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problems with convex constraints. The evaluation of objective func-
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tion and its gradient is potentially computationally expensive, but it Optimization; line-search;
is assumed that one can construct effective, computationally inex- inexact function; inexact
pensive models. This paper specifies how these models can be used gradient; reduced order
to generate new iterates. At each iteration, the model has to sat- model

isfy function error and relative gradient error tolerances determined
by the algorithm based on its progress. Moreover, a bound for the
model error is used to explore regions where the model is sufficiently
accurate. The algorithm has the same first-order global convergence
properties as standard line-search methods, but only uses the mod-
els and the model error bounds. The algorithm is applied to problems
where the evaluation of the objective requires the solution of a large-
scale system of nonlinear equations. The models are constructed
from reduced order models of this system. Numerical results for par-
tial differential equation constrained optimization problems show
the benefits of the proposed algorithm.

1. Introduction

We develop a line-search algorithm that uses objective function models with tunable accu-
racy to solve smooth optimization problems with convex constraints. Given Hilbert space
(X, {-,-)x), aclosed convex set C C X and a smooth function f : C — R, the optimization
problem is

gligf(x). (1)

Let I : X — Cbe the projection onto C. We assume that the evaluation of f and its gradi-
ent is computationally expensive, e.g. because the evaluation of f at x requires an expensive
simulation, but that one can compute differentiable, effective, computationally inexpensive
to evaluate models my of the objective function around the current iterate xi. Instead of
traditional line-search methods that use Taylor expansions at the current iterate to build a
convex quadratic model and then construct a new iterate using an approximate minimizer
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of this quadratic model (see, e.g. [14, Section 6.3], [36, Ch. 3], [28]), we want a line-search
method that uses mg. In this paper, we specify what approximation properties are required
of these models at the current iterate xx, and how these models can be used to generate a
new iterate in the context of line-search methods. While once generated, a model my and
its gradient are computationally inexpensive to evaluate, the computation of this model,
however, carries a computational cost. Therefore, it is desirable to use a current model as
much as possible. Motivated by [51], we develop criteria based on error bounds between
the current model my and the true objective to specify regions in parameter space in which
the model can be used.
Our algorithm determines function and gradient tolerances r{ ; rf and requires that

Imi () = f el < 7 (22)
and
1T = o Vmi(xr) = Tc(ok = ai” VS Gee))lx
< llxk — Te(xk — @ V() lx, (2b)
where a](cﬂ) is the initial trial step-size in iteration k. Moreover, our algorithm assumes

that a bound ey (x) for the model error |my(x) — f(x)| is available and uses this bound
to explore the model in regions where it is sufficiently accurate to compute the new iterate.
Our algorithm has the same first-order global convergence properties of standard line-
search methods, but our algorithm only uses the models my and the error functions e; and
never directly accesses the original objective function.

The use of a Hilbert space (X, (-, -) x) setting does not significantly change the algorith-
mic setup and theory compared to the specific case X = R” and (x, y)x = xTy. However,
in many cases the problem (1) with X = R" is obtained as the discretization of an infi-
nite dimensional problem and the inner product is a weighted Euclidean inner product
(x,y)x = xT My with a symmetric positive definite matrix M = R™*". Posing the problem
in a Hilbert space setting accommodates this and other problem settings.

Our algorithm and theory are agnostic about model construction. Of special interest,
both in terms of applications and in terms of algorithmic development, are an important
class of problems where the kth model my is computed using projection-based reduced
order models (ROM:s) of systems that underlay the definition of the objective function. We
specify theoretically and illustrate numerically how these models can be used with our pro-
posed optimization algorithm. Specifically, we consider objective functions given by f (x) =
f(x, y(x)), where y(x) € R™, ny >> 1, solves a large-scale system of (nonlinear) equations
R(x,y) = 0. These objective functions arise in applications where x represents the input
(e.g. a control or a vector of design parameters) into a system, which is modelled by
R(x,y) = 0, and the state of the system y(x) € R". The state y(x) together with x are used
to specify the objective, which quantifies how well the system performs. Specific examples
will be discussed in Section 4. To compute a model in the kth iteration, a vector y;, € R™,
matrices Vi, Wy € R, rj « ny and a small-scale ROM Wg R(x, vk + Viyk(x)) = Oare
constructed such that y(x) & yx + Viyr(x) for x around xi. The objective function model
is mg(x) = f(x, 7k + ViJk(x)). The quality of the model can be tuned by adjusting the gen-
eration of ¥k, Vi, Wi. Problems of this form arise in many important applications, see, e.g.
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[2,17,32,34,35,41,45,47,49,52], and the rigorous and efficient integration of ROM-based
objective function models enables faster solution of these problems.

The use of models my for the minimization of a smooth function f is related to the
question of how much error in the function f and its gradient can be tolerated. These issues
have been analysed for trust-region methods and, often in different problem contexts, for
line-search based methods. Next, we will review previous approaches and contrast them
with the one in this paper.

The use of inexact function and gradient information in trust-region methods was first
studied in [11,12], where conditions on the size objective function and gradient errors were
developed to ensure convergence of trust-region methods. See also [13, Sections 8.4,10.6].
The paper [1] explored the use of more general smooth models instead of traditional Tay-
lor expansion based models in trust-region methods. They require that the error between
the models and the original objective function, as well as the error between their gradients
satisfy the conditions in [11,12]. The conditions on function and gradient error in [11,12],
[13, Sections 8.4,10.6] require rather precise error bounds which are difficult to imple-
ment in practice. The papers [23], [30, Section 4] relaxed the gradient conditions in [11]
to make them implementable when only asymptotic error bounds are available. The paper
[31, Section 4] additionally incorporated inexactness in function evaluations and devel-
oped conditions that are implementable when only asymptotic error bounds are available.
See also the survey [29]. In [30,31] the theory of trust-region methods with inexact func-
tion and gradient evaluations was applied to optimization under uncertainty, and errors
in objective and gradient evaluation were due to sampling / approximation errors for the
expected value. Related trust-region theory was used in [44,54] for multilevel partial differ-
ential equation (PDE) constrained optimization. The trust-region theory of [11] was used
in [15] to manage the construction of Proper Orthogonal Decomposition (POD) based
ROMs for PDE constrained optimization. The improved trust-region theory of [30,31]
was used, e.g. in [45,48,52,53] to manage the construction of ROMs for PDE constrained
optimization. The trust-region convergence theory is quite powerful, but present trust-
region methods have a potential disadvantage. If the ratio between predicted (by the model)
decrease and actual decrease is small, the computed trial step is rejected, the trust-region
radius is reduced, and the model is refined. The trust-region model is then increased in
subsequent successful iterations. Thus, a poorly constructed temporary model may result
in small trust-region radius. Even if the model refinement vastly improves the fidelity of
the model, current trust-region algorithms still use the reduced trust-region radius and
only allow it to increase relatively slowly. This motivates the use of line-search methods,
which compute steps and step-size based on the current model, but do not base these
computations on past step and step-size selections.

In contrast to papers on trust-region methods for problems with inexact function and
gradient information, there are few papers on this issue for line-search methods. The report
[18] provides conditions on gradient errors that can be permitted while still guaranteeing
global convergence. Most of the recent line-search papers focus on problems with stochas-
tic noise in function or gradient evaluation, which is a different problem setting than the
one considered in this paper. For example, [8,50] consider line-search methods for stochas-
tic optimization problems and propose adaptive methods for choosing sample sizes which
construct approximate gradients in this context. Similar results are presented in [9], where
acriterion is developed for deciding sample sizes in a line-search based scheme for solving a
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machine learning optimization problem. In [37], convergence of a line-search method with
random gradients is analysed, and this analysis is extended to also include noisy functions
in [5]. The paper [43] studies proximal gradient methods for convex optimization with
errors in the gradient of the smooth component of the function and in the proximity oper-
ator. These errors enter the bounds for the convergence of function values, but are not
adjusted to achieve convergence to the solution of the original problem. As we have men-
tioned earlier, the above line search papers address a different problem setting motivated
by stochastic optimization. In contract, we assume that given a current iterate x; and toler-

ances r{ and ff, which will be determined by our optimization algorithm, one can generate
a model my, such that (2a) holds and that a bound e (x) for the model error [my(x) — f(x)|
is available. The previously mentioned line-search approaches are not applicable in this
context.

Our line-search algorithm is motivated by [51]. While the algorithm in [51] has flavours
of both line-search and trust-region, the line-search algorithm elements are responsible for
global convergence and we therefore classify [51] as a line-search algorithm. The algorithm
in [51] was used in [39] and in [27] to manage the construction of reduced basis ROMs
for specific optimization problems governed by linear PDEs. The algorithm in [51] and the
one proposed in this paper compute a so-called generalized Cauchy point using a descent
direction of the current model and then compute a new iterate that further reduces the
model compared to the generalized Cauchy point. The iterate is obtained by approximately
minimizing the current model my subject to constraints involving the bound ek (x) for the
model error [mg(x) — f(x)|. To ensure well-posedness of the algorithm and global conver-
gence results, the model my may need to be refined. The algorithms in [51] and the one
proposed in this paper differ in when and how this refinement is applied, and in the formu-
lation of the minimization subproblem. Our proposed algorithm has fewer conditions on
substeps, and it detects early in the iteration whether the current model needs to be refined.
In addition we relax several conditions imposed in [51] and present a simplified conver-
gence analysis. The basic convergence theories in [51] and in this paper both assume that
the number of model refinements needed in every iteration is uniformly bounded. Because
the optimization algorithms are agnostic about model construction, this assumption can
only be verified when a specific model construction is chosen. In [51] this assumption
is numerically observed to be valid for the examples considered. We prove that in our
setting this assumption is satisfied for a broad class of ROM based models. This is pos-
sible because the need for model refinement is detected earlier in our algorithm and our
algorithm has fewer substeps. Finally, we allow convex constraints in (1). However, this is
a fairly straightforward extension.

This paper is organized as follows. In Section 2.1 we present the basic line-search
algorithm and a basic convergence result. The initial convergence theory assumes a con-
dition that involves my(xk+1) (see condition (8) in the next section). Since xjy; is
computed iteratively, naive application of this condition requires construction of a new
model my at every trial iterate xj ;. Section 2.2 develops conditions that allow the com-
putation of xi, based on the current model my and on the bound eg(x) for the model
error |my(x) — f(x)|. These conditions allow one to first compute the new iterate x; ; and
then construct the new model. The approach of [51] is summarized in Section 2.3 and
compared with the proposed approach. As we mentioned earlier, the conditions developed
in Section 2.2 that allow the computation of x4 without constructing a new model may
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require a refinement of the current model mj. In Section 3 we consider models computed
using a broad class of ROMs and we prove that a finite number of model refinements are
sufficient. Section 4 applies our algorithm to model problems from [27,39], and [45].

2. Line-search with inexact function evaluations
2.1. General idea

Our algorithm seeks to find x, that solves (1), such x, will be in C and satisfy
xe = He(xe —aVf(x,)) Va>0. (3)

A point x, that satisfies (3) is called stationary.

Assume that the original function f is Fréchet differentiable. Suppose that at every step
k of the algorithm there is a continuously Fréchet differentiable approximation my of the
true objective f. Furthermore, assume that for a given approximation there is a computable
error bound function eg such that

[mi(x) — f(x)] < ex(x) VxeR" (4)

This error bound function ex may be large, and could even take the value co away from
the current iterate x; at which the current model my is built. However, we assume there
is a method to generate an approximation my such that the error bound at x is below a

tolerance r]{ ;

ex(xg) < r{. (5)

In addition, a relative error r}f on the projected gradient will be described below. The toler-

ances r}): and rf will ultimately be specified by our optimization algorithm. When objective
function models are computed using ROMs of the underlying simulation, error bounds
which satisfy (5) and (4) can be computed; see Section 3 for additional details.

We will be using models my of the true objective f to find critical points of (1).
For line-search in the unconstrained case C = X, a general descent direction s; with
(Vmg(xg),sk)x <0 is used. In the constrained case, however, it is not guaranteed
that my(Ilc(xx + asy)) < my(xy) for sufficiently small @ > 0. See, e.g. [6, p. 225], [7,
pp- 224-225]. Therefore search directions s need to be adjusted to C and x, e.g. [6, p. 225],
[16]. More general search direction can be incorporated, but to focus the paper, we use
sk = — Vmy(xx) and the projected gradient IT¢(x; — ay Vmg(xy)). Specifically, we choose
a step-size ax such that the so-called generalized Cauchy point

x¢ = M — ax Vg (xx)), (6)
satisfies a sufficient decrease condition
C1
mi(xg) < my(xe) — s xi k- )

In the unconstrained case C = X, the sufficient decrease condition (7) is identical to the
traditional sufficient decrease condition with sp = — Vm(x).
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In addition to (7) we will also require a lower bound on the step-size ax. Under suit-
able conditions on the model myg, which we will specify in Lemmas 2.1 and 2.2 below,
there exist step-sizes ay that satisfy (7) and there are several algorithms to compute these.
See, e.g. [14, Section 6.3], [36, Ch. 3] for the case X = R". One possible algorithm is the
Backtracking Algorithm 1 below. In the simplest setting Algorithm 1 uses f; = f,, which
reduces the trial step-size a](f) by a constant factor #1. The choice 0 < f; < B, < 1allows
one to use polynomial models of @ — my(xx + asi) to potentially find ay faster. See, e.g.
[14, Section 6.3.2].

Algorithm 1: Backtracking Line-Search

Require: x,sp € X,c; € (0,1),0 < 1 < fr < l,a](co) > 0.
Ensure: Step-size ay.

1: fori=0,1,2,...do

2. If(7) is satisfied by afj; return with a3 = a Ej.

3 Compute GEH) € [ﬁla;(:]»ﬁm?]'

4: end for

Lemma 2.1: Let my be continuously Fréchet differentiable in an open set Dy containing xy €
C. If the gradient of my is Lipschitz continuous in the set Dy, with Lipschitz constant Ly, then
the sufficient decrease condition (7) is satisfied for all ay € (0,2(1 — ¢1)/Lg).

For a proof, see e.g. [28, pp. 94]. This reference considers the case X = R" and C given
by box constraints, but the arguments can be directly extended to our case.

Since the backtracking line-search Algorithm 1 reduces the trial step-size at least by a
factor f < 1,itwillfindax = a ,9 such that the sufficient decrease condition (7) is satisfied
after a finite number of reductions.

Lemma 2.2: If the assumptions of Lemma 2.1 hold, if the initial step-size of Algorithm 1
satisfies a}(co) > 2(1 — c1)/Ly, and if xx + asg € Dy for alla € [O,algm], then the step-size
computed by Algorithm 1 satisfies ay > 2p1(1 — c1)/Lg.

Proof: If Algorithm 1 returns ax = a,ED), the lower bounds follows from the assumption on
ag}) and f; € (0,1).Ifay = a S) fori > 1,thena ]?_ Y did not satisfy the sufficient decrease
condition (7), i.e.

i c i
e = D Vg () = mi(e) > =—g5 I = TG = ™) Vi) I
a
k
> —ciay VNI Vmi(x0) I
where we used x; = Il¢(xx) and the fact that projections obey ||[TI¢(x) — Hec(¥)|Ix < llx —
¥|lx for all x, y € X. This implies

my(xp — ag_l)mG(xk)) — mi(xg) + ag_l)"mG(xk)ﬂir >(1- cl)af_l) |[mG(xk)||§(.



OPTIMIZATION METHODS & SOFTWARE @ 7
Moreover,
&0 . (D y 2
my(xx — o my(xk)) — my(xg) + o NI V() |
. 1 .
= oD / (Vg () — Vg (e — ta ™D Vimge (i), Vimge (o)) xdt
0

: ¢ Lk
< @) SNV miCa) -

Combining the previous two inequalities gives af:_n > 2(1 — ¢;)/Lg. The desired bound
follows from ax = af) > B aIEf—l)_ .

Corollary 2.3: If the assumptions of Lemma 2.2 hold and the Lipschitz constants are
uniformly bounded, Ly < L,k € N, then ay > 28,(1 — c1)/L.

In traditional line-search methods the new iterate is x3y; = xf, but we allow xp4 1 #
xE. In our algorithm, the generalized Cauchy point (6) will ensure convergence. The new
iterate xy, ; will be computed by exploring the model mj more fully to potentially accelerate
the convergence.

The proof of global convergence of a line-search method with exact function informa-
tion uses a telescoping sum argument, see, e.g. [14, pp. 121-123] or [36, pp. 38-39]. This
argument can be easily extended to the inexact case (see Theorem 2.5 below) if the models

satisfy
i) = i () = a1 (i) — mice)) ®)

for some a; € (0, 1]. The closer a; is to zero, the easier it is for (8) to be satisfied. However,
for a; closer to zero less decrease is enforced and the algorithm may converge slower. Note
that if myq(xX41) < mk(xf), then (8) is satisfied for any a; € (0, 1] because mk(xf) <
my(xx) by the sufficient decrease condition (7).

It is non-trivial how to satisfy condition (8) in a computationally efficient way, see our
discussion at the end of this section. Therefore, much of this paper will centre around
computationally efficient ways of ensuring (8). If we accept (8) for now, then the basic
line-search algorithm with inexact functions is summarized in Algorithm 2 below.

Algorithm 2: Line-Search Algorithm with Inexact Function Information

Require: ¢; € (0,1), xp € C, stopping tolerance tol > 0
Ensure: Point xg where ||xx — [Ic(xx — a}({U) Vm(xx))|lx < tol.
1: Generate initial model my.
: fork=0,1,2,...do
If | — (g — aiO)mG(xk))”X < tol, then return x;.
Use Backtracking Line-Search Algorithm 1 to compute ay such that
xf = He(xx — ax Vmg(xx)) satisfies the sufficient decrease condition (7).
5: Compute x;4+; € Cand a new model my; such that (8) is satisfied.
6: end for

g e 2R
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Note, that Algorithm 2 says nothing about constructing my and does not consider the
difficulty of finding xx+; and the new model my4; such that (8) is satisfied. These issues
will be the focus of the following sections. For convergence, we introduce an additional
condition on the relative gradient error,

I (e — a” Ving(xi)) — e (e — oV V() lix

e — (o — ¥ V(i) llx

stafdng ©

where ag}) is the initial step-size in the Backtracking Algorithm 1. Note that (9) is implied
by
i | Vi i) — VF @)l

© (10)
llxk = Me(xk — ay” Vmg(xx)) 1 x

g
B 2

Often algm = 1, but since (projected) gradient methods are scaling dependent, the ini-
tial step size should be adjusted to the problem scaling. In the unconstrained case
C=2X, (9) and (10) reduce to the standard relative gradient tolerance ||Vmy(xy) —

V@) llx/ I Vm () llx < 13 < 1

The convergence result in Theorem 2.5 requires the following lemma.
Lemma 2.4: For every x € C and z € X, the function g : (0,00) — R defined by
1
g(a) = E”Hc(x + az) — x|lx
is monotonically nonincreasing, i.e. g(a) < g(a) fora > a.

For a proof see, e.g. [16, Lemma 1].

If Algorithm 2 generates a sequence of iterates {xj} which satisfy the relative gradient
condition (9), then we can prove the convergence result in Theorem 2.5. This resultis a gen-
eralization of the well-known line-search convergence result, see, e.g. [14, Theorem 6.3.3]
or [36, pp. 38-39].

Theorem 2.5: If the objective function models my are continuously Fréchet differentiable
with Lipschitz continuous gradients Vmy, if the Lipschitz constants are uniformly bounded,
if mg(xg) > M for all k, if the initial step-sizes in the Backtracking Algorithm 1 satisfy
21 —c)/Lg < afcﬂ) < a9, and if the Line-Search Algorithm 2 generates a sequence {xi}
of iterates, then

lim [lxx — McQg — a© V(i) lIx = 0. (11)
k—no

If, in addition, the objective function models my have bounded relative projected gradient
error (9), then

lim flxx — e — a@ Vf () lix = 0. (12)
k— o0
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Proof: Since xx4 satisfies (8) and {mg (xx)} is bounded from below,

K

00 > my(xp) — mg1(xg41) = z my(xXx) — My (Xg1)
k=0

K
> Zal (mk(xk) - mk(xf)) >0

k=0

for all K. Applying the sufficient decrease (7) gives

= = xx — Me(xe — ax Vg () |12
=5 B, ka(xk) e = ank llocx — T (xk - & Vg ( k))”x‘ (13)
k=0 k=0

Because the Lipschitz constants Ly of Vmy are uniformly bounded, Ly < L, Corollary 2.3
implies the step-size condition

ak = 21(1 = c1)/L. (14)
Moreover, since the step-sizes generated by the Backtracking Algorithm 1 satisfy aj, < a( )

the monotonicity result in Lemma 2.4 implies

lxk — M (xx — akak(xk))I[x llxx — He(xg — ay, )mG(xk))llx

- RO (15)
Inserting (14), (15) into (13) gives
2
00 > Z( 5 % — T — ’mG(xk))nx) : (16)

Since the initial step-sizes in the Backtracking Algorithm 1 satisfy a]ED) < a©, (16) and the
monotonicity result in Lemma 2.4 imply

llxk = (e — o Vimge () lx Ik = T = 2OV mia) e

0=l = lim
kl:go a([]) k— o0 a(o)
which is (11).

The projected gradient error condition (9) and (16) imply

Ik = Mo = P VG lx (= Mo = af? V(o) lx

<(1+1) -0
a F(cu) 3 (0)

as k — 00. Since initial step-sizes in the Backtracking Algorithm 1 satisfy a S]) < a©, the
monotonicity result in Lemma 2.4 implies

Ol = TeGx — a@VE)x .l — HeGg — a®© Vf ()l
0= lim = lim
k— oo GS]] k—)co a(m

which is (12). [ |
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Versions of Algorithm 2 and Theorem 2.5 (as well as the algorithms and theorems in the
following sections) exist for the unconstrained case C = X, see [20, Ch. 2]. In the uncon-
strained case, a more general search direction s is allowed. More general search directions
sk can be used in the constrained case as well as long as results analogous to Lemmas 2.1, 2.2
hold.

Theorem 2.5 guarantees convergence of the Line-Search Algorithm 2 provided that it
is well-posed, i.e. that there actually is a sequence {xi} of iterates. The critical condition is
(8). The model my is used to compute xf and xg 1, and it is relatively easy to generate these

quantities to ensure (7) and mg (xg+1) < mk(xf). Additionally, the alternate condition

mi(xx) — mi(xk41) > a1 (mk(xk) - mk(xf)) : (17)

which only uses the current model my, is relatively easy to satisfy. However, (8) replaces
M (xg41) in (17) by the evaluation at the new model my  (x41). This makes (8) difficult
to work with in general, because x; is typically computed iteratively, and naive incorpo-
ration of (8) requires that a model my; is constructed at every trial iterate for xj ;. This is
computationally inefficient because generation of a model my; is typically computation-
ally expensive. Thus, for a version of Line-Search Algorithm 2 that is applicable in practice
it is important to separate computation of xj ; from the generation of my; as much as
possible, i.e. to allow computation of x ; using the current model mj and generate a new
myy; afterwards. This is done by expanding on an idea of [51]. By definition (4) of the
function error,

my (xk) — My (Xkp1)
= my(xg) — my(xxq1) + Mg (es1) = fGkg1) +F (xg1) — Mpr (1)

> my(xk) — mi(xk4+1) — ex(Xk+1) = ek+1(xk+1)-

Therefore, (8) is implied by

—ekq1(Xkp1) — ex(ekgr) + my(xg) — my(xpyr) = ar (mk(xk) = mk(xf)) . (18)

The condition (18) works with error estimators and will next be used to devise a practical
algorithm to compute xx+; and update the function model m4 ;.

2.2. Computation of the new iterate and model adjustment

The new iterate x; ; must satisfy (18), which implicitly still involves the new model mj
through the error bound ey ;. Next, we will untangle this dependency.
First, equivalently write (18) as follows

ek+1(xk1) < —ek (k1) — mr(xkg1) + mr(x) + (1 — ay) (mk(xk) - mk(xf)) . (19)

Condition (19) implies (8). As before, the condition (19) is not verifiable without the con-
struction of a new model my . Therefore, (19) is not used directly but will be the impetus
to find other, implementable, conditions. If x;,; can be computed so that the right hand
side in (19) is strictly positive, then (19) becomes a condition on the new model mj_;: The
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new model mg4; must be computed so that its error ex4(xg+1) at the new iterate x4
satisfies (19). Together, the following two conditions ensure the positivity of the right hand
side,

my(xXg41) < mk(xf) (20)

and
exk(Xk+1) < a2(l — ay) (mk(xk) . mk(xf)) . (21)

where a3 € (0,1). Note that a; provides some slack in the sense that the smaller aj is, the
more positive the right hand side of (19).

In summary, if a generalized Cauchy point xf = I¢c(xx — ax Vmi(xg)) and a new iter-
ate x;,1 € C can be constructed so that (20) and (21) hold (and the sufficient decrease
condition (7) for generalized Cauchy point holds), then condition (19) becomes a con-
dition on the error ey (xk+1) of the new model ey at x34+;. A new model my; that
satisfies (19) can be constructed whenever the right hand side in (19) is positive. The
conditions (20), (21), and (19) imply (18) and (8), and therefore Theorem 2.5 guarantees
convergence.

The condition (21) motivates the choice of constraint in the following minimization
problem for computing the new iterate xx+1. Given x{, find x41 as the approximate
solution of

min  mg(x) (22a)
st. xeC, ex(x) <ax(l1-—ay) (mk(xk) - mk(xg)) : (22b)

Clearly, any feasible point x4 of (22a) satisfies (21). This leaves the condition (20). If the
Cauchy point is feasible for (22a), i.e. if xf € Cand

k(<) < ar(1 — ar) (men) — mi(x)) (23)

then any feasible point x4 of (22a) with a model function value lower than mk(xf) qual-
ifies as a new iterate. Hence, it is not necessary to compute a minimizer x4+ of (22a), but
any feasible point x4+ of (22a) that satisfies (20) can be used.

Example 2.6: The model mj, and the error bound function e can be used to explore the
model more globally via (22a). We illustrate (22a) using a simple two-parameter version,
X = R?, of the thermal fin problem described in Section 4.1. To reduce the problem in
Section 4.1 to a two-dimensional one, we assume heat conductivitieskg = ... = ks =k €
[0.1,10] and Biot number Bi € [0.01, 1], and use the two variables x = (i, Bi)T. For more
details on the problem setup, construction of my, etc., see Section 4.1. Figure 1 shows
zoomed-in representations of the contours of the objective model my and of the feasi-
ble region for (22a) for the first three iterations. In each plot, the thick line indicates the
boundary of the feasible set.

As we have stated before, if (23) is satisfied, then any feasible point x; of (22a) with
a model function value lower than mk(xg) qualifies as a new iterate. Thus, the remaining
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Figure 1. Contours (thin lines) of the objective model m, and boundary (thick line) of the feasible
region for (22a) for the first three iterations of a two dimensional version of the thermal fin problem
in Section 4.1. Each plot zooms into regions around xi and xi 1. For iteration k = 2, xx ~ xx1 and only
Xk41 is shown.

question is whether (23) can be satisfied. In general, given a model my, a Cauchy point xf
that satisfies the sufficient decrease (7) condition will not necessarily satisfy (23). The con-
dition (23) becomes a condition on the current model my. The model my, and its gradient
must not only approximate f and its gradient sufficiently well at xy, the model mj must also
be sufficiently accurate in the sense that (23) holds at the generalized Cauchy point. If (23)
is not satisfied, then there are two options: 1) Backtrack the generalized Cauchy point, or
2) refine the model my. We will discuss these next.

The idea behind backtracking is simple. If the model my, sufficiently approximates the
function f at xx, then we can try to compute a generalized Cauchy point closer to x that
satisfies (23) and (7). This backtracking continues to use the current model and avoids or at
least delays a costly model update. Let0 < B; < By < L.If agld := ay satisfies the sufficient
decrease condition (7), but (23) is violated, then we can try to find ax € [ﬁla"c’ld, Egazld] S0
that ay, satisfies the sufficient decrease condition (7) and xf = Xy + oSy satisfies (23). Note
that since a;'ld satisfies agld > 2B81(1 — ¢1)/L, the step-size ay satisfies afg}d > EIZﬁl(l -
¢1)/L. The specific construction of ay € [Ela}‘c’ld, Egazld] can depend on the properties of
the model. If with this backtracked aj, the point xkc = Xj + oSk satisfies (23) and (7), then
we accept xg = Xy + agsi. Otherwise we set aj = agld and refine the model.

If the generalized Cauchy point (with additional backtracking or not) does not sat-
isfy (23), we refine the current model my, so that the refined model satisfies the function
and gradient approximation properties at xx, and ultimately also (23). This refinement pro-
cess may have to be repeated. Model my, construction is application specific. In Section 3
we will consider the important case of objective functions f whose evaluation requires
computationally expensive simulation and of models my, that are generated from ROMs
of this simulation. We will show that in this case models m; can be constructed so that the
condition (23) is satisfied.

A summary of our line-search algorithm with inexact function information is given in
Algorithm 3 below. Its convergence is summarized in Corollary 2.7 below.

Corollary 2.7: Let the assumptions of Theorem 2.5 hold. If the number of sub-iterations
in the model construction loop in line 4 of Algorithm 3 is finite and uniformly bounded,
then the iterates calculated by the Line-Search Algorithm 3 satisfy limy_, o, ||xx — Ic(xg —

aOVf(x)llx = .
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Algorithm 3: Line-Search with Inexact Function Information

Require: ¢; € (0,1),a1 € (0,1),a2 € (0,1,0 <1< fr <L,0< B <P <17 >0,
5 € (0,1), tolerance tol > 0, xg € X.
Ensure: Point xg where || xg — c(xxk — Vmg(xx))|lx < tol.
1: Generate initial model myj.
2: fork=0,1,2,...do
3 If |xx — He(xk — Vmi(xx))llx < tol then stop.

4 fori=0,1,...do
5 if i = 0 then
6: Construct model my that satisfies ex(xx) < rj{ and (9).
7: else
8: Construct refined model my that satisfies ex(xx) < r,’: ,(23), and (9).
9: end if
10: Find ay that satisfies the sufficient decrease condition.
11: Set the Cauchy point xf = Me(xg — apVmg(xy)).
12: If xg = x + ask satisfies (23) goto line 23.
13: if Eg < 1 then
14: Set agld = a.
15: Try to find ax € [Elagld, Egafc'ld] that satisfies the sufficient decrease
condition (7) and xkc = Xy + sy satisfies (23).
16: if xf = Xj + aisi satisfies (23) then
17: goto line 23.
18: else
19: Setap = af'cld.
20: end if
21: end if

22:  end for
23:  Compute approximate solution xz 1 of (22) that satisfies (20), (22b).

24: Set f;{H = —ex(Xk1) — Mr(Xig1) + mp(x) + (1 — ay) (mi(xx) — me(xp)).
25: end for

Proof: The iterates x; generated by Algorithm 3 satisfy the conditions (20) and (21),
which imply (19), and therefore, (8). Thus, the iterates generated by Algorithm 3 satisfy
Algorithm 2 and the desired result follows from Theorem 2.5. |

The critical assumption in Corollary 2.7 is that the model construction loop in line 4 of
Algorithm 3 is performed a finite and bounded number of times at each outer iteration k.
In general, verification of this assumption depends on how the models my, are constructed
and refined. In the special case where the function error bound e is also efficient, i.e. is
essentially proportional to the error, one can show that no refinement is needed, provided
the gradient error is sufficiently small. Unfortunately, this condition on the error is very
restrictive and we therefore omit the details. As mentioned before, in Section 3 we will
consider the important case of objective functions governed by expensive simulations and
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models computed using ROMs of the expensive systems, and we will show that in this case
the model construction loop in line 4 of Algorithm 3 is performed a finite number of times
at each outer iteration.

2.3. Yue-Meerbergen algorithm

We briefly compare our algorithm with the one from Yue and Meerbergen [51]. A detailed
treatment of the main components of the algorithm in [51] in the notation of our paper
can be found in [20, Section 2.6]. The paper [51] considers C = X = R". The paper [27]
introduces an extension of [51] to the convex constrained case.

Given

€] € (0, 1),

which may be adjusted during the iteration, the ETR method in [51] and [27] consider the
minimization subproblem

min mg(x) (24a)
st. xeC, ep(x) < er|m(x)]. (24b)

(C = X = R" in [51]) instead of (22a) to compute a trial iterate xj ;.
The convergence result in [51, Th. 3.3] is for the case when

M1 (k1) < mi(xF), (25)

called the ‘ideal case’in [51, Section 3.2.2]. Note that (25) is (8) with a; = 1, this means that
the condition (8) used in Algorithm 3 is an easier to satisfy relaxation of (25). The proof
in [51, Th. 3.3], like our proof of Theorem 2.5, is a generalization of the well-known line-
search convergence result. The algorithm developments in Sections 3.2.3, 3.3 and 4 of [51]
are there to devise a practical way to compute an x¢+; and new model mj; such that (25) is
satisfied, just like our development in Section 2.2 are there to devise a practical way to com-
pute an xx+1 and new model my; such that (8) is satisfied. Our development in Section 2.2
involves fewer steps and decisions, and in our case the decision to refine the model my is
made based on the current generalized Cauchy point (see Line 8 in Algorithm 3), whereas
in [51] the decision to refine the model is made after additional computations with the
model myg have been performed. Convergence of the algorithm from [51] requires that
after a finite, uniformly bounded number of sub-steps/model refinements, an iterate xj41
and new model mj4; can be computed such that (25) holds. While in the numerical exam-
ples, convergence is observed, this is not proven for the set-up in [51]. Our convergence
result, Corollary 2.7 also assumes that a finite and bounded number of model refine-
ments are performed in each outer iteration. However, we will prove in Section 3 that
this is the case for an important class of applications in which models are computed via
ROM:s.

The paper [27] extends the algorithm in [51] to constrained problems (1). As we argued
earlier, the algorithm in [51] and its extension in [27] has flavours of both line-search and
trust-region, but the line-search algorithm elements are responsible for global convergence.
Therefore, we classify [51] and [27] as line-search algorithms. In addition to incorporating
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box constraints C, [27] also introduce a condition that allows the parameter ¢, which con-
trols the size of the constraint region in the subminimization problem (24a) to be increased.
In [51], €1 does not drive the convergence of the algorithm (the generalized Cauchy point
and (25), called the ‘ideal case’ in [51, Section 3.2.2] drive convergence) but instead acts
as a heuristic constraint on the subminimization problem (24a). Similarly, in [27], the
convergence guarantees are similarly not influenced by ¢ so the additional possibility of
increasing €; which they introduce is merely a heuristic that may improve the performance
but does not change the convergence theory. Like the convergence proofin [51], the conver-
gence result in [27, Thm. 4.5] requires that at most a finite and uniformly bounded number
of model refinements are needed to compute an acceptable next iterate xj ;. Moreover, the
proof of [27, Thm. 4.5] uses a special feature of their model construction, which is a special
case of the setting in Section 3. They consider a problem setting where objective evalua-
tions f(x) are dependent on the solution of an n, dimensional system. They continue to
enrich the ROM spaces and after ny enrichments, the ROM objectives my are equal to the
true objective f. Once this happens the constraint (24b) is never active. Unfortunately, this
setting is not interesting in practice, since ultimately no ROM objectives my, but only dif-
ferent representations of f, are used. Our proof of our convergence Theorem 2.5 requires
no such assumptions. Moreover, in the setting of Section 3.2 we can prove that the num-
ber of sub-iterations in the model construction loop in line 4 of Algorithm 3 is finite and
uniformly bounded.

3. ROMs

As we have mentioned before, the critical assumption in Corollary 2.7 is that the model
construction loop in line 4 of Algorithm 3 is performed a finite number of times at each
outer iteration. Verification of this assumption depends on how the models my ; are con-
structed and refined. In this section we will consider the important class of problems where
the evaluation of the objective f requires a complex simulation, represented by a system of
nonlinear equations, and the model my ; is computed using a ROM of the system of non-
linear equations (see, e.g. [3] and [4]), and we will show that a finite number of model
refinements is sufficient.

3.1. Optimization problem and model construction

The problem set-up is as follows. Let f : C x R" — R, R: C x R” — R™ be continu-
ously Fréchet differentiable functions. We assume that for every x € C there exists a unique
solution y = y(x) € R of

R(x,y(x)) = 0. (26)

The system (26) is also referred to as the full order model (FOM) and in the applications
we have in mind it is obtained from a large-scale high-fidelity approximation of a system
of partial differential equations, i.e. n, 3> 1. The objective function is

fx) =f(xy(x), (27)

where y = y(x) € R™ is the solution of (26). We refer to (27) as the FOM objective.
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A model of (27) is computed using a Petrov-Galerkin ROM. That is, given V, W &
R™*",r « ny, such that y(x) is approximately contained in the range of V, the ROM of (26)
is given by

WIR(x, Vy(x)) = 0. (28)
We assume that V, W € R™*" are constructed so that for every x € C there exists a unique
solution y =y(x) € R" of (28). The model is given by

m(x) = f(x, Vy(x)), (29)

where’y =J(x) € R" is the solution of (28). We refer to (29) as the ROM objective.

We use the adjoint method (see, e.g. [26, Section 1.6]) to compute the gradient of both
the FOM and ROM objectives. Let Vif(x,y) € X and V,f(x,y) € R™ denote the par-
tial gradients of f, and let Ry(x,y) € L(X,R") and Ry(x,y) € R™™" denote the partial
Jacobians of R.

Given x € Cand the corresponding solution y(x) € R"™ of (26), assume that R (x, y(x))
is invertible. The gradient of the FOM objective function (27) is

V() = R, 7(x))*p(x) + Vaf (5, (x), (30)
where p(x) € R™ solves the adjoint equation
Ry(3,y() 'p(x) = = Vyf (5,y()). (31)

The gradient of the model m is computed analogously to the gradient Vf(x). Given
x € C and the corresponding solution y(x) € R" of (28), assume that WTR},(x, Vy(x)V
is invertible. The gradient of the ROM objective (32) is given by

Vm(x) = Re(x, V3(x)) W) + Vof (x, VI)), (32)
where p(x) € R” solves the ROM adjoint equation
VIR (x5 VI() ' Wp(x) = =V V,f (x, V(). (33)

Lemma 3.1: Assume that for x € C the FOM (26) has a unique solution y(x) € R™ and the
ROM (28) has a unique solution y(x) € R”. If y(x) € range(V), then

fx) = m(x).
If, in addition, Ry (x, y(x)) and WT Ry (x, Vy(x))V are invertible and the solution p(x) of (31)
satisfies p(x) € range(W), then
Vf(x) = Vm(x).

Proof: If y(x) € range(V), then y(x) = Vy(x) for some y(x) € R" and 0 = R(x, y(x)) =
R(x, Vy(x)) implies 0 = WTR(x, Vy(x)). Since the ROM (28) has a unique solution, y(x) =
¥(x) and y(x) = Vy(x). Hence

f@) =F0y(0)) =F @ Vi) = m().
If, in addition, p(x) € range(W), then y(x) = V¥(x) and the invertibility of Ry(x,y(x))
implies that p(x) = Wp(x). Hence,

V£ (x) = Re(x, () *p(x) + Vf (x, y(x))
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= Ry(x, VI(x))* Wp(x) + Vof (x, V3(x)) = Vm(x). |

Lemma 3.1 states basic results about the exactness of the ROM generated model and
its gradient at a single point. In addition, the ROM literature provides bounds for the
error y(x) — Vy(x) between the solutions of (26) and of (28). See, e.g. the papers and
books [10,19,21,25,38,40,42,46]. These can be used to construct estimates (4) for the error
between the objective function and its model. Similarly, one can construct bounds for the
error between the solution p(x) of the adjoint Equation (31) and the solution Wp(x) of
the ROM adjoint (33), and use these to construct estimates for the error in the projected
gradient (9), (10). Again, for several example problems, such objective function error and
gradient error bounds are developed, e.g. in [27,39,45,51].

3.2. Model update

The setting is as in the previous Section 3.1. Now we consider the use of ROM objectives
as models in Algorithm 3. The kth iteration of Algorithm 3 contains an inner iteration
indexed by i. The model may be refined in the inner iteration and to keep track of these
changes we use my ; to denote the model in the ith inner iteration of the kth outer iteration.
Similarly, we will use s ;, a ;, and xkc,f to denote the step, the step-size and the generalized
Cauchy point in the ith inner iteration of the kth outer iteration.

In the kth iteration we have a current iterate x; € C. Assume that in the ith inner itera-
tion of outer iteration k we have a ROM objective my ;. The ROM objective my ; is computed
with

Vk,ir Wk,,' e R™M*Tki e <K Ry,

which satisfy the following conditions. Let y(x;) € R"™ be the solution of (26) with x
replaced by x, assume that Ry (xk, y(xk)) is invertible, and let p(xx) € R™ be the solution
of (31) with x replaced by xk. Assume that the ROM matrices are constructed so that

y(xx) € range(Vg;), p(xk) € range(Wg;). (34)

Furthermore, assume that Wg R(xx, Vi iJk,i) = 0 has a unique solutiony; ; € R’+ and that

WE Ry (xk, Vi iJk,i) Vi.i is invertible. The ROM objective (29) computed with V, W replaced
by Vi i, Wi is denoted by my ;. By (34) and Lemma 3.1,

J ) = myi(xx), V() = Vg (). (35)

If the ROM matrices satisfy (34), then the direction used to compute the trial generalized
Cauchy points in outer iteration k is the same, only the step-sizes a ; vary.
We use the Backtracking Algorithm 1 to compute a step-size aj ; and

xg; = N — ax; Vmy (), (36)

such that the generalized Cauchy point (36) satisfies the sufficient decrease condition

(ct. (7))

& €1 (Gt
myi(xg ;) < myi(xe) — o Ik — 21l - (37)
"
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If the generalized Cauchy point (36) satisfies (23), then we use the model my = my; and
xf = xkc,i to compute an approximate solution xk41 of (22a) that satisfies (20). See Steps 12
and 23 of Algorithm 3.

If the generalized Cauchy point (36) does not satisfy (23), then we need to refine the
model my ;. We do this by solving the FOM (26) with x = xf,!. to compute y(xg ;) € R™.

Then we update

Vikit1 = orth ([Vk,,-, y(ng)]) . (38a)

i.e, Vi 41 is a matrix with orthonormal columns such that range(Vj ;y;) = range([ Vi,
i (xf,-)]), and we update Wy ;1 such that

range(Wy ;) C range(Wg 1), (38b)

Wg:iHR(xk, Vik,i+1Vki+1) = 0 has a unique solution yj j+; € R™+1, and that W{iJrlRy(xk,
Vii+1Vki+1) Vki+1 is invertible. Then we set i <— i + 1 and repeat the process.

The construction of the ROMs with properties (34) and (38a), and Lemma 3.1 imply
the following result.

Lemma 3.2: Under the assumptions made in this subsection,

y(xgj) € range(Vyjy1) C range(Vy;) forall0 <j <i, (39a)
y(xk) € range(Vy;j) C range(Vk;) forall0 <j <i, (39b)
p(xx) € range(Wy;) C range(Wy;) forall0 <j<i, (39¢)
and
fxx) = mpi(xi),  Vf(xx) = Vg i(xx)  forall 0 < i, (40a)
if (xgj) = mk,f(xgj), forall0 <j < i. (40b)

Proof: The inclusions (39a) follow from (34) and (38a). The equalities (40a) follow
from (39a) and Lemma 3.1. [ |

Since the search direction is the negative gradient, (40a) implies that the search direction
remains the same throughout iteration k. Only the step-size ak ; changes. In outer iteration
k, at the trial generalized Cauchy points xf,j the current and new models my;, i > j, agree
with the function f. Moreover, the gradients of my ;, i > j, agree with the gradient of f. Thus,
the sufficient decrease condition (37) for the model my ; effectively becomes a sufficient
decrease condition for the function f. This will allow us to prove that a finite number of
model refinements are sufficient to compute a generalized Cauchy point xg ; that satisfies
23):

First we examine sufficient decrease condition for f,

FGS) < flo) — ;_1"’51& —xCI2 (41)

where 0 < ¢; < 1 cf. (7). We use the Backtracking Algorithm 1 applied to f and (41) to
compute a. Lemma 2.1 applied with f instead of mj, guarantee the existence of ¢y > 0such
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that (41) holds. Lemma 2.2 applied with f implies the step-size is uniformly bounded away
from zero, ax > @min := 2f1(1 — c1)/Ls > 0 for all k where Ly is the Lipshitz constant for
f- This implies that the number of iterations needed by the Backtracking Algorithm 1 to
find the step-size is uniformly bounded.

For the next result, we need that the initial step size & ]gn in the Backtracking Algorithm 1
can be chosen independently of k.

Theorem 3.3: Ifthe assumptions on the model refinement made in this subsection hold, if the
assumptions on fin Lemmas 2.1 and 2.2 hold, and if ay; with (36), (37) is computed using

the Backtracking Algorithm 1 with initial step-sizes a}c’) =a® and a( ) = k-1, 1> 0,
then there exists an integer imax independent of k such that at most imax modef refinements
are needed in the kth iteration of Algorithm 3 to compute a generalized Cauchy point that
satisfies (23).

Proof: Under the assumptions on f in Lemmas 2.1 and 2.2, the Backtracking Algorithm 1
with initial step-size a® applied to f and (41) requires at most £1qy iterations to find a
step-size a that satisfies (41), where £y is the smallest integer with ﬁg’““a O < apmin.
In the ith inner iteration of the kth outer iteration of Algorithm 3 the model mg; is
used to compute a step-size ay ;, and a corresponding generalized Cauchy point xft = xk +
ak.isk- By choice of the initial “k) = ak, 1,1 > 0, the step-sizes satisfy ax; < agi—i.
If ax; = ayj for some j <ithen xk,!. = ka. and, by Lemma 3.2,

flari) = mii(ec)s  f (o) = mii(xx)
which implies
0 = ex(xfy) < ax(l = a) (mesCxi) — mii () (42)

i.e. the generalized Cauchy point xff = xf ; satisfies (23) and we are done.
This implies that Cauchy points, i.e. corresponding step-sizes of unaccepted mod-
els are strictly decreasing. Moreover, by the Backtracking Algorithm 1 and our choice

of initial step-size a( ) , step-sizes of unaccepted models decrease by at least f € (0,1),
aki < Proki-1,1> 0 Thus if the model my; did not generate a generalized Cauchy point
xf,!. that satisfies (23), then

ag; < Pragiq < ﬂ;ak,o < 55.“(0]

and, by Lemma 2.2,
f (xf,,-) = mk,i+l(xf,f)’ Sk = myip1 (k) V() = Vimggipq ().

After at most i = £,y iterations, ag; < ﬁ;a(ﬂ) and ay ;, xf ; satisfy (41), the condition (7)
with my replaced by my ;;; and xf replaced by xgi, as well as 0 = ek,iﬂ(xfj) <ax(l-—
a) (my i1 (o) = mic i1 (5 ))-

Thus at most £;;x + 2 models are generated in the kth iteration of Algorithm 3 to
compute a generalized Cauchy point that satisfies (23). Ll
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Corollary 3.4: Let the assumptions of Theorems 2.5 and 3.3 hold. The iterates calculated
by the Line-Search Algorithm 3 with models given by the ROM objectives computed as in
Section 3.2 satisfy img_s oo ||xx — Mc(xx — a® Vi) lx =0.

Proof: The result follows immediately from Theorems 2.5 and 3.3, since a finite and
bounded number of model refinements are sufficient in the kth iteration of Algorithm 3 to
compute a generalized Cauchy point that satisfies (23). H

4. Numerical experiments

We apply Algorithm 3 and the Yue and Meerbergen [51] algorithm to model problems from
[27,39], and [45]. Our Algorithm 3 will also be referred to as ‘New’, whereas the Yue and
Meerbergen [51] algorithm with detailed algorithm specifications given in [20, Section 2.6]
will be referred to as “YM’.

Although some problems have box constraints, these turn out to be inactive most
of the time and therefore the applied algorithms essentially consider C = R". In our
numerics, we use a line-search Newton Conjugate Gradient (NCG) method or a limited-
memory BEGS (LBFGS) method (instead of the negative gradient) to compute a gener-
alized Cauchy point (6) and to compute an approximate solution of subproblem (22a).
We apply one step of NCG or LBEGS to find the generalized Cauchy point (see e.g. [36,
pp- 168-170, Section 6.1, 7.2] and [22, Section 5.1] for implementation details for these
algorithms). To approximately solve the subminimization problem (22a), NCG or LBFGS is
applied with initial point xE until min{||x;; — Mc(ex; — Vmp(xi) lx 1V mg (o) 1x} <
tol (where tol is the same stopping tolerance as in the outer iteration of Algorithm 3)
or the constraint (22ab) is violated. In our experiment, the iteration to solve (22a) ter-
minated because the constraint (22ab) was violated only in the first one of two outer
iterations. Thus, in most outer iterations, the termination criteria min{||x; — ¢ (xx; —
Vmy (xx ;) llx, | Vimg(xx3) I x} < tol was reached. This may ‘oversolve’ the problem in early
iterations, but since the models are computationally less expensive we use the model as long
as it is trusted (quantified by the constraints (22ab)). For both NCG and BFGS algorithms,
a maximum of 20 suboptimization iterations were allowed. The relative residual stopping
tolerance for CG in is set as 7 ; = min{ llek(xk,g)lfir, 0.01|| Vg (xx ;) llx}. The number
of BFGS updates is limited to L = 20. Since at most 20 sub-iterations were allowed in our
experiments, the LBFGS is equal to BFGS.

In all examples we use ROMs, as outlined in Section 3, but we use Galerkin ROMs, i.e.
V = W e R"*". Details of the construction and updates of the ROM basis V are problem
specific and will be discussed for each example.

We set the stopping tol from Algorithm 3 to tol = 10™* for the bypass problem in
Section 4.2 and the airfoil design problem in Section 4.3; for the fin problem we use
tol = 107, Our implementation of the Backtracking Line-Search Algorithm 1 follows
[14, Section 6.3.2] with parameters f; = 0.1, 2 = 0.5 and initial stepsize ag = 1. Prob-
lem parameters in Algorithm 3 were set to a; = 0.7 and a; = 0.95. The initial function
value tolerance is r{ = 1072, The relative gradient tolerance is fixed at r}f =05,k >0.
The parameters for the additional backtrack of the generalized Cauchy point backtracking
are setto f; = 0.1 and B, = 0.9. To select ay € [B'lagld,ﬁgagid] we use a quadratic model
of the error function.
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We use the implementation of the Yue-Meerbergen algorithm from [20, Alg. 2.6.2]. We
use the parameters above along with Cauchy backtracking parameter 0.5, ¢;, = 0.1 and €1,
reduction parameter 0.9. Computation of the generalized Cauchy point uses our imple-
mentation of the Backtracking Line-Search Algorithm 1 following [14, Section 6.3.2] with
parameters f; = 0 1, f> = 0.5, initial stepsize ak =1, and the additional truncation cri-

teria that ay = a 9 also satisfies ek (xx + a sk) < er|mp(xk + a sk)[ To approximately
solve (24a) we apply line-search NCG/ LBFGS iterations starting at the generalized Cauchy
point xkc with the same stopping criteria as the subproblem from Algorithm 3.

In all examples of this section X = R” with the standard Euclidean inner product. If the
Line-Search Algorithm 3 with Inexact Function Information and NCG or LBEGS is used
with exact functions, my = f for all k, then the algorithm is identical to a standard line-
search NCG or line-search LBFGS algorithm. For the following examples, we will compare
the Line-Search Algorithm 3 with Inexact Function Information with the corresponding
exact versions.

4.1. Thermal fin example

The first example problem is a heat conduction optimization problem. This problem is
described and applied in Section 5.1.1 of [39] and is referenced and applied in Section 5.2
of [27]. The goal is to determine heat conductivity denoted by ; € [0.1,10],i =0,...,4,
for different regions of a thermal find, as well as the Biot number Bi € [0.01, 1], a nondi-
mensional heat transfer coefficient, to that the average temperature at the bottom of the fin
is close to a desired temperature 7

Discretizing the problem using piecewise linear finite elements leads to the optimization
problem

53 e 1 -~ i) s
min f(u) £ =[bTy(u) = TP + —llu - 23, (43)
neC 2 2

where u = [xo,...x4,Bi] € [0.1,10]* x [0.01,1] =: C, X = R>, and y(u) € R" solves
the FOM A(u)y(u) = b. For u € C the matrix A(u) = Z:—o MiAj is symmetric positive
definite. The desired temperature distribution is computed as T= b’y (%) using the opti-
mal parameter 2 = [1,1,1,1,1,0.1]. In our computations, using the finite element mesh
provided by [39], the FOM dimension is n, = 17, 899.

We use a Galerkin ROM, and construction of the ROM matrix V is discussed below.
Output error estimates for linear ROM:s for this specific problem are given in [20,27,33,39].
We use these bounds to construct objective function error bounds (4), (5) and projected
gradient error estimates (9), (10). These bounds are detailed in [20, Section 5.3.2], and are
based on [39].

The reduced basis at the outer iterate k of the algorithm is computed from FOM states
and adjoints computed at previous outer iterates and the current outer iterate. Actually, in
this example, the FOM state equation and adjoint equation only differ by a scaling of the
right hand side and therefore the states y(u) and adjoints p(u) differ only by a scalar. Thus
using state information is sufficient in this example. Specifically, at the beginning of outer
iteration k, states y(ux), - - ., y(#0) have been computed and we compute the ROM using

Vio = orth ([y(u): - - .y (10)]) -
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Table 1. Comparison of exact line-search algorithm, our imple-
mentation of the Yue-Meerbergen algorithm ('/ROM YM') and our
Line-Search Algorithm 3 ('ROM New’) applied to the fin problem.

Algorithm Iters FOM ROM Rec. CcVv.
LBFGS FOM 9 1 - - -
LBFGS ROM New 4 5 30 0 2
LBFGS ROM YM 6 7 97 0 5

In particular, the ROM state and adjoint equations in the kth iteration are of size r = k+ 1.
In the experiments presented in this section, the kth model m; never needed to be refined.
If a refinement was needed, a state snapshot at the proposed Cauchy point would have been
added, i.e. Vi ; = orth([V;—; Y(#Ef_l)])-

Table 1 and Figure 2 summarize the performance of our Algorithm 3 compared to
the algorithm using only exact function evaluations and our implementation of the Yue-
Meerbergen algorithm. Algorithm 3 uses only 4 outer iterations and requires less than half
the FOM solves required by the FOM only algorithm (see columns ‘Tters’ and ‘FOM’). Since
each outer iteration of Algorithm 3 requires an approximate solution of an optimization
subproblem, the number of ROM evaluations is larger than the corresponding FOM solves
(see column ‘ROM’). However, the ROM state systems have at most dimension r = 5, while
the FOM system is of dimension ny = 17, 899. In this case no recomputations of the model
(line 8 in Algorithm 3 ) were required (column ‘Rec.’). In the first two outer iterations, the
iteration to approximately solve (22a) was terminated because the constraint (22ab) was
violated (‘C.V.)). In later iterations, the constraint (22ab) was never active, and accurate
approximations to the solution of the minimization sub-problem (22a) could be computed
using unconstrained optimization approaches. In Figure 2 the beginning of an outer iter-
ation is indicated by a large circle, this is when a model update is used, i.e. FOM is solved.
Jumps of ROM objective function values at the beginning of an outer iteration result from
model recomputation. The Yue-Meerbergen algorithm requires slightly more FOM eval-
uations, slightly more outer iterations and slightly more total sub-optimization iterations
(see Figure 2). Algorithm 3 required fewer ROM evaluations for two primary reasons. The
first is that the right hand side of the constraint in the Yue-Meerbergen subproblem (24a)
requires evaluation of the model my, i.e, a ROM evaluation (in addition to the evaluation of
the error eg). The second is that the constraint condition (24b) is more restrictive because
in this example mj becomes small (the true minimizer satisfies f (x,) = 0), leading to more
backtracking during the computation of the Cauchy point and the sub-optimization. The
use of error estimators instead of exact error did not adversely impact the convergence of
the algorithm.

We note that although the same example is used in [27] and in [39] with algorithms
derived from [51], a direct comparisons of results is not possible. The paper [27] reports
only timing information and uses a larger discretization size. The data reported in [39]
is primarily concerned with the quality of the error estimates, and only aggregate data is
reported for number of FOM evaluations. The mean number of FOM evaluations reported
in [39] is about the same as the number of FOM evaluations reported in Table 1.
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Figure 2. lteration history for Yue-Meerbergen (YM) algorithm (blue) and new Algorithm 3 (red) applied
to the thermal fin example (43). Small dots indicate subiterations. Large dots indicate beginning of outer
iteration after model computation. Jumps in function values at beginning of an outer iteration are due
to change in model.

4.2. Optimal shape design of bypass

This example is a shape optimization problem involving an aorta-coronary bypass. The
goal is to determine the shape of domain whose boundary is represented by a Bezier curve
with control points u € R® so that vorticity in a region of the domain is minimized. The
formulation of this problem as well as the code for continuous finite element discretiza-
tion and ROM generation was provided by Dr. Zahr and his student Tianshu Wen and is
described in detail in [45]. We do not incorporate hyperreduction from [45].

4.2.1. Problem formulation
We follow [45] and denote the optimization variable by p instead of x. The optimization
problem is

: ®

min fo(v(u), ) + < llullz, (44)
ne[—0.4,04]8 2

where for given u € R® the discretized velocity v(u) together with the discretized pressure

are computed as the solution y(u) of the discretized state equations R(y(u), #) = 0. The

first subblock in y(x) € R™ is the discretized velocity v(u). The FOM state dimension is

ny = 7,522.

4.2.2. Model construction and refinement

The construction of the reduced basis Vy ; at step k of the minimization problem is nearly
identical to the routine given Section 3.2. The only major difference is the possible inclusion
of sensitivities of the state y(u) with respect to the parameters y, which are given by

s(u) = —Ry(y(u), 1) "Ry (y(u), )" (45)
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Table 2. Performance of Algorithm 3 ('/ROM New’) with various ROM construc-
tion strategies (Type 1-4’, see Section 4.2.2) and corresponding exact line-search
algorithm ('FOM’) applied to the bypass problem with Reynolds number Re = 50.

Algorithm Iters FOM ROM Rec. G\ ROM size
LBFGS FOM 1 13 - - - -
LBFGS ROM New, Type 1 8 12 79 3 4 2/24
LBFGS ROM New, Type 2 9 10 78 0 3 10/28
LBFGS ROM New, Type 3 5 6 52 0 2 10/20
LBFGS ROM New, Type 4 4 5 53 0 1 10/50
LBFGS ROM YM, Type 2 8 9 159 1 3 10/26
LBFGS ROM YM, Type 3 5 6 119 1 3 10/20
LBFGS ROM YM, Type 4 4 5 100 0 3 10/50

Note that Ry and R, are both computed already when solving for the adjoint (31) and
gradient (30), respectively. In this section, we consider four different approaches for con-
structing the ROM models, we will denote them Types 1-4. Below, y(u) € R™ is the
solution of the discretized state equations R(y(u), ) = 0, s(z) € R™*? are the corre-
sponding sensitivities (45), and p(x) € R™ is the solution of the discrete adjoint equation.
The initial reduced basis is thus given by

Vo = orth (y(#0) p(#0)) Type 1,
Vo = orth (y(uo), p(#0).s(#0))  Type 2 through Type 4.

Note that Type 1 does not include the sensitivities in the initial ROM basis while Types 2-4
do. The paper [45] uses Type 1 and Type 2.

Model updates and refinement proceed similarly as described in Section 3.2 with the
possible inclusion of updated sensitivity information, the initial model at each iteration k
introduces the FOM state and adjoint

Vio = orth (Vi_y, y(ux), p(ux))  Type 1 and Type 2,
Vio = orth (y(zo), p(10), - - -, (1), P(1x),s(ux))  Type 3,
Viko = orth (Vk_l,y(pk),p(,uk),s(pk)) Type 4.

Note that Type 1 still includes no sensitivity information and Type 2 only retains the sen-
sitivity information from the initial iterate yo. Type 3 replaces the sensitivity information
from the previous iteration with s(uk), i.e. includes the sensitivities at iteration k only, while
Type 4 includes all sensitivities s(x;) for j = 0, .. ., k. Model refinement proceeds the same
for every method implemented, refinement includes the FOM state and adjoint from the
previous candidate Cauchy point

Vi = orth (Vk,f—l»}’(ﬂf,i—l)- P(ﬂf,f_l)) .

4.2.3. Results

Table 2 summarizes the performance of our Algorithm 3 using Reynolds number Re =
50 and various ROM construction strategies compared to the algorithm using only exact
function evaluations.
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Table 3. Performance of Algorithm 3 ('/ROM New’) with various ROM construc-
tion strategies (Type 1-4’, see Section 4.2.2) and corresponding exact line-search
algorithm ('FOM’) applied to the bypass problem with Reynolds number Re = 500.

Algorithm Iters FOM ROM Rec. Y ROM size
LBFGS FOM 15 18 - - -

LBFGS ROM New, Type 2 17 23 7 5 13 10/54
LBFGS ROM New, Type 3 8 1 109 2 4 10/30
LBFGS ROM New, Type 4 10 18 293 7 6 10/124
LBFGS ROM YM, Type 2 34 36 1254 18 5 10/54
LBFGS ROM YM, Type 3 7 9 276 0 3 10/26
LBFGS ROM YM, Type 4 28* 29 1137 21 2 10/-

Note: Starred iterations indicate failed convergence.

In all cases, Algorithm 3 converged to the desired gradient tolerance. In this case, some
of the ROM construction strategies used similar numbers of FOM evaluations and iter-
ations to the algorithm with exact function evaluations. Thus, in case where the model
my, is only a good approximation near the current point xj, our Algorithm 3 still con-
verges but offers little to no performance gains over the more straightforward approach
that only uses FOMs. Table 2 highlights the importance of choosing a good ROM when
implementing Algorithm 3. As the quality of the ROM increases (recall that Types 2-4
include sensitivities (45) while Types 3 and 4 continually update sensitivities), the num-
ber of iterations and the number of FOM evaluations decrease. With a ROM of Type 3 or 4
computational savings of more that 50% (in terms of outer iterations and FOM evaluations)
were achieved. The last column (‘ROM size’) in Table 2 shows the ROM size in the initial
and in the final iteration. The ROMs are substantially smaller than the FOM, which is of
size ny = 7,522. Note that ROM sizes increase linearly throughout the algorithm, refine-
ments increase the size by 2 while new iterations increase the size by 2 (Types 1-3) or by 10
(Type 4), see Section 4.2.2. Comparison between our Algorithm 3 and the Yue-Meerbergen
algorithm shows that the number of iterations and FOM evaluations are very similar while
ROM evaluations for Yue and Meerbergen are about double the evaluations used in our
algorithm.

Table 3 repeats the computations using Reynolds number Re = 500. For Reynolds
number Re = 500, the situation is a bit more complex.

In all cases our Algorithm 3 converges, and the better the ROM, the more computa-
tionally efficient Algorithm 3 becomes. In the best reported case nearly 50% computational
savings (in terms of outer iterations and FOM evaluations) were achieved. ROMs of Type 2
performed more poorly, as they did in the Re = 50 case. ROMs of Type 3 led to sub-
stantial improvements. In this case, the Type 3 ROM lead to better performance than the
Type 4 ROM. The reason seems to be the Newton-type iterative solver for R(y(u), u) =0
and the corresponding ROM solver. For Re = 500 these equations become more diffi-
cult to solve. In several instances the Newton-type iteration to solve the ROM at trial
point gy ; + ay isk; did not converge to the required residual tolerance. In this case we set
my i (ki + agisk;) = 0o and reduce the step size ay ;. This leads to smaller steps, smaller
right hand sides in the constraint (22b) of the subproblem to compute gy 1, smaller tol-
erances for the new model (Step 24 in Algorithm 3), and overall slower progress. This
is why the iteration for approximately solving (22a) terminated more often due to con-
straint violation (‘C.V.’). This also led to more Cauchy step re-computations (‘Rec.”) and
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FOM evaluations. This could be addressed by an improved solution strategy for solving
the ROM. The most successful version of Algorithm 3 with ROMs of Type 3 uses nearly
half the FOM solves and iterations required by the FOM only algorithm. Again size of the
ROM state systems are reported in the rightmost column (‘ROM size’); the first value is
the initial ROM size and the second value is the final size. For all but ROMs of Type 4, the
ROM sizes are less than 1% of the size of the FOM, which has state dimension n, = 7, 522.
For both the Re = 50 and Re = 500 cases, our iteration to solve the minimization sub-
problem (22a) was terminated in the first few outer iterations because the constraint (22ab)
was violated (“C.V.)). In later iterations, the constraint (22ab) was never active, and, as in
the Termal Fin Example 4.1, accurate approximations to the solution of the minimization
sub-problem (22a) could be computed using unconstrained optimization approaches.

Both algorithms sometimes require tight error tolerances (see Algorithm 3, Line 24 and
[20, Assumptions 2.6.5]), especially when the current iterate up, is close to a minimizer. To
construct ROMs with sufficiently low model error tolerances at uj, the underlying non-
linear simulations R(y(u), #) = 0 to compute the FOM state (needed for ROM model
updates/refinements) and VI R(Vy(u), ) = 0 to compute the ROM state (needed for
ROM model evaluations) need to be carried out with sufficiently high precision. This can
increase computational demand and in some cases the Newton-type algorithm used to
solve the nonlinear systems failed to converge. In particular, for the Re = 500 example,
these strict state solve requirements were not always satisfiable and led to early termina-
tion of the iteration using certain model refinement strategies. Lower gradient tolerances
to stop the algorithms would avoid this issue.

In the Re = 500 case, for Type 3, the YM algorithm performs slightly better in terms
of iterations and FOM evaluations but requires about 3 times the ROM computations. For
Types 2 and 4, the YM algorithm requires significantly more iterations, FOM, and ROM
evaluations; in addition, the Type 4 algorithm failed to converge to the given tolerance
because the ROM size became too large and the ROM state computations stopped converg-
ing. As before, the worse performance of Type 4 comes from the failure of the Newton-type
iterative solver to solve the ROM state equation.

4.3. Inverse design of airfoil

In this example, we seek to recover the RAE2822 airfoil shape from its flow field. The
formulation of this problem as well as the code for the Discontinuous Galerkin (DG) dis-
cretization and ROM was also provided by Dr. Zahr and his student Tianshu Wen and is
described in more detail in [45]. We do not incorporate the hyperreduction [45].

Again, we follow [45] and denote the optimization variable by 4 instead of x. The
optimization problem is

1
min = (y(x) —y*) ' M(y(s) - y*), (46)
peRls 2

where M is a DG mass matrix and, for given u € R!3, the discretized state y(x) € R™ is
computed as the solution of the discretized state equations R(y(x), i) = 0. In this example
the FOM size is n, = 17, 568.

Model construction and refinement proceeds exactly as described in Section 4.2.2.
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Table 4. Performance of Algorithm 3 ('/ROM New’) with various ROM construc-
tion strategies (Type 2-4', see Section 4.2.2) and corresponding exact line-search
algorithm ('FOM’) applied to the airfoil shape optimization problem.

Algorithm lters FOM ROM Rec. CVv ROM size
LBFGS FOM 29 142 - - - -

LBFGS ROM New, Type 2 8 9 384 1 4 20/36
LBFGS ROM New, Type 3 4 5 268 0 0 20/28
LBFGS ROM New, Type 4 4 5 268 0 0 20/100
LBFGS ROM YM, Type 2 217 21 1286 0 23 20/60
LBFGS ROM YM, Type 3 9 10 605 0 7 20/38
LBFGS ROM YM, Type 4 11 12 814 0 9 20/240

Note: Starred iterations indicate failed convergence.

Table 4 summarizes the performance of our Algorithm 3 using various ROM construc-
tion approaches compared to the algorithm using only exact function evaluations and
compared to the Yue-Meerbergen algorithm.

All ROM construction approaches led to much fewer FOM evaluations and overall iter-
ations than the FOM only algorithm. We have excluded Type 1 construction given its
relatively poor performance compared to the other ROM construction approaches for the
bypass example (see Section 4.2.3). The Type 2 approach used about 3 times fewer iterations
and about 16 times fewer FOM evaluations than the FOM only algorithm. The other two
approach traced the same optimization iteration trajectories, so they had identical iteration
and evaluation counts. They required about 7 times fewer iterations and almost 30 times
fewer FOM evaluations compared to the FOM only algorithm. Only the Type 2 approach
required any refinement and only when the Type 2 approach is used, did our iteration to
solve the minimization sub-problem (22a) terminate because the constraint (22ab) was
violated (‘C.V.’). This happened in the early iterations. As in the previous two example,
accurate approximations to the solution of the minimization sub-problem (22a) could be
computed using unconstrained optimization approaches.

The number of iterations and FOM evaluations are significantly higher when using
Type 2 for the Yue and Meerbergen algorithm algorithm compared to the new algorithm.
For Types 3 and 4, the Yue-Meerbergen algorithm required roughly double the number
of iterations and FOM evaluations and two to four times the number of ROM evalu-
ations. These increases appear to be due to two different factors. The first is that for
Type 2, the algorithm was not able to converge because the iteration to solve the non-
linear FOM equation to compute the FOM state solve did not converge, leading to the
early termination of the optimization algorithm. Second, although iterations were never
rejected, the constraint (24b) was violated frequently during the iteration which led to min-
imal progress on many iterations. This frequent constraint violation appears to stem from
combination of factors. The first is the poor scaling of the initial Hessian approximation
leading to large initial step sizes outside of the constraint region (see below for a more
complete discussion). The second is the relative strictness of the of the constraint (24b);
since the optimal value is at f (x*) = 0, the constraint becomes very restrictive as the opti-
mal value is approached. The slightly worse performance of Type 4 compared to Type 3
for YM is related to the same phenomena found in the Bypass Re = 500 example (see
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Table 3). For some larger ROM sizes the iterative method used to solve the nonlinear sys-
tem to compute the ROM state fails to converge leading to more backtracking and slower
performance.

The objective function in this example does not contain a parameter penalty ||  ||3 with
o > 0. Therefore we use Hyy = I as the initial BFGS matrix. In earlier (inner) iterations
this leads to less well scaled descent directions si; and more backtracks in Backtrack-
ing Line-Search Algorithm 1. Therefore, we observe a larger number of FOM evaluations
compared to the total number of iterations in the FOM only algorithm, and a larger num-
ber of ROM evaluations in Algorithm 3. However, note that in the FOM only algorithm
the less good Hyo = I is absorbed by computationally expensive FOMs resulting from
additional backtracks in the line seaerch. In our Algorithm 3, the less good Hyy =1 is
absorbed by computationally inexpensive ROMs. Algorithm 3 with all ROM construc-
tion approaches led to huge computational savings measured in outer iterations and FOM
computations.

5. Conclusions

We have introduced a line-search algorithm that uses objective function models with tun-
able accuracy for the solution of unconstrained optimization problems. The algorithm was
motivated by an algorithm developed in [51]. Our algorithm leverages efficient approxi-
mate models with error bounds and tunable accuracy to reduce the number of expensive
objective evaluations. We presented general convergence results for inexact line-search
algorithms and provided the details of an implementable algorithm. Specifically, we proved
that our algorithm has the same first-order global convergence properties as standard
line-search methods, provided the objective function models meet the required accuracy
requirements. Our algorithm only uses these models and corresponding error functions
but never directly accesses the original objective function. The accuracy requirement of
the model are adjusted to the progress of the optimization algorithm. In addition, we
proved that for a large class of commonly used model functions based on ROMs, the con-
structed models meet the accuracy requirements specified by our algorithm. Our algorithm
is arguably simpler than the one proposed in [51], and when ROMs are used, we have a
complete convergence proof.

Our algorithm was applied to numerical examples with implicit PDE constraints, and
converged in all cases and with a range of ROMs used. We demonstrated that with appro-
priately chosen models the algorithm demonstrates significant reductions both in the
number of iterations and in the number of expensive exact objective solves required to
reach an optimal solution, when compared to optimization strategies using solely exact
objective information. In numerical examples our algorithm also performed better than
the previously proposed algorithm from [51].

There are a number of possible extensions that are under investigation. Currently,
bounds for the error between true and model objective function and for the error between
their gradients are needed. For implementations, an extension that allows the use of
asymptotic bounds is desirable. Further improvements to the numerical results may be
found by using more refined techniques for solving the constrained minimization sub-
problems (22a) if more information, e.g. derivatives, for the error functions are available.
However, the benefits of a more accurate solution of the optimization sub-problem has
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to be balanced with the increased cost. In our numerical examples of this paper, the con-
straint (22ab) was only active in the first few iterations. In the final iterations, (22ab) was
never active, which indicates that an essentially unconstrained optimization iteration, as
the one described at the beginning of Section 4 may be sufficiently efficient overall.

Finally, it seems possible to extend our approach to problems with nonlinear constraints.
For example, the paper [24] already discusses a line-search £; penalty SQP algorithm that
allows inexact objective function and objective gradient evaluations but exact constraint
function and constraint Jacobian. In [24], the objective function and gradient error are
reduced at a specified constant rate. Extending the approach in this paper to the constrained
case would adjust the objective function and gradient error dynamically, and provide a
mechanism to explore the current objective function model over a larger region in the
optimization variable space.
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