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UNIFORM REGULARITY FOR DEGENERATE ELLIPTIC EQUATIONS

IN PERFORATED DOMAINS

ZHONGWEI SHEN AND JINPING ZHUGE

Abstract. This paper is concerned with a class of degenerate elliptic equations with rapidly

oscillating coefficients in periodically perforated domains, which arises in the study of spec-

trum problems for uniformly elliptic equations in perforated domains. We establish a quan-

titative convergence rate and obtain the uniform weighted Lipschitz and W
1,p estimates.

1. Introduction

In this paper we consider a class of degenerate elliptic operators with rapidly oscillating

coefficients,

Lε = −div(φ2ε(x)Aε(x)∇), (1.1)

in a periodically perforated domain Ωε, where φε(x) = φ(x/ε) is a periodic scalar function that

vanishes on the boundaries of holes and Aε(x) = A(x/ε) a periodic matrix-valued function.

The parameter ε > 0 is assumed to be small. The operator Lε arises in the study of the

asymptotic expansions of the spectrum for the uniformly elliptic operator −div(Aε(x)∇) in

perforated domains; see [15] and [11, Chapter III].

To describe Ωε, let Y = (−1/2, 1/2)d be a unit cell in R
d and {τi : i = 1, 2, . . . ,m} a finite

number of mutually disjoint open sets (holes) in Y with smooth and connected boundaries.

We assume that dist(τi, ∂Y ) ≥ c0 and dist(τi, τj) ≥ c0 for i 6= j, where c0 > 0. Let

T =
m⋃

i=1

τi and Tε =
⋃

z∈Zd

ε(z + T ).

For a bounded domain Ω in R
d and 0 < ε < 1, we define

Ωε = Ω \ Tε = Ω \
⋃

z∈Zd

ε(z + T ).

Throughout the paper we shall assume that

dist(∂Ω, ∂Tε) ≥ c0 (1.2)

for some c0 > 0. As a result, ∂Ωε = ∂Ω∪Γε, where Γε = Ω∩ ∂Tε and dist(∂Ω,Γε) ≥ c0. The

restrictive geometric assumption (1.2) is essential for the uniform regularity near the boundary
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∂Ω. The typical examples in applications satisfying this assumption include rectangular

domains with sides parallel to the coordinate planes.

Next, we describe the conditions on φ and A. Throughout the paper, we assume that

φ = φ(y) and A = A(y) are Y -periodic, and that the matrix A = A(y) = (aij(y))d×d is

symmetric, Hölder continuous, and uniformly elliptic, i.e.,

〈Aξ, ξ〉 ≥ µ|ξ|2 for any ξ ∈ R
d, (1.3)

for some µ > 0. We assume that φ(x) degenerates as a distance function from the holes, i.e.,

φ(y) ≈ dist(y, T ) for y ∈ Y, (1.4)

where the notation a ≈ b indicates that a is comparable to b in the sense that cb ≤ a ≤ Cb for

some universal constants c, C > 0. It is worth noting that φ2 fails to be a Muckenhoupt A2

weight. We refer the reader to [7, 16, 14, 5, 6] and references therein for regularity estimates

of degenerate or singular elliptic equations. We further assume that φ ∈ C1,α(Y \T ) for some

α > 0 and that

‖div(A∇φ)‖Lp0 (Y \T ) ≤ C (1.5)

for some p0 > d (this is needed for the small-scale Lipschitz estimate). Clearly, this condition

is satisfied if A and φ are sufficiently smooth. Another example is the case that φ is the ground

state for the Schrödinger operator −div(A∇)+V in Y \T with periodic conditions on ∂Y and

Dirichlet condition on ∂T , where V ∈ Lp0(Y \ T ) for some p0 > d. In the application to the

spectral problems (see [15, 11] and (1.11) below), φ is the principal Dirichlet eigenfunction

of −div(A∇), which satisfies both (1.4) and (1.5).

The following two theorems are the main results of this paper.

Theorem 1.1. Suppose that uε is the weak solution of

Lε(uε) = φεf in Ωε and uε = 0 on ∂Ω. (1.6)

(i) If Ω is a C1,α domain and p > d, then

‖φε∇uε‖L∞(Ωε) ≤ Cp‖f‖Lp(Ωε). (1.7)

(ii) If Ω is C1 or convex and 1 < p < d, 1
p∗ = 1

p − 1
d , then

‖φε∇uε‖Lp∗ (Ωε) ≤ Cp‖f‖Lp(Ωε). (1.8)

In both cases, the constant Cp is independent of ε ∈ (0, 1).

Theorem 1.2. Suppose that Ω is a C1 or convex domain and uε the weak solution of

Lε(uε) = div(φεf) + F in Ωε and uε = 0 on ∂Ω. (1.9)

Then for 1 < p <∞,

‖φε∇uε‖p ≤ Cp {‖f‖p + ‖F‖p} , (1.10)

where Cp is independent of ε ∈ (0, 1).
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Thanks to the Lax-Milgram Theorem, the boundary value problems (1.6) and (1.9) are

solvable in the energy space Vε; see Section 3. We point out that no boundary condition

is needed on Γε = ∂Ωε \ ∂Ω due to the strong degeneracy of the coefficients near Γε. The

regularity results in the main theorems can be applied to the Dirichlet eigenfunctions of the

operator −div(Aε∇) in the perforated domain Ωε; see [11]. Indeed, a computation shows

that if −div(Aε∇uε) = λεuε in Ωε and uε = φεvε, where φ is the principal eigenfunction of

−div(A∇) in Y \ T with the principal eigenvalue λ, then

−div(φ2εAε∇vε) = (λε − ε−2λ)φ2εvε in Ωε. (1.11)

In [15] the observation above was used to show that λkε = ε−2λ+ µk0 + o(1) as ε → 0, where

λkε is the kth Dirichlet eigenvalue of −∆ in Ωε and µk0 the kth Dirichlet eigenvalue for a

second-order elliptic operator with constant coefficients in Ω. Using some uniform estimates

for eigenfunctions, it was proved in [11] that

|λkε − ε−2λ− µk0| ≤ Cε,

for sufficiently small ε.

The proofs of Theorem 1.1 and Theorem 1.2 boil down into estimates at two different

scales. At small scales (below ε), we need to establish the weighted Lipschitz and W 1,p

estimates in a cell with ε = 1. Due to the strong degeneracy of the coefficients (see (1.4)),

the classical Schauder estimates as well as those for degenerate equations in the existing

literature cannot apply directly. Instead, we use a technique of Moser’s iteration to establish

an unweighted L∞ estimate for the equation −div(φ2A∇u) = φF . A transformation, which

reduces the degenerate equation to a nondegenerate equation, is then used to prove the

weighted Lipschitz estimates. This gives us the small-scale Lipschitz estimates and therefore

the small-scale W 1,p estimates by a real-variable argument. At large scales, we first establish

a quantitative convergence rate and use it to obtain the uniform estimates above the ε-scale.

A careful analysis involving the harmonic extension and weighted Sobolev inequalities is

carried out to handle the difficulties caused by the degeneracy of the coefficients and the

holes. Finally, the excess decay iteration and the real-variable argument, as standard tools in

the homogenization theory, are used to establish the weighted Lipschitz estimate and W 1,p

estimate, respectively. For large-scale regularity estimates for uniformly elliptic operators

with oscillating coefficients, we refer to the reader to [3, 10, 2, 1, 8] and references therein.

The rest of the paper is organized as follows. In Section 2, we introduce the weighted

Sobolev spaces and establish some useful inequalities of independent interest. In Section 3,

we establish the Lipschitz estimate at small scales for the degenerate elliptic equations. In

Section 4, we use the techniques of homogenization to derive a quantitative convergence rate

and a local first-order approximation. In Section 5, we establish the large-scale Lipschitz

estimate and prove Theorem 1.1 part (i). In Section 6, we establish both the small-scale and

large-scale W 1,p estimates and prove Theorem 1.2 and Theorem 1.1 part (ii). In Appendix,

we list some properties of the smoothing operators and nontangential maximal functions that

have been used in this paper.
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2. Inequalities in weighted Sobolev spaces

In this section, we establish several useful inequalities in φ- or φε-weighted Sobolev spaces

in the Lp settings. Some of the inequalities in the case p = 2 may be found in [15, 11].

Recall that Y∗ = (−1/2, 1/2)d \ T . For 1 ≤ p <∞, let

Lp
φ(Y∗) =

{
v ∈ L1

loc(Y∗) : vφ ∈ Lp(Y∗)
}
,

Lp
φε
(Ωε) =

{
v ∈ L1

loc(Ωε) : vφε ∈ Lp(Ωε)
}
.

Let W 1,p
φ (Y∗) be a φ-weighted Sobolev space defined by

W 1,p
φ (Y∗) =

{
v ∈ L1

loc(Y∗) : v ∈ Lp
φ(Y∗) and ∇v ∈ Lp

φ(Y∗)
d
}
.

Similarly, define the φε-weighted Sobolev space in Ωε by

W 1,p
φε

(Ωε) =
{
v ∈ L1

loc(Ωε) : v ∈ Lp
φε
(Ωε) and ∇v ∈ Lp

φε
(Ωε)

d
}
.

Let W 1,p
φε,0

(Ωε) denote the subspace of W 1,p
φε

(Ωε) that contains the functions vanishing on ∂Ω.

A key technique for studying the weighted Sobolev spaces is the harmonic extension. For

each hole τi ⊂ T , let τ ′i be the extended smooth hole such that τi ⊂ τ ′i and

dist(τ ′i , τ
′
j) ≥ c0/4, dist(τ ′i , ∂Y ) ≥ c0/4, dist(∂τ ′i , τi) ≥ c0/4.

Let T ′ = ∪m
i=1τ

′
i ⊂ Y be the union of the extended holes and Y ′

∗ = (−1/2, 1/2)d \ T ′. The

harmonic extension operator

E : W 1,p(Y ′
∗) →W 1,p(Y )

is a linear operator defined as follows: for every f ∈ W 1,p(Y ′
∗), E(f) = f in Y ′

∗ , ∆E(f) = 0

in T ′ and E(f) = f on ∂T ′ in the sense of trace. In this case, we say E(f) is the harmonic

extension of f from Y ′
∗ to Y .

Lemma 2.1. For each 1 < p < ∞, the operator E : W 1,p(Y ′
∗) → W 1,p(Y ) is bounded.

Moreover,

‖∇E(f)‖Lp(Y ) ≤ C‖∇f‖Lp(Y ′

∗
).

Proof. Let f ∈ W 1,p(Y ′
∗). Since T is C1, the classical extension theorem in Sobolev spaces

implies that there exists f̃ ∈ W 1,p(Y ) such that f̃ = f in Y ′
∗ . Moreover, ‖f̃‖W 1,p(Y ) ≤

C‖f‖W 1,p(Y ′

∗
). Let uf = E(f) be the solution of the Dirichlet problem −∆uf = 0 in T ′ and

uf = f on ∂T ′ in the sense of trace. Note that vf := uf − f̃ satisfies −∆vf = ∇ · ∇f̃ in T ′

and vf = 0 on ∂T ′. Now the W 1,p estimate leads to

‖∇vf‖Lp(T ′) ≤ C‖∇f̃‖Lp(T ′) ≤ C‖f‖W 1,p(Y ′
∗
).
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By the triangle inequality,

‖∇uf‖Lp(T ′) ≤ ‖∇vf‖Lp(T ′) + ‖∇f̃‖Lp(T ′) ≤ C‖f‖W 1,p(Y ′

∗
). (2.1)

Note that uf is the harmonic extension of f from Y ′
∗ to Y . Then for any constant L, uf −L

is the harmonic extension of f − L. Let L =
ffl

Y ′

∗

f and apply (2.1) to f − L, we have

‖∇uf‖Lp(T ′) ≤ C‖f − L‖W 1,p(Y ′
∗
) ≤ C‖∇f‖Lp(Y ′

∗
),

where we have used the fact that Y ′
∗ is connected. Since E(f) = f in Y ′

∗ and E(f) = uf in

T ′, the last inequality yields the desired estimate. �

The next two lemmas give Sobolev embedding theorems in the weighted spaces W 1,p
φ (Y∗).

Lemma 2.2. Let 1 ≤ p <∞. Then there exists a constant C such that

‖u‖Lp(Y∗) ≤ C‖φ∇u‖Lp(Y∗) + C‖u‖Lp(Y ′
∗
)

for any u ∈W 1,p
φ (Y∗).

Proof. Since φ(x) ≈ dist(x, T ), the inequality is essentially a version of Hardy’s inequality.

We give an elementary proof. By flatting the boundary of each hole locally, it suffices to

show a one-dimensional estimate:
ˆ 1

2

0
|v(t)|pdt ≤ C

ˆ 1

0
|tv′(t)|pdt+C

ˆ 1

1
2

|v(t)|pdt. (2.2)

Let η be a smooth cutoff function such that η = 1 in [0, 1/2], η(1) = 0 and |η′| ≤ 3. Then for

t ∈ (0, 1/2),

|v(t)|p =

∣∣∣∣
ˆ 1

t
(|v(s)|pη(s))′ds

∣∣∣∣ ≤ C

ˆ 1

t
|v(s)|p−1|v′(s)|ds+ C

ˆ 1

1
2

|v(s)|pds.

Thus, by the Fubini theorem and the Young inequality,

ˆ 1
2

0
|v(t)|pdt ≤ C

ˆ 1

0
|v(s)|p−1s|v′(s)|ds + C

ˆ 1

1
2

|v(s)|pds

≤ 1

2

ˆ 1

0
|v(s)|pds +C

ˆ 1

0
|sv′(s)|pds+ C

ˆ 1

1
2

|v(s)|pds.

This gives the desired inequality (2.2). �

For convenience, for p ∈ [1, d), let p∗ be given by 1
p∗ = 1

p − 1
d .

Lemma 2.3. Let 1 ≤ p <∞. Assume u ∈W 1,p
φ (Y∗).

(i) For 1 ≤ p < d, there exists a constant C such that

‖φu‖Lp∗ (Y∗) ≤ C‖φ∇u‖Lp(Y∗) + C‖u‖Lp(Y ′

∗
). (2.3)
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(ii) For p > d, there exists a constant C such that

‖φu‖Cα(Y∗) ≤ C‖φ∇u‖Lp(Y∗) + C‖u‖Lp(Y ′
∗
), (2.4)

where α = 1− d
p .

Proof. Let 1 ≤ p < d. By Lemma 2.2, u ∈ Lp(Y∗), which, together with the fact φ(x) ≈
dist(x, T ), implies that φu = 0 on ∂T . We apply the Sobolev-Poincaré inequality in Y∗ to

obtain
‖φu‖Lp∗ (Y∗) ≤ C‖∇(φu)‖Lp(Y∗)

≤ C‖φ∇u‖Lp(Y∗) + C‖u‖Lp(Y∗)

≤ C‖φ∇u‖Lp(Y∗) + C‖u‖Lp(Y ′

∗
),

where we have used Lemma 2.2 and the assumption ‖∇φ‖L∞(Y∗) ≤ C. This proves (i). The

proof of (ii) is similar. �

Now we establish several useful weighted inequalities in the perforated domain Ωε. The

main idea is a technique of “multiscale inequalities”, which means that a general inequality

over Ωε is broken down into inequalities in each ε-periodic cells, together with a global

estimate in Ω with no holes. Let

T ′
ε =

⋃

z∈Zd

ε(T ′ + z) and Ω′
ε = Ω \ T ′

ε.

Without loss of generality, we assume that the extended holes ε(z + T ′) do not intersect

with the boundary ∂Ω. This allows us to define the harmonic extension for any function

u ∈ W 1,p(Ω′
ε). Precisely, let Eε : W 1,p(Ω′

ε) → W 1,p(Ω) be the harmonic extension operator

such that Eε(u) = u in Ω′
ε and ∆Eε(u) = 0 in T ′

ε ∩ Ω.

Theorem 2.4 (Embedding from weighted to unweighted). Let 1 < p < ∞. There exists

C > 0 such that for any u ∈W 1,p
φε,0

(Ωε),

‖u‖Lp(Ωε) ≤ C‖φε∇u‖Lp(Ωε).

Proof. We apply a technique of “multiscale inequalities”. First, we see that u ∈ W 1,p
φε,0

(Ωε)

implies u ∈W 1,p(Ω′
ε). Let ũ = Eε(u) be the harmonic extension of u. Lemma 2.1 implies

ˆ

ε(z+Y )∩Ω
|∇ũ|p ≤ C

ˆ

ε(z+Y ′

∗
)∩Ω

|∇u|p ≤ C

ˆ

ε(z+Y ′

∗
)∩Ω

φpε|∇u|p.

Summing over z (including the boundary cells), we obtain
ˆ

Ω
|∇ũ|p ≤ C

ˆ

Ωε

φpε|∇u|p. (2.5)

Note that ∂Ω does not intersect with ε(z + T ′
∗). Thus, ũ = u = 0 on ∂Ω. The Poincaré

inequality gives
ˆ

Ω′
ε

|u|p ≤
ˆ

Ω
|ũ|p ≤ C

ˆ

Ω
|∇ũ|p ≤ C

ˆ

Ωε

φpε|∇u|p. (2.6)
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Next, we consider each cell ε(z + Y∗) in Ωε. By Lemma 2.2 and rescaling,
ˆ

ε(z+Y∗)∩Ω
|u|p ≤ Cεp

ˆ

ε(z+Y∗)∩Ω
φpε|∇u|p + C

ˆ

ε(z+Y ′
∗
)∩Ω

|u|p.

Summing over z, we get
ˆ

Ωε

|u|p ≤ Cεp
ˆ

Ωε

φpε|∇u|p + C

ˆ

Ω′

ε

|u|p ≤ C

ˆ

Ωε

φpε|∇u|p, (2.7)

where we have used (2.6) in the last inequality. The proof is complete. �

Remark 2.5. The inequality (taken from (2.7))
ˆ

Ωε

|u|p ≤ Cεp
ˆ

Ωε

φpε|∇u|p + C

ˆ

Ω′

ε

|u|p (2.8)

can be viewed as a version of the so-called multiscale Poincaré inequality. The ε appear-

ing before the gradient term is not classical and it is related the multiscale feature of the

inequality.

Theorem 2.6 (Embedding from weighted to unweighted II). Let 1 < p < ∞. There exists

C > 0 such that for any u ∈W 1,p
φε

(Ωε),

‖u‖Lp(Ωε) ≤ Cε‖φε∇u‖Lp(Ωε) + C‖φεu‖Lp(Ωε), (2.9)

and

inf
L∈R

‖u− L‖Lp(Ωε) ≤ C‖φε∇u‖Lp(Ωε). (2.10)

Proof. The inequality (2.9) follows from (2.8) and the fact that φε ≈ 1 in Ω′
ε. We only need

to prove (2.10). Note that if ũ = Eε(u) is the harmonic extension of u, then ũ − L is the

harmonic extension of u− L. We set

L =

 

Ω
ũ. (2.11)

We mimic the proof of Theorem 2.4. In fact,
ˆ

Ωε

|u− L|p ≤ Cεp
ˆ

Ωε

φpε|∇u|p + C

ˆ

Ω′
ε

|u− L|p

≤ Cεp
ˆ

Ωε

φpε|∇u|p + C

ˆ

Ω
|ũ− L|p

≤ Cεp
ˆ

Ωε

φpε|∇u|p + C

ˆ

Ω
|∇ũ|p

≤ Cεp
ˆ

Ωε

φpε|∇u|p + C

ˆ

Ωε

φpε|∇u|p

≤ C

ˆ

Ωε

φpε|∇u|p,

where we have used the classical Poincaré inequality in the third inequality. �

Theorem 2.7 (Weighted Sobolev-Poincaré inequality I). Let 1 < p <∞ and u ∈W 1,p
φε,0

(Ωε).
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(i) If 1 < p < d and 1
p∗ = 1

p − 1
d , there exists C > 0 such that

‖φεu‖Lp∗ (Ωε) ≤ C‖φε∇u‖Lp(Ωε). (2.12)

(ii) If p > d, there exists C > 0 such that

‖φεu‖L∞(Ωε) ≤ C‖φε∇u‖Lp(Ωε).

Proof. (i) We first prove

‖u‖Lp∗ (Ω′
ε)

≤ C‖φε∇u‖Lp(Ωε). (2.13)

Let ũ = Eε(u) be the harmonic extension of u from Ω′
ε to the entire Ω constructed as before.

Then we have (2.5). Since u = ũ in Ω′
ε, by the classical Sobolev-Poincaré ienquality in Ω and

(2.5), we obtain

‖u‖Lp∗ (Ω′

ε)
= ‖ũ‖Lp∗(Ω′

ε)
≤ C‖∇ũ‖Lp(Ω) ≤ C‖φε∇u‖Lp(Ωε). (2.14)

Next, we show

‖φεu‖Lp∗(Ωε) ≤ C‖φε∇u‖Lp(Ωε) + C‖u‖Lp∗(Ω′
ε)
. (2.15)

We will again use the technique of “multiscale inequalities”. Precisely,
ˆ

Ωε

|φεu|p
∗

=
∑

z

ˆ

ε(z+Y∗)∩Ωε

|φεu|p
∗

=
∑

z

εd
ˆ

(z+Y∗)∩
1
ε
Ω
|φ(x)u(εx)|p∗dx

≤
∑

z

Cεd
(
ˆ

(z+Y∗)∩
1
ε
Ω
|φ(x)ε∇u(εx)|pdx

)p∗/p

+
∑

z

Cεd
(
ˆ

(z+Y ′

∗
)∩ 1

ε
Ω
|u(εx)|pdx

)p∗/p

≤
∑

z

C

(
ˆ

ε(z+Y∗)∩Ωε

|φε∇u|p
)p∗/p

+
∑

z

C

ˆ

ε(z+Y ′

∗
)∩Ωε

|u|p∗ ,

(2.16)

where we have used (2.3) in the third line. Now we recall the following elementary inequality:

for any nonnegative sequence ai ≥ 0 and β ≥ 1,
∑

i

aβi ≤
(∑

i

αi

)β
. (2.17)

Applying this inequality to the first term of the last line of (2.16), we obtain
ˆ

Ωε

|φεu|p
∗ ≤ C

(
ˆ

Ωε

|φε∇u|p
)p∗/p

+ C

ˆ

Ω′

ε

|u|p∗ .

This proves (2.15). Clearly, the estimates (2.13) and (2.15) together yield (2.12).

(ii) If p > d, (2.14) is replaced by

‖u‖Cα(Ω′
ε)
≤ C‖φε∇u‖Lp(Ωε),
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where α = 1− d
p .

Now consider in each periodic cell ε(z + Y∗) (the estimate for the boundary cells is the

same), and apply (2.4) in z + Y∗ after scaling,

sup
ε(z+Y∗)

|φεu| = sup
x∈z+Y∗

|φ(x)u(εx)|

≤ C‖φ∇(u(εx))‖Lp(z+Y∗) + C‖u(εx)‖Lp(Y ′

∗
)

≤ Cε1−d/p‖φε∇u‖Lp(ε(z+Y∗)) + C‖u‖L∞(ε(z+Y ′

∗
))

≤ Cε1−d/p‖φε∇u‖Lp(Ωε) + C‖u‖Cα(Ω′

ε)

≤ C‖φε∇u‖Lp(Ωε).

This ends the proof. �

Theorem 2.8 (Weighted Sobolev-Poincaré inequality II). Let 1 < p <∞ and u ∈W 1,p
φε

(Ωε).

(i) If 1 < p < d, there exists C > 0 such that

inf
L∈R

‖φε(u− L)‖Lp∗ (Ωε) ≤ C‖φε∇u‖Lp(Ωε), (2.18)

and

‖φεu‖Lp∗ (Ωε) ≤ C‖φε∇u‖Lp(Ωε) + C‖φεu‖Lp(Ωε). (2.19)

(ii) If p > d, there exists C > 0 such that

inf
L∈R

‖φε(u− L)‖L∞(Ωε) ≤ C‖φε∇u‖Lp(Ωε),

and

‖φεu‖L∞(Ωε) ≤ C‖φε∇u‖Lp(Ωε) + C‖φεu‖Lp(Ωε).

Proof. For (2.18), the proof is almost identical to Theorem 2.7 with replacing u by u − L.

The only difference is that when we use the classical Sobolev-Poincaré inequality in (2.14),

we take L to be the average of ũ over Ω (as in (2.11)) to obtain

‖u− L‖Lp∗ (Ω′
ε)
≤ ‖ũ− L‖Lp∗(Ωε) ≤ C‖∇ũ‖Lp(Ω) ≤ C‖φε∇u‖Lp(Ωε).

The rest of the proof is exactly the same.

For (2.19), we replace (2.14) by

‖u‖Lp∗ (Ω′

ε)
= ‖ũ‖Lp∗(Ω′

ε)
≤ C‖∇ũ‖Lp(Ω) + ‖ũ‖Lp(Ω′

ε)

≤ C‖φε∇u‖Lp(Ωε) +C‖φεu‖Lp(Ωε).

The rest of the proof is exactly the same. The proof for (ii) is similar. �

Remark 2.9 (Compact embedding). Let 1 < p < d and 1
p∗ = 1

p − 1
d . Then for any 1 ≤ q < p∗,

the embedding W 1,p
φε

(Ωε) → Lq
φε
(Ωε) is compact. This general fact is not used in this paper.
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3. Regularity of degenerate equations at small scales

Let Vε = W 1,2
φε,0

(Ωε). For f ∈ L2(Ωε)
d and F ∈ L2(Ωε), we call uε ∈ Vε a weak solution to

the boundary value problem,

Lε(uε) = div(φεf) + F in Ωε and uε = 0 on ∂Ω, (3.1)

if for any v ∈ Vε,
ˆ

Ωε

φ2εAε∇uε · ∇v = −
ˆ

Ωε

φεf · ∇v +
ˆ

Ωε

Fv.

The existence and uniqueness of the weak solution uε follow readily from the Lax-Milgram

Theorem by using the inequality ‖v‖L2(Ωε) ≤ C‖φε∇v‖L2(Ωε) for v ∈ Vε; see Theorem 2.7.

Moreover, the solution satisfies the energy estimate,

‖φε∇uε‖L2(Ωε) ≤ C
{
‖f‖L2(Ωε) + ‖F‖L2(Ωε)

}
.

In this section, we focus on the local regularity at small scales for the special equation

Lε(uε) = φεF in Ωε. By setting u(x) = uε(εx), this equation can be rescaled to

−div(φ2A∇u) = ε2φ(x)F (εx) in ε−1Ωε. (3.2)

In order to establish the small-scale estimates of the equation (3.2) for all the points in ε−1Ωε,

we need to consider three cases separately.

• Interior case: x0 ∈ ε−1Ωε and B4r(x0) ⊂ ε−1Ωε. In this case, for any x ∈ B2r(x0),

φ(x) ≈ φ(x0). Thus, the equation (3.3) in B2r(x0) can be reduced to a uniformly

elliptic equation and the classical interior estimate applies.

• Boundary case I: x0 ∈ ε−1∂Ω and B4r(x0) ∩ ε−1Ω ⊂ ε−1Ωε. In this case B4r(x0)

does not intersect with the holes in Ωε. Hence, for x ∈ B2r(x0)∩ ε−1Ω, φ(x) ≈ φ(x0).

Then the classical boundary estimate of elliptic equations applies.

• Boundary case II: x0 ∈ ε−1∂Ωε \ ε−1∂Ω, i.e., x0 is on the boundary of holes. For

sufficiently small and fixed r0 < 1 and r < r0, we have B2r(x0) only intersects with

the boundary of one hole and does not get close to the other holes. Note that in this

case, the coefficient φ(x) degenerates as a distance function from the hole and the

classical elliptic theory does not apply.

As the interior case and the boundary case I are classical, we only need to focus on the

regularity estimates of the boundary case II. The corresponding estimates in each cell Y ∗

(including the boundary cells) may be derived by a covering argument.

Let |z|∞ := max1≤j≤d |zj | for z = (z1, z2, . . . , zd) ∈ Z
d. Let Y +

∗ = ∪|z|∞≤1(z + Y∗) be the

enlarged cell of Y∗. In view of (3.2), we consider the rescaled equation in an enlarged cell

−div(φ2A∇u) = φF in Y +
∗ . (3.3)
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Let u ∈W 1,1
loc (Y

+
∗ ). We call u a weak solution of (3.3) if φu ∈ L2(Y +

∗ ), φ|∇u| ∈ L2(Y +
∗ ), and

for any v ∈ C∞
0 (Y +), we have

ˆ

Y +
∗

φ2A∇u · ∇v =

ˆ

Y +
∗

φFv,

where Y + = ∪|z|∞≤1(z + Y ).

We first prove the local boundedness of weak solutions by the Moser’s iteration.

Lemma 3.1. Let u be a weak solution of (3.3) and F ∈ Lp(Y∗) for some p > d. If B is

centered on ∂T and r = diam(B) ≤ c0/4, then

sup
1
2
B∩Y∗

|u| ≤ Cr−1

(
 

B∩Y∗

|φu|2
)1/2

+ Cr

(
 

B∩Y∗

|F |p
)1/p

. (3.4)

Proof. By rescaling, it suffices to consider the case diam(B) = 1. Let Br = rB and B̃r =

Br ∩ Y∗. Let 1/2 < r < R < 1 and η ∈ C∞
0 (BR) be such that 0 ≤ η ≤ 1 in BR, η = 1 in Br

and |∇η| ≤ C(R− r)−1. Let m ≥ 2, ℓ ≥ 1, and

u+ℓ = min{|u|, ℓ}, vℓ = (u+ℓ )
m−2u.

Note that

∇vℓ = (m− 1)(u+ℓ )
m−2∇uχ{|u|<ℓ} + (u+ℓ )

m−2∇uχ{|u|≥ℓ}.

By a limiting argument, it is not hard to show that we may test the equation (3.3) against

vℓη
2. It follows that

(m− 1)

ˆ

B̃R

φ2(A∇u · ∇u)χ{|u|<ℓ}(u
+
ℓ )

m−2η2 +

ˆ

B̃R

φ2(A∇u · ∇u)χ{|u|≥ℓ}(u
+
ℓ )

m−2η2

=

ˆ

B̃R

φFvℓη
2 − 2

ˆ

B̃R

φ2(A∇u · ∇η)vℓη.
(3.5)

Let

wℓ = (u+ℓ )
m
2
−1uη.

Then

∇wℓ =
1

2
m(u+ℓ )

m
2
−1(∇u)ηχ{|u|<ℓ} + (u+ℓ )

m
2
−1(∇u)ηχ{|u|≥ℓ} + (u+ℓ )

m
2
−1u∇η. (3.6)

This, together with (3.5), gives
ˆ

B̃R

φ2|∇wℓ|2 ≤ Cm

ˆ

B̃R

φ|F ||vℓ|η2 + Cm

ˆ

B̃R

φ2|∇u||∇η||vℓ|η

+ C

ˆ

B̃R

φ2(u+ℓ )
m−2u2|∇η|2.

(3.7)
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Using Hölder’s inequality and Young’s inequality, we deduce that

m

ˆ

B̃R

φ|F ||vℓ|η2 ≤ ‖δF‖
Lp(B̃R)

‖(δm)−1|u+ℓ |
m−2

2 η‖
L2(B̃R)

‖m2φwℓ‖Lγ (B̃R)

≤ Cδm‖F‖m
Lp(B̃R)

+
( 1

mδ

)2m/(m−2)‖|u+ℓ |
m−2

2 η‖2m/(m−2)

L2(B̃R)
+m4‖φwℓ‖2Lγ(B̃R)

,

(3.8)

where 1
p + 1

2 +
1
γ = 1 and δ = δ(m) > 0 is a suitable number to be determined. Since p > d,

we have 2 < γ < 2∗ (an obvious modification is needed for d = 2 through the proof). By

Hölder’s inequality and the boundedness of η,

‖|u+ℓ |
m−2

2 η‖2m/(m−2)

L2(B̃R)
≤ ‖|u+ℓ |

m
2 η‖2

L2(B̃R)
≤ ‖wℓ‖2L2(B̃R)

. (3.9)

By an interpolation inequality,

‖φwℓ‖2Lγ (B̃R)
≤

( 1

m5δ

)
‖φwℓ‖2L2∗ (B̃R)

+ C(m5δ)α‖φwℓ‖2L2(B̃R)
, (3.10)

where α > 0 is a constant depending only on p and d. Substituting (3.9) and (3.10) into

(3.8), we have

m

ˆ

B̃R

φ|F ||vℓ|η2 ≤ Cδm‖F‖m
Lp(B̃R)

+ Cm4(m5δ)α‖φwℓ‖2L2(B̃R)

+
( 1

mδ

)2m/(m−2)‖wℓ‖2L2(B̃R)
+

1

mδ
‖φwℓ‖2L2∗ (B̃R)

.

(3.11)

On the other hand, using (3.6), we have

(u+ℓ )
m
2
−1|∇u|η ≤ |∇wℓ − (u+ℓ )

m
2
−1u∇η|.

This allows us to estimate the second integral on the right-hand side of (3.7) as follows,

m

ˆ

B̃R

φ2|∇u||∇η||vℓ|η ≤ 1

mδ
‖φ∇wℓ‖2L2(B̃R)

+ C(m3δ +m)

ˆ

B̃R

φ2(u+ℓ )
m−2u2|∇η|2. (3.12)

Now, inserting (3.11) and (3.12) into (3.7), we obtain
ˆ

B̃R

φ2|∇wℓ|2

≤ Cδm‖F‖m
Lp(B̃R)

+C(m3δ +m4(m5δ)α +m)

ˆ

B̃R

φ2(u+ℓ )
m−2u2(|∇η|2 + η2)

+C
( 1

mδ

)2m/(m−2)‖wℓ‖2L2(B̃R)
+

C

mδ
‖φwℓ‖2L2∗ (B̃R)

+
C

mδ
‖φ∇wℓ‖2L2(B̃R)

(3.13)

Note wℓ = 0 on ∂BR ∩ Y∗. Recall two inequalities given by Lemma 2.3 (i) and Lemma 2.2,

‖φwℓ‖L2∗ (B̃R) ≤ C‖φ∇wℓ‖L2(B̃R), (3.14)

and

‖wℓ‖L2(B̃R)
≤ C‖φ∇wℓ‖L2(B̃R)

. (3.15)
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Choosing δ = C1/m with sufficiently large C1 > 0, we obtain from (3.13) that
ˆ

B̃R

φ2|∇wℓ|2 ≤
Cm

mm
‖F‖m

Lp(B̃R)
+ Cm4+4α

ˆ

B̃R

φ2(u+ℓ )
m−2u2(|∇η|2 + η2). (3.16)

By Hölder’s inequality, we have

(
ˆ

B̃R

φ2|wℓ|2γ0
)1/2γ0

≤ ‖φwℓ‖θL2∗ (B̃R)
‖wℓ‖1−θ

L2(B̃R)
≤ C‖φ∇wℓ‖L2(B̃R), (3.17)

where θ = d/(d + 2) and γ0 = 1 + 2/d > 1. Hence, it follows from (3.16) and (3.17) that

(
ˆ

B̃r

φ2(u+ℓ )
(m−2)γ0 |u|2γ0

)1/γ0m

≤ C

m
‖F‖

Lp(B̃R)
+

{
Cm4+4α

(R − r)2

}1/m(
ˆ

B̃R

φ2(u+ℓ )
m−2u2

)1/m

.

(3.18)

The above estimate holds for any ℓ > 1,m ≥ 2 and 1/2 < r < R < 1. Moreover, the constant

C is independent of ℓ,m,R and r. By an iteration starting from m = 2 and letting ℓ → ∞,

we can see that
´

B̃r
φ2|u|mγ0 is finite for any r < 1 and m ≥ 2. Hence, sending ℓ → ∞ in

(3.18), we get

(
ˆ

B̃r

φ2|u|γ0m
)1/γ0m

≤ C

m
‖F‖Lp(B̃R) +

{
Cm4+4α

(R− r)2

}1/m(
ˆ

B̃R

φ2|u|m
)1/m

. (3.19)

Now, we iterate the inequality (3.19) by choosing an infinite sequence of shrinking radii rk
with 1/2 < r0 ≤ 1 and limk→∞ rk = 1/2. Let θ ∈ (0, 1) (particularly, we may pick θ = 1/2 in

the following calculation). Define

rk =
1

2
+

1

2
(1− θ)θk.

and

p0 = 2, pk+1 = γ0pk = 2γk+1
0 .

Applying (3.19) with m = pk and R = rk, r = rk+1, we obtain

(
ˆ

B̃rk+1

φ2|u|pk+1

)1/pk+1

≤ C

pk
‖F‖Lp(B̃rk

) +

{
Cp2+2α

k )

(1− θ)2θk

}2/pk
(
ˆ

B̃rk

φ2|u|pk
)1/pk

.

By iteration, we get

(
ˆ

B̃rk+1

φ2|u|pk+1

)1/pk+1

≤
{ k∑

j=0

CDk

2γk−j
0

}
‖F‖Lp(B̃r0 )

+Dk

(
ˆ

B̃r0

φ2|u|2
)1/2

,

where

Dk =
k∏

j=0

{
Cγ

(2+2α)j
0

(1− θ)2θj

}1/γj
0

.
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Due to the fact γ0 > 1, we have
∑

j(j/γ
j
0) < ∞. It follows that Dk ≤ Cθ independent of k.

Hence,
k∑

j=0

CDk

2γk−j
0

≤ Cθ.

Consequently,

(
ˆ

B̃rk+1

φ2|u|pk+1

)1/pk+1

≤ Cθ

(
‖F‖Lp(B̃r0 )

+ ‖φu‖L2(B̃r0 )

)
.

Finally, taking k → ∞ and noting that rk > 1/2, we derive

‖u‖L∞(B̃1/2)
≤ Cθ

(
‖F‖Lp(B̃r0 )

+ ‖φu‖L2(B̃r0 )

)
.

This proves the desired estimate. �

Lemma 3.2. Let u be a weak solution of (3.3) and F ∈ Lp(Y∗) for some p > d. If B is

centered on ∂T and diam(B) ≤ c0/4, then

sup
1
2
B∩Y∗

|φ∇u| ≤ C

(
 

B∩Y∗

|φ∇u|2
)1/2

+ Cr

(
 

B∩Y∗

|F |p
)1/p

, (3.20)

where C depends on p, φ,A and T .

Proof. Let r = diam(B). Let v = φu. Using the assumption that A is symmetric, a compu-

tation shows that

div(A∇v) = div(A∇φ)u + φ−1div(φ2A∇u).
As a result, v satisfies

−div(A∇v) = V u+ F in Y∗, (3.21)

where V = −div(A∇φ). Note that v = 0 on ∂T in the sense of trace. Under the assumptions

that A is Hölder continuous and V ∈ Lq(Y∗) for some q > d, it follows from (3.21) and the

standard elliptic regularity theory

sup
1
2
B∩Y∗

|∇v| ≤ Cr

(
 

B∩Y∗

|V u|q
)1/q

+ Cr

(
 

B∩Y∗

|F |p
)1/p

≤ Cr

(
 

B∩Y∗

|V |q
)1/q

‖u‖L∞(B∩Y∗) + Cr

(
 

B∩Y∗

|F |p
)1/p

≤ C

(
 

B∩Y∗

|V |q
)1/q( 

2B∩Y∗

|φu|2
)1/2

+ Cr

{
1 + r

(
 

B∩Y∗

|V |q
)1/q}( 

2B∩Y∗

|F |p
)1/p

,

(3.22)

where p, q > d and we have used Lemma 3.1 in the last inequality.
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Note that ∇v = (∇φ)u+ φ∇u. Thus, by (3.22) and (3.4),

sup
1
2
B∩Y∗

|φ∇u| ≤ sup
1
2
B∩Y∗

|(∇φ)u|+ sup
1
2
B∩Y∗

|∇v|

≤ C

{
r−1 +

(
 

B∩Y∗

|V |q
)1/q}( 

2B∩Y∗

|φu|2
)1/2

+Cr

{
1 + r

(
 

B∩Y∗

|V |q
)1/q}(

 

2B∩Y∗

|F |p
)1/p

.

(3.23)

Finally, observe that u− L satisfies the same equation (3.3) for any constant L. Thus φu in

(3.23) can be replaced by φ(u− L) for any L. Moreover, it follows by a similar argument as

in the proof of the Poincaré inequality (2.10) that

inf
L∈R

(
 

2B∩Y∗

|φ(u− L)|2
)1/2

≤ Cr

(
 

3B∩Y∗

|φ∇u|2
)1/2

. (3.24)

It follows from (3.23) that

sup
1
2
B∩Y∗

|φ∇u| ≤ C
{
1 + ‖V ‖Lq(Y∗)

}( 

3B∩Y∗

|φ∇u|2
)1/2

+ Cr
{
1 + ‖V ‖Lq(Y∗)

}( 

3B∩Y∗

|F |p
)1/p

.

(3.25)

By a simple covering argument, on may replace 3B ∩ Y∗ in the right-hand side of (3.25) by

B ∩ Y∗. �

Theorem 3.3. Let uε ∈ Vε be a solution of Lε(uε) = φεF in ε(z + Y +
∗ ) for some z ∈ Z

d.

Then for p > d,

sup
ε(z+Y∗)

|uε| ≤ C

(
 

ε(z+Y +
∗ )

|φεuε|2
)1/2

+ Cε2
(
 

ε(z+Y +
∗ )

|F |p
)1/p

, (3.26)

and

sup
ε(z+Y∗)

|φε∇uε| ≤ C

(
 

ε(z+Y +
∗ )

|φε∇uε|2
)1/2

+ Cε

(
 

ε(z+Y +
∗ )

|F |p
)1/p

. (3.27)

Proof. By rescaling we may assume ε = 1. We cover z + Y∗ by a finite number of balls

{B(xi, c)}, where either xi ∈ z + ∂T or B(xi, 3c) ⊂ Y +
∗ . In the case xi ∈ z + ∂T , we use the

estimates in Lemmas 3.1 and 3.2. If B(xi, 3c) ⊂ Y +
∗ , then φ ≈ 1 in B(xi, 2c). This allows us

to apply the classical regularity theory. �

Finally, we prove the local Lipschitz estimate near the boundary.

Theorem 3.4. Let Ω be a bounded C1,α domain. Let uε ∈ Vε be a solution of Lε(uε) = φεF

in Ωε. Then for p > d,

sup
B∩Ωε

|uε| ≤ C

(
 

2B∩Ωε

|φεuε|2
)1/2

+Cε2
(
 

2B∩Ωε

|F |p
)1/p

(3.28)
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and

sup
B∩Ωε

|φε∇uε| ≤ C

(
 

2B∩Ωε

|φε∇uε|2
)1/2

+ Cε

(
 

2B∩Ωε

|F |p
)1/p

, (3.29)

where B = B(x0, Cε) for any x0 ∈ ∂Ω.

Proof. We cover B(x0, Cε)∩Ωε by a finite number of balls {B(xi, cε)} such that the balls may

be divided into three cases: (1) xi ∈ ∂Ωε \∂Ω, (2) B(xi, 3cε) ⊂ Ωε, and (3) xi ∈ ∂Ω. The first

two cases have already been discussed in the proof of the last theorem. If dist(x, ∂Ω) ≤ cε,

then dist(∂Ω, ∂Tε) ≥ c0ε and thus φε(x) ≈ 1. As a result, the desired estimate for the third

case follows readily from the classical boundary Lipschitz estimates. �

Remark 3.5. If Ω is only a Lipschitz domain, then we do not expect the boundary Lipschitz

estimates in Theorem 3.4. However, since the boundary ∂Ω does not touch the holes, we

can still get the Lipschitz estimate in a neighborhood of the holes T . Precisely, let T ′ be the

extended holes given by T ′ = {x ∈ Y∗ : dist(x, T ) ≤ c0/8}. Then due to Lemma 3.2, even if

ε(z + Y∗) ∩ ∂Ω 6= ∅, we still have

sup
ε(z+T ′\T )

|φε∇uε| ≤ C

(
 

ε(z+Y +
∗ )∩Ω

|φε∇uε|2
)1/2

+ Cε

(
 

ε(z+Y +
∗ )∩Ω

|F |p
)1/p

. (3.30)

4. Quantitative homogenization

In this section, we will show the quantitative convergence rate (i.e., the first-order approx-

imation) for the degenerate equation in a perforated domain,

Lε(uε) = φεf in Ωε and uε = g on ∂Ω, (4.1)

where f ∈ Lp(Ωε) with p > d and g ∈ H1(Ω). An algebraic convergence rate will be essential

in proving the large-scale uniform regularity.

We call uε a weak solution of (4.1) if uε − g ∈ Vε and
ˆ

Ωε

φ2εAε∇uε · ∇ψ =

ˆ

Ωε

φεfψ

for any ψ ∈ Vε. Since H
1(Ω) ⊂W 1,2

φε
(Ωε), it is not hard to see that (4.1) has a unique solution

in Vε satisfying

‖φε∇uε‖L2(Ωε) ≤ C
(
‖f‖L2(Ωε) + ‖φε∇g‖L2(Ωε)

)
. (4.2)

4.1. Correctors and the homogenized equation. Let

V =

{
v ∈ L1

loc(Y∗) : φv ∈ L2(Y∗), φ∇v ∈ L2(Y∗)
d,

ˆ

Y∗

v = 0 and v is Y -periodic

}

be a Hilbert space with norm ‖v‖V = ‖φ∇v‖L2(Y∗). Let χj ∈ V be the weak solution of

−div(φ2A∇χj) = div(φ2A∇yj) in Y∗,
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i.e. for any v ∈ V ,
ˆ

Y∗

φ2A∇χj · ∇v = −
ˆ

Y∗

φ2A∇yj · ∇v.

The vector-valued function χ = (χj) is called the first-order correctors for the operator

Lε = −div(φ2εAε∇). Observe that

div(φ2A∇(χj + yj)) = 0 in R
d \

⋃

z∈Zd

(z + T ).

It follows from Theorem 3.3 that |χ| ∈ L∞(Y∗) and |φ∇χ| ∈ L∞(Y∗).

The homogenized coefficient matrix Â = (âij) is defined by

âij =

ˆ

Y∗

φ2aik∂k (yj + χj) dy,

where 1 ≤ i, j ≤ d and the repeated index k is summed from 1 to d. Note that

âij =

ˆ

Y∗

φ2A∇(yj + χj) · ∇(yi + χi) dy.

Since A is positive definite and φ > 0 in Y∗, it is not hard to see that the constant matrix

Â is positive definite. Under the assumption that A is symmetric, Â is also symmetric. The

homogenized operator for Lε is given by

L0 = −div(Â∇).

4.2. First-order approximation. In this subsection, we derive the error estimate of the

first-order approximation for the boundary value problem. We will show that an effective

approximate problem for (4.1) is given by

L0(u0) = Fε in Ω, and u0 = g on ∂Ω, (4.3)

where Fε ∈ Lp(Ω) is the extension of φεf by zero from Ωε to Ω. Throughout this subsection,

we only assume that Ω is a Lispchitz domain satisfying the geometric assumption (1.2).

Let c1 ∈ (0, 14c0] be a constant. Let ηε ∈ C∞
0 (Ω) be a cutoff function such that ηε = 1 if

dist(x, ∂Ω) > 2c1ε, ηε = 0 if dist(x, ∂Ω) < c1ε, and |∇ηε| ≤ Cε−1. Define

Ω(tε) = {x ∈ Ω : dist(x, ∂Ω) < tc1ε} .
Observe that ∇ηε is supported in a thin layer Ω(2ε) \ Ω(ε) = {x ∈ Ω : c1ε ≤ dist(x, ∂Ω) <

2c1ε}. Let
wε = uε − u0 − εχℓ(x/ε)(∂ℓu0)ηε. (4.4)

Since Fε ∈ L2(Ω), u0 ∈ H2
loc(Ω). Recall that χℓ and φ∇χℓ are both bounded.

Lemma 4.1. For any ψ ∈ H1
0 (Ω), we have

∣∣∣∣
ˆ

Ωε

φ2εAε∇wε · ∇ψ
∣∣∣∣

≤ Cε‖∇2u0‖L2(Ω\Ω(ε))‖∇ψ‖L2(Ω) + C‖∇u0‖L2(Ω(2ε))‖∇ψ‖L2(Ω(2ε)).

(4.5)
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Proof. First of all, ψ ∈ H1
0 (Ω) implies ψ ∈ Vε. Thus ψ can be used as a test function. We

calculate directly

ˆ

Ωε

φ2εAε∇wε · ∇ψ =

ˆ

Ωε

φ2εAε∇uε · ∇ψ −
ˆ

Ωε

φ2εAε∇u0 · ∇ψ

−
ˆ

Ωε

φ2εAε(∇χℓ)ε(∂ℓu0)ηε · ∇ψ

− ε

ˆ

Ωε

φ2εAε(χℓ)ε(∇∂ℓu0)ηε · ∇ψ

− ε

ˆ

Ωε

φ2εAε(χℓ)ε∂ℓu0∇ηε · ∇ψ.

(4.6)

Using the equations (4.1) and (4.3), we have

ˆ

Ωε

φ2εAε∇uε · ∇ψ =

ˆ

Ω
Â∇u0 · ∇ψ.

Inserting this equation into (4.6), we obtain

ˆ

Ωε

φ2εAε∇wε · ∇ψ =

ˆ

Ω
(Â− φ2εAε − φ2εAε(∇χ)ε)(∇u0)ηε · ∇ψ

+

ˆ

Ω
(Â− φ2εAε)∇u0(1− ηε) · ∇ψ

− ε

ˆ

Ωε

φ2εAε(χℓ)ε(∇∂ℓu0)ηε · ∇ψ

− ε

ˆ

Ωε

φ2εAε(χℓ)ε∂ℓu0∇ηε · ∇ψ.

(4.7)

Next, we define the flux correctors. Let B = Â− φ2A− φ2A∇χ, or in component form

bij = âij − φ2aij − φ2aik∂kχj .

Observe that bij ∈ L∞(Y ) , and

ˆ

Y
bij = 0, ∂ibij = 0.

Then it is well-known (see, e.g., [13]) that we can find the flux correctors Φ = (Φkij) ∈ H1
per(Y )

such that

bij = ∂kΦkij, Φkij = −Φikj.
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Moreover, Φkij ∈ Cα(Y ) for any α ∈ (0, 1). Therefore, by using the skew-symmetry of Φ and

integration by parts,
ˆ

Ω
(Â− φ2εAε − φ2εAε(∇χ)ε)(∇u0)ηε · ∇ψ

=

ˆ

Ω
∂k(εΦkij(x/ε))(∂ju0)(∂iψ)ηε

= −ε
ˆ

Ω
Φkij(x/ε)(∂k∂ju0)(∂iψ)ηε − ε

ˆ

Ω
Φkij(x/ε)∂ju0∂iψ∂kηε.

The first integral on the right-hand side is bounded by Cε‖∇2u0‖L2(Ω\Ω(ε))‖∇ψ‖L2(Ω), while

the second integral is bounded by

Cε

ˆ

Ω(2ε)
|∇u0||∇ψ| ≤ Cε‖∇u0‖L2(Ω(2ε))‖∇ψ‖L2(Ω(2ε)). (4.8)

Finally, note that the third integral on the right-hand side of (4.7) is also bounded by

Cε‖∇2u0‖L2(Ω\Ω(ε))‖∇h‖L2(Ω), and the second and fourth integrals are bounded by the right-

hand side of (4.8). Summing up all these estimates, we obtain the desired estimate. �

Now we pick a particular test function ψ. We point out that wε itself, even with a cut-off

on the boundary is not a good choice for ψ since ∇uε may not lie in L2(Ω)d (we only know

φε∇uε ∈ L2(Ω)d). We will use the harmonic extension to handle the possible singularity of

∇uε near the holes. Let δ ∈ (0, c1]. Define

Ωδ
ε := {x ∈ Ωε : dist(x, Tε) > δε} .

Note that |Ωε \ Ωδ
ε| ≤ Cδ. We shall extend the function uε and χ(x/ε) from Ωδ

ε to Ω with a

suitable choice of δ. We define T δ = {x ∈ Y : dist(x, T ) ≤ δ} and Y δ
∗ = Y \ T δ.

Another technical tool we need is the smoothing operator. Let 0 ≤ ζ ∈ C∞
0 (Bc1(0)) and

´

Bc1 (0)
ζ = 1 and define the standard smoothing operator by

Kεf(x) =

ˆ

Rd

ε−dζ(
x− y

ε
)f(y)dy.

Many properties about the above smoothing operators can be found in [13, Chapter 3.1]. We

include some useful properties in Appendix for the reader’s convenience.

Lemma 4.2. Let Ωδ
ε be given as above. Let ũε be the harmonic extension of uε from Ωδ

ε to

Ωε. It holds
ˆ

Ωε

φ2ε|∇wε|2 ≤ Cεδ−1‖∇2u0‖L2(Ω\Ω(ε))

(
‖φε∇uε‖L2(Ωε) + ‖∇u0‖L2(Ω)

)

+ C‖∇u0‖2L2(Ω(2ε)) + Cε2‖∇2u0‖2L2(Ω\Ω(ε/2)) + Cδ‖∇u0‖2L2(Ω)

+ C

ˆ

Ωε\Ωδ
ε

φ2ε(|∇uε|2 + |∇ũε|2).

(4.9)
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Proof. Let χ̃ε = χ̃(x/ε) denote the harmonic extension of χε = χ(x/ε) from Ωδ
ε to Ω. For

simplicity, we sometimes also use the notations (χℓ)ε = χℓ(x/ε) and (∇χ)ε = (∇χ)(x/ε)
(similar notations apply for χ̃ and ∇χ̃).

Let ηε be given as before. Define

w∗
ε = uε − u0 − εχℓ(x/ε)Kε(∂ℓu0)ηε,

and

wδ
ε = ũε − u0 − εχ̃ℓ(x/ε)Kε(∂ℓu0)ηε.

It is easy to verify that wδ
ε ∈ H1

0 (Ω). Write

ˆ

Ωε

φ2εAε∇wε · ∇wε

=

ˆ

Ωε

φ2εAε∇wε · ∇wδ
ε +

ˆ

Ωε

φ2εAε∇wε · ∇(wε − w∗
ε) +

ˆ

Ωε

φ2εAε∇wε · ∇(w∗
ε − wδ

ε)

= I1 + I2 + I3.

(4.10)

Estimate of I1: Since wδ
ε ∈ H1

0 (Ω), we apply Lemma 4.1 to obtain

|I1| ≤ Cε‖∇2u0‖L2(Ω\Ω(ε))‖∇wδ
ε‖L2(Ω) + C‖∇u0‖L2(Ω(2ε))‖∇wδ

ε‖L2(Ω(2ε)). (4.11)

By the triangle inequality,

‖∇wδ
ε‖L2(Ω)

≤ ‖∇ũε‖L2(Ω) + ‖∇u0‖L2(Ω) + ε‖∇(χ̃ℓ(x/ε)Kε(∂ℓu0)ηε)‖L2(Ω)

≤ ‖∇ũε‖L2(Ω) + C‖∇u0‖L2(Ω) + C‖(∇χ̃)εKε(∇u0)‖L2(Ω\Ω(ε))

+ Cε‖∇2u0‖L2(Ω\Ω(ε/2)).

(4.12)

The boundedness of the harmonic extension (see Lemma 2.1) implies

‖∇ũε‖L2(Ω) ≤ C‖∇uε‖L2(Ωδ
ε)

≤ Cδ−1‖φε∇uε‖L2(Ωε),

where we used the fact φε ≥ cδ on Ωδ
ε. The boundedness of φ∇χ implies

‖∇χ̃‖L2(Y ) ≤ C‖∇χ‖L2(Y δ
∗
) ≤ Cδ−1,

where Y δ
∗ = {x ∈ Y : dist(x, T ) > δ}. Hence, we can use a property of the smoothing

operator (see Lemma A.1) to obtain the estimate of the third term in the right-hand side of

(4.12),

‖(∇χ̃)εKε(∇u0)‖L2(Ω\Ω(ε)) ≤ C‖∇χ̃‖L2(Y )‖∇u0‖L2(Ω) ≤ Cδ−1‖∇u0‖L2(Ω).
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To handle the second term in (4.11), we note that Ω(2ε) is contained in Ωδ
ε, provided that

δ ∈ (0, 14c1). Thus w
δ
ε = w∗

ε and φε ≈ 1 in Ω(2ε). Consequently,

C‖∇u0‖L2(Ω(2ε))‖∇wδ
ε‖L2(Ω(2ε))

≤ C‖∇u0‖2L2(Ω(2ε)) +
1

8
‖φε∇w∗

ε‖2L2(Ω(2ε))

≤ C‖∇u0‖2L2(Ω(2ε)) +
1

4
‖φε∇wε‖2L2(Ωε)

+ ‖φε∇(w∗
ε − wε)‖2L2(Ω(2ε)).

Observe that w∗
ε − wε = εχℓ(x/ε)(∂ℓu0 − Kε(∂ℓu0))ηε and

φε∇(w∗
ε − wε) = φε(∇χℓ)ε(∂ℓu0 − Kε(∂ℓu0))ηε

+ εφε(χℓ)ε(∇∂ℓu0 − Kε(∇∂ℓu0))ηε
+ εφε∇ηε(χℓ)ε(∂ℓu0 − Kε(∂ℓu0)).

Now, by using the boundedness of χ and φ∇χ, as well as the properties of the smoothing

operator Kε (see Lemma A.1 and Lemma A.2), we see that

‖φε∇(w∗
ε − wε)‖L2(Ωε) ≤ Cε‖∇2u0‖L2(Ω\Ω(ε/2)). (4.13)

As a result of (4.11) - (4.13), we obtain

|I1| ≤ Cεδ−1‖∇2u0‖L2(Ω\Ω(ε))

(
‖φε∇uε‖L2(Ωε) + ‖∇u0‖L2(Ω)

)

+ C‖∇u0‖2L2(Ω(2ε)) + Cε2‖∇2u0‖2L2(Ω\Ω(ε/2)) +
1

4
‖φε∇wε‖2L2(Ωε)

.

Estimate of I2: It follows from (4.13) and the Cauchy-Schwarz inequality that

|I2| ≤
1

4
‖φε∇wε‖2L2(Ωε)

+ Cε2‖∇2u0‖2L2(Ω\Ω(ε/2)).

Estimate of I3: Again, it follows from the Cauchy-Schwarz inequality that

|I3| ≤
1

4
‖φε∇wε‖2L2(Ωε)

+ 4‖φε∇(w∗
ε − wδ

ε)‖2L2(Ωε)
. (4.14)

Recall that w∗
ε = wδ

ε in Ωδ
ε. Thus φε∇(w∗

ε −wδ
ε) is supported in Ωε \ Ωδ

ε. Moreover,

φε∇(w∗
ε − wδ

ε) = φε∇uε − φε∇ũε
− φε∇(εχℓ(x/ε)Kε(∂ℓu0)ηε) + φε∇(εχ̃ℓ(x/ε)Kε(∂ℓu0)ηε).

(4.15)

We estimate the last term of the above identity over Ωε \Ωδ
ε. Note that φε ≤ Cδ and ηε = 1

in Ωε \Ωδ
ε. It follows from the triangle inequality and the boundedness of χ̃,

ˆ

Ωε\Ωδ
ε

φ2ε|∇(εχ̃ℓ(x/ε)Kε(∂ℓu0)ηε)|2

≤ Cδ2ε2
ˆ

Ωε\Ωδ
ε

|Kε(∇2u0)|2 + Cδ2
ˆ

Ωε\Ωδ
ε

|∇χ̃(x/ε)|2|Kε(∇u0)|2

≤ Cδ2ε2
ˆ

Ωε\Ω(ε)
|∇2u0|2 + Cδ2‖∇χ̃‖2L2(Y∗\Y δ

∗
)

ˆ

Ω
|∇u0|2,
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where we have used Lemma A.1 in the last inequality. By the L2 regularity estimate of the

nontangential maximal function for the harmonic function χ̃ in the Lipschitz holes T δ = {x ∈
Y : dist(x, T ) < δ}, we have (see Lemma A.5 in Appendix)

‖∇χ̃‖2L2(Y∗\Y δ
∗
) ≤ Cδ‖∇tanχ‖2L2(∂T δ) ≤ Cδ−1.

Hence,
ˆ

Ωε\Ωδ
ε

φ2ε|∇(εχ̃ℓ(x/ε)Kε(∂ℓu0)ηε)|2 ≤ Cδ2ε2
ˆ

Ωε\Ω(ε)
|∇2u0|2 + Cδ

ˆ

Ω
|∇u0|2.

Similarly (and easier), using the boundedness of χ and φ∇χ, we have
ˆ

Ωε\Ωδ
ε

φ2ε|∇(εχℓ(x/ε)Kε(∂ℓu0)ηε)|2 ≤ Cδ2ε2
ˆ

Ωε\Ω(ε)
|∇2u0|2 + Cδ

ˆ

Ω
|∇u0|2.

Combining these with (4.14) and (4.15), we obtain

|I3| ≤
1

4
‖φε∇wε‖2L2(Ωε)

+ C

ˆ

Ωε\Ωδ
ε

φ2ε(|∇uε|2 + |∇ũε|2)

+ Cε2‖∇2u0‖2L2(Ωε\Ω(ε)) + Cδ‖∇u0‖2L2(Ω).

Finally, the desired estimate follows from (4.10) and the estimates of I1, I2 and I3. �

4.3. Convergence rates. In general, if Ω is a Lipschitz domain and g ∈ H1(∂Ω), we do

not have u0 ∈ H2(Ω), though we still have u0 ∈ H2
loc(Ω) due to the interior H2 estimate.

However, we have the following estimates proved in [12] (a sketch of the proof is also given

in Appendix).

Lemma 4.3. Let Ω be a Lipschitz domain and let u0 be the weak solution of (4.3) with

F = Fε ∈ L2(Ω) and g ∈ H1(∂Ω). Then

‖∇2u0‖L2(Ω\Ω(cε)) ≤ Cε−
1
2
(
‖F‖L2(Ω) + ‖g‖H1(∂Ω)

)
, (4.16)

and

‖∇u0‖L2(Ω(2ε)) ≤ Cε
1
2
(
‖F‖L2(Ω) + ‖g‖H1(∂Ω)

)
. (4.17)

The above lemma indicates that the right-hand side of (4.9) is small by choosing δ appro-

priately small, except for the last integral. The smallness of the last integral follows from the

small-scale higher integrability of φ∇uε and φε∇ũε. In particular, the small-scale Lipschitz

estimate proved earlier ensures the smallness of the last integral and therefore a (suboptimal)

convergence rate.

Lemma 4.4. Let Ω be a Lipschitz domain. Let f ∈ Lp(Ωε) for some p > d and uε a solution

of (4.1). Then
ˆ

Ωε\Ωδ
ε

φ2ε|∇uε|2 ≤ Cδ
(
‖φε∇uε‖2L2(Ωε)

+ ε2−
2d
p ‖f‖2Lp(Ωε)

)
.
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Proof. This lemma essentially relies only on the small-scale interior Lipschitz estimate, i.e.,

Theorem 3.3 and Remark 3.5. Indeed, for δ < c0/8,
ˆ

Ωε\Ωδ
ε

φ2ε|∇uε|2 =
∑

ε(z+T )⊂Ω

ˆ

ε(z+T δ\T )
φ2ε|∇uε|2

≤
∑

ε(z+T )⊂Ω

Cεdδ sup
ε(z+T δ\T )

|φε∇uε|2

≤
∑

ε(z+T )⊂Ω

Cεdδ

{
 

Ωε∩ε(z+Y +
∗ )

|φε∇uε|2 + ε2
(
 

Ωε∩ε(z+Y +
∗ )

|f |p
)2/p}

≤
∑

ε(z+T )⊂Ω

Cδ

{
ˆ

Ωε∩ε(z+Y +
∗ )

|φε∇uε|2 + εdε
2− 2d

p ‖f‖2Lp(Ωε)

}

≤ Cδ
(
‖φε∇uε‖2L2(Ωε)

+ ε2−
2d
p ‖f‖2Lp(Ωε)

)
.

The proof is complete. �

Lemma 4.5. Let uε be the same as in Lemma 4.4 and ũε the harmonic extension of uε from

Ωδ
ε to Ωε. Then for δ < c0/8,

ˆ

Ωε\Ωδ
ε

φ2ε|∇ũε|2 ≤ Cδ
(
‖φε∇uε‖2L2(Ωε)

+ ε
2− 2d

p ‖f‖2Lp(Ωε)

)
.

Proof. First, we write
ˆ

Ωε\Ωδ
ε

φ2ε|∇ũε|2 =
∑

ε(z+T )⊂Ω

ˆ

ε(z+T δ\T )
φ2ε|∇ũε|2. (4.18)

We then consider a single cell ε(z + T δ \ T ) ⊂ Ω. By Theorem 3.3 and Remark 3.5,

‖∇uε‖L∞(ε(z+Y∗\T δ)) ≤ Cδ−1

(
 

ε(z+Y +
∗ )∩Ωε

|φε∇uε|2
)1/2

+ Cεδ−1

(
 

ε(z+Y∗)∩Ωε

|f |p
)1/p

.

(4.19)

Recall that ∆ũε = 0 in ε(z + T δ) and ũε = uε on ε(z + ∂T δ). Also, T δ = ∪iτ
δ
i is a union of

pairwise disjoint Lipschitz holes with connected boundaries. In each hole, we can apply the

L2 regularity estimate of the nontangential estimate (see (A.2) in Appendix) to obtain

‖(∇ũε)∗‖L2(ε(z+∂T δ)) ≤ C‖∇tanũε‖L2(ε(z+∂T δ))

≤ C‖∇uε‖L2(ε(z+∂T δ)) ≤ Cε
d−1
2 ‖∇uε‖L∞(ε(z+Y∗\T δ)).

Consequently,
ˆ

ε(z+T δ\T )
φ2ε|∇ũε|2 ≤ Cδ3ε

ˆ

ε(z+∂T δ)
|(∇ũε)∗|2 ≤ Cδ3εd‖∇uε‖2L∞(ε(z+Y∗\T δ)). (4.20)

Combining (4.19) and (4.20), we see that
ˆ

ε(z+T δ\T )
φ2ε|∇ũε|2 ≤ Cδ

ˆ

ε(z+Y +
∗ )∩Ωε

|φε∇uε|2 + Cδεdε2−
2d
p ‖f‖2Lp(Ωε)

.
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Summing over z, we obtain
ˆ

Ωε\Ωδ
ε

φ2ε|∇ũε|2 ≤ Cδ
(
‖φε∇uε‖2L2(Ωε)

+ ε2−
2d
p ‖f‖2Lp(Ωε)

)
,

as desired. �

Theorem 4.6. Let Ω be a Lipschitz domain, f ∈ Lp(Ωε) for some p > d and g ∈ H1(∂Ω).

Then
ˆ

Ωε

φ2ε|∇wε|2 ≤ Cε
1
4
(
‖f‖2Lp(Ωε)

+ ‖g‖2H1(∂Ω)

)
.

Proof. First, by the energy estimate (4.2) and Lemma 4.3, we have

ε
1
2‖∇2u0‖L2(Ω(cε)) + ε−

1
2‖∇u0‖L2(Ω(cε)) + ‖uε‖H1

φε
(Ωε) ≤ C

(
‖f‖L2(Ωε) + ‖g‖H1(∂Ω)

)
.

Hence, Lemma 4.2 implies
ˆ

Ωε

φ2ε|∇wε|2 ≤ C(ε
1
2 δ−1 + ε+ δ)

(
‖f‖2Lp(Ωε)

+ ‖g‖2H1(∂Ω)

)
+ C

ˆ

Ωε\Ωδ
ε

φ2ε
(
|∇uε|2 + |∇ũε|2

)

≤ C(ε
1
2 δ−1 + ε+ δ)

(
‖f‖2Lp(Ωε)

+ ‖g‖2H1(∂Ω)

)
,

where we have used Lemma 4.4 and Lemma 4.5 in the second inequality. Since δ is arbitrary,

we pick δ = ε
1
4 to obtain the desired estimate. �

The following local convergence rate is particularly useful for us. Let Qr be a cube with

side length r and Qε
r = Qr \ Tε.

Theorem 4.7. Let uε ∈ H1
φε
(Qε

2r) be the weak solution of Lε(uε) = φεf in Qε
2r with r =

mε ≥ ε. There exists a weak solution u0 ∈ H1(Qr) of the homogenized equation L0(u0) = φεf

in Q 4
3
r such that wε satisfies

 

Qε
r

φ2ε|∇wε|2 ≤ C
(ε
r

) 1
4

{
 

Qε
2r

φ2ε|∇uε|2 + r2
(
 

Qε
2r

|f |p
)2/p}

, (4.21)

where wε = uε − u0 − εχ(x/ε) · ∇u0 in Qε
r. Moreover,

 

Qε
r

φ2ε|uε − u0|2 ≤ C
(ε
r

) 1
4

{
 

Qε
2r

φ2ε|uε|2 + r

(
 

Qε
2r

|f |p
)2/p}

, (4.22)

The estimates still hold if Qε
2r is replaced by Qε

2r(x0) ∩ Ωε with x0 ∈ ∂Ω and uε = 0 on

∂Ω ∩Qε
2r(x0).

Proof. We give the proof for (4.21). The inequality (4.22) follows from (4.21) by using a

weighted Poincaré’s inequality and Caccioppoli’s inequality. By rescaling, it suffices to show

(4.21) for the case r = 1. Let t ∈ (1, 32) be a suitable side length such that Qε
t satisfies the

geometric assumption (1.2) (in particular ∂Qt ⊂ Qε
2) and

‖uε‖H1(∂Qt) ≤ C‖uε‖W 1,2
φε

(Qε
3/2

). (4.23)
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The choice of such t is possible due to the assumptions on T and the co-area formula. Let

u0 be the weak solution of {
L0(u0) = φεf, in Qε

t ,

u0 = uε, on ∂Qt.
(4.24)

Taking the estimates in Theorem 4.7 into Lemma 4.2 with Ωε = Qε
t , we obtain

ˆ

Qε
t

φ2ε|∇wε|2 ≤ Cε
1
4

(
‖f‖2Lp(Qε

2)
+ ‖uε‖2H1(∂Qt)

)

≤ Cε
1
4

(
‖f‖2Lp(Qε

2)
+ ‖uε‖2W 1,2

φε
(Qε

2)

)
.

(4.25)

Here the cutoff function ηε in the original definition of wε (4.4) has been removed by analyzing

the boundary layers. Finally, notice that we can subtract any constant L from uε in the above

estimate. Hence, ‖uε‖W 1,2
φε

(Qε
2)
may be replaced by ‖φε∇uε‖L2(Qε

2)
in view of (2.18). This ends

the proof. �

Remark 4.8. The exponent 1
4 in Theorem 4.6 and Theorem 4.7 is not optimal . By adjusting

the cutoff function ηε, we can actually improve it to 1
3 . If we know a priori that u0 ∈ H2(Ω)

(for instance, Ω is convex or C1,1 and g = 0), then it may be improved to 1
2 . It is an interesting

question whether the sharp convergence rate of O(ε) holds under the condition f ∈ Lp(Ωε)

or φε∇f ∈ Lp(Ω)d (even with g = 0). Note that if f and Ω are smooth enough, then the

sharp convergence rate is valid by using the maximum principle; see [11, Chapter III.3].

5. Lipschitz estimates

In Section 3, we have proved the small-scale Lipschitz estimate. In this section, we estab-

lish the large-scale Lipschitz estimate which leads to the full-scale Lipschitz estimate. Our

argument here follows from the scheme of [12] (also see [13]).

We define

Hε(u; r) = inf
M∈Rd,q∈R

1

r

(
 

Qε
r

φ2ε|u−M · x− q|2
)1/2

+ r

(
 

Qε
r

|f |p
)1/p

, (5.1)

and

Iε(u; r) = inf
q∈R

1

r

(
 

Qε
r

φ2ε|u− q|2
)1/2

+ r

(
 

Qε
r

|f |p
)1/p

. (5.2)

Recall that the interior Caccioppoli inequality for the weak solution of Lε(uε) = φεf can be

written as (
 

Qε
r

φ2ε|∇uε|2
)1/2

≤ CIε(uε; 2r). (5.3)

Lemma 5.1. Let uε be a weak solution of Lε(uε) = φεf in Qε
2 with f ∈ Lp(Qε

2) for some

p > d. Then there exist θ ∈ (0, 12) and ε0 > 0 such that if ε < ε0,

Hε(uε; θ) ≤
1

2
Hε(uε; 1) + Cε

1
8 I(uε; 2). (5.4)
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Proof. Let u0 be given as in the proof of Theorem 4.7 with r = 1. Then

(
 

Qε
1

φ2ε|uε − u0|2
)1/2

≤ Cε
1
8 Iε(uε; 2). (5.5)

Note that we have replaced uε by uε −L on the right-hand side of (4.22) and taken infimum

over all L ∈ R. On the other hand, the energy estimate and (4.23) implie

‖∇u0‖L2(Qt) ≤ C‖φε∇uε‖L2(Qε
3/2

) + C‖f‖L2(Qε
3/2

). (5.6)

By the interior estimate of the equation L0(u0) = φεf in Q1,

‖u0‖C1,α(Q3/4)
≤ C‖φε∇uε‖L2(Qε

3/2
) + C‖f‖Lp(Qε

3/2
)

≤ CI(uε; 2),
(5.7)

where α = 1− d
p and we have used the Caccioppoli estimate in the last line.

Now let θ ∈ (0, 1/2). By the triangle inequality and (5.5)

Hε(uε; θ) ≤ Hε(u0; θ) +
1

θ

(
 

Qε
θ

|uε − u0|2
)1/2

≤ Hε(u0; θ) +
C

θ1+d/2
ε

1
8 Iε(uε; 2).

(5.8)

Next, we claim that for any θ ∈ (0, 1/2) (independent of ε),

Hε(u0; θ) ≤ CθαHε(u0; 3/4) + CεIε(u0; 2). (5.9)

In fact, for θ ∈ (0, 1/2), by observing that L0(u0 −M · x− q) = L0(u0) = φεf in Q1 for any

M ∈ R
d and q ∈ R, we have

Hε(u0; θ) ≤ θα‖∇u0‖Cα(Q1/2) + θ1−d/p‖F‖Lp(Qε
θ)

≤ Cθα
{(

 

Q3/4

|u0 −M0 · x− q0|2
)1/2

+ ‖f‖Lp(Qε
3/4

)

}
,

(5.10)

where we choose M0 ∈ R
d and q0 ∈ R such that

(
 

Q3/4

φ2ε|u0 −M0 · x− q0|2
)1/2

= inf
M∈Rd,q∈R

(
 

Q3/4

φ2ε|u0 −M · x− q|2
)1/2

. (5.11)

Let a0 =
´

Y∗

φ2 > 0. Then it is easy to see that

√
a0

(
 

Q3/4

|M0 · x+ q0|2
)1/2

≤ C

(
 

Q3/4

φ2ε|M0 · x+ q0|2
)1/2

≤ C

(
 

Q3/4

φ2ε|u0|2
)1/2

.



LIPSCHITZ AND W 1,p ESTIMATES 27

This further implies that

|M0|+ |q0| ≤ C

(
 

Q3/4

φ2ε|u0|2
)1/2

≤ C‖u0‖L∞(Q3/4). (5.12)

Moreover, there exists a bounded Y -periodic vector-valued function ψ such that ∇ · (εψε) =

φ2ε − a0. It follows from the integration by parts, (5.12) and (5.7) that
∣∣∣∣
(
 

Q3/4

(φ2ε − a0)|u0 −M0 · x− q0|2
)1/2∣∣∣∣

≤ Cε

(
 

∂Q3/4

|ψε · n|2|u0 −M0 · x− q0|2
)1/2

+ Cε

(
 

Q3/4

|ψε||u0 −M0 · x− q0||∇u0 −M0|
)1/2

≤ Cε‖u0‖C0,1(Q3/4)

≤ CεIε(uε; 2).

This, combined with (5.10) and (5.11), gives

H(u0; θ) ≤ CθαH(u0; 3/4) + CεI(uε; 2).

Thus, the claim (5.9) is proved.

Finally, by (5.8), (5.9) and (5.5), we arrive at

Hε(uε; θ) ≤ CθαHε(uε; 3/4) + Cθ−1− d
2 ε

1
8 I(uε; 2)

≤ CθαHε(uε; 1) + Cθ−1− d
2 ε

1
8 I(uε; 2).

Note that the constant C above is independent of θ. As a result, we can choose and fix

θ ∈ (0, 1/2) such that Cθα ≤ 1/2. This gives (5.4) as desired. �

We recall an iteration lemma.

Lemma 5.2 ([13, Lemma 6.4.6]). Let H(r) and h(r) be two nonnegative, continuous functions

on the interval (0, 1]. Let 0 < ε < 1/4. Suppose that there exists a constant C0 such that

max
r≤t≤2r

H(t) ≤ C0H(2r) and max
r≤s,t≤2r

|h(s)− h(t)| ≤ C0H(2r) (5.13)

for any r ∈ [ε, 1/2]. Suppose further that

H(θr) ≤ 1

2
H(r) + C0β(ε/r)(H(2r) + h(2r)), (5.14)

for any r ∈ [ε, 1/2], where θ ∈ (0, 1/4) and β(t) is a nonnegative, nondecreasing function on

[0, 1] such that β(0) = 0 and
ˆ 1

0

β(t)

t
dt <∞. (5.15)
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Then

max
ε≤r≤1

(H(r) + h(r)) ≤ C(H(1) + h(1)), (5.16)

where C depends only on C0, θ and the function β(t).

Theorem 5.3. Under the same condition as Lemma 5.1, for ε ≤ r ≤ 2, we have
(
 

Qε
r

φ2ε|∇uε|2
)1/2

≤ C

(
 

Qε
2

φ2ε|∇uε|2
)1/2

+ C

(
 

Qε
2

|f |p
)1/p

. (5.17)

Proof. By rescaling, (5.4) holds for any ε/ε0 ≤ r ≤ 1, i.e.,

Hε(uε; θr) ≤
1

2
Hε(uε; r) + C0

(ε
r

) 1
8
Iε(uε; 2r). (5.18)

To apply Lemma 5.2, we set H(t) = Hε(uε; t). In view of the definition of Hε(uε; t), we can

find Mt ∈ R
d such that

H(t) = Hε(uε; t) = inf
q∈R

1

t

(
 

Qε
t

φ2ε|u−Mt · x− q|2
)1/2

+ t

(
 

Qε
t

|f |p
)1/p

.

Define h(t) = |Mt|. Then it is obvious that

Iε(uε; t) ≤ H(t) + Ch(t). (5.19)

Hence, we can rewrite (5.18) as, for ε/ε0 ≤ r ≤ 1/2,

H(θr) ≤ 1

2
H(r) + C0

(ε
r

) 1
8
(H(2r) + h(2r)),

which verifies the main condition (5.14) in Lemma 5.2 with β(t) = t
1
8 . Clearly, this particular

β(t) satisfies (5.15).

Finally, to see (5.13), we only need to use the properties of H(t) = Hε(uε; t) and h(t) =

|Mt|. In fact, for any r ≤ t ≤ 2r, we have H(t) ≤ CH(2r) by enlarging the region from Qε
t

to Qε
2r with comparable volumes. Moreover, for any r ≤ s, t ≤ 2r,

|h(s) − h(t)| ≤ |Ms −Mt| ≤
C

r

(
 

Qε
r

φ2ε|(Ms −Mt) · x|2
)1/2

≤ C inf
q∈R

1

r

(
 

Qε
r

φ2ε|uε −Ms · x− q|2
)1/2

+ C inf
q∈R

1

r

(
 

Qε
r

φ2ε|uε −Mt · x− q|2
)1/2

≤ C inf
q∈R

1

r

(
 

Qε
s

φ2ε|uε −Ms · x− q|2
)1/2

+C inf
q∈R

1

r

(
 

Qε
t

φ2ε|uε −Mt · x− q|2
)1/2

≤ CH(s) +CH(t) ≤ C0H(2r).

This verifies the condition (5.13). It follows from Lemma 5.2 that

max
ε/ε0≤r≤1

(H(r) + h(r)) ≤ C(H(1) + h(1)),



LIPSCHITZ AND W 1,p ESTIMATES 29

By the Caccioppli inequality (5.3) and (5.19), for ε/ε0 ≤ r ≤ 1, we have
(
 

Qε
r

|∇uε|2
)1/2

≤ CIε(uε; 2r) ≤ C(H(2r) + h(2r))

≤ C(H(1) + h(1))

≤ C

(
 

Qε
2

φ2ε|∇uε|2
)1/2

+ C

(
 

Qε
2

|f |p
)1/p

,

where in the last inequality we also used the weighted Poincaré inequality (2.18) and the size

estimate of h(1). Note that the estimate in the range ε ≤ r ≤ ε/ε0 follows trivially from the

case r = ε/ε0 with a larger constant C. This completes the proof. �

Remark 5.4. The above estimates continue to hold near the boundary if Ω is a C1,α domain

and uε = 0 on ∂Ω. In fact, if Qε
r is centered on ∂Ω, then we only need to replace Qε

r by

Qε
r ∩Ω in the statement of Theorem 5.3. For the proof, we modify the function Hε and Iε as

follows:

Hε(u; r) = inf
M∈Rd

1

r

{(
 

Qε
r

φ2ε|u−M · x|2
)1/2

+ ‖M · x‖L∞(Qr∩∂Ω)

+ r‖∇tan(M · x)‖L∞(Qr∩∂Ω) + r2
(
 

Qε
r

|f |p
)1/p}

,

and

Iε(u; r) =
1

r

(
 

Qε
r

φ2ε|u|2
)1/2

+ r

(
 

Qε
r

|f |p
)1/p

.

The details are omitted (see [12] for a similar proof).

Proof of Theorem 1.1 (i). Without loss of generality assume diam(Ω) ≈ 1. First, by the

small-scale Lipschitz estimate (3.29), we have

sup
Qε

ε∩Ω
|φε∇uε| ≤ C

(
 

Qε
m0ε

∩Ω
φ2ε|∇uε|2

)1/2

+ Cε

(
 

Qε
m0ε

∩Ω
|f |p

)1/p

.

Then by the large-scale Lipschitz estimate (5.17) for r = m0ε (including the boundary case

in Remark 5.4), we have
(
 

Qε
m0ε

∩Ω
φ2ε|∇uε|2

)1/2

≤ C

(
 

Qε
2∩Ω

φ2ε|∇uε|2
)1/2

+ C

(
 

Qε
2∩Ω

|f |p
)1/p

.

Combining the last two estimates, we obtain

sup
Qε

ε∩Ω
|φε∇uε| ≤ C

(
 

Qε
2∩Ω

φ2ε|∇uε|2
)1/2

+ C

(
 

Qε
2∩Ω

|f |p
)1/p

.

Since the above estimate can be translated arbitrarily, it implies

sup
Qε

1∩Ω
|φε∇uε| ≤ C

(
 

Qε
2∩Ω

φ2ε|∇uε|2
)1/2

+ C

(
 

Qε
2∩Ω

|f |p
)1/p

, (5.20)
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and

‖φε∇uε‖L∞(Ωε) ≤ C‖φε∇uε‖L2(Ωε) + C‖f‖Lp(Ωε).

This implies (1.7) by the energy estimate (4.2). �

6. W 1,p estimates

In this section, we prove the global W 1,p estimates uniform in ε in both Theorem 1.1 and

Theorem 1.2. Like Lipschitz estimate, the small-scale and large-scale estimates are handled

separately.

We begin with the small-scale W 1,p estimate. In view of the discussion in Section 3, it is

sufficient to focus on the boundary case II.

Lemma 6.1. Let p > 2 and f ∈ Lp(Y∗)
d, F ∈ Lp(Y∗). Suppose that u is a weak solution of

−div(φ2A∇u) = div(φf) + F, in Y∗.

Then if B0 is a ball centered on ∂T and diam(B0) ≤ c0/4, then
(
 

1
2
B0∩Y∗

|φ∇u|p
)1/p

≤ C

{(
 

2B0∩Y∗

|φ∇u|2
)1/2

+

(
 

2B0∩Y∗

(|f |p + |F |p)
)1/p}

.

The proof relies on the following interior real-variable argument.

Theorem 6.2 ([13, Theorem 4.2.3]). Let q > 2 and B0 be a ball in R
d. Let U ∈ L2(4B0) and

f ∈ Lp(4B0) for some 2 < p < q. Suppose that for each ball or cube B ⊂ 2B0 with properties

that diam(B) ≤ r0diam(B0), there exist two measurable function UB and RB defined in 2B,

such that |U | ≤ |UB |+ |RB | in 2B, and
(
 

2B
|RB |q

)1/q

≤ N1

{(
 

4B
|U |2

)1/2

+

(
 

4B
|f |2

)1/2}
,

(
 

2B
|UB |2

)1/2

≤ N2

(
 

4B
|f |2

)1/2

+ η

(
 

4B
|U |2

)1/2

,

where N1, N2 > 1 and 0 < r0 < 1. Then there exists η0 > 0, depending only on N1, N2, r0, p

and q, with the property that if 0 ≤ η < η0, then U ∈ Lp(B0) and
(
 

B0

|U |pdx
)1/p

≤ C

{(
 

4B0

|U |2
)1/2

+

(
 

4B0

|f |p
)1/p}

. (6.1)

where C depends at most on N1, N2, r0, p and q.

Proof of Lemma 6.1. Without loss of generality, assume diam(B0) = c0/10. Let B ⊂ B0 be

a ball such that either 4B ⊂ Y∗ or B is centered on ∂T . For the first case, φ(x) ≈ φ(y) ≈
diam(B) for any x, y ∈ 2B. Let v be the weak solution of

−div(φ2A∇v) = div(φf) + F in 2B, and v = 0 on ∂(2B).
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By the energy estimate, we have

‖φ∇v‖L2(2B) ≤ C
(
‖f‖L2(2B) + ‖F‖L2(2B)

)
. (6.2)

Let w = u− v. Then w satisfies

−div(φ2A∇w) = 0 in 2B, and w = u on ∂(2B).

Due to the fact φ(x) ≈ φ(y) for x, y ∈ 2B, the classical Lipschitz estimate yields

sup
B

|φ∇w| ≤ C

(
 

2B
|φ∇w|2

)1/2

≤ C

(
 

2B
|φ∇u|2

)1/2

+ C

(
 

2B
(|f |+ |F |)2

)1/2

,

(6.3)

where we have used (6.2) in the last inequality.

For the second case that B is centered on ∂T , we again let v be the weak solution of

−div(φ2A∇v) = div(φf) + F in 2B ∩ Y∗, and v = 0 on ∂(2B) ∩ Y∗.
The energy estimate implies

‖φ∇v‖L2(2B∩Y∗) ≤ C
(
‖f‖L2(2B∩Y∗) + ‖F‖L2(2B∩Y∗)

)
. (6.4)

Then w = u− v satisfies

−div(φ2A∇w) = 0 in 2B ∩ Y∗, and w = u on ∂(2B) ∩ Y∗.
Now, we use (3.2) to get

sup
B∩Y∗

|φ∇w| ≤ C

(
 

2B∩Y∗

|φ∇w|2
)1/2

≤ C

(
 

2B∩Y∗

|φ∇u|2
)1/2

+ C

(
 

2B∩Y∗

(|f |+ |F |)2
)1/2

,

(6.5)

where we have used (6.4) in the last inequality.

Now, we explain how the interior real-variable argument is applied in B0 to U = φ∇u. Let
U be extended across ∂T to 2B0 by zero. For each B ⊂ B0, B can be covered by a finite

number of balls B′
j (with finite overlaps) satisfying either one of the following three cases: (i)

4B′
j ⊂ Y∗; (ii) B

′
j is centered on ∂T ; (iii) 4B ∩ Y∗ = ∅. Moreover, diam(B′

j) ≈ diam(B). In

all three cases, we have |U | ≤ Uj + Rj in 2B′
j with Uj = |φ∇v| and Rj = |φ∇w| supported

in 2B′
j , where v and w have been constructed previously for cases (i) and (ii). The case (iii)

is trivial since U = 0 in 2B0 \ Y∗. Therefore, by (6.2), (6.3), (6.4) and (6.5), we have

sup
B′

j

|Rj| ≤ C

(
 

2B′

j

|U |2
)1/2

+ C

(
 

2B′

j

(|f |+ |F |)2
)1/2

,

and (
 

2B′

j

|UB |2
)1/2

≤ C

(
 

2B′

j

(|f |+ |F |)2
)1/2

,
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where F and f are also extended by zero. Now, using B ⊂ ∪jB
′
j and setting RB =

∑
j Rj

and UB =
∑

j Uj , we have |U | ≤ RB + UB and

sup
B

|RB | ≤ C

(
 

2B
|U |2

)1/2

+ C

(
 

2B
(|f |+ |F |)2

)1/2

,

and (
 

B
|UB |2

)1/2

≤ C

(
 

2B
(|f |+ |F |)2

)1/2

.

Since B ⊂ B0 is arbitrary, we apply Theorem 6.2 with η = 0 to obtain
(
 

1
2
B0

|U |p
)1/p

≤ C

(
 

2B0

|U |2
)1/2

+ C

(
 

2B0

(|f |+ |F |)p
)1/p

.

Since U = φ∇u and f, F are extended by zero in the holes, the last inequality implies the

desired estimate. �

Lemma 6.3. Let p ≥ 2 and f ∈ Lp(Ωε)
d, F ∈ Lp(Ωε). Let uε ∈ H1

φε,0
(Ωε) be the weak

solution of (1.9) in Ωε. Suppose ε(k + Y∗) ∩ Ωε 6= ∅. Then,
(
 

ε(k+Y∗)∩Ωε

|φε∇uε|p
)1/p

≤ C

(
 

ε(k+Y +
∗ )∩Ωε

|φε∇uε|2
)1/2

+ C

(
 

ε(k+Y +
∗ )∩Ωε

|f |p
)1/p

+ Cε

(
 

ε(k+Y +
∗ )∩Ωε

|F |p
)1/p

.

Proof. We first rescale the problem. Let v(x) = uε(εx). Then v satisfies

−div(φ2A∇v) = div(εφf(ε·)) + ε2F (ε·) in (k + Y +
∗ ) ∩ ε−1Ωε.

Moreover, v = 0 on (k + Y +
∗ ) ∩ ε−1∂Ω. Then, by Lemma 6.1 and the classical W 1,p estimate

away from Γε, we have
(
 

(k+Y∗)∩ε−1Ωε

|φ∇v|p
)1/p

≤ C

(
 

(k+Y +
∗ )∩ε−1Ωε

|φ∇v|2
)1/2

+Cε

(
 

(k+Y +
∗ )∩ε−1Ωε

|f(ε·)|p
)1/p

+Cε2
(
 

ε(k+Y +
∗ )∩Ωε

|F (ε·)|p
)1/p

.

Rescaling back to uε, we obtain the desired estimate. �

To prove the global W 1,p estimate uniform in ε up to ∂Ω, we need a large-scale global

real-variable argument.

Theorem 6.4 (A variant of [13, Theorem 4.2.6]). Let q > 2 and Ω be a bounded Lipschitz

domain. Let U ∈ L2(Ω) and f ∈ Lp(Ω) for some 2 < p < q. Let 0 ≤ t < r0diam(Ω) be a fixed

number. Suppose that for each ball or cube B with properties that t < diam(B) ≤ r0diam(Ω)
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and either 4B ⊂ Ω or B is centered on ∂Ω, there exist two measurable function UB and RB

on Ω ∩ 2B, such that |U | ≤ |UB |+ |RB | on Ω ∩ 2B, and

(
 

Ω∩2B
|RB |q

)1/q

≤ N1

{(
 

Ω∩4B
|U |2

)1/2

+

(
 

Ω∩4B
|f |2

)1/2}
, (6.6)

(
 

Ω∩2B
|UB |2

)1/2

≤ N2

(
 

Ω∩4B
|f |2

)1/2

+ η

(
 

Ω∩4B
|U |2

)1/2

, (6.7)

where N1, N2 > 1 and 0 < r0 < 1. Then there exists η0 > 0, depending only on N1, N2, r0, p, q,

and the Lipschtiz character of ∂Ω, with the property that if 0 ≤ η < η0, then U ∈ Lp(Ω) and

(
 

Ω

(
 

Bt(x)∩Ω
|U |2

)p/2

dx

)1/p

≤ C

{(
 

Ω
|U |2

)1/2

+

(
 

Ω
|f |p

)1/p}
, (6.8)

where C depends at most on N1, N2, r0, p, q, and the Lipschitz character of ∂Ω. In particular,

if t = 0, then (6.8) is replaced by

(
 

Ω
|U |pdx

)1/p

≤ C

{(
 

Ω
|U |2

)1/2

+

(
 

Ω
|f |p

)1/p}
. (6.9)

Theorem 6.5. Assume that Ω is C1 or convex. Let p > 2 and f ∈ Lp(Ωε)
d and F ∈ Lp(Ωε).

Let uε be the weak solution of (1.9). Then there exits m0 > 0 such that for any m0ε ≤ r ≤
diam(Ω), we have

(
ˆ

Ω

(
 

Qr(x)∩Ωε

|φε∇uε|2
)p/2

dx

)1/p

≤ C
(
‖f‖Lp(Ωε) + ‖F‖Lp(Ωε)

)
. (6.10)

Proof. We will apply Theorem 6.4 to U = φε∇uε with balls replaced by cubes. Let Qε
r(x) =

Qr(x) \ Tε with r = mε for some integer m ≥ m0. To make sure that Qε
r(x) satisfies the

geometric assumption (1.2), we temporarily assume that x is the center of some cell ε(k+Y ).

Moreover, we will consider Qε
r(x) such that either Qε

4r(x) ⊂ Ωε or Qε
r(x) is centered in a

boundary cell (i.e., a cell intersecting with ∂Ω). Consider

Lε(uε) = div(φεf) + F in Qε
2r ∩ Ω, and uε = 0 on Qε

2r ∩ ∂Ω. (6.11)

Let vε be the solution of

Lε(vε) = 0 in Qε
2r ∩ Ω, and vε = uε on ∂(Q2r ∩ Ω).

Then wε = uε − vε satisfies

Lε(wε) = div(φεf) + F in Qε
2r ∩ Ω, and wε = 0 on ∂(Q2r ∩Ω).

Recall that Qε
2r ∩ Ω satisfies the geometric assumption (1.2). Thus, the energy estimate

implies
(
 

Qε
2r∩Ω

|φε∇wε|2
)1/2

≤ C

(
 

Qε
2r∩Ω

|f |2
)1/2

+ C

(
 

Qε
2r∩Ω

|F |2
)1/2

. (6.12)
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Next, we consider the regularity of vε. We distinguish between two cases. If Qε
4r is

contained in Ω, then we have already proved the local uniform Lipschitz estimate of vε in

(5.20) for r > m0ε, i.e.,

‖φε∇vε‖L∞(Qε
r)

≤ C

(
 

Qε
2r

|φε∇vε|2
)1/2

. (6.13)

In this case, let U = φε∇uε, RQ = φε∇vε and UQ = U −RQ. Then by (6.12) and (6.13), we

have

‖RQ‖L∞(Qε
r)

≤ C

(
 

Qε
2r

|U |2
)1/2

+ C

(
 

Qε
2r

(|f |+ |F |)2
)1/2

,

for r > m0ε and (
 

Qε
r

|UQ|2
)1/2

≤ C

(
 

Qε
2r

(|f |+ |F |)2
)1/2

.

Previously we have assumed r = mε with some integerm and Qε
r is centered in a cell ε(k+Y∗).

But these assumptions can be removed by slightly adjusting the size of the cubes. Also the

holes can be removed simply by a natural zero-extension. Hence, the conditions (6.6) and

(6.7) are satisfied with η = 0, provided Q4r ⊂ Ω.

If Qε
2r is centered in a boundary cell, we apply Theorem 4.7 to approximate vε with good

functions such that the real-variable argument can apply. Precisely, by Theorem 4.7, there

exists v0 satisfying

L0(v0) = 0 in Q 4
3
r ∩ Ω and v0 = 0 on Q 4

3
r ∩ ∂Ω,

and
 

Qε
r∩Ω

φ2ε|∇vε −∇v0 −∇χ(x/ε) · ∇v0|2 ≤ C
(ε
r

) 1
4

 

Qε
2r∩Ω

φ2ε|∇vε|2. (6.14)

Since ∂Ω is C1 or convex, for any q < ∞, ∇v0 ∈ Lq(Qr ∩ Ω). Hence, by the boundedness of

φ∇χ, we obtain for some q > p,
(
 

Qε
r∩Ω

φqε|∇v0 +∇χ(x/ε)∇v0|q
)1/q

≤ C

(
 

Qε
2r∩Ω

φ2ε|∇vε|2
)1/2

.

Thus, if we set U = φε∇uε, RQ = φε∇v0 + φε∇χ(x/ε) · ∇v0 and UQ = U −RQ, then

(
 

Qε
r∩Ω

|RQ|q
)1/q

≤ C

(
 

Qε
2r∩Ω

|U |2
)1/2

+ C

(
 

Qε
2r∩Ω

(|f |+ |F |)2
)1/2

,

and
(
 

Qε
r∩Ω

|UQ|
)1/2

≤ C
(ε
r

) 1
8

(
 

Qε
2r∩Ω

|U |2
)1/2

+ C

(
 

Qε
2r∩Ω

(|f |+ |F |)2
)1/2

,

Let m0 > 0 be large enough such that

Cm
− 1

8
0 < η0,
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where η0 is given in Theorem 6.4 depending on C, p, q and Ω. Hence, the conditions (6.6)

and (6.7) are also satisfied in this boundary case provided r > m0ε. As a consequence of

Theorem 6.4, we obtain
(
ˆ

Ω

(
 

Qε
r(x)∩Ω

|φε∇uε|2
)p/2

dx

)1/p

≤ C

{
|Ω|1/p−1/2

(
ˆ

Ω
|φε∇uε|2

)1/2

+

(
ˆ

Ω
(|f |+ |F |)p

)1/p}

≤ C‖f‖Lp(Ωε) + C‖F‖Lp(Ωε).

for all r > m0ε. This proves the theorem. �

Proof of Theorem 1.2. Note that p = 2 corresponds to exactly the energy estimate. Let

p > 2. Then Theorem 6.5 with r = m0ε implies
(
ˆ

Ω

(
 

Qm0ε(x)∩Ωε

|φε∇uε|2
)p/2

dx

)1/p

≤ C
(
‖f‖Lp(Ωε) + ‖F‖Lp(Ωε)

)
. (6.15)

Now Lemma 6.3 implies for any x ∈ Ω,
(
 

Qε(x)∩Ωε

|φε∇uε|p
)1/p

≤ C

(
 

Qm0ε(x)∩Ωε

|φε∇uε|2
)1/2

+ C

(
 

Qm0ε(x)∩Ωε

|f |p
)1/p

+ C

(
 

Qm0ε(x)∩Ωε

|F |p
)1/p

.

Substituting the last inequality into (6.15), we obtain
(
ˆ

Ω

[
 

Qε(x)∩Ωε

|φε∇uε|p
]
dx

)1/p

≤ C
(
‖f‖Lp(Ωε) + ‖F‖Lp(Ωε)

)

+ C

(
ˆ

Ω

[
 

Qm0ε(x)∩Ωε

|f |p
]
dx

)1/p

+ C

(
ˆ

Ω

[
 

Qm0ε(x)∩Ωε

|F |p
]
dx

)1/p

.

(6.16)

It is not hard to see that for any g ∈ Lp(Ωε), we have
ˆ

Ω

[
 

Qε(x)∩Ωε

|g|p
]
dx ≈

ˆ

Ω

[
 

Qm0ε(x)∩Ωε

|g|p
]
dx ≈

ˆ

Ωε

|g|p.

This and (6.16) imply the desired estimate for p > 2.

Finally, the case 1 < p < 2 follows from the case p > 2 by duality. �

Proof of Theorem 1.1 (ii). This is a dual statement of Theorem 1.2. Let uε be the weak

solution of (1.6) with f ∈ Lp(Ωε) and 1 < p < d. Let g ∈ Lp′(Ω)d and vε be the weak

solution of

−div(φ2εAε∇vε) = div(φεg) in Ωε and vε = 0 on ∂Ω. (6.17)



36 ZHONGWEI SHEN AND JINPING ZHUGE

Then, by the equation (1.6) and (6.17), we have
ˆ

Ωε

φε∇uε · g =

ˆ

Ω
fφεvε.

Theorem 1.2 and Theorem 2.7 (i) imply
∣∣∣∣
ˆ

Ωε

φε∇uε · g
∣∣∣∣ = ‖f‖Lp(Ωε)‖φεvε‖Lp′ (Ωε)

≤ C‖f‖Lp(Ωε)‖φε∇vε‖Lq(Ωε) ≤ C‖f‖Lp(Ωε)‖g‖Lq(Ωε),

where p and q satisfy p′ = q∗, i.e., 1− 1
p = 1

q − 1
d . By duality, we have

‖φε∇uε‖Lq′ ≤ C‖f‖Lp(Ωε).

Note that 1
q′ =

1
p − 1

d . Hence q
′ = p∗, which ends the proof. �

Appendix

Smoothing operators. Let α > 0 be fixed. Let 0 ≤ ζ ∈ C∞
0 (Bα(0)) and

´

Bα(0)
ζ = 1 and

define the standard smoothing operator by

Kεf(x) =

ˆ

Bαε(x)
ε−dζ(

x− y

ε
)f(y)dy =

ˆ

Bαε(0)
ε−dζ(

y

ε
)f(x− y)dy.

Let Ω be a bounded domain in R
d and Ω(ε) = {x ∈ Ω : dist(x, ∂Ω) < αε}. Note that if

f ∈ L1(Ω), then Kεf is well-defined in Ω \Ω(ε). Some properties of the smoothing operator

are listed below, whose proofs may be found in [13, Chapter 3.1].

Lemma A.1. Let 1 ≤ p <∞. Assume g ∈ Lp
per(Y ) and f ∈ Lp(Ω). Then

‖g(x/ε)Kεf‖Lp(Ω\Ω(ε)) ≤ C‖g‖Lp(Y )‖f‖Lp(Ω),

where C depends only on p and α.

Lemma A.2. Let 1 ≤ p < ∞ and Ω be a bounded Lipschitz domain in R
d. Assume f ∈

W 1,p(Ω). Then

‖Kεf − f‖Lp(Ω\Ω(ε)) ≤ Cε‖∇f‖Lp(Ω),

where C depends only on p and α.

Lemma A.3. Let Ω be a bounded Lipschitz domain in R
d and q = 2d

d+1 < 2. Assume

g ∈ L2
per(Y ) and f ∈W 1,q(Ω). Then

ˆ

Ω(2t)\Ω(t)
|g(x/ε)|2|Kεf |2 ≤ Ct‖g‖2L2(Y )‖f‖2W 1,q(Ω),

where t ≥ ε and C depends only on Ω and α.

The following is a related lemma without smoothing.
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Lemma A.4. Under the same assumption as Lemma A.3, we have

‖f‖L2(Ω(t)) ≤ Ct
1
2 ‖f‖W 1,q(Ω),

for any t > 0.

Nontangential maximal functions. We consider the solvability and regularity of the

Dirichlet problem in a Lipschitz domain:
{
−∆u = 0 in Ω,

u = f on ∂Ω.
(A.1)

Assume f ∈ L2(∂Ω). Define the nontangential maximal function u∗(Q) with Q ∈ ∂Ω by

u∗(Q) = sup{|u(x)| : x ∈ Ω and dist(x, ∂Ω) > β|x−Q|},
where β is a fixed constant chosen according to the Lipschitz character of ∂Ω. It has been

proved (see [4]) that (A.1) is solvable with f ∈ L2(∂Ω) and

‖u∗‖L2(∂Ω) ≤ C‖f‖L2(∂Ω).

Similarly, we may define

(∇u)∗(Q) = sup{|∇u(x)| : x ∈ Ω and dist(x, ∂Ω) > β|x−Q|}.
Then if, in addition, f ∈ H1(∂Ω) and ∂Ω is connected, it was proved (see [9]) that

‖(∇u)∗‖L2(∂Ω) ≤ C‖∇tanf‖L2(∂Ω). (A.2)

As a simple corollary, we have

Lemma A.5. Let f ∈ H1(∂Ω) and u be a solution of (A.1). Assume ∂Ω is connected. Then

‖∇u‖L2(Ω(t)) ≤ Ct
1
2 ‖∇tanf‖L2(∂Ω),

for any t > 0.

Sketch of the proof of Lemma 4.3. Let v ∈ H2(Rd) be such that L0(v) = F1Ω in R
d and

‖v‖H2(Rd) ≤ C‖F‖L2(Ω). By the trace theorem,

‖v‖H1(∂Ω) ≤ C‖F‖L2(Ω),

and
ˆ

Ω(ε)
|∇v|2 ≤ Cε‖v‖2H2(Rd) ≤ Cε‖F‖2L2(Ω). (A.3)

Let w = u0 − v, then w satisfies

L0(w) = 0 in Ω and w = g − v on ∂Ω.

By Lemma A.5, we have

‖(∇w)∗‖L2(∂Ω) ≤ C‖g − v‖H1(∂Ω) ≤ C‖g‖H1(∂Ω) + C‖F‖L2(Ω). (A.4)
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It follows that
ˆ

Ω(ε)
|∇w|2 ≤ Cε

ˆ

∂Ω
|(∇w)∗|2 ≤ Cε

(
‖g‖2H1(∂Ω) + ‖F‖2L2(Ω)

)
.

This proves (4.17) in view of (A.3).

Let x ∈ Ω and δ(x) = dist(x, ∂Ω). Then by the interior estimate,

|∇2w(x)| ≤ C

δ(x)

(
 

Bδ(x)/2

|∇w|2
)1/2

It follows that
ˆ

{δ(x)=t}
|∇2w|2 ≤ Ct−3

ˆ

t/2<δ(y)<2t
|∇w|2dy ≤ Ct−2

ˆ

∂Ω
|(∇w)∗|2

Consequently, the co-area formula leads to
ˆ

Ω\Ω(cε)
|∇2w|2 ≤

ˆ diam(Ω)

cε
Ct−2dt

ˆ

∂Ω
|(∇w)∗|2 ≤ Cε−1

ˆ

∂Ω
|(∇w)∗|2.

This estimate together with the H2 estimate of v and (A.4) gives (4.16). �
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