. Given that H1(∂P ) > ε, we have

H1(∂P1,i) ≤ (7/8)H1(∂P ).

We now repeat this step to each P1,i, i ∈ I1, that satisfies H1(∂P1,i) > ε. As a
result, we obtain a decomposition of such P1,i into finitely many non-overlapping
polygonal disks P2,j , j ∈ I2,i with perimeter at most

(7/8)H1(∂P1,i) ≤ (7/8)2H1(∂P ).

It is evident that after finitely many subdivisions we will have the desired decom-
position of the original polygonal disk P . □

For convenience of the reader, we sketch the remainder of the proof of Theo-
rem 4.1. For each point x ∈ X, we consider a fixed neighborhood U of x homeo-
morphic to a closed disk. We apply Lemma 4.4 at x, taking ε > 0 sufficiently small
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based on the neighborhood U , to obtain a collection of polygonal disks P1, . . . , Pn
each of perimeter at most ε whose union is a polygonal neighborhood P of x. As
the next step, for each polygon Pi, we consider the set of polygonal disks in U of
minimal perimeter containing Pi. Among such disks, there is a unique one that
is maximal with respect to set inclusion, denoted by Qi; see Lemma 5.4 in [10].
By taking ε > 0 sufficiently small, we ensure that Qi is well-separated from the
boundary of U and consequently is convex, in fact satisfying a very strong form
of convexity called absolute convexity. Since this definition should be understood
slightly differently in our setting compared to that given in [10, Section 3], we
provide the definition.

Definition 4.5. Let K ⊂ X be a closed topological disk. Assume that K is
contained in a closed topological disk U ⊂ X such that distd(K,X \ U) > 4ℓ(∂K)
and diamd(U) ≤ diamd(X)/3. The disk K is boundary convex if for every curve η
in U \ int(K) with endpoints in ∂K and every curve γ in ∂K path homotopic to η
in U \ int(K), we have ℓ(γ) ≤ ℓ(η). The disk K is completely convex if it is convex
and if every d̄-geodesic between two points x, y ∈ ∂K is contained in K. The disk
K is absolutely convex if it is both boundary convex and completely convex.

Thus we obtain a covering of the surface by potentially overlapping absolutely
convex polygons; cf. [10, Proposition 5.3]. The next step is a subdivision procedure
to improve this to a covering by non-overlapping convex polygons. This procedure
is delicate and relies heavily on the absolute convexity of the polygonal disks. The
details can be found in Lemmas 5.6 and 5.7 of [10]. The final step is to split each
polygon into triangles by connecting a fixed base vertex to the other vertices by
d̄-geodesics; see Lemma 5.8 in [10].

We next state a variation on Lemma 5.3 in [40].

Lemma 4.6. Let X be a surface of locally finite Hausdorff 2-measure and ε > 0.

There is an ε-isometric retraction from X onto a subset ˜︁X that is homeomorphic to

X and has polygonal boundary. Moreover, the inclusion from ˜︁X into X is proper.

Recall that a retraction of a topological space Y onto a subset Z is a continuous
map from Y to Z whose restriction to Z is the identity map. Note that Lemma 5.3

in [40] includes the statement that ˜︁X is a convex subset of X. This guarantees that

the metric on X restricts to a length metric on ˜︁X. However, our approach in this
paper no longer requires this feature, which simplifies the current proof compared

to the proof of Lemma 5.3 in [40]. The statement that X retracts onto ˜︁X plays a
similar role in this paper.

We remark that the proof of Lemma 5.3 in [40] constructs only an ε-isometry
and not a retraction. However, the same argument as in this lemma can be inserted
into the proof in [40] to find an ε-isometric retraction from X onto the subspace˜︁X constructed in that lemma. In particular, we can guarantee that condition (3)
holds in the length space case covered in Theorem 1.1 in [40].

Proof. Let Y be a component of the boundary ∂X. If Y is homeomorphic to R (resp.
S1), we use the tubular neighborhood theorem to find a closed neighborhood UY of
Y homeomorphic to the strip R× [0, 1] (resp. S1 × [0, 1]), with φ the corresponding
homeomorphism, mapping Y onto R × {0} (resp. S1 × {0}). By restricting to
smaller neighborhoods if needed, we may assume that UY is contained in the ε-
neighborhood of Y , and that UY1

and UY2
are disjoint for any distinct components
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Y1, Y2 of ∂X. In particular, the topological boundary of each UY as a subset of X
is contained in the (manifold) interior of X.

We fix a boundary component Y homeomorphic to R (resp. S1). Our goal
is to find a closed set WY ⊂ UY whose topological boundary in X consists of
the topological boundary of UY and a piecewise d̄-geodesic so that the image of
WY under φ is a closed strip bounded by R × {1} and a proper embedding of
R separating the two boundary lines (resp. a closed annulus bounded by S1 ×
{1} and by a Jordan curve contained in S1 × (0, 1) homotopic to S1 × {0}); in
particular, UY is homeomorphic to WY . We then find an ε-isometric retraction
from UY ontoWY . Replacing each set UY in X with the correspondingWY for each

boundary component Y gives a set ˜︁X ⊂ X homeomorphic to X. Pasting together
the retractions arising from different boundary components gives the desired ε-

isometric retraction from X onto ˜︁X. Finally, if A is a compact subset of X, then

A ∩ ˜︁X = A \
⋃︂
Y

(UY \WY ).

Since UY \WY is an open subset of X for each boundary component Y , we see that

A ∩ ˜︁X is compact and therefore the inclusion from ˜︁X into X is proper.
We only present the construction of WY in the case that Y is homeomorphic

to R, since the other case is similar and simpler. By shrinking the neighborhood
UY and modifying the homeomorphism φ, we may assume that the diameter of
Ri = φ−1([i, i + 1] × [0, 1]) is less than ε/4 for each i ∈ Z. We also set VY =
φ−1(R× (0, 1)).

Our first goal is to find a locally rectifiable simple curve EY ⊂ VY near Y that
is the concatenation of countably many rectifiable Jordan arcs ηi, each contained
in the interior of the topological closed disk Ri−1 ∪ Ri, i ∈ Z. In particular, EY
admits a parametrization α : R → EY such that if α(t) ∈ Ri for some t ∈ R and
i ∈ Z then α(s) is disjoint from

⋃︁
j<i−1Rj for s ≥ t; that is EY does not go “back

and forth” for a very long distance. Now we proceed with the construction. Let
Ai = φ−1([i−1/2, i+1/2]×{1/2}). The function fi(x) = dist(x,Ai) in Ri−1∪Ri is
Lipschitz, so its level sets are rectifiable by the co-area inequality of Lemma 3.1. By
Lemma 3.3, arbitrarily close to Ai there exists a rectifiable Jordan curve contained
in a level set of fi that separates Ai from the boundary of Ri−1 ∪ Ri. Note that
Jordan curves corresponding to consecutive sets Ai, i ∈ Z, intersect. Thus, we may
find non-overlapping subarcs ηi, i ∈ Z, of these Jordan curves, whose concatenation
gives the curve EY .

Next, we show how to find a piecewise d̄-geodesic with the same properties as EY .
Fix a path ηi in EY and consider a finite collection of ordered points {w1, . . . , wk}
that partition ηi. Since ηi lies in the interior of Ri−1 ∪ Ri, if the partition is fine
enough, then we may connect each point wj to wj+1 with a d̄-geodesic lying in
the interior of Ri−1 ∪ Ri. We concatenate these geodesics to obtain a curve γi
in Ri−1 ∪ Ri with the same endpoints as ηi. Note that γi might not be a simple
curve. However, applying Theorem 31.2 in [52], we can replace γi with a simple
subpath with the same endpoints that is a piecewise d̄-geodesic and is contained in
the interior of Ri−1 ∪Ri. Moreover, by passing to further subpaths we can ensure
that the concatenation of the paths γi, i ∈ Z, gives a simple piecewise d̄-geodesic
E′
Y , which we parametrize by α′ : R →

⋃︁
i∈Z |γi|. Then α′ has the desired property
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Y

Rj

Qj

E′
Y

Figure 4.1. The topological quadrilaterals Qj retract onto the
curve E′

Y .

that if α′(t) ∈ Ri for some t ∈ R and i ∈ Z then α′(s) is disjoint from
⋃︁
j<i−1Rj

for s ≥ t.
Let Sj be the subarc of the left edge of Rj from Y to the first point of intersection

with E′
Y . The sets Y , Sj , E

′
Y and Sj+1 enclose a topological quadrilateral Qj .

By the properties of the parametrization α′, we observe that Qj is contained in
Rj−1 ∪Rj ∪Rj+1. See Figure 4.1.

There is a retraction from Qj onto Qj ∩ E′
Y obtained by foliating Qj by arcs

connecting Y to E′
Y (through the map φ) and mapping each arc to its endpoint

in E′
Y . Since Qj ⊂ Rj−1 ∪ Rj ∪ Rj+1 and the latter set has diameter bounded by

3ε/4, the retraction is ε-isometric. To conclude the proof, let WY denote the closed
strip bounded by E′

Y and φ−1(R×{1}). Finally, pasting the retractions of Qj onto
Qj ∩E′

Y , j ∈ Z, together with the identity map on WY gives the desired retraction
from UY onto WY . □

4.2. Polyhedral approximation. In this section, we prove Theorem 1.1 on poly-
hedral approximation of metric surfaces. The idea is to take a sufficiently fine
triangulation of the original surface X and replace each triangular disk with a suit-
able polyhedral surface, thus defining the approximating surfaces Xn. This follows
the corresponding proof in [40] with one main exception: to prove Theorem 1.1 for
non-length spaces, the polyhedral metric on Xn is not suitable and must be modi-
fied on large scales to match the metric on X. This is accomplished by abstractly
gluing additional line segments to Xn connecting the vertices; the length of these
segments is the same as the distance between the image in X of the endpoints.
We equip Xn with the restriction of the length metric on this enlarged space. This
construction can be illustrated by taking a flat piece of paper and forcing it to bend
by attaching short strings to certain pairs of points.

Proof of Theorem 1.1. Let (X, d) be a metric surface with locally finite Hausdorff 2-
measure. Choose a sequence {εn}∞n=1 of positive reals satisfying εn → 0 as n→ ∞.

We apply Lemma 4.6 to find a surface ˜︁Xn ⊂ X that is homeomorphic to X and

has polygonal boundary and an εn-isometric retraction from X onto ˜︁Xn. Note that

the inclusion map from ˜︁Xn into X is an εn-isometry. The surface ˜︁Xn is equipped
with the restriction of the metric d from X, which we continue to denote by d.

Since the space ˜︁Xn has polygonal boundary, we can apply Theorem 4.1 with

the parameter εn to obtain a decomposition ˜︁Tn of ˜︁Xn into triangular disks with
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diameter and perimeter less than εn. We consider the edge graph ˜︁En = E(˜︁Tn) as

having the length metric ˜︁dn induced by the restriction of d to ˜︁En. Let ˜︁Vn be the
corresponding vertex set.

For each triangular disk T ∈ ˜︁Tn, consider the polyhedral surface S and the
corresponding homeomorphism φT : S → T given by Lemma 3.6. By condition (3),

φT |∂S is length-preserving as a map from ∂S into ˜︁En. We define a locally compact

length metric space X ′
n as follows. First, we glue each disk S into ˜︁En along the map

φT and obtain a polyhedral length surface. Next, for all pairs of vertices x, y ∈ ˜︁Vn
we glue in a line segment Ixy of length d(x, y) connecting x and y. Denote the
resulting length metric on X ′

n by dn. More formally, let Z be the disjoint union of
the polyhedral surfaces S with the segments Ixy and let ρ be the induced metric of
Z. The metric space X ′

n is obtained by taking the quotient of Z with the described
identifications and the metric dn is defined by

dn(x, y) = inf

{︄
k∑︂
i=1

ρ(pi, qi) : p1 = x, qk = y, k ∈ N

}︄
,

where the infimum is taken over all choices of {pi}ki=1 and {qi}ki=1 in Z such that
qi ∼ pi+1 for i ∈ {1, . . . , k − 1}.

We now define the surface Xn ⊂ X ′
n by removing the interiors of the glued line

segments Ixy. We continue to denote by dn the restriction of the length metric

on X ′
n to Xn. Define the map Φn : Xn → ˜︁Xn by gluing the individual maps

φT . It is immediate that Φn is a homeomorphism. We set Vn = Φ−1
n (˜︁Vn). We

observe that dn is a locally geodesic metric on Xn that is locally isometric to the
polyhedral length metric on Xn. To see this, observe that if x, y ∈ Xn satisfy
dn(x, y) < distdn(x,Vn \ {x}), then x and y can be connected with a geodesic that
avoids the interiors of the glued segments in X ′

n and thus is contained in Xn.
We claim that

dn(x, y) = d(Φn(x),Φn(y)) whenever x, y ∈ Vn.(4.1)

If x, y ∈ Vn, it is immediate that dn(x, y) ≤ d(Φn(x),Φn(y)) by the definition of
the metric dn. Conversely, we note that for any chain connecting x and y as in
the definition dn, if pi, qi ∈ ∂S for some surface S corresponding to a triangle T ,
then ρ(pi, qi) = dS(pi, qi), which is at least d(φT (pi), φT (qi)) by Lemma 3.6 (4),
while if pi, qi are the endpoints of a glued segment Ipiqi , then ρ(pi, qi) = d(pi, qi).
Therefore, the triangle inequality gives dn(x, y) ≥ d(Φn(x),Φn(y)).

Define fn : Xn → X to be the composite of Φn and the inclusion map from˜︁Xn into X. By Lemma 4.6 the latter inclusion is proper. Hence fn is a proper

topological embedding. The set fn(Xn) = ˜︁Xn is εn-dense in X, since the inclusion

map from ˜︁Xn into X is an εn-isometry. Next, for all x, y ∈ Xn, we can find x′, y′ ∈
Vn belonging to the same triangle as x and y, respectively, satisfying dn(x

′, x) ≤
Lεn and dn(y

′, y) ≤ Lεn; here L > 0 is a uniform constant as in Lemma 3.6
(1). Moreover, d(fn(x), fn(x

′)) ≤ εn and d(fn(y), fn(y
′)) ≤ εn, since the pairs

fn(x), fn(x
′) and fn(y), fn(y

′) belong to the same triangles. By (4.1), we have
dn(x

′, y′) = d(fn(x
′), fn(y

′)). Combining these estimates, we see that

|d(fn(x), fn(y))− dn(x, y)| ≤ (2L+ 4)εn.
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This verifies the claim that fn, n ∈ N, is an approximately isometric sequence, as

required in (1). The εn-isometric retraction from X onto ˜︁Xn = fn(Xn) given by
Lemma 4.6 already verifies (3).

We now prove property (2) regarding the Hausdorff 2-measure, which proceeds
identically to the argument in [40]. Let A ⊂ X be a compact set and fix δ > 0.
Choose n ∈ N sufficiently large so that diam(T ) < δ for every triangular disk

T ∈ ˜︁Tn. Then T is contained in the δ-neighborhood Nδ(A) of A whenever T∩A ̸= ∅.
The set f−1

n (A), which is possibly empty, is covered by the sets f−1
n (T ) for which

T ∩ A ̸= ∅. Moreover, from Lemma 3.6 (2) it follows that H2(f−1
n (T )) ≤ LH2(T )

for each T ∈ ˜︁Tn. Since the boundary of each triangle T has Hausdorff 2-measure
zero, we have

H2(f−1
n (A)) ≤ LH2(Nδ(A)).

Hence, letting n→ ∞ and then δ → 0 gives

lim sup
n→∞

H2(f−1
n (A)) ≤ LH2(A).

This completes the proof. □

5. Uniformization of compact surfaces

In this section we establish Theorem 1.2 for compact surfaces homeomorphic to ˆ︁C
or D as a consequence of Theorem 1.1. We follow essentially the same argument as
in [40] for deriving the uniformization theorem from the polyhedral approximation
theorem; we only have to check that all the steps remain valid. The proof of
Theorem 1.2 in the general case is discussed in Section 6 and follows from Theorem
1.3. In addition, the optimization of the quasiconformal dilatation to the minimal
value 4/π is discussed in Section 6. We start with the necessary preliminaries.

5.1. Gromov–Hausdorff convergence. A sequence of metric spaces {Xn}∞n=1 is
asymptotically uniformly locally path connected if for each ε > 0 there exists δ > 0
and N ∈ N such that for each n ≥ N , every two points of Xn at distance less than
δ can be connected by a curve of diameter less than ε.

Lemma 5.1. A sequence of metric spaces {Xn}∞n=1 is asymptotically uniformly
locally path connected if and only if for each positive sequence δn → 0 there exists a
sequence εn → 0 and N ∈ N such that for each n ≥ N , every two points x, y ∈ Xk,
k ≥ n, with dk(x, y) < δn can be connected with a curve γ with diam(|γ|) < εn.

Proof. The sufficiency is immediate. For the necessity, consider x, y ∈ Xk and
let I(k, x, y) = infγ diam(|γ|), where the infimum is taken over all paths γ in
Xk connecting x and y. Note that there might be no such path, in which case
I(k, x, y) = ∞. Let δn → 0 and define

ε′n = min{sup
x,y

I(k, x, y), 1},

where the supremum is taken over all pairs of points x, y ∈ Xk, k ≥ n, with
dk(x, y) < δn. Let η ∈ (0, 1). By assumption, there exists δ > 0 and N1 ∈ N such
that every two points x, y ∈ Xk, k ≥ N1, with dk(x, y) < δ can be connected by
a curve of diameter less than η. Let N2 ∈ N such that δn < δ for n ≥ N2. Now,
let k ≥ n ≥ N = max{N1, N2}. If x, y ∈ Xk and dk(x, y) < δn < δ, then there
exists a path γ connecting x, y with diam(|γ|) < η, so I(k, x, y) < η. This shows
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that ε′n ≤ η for n ≥ N , so ε′n → 0. Moreover, if x, y ∈ Xk, k ≥ n ≥ N , and
dk(x, y) < δn, then I(k, x, y) ≤ ε′n, so there exists a path γ connecting x, y with
diam(|γ|) < ε′n + 1/n. Therefore, the conclusion holds with εn = ε′n + 1/n. □

The approximation theorem, Theorem 1.1, gives naturally sequences of asymp-
totically uniformly path connected spaces, as the next lemma shows.

Lemma 5.2. Let X be a compact locally connected metric space and {Xn}∞n=1 be
a sequence of compact metric spaces. Suppose that there exists an approximately
isometric sequence fn : Xn → X, n ∈ N, of topological embeddings and an approx-
imately isometric sequence Rn : X → fn(Xn), n ∈ N, of retractions. Then the
sequence {Xn}∞n=1 is asymptotically uniformly locally path connected.

Proof. Since X is compact and locally connected, by [52, Thm. 31.4], for each ε > 0
there exists δ > 0 so that if x, y ∈ X and d(x, y) < δ then there exists a path in
X connecting x and y with diameter less than ε/3. Choose N ∈ N large enough so
that for all n ≥ N , fn is η-isometric from Xn to X with η = min{ε/3, δ/2}, and
the retraction Rn from X onto fn(Xn) is (ε/3)-isometric. Now let x, y ∈ Xn with
dn(x, y) < δ/2 for some n ≥ N . Then d(fn(x), fn(y)) < δ/2 + η ≤ δ so there is a
curve in X of diameter at most ε/3 connecting fn(x) to fn(y). This curve retracts
onto a curve in fn(Xn) of diameter at most 2ε/3 connecting fn(x) to fn(y). Then
the preimage of the retracted curve under fn is a curve in Xn of diameter at most
ε connecting x to y. □

Next, we establish a path-lifting property, whose analogue for length spaces has
been established in [40, Prop. 2.2 (ii)].

Proposition 5.3. Let {Xn}∞n=1 be a sequence of asymptotically uniformly locally
path connected metric spaces converging in the Gromov–Hausdorff sense to a metric
space X, and consider an approximately isometric sequence fn : Xn → X, n ∈ N.

Then for each path γ : [0, 1] → X and for each sequences of points an, bn ∈ Xn with
fn(an) → γ(0) and fn(bn) → γ(1) as n → ∞ there exists N ∈ N and a sequence
of paths γn : [0, 1] → Xn, n ≥ N , such that γn(0) = an, γn(1) = bn, and fn ◦ γn
converges uniformly to γ as n→ ∞.

Proof. Suppose that fn is an εn-isometry, where εn > dX(fn(an), γ(0)), εn >
dX(fn(bn), γ(1)) for each n ∈ N, and εn → 0. By the uniform continuity of γ, for
each n ∈ N there exists δn > 0 such that if |p−q| < δn, then dX(γ(p), γ(q)) < εn. We
pick a finite set Qn ⊂ [0, 1] that contains 0 and 1 so that each of the complementary
intervals of Qn has length less than δn. We define γn(0) = an and γn(1) = bn.
By the definition of an εn-isometry, for each q ∈ Qn \ {0, 1} there exists a point
γn(q) ∈ Xn such that dX(fn(γn(q)), γ(q)) < εn. This defines a map γn : Qn → Xn.
If (q1, q2) is a complementary interval of Qn, note that

dXn(γn(q1), γn(q2)) ≤ εn + dX(fn(γn(q1)), fn(γn(q2))

≤ εn + dX(fn(γn(q1)), γ(q1)) + dX(γ(q1), γ(q2))

+ dX(fn(γn(q2)), γ(q2))

< 4εn.

By Lemma 5.1, there exists a sequence ε′n → 0 and N ∈ N such that for n ≥ N the
points γn(q1) and γn(q2) can be connected by a path of diameter less than ε′n. For
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n ≥ N we define γn on [q1, q2] to be this curve. This procedure gives rise to a path
γn : [0, 1] → Xn. For each p ∈ [0, 1] there exists a complementary interval (q1, q2)
of Qn whose closure contains p. We have

dX(γ(p), fn(γn(p))) ≤ dX(γ(p), γ(q1)) + dX(γ(q1), fn(γn(q1)))

+ dX(fn(γn(q1)), fn(γn(p)))

≤ εn + εn + εn + dXn
(γn(q1), γn(p))

≤ 3εn + diam(γn([q1, q2]))

≤ 3εn + ε′n

for all n ≥ N . Hence, fn ◦ γn converges uniformly to γ, as desired. □

Let X be a metric space. For each pair of disjoint continua E,F ⊂ X, we define
Γ∗(E,F ;X) to be the family of rectifiable curves in X \ (E ∪F ) separating E from
F . That is, for each γ ∈ Γ∗(E,F ;X), the sets E and F lie in different components
of X \ |γ|.

Lemma 5.4 (cf. [40, Lemma 2.4]). Let {Xn}∞n=1 be a sequence of asymptoti-
cally uniformly locally path connected compact metric spaces converging in the
Gromov–Hausdorff sense to a compact metric surface X. Moreover, suppose that
lim supn→∞ H2(Xn) <∞.

Then for each δ > 0 and for any sequence of pairs of disjoint continua En, Fn ⊂ Xn

with min{diam(En),diam(Fn)} ≥ δ we have

lim sup
n→∞

modΓ∗(En, Fn;Xn) <∞.

The proof is the same as [40, Lemma 2.4], where one replaces [40, Prop. 2.2 (ii)]
with Proposition 5.3. We present the main ingredients here for the convenience of
the reader.

Proof. It suffices to show that there exists η > 0, depending on δ but not on n, such
that if En, Fn ⊂ Xn is a pair of disjoint continua with min{diam(En),diam(Fn)} ≥
δ, then ℓ(γ) ≥ η for every γ ∈ Γ∗(En, Fn;Xn), n ∈ N.

We argue by contradiction. Let fn : Xn → X be a sequence of εn-isometries,
where εn → 0. Suppose that there exist sequences of disjoint continua En, Fn ⊂
Xn with min{diam(En),diam(Fn)} ≥ δ for some δ > 0 and a sequence of paths
γn ∈ Γ∗(En, Fn;Xn) with ℓ(γn) → 0 as n → ∞. After passing to a subsequence,
we assume that fn ◦ γn converges uniformly to a point x0 ∈ X ([40, Prop. 2.2 (i)])
and the sets fn(En) and fn(Fn) converge in the Hausdorff sense to continua E and
F , respectively, with min{diam(E),diam(F )} ≥ δ ([40, Prop. 2.2 (iii)]).

Since X is a surface, there exists a path η : [0, 1] → X \ {x0} with η(0) ∈ E
and η(1) ∈ F . By the Hausdorff convergence of fn(En) and fn(Fn) to E and F ,
respectively, there exist points an ∈ En and bn ∈ Fn such that fn(an) converges to
η(0) and fn(bn) converges to η(1). By Proposition 5.3, there exist paths ηn : [0, 1] →
Xn for sufficiently large n ∈ N such that ηn(0) = an ∈ En, ηn(1) = bn ∈ Fn, and
fn ◦ ηn converges uniformly to η.

Since γn separates En from Fn and ηn connects En and Fn, the paths γn and
ηn intersect each other for each sufficiently large n ∈ N. The uniform convergence
of fn ◦ γn and fn ◦ ηn to x0 and η, respectively, implies that η intersects the point
x0. This is a contradiction. □



28 DIMITRIOS NTALAMPEKOS AND MATTHEW ROMNEY

Lemma 5.5 (cf. [40, Lemma 2.3]). Let X be a metric space homeomorphic to a
topological closed disk and {Xn}∞n=1 be a sequence of metric spaces homeomorphic
to X. Suppose that there exists an approximately isometric sequence fn : Xn → X,
n ∈ N, of topological embeddings. Then

lim inf
n→∞

diam(∂Xn) ≥ diam(∂X).

Proof. Suppose that fn is an εn-isometry, where εn → 0 as n→ ∞. We claim that
for each r > 0 there exists N ∈ N such that for n ≥ N and for each x ∈ ∂X there
exists a point yn ∈ ∂Xn with d(fn(yn), x) < r. Assuming that this is the case, we
have ∂X ⊂ Nr(fn(∂Xn)) for n ≥ N , so

diam(∂Xn) ≥ diam(fn(∂Xn))− εn ≥ diam(∂X)− 2r − εn.

We first let n→ ∞ and then r → 0 to obtain the desired conclusion.
Now we prove the claim. For each r > 0, using the local path connectivity of X,

we may find δ > 0 such that if x, y ∈ X and d(x, y) < δ, then there exists a path
in X containing x and y with diameter less than r. We now let N ∈ N such that
εn < δ for n ≥ N and fix x ∈ ∂X. By the definition of an εn-isometry, there exists
xn ∈ Xn with x′n = f(xn) such that d(x′n, x) < εn < δ. Thus, there exists a path γ
connecting x and x′n with diameter less than r. Since fn is an embedding, the set
V = int(fn(Xn)) is an open Jordan region in X, bounded by fn(∂Xn). The curve
γ connects a point of V = fn(Xn) to a point of X \ V , hence it intersects fn(∂Xn)
at some point y′n. We let yn = f−1

n (y′n) and note that d(fn(yn), x) ≤ diam(|γ|) < r,
so the claim follows. □

5.2. Quasiconformal maps. Let X,Y be metric surfaces of locally finite Haus-
dorff 2-measure. A homeomorphism h : X → Y is quasiconformal if there exists
K ≥ 1 such that for all curve families Γ in X we have

K−1 modΓ ≤ modh(Γ) ≤ KmodΓ.

In this case, we say that h isK-quasiconformal. Recall that a continuous, surjective,
proper, and cell-like map h : X → Y is weakly quasiconformal if there exists K ≥ 1
such that for every curve family Γ in X we have

modΓ ≤ Kmodh(Γ).

In this case, we say that h is weakly K-quasiconformal. If X and Y are compact
surfaces that are homeomorphic to each other, then we may replace cell-likeness
with the requirement that h is monotone; that is, the preimage of every point is a
continuum. In this case, we also have the stronger statement that that the preimage
of every connected set in Y is connected in X [49, (2.2), Chap. VIII, p. 138]. See
Section 6.2 blow for further topological properties.

The next theorem of Williams ([53, Thm. 1.1 and Cor. 3.9]) relates the above
definitions of quasiconformality with the “analytic” definition that relies on upper
gradients; see also the discussion in [40, Sect. 2.4].

Theorem 5.6 (Definitions of quasiconformality). Let X,Y be metric surfaces of
locally finite Hausdorff 2-measure, h : X → Y be a continuous map, and K ≥ 1.
The following are equivalent.
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(i) h ∈ N1,2
loc (X,Y ) and there exists a weak upper gradient g of h such that for

every Borel set E ⊂ Y we have∫︂
h−1(E)

g2 dH2 ≤ KH2(E).

(ii) Each point of X has a neighborhood U such that h|U ∈ N1,2(U, Y ) and
there exists a weak upper gradient gU of h|U such that for every Borel set
E ⊂ Y we have ∫︂

(h|U )−1(E)

g2U dH2 ≤ KH2(E).

(iii) For every curve family Γ in X we have

modΓ ≤ Kmodh(Γ).

Next, we state some boundary extension results for weakly quasiconformal maps.

Lemma 5.7. Let X be a metric space and let h : D → X be a continuous map with
h|D ∈ N1,2(D, X). Then h ∈ N1,2(D, X) and h has the same minimal weak upper
gradient as h|D.

Proof. Let g ∈ L2(D) be a weak upper gradient of h|D. It suffices to show that g
is a weak upper gradient of h in D. For r > 1, define hr(x) = h(r−1x), x ∈ D.
Observe that gr(x) = r−1g(r−1x) is a weak upper gradient of hr in D. Thus,
hr ∈ N1,2(D, X). It is elementary to show, using approximation by continuous
functions, that gr converges to g in L2(D) as r → 1. Since hr converges to h
uniformly in D, we conclude from (a slight variant of) [20, Prop. 7.3.7, p. 193] that
h ∈ N1,2(D, X) with weak upper gradient g. □

Combining this lemma with Theorem 5.6 gives the next corollary.

Corollary 5.8. Let X be a metric surface of finite Hausdorff 2-measure that is
homeomorphic to a topological closed disk and let h : D → X be a continuous,
surjective, and monotone map. If h(D) = int(X) and h|D : D → int(X) is weakly
K-quasiconformal for some K ≥ 1, then h is weakly K-quasiconformal.

The next statement is an analogue of Carathéodory’s extension theorem.

Theorem 5.9. Let X be a metric surface of finite Hausdorff 2-measure that is
homeomorphic to a topological closed disk and let h : D → int(X) be a K-quasi-
conformal homeomorphism for some K ≥ 1. Then h extends to a weakly K-
quasiconformal map from D onto X.

Proof. According to a result of Ikonen [22, Thm. 1.1], there exists a continuous,
surjective, and monotone extension h : D → X. By Corollary 5.8, the extension is
weakly quasiconformal. □

Remark 5.10. In fact, the conclusion of Theorem 5.9 is true under the mere as-
sumption that h|D is a weakly quasiconformal map rather than a quasiconformal
homeomorphism; in particular, Corollary 5.8 is a consequence of this stronger state-
ment. In order to show this, one has to modify slightly the argument in the proof
of [22, Thm. 1.1], which we used in the above proof of Theorem 5.9.
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5.3. Classical uniformization. A Riemann surface is a topological surface X
(possibly with non-empty boundary) with a complex structure, that is, an atlas
whose transition maps are conformal. We note that Riemann surfaces are ori-
entable. A homeomorphism between Riemann surfaces is conformal if it is complex
differentiable in local coordinates. The classical uniformization theorem [34, Thm.
15.12, p. 242] has the following consequence.

Theorem 5.11 (Classical uniformization). Let X be a Riemann surface homeo-

morphic to ˆ︁C, D, or C. Then there exists a conformal homeomorphism from ˆ︁C, D,
or D or C, respectively, onto X.

We say that a metric d on a Riemann surface X is compatible with the complex
structure of X if each local conformal chart φ from an open subset U of X into the
plane C is 1-quasiconformal, where U is equipped with the restriction of the metric
d. When the metric d arises from a Riemannian metric g, we will simply say that
g is compatible with the complex structure. Another implication of the classical
uniformization is the next statement.

Theorem 5.12 (Classical Riemannian uniformization). Let X be a Riemann sur-
face. Then there exists a Riemannian metric g on X that is complete, has constant
curvature, and is compatible with the complex structure of X.

Theorems 5.11 and 5.12 are often used in conjunction with the existence of
isothermal coordinates in Riemannian surfaces.

Theorem 5.13 (Isothermal coordinates). Let (X, g) be an orientable Riemannian
surface. Then there exists a complex structure on X that is compatible with the
Riemannian metric g.

The next lemma gives the relation between conformality and 1-quasiconformality
of maps between Riemann surfaces.

Lemma 5.14. Let X,Y be Riemann surfaces with metrics dX , dY , respectively, that
are compatible with the complex structures. Then each homeomorphism h : X → Y
is conformal if and only if h : (X, dX) → (Y, dY ) is 1-quasiconformal.

The proof relies on the fact that conformal maps coincide with 1-quasiconformal
maps in planar domains (see [27]) and on the fact that global quasiconformality of a
map between metric surfaces follows from the local quasiconformality, by Theorem
5.6.

Each orientable polyhedral surface X admits a complex structure and becomes a
Riemann surface. The complex structure is natural in the sense that it is compatible
with the polyhedral metric; see [40, Sect. 2.5] for more details. In what follows,
polyhedral Riemann surfaces refer to this natural complex structure. We note
that if we equip a polyhedral surface with a metric that is locally isometric to the
polyhedral metric, then it is still compatible with the natural complex structure.

Remark 5.15. The above discussion generalizes to non-orientable surfaces as fol-
lows. A map between planar regions is dianalytic if it is holomorphic or anti-
holomorphic in each connected component of its domain. A dianalytic structure on
a surface X is an atlas whose transition maps are dianalytic. A surface X equipped
with a dianalytic structure is called a Klein surface. One can think of Klein sur-
faces as a generalization of Riemann surfaces that covers non-orientable surfaces as
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well. All of the above results hold if one replaces “conformal map” with “dianalytic
homeomorphism”, “Riemann surface” with “Klein surface”, and “complex struc-
ture” with “dianalytic structure”. Specifically, Theorem 5.13 generalizes to yield
a dianalytic structure on X even without the orientability assumption. See [3] for
the theory of Klein surfaces.

5.4. Proof of Theorem 1.2 for compact surfaces. The proof bears no differ-
ences to the proof of [40, Thm. 1.3] other than the use of the extended polyhedral
approximation Theorem 1.1 in place of [40, Thm. 1.1] and the technical statements
of Proposition 5.3 and Lemma 5.4 in place of [40, Prop. 2.2 (ii)] and [40, Lemma
2.4], respectively. Thus, below we only emphasize the differences.

We will establish the following statement that readily implies Theorem 1.2.

Theorem 5.16. Let Ω = ˆ︁C or Ω = D. Let X be a metric space homeomorphic
to Ω with H2(X) < ∞ and {Xn}∞n=1 be an asymptotically uniformly locally path
connected sequence of metric spaces homeomorphic to X. Suppose that there exists
an approximately isometric sequence fn : Xn → X, n ∈ N, such that there exists
K ≥ 1 with

lim sup
n→∞

H2(f−1
n (A)) ≤ KH2(A)

for all compact sets A ⊂ X. If hn : Ω → Xn, n ∈ N, is a normalized sequence of
weakly L-quasiconformal maps for some L ≥ 1, then fn ◦hn has a subsequence that
converges uniformly to a weakly (K · L)-quasiconformal map h : Ω → X.

Here we say that a sequence hn : Xn → Yn of maps between compact metric
spaces is normalized if there exists a value δ > 0 and a sequence of triples an, bn, cn ∈
Xn with mutual distances bounded from below by δ such that the mutual distances
between the points hn(an), hn(bn), hn(cn) are also bounded from below by δ, where
δ is independent of n ∈ N.

That Theorem 5.16 implies Theorem 1.2 in the compact case is standard (see also
[40, Sect. 6.1]), with the exception of finding the optimal value of the quasiconformal
dilatation, a procedure that we describe in Section 6.

Proof of Theorem 1.2 for compact X. Theorem 1.1, in combination with Lemma
5.2, provides us with an asymptotically uniformly locally path connected sequence
of polyhedral Riemann surfaces {(Xn, dXn

)}∞n=1 and an approximately isometric
sequence of topological embeddings fn : Xn → X, n ∈ N, such that the Hausdorff
measure inequality in the assumption of Theorem 5.16 is satisfied. The metric dXn

is locally isometric to the polyhedral metric on Xn and thus it is compatible with
the complex structure. By the classical uniformization theorem (Theorem 5.11),
for each n ∈ N there exists a conformal homeomorphism hn : Ω → Xn, which is also
1-quasiconformal by Lemma 5.14. Thus, in order to apply Theorem 5.16, it only

remains to normalize the sequence hn. If Ω = ˆ︁C, then it suffices to precompose

hn with a suitable Möbius transformation of ˆ︁C. If Ω = D, then, by Lemma 5.5,
diam(∂Xn) is uniformly bounded from below away from 0. Hence, we may find
points a′n, b

′
n, c

′
n ∈ ∂Xn with mutual distances uniformly bounded from below. We

now precompose hn with a Möbius transformation of D, so that the preimages of
a′n, b

′
n, c

′
n are the points 1, i,−1 ∈ ∂D. □
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Next, we focus on proving Theorem 5.16. Let {Xn}∞n=1 be a sequence of metric
surfaces homeomorphic to X that converges to X in the Gromov–Hausdorff sense.
By assumption, we have

lim sup
n→∞

H2(Xn) ≤ KH2(X)

for an absolute constant K ≥ 1. Also, let fn : Xn → X, n ∈ N, be an approximately
isometric sequence and let hn : Ω → Xn, n ∈ N, be a normalized sequence of weakly
L-quasiconformal maps. We will use the assumption that the spaces Xn, n ∈ N,
are asymptotically uniformly locally path connected, which enables us to apply
Proposition 5.3 and Lemma 5.4.

Lemma 5.17 (Equicontinuity). The sequence fn ◦ hn : Ω → X, n ∈ N, is asymp-
totically uniformly equicontinuous.

Proof. This is proved exactly in the same way as [40, Lemma 6.3], where one uses
Lemma 5.4 in place of [40, Lemma 2.4]. Concisely, if the statement fails, then
there exists a sequence of continua En, n ∈ N, in Ω with diameters converging
to 0 such that, after passing to a subsequence, hn(En) has diameter uniformly
bounded from below away from 0 as n → ∞. Using the linear local connectivity
of Ω and the fact that hn is normalized, one can find a sequence of continua Fn,
n ∈ N, in Ω with diameters bounded away from 0 and with dist(En, Fn) bounded
away from 0 as n → ∞ such that the continua hn(Fn) also have large diameter.
Standard modulus estimates in Ω show that modΓ∗(En, Fn; Ω) → ∞ so by the weak
L-quasiconformality of hn, modΓ∗(hn(En), hn(Fn);Xn) → ∞. This contradicts
Lemma 5.4. □

Lemma 5.18 (Convergence). The sequence fn ◦ hn : Ω → X, n ∈ N, has a sub-
sequence that converges uniformly to a continuous, surjective, and monotone map
h : Ω → X.

Proof. The convergence and surjectivity follow from the asymptotic uniform equi-
continuity and the Arzelà–Ascoli theorem, so we only argue for the monotonicity,
which relies on the asymptotic uniform local path connectivity of Xn, n ∈ N (cf. [40,
Lemma 6.4]). If h is not monotone, then a point x ∈ X has a disconnected preimage
h−1(x) and by planar topology there exist points a, b ∈ h−1(x) and a curve γ in
Ω \ h−1(x) separating them. Note that fn(hn(a)) and fn(hn(b)) converge to x,
which we consider as a constant path. By Proposition 5.3, there exists a sequence
of paths γn : [0, 1] → Xn, n ≥ N , such that γn(0) = hn(a), γn(1) = hn(b), and
fn ◦ γn converges uniformly to the constant path x as n → ∞. The monotonicity
of hn implies that h−1

n (|γn|) is a continuum joining a and b. Since γ separates a
and b, we conclude that γ intersects h−1

n (|γn|). Therefore, the paths hn ◦ γ and γn
intersect. By the uniform convergence of fn ◦hn ◦ γ to h ◦ γ and of fn ◦ γn to x, we
conclude that h ◦ γ intersects x, a contradiction. □

Next, we discuss the regularity properties of h. It is crucial here that fn has the
property that for every compact set A ⊂ X we have

lim sup
n→∞

H2(f−1
n (A)) ≤ KH2(A)(5.1)
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for some uniform constant K > 0. By Theorem 5.6 (i), hn has an upper gradient
ghn with the property that ∫︂

h−1
n (E)

g2hn
dH2 ≤ LH2(E)(5.2)

for each Borel set E ⊂ Xn. With absolutely no changes, the proof of the following
lemma is the same as in [40, Sect. 6.1.2].

Lemma 5.19 (Quasiconformality). The sequence of upper gradients ghn of hn,
n ∈ N, has a subsequence that converges weakly in L2(Ω) to a function gh that is a
weak upper gradient of h. Moreover, for each Borel set E ⊂ X we have∫︂

h−1(E)

g2h dH2 ≤ KLH2(E).

Based on this lemma, the weak quasiconformality of h follows from Theorem
5.6 and thus the proof of Theorem 5.16 is completed. We provide a sketch of the
proof of the lemma. The weak limit gh of ghn

is obtained by the Banach–Alaoglu
theorem [20, Thm. 2.4.1], due to the uniform bound of the L2 norm of ghn

, given by
(5.1) and (5.2). Mazur’s lemma [20, p. 19] allows one to upgrade weak convergence
of ghn to strong convergence of convex combinations of ghn . The fact that gh is
a weak upper gradient of h then follows from Fuglede’s lemma [20, p. 131]. The
integral inequality for g2h in the conclusion of the lemma is a consequence of (5.1),
(5.2), and the weak convergence of ghn

to gh.

6. Local to global uniformization

In this section we prove the global uniformization result of Theorem 1.3 and we
use it to derive Theorem 1.2 in the general case. We also establish the minimal value
of the dilatation of the weak quasiconformal parametrizations in these theorems.

6.1. Minimizing dilatation. The next general result allows us to minimize the
dilatation of a weakly quasiconformal map from a Riemannian surface onto a metric
surface.

Theorem 6.1. Let X be a metric surface of locally finite Hausdorff 2-measure,
(Z, g) be a Riemannian surface, and h : (Z, g) → X be a weakly quasiconformal

map. Then there exists a Riemannian surface ( ˜︁Z, ˜︁g) and a quasiconformal map

ψ : ( ˜︁Z, ˜︁g) → (Z, g) such that h ◦ ψ : ( ˜︁Z, ˜︁g) → X is weakly (4/π)-quasiconformal.

The constant 4/π is optimal, as was observed by Rajala [44, Example 2.2]. The
proof follows the steps of Rajala [44, Sect. 14], so we only provide a sketch.

Proof. Since h belongs to N1,2
loc (Z,X), h is approximately metrically differentiable.

This means that for a.e. x ∈ Z, there is a unique seminorm Nx : R2 → [0,∞) for
which (identifying a neighborhood of x in Z with a subset of R2 via the exponential
map)

ap lim
y→x

d(h(y), h(x))−Nx(y − x)

|y − x|
= 0,

where ap lim denotes the approximate limit; see Definition 4.1 in [29]. The cor-
respondence x ↦→ Nx is measurable as a map from Z into the metric space of
seminorms in R2, where the distance between two seminorms s and s′ is defined
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as sup{|s(y) − s′(y)| : y ∈ S1}; see Proposition 4.3 in [29]. Let Bx = {y ∈ R2 :
Nx(y) ≤ 1} be the closed unit ball in the seminorm Nx. If Nx is a norm, then Bx is
a symmetric convex body in R2. Let Lx = sup{Nx(y) : y ∈ S1} denote the maximal
stretching of Nx. Lx is characterized by the fact that the largest ball centered at 0
that is contained in Bx has radius 1/Lx. As shown in Lemma 2.14 of [35] (see also
Lemma 3.1 of [31]), Lx is a representative of the minimal weak upper gradient of h
that we denote by gh.

We define the Jacobian of Nx to be Jx = π/|Bx|, where |Bx| is the Lebesgue
2-measure of Bx. Note that |Bx| = ∞ and Jx = 0 if Nx is not a norm. It was
shown in [40, Thm. 7.1] that the weakly quasiconformal map h has a Jacobian
Jh that satisfies gh(x)

2 ≤ KJh(x) for a.e. x ∈ Z and which is by definition the
Radon–Nikodym derivative of the measure H2 ◦ h. Moreover, this measure agrees
with the measure

E ↦→
∫︂

#(h−1(y) ∩ E) dH2.

See [40, Remark 7.2]. Finally, the absolutely continuous part of the latter measure
agrees with the measure

E ↦→
∫︂
E

Jx dH2.

This is true in general for Lipschitz maps [25, Thm. 7] and can be established for
the map h in the Sobolev space by decomposing h into countably many Lipschitz
maps up to a set of measure zero [44, Lemma 14.1]. Altogether, we have Jh(x) = Jx
for a.e. x ∈ Z. Thus L2

x ≤ KJx for a.e. x ∈ Z; this statement also follows from
Lemma 2.16 of [35]. In particular, we see that Nx is the zero seminorm for a.e.
x ∈ Z for which Nx is not a norm, in which case we have Bx = R2.

Recall that the John ellipse of a planar symmetric convex body is the unique
ellipse of maximum area it contains. We take Ex to be the John ellipse correspond-
ing to Bx whenever Nx is a norm. We define Ex to be the Euclidean closed unit
ball otherwise. The John ellipse is continuous as a function of the norm Nx; see
for example Section 3 in [28]. Moreover, the set {x ∈ Z : Nx = 0} is measurable.
Thus the correspondence x ↦→ Ex is measurable. By John’s theorem (see Theorem

3.1 in [4] for a statement), Ex satisfies Ex ⊂ Bx ⊂
√
2Ex whenever Nx is a norm.

The latter property and the relation L2
x ≤ KJx imply that the ellipse field Ex has

uniformly bounded eccentricity.
By [21, Prop. 4.8.12] (which also applies in the non-orientable case if one replaces

Beltrami differentials with ellipse fields) there exists a complex or dianalytic struc-

ture on Z giving rise to a Riemann or Klein surface ˜︁Z, respectively, such that the

identity map ψ : ˜︁Z → Z is K ′-quasiconformal in local coordinates for some K ′ ≥ 1
and maps infinitesimal balls to the corresponding infinitesimal ellipses of the ellipse
field {Ex}x∈Z . Using the uniformization theorem (Theorem 5.12), we consider a

Riemannian metric ˜︁g compatible with the complex or dianalytic structure of ˜︁Z.
The composite ˜︁h = h ◦ ψ is a weakly quasiconformal map and in particular

belongs to the space N1,2
loc (

˜︁Z,X). Thus ˜︁h is approximately metrically differentiable.

Let z ∈ ˜︁Z be a point of approximate metric differentiability of h. Denote by ˜︁Nz
the approximate metric derivative and ˜︁Bz the corresponding closed unit ball. For

all z ∈ ˜︁Z at which ψ is differentiable, let Dψz denote the derivative of ψ at z. Then

for a.e. z ∈ ˜︁Z, (Dψz)−1 takes the ellipse Eψ(z) onto the closed disk of radius rz

centered at 0 for some rz > 0. For a.e. z ∈ ˜︁Z for which Nψ(z) is a norm, we have
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˜︁Nz = Nψ(z) ◦Dψz and Dψz( ˜︁Bz) = Bψ(z). In this case ˜︁Bz contains a maximal disk

of radius rz, and so ˜︁Nz has maximal stretching equal to 1/rz. Moreover, this disk

is the John ellipse for ˜︁Bz. As a consequence of John’s theorem (cf. Theorem 6.2

and the following discussion in [4]), the set {y ∈ R2 : ˜︁Nz(y) ≤ 1} has area at most

4r2z . In particular, the Jacobian ˜︁Jz satisfies ˜︁Jz ≥ π/(4r2z). In the next case, for a.e.

z ∈ ˜︁Z for which Nψ(z) = 0, we have ˜︁Nz = 0 as well, namely at any point z at which

ψ is differentiable. In all cases, we have ˜︁L2
z ≤ (4/π) ˜︁Jz for a.e. z ∈ ˜︁Z, which implies

that ˜︁h is weakly (4/π)-quasiconformal. □

6.2. Topological preliminaries. Let X,Y be topological spaces and ν : X → Y
be a continuous map. Recall that ν is monotone if the preimage of each point is
a continuum. Also, ν is proper if the preimage of each compact set is compact.
A compact set A in X is cell-like in X if for each open neighborhood U of A in
X, A can be contracted within U to a point. Finally, the map ν is cell-like if the
preimage of each point in Y is a cell-like set in X.

In 1-manifolds, cell-like sets coincide with homeomorphic images of compact
intervals. In topological surfaces without boundary, cell-like sets coincide with
continua having a simply connected open neighborhood that they do not separate
[11, Cor. 15.2B and Cor. 15.4C].

Theorem 6.2 (Approximation for cell-like maps). Let ν : X → Y be a proper
cell-like map between metric surfaces such that ν(∂X) ⊂ ∂Y and the restriction
ν|∂X : ∂X → ∂Y is a proper cell-like map. Then ν can be approximated uniformly by
homeomorphisms. Moreover, if U is an open subset of Y , then ν|ν−1(U) : ν

−1(U) →
U can be approximated uniformly by homeomorphisms.

See [11, Cor. 25.1A] for the case of surfaces without boundary and [48] for the
general case. For compact surfaces one has the following stronger statement.

Theorem 6.3 (Approximation for monotone maps). Let ν : X → Y be a continuous
and surjective map between compact metric surfaces that are homeomorphic. The
following are equivalent.

(1) ν is monotone.
(2) ν is cell-like.
(3) ν can be approximated uniformly by homeomorphisms.

In this case, we have ν(∂X) = ∂Y and ν−1(int(Y )) ⊂ int(X).

Proof. If ν is monotone, then a result of Youngs [54, p. 92] implies that ν is the
uniform limit of homeomorphisms between X and Y . If ν can be approximated by
homeomorphisms, then it is cell-like; this is true for maps between spaces that are
absolute neighborhood retracts (abbr. ANR) by [11, Thm. 17.4] and every compact
manifold is an ANR [11, Cor. 14.8A]. Finally, a cell-like map is trivially monotone,
since cell-like sets are connected [11, Cor. 16.3A]. This completes the proof of the
equivalences. The last properties in the statement of the lemma are immediate for
uniform limits of homeomorphisms. □
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6.3. Proof of Theorems 1.3 and 1.2. This section is devoted to the proofs of
Theorem 1.3 and of the general case in Theorem 1.2. We split the proof of Theorem
1.3 into two main cases: surfaces without boundary and surfaces with boundary.
The proof uses the classical uniformization theory as discussed in Section 5.3, as
well as the extensions to non-orientable surfaces as discussed in Remark 5.15.

Proof of Theorem 1.3: surfaces without boundary. By Theorem 1.1, there exists a
sequence of polyhedral surfaces {Xn}∞n=1 converging toX and a sequence of approx-
imately isometric proper topological embeddings fn : Xn → X, n ∈ N; in fact, since
X has no boundary, the maps fn are homeomorphisms. By the paracompactness of
the surface X, there exists a locally finite countable collection of topological open
disks Dk, k ∈ N, whose union covers the surface X. For each k ∈ N and n ∈ N, we
define the topological closed disk Dn

k = f−1
n (Dk) and equip it with the restriction

of the metric dXn
. We note that for each k ∈ N, the sequence fn|Dn

k
: Dn

k → Dk,

n ∈ N, satisfies the conclusions of Theorem 1.1, with the exception that Dn
k is not

necessarily polyhedral at the boundary. In particular, by Lemma 5.2, the spaces
{Dn

k}∞n=1 are asymptotically uniformly locally path connected.

Step 1: Normalizations in the spaces Xn and X. For fixed k ∈ N we consider
distinct points pk, qk ∈ Dk. For each n ∈ N the map fn|Dn

k
: Dn

k → Dk is a

homeomorphism, so there exist points pnk , q
n
k ∈ Dn

k such that fn(p
n
k ) = pk and

fn(q
n
k ) = qk. We have f−1

n (∂Dk) = ∂Dn
k , so the fact that fn is approximately

isometric implies that

lim inf
n→∞

dist(pnk , ∂D
n
k ) ≥ dist(pk, ∂Dk) > 0.

Thus, the distance from from pnk to ∂Dn
k is bounded away from 0 as n → ∞. The

same conclusion holds for qnk .

Step 2: Uniformization by disks and normalizations in the plane. By the classical
uniformization theorem, Theorem 5.11, for each k ∈ N and n ∈ N there exists
a conformal map from D onto Dn

k , where the latter is equipped with a complex
structure compatible with the polyhedral metric; note that if X is non-orientable,
then there is no canonical choice of complex structures. By precomposing with
a Möbius transformation, we obtain a conformal map hnk from a disk B(0, rnk )
with rnk > 1 onto Dn

k such that hnk (0) = pnk and hnk (1) = qnk . Note that hnk is 1-
quasiconformal in B(0, rnk ) by Lemma 5.14. By Theorem 5.9, the map hnk extends

to a weakly 1-quasiconformal map from B(0, rnk ) onto D
n
k .

We claim that for each fixed k ∈ N the sequence rnk , n ∈ N, is bounded from
above. Let E be the unit interval [0, 1] × {0} inside B(0, rnk ) and Fn = ∂B(0, rnk ).
Consider the continua hnk (E) and hnk (Fn) = ∂Dn

k . From Lemma 5.5, ∂Dn
k has

diameter uniformly bounded below away from 0 as n → ∞. Since pnk , q
n
k ∈ hnk (E),

that set also has diameter uniformly bounded away from 0. From Lemma 5.4,
we conclude that modΓ∗(hnk (E), hnk (Fn);D

n
k ) is uniformly bounded above as n →

∞. Since hnk is weakly 1-quasiconformal, it follows that modΓ∗(E,Fn;B(0, rnk ))

is uniformly bounded above. On the other hand, the family Γ∗(E,Fn;B(0, rnk ))
contains the circles ∂B(0, r) for all 1 < r < rnk , so

1

2π
log (rnk ) ≤ modΓ∗(E,Fn;B(0, rnk )).
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The boundedness of rnk follows.

For fixed k ∈ N, consider the sequence gn(z) = hnk (r
n
k z), n ∈ N, from D onto Dn

k .
We show that this sequence is normalized in the sense of Theorem 5.16. Note that
the points 0, 1/rnk , and−1 in D have mutual distances uniformly bounded away from
0 as n → ∞. Moreover, we have gn(0) = pnk , gn(1/r

n
k ) = qnk , and gn(−1) ∈ ∂Dn

k ,
and by Step 1 the mutual distances of these points are also bounded away from 0.
Thus, the sequence gn is normalized, as claimed.

Step 3: Weakly quasiconformal parametrizations. By Theorem 5.16, for each k ∈ N,
there exists a subsequence of fn ◦ gn, n ∈ N, that converges uniformly on D to a
weakly K-quasiconformal map onto Dk. Since rnk is bounded above and below in
n ∈ N, we conclude that there exists a subsequential limit rk of rnk such that the
sequence fn ◦ hnk has a subsequence that converges to a weakly K-quasiconformal

map hk : B(0, rk) → Dk. By passing to a diagonal subsequence, we assume that rnk
converges to rk and fn ◦hnk converges to hk for each k ∈ N (in an appropriate sense,
since the domains are variable). Note that for each compact set A ⊂ B(0, rk) we
have A ⊂ B(0, rnk ) for all sufficiently large n ∈ N. Hence, fn ◦ hnk converges to hk
uniformly on each compact subset of B(0, rk).

Step 4: Compatibility of parametrizations. Suppose that Dk ∩ Dl ̸= ∅. Our goal
is to show that h−1

l ◦ hk defines a dianalytic homeomorphism (see Remark 5.15)

from Uk,l = h−1
k (Dk ∩Dl) onto Ul,k = h−1

l (Dk ∩Dl). In fact, since hl might not be
invertible, we will show that there exists a dianalytic homeomorphism φk,l : Uk,l →
Ul,k such that hl ◦ φk,l = hk.

The monotonicity of hk implies that Uk,l ⊂ B(0, rk), by the last part of Theorem

6.3. Let A′ ⊂ Dk ∩ Dl be a non-degenerate continuum. Then A = h−1
k (A′) is a

continuum in Uk,l ⊂ B(0, rk). For large n ∈ N, the set An = hnk (A) is defined and
fn(An) = fn ◦ hnk (A) converges in the Hausdorff sense to hk(A) = A′ as n→ ∞ by
the uniform convergence. Thus, An is contained in Dn

k ∩Dn
l for all sufficiently large

n ∈ N and the diameter of An is uniformly bounded from below away from 0. Now,
the uniform convergence of fn ◦hnl to hl implies that (hnl )

−1(An) has diameter that
is uniformly bounded from below.

Now, let V ⊃ A be a connected open set whose closure is compact and is con-
tained in h−1

k (Dk ∩ Dl). By the previous argument, hnk (V ) ⊂ Dn
k ∩ Dn

l for all
sufficiently large n ∈ N. Thus, for all sufficiently large n ∈ N we have

fn ◦ hnl ◦ (hnl )−1 ◦ hnk = fn ◦ hnk

on V . Consider the sequence of dianalytic embeddings (hnl )
−1 ◦ hnk : V → B(0, rnl ),

n ∈ N. Note that the balls B(0, rnl ) are uniformly bounded in n ∈ N. By Montel’s
theorem [34, Thm. 10.7, p. 160], as n → ∞ this sequence subconverges locally
uniformly in V to a dianalytic map φk,l on V . By considering larger and larger open
sets V , we may assume that the convergence is locally uniform in the component
of h−1

k (Dk ∩Dl) that contains the continuum A. Moreover, by Hurwitz’s theorem
[34, Cor. 8.9, p. 129], the limiting map φk,l is either constant or injective. Since
(hnl )

−1 ◦ hnk (A) has diameter uniformly bounded from below, we conclude that
φk,l is a dianalytic homeomorphism. Arguing in the same way, we may obtain
a limiting map φk,l that is a dianalytic homeomorphism in each component of

Uk,l = h−1
k (Dk ∩Dl).
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By passing to a diagonal subsequence, we may assume that (hnl )
−1◦hnk converges

locally uniformly in Uk,l to φk,l for each k, l ∈ N with Dk ∩Dl ̸= ∅ and

hl ◦ φk,l = hk.

This also shows that φk,l is injective in all of Uk,l and φk,l(Uk,l) = h−1
l (Dk ∩

Dl) = Ul,k. Moreover, it is immediate that φl,k = φ−1
k,l , since (hnk )

−1 ◦ hnl is the

inverse of (hnl )
−1 ◦ hnk . Finally, if Uk,l ∩ Uk,m = h−1

k (Dk ∩ Dl ∩ Dm) ̸= ∅, then
φk,l(Uk,l ∩ Uk,m) = Ul,k ∩ Ul,m and φl,m ◦ φk,l = φk,m on Uk,l ∩ Uk,m. When
Dk ∩Dl = ∅, we also define Uk,l = ∅ and φk,l to be the empty map.

Step 5: Gluing and construction of a surface Z. For k ∈ N, let Uk = h−1
k (Dk) and

note that for each k ∈ N there exist only finitely many l ∈ N with Uk,l ̸= ∅. Consider
the space

⨆︁
k∈N Uk and define an equivalence relation so that z ∼ w if z ∈ Uk,l, w ∈

Ul,k and φk,l(z) = w. By definition, all other points have trivial equivalence classes.
The symmetry and transitive properties follow from the compatibility properties of
Step 4.

Let Z be the resulting quotient space. Then Z is automatically a two-dimensional
topological manifold, once we verify that it is a Hausdorff space. For this, it suffices
to show that for each k, l ∈ N the set {(z, φk,l(z)) : z ∈ Uk,l} is a closed subset
of Uk × Ul [26, Prop. 3.57, p. 68]. To see this, if zn ∈ Uk,l, n ∈ N, is a sequence
converging to a point z ∈ Uk lying in the topological boundary of Uk,l relative to
Uk, then, by continuity, hk(zn) converges to the point hk(z) ∈ Dk ∩ ∂Dl. Thus,
hl ◦ φk,l(zn) converges to a point of Dk ∩ ∂Dl ⊂ ∂Dl, which implies that φk,l(zn)

cannot converge to a point of Ul = h−1
l (Dl).

The charts of Z are simply the inclusions of Uk, k ∈ N, into the plane and the
transition maps are the dianalytic maps φk,l, k, l ∈ N. Hence Z is a Klein surface
(and, in fact, a Riemann surface when X is orientable).

We define a map from
⨆︁
k∈N Uk ontoX by z ↦→ hk(z) if z ∈ Uk. The compatibility

relation hk = hl ◦ φk,l implies that this map projects to a map F : Z → X. From
the local coordinate representation of F , we see that F is continuous. Since for each
k ∈ N, the map hk : B(0, rk) → Dk is cell-like, the set h−1

k (x) is a cell-like subset of
Uk for each x ∈ Dk. Therefore, again from local coordinates we see that F is cell-
like. Since the cover of X by {Dk}k∈N, is locally finite, we see that each compact
subset of X can be written as a finite union of compact sets, each contained in a set
Dk. From this we conclude that F is a proper map. Since

⋃︁∞
k=1Dk = X, the map

F is also surjective. By Theorem 6.2, F can be approximated by homeomorphisms
and in particular Z is homeomorphic to X. Finally, we note that F is weakly
K-quasiconformal in local coordinates, since hk is weakly K-quasiconformal.

Step 6: Uniformization by a Riemannian manifold. By the classical Riemannian
uniformization theorem (Theorem 5.12), there exists a Riemannian metric g on Z
such that (Z, g) is complete and has constant curvature and such that g is com-
patible with the dianalytic structure of Z. Since the map F : Z → X is weakly
K-quasiconformal in local coordinates, we conclude that the map F from the met-
ric space (Z, g) onto X is locally weakly K-quasiconformal. By Theorem 5.6, F
is globally weakly K-quasiconformal. Finally, by Theorem 6.1, there exists a Rie-

mannian surface ( ˜︁Z, ˜︁g) and a quasiconformal map ψ : ( ˜︁Z, ˜︁g) → (Z, g) such that

F ◦ ψ : ( ˜︁Z, ˜︁g) → X is weakly (4/π)-quasiconformal. □
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Proof of Theorem 1.3: surfaces with boundary. We apply Theorem 1.3 for surfaces
without boundary to int(X) to find a Riemannian surface W (together with a
compatible dianalytic structure arising from Step 5 or from passing to isothermal
coordinates) and a weaklyK-quasiconformal mapG : W → int(X), whereK = 4/π.
In particular, G is proper and cell-like. Our goal is to construct a new Riemannian
surface Z with boundary, homeomorphic to X, and a weakly K-quasiconformal
map F : Z → X.

We repeat the procedure of Step 4 of the previous proof. We first cover int(X)
by a locally finite collection of countably many topological open disks Dk, k ∈ N,
so that for each point of ∂X there exist finitely many disks Dk with the property
that ∂X ∩ ∂Dk is a non-degenerate arc containing that point in its interior. We
define Uk = G−1(Dk), k ∈ N. By the last part of Theorem 6.2, we note that Uk
is homeomorphic to Dk for each k ∈ N. By the classical uniformization theorem
(Theorem 5.11), there exist dianalytic parametrizations hk : D → Uk, k ∈ N, which
are also 1-quasiconformal by Lemma 5.14. For each k ∈ N the map gk = G ◦
hk : D → Dk is weakly K-quasiconformal. By Remark 5.10, it extends to a weakly
K-quasiconformal map of the closures.

Let Uk,l = Uk ∩Ul, k, l ∈ N. The transition maps φk,l = h−1
l ◦ hk, when defined,

are dianalytic and they satisfy the relation gl ◦ φk,l = gk and the compatibility

properties of Step 4. Let J ⊂ ∂X be an open arc contained in Dk ∩ Dl. Let
Jk, Jl ⊂ ∂D be its preimages under gk, gl, respectively. Then φk,l(z) accumulates
at Jl as z approaches Jk. By a refined version of Carathéodory’s extension theorem
[43, Thm. 3.1], φk,l extends to a homeomorphism from a neighborhood of Jk in D
onto a neighborhood of Jl in D. By Schwarz reflection, φk,l extends to a dianalytic
map from a neighborhood of Jk onto a neighborhood of Jl in the plane. Moreover,
the extension satisfies the compatibility properties of Step 4.

We denote by Dk the union of the unit disk D together with all open arcs Jk
arising as preimages under gk of open arcs J ⊂ ∂X ∩ Dk. As in Step 5, we can
glue together the sets Dk with the identifications z ∼ φk,l(z) to obtain a Klein
surface Z with boundary; specifically, the boundary arises from the arcs of Dk,
k ∈ N, lying on the unit circle. We also obtain a map F : Z → X, given in local
coordinates by gk|Dk

. By construction, F is surjective and F−1(∂X) = ∂Z. The
map F is continuous, proper, and cell-like, as can be seen by the local coordinate
representation. Indeed, recall that gk extends to a cell-like map from D onto Dk

that respects the interiors and boundaries. Moreover, F |∂Z is cell-like. Therefore,
by Theorem 6.2, Z is homeomorphic to X. Finally, we note that F : Z → X
is locally weakly K-quasiconformal. One now continues exactly as in the previous
proof to find a Riemannian metric g on Z, so that F : (Z, g) → X is globally weakly
K-quasiconformal. □

Proof of Theorem 1.2 in the general case. Suppose that X is homeomorphic to ˆ︁C,
D, or C. By Theorem 1.3, there exists a Riemannian surface (Z, g) homeomorphic
to X and a weakly (4/π)-quasiconformal map F : (Z, g) → X. By passing to
isothermal coordinates (Theorem 5.13), we may find a complex structure on Z
that is compatible with g. The classical uniformization theorem (Theorem 5.11)

implies that there exists a conformal map from ˆ︁C, D, or D or C, respectively onto
Z. By Lemma 5.14, this conformal map is also 1-quasiconformal. Therefore, by
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composing it with F , we obtain a weakly (4/π)-quasiconformal map from ˆ︁C,D, or
D or C, respectively onto Z. □

7. Reciprocity of metric surfaces

In this section we prove Theorem 1.8 together with Theorem 1.10. We recall
some definitions from the introduction. Let X be a metric surface of locally finite
Hausdorff 2-measure. A quadrilateral in X is a closed Jordan region Q together
with a partition of ∂Q into four non-overlapping edges ζ1, ζ2, ζ3, ζ4 ⊂ ∂Q in cyclic
order. When we refer to a quadrilateral Q, it will be implicitly understood that
there exists such a marking on its boundary. We define Γ(Q) = Γ(ζ1, ζ3;Q) and
Γ∗(Q) = Γ(ζ2, ζ4;Q). The metric surface X is reciprocal if there exist constants
κ, κ′ ≥ 1 such that

κ−1 ≤ modΓ(Q) ·modΓ∗(Q) ≤ κ′ for each quadrilateral Q ⊂ X(7.1)

and

lim
r→0

modΓ(B(a, r), X \B(a,R);X) = 0 for each ball B(a,R).(7.2)

A metric surface X is upper reciprocal if there exists κ′ ≥ 1 such that the right
inequality in (7.1) holds for each quadrilateral.

7.1. Further properties of weakly quasiconformal maps. We first discuss
some preliminary statements. Assume that X is a metric surface of locally finite
Hausdorff 2-measure. Let E ⊂ X be a Borel set and Γ be a curve family in X. We
say that a Borel function ρ : X → [0,∞] is admissible for Γ|E if ρ = 0 outside the
set E and ∫︂

γ

ρ ds ≥ 1

for all γ ∈ Γ. We define

mod(Γ|E) = inf
ρ

∫︂
ρ2 dH2

where the infimum is over all functions ρ that are admissible for Γ|E. The next
lemma gives a finer regularity property of weakly quasiconformal maps.

Lemma 7.1. Let X,Y be metric surfaces of locally finite Hausdorff 2-measure and
h : X → Y be a continuous, surjective, proper, and cell-like map. Let A ⊂ Y
be a closed set and suppose that h|X\h−1(A) : X \ h−1(A) → Y \ A is weakly K-

quasiconformal for some K ≥ 1. If H1(A) = 0, then

modΓ ≤ mod(Γ|X \ h−1(A)) ≤ Kmodh(Γ)

for every curve family Γ in X and h : X → Y is weakly K-quasiconformal. In
particular, this is true if the set A is closed and countable.

Proof. By Theorem 5.6, there exists a weak upper gradient g of h|X\h−1(A) such
that ∫︂

h−1(E)

g2 dH2 ≤ KH2(E)
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for each Borel set E ⊂ Y \A. In particular, this implies that∫︂
X\h−1(A)

(ρ ◦ h)g2 dH2 ≤ K

∫︂
Y \A

ρ dH2(7.3)

for each Borel function ρ : X \ h−1(A) → [0,∞].
Note that the first inequality in the statement of the lemma is trivial, since any

function that is admissible for Γ|X \ h−1(A) is also admissible for Γ. Thus, we
only show the second inequality. Let Γ be any curve family in X and ρ be an
admissible function for h(Γ) that vanishes on the set A; such a function exists since
H1(A) = 0. Since g is a weak upper gradient of h|X\h−1(A), by [40, Lemma 2.5

(i)], there exists an exceptional family of curves Γ0 in X \ h−1(A) with modΓ0 =
mod(Γ0|X\h−1(A)) = 0 such that for for all locally rectifiable curves γ inX\h−1(A)
outside Γ0 we have ∫︂

h◦γ
ρ ds ≤

∫︂
γ

(ρ ◦ h)g ds.

Moreover, if Γ1 is the family of paths in X that have a non-trivial subpath in Γ0,
then mod(Γ1|X \ h−1(A)) = 0.

Consider a path γ : [a, b] → X lying in Γ \ Γ1. Let [ai, bi], i ∈ I, be the closures
of the components of γ−1(X \ h−1(A)) and define γi = γ|[ai,bi]. No subpath of γi
lies in Γ0, hence ∫︂

h◦γi
ρ ds ≤

∫︂
γi

(ρ ◦ h)g ds

for all i ∈ I. It follows that

1 ≤
∫︂
h◦γ

ρ ds =

∫︂
h◦γ

ρχY \A ds =
∑︂
i∈I

∫︂
h◦γi

ρ ds ≤
∑︂
i∈I

∫︂
γi

(ρ ◦ h)g ds ≤
∫︂
γ

(ρ ◦ h)g ds.

Thus, (ρ ◦h)g is a Borel function that vanishes on the set h−1(A) and is admissible
for Γ \ Γ1|X \ h−1(A). It follows that

mod(Γ|X \ h−1(A)) = mod(Γ \ Γ1|X \ h−1(A))

≤
∫︂
X\h−1(A)

(ρ ◦ h)2g2 dH2 ≤ K

∫︂
Y

ρ2 dH2,

where the latter inequality follows from (7.3). Infimizing over all admissible func-
tions ρ gives the conclusion. □

The next proposition allows one to upgrade weak quasiconformality to quasicon-
formality.

Proposition 7.2 ([36, Prop. 3.3]). Let X be a metric surface of finite Hausdorff
2-measure that is homeomorphic to a topological closed disk and let h : D → X be
a weakly quasiconformal homeomorphism. If X is upper reciprocal, then h is a
quasiconformal homeomorphism, quantitatively.
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7.2. Proof of Theorems 1.8 and 1.10. The proofs of both theorems are given
at the end of the section. We first establish several preliminary statements.

Lemma 7.3. Let X be a metric surface of finite Hausdorff 2-measure that is home-
omorphic to a topological closed disk and let h : D → X be a weakly quasiconformal
map. If X is upper reciprocal and h−1(∂X) = ∂D, then h|∂D is a homeomorphism.

Proof. Suppose that h : D → X is a weakly K-quasiconformal map for some K ≥ 1
with h−1(∂X) = ∂D. Suppose to the contrary that there exists x0 ∈ ∂X such that
h−1(x0) is a non-degenerate closed arc E ⊂ ∂D. We let ζ1 be a non-degenerate
closed arc in ∂X \ {x0}. For 0 < r < dist(x0, ζ1), let ζ3(r) be the component of
∂X ∩B(x0, r) that contains x0. We let ζ2(r), ζ4(r) be the closures of the remaining
two arcs of ∂X and define Q(r) to be the quadrilateral X with edges ζ1, ζ2(r), ζ3(r),
and ζ4(r). By the weak quasiconformality of h, for all r < dist(x0, ζ1) we have

modΓ(Q(r)) = modΓ(ζ1, ζ3(r);X) ≥ modΓ(ζ1, {x0};X)

≥ K−1 modΓ(h−1(ζ1), E;D).

The latter quantity is positive, since h−1(ζ1) is disjoint from E = h−1(x0); for
example, this can be shown using the Loewner property of Euclidean space. We
claim that modΓ∗(Q(r)) → ∞ as r → 0, which contradicts the upper reciprocity
of X.

Let x1, x2 be the endpoints of the arc E. Let

δ0 = min{dist(E, h−1(ζ1)), |x1 − x2|/2}
and for 0 < t < δ0 and i = 1, 2, let γit be the intersection of the circle ∂B(xi, t)
with D, parametrized as a simple curve. For δ < δ0, let Γδ be the family of curves
arising as the concatenation of γ1t , γ

2
t , and a subarc of E, where t ∈ (δ, δ0).

We estimate mod(Γδ|D \ E) from below. Let ρ be a function that is admissible
for Γδ and vanishes on E. Then for t ∈ (δ, δ0) we have

1 ≤
∫︂
γ1
t

ρ ds+

∫︂
γ2
t

ρ ds ≤

(︄∫︂
γ1
t

ρ2 ds+

∫︂
γ2
t

ρ2 ds

)︄1/2

(4πt)1/2.

Integrating over t ∈ (δ, δ0) gives∫︂
ρ2 dH2 ≥ 1

4π
log

(︃
δ0
δ

)︃
.

Thus, mod(Γδ|D \ E) ≥ (4π)−1 log(δ0/δ).
For each fixed δ < δ0, if r is sufficiently small so that h−1(ζ3(r)) ⊂ Nδ(E), then

each path of h(Γδ) connects ζ2(r) and ζ4(r). Therefore, by Lemma 7.1

modΓ∗(Q(r)) = modΓ(ζ2(r), ζ4(r);X) ≥ modh(Γδ)

≥ K−1 mod(Γδ|D \ E) ≥ K−1(4π)−1 log(δ0/δ).

We first let r → 0 and then δ → 0 to obtain that modΓ∗(Q(r)) → ∞. □

Lemma 7.4. Let X be a metric surface of finite Hausdorff 2-measure that is
homeomorphic to a topological closed disk and let h : D → X be a weakly K-
quasiconformal map for some K ≥ 1. Let x0 ∈ int(X) be a point such that
h−1(x0) is a non-degenerate continuum. For each ε > 0 there exists a Jordan
region V ⊂ B(x0, ε) containing x0 and a weakly K-quasiconformal map f : D → V
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such that f−1(∂V ) = ∂D and f−1(x0) = B(0, 1−δ) for some δ ∈ (0, 1) that depends
on ε. Moreover, δ → 0 as ε→ 0.

Proof. Consider the distance function ψ(x) = d(x, x0) on int(X), which is Lipschitz
continuous. By the co-area inequality (Lemma 3.1), for a.e. t > 0 the level set
ψ−1(t) is a compact set of finite Hausdorff 1-measure. By [39, Thm. 1.5], for a.e.
t > 0, each connected component of ψ−1(t) is homeomorphic to a point or an
interval or S1.

Consider the function α(z) = d(h(z), x0) = ψ ◦ h(z) in D. Then α is continuous
and each weak upper gradient of h lying in L2(D) is also a weak upper gradient of
α. Thus, α lies in the classical Sobolev space W 1,2(D). By the co-area formula for
Sobolev spaces [33, 15], a.e. level set of α has finite Hausdorff 1-measure. Thus, as
above, for a.e. t > 0, each connected component of α−1(t) is homeomorphic to a
point or an interval or S1.

Let ε > 0 and we fix 0 < t < min{dist(x0, ∂X), ε} such that each component
of ψ−1(t) and of α−1(t) is homeomorphic to a point or an interval or S1. Note
that ψ−1(t) is a compact subset of int(X). By the last part of Theorem 6.3 we see
that α−1(t) = h−1(ψ−1(t)) is a compact subset of D. One component of ψ−1(t),
say J , separates x0 and ∂X, so it is homeomorphic to S1. By continuity, the
set h−1(J) separates the sets h−1(x0) and h−1(∂D). Moreover, by monotonicity,
h−1(J) is a continuum that is contained in a connected component of α−1(t). The
only possibility is that this connected component is homeomorphic to S1, since it
separates the plane, and h−1(J) is equal to that component.

Let V be the Jordan region bounded by J and U be the Jordan region bounded
by h−1(J). By continuity, the set h(U) is connected and contained in either V or
X \ V . Since U ∩ h−1(x0) ̸= ∅, we conclude that h(U) ⊂ V . Similarly, h(D \ U) is
connected and contained in either V or X \V . The fact that h is surjective implies
that h(U) = V and h(D\U) = X\V . In particular, h−1(V ) = U . Consider the map
h : U \ h−1(x0) → V \ {x0} and note that it satisfies the assumptions of Theorem
6.2. Therefore, U \ h−1(x0) is homeomorphic to V \ {x0}, and in particular, it is a
topological annulus.

Consider a conformal map φ : A(0; 1 − δ, 1) → U \ h−1(x0) for some δ ∈ (0, 1)
such that φ(z) → ∂U as z → ∂D; here A(0; 1 − δ, 1) denotes the annulus {z ∈
C : 1 − δ < |z| < 1}. Observe that as ε → 0, the region V approaches x0,
so the region U approaches h−1(x0) in the Hausdorff sense. This implies that
modΓ(∂U, h−1(x0);D) approaches ∞ (e.g. from the Loewner property of Euclidean
space), thus by conformality, the quantity

mod(∂D, ∂B(0, 1− δ);C) = 2π(log(1− δ)
−1

)−1

approaches ∞. Therefore, δ → 0.
Since ∂U is a Jordan curve, by a refined version of Carathéodory’s extension

theorem [43, Thm. 3.1], φ extends to a homeomorphism from D \ B(0, 1− δ) onto
U \h−1(x0). Consider the map f = h◦φ, which extends to a continuous, surjective,
and monotone map from D onto V such that f−1(∂V ) = ∂D and f−1(x0) = B(0, 1−
δ). Moreover, f is weakly K-quasiconformal in A(0; 1− δ, 1) = D \ f−1(x0). From
Lemma 7.1 we see that f is weakly K-quasiconformal in D. Finally, by Corollary
5.8, f is weakly K-quasiconformal on D. □

Lemma 7.5. Let X be a metric surface of finite Hausdorff 2-measure that is home-
omorphic to a topological closed disk and let h : D → X be a weakly quasiconformal
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map. If int(X) is upper reciprocal, then h|h−1(int(X)) : h
−1(int(X)) → int(X) is a

homeomorphism.

Proof. Let h : D → X be a weakly K-quasiconformal map for some K ≥ 1. By the
invariance of domain theorem, it suffices to show that h−1(x0) is a singleton for
each x0 ∈ int(X). Suppose that h−1(x0) is a non-degenerate continuum for some
x0 ∈ int(X). By Lemma 7.4, for a sequence of arbitrarily small δ > 0 there exists
a Jordan region Vδ ⊂ Vδ ⊂ int(X) containing x0 and a weakly K-quasiconformal
map fδ : D → Vδ such that f−1

δ (∂Vδ) = ∂D and f−1(x0) = B(0, 1− δ). By Lemma

7.3, since Vδ is upper reciprocal, f |∂D : ∂D → ∂Vδ is a homeomorphism.
Consider a partition of ∂D into four non-overlapping arcs of equal length that

form a quadrilateral Q with edges ζ1, . . . , ζ4. We claim that

mod(Γ(Q)|D \B(0, 1− δ)) = mod(Γ∗(Q)|D \B(0, 1− δ)) → ∞(7.4)

as δ → 0. The equality follows immediately by symmetry. For the limiting state-
ment, let ρ be an admissible function for Γ(Q) that vanishes on B(0, 1−δ). Without
loss of generality, the edge ζ1 (resp. ζ3) of Q lies in the right (resp. left) half-plane

and is symmetric with respect to the x-axis. For t ∈ [−a, a], where a =
√
2/2, the

path γt that is the intersection of the horizontal line y = t with the disk D joins ζ1
and ζ3. Thus, ∫︂

γt

ρ ds ≥ 1

for all t ∈ [−a, a]. Integrating, gives

2a ≤
∫︂
D\B(0,1−δ)

ρ dH2 ≤
(︃∫︂

ρ2 dH2

)︃1/2

(π − π(1− δ)2)1/2.

Therefore,

mod(Γ(Q)|D \B(0, 1− δ)) ≥ 2π−1δ−1(2− δ)−1.

This shows the claim.
Since fδ is a homeomorphism on ∂D, the image of Q determines a quadrilateral

Q(δ) in X with Γ(Q(δ)) ⊃ fδ(Γ(Q)). By the weak quasiconformality of fδ and
Lemma 7.1, we have

modΓ(Q(δ)) ≥ K−1 mod(Γ(Q)|D \B(0, 1− δ))

which converges to ∞ as δ → 0 by (7.4). Similarly modΓ∗(Q(δ)) → ∞ as δ → 0.
This contradicts the upper reciprocity of int(X). □

Corollary 7.6. Let X be a metric surface of finite Hausdorff 2-measure that is
homeomorphic to a topological closed disk such that int(X) is upper reciprocal. Then
there exists a weakly quasiconformal map h : D → X such that h|D : D → int(X) is
a quasiconformal homeomorphism.

Proof. By Theorem 1.2 there exists a weakly quasiconformal map h : D → X.
By Lemma 7.5, h|h−1(int(X)) is a homeomorphism onto int(X). In particular,

h−1(int(X)) is simply connected and by the Riemann mapping theorem there exists
a conformal map φ : D → h−1(int(X)). The composition f = h ◦ φ : D → int(X)
is a weakly quasiconformal homeomorphism. By Proposition 7.2, since int(X) is
upper reciprocal, f is K-quasiconformal in each compact disk B(0, r), 0 < r < 1,
for some K ≥ 1. By the locality of quasiconformality, as given by Theorem 5.6, we
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see that f : D → int(X) is a K-quasiconformal homeomorphism. By Theorem 5.9,
f extends to a weakly K-quasiconformal map from D onto X. □

We are finally ready for the proofs of Theorem 1.8 and Theorem 1.10.

Proof of Theorem 1.8. Suppose that X is upper reciprocal. It suffices to show that
each closed Jordan region Y ⊂ X is quasiconformally equivalent to D. By Corollary
7.6, there exists a weakly quasiconformal map h : D → Y such that h|D : D →
int(Y ) is a homeomorphism. By Lemma 7.3, h : D → Y is a homeomorphism. By
Proposition 7.2, h is quasiconformal, as desired. □

Proof of Theorem 1.10. Suppose that int(X) is upper reciprocal and (7.2) holds at
each point of ∂X. By Theorem 1.8, int(X) is reciprocal and (7.2) holds at each
point of X. As in the above proof, it suffices to show that each closed Jordan region
Y ⊂ X is quasiconformally equivalent to D. By Corollary 7.6, there exists a weakly
quasiconformal map h : D → Y such that h|D : D → int(Y ) is a quasiconformal
homeomorphism; alternatively, since int(Y ) is reciprocal, one can invoke directly
Rajala’s uniformization theorem, Theorem 1.5, in combination with Theorem 5.9
to obtain the map h. A result of Ikonen [22, Prop. 1.2] now asserts that if h|D : D →
int(Y ) is a quasiconformal homeomorphism and (7.2) holds at each point of ∂Y ,
then h extends to a quasiconformal homeomorphism from D onto Y , as desired. □

8. Examples

Example 8.1 (Approximating the unit disk with cracked surfaces). Let X be the
open unit disk equipped with the Euclidean metric. We present examples of se-
quences of metric surfaces {Xn}n∈N converging to X for which all the conclusions
of Theorem 1.1 are satisfied except for the approximately isometric retractions in
(3). In each case, the failure of condition (3) prevents the sequence of uniformizing
conformal maps from D onto Xn from converging to a conformal map onto X.

As the first example, we let Xn = D \ {reiθ : |θ| ≤ π
2n , 1/2 ≤ r ≤ 1} for all n ∈ N

and equip Xn with the ambient Euclidean metric. Clearly (3) fails for the sequence
Xn, n ∈ N, while the other conclusions of Theorem 1.1 remain true. For this reason,
the sequence of conformal maps hn : D → Xn, normalized so that hn(0) = 0 and
h′n(0) > 0, does not subconverge to a (weakly) conformal map from D onto X, as
it would in the presence of condition (3), but rather to a conformal map from D
onto a slit disk (e.g. by Carathéodory’s kernel convergence theorem [42, Chapter I,
Theorem 1.8]).

For our second example, we let S(φ, n) = {reiθ : |θ − φ| ≤ π
2n , 1/2 ≤ r ≤ 1}

and Yn =
⋃︁n
k=1 S(2kπ/n, n). Define Xn to be the surface D \ Yn, again equipped

with the ambient Euclidean metric. Although Xn converges to D in the Gromov–
Hausdorff sense, the sequence of conformal maps hn : D → Xn such that hn(0) = 0
subconverges locally uniformly in D but not uniformly to a conformal map from
D onto B(0, 1/2); this can be justified using Carathéodory’s kernel convergence
theorem.

By enlarging the cracks in the previous example, one can even have that the
areas of Xn tend to 0 and the conformal maps hn converge to a constant map.
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Example 8.2 (Areas need not converge). We present an example showing that in
Theorem 1.1 the areas of the surfaces Xn do not necessarily converge to the area of
X. Thus, we cannot expect that conclusion (2) can be strengthened to convergence
or that the constant K can be equal to 1.

The proof relies on the next theorem, which is a variant of the classical Besicov-
itch inequality and is proved exactly in the same way; see [41, Thm. 13.11] or [8,
Sect. 5.6].

Theorem 8.1. Let Y be a metric space homeomorphic to the unit square [0, 1]2

such that the metric of Y outside finitely many points is locally isometric to a
Riemannian metric. If the distances between opposite sides of Y are at least 1,
then H2(Y ) ≥ 1.

Let X be the closed unit square in R2 with the ℓ∞ metric, and let {Xn}∞n=1

be a sequence of polyhedral surfaces homeomorphic to X that are equipped with
a metric that is locally isometric to the polyhedral length metric. Let εn > 0
be a sequence converging to 0. Suppose that there exist εn-isometric sequences
fn : Xn → X and Rn : X → fn(Xn) such that each fn is a topological embedding
and each Rn is a retraction. We claim that

lim inf
n→∞

H2(Xn) ≥ 1 =
4

π
H2(X).

See [25, Lemma 6] or [13, pp. 2–3] for the equality on the right-hand side.
For each large n ∈ N, the retraction Rn induces a subdivision of fn(∂Xn), and

thus of ∂Xn, into four non-overlapping arcs, corresponding to the sides of the square
X. The distances of opposite sides of fn(∂Xn) is at least 1−εn. Thus, the distance
of opposite sides of Xn is at least 1− 2εn. The metric of Xn is locally isometric to
a flat Riemannian metric outside the vertices. Therefore, if we rescale the metric
of Xn by (1− 2εn)

−1 and apply Theorem 8.1, we obtain

H2(Xn) ≥ (1− 2εn)
2.

Finally, we let n→ ∞ to obtain the desired conclusion.

Example 8.3 (Condition (1.4) is strictly weaker than reciprocity). We show that
there exists a metric surface X of locally finite Hausdorff 2-measure that satisfies
(1.4) but is not reciprocal.

Ahlfors–Beurling [1, Thm. 16] construct a Cantor set E ⊂ C of positive area with
the property that for each point a ∈ E there exists a sequence of nested topological
annuli An ⊂ C \ E, n ∈ N, with disjoint closures, each surrounding a, with the
property that

∞∑︂
n=1

1

Mn
= ∞,(8.1)

where Mn is the modulus of the family of curves joining the boundary components
of An in An. Moreover, by the construction, the annuli An converge to the point
a; this is also implied by the divergence of the sum above.

For x, y ∈ C, we let

d(x, y) = inf
γ

∫︂
γ

χC\E ds,
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where the infimum is taken over all rectifiable paths joining x, y. By [40, Prop. 8.1],
(C, d) is a length space with locally finite Hausdorff 2-measure, homeomorphic to
C. We denote by X this metric space. Since E has positive Lebesgue measure, X
is not reciprocal; this can be shown by following the argument of [44, Example 2.1].

We will show that for each point of X, condition (1.4) is true. This is trivially
true for points of X \ E, since the identity map from (C \ E, | · |) to (X \ E, d) is
locally isometric and thus preserves modulus.

Next, fix a point a ∈ E and consider the corresponding annuli An, n ∈ N, as
above. We fix R > 0. Since the annuli An converge to a, by discarding finitely
many annuli, we may assume that An ⊂ Bd(a,R) for all n ∈ N. Next, we fix N ∈ N.
Then, for all sufficiently small r > 0 the closed ball Bd(a, r) is disjoint from AN
and is surrounded by AN .

For i ∈ {1, . . . , N}, let ρi be an admissible function for the modulus of curves
joining the boundary components of Ai, such that∫︂

ρ2i dH2
|·| ≤ 2Mi.(8.2)

We may take ρi to be supported in Ai, so the functions ρi, i ∈ {1, . . . , N}, have
disjoint supports. Now, we define

ρ =

N∑︂
i=1

ciρi,

where ci =M−1
i (
∑︁N
j=1M

−1
j )−1.

Each curve γ joining X \ Bd(a,R) to Bd(a, r) has disjoint subpaths γi, i ∈
{1, . . . , N}, such that |γi| ⊂ Ai and γi joins the boundary components of Ai. There-
fore, ∫︂

γ

ρ ds ≥
N∑︂
i=1

ci

∫︂
γi

ρi ds ≥
N∑︂
i=1

ci = 1.

This shows that ρ is admissible for Γ(Bd(a, r), X \ Bd(a,R);X). Therefore, by
(8.2), we have

modΓ(Bd(a, r), X \Bd(a,R);X) ≤
∫︂
ρ2 dH2

d =

N∑︂
i=1

c2i

∫︂
ρ2i dH2

|·|

≤ 2

N∑︂
i=1

c2iMi = 2

⎛⎝ N∑︂
j=1

1

Mj

⎞⎠−1

.

The latter converges to 0 as N → ∞ by (8.1). Thus, letting first r → 0 and then
N → ∞ shows that (1.4) holds at the point a.

Summarizing, the construction gives a surface X that is homeomorphic to C
and is locally isometric to a planar domain outside a Cantor set E. Consider a
Jordan curve J in X such that E ⊂ J ; the existence of J follows from the tameness
of planar Cantor sets [38, Sect. 13, Thm. 7, p. 93]. Then J separates X into two
surfaces X1, X2 such that J is their common boundary. The interior of each of these
surfaces is locally isometric to a planar domain so it is reciprocal. By Theorem 1.10,
both X1 and X2 are reciprocal. Therefore, the constructed surface can be written
as the union of two reciprocal surfaces, as claimed in Proposition 1.11.
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H(J1)H(J2)

R1

Figure 8.1. The set F .

Example 8.4 (Condition (1.4) can fail on a continuum). We show that there exists
a metric surface X of locally finite Hausdorff 2-measure that is homeomorphic to
C such that (1.4) fails for all points in a non-degenerate continuum E ⊂ X.
Construction of topological model. Let C ⊂ [0, 1] be a Cantor set containing
the points 0, 1. For each component J of [0, 1] \C consider a positive number η(J)
and two vertical line segments of length 2η(J) passing through the endpoints of
J and symmetric with respect to the x-axis. Let H(J) be the union of these two
line segments with J × {0}. We choose the numbers η(J) so that for each δ > 0
there are only finitely many components J of [0, 1] \C with η(J) > δ; later we will
make a specific choice. We now define F = (C × {0}) ∪

⋃︁
J H(J) and observe that

H2
|·|(F ) = 0; see Figure 8.1.

We define an equivalence relation R on C that is trivial outside
⋃︁
J H(J) and

collapses each H-shape H(J) to a point. In particular, each equivalence class
does not separate the plane. It is easy to see that the relation R is upper semi-
continuous (that is, the limit points of every two sequences of equivalent points
are equivalent). If Y = C/R is the quotient space and hY : C → Y is the natural
projection, then Y is homeomorphic to C by Moore’s decomposition theorem [11,
p. 3], and hY is continuous, surjective, and monotone. The set hY (F ) is a non-
degenerate continuum in Y and each point of hY (F ) has a preimage that is either
an H-shape or a point of C × {0}. We will realize this topological model with a
metric.
Construction of metric space X. We require that the Cantor set C has the
additional property that H1(C∩I) > 0 for each open interval I ⊂ R intersecting C;
later we will specify even further the Cantor set. Define the quotient pseudometric
dR on C by

dR(x, y) = inf

{︄
k∑︂
i=1

|pi − qi| : p1 = x, qk = y, k ∈ N

}︄
,
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where the infimum is taken over all choices of {pi}ki=1 and {qi}ki=1 such that qi ∼R
pi+1 for i ∈ {1, . . . , k − 1}. Note that dR(x, y) = 0 if x ∼R y and dR(x, y) > 0 if
x /∈ F and y ̸= x.

We will show that the equivalence relation dR = 0 coincides with R. For this,
it suffices to show that if x, y ∈ F and x ̸∼R y, then dR(x, y) > 0. For a point
z ∈ C, denote by ˜︁z its projection onto the x-axis. If x ̸∼R y and x, y ∈ F , then˜︁x ̸= ˜︁y. Without loss of generality, suppose that ˜︁x < ˜︁y. Let {pi}ki=1 and {qi}ki=1

be points such that p1 = x, qk = y, and qi ∼R pi+1 for i ∈ {1, . . . , k − 1}. Note
that the polygonal path joining p1 to q1 to p2 to q2 to . . . to qk projects to a line
segment in the x-axis that covers the interval [˜︁x, ˜︁y]. Moreover, since qi ∼R pi+1, we
see that qi and pi+1 lie in the same H-shape or qi = pi+1. Hence, the projection of
the segment from qi to pi+1 intersects C in at most two points. We conclude that
the intervals from ˜︁pi to ˜︁qi, i ∈ {1, . . . , k}, cover the set C ∩ [˜︁x, ˜︁y] except for finitely
many points. Therefore,

k∑︂
i=1

|pi − qi| ≥
k∑︂
i=1

|˜︁pi − ˜︁qi| ≥ H1(C ∩ [˜︁x, ˜︁y]).
Note that the latter is positive, since x ̸∼R y and in particular they do not lie in
the same H-shape. It follows that

dR(x, y) ≥ H1(C ∩ [˜︁x, ˜︁y]) > 0.

This shows the claim. In fact, the reverse inequality also holds. That is, if x, y ∈ F ,
then

dR(x, y) = H1(C ∩ [˜︁x, ˜︁y]).
This can be seen by connecting the projections ˜︁x and ˜︁y with a specific polygonal
path contained in [0, 1]× {0}.

Consider the metric space X = C/dR with metric d = dR and let h : C → X
be the projection map. Since the equivalence relation dR = 0 coincides with R,
we conclude that X is homeomorphic to Y = C/R and thus it is homeomorphic to
C; see [8, Exercise 3.1.13, p. 63]. Observe that h is 1-Lipschitz continuous. Thus,
X has locally finite Hausdorff 2-measure. Moreover, h is surjective, proper, and
cell-like. We claim that h is weakly 1-quasiconformal. For this, by Theorem 5.6
it suffices to see that the function g = 1 is an upper gradient of h because h is
1-Lipschitz, and has the property that∫︂

h−1(A)

g2 dH2
|·| ≤ H2

d(A)

for each Borel set A ⊂ X. The latter, in fact, holds trivially with equality, because
h is locally isometric outside F and H2

|·|(F ) = H2
d(h(F )) = 0 by the 1-Lipschitz

property of h.
Failure of condition (1.4). Finally, we verify that (1.4) fails at each point of the
set E = h(F ). Since h is weakly quasiconformal, this is immediate for points whose
preimage is an H-shape, and in particular has positive diameter. We have to argue
for the points whose preimage is a singleton in C × {0}. To achieve this, we will
give a specific construction of the Cantor set C and a specific choice of the numbers
η(J).

We construct the fat Cantor set C in the standard way. Namely, we call I0 = [0, 1]
an interval of level 0 and once the intervals of level n − 1 have been defined, we
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H(J1) H(J2)H(J3)

H(J4)

γ1

γ2

γ3

Figure 8.2. A depiction of the paths γn in the plane. In fact, the
paths are taken in the space X.

remove a middle interval of relative length an ∈ (0, 1) from each interval of level n−1
and obtain 2n intervals of level n. The Cantor set C is defined as the intersection
in n ∈ N ∪ {0} of the unions of all intervals of level n. If

∏︁∞
n=1(1 − an) > 0, or

equivalently if
∑︁∞
n=1 an < ∞, then the Cantor set C has positive measure. We

choose the sequence {an}n∈N arbitrarily so that C has positive measure. If In−1

is an interval of level n − 1, then H1(In−1) ≃ 2−n+1 ≃ 2−n. If Jn is a middle
interval removed from In−1 at the next stage, we define η(Jn) = 1/n. To simplify
the notation and avoid taking product sets, we consider the real line R as a subset
of the plane C, identified with R× {0}.

Let x0 ∈ C and for each n ∈ N∪{0} consider the interval In of level n containing
x0, so that {x0} =

⋂︁∞
n=0 In. Denote by Jn the middle interval removed from In−1,

n ∈ N. For n ∈ N consider the rectangle Rn in the upper half-plane with height
η(Jn+1), whose vertical sides are contained inH(Jn) andH(Jn+1), and one of whose
horizontal sides coincides with a remaining interval of level n+1; this interval might
or might not be In+1. See Figure 8.1 for an illustration. Note that the modulus in C
of the family of curves joining the vertical sides of Rn is Mn = η(Jn+1)

H1(In+1)
≃ n−12n.

By the weak 1-quasiconformality of h, the modulus of curves in X joining the
points h(H(Jn)) and h(H(Jn+1)) is at least Mn. Observe that the sequence of
points h(H(Jn)), n ∈ N, converges to h(x0) as n→ ∞.

Suppose that x0 is not an endpoint of a complementary interval of the Cantor
set C. We fix a small radius R > 0 so that Bd(h(x0), R) does not contain the
point h(H(J1)). Let r < R be arbitrary and fix m ∈ N such that h(H(Jm+1)) ∈
Bd(h(x0), r). Let ρ ∈ L2(X) be an admissible function for Γ(Bd(h(x0), r), X \
Bd(h(x0), R);X). For each n ∈ N we may find a path γn connecting h(H(Jn)) to
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h(H(Jn+1)) with ∫︂
γn

ρ ds ≤ 2M−1/2
n ∥ρ∥L2(X).

See Figure 8.2 for a depiction. The concatenation of γ1, . . . , γm gives a rectifiable
path joining the point h(H(J1)) to h(H(Jm+1)) and thus lying in Γ(Bd(h(x0), r), X\
Bd(h(x0), R);X). Therefore, by the admissibility of ρ, we have

1 ≤
m∑︂
n=1

∫︂
γn

ρ ds ≤ 2

m∑︂
n=1

M−1/2
n ∥ρ∥L2(X) ≃ ∥ρ∥L2(X)

m∑︂
n=1

√
n2−n/2 ≲ ∥ρ∥L2(X).

This implies that

modΓ(Bd(h(x0), r), X \Bd(h(x0), R);X) ≳ 1

for all sufficiently small r > 0. This completes the proof.
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