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We perform a reanalysis of the BOSS CMASS DR12 galaxy dataset using a simulation-based
emulator for the Wavelet Scattering Transform (WST) coefficients. Moving beyond our previous
works, which laid the foundation for the first galaxy clustering application of this estimator, we
construct a neural net-based emulator for the cosmological dependence of the WST coefficients and
the 2-point correlation function multipoles, trained from the state-of-the-art suite of AbacusSummit
simulations combined with a flexible Halo Occupation Distribution (HOD) galaxy model. In order to
confirm the accuracy of our pipeline, we subject it to a series of thorough internal and external mock
parameter recovery tests, before applying it to reanalyze the CMASS observations in the redshift
range 0.46 < z < 0.57. We find that a joint WST + 2-point correlation function likelihood analysis
allows us to obtain marginalized 1σ errors on the ΛCDM parameters that are tighter by a factor of
2.5− 6, compared to the 2-point correlation function, and by a factor of 1.4− 2.5 compared to the
WST-only results. This corresponds to a competitive 0.9%, 2.3% and 1% level of determination for
parameters ωc, σ8 & ns, respectively, and also to a 0.7% & 2.5% constraint on derived parameters
h and f(z)σ8(z), in agreement with the Planck 2018 results. Our results reaffirm the constraining
power of the WST and highlight the exciting prospect of employing higher-order statistics in order
to fully exploit the power of upcoming Stage-IV spectroscopic observations.

I. INTRODUCTION

The advent of precision cosmology, with a large collec-
tion of surveys including the Dark Energy Spectroscopic
Instrument (DESI) [1, 2], the Vera C. Rubin Observa-
tory Legacy Survey of Space and Time (LSST) [3, 4],
Euclid [5], and the Nancy Grace Roman Space Telescope
[6], that will accurately probe the 3-dimensional (3D)
large-scale structure (LSS) of the universe, promises to
dramatically change our fundamental understanding of
the cosmos. Among the wealth of valuable information
offered by cosmological observations of this kind, lies the
opportunity to tackle major open questions in modern
physics, such as the source of the accelerated expansion
of the universe at late times [7], the nature of dark matter
[8], the large-scale properties of gravity [9–11], the prop-
erties of massive neutrinos [12, 13], as well as the physics
of the primordial universe and other light relics [14–16].

The probability distribution that describes the ob-
served large-scale structure of the universe at late times is
known to deviate from the familiar Gaussian form charac-
terizing the primordial density field. The nonlinear pro-
cess of gravitational instability, responsible for the for-
mation of the 3D cosmic web, imparts a non-Gaussian
distribution in the observed large-scale structure of the
universe. As a consequence, the standard compression
achieved by the 2-point correlation function of density
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fluctuations fails to capture all available information en-
coded in the clustered field [17]. Even though working
with the 2-point function statistics has sufficed in tra-
ditional applications of cosmological parameter inference
up until recently, such an approach will be inadequate if
the potential of the upcoming generation of cosmologi-
cal surveys is to be fully exploited. Accurately model-
ing structure formation down to the nonlinear regime in
principle requires the inclusion of higher-order moments
as a part of the traditional parameter inference, a line of
research that is currently very actively pursued [18–26].
Nevertheless, the requirements associated with handling
n-point correlation functions, both in terms of the nec-
essary computational cost of evaluation, but also due to
the relatively large dimensionality of the final data vec-
tor, quickly render such an approach intractable when
going to higher n. Even when these challenges can be
tempered using different kinds of techniques, the total
information encoded in a non-Guassian field has been
shown to escape the entire correlation hierarchy, with the
magnitude of loss getting progressively more pronounced
with increasing degree of non-Gaussianity [17].

The obstacles mentioned above motivate developing
novel ways of accessing the additional information that
lies beyond the linear regime, using summary statistics
that are sensitive to higher-order information, but yet
impose minimal additional computational burden com-
pared to a standard power spectrum evaluation. Among
the long list of estimators of this kind that have been
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considered in the literature 1, this active subfield involves
proxy estimators [28–33], efforts to isolate the informa-
tion encoded in the cosmic voids of the LSS [34–41], non-
linear transformations that partly restore the Gaussian-
ity of the density field [17, 42–47], splitting the density
field into different environments [48–52], working with
k-nearest neighbors [53, 54] and a variety of other be-
yond 2-point statistics, such as Minkowski functionals
[55–59], the minimum spanning tree [60] or 1-point statis-
tics [61, 62]. The recent rapid evolution of Artificial Intel-
ligence (AI) has motivated efforts to extract cosmological
non-Gaussianities using Convolutional Neural Networks
(CNNs) [63], demonstrating great promise in idealized
settings [64–67]. Whether and how this simulation-based
performance can be extended to reliable interpretations
of actual galaxy data is still a matter of study; for exam-
ple see Ref. [68].

Another path towards harnessing the nonlinear infor-
mation encoded in the LSS, can be carved by seeking
for a balanced trade-off between performance and inter-
pretability, working in the middle-ground between tra-
ditional clustering estimators and CNNs. Such a trade-
off is attempted by the Wavelet Scattering Transform
(WST), [63, 69], which was first proposed in the context
of computer vision. In direct analogy to the architec-
ture of a CNN, a scattering network is constructed by
successively performing two operations to an input field:
wavelet convolution and modulus. After averaging over
all pixels, the resulting outcome is a basis of interpretable
WST coefficients, which can quantify the clustering in-
formation in the input field [70–72], while avoiding the
previously discussed limitations of the standard moment
expansion [17]. Motivated by these attractive properties,
the WST has recently seen successful applications across
the spectrum of natural sciences [73], including astro-
physics [74–76], cosmology [77–85] and molecular chem-
istry [86, 87].

As far as 3D clustering explorations are concerned, the
first WST application was performed by Ref. [79], work-
ing with the fractional matter overdensity field obtained
by N-body simulations [88] as input. Through a Fisher
forecast, the basis of WST coefficients up to 2nd order
was found to predict a substantial improvement on the
1-σ errors obtained on 6 cosmological parameters, ex-
ceeding the performance of both the standard and also
the marked power spectrum. Another application was
subsequently performed by Ref. [83], finding similar lev-
els of improvement. Building upon these encouraging re-
sults, the subsequent work of Ref. [80] developed the first
application of the WST to actual galaxy data, analyz-
ing observations from the CMASS sample of the Baryon
Oscillation Spectroscopic Survey (BOSS) [89, 90] (under
some approximations, however, as we explain in the next

1 For a recent exploration of higher-order statistics in the particu-
lar context of weak lensing, also see Ref. [27].

paragraph). The WST, once again, was found to de-
liver a notable improvement to the errors obtained on
4 cosmological parameters, which were 3-6 times tighter
compared to the ones from the galaxy power spectrum.
This analysis demonstrated the great promise held in the
use of the WST as a means of parameter inference in the
context of spectroscopic surveys and precision cosmology
in general.
Even though Ref. [80] laid out all the necessary steps

to account for the complexities related to a WST ap-
plication to spectroscopic galaxy data, combined with a
set of high-fidelity galaxy mocks, it adopted a Taylor ex-
pansion approximation to model the cosmological depen-
dence of the WST coefficients, which in principle could
fail to capture non-Gaussianities present in the parameter
likelihood. As a result, the accuracy of this approach was
not tested in recovery tests against other simulations. In
this work, we move beyond these approximations, and re-
visit our previous analysis with a full emulator predicting
the cosmological dependence of the WST estimator. We
take advantage of the full extent of the state-of-the-art
suite of AbacusSummit simulations [91], which consists
of a broad grid exploring variations in 8 cosmological pa-
rameters, in combination with a semi-analytic model to
parametrize the physics of galaxy formation for each cos-
mology. This extended suite enables the training of a
neural net-based emulator that predicts the cosmological
dependence of the WST coefficients in a 15-dimensional
parameter space. In order to quantify the accuracy of this
emulator, we subject it to a series of thorough parame-
ter recovery tests against hold-out simulations, as well
as against simulations using different models to capture
small-scale galaxy physics. After we confirm that our
model satisfies the necessary levels of accuracy for a reli-
able cosmological application, we use it to reanalyze the
BOSS CMASS galaxy dataset, and obtain the marginal-
ized 1 − σ errors on 4 ΛCDM cosmological parameters,
as well as on extended scenarios. We contrast our re-
sults against the ones obtained by the standard analysis
performed using the multipoles of the anisotropic corre-
lation function of galaxies, and discuss how our analysis
compares to our previous work and prior ones in the lit-
erature.
Our paper is structured as follows: in §II we introduce

the Wavelet Scattering Transform and in §III we describe
the BOSS dataset. We then proceed to lay out all the in-
gredients used to construct our simulation-based forward
model in §IV, as well as the details of our analysis pipeline
in §V. Finally, we present our results in §VI, before con-
cluding in §VII. More technical details are discussed in
Appendices §A, §B, §C, and §D.

II. WAVELET SCATTERING TRANSFORM

The Wavelet Scattering Transform [63, 69] is a novel
summary statistic that was proposed as an ideal middle-
ground between a CNN and more traditional statistical
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estimators. Defined by a series of well-understood and
interpretable mathematical operations, it can quantify
the degree of clustering of an input field in a manner that
not only matches, but also supersedes the properties of
the standard 2-point correlation function [69].

According to the WST definition, the two fundamental
properties to which an input field, I(x), is subjected, are
wavelet convolution and modulus. Specifically, given a
localized wavelet probing a scale j1 and an orientation
l1, that we will hereafter denote by ψj1,l1(x), the WST
transforms the input field as follows:

I ′(x) = |I(x) ∗ ψj1,l1(x)|, (1)

where ∗ indicates the convolution operation. If we further
average over the transformed field in Eq. (1), we can
derive a single number globally characterizing the field,
which is called a WST coefficient. Furthermore, if the
above sequence of elementary operations is successively
repeated n times, and for a range of different j1 scales
and l1 angles covered by a family of localized wavelets,
ψj1,l1(x), it will form a scattering network, with WST
coefficients, Sn, given by:

S0 = ⟨|I(x)|⟩,
S1(j1, l1) = ⟨|I(x) ∗ ψj1,l1(x)|⟩ , (2)

S2(j2, l2, j1, l1) = ⟨| (|I(x) ∗ ψj1,l1(x)|) ∗ ψj2,l2(x)|⟩ ,

explicitly shown up to order n = 2 above. The angu-
lar brackets, ⟨.⟩, in Eq. (2) and hereafter will denote
taking the average value over the volume of the field2.
Convolving with a localized wavelet essentially quantifies
the strength of clustering in the input field over the rel-
evant scales, similar to the 2-point function. The WST
coefficients of order n have been shown to capture infor-
mation related to the correlation function of order up to
2n [69, 71]. Building upon this property, it follows that
the hierarchy of Eqs. (2) leads to a collection of WST
coefficients that can quantify the higher-order clustering
information of the input physical field, I(x), in analogy
to the moment expansion usually applied to cosmologi-
cal density fields. Opposite to the conventional series of
correlation functions, however, the WST has been found
to be more efficient at extracting information out of an
input field, especially in highly non-Gaussian cases which
are particularly challenging for higher-order moments to
accurately describe [17, 73]. Furthermore, the fact that
the input field always enters Eq. (2) in a linear fashion
guarantees a greater degree of numerical stability and
robustness against outliers. In addition, the generated
basis of WST coefficients is compact, such that the di-
mensionality of the resulting data vector can be kept un-
der better control [73]. It is worth noting that the op-
erations of wavelet (kernel) convolution, modulus (non-
linearity) and averaging (pooling), all implemented in a

2 Formally defined as the expectation value.

hierarchical scattering network, resemble the architecture
and properties of a CNN with fixed kernels [63, 69]. Com-
bining all of the above properties, it becomes clear how
the WST can be viewed as an interpretable alternative
that lies between conventional summary statistics and
CNNs, making it a potentially powerful tool to employ
when harnessing higher-order information. In this work
we will focus on the use of the WST for cosmological pa-
rameter inference, but we note that it can also be used
in other applications, such as field synthesis and texture
characterization, further discussed in Ref. [73].

Even though in the standard WST definition the in-
put field enters Eq. (2) linearly, slightly relaxing this
assumption and allowing for I(x) to be raised to a power
q, instead, results in the following variant:

S0 = ⟨|I(x)|q⟩,
S1(j1, l1) = ⟨|I(x) ∗ ψj1,l1(x)|q⟩ , (3)

S2(j2, l2, j1, l1) = ⟨| (|I(x) ∗ ψj1,l1(x)|) ∗ ψj2,l2(x)|q⟩ ,

which can lead to very interesting implications for cos-
mology, given that values of q > 1 or q < 1 respectively
emphasize overdense or underdense regions of the LSS.
This option was explored in the 3D matter overdensity
WST application of Ref. [79], and was indeed found
to produce more competitive constraints on cosmologi-
cal parameters, with an emphasis on the sum of neutrino
masses, when cosmic voids where highlighted using val-
ues of q < 1. In this application we will stay aligned with
our previous work [80] and proceed with the version of
WST given in Eq. (3).

Given that in this work we will focus on a WST appli-
cation to 3D galaxy clustering, as we will specify below,
the input field I(x) will be taken to be 3-dimensional,
even though the above discussion can in principle be valid
for an arbitrary number of dimensions. Following our
previous works [79, 80], we adopt a mother wavelet given
by the solid harmonic expression of

ψm
l (x) =

1

(2π)
3/2

e−|x|2/2σ2

|x|lY m
l

(
x

|x|

)
, (4)

which was first applied in a 3D molecular chemistry ap-
plication [86, 87]. In Eq. (4), Y m

l denote the usual Lapla-
cian spherical harmonics and σ is the Gaussian width in
units of the field grid size. The family of wavelets can
then be generated by dilating the mother wavelet:

ψm
j,l(x) = 2−3jψm

l (2−jx), (5)

spanning different dyadic scales, 2j , combined with vary-
ing values of the spherical harmonic of order l to describe
the angular information of the wavelet family, after we
sum over the remaining index m. In this case, the WST
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coefficients are then given by:

S0 = ⟨|I(x)|q⟩,

S1(j1, l1) =

〈(
m=l1∑
m=−l1

|I(x) ∗ ψm
j1,l1(x)|

2

) q
2
〉
, (6)

S2(j2, j1, l1) =

〈(
m=l1∑
m=−l1

|U1(j1, l1)(x) ∗ ψm
j2,l1(x)|

2

) q
2
〉
,

with

U1(j1, l1)(x) =

(
m=l1∑
m=−l1

|I(x) ∗ ψm
j1,l1(x)|

2

) 1
2

, (7)

which is obtained using a 3D solid harmonic mother
wavelet (5) in Eq. (3). We briefly note that other
wavelets considered in the literature are Morlet wavelets
[77, 78], bump-steerable wavelets [81, 83] or the equivari-
ant wavelet construction of Ref. [75].

The total number of essential WST coefficients can
be further reduced, compared to Eq. (3), if we notice
that the second order scales j2 < j1, that is, scales
smaller than the 1st order convolution scale j1, are prac-
tically filtered out and do not carry any extra informa-
tion. This fact was indeed confirmed in the 2D weak
lensing (WL) application by Ref. [77] and was also sub-
sequently adopted in our previous works [79, 80]. We will
also work with only one second order angular scale, that
is, for l2 = l1 in Eq. (6), following the choice originally
adopted by the solid harmonic implementation of Ref.
[86, 87]. Even though orientations l2 ̸= l1 are expected
to be informative, this choice has been shown to be a
good trade-off [79, 80, 86, 87] and will be adopted in this
work as well.

The above choices determine the final number of pro-
duced WST coefficients, given as follows: for a certain
total number of spatial scales J and harmonic angular
orientations L, we will have:

(j, l) ∈ ([0, .., J − 1, J ], [0, .., L− 1, L]), (8)

giving rise to a total of

S0 + S1 + S2 = 1 + (L+ 1)(J2 + 3J + 2)/2 (9)

WST coefficients up to 2nd order. Since the dilations
of the mother wavelet scale are chosen to be dyadic,
J ≤ log2(NGRID), where NGRID is the resolution of
the input field on each dimension. Finally, the width,
σ, of the Gaussian in Eq. (4) and the power, q, in Eq.
(6) are free parameters, whose values will be determined
in the next section for our particular galaxy clustering
application.

To summarize, for a given choice of J , L, q and σ, an
input field I(x) of resolution NGRID3 gives rise to the
WST coefficients (9) evaluated from Eq. (6). We per-

form this evaluation using the publicly available package
KYMATIO [92]3, as we will explain in the next section.

III. DATASET

In this section we introduce the dataset that will be
analyzed in this work. This consists of Luminous Red
Galaxies (LRGs) obtained from the twelfth data release
(DR12) [93] of the Baryon Oscillation Spectroscopic Sur-
vey (BOSS), a part of Sloan Digital Sky Survey, SDSS-
III [89, 90], in particular the CMASS sample4. Following
our previous application [80], which was in turn aligned
with the original analyses of BOSS data [94, 95], we will
work with each of the two subsamples obtained in the
Northern (NGC) and the Southern Galactic Cap (SGC).
If XNGC and XSGC denote the summary statistics evalu-
ated from the Northern and Southern parts of the BOSS
footprint, with angular area equal to ANGC = 6851 deg2

and ASGC = 2525 deg2, respectively, then we will always
work with the weighted average

XN+S =
(ANGCXNGC +ASGCXSGC)

(ANGC +ASGC)
, (10)

where X in our analysis will be the data vector of the
WST coefficients or the multipoles of the anisotropic cor-
relation function of galaxies, as we will further explain in
§IV and §V. Furthermore, we identify and work with the
part of the sample with galaxy number density greater
than 3 × 10−4 h3/Mpc3, corresponding to the redshift
range 0.4613 < z < 0.5692. In order to generate a sam-
ple with a constant density profile as a function of redshfit
z, we further bin these galaxies into 50 linearly spaced z
bins, and randomly downsample each bin such that the
final outcome is a sample with a constant galaxy number
density n̄g = 2.9×10−4 h3/Mpc3. In Fig. 1, we show the
original varying ng(z) of the sample, together with the fi-
nal flattened profile that we are going to work with. The
choice of the target density n̄g = 2.9 × 10−4 h3/Mpc3

is motivated by the mocks we use, and will be further
explained in §IV. We also note that the choice to work
with a flat density profile, which is meant to ensure a
more accurate modeling of our density-dependent WST
estimator, is different than our previous analysis [80], in
which we worked with the original varying ng(z) in the
range 0.46 < z < 0.60. A similar choice has been made
in other recent simulation-based reanalyses of BOSS data
[96, 97].

3 Available in https://www.kymat.io/. We clarify that KYMATIO

evaluates the sum over all pixels of the input field, rather than the
mean, which is the same up to a normalization, and thus exactly
equivalent for parameter inference applications. We follow this
version and, strictly speaking, we work with the sum over all
pixels rather than the mean.

4 All data are publicly available at https://data.sdss.org/sas/

dr12/boss/lss/.

https://www.kymat.io/
https://data.sdss.org/sas/dr12/boss/lss/
https://data.sdss.org/sas/dr12/boss/lss/
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FIG. 1. The galaxy number density of the original CMASS
sample as a function of redshift z (blue), shown with the final
downsampled version of constant number density, n̄g = 2.9×
10−4 h3/Mpc3 (red), that we work with in order to match the
constant density profile of the AbacusSummit mocks.

IV. SIMULATION-BASED FORWARD MODEL

In this section we will describe the various ingredients
used to construct our simulation-based model for the
galaxy clustering and its summary statistics as a func-
tion of the cosmological and galaxy model parameters of
interest. We begin with the suite of the AbacusSummit
simulations used for the nonlinear modeling of the dark
matter density and velocity fields, and then introduce the
semi-analytical AbacusHOD framework for populating
the gravitationally bound dark matter halos with galax-
ies. Finally, we explain how we evaluate the WST coeffi-
cients and the 2-point correlation function multipoles of
the galaxy mocks, in order to construct the training set
for our emulator.

A. The AbacusSummit simulations

AbacusSummit [91] is a suite of state-of-the-art cos-
mological N-body simulations that were run with the
Abacus N-body code [98, 99]. Containing more than
150 high-accuracy and high-resolution simulations span-
ning almost 100 different cosmologies, it is capable of
not only matching but also exceeding the simulation re-
quirements of the Dark Energy Spectroscopic Instrument
(DESI) survey [2, 100]. As a result, it is the ideal set
to use in order to produce high-fidelity galaxy mocks
for our BOSS CMASS simulation-based reanalysis. We
will exclusively work with the main (‘base’) set of cubic

boxes with a side of length 2 Gpc/h, that evolved 69123

dark matter particles with an individual mass equal to
2.1× 109h−1M⊙.
In order to identify gravitationally bound dark mat-

ter halos in the simulations, the AbacusSummit uses a
new efficient spherical-overdensity (SO) halo finder called
CompaSO [101], which performs this task on-the-fly, and
includes a series of improvements to avoid previously
known challenges faced by halo finders, such as failure
to identify structures close to larger halo centers or the
blending of halos. Further details about Abacus and
CompaSO can be found in the corresponding papers ref-
erenced above.

1. The cosmology grid

Our cosmology grid consists of 85 simulations per-
formed for different variations in the values of 8 cosmolog-
ical parameters, which form the basis of our emulator and
parameter inference setup. These parameters are: the
baryon density ωb = Ωbh

2, the cold dark matter density
ωcdm = Ωcdmh

2, the rms amplitude of linear density fluc-
tuations at 8 Mpc/h σ8, the spectral tilt ns, the running
of the spectral tilt αrun, the effective number of relativis-
tic degrees of freedom Neff , and the dark energy equation
of state parameters w0 and wa (w(a) = w0 + (1− a)wa),
where h = H0/(100 km s−1Mpc−1) is the dimensionless
Hubble constant. Each one of the 85 simulations has
been performed for the same fixed initial random phase,
and with the value of the Hubble constant, H0, chosen
such that the comoving angular size of the sound horizon
at last scattering, θ⋆, is fixed to the corresponding value
derived from measurements by the Planck satellite [102],
100θ⋆ = 1.041533.

We refer to the different cosmologies using the nam-
ing scheme cXXX, where XXX ranges from 000 to 181.
Details for each one of them are presented in the Aba-
cusSummit website5, with a visualization of the cosmo-
logical parameter grid shown in Fig. 1 of Ref. [103] and
its bounds listed in Table I.

We briefly describe the specifications of some se-
lected cosmologies contained in the parameter grid.
c000 is a ΛCDM cosmology that corresponds to
the parameters inferred by the Planck 2018 [102]
TT,TE,EE+lowE+lensing likelihood analysis, and which
we pick as our fiducial cosmology from now on.

Furthermore, there are four secondary cosmologies ex-
ploring variations around the fiducial, c001-004, which
we will use to validate the accuracy of our emulator in the
next section. c001 corresponds to the WMAP9 + ACT
+ SPT cosmology [104], while c002 is a wCDM cosmol-
ogy with w0 = −0.7 and wa = −0.5. Finally, c003 is a

5 https://abacussummit.readthedocs.io/en/latest/

cosmologies.html

https://abacussummit.readthedocs.io/en/latest/cosmologies.html
https://abacussummit.readthedocs.io/en/latest/cosmologies.html
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cosmology with higher Neff = 3.7, and c004 has a low
clustering amplitude given by σ8 = 0.75.
The AbacusSummit also contains additional simula-

tions that vary each one of the 8 cosmological param-
eters, in turn, and in a step-wise fashion around the
fiducial c000, while keeping the rest fixed, in order to
enable the evaluation of first-order derivatives for sum-
mary statistics. This linear derivative grid consists of
cosmologies c100-126, which were used to construct the
Taylor expansion approximation we adopted in Ref. [80].
Cosmologies c130-181 form a broad parameter grid that
provides a wider coverage of the 8-dimensional target pa-
rameter space and enables the training of emulators. Fur-
ther details on the motivations behind the choice of these
cosmologies and the parameter ranges can be found in
Ref. [91] and the AbacusSummit website.

Lastly, in order to quantify the effects of sample vari-
ance and potential errors introduced when training at a
single phase, a second set of simulations with the same
specifications has been run for 24 additional random real-
izations of the c000 fiducial cosmology. The phase infor-
mation is labeled as ph000-024. In the next sections we
will describe how we used both of the above sets in order
to accurately train our emulator for the vector of WST
coefficients and the multipoles of the 2-point correlation
function.

B. The Halo Occupation Distribution (HOD)

The galaxy–halo connection model we use to gener-
ate the galaxy mocks for our forward model is known as
the Halo Occupation Distribution (HOD) (see, e.g., Refs.
[105, 106]), which is a probabilistic model that populates
dark matter halos with galaxies through a set of empirical
formulas conditioned on halo properties. For a Luminous
Red Galaxy (LRG) sample such as CMASS, the HOD is
well approximated by a vanilla model given by:

n̄LRG
cent (M) =

1

2
erfc

[
log10(Mcut/M)√

2σ

]
, (11)

n̄LRG
sat (M) =

[
M − κMcut

M1

]α
n̄LRG
cent (M), (12)

where the five parameters characterizing the model are
Mcut,M1, σ, α, κ. The parameter Mcut defines the min-
imum halo mass to host a central galaxy, M1 sets the
typical halo mass that hosts one satellite galaxy, σ char-
acterizes the steepness of the error function upturn in the
number of central galaxies, α is the power-law index on
the number of satellite galaxies, and κMcut controls the
minimum mass of a halo that can host a satellite galaxy.
We have also added a modulation term n̄LRG

cent (M) to the
satellite occupation function to disfavor satellites from
halos without centrals. This term represents a model
choice and is inconsequential for the conclusions of this
work.

The HOD model does not only provide predictions for
the number of galaxies populating each halo, but it also

determines the positions and velocities of these galaxies.
In the case of the central galaxies, their positions and
velocities match the ones of the halo center-of-mass (the
L2 subhalo when working with CompaSO), while the
satellites are randomly assigned to halo particles with
uniform weights, each satellite inheriting the position and
velocity of its host particle. Note that we do not impose
any satellite radial profile in this model.
We also include a motivated HOD extension known

as velocity bias, which biases the velocities of the cen-
tral and satellite galaxies relative to their host halos and
particles. This is shown to to be a necessary ingredi-
ent in modeling BOSS LRG redshift-space clustering on
small scales [e.g. 107, 108]. The velocity bias has also
been identified in hydrodynamical simulations and mea-
sured to be consistent with observational constraints [e.g.
109, 110].
We parametrize the velocity bias through two additional
HOD parameters:

• αvel,c controls the peculiar velocity of a central
galaxy relative to the halo center, and is called
the central velocity bias parameter. For instance, a
value of αvel,c = 0 indicates that centrals perfectly
track the velocity of halo centers.

• αvel,s, the satellite velocity bias, is the equiva-
lent parameter for the satellite galaxies, modulat-
ing how their peculiar velocities deviate from those
of the local dark matter particles. A value of
αvel,s = 1 indicates that satellites perfectly track
the velocity of the underlying dark matter parti-
cles.

Furthermore, we do not include the effects of assembly
bias in our analysis, given that they typically manifest
in smaller scales than the ones we consider, as we clar-
ify below. We additionally check our cosmology recovery
against a galaxy mock that contains galaxy assembly bias
in section VB. Nevertheless, we acknowledge the lack of
robust galaxy assembly bias modeling as a potential sys-
tematic. We reserve an analysis extending to smaller
scales for a follow-up investigation. For a detailed dis-
cussion on the effects on assembly bias on cosmological
analyses of BOSS CMASS, readers are referred to Ref.
[111].
For computational efficiency, we adopt the highly

optimized AbacusHOD implementation, which signif-
icantly speeds up the HOD calculation per HOD pa-
rameter combination [108]. The code is publicly avail-
able as a part of the abacusutils package at https://
github.com/abacusorg/abacusutils. Example usage
can be found at https://abacusutils.readthedocs.
io/en/latest/hod.html. In order to match the cluster-
ing of CMASS in the redshift range 0.4613 < z < 0.5692,
we produce cubic galaxy mocks (of side 2 Gpc/h) at red-
shift z = 0.5.
To summarize, the HOD model used in this analysis is

fully parameterized by 7 parameters, Mcut,M1, α, αvel,c,
αvel,s, κ and σ.

https://github.com/abacusorg/abacusutils
https://github.com/abacusorg/abacusutils
https://abacusutils.readthedocs.io/en/latest/hod.html
https://abacusutils.readthedocs.io/en/latest/hod.html
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C. Survey Geometry

The AbacusSummit galaxy mocks that we produce
with AbacusHOD come in a periodic cubic geometry
with a side equal to 2 h−1Gpc, at output redshift z = 0.5,
as we previously discussed. This configuration is differ-
ent from the non-trivial survey geometry of the CMASS
sample that we will analyze in this work, which was intro-
duced in §III. When working with conventional statistics,
the effect of a non-trivial survey geometry can be usually
captured with a model. In the case of the galaxy power
spectrum, for example, the prediction for a periodic con-
figuration is convolved with the Fourier transform of the
survey mask [94, 95, 112–114] or, equivalently, the pre-
diction from the masked data can be de-convolved [115].
Given that no such model is available for the WST, which
is sensitive to the survey geometry through the successive
wavelet convolutions, we proceed to directly cut the Aba-
cus cubes into the exact 3D shape of the BOSS CMASS
data, as we did in our previous work [80]6. Specifically,
each cubic mock of redshift z = 0.5 is downsampled to a
constant number density n̄g = 2.9 × 10−4 h3/Mpc3 and
is then fed as input into the public code make survey
[117]7. Using the real-space Cartesian positions and ve-
locities for each galaxy at z = 0.5, the CMASS angu-
lar footprint, as well as the parameters for each cosmol-
ogy cXXX, make survey transforms the original cubic
mocks into galaxy catalogs with sky coordinates right
ascension (RA), declination (DEC), and redshift z that
exactly match the 3D geometry of the observed CMASS
sample in the target range 0.4613 < z < 0.5692, with
the redshift-space distortion (RSD) implemented along
the radial direction. The procedure is repeated twice
for each mock in order to produce separate samples for
NGC and SGC, respectively. As in Ref. [80], we confirm
the robustness of this procedure by evaluating the power
spectra of both the original cubic and the final cut-sky
mocks and by making sure they remain unchanged, up
to sample variance error.

D. Summary statistic evaluation

Having laid out the procedure to generate realistic
galaxy mocks that resemble the footprint of the CMASS
sample as a function of the cosmological and HOD pa-
rameters, we now proceed to explain how we evaluate the
summary statistics of interest, starting with the WST co-
efficients.

6 Alternatively, one could consider using modern inpainting tech-
niques [116].

7 Available at https://github.com/mockFactory/make_survey.

1. WST

The quantity of interest for the density-dependent
WST estimator is the fractional overdensity field of
galaxies, which we evaluate with the following procedure:
the sky coordinates RA, DEC and z of each galaxy in each
sample (be it either the cut-sky mocks or the CMASS
data) are converted to comoving Cartesian coordinates
(x,y,z), always assuming a fiducial flat ΛCDM cosmol-
ogy with Ωm = 0.3152, h = 0.6736 (corresponding to the
Abacus cosmology c000). Each sample is then embed-
ded into the smallest possible 3D cube for this task, which
we determine with the public package nbodykit8, and
which is found to have a comoving side L = 2700 Mpc/h
for the range 0.4613 < z < 0.5692. When working with
spectroscopic data in sky coordinates, the relevant quan-
tity is the (weighted) fractional overdensity of galaxies,
also known as the Feldman-Kaiser-Peacock (FKP) field,
F (r) [112], given by:

F (r) =
wFKP(r)

I
1/2
2

[wc(r)ng(r)− αrns(r)] , (13)

which can be evaluated on a 3D Cartesian grid. The
quantities ng(r) and ns(r) in Eq. (13) denote the ob-
served number density of the galaxies compared to the
one of a random, unclustered, catalogue, respectively,
with the latter containing αr times more objects. Fur-
thermore, the BOSS dataset is accompanied by a set of
systematic weights given by Refs. [94, 95]:

wc(r) = (wrf(r) + wfc(r)− 1.0)wsys(r), (14)

in which a fiber collision weight, wfc, a systematics
weight, wsys and a redshift failure weight, wrf , are com-
bined to account for the various incompletenesses of the
observed sample. Aiming to ensure optimal recovery of
small-scale information from the galaxy power spectrum,
we traditionally also define the FKP weight [112]:

wFKP(r) = [1 + n̄g(r)P0]
−1
, (15)

where P0 = 10−4 Mpc3/h3, and where the normalization
factor

I2 =

∫
d3r w2

FKP(r)⟨wc(r)ng(r)⟩2 (16)

is defined in Eq. (13), with respect to the amplitude
of the regular galaxy power spectrum of a uniform sam-
ple. In addition to the values of the systematic weights
(14) for each observed galaxy, the public BOSS release
also includes random catalogues matching the same se-
lection function and footprint of the survey, in order to
enable the evaluation of ns(r) in Eq. (13). Out of the

8 https://nbodykit.readthedocs.io/en/latest/index.html.

https://github.com/mockFactory/make_survey
https://nbodykit.readthedocs.io/en/latest/index.html
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various options available, we choose to work with the
random catalogue corresponding to αr = 50, which is
the commonly adopted choice in the literature [94, 95].
When working with a sample that does not possess in-
completeness weights, as is the case for the galaxy mocks,
Eq. (13) merely corresponds to the regular galaxy over-
density field, but in a non-trivial survey geometry. In
order to evaluate the random density field ns(r) in this
case, we similarly generate a random cubic sample with
50 times higher number density than the original mocks,
and then subject it to the same cut-sky procedure that
we described in the previous subsection.

We should note, at this point, that in order to con-
vert the sky coordinates of the galaxies in the CMASS
sample into comoving Cartesian ones, we assumed a (po-
tentially incorrect) flat ΛCDM cosmology corresponding
to Ωm = 0.3152, h = 0.6736. This assumption introduces
an error usually referred to as the Alcock–Paczynski (AP)
distortion [118]. To account for this effect in our model,
we always assume the above same cosmology when con-
verting the coordinates RA, DEC and z of the Abacus
mocks back into comoving ones, even though the true cos-
mological parameters for each one of the cXXX boxes is
actually known (and were used to convert the original
cubes into cut sky mocks). The procedure is the equiva-
lent one to the power spectrum re-scalings usually applied
in order to account for the AP effect in traditional BOSS
analyses [23, 97, 119–123], that we also adopted in Ref.
[80].

Finally, Eq. (13) with the corresponding systematic
weights from Eq. (14) (or unweighted) and the FKP
weight (15), can be combined with the random catalogues
in order to enable the evaluation of the final FKP den-
sity field from the CMASS data (Abacus mocks). Fol-
lowing the choices adopted in our previous WST BOSS
analysis [80], we resolve the field on a mesh of resolu-
tion NGRID = 270, using the Triangular Shaped Cloud
(TSC) mass assignment scheme [124], and work with a
Gaussian width σ = 0.8 in Eq. (6), such that the smallest
density cell corresponds to a scale of length 8 h−1Mpc on
the side. This FKP field serves as input into the WST
network (6) in order to evaluate the relevant WST coef-
ficients. Combining the above choices with J = 4 scales,
L = 4 orientations, and q = 0.8 (as in Ref. [80]), we ob-
tain the target data vector of 76 WST coefficients from
Eq. (6). The evaluation is performed with KYMATIO [92],
using our modified version for an application to a masked
galaxy field (as explained further in Appendix A of Ref.
[80]). We note that the overall evaluation of the WST co-
efficients out of an original Abacus cubic mock through
the pipeline described above takes about 60 seconds per
core when the WST evaluation is GPU-accelerated.

2. 2-point correlation function

In order to have a benchmark that will allow us to as-
sess the performance of the WST compared to standard

cosmological analyses, we also evaluate the 2-point corre-
lation function of galaxies. In particular, if by ξ(s, µs) we
denote the 2D anisotropic correlation function of galax-
ies as a function of redshift space separation s, then its
multipoles, ξℓ(s), can be extracted through the usual ex-
pansion

ξ(s, µs) =
∑
l

ξℓ(s)Lℓ(µs) (17)

in a basis of Legendre Polynomials Lℓ(µs), which then
gives

ξℓ(s) = (2ℓ+ 1)

∫ 1

0

ξ(s, µs)Lℓ(µs)dµs. (18)

For a sample of galaxies in sky coordinates, which we
are working with in this analysis, µs = ŝ · r̂, where the
radial anisotropy direction r̂ is the line-of-sight (as op-
posed to one of the Cartesian axes direction when work-
ing with a periodic box). We choose to work with the
two lowest non-vanishing multipoles, ℓ = {0, 2}, which
we evaluate with the public code Pycorr9, which is a
wrapper for Corrfunc [125]10, using the Landy-Szalay
(LS) estimator [126] with 241 linearly spaced angular bins
in −1 < µ < 1. For the spatial separation, we adopt a
differential binning strategy, which is the following: for
the monopole, we use 10 linearly spaced bins centered
between 10 < s < 56 Mpc/h followed by 6 bins for scales
67 < s < 142 Mpc/h, while for the quadrupole we down-
sample the above binning scheme by a factor of 2. This
choice, which corresponds to a total of 24 bins, was found
to deliver the optimal trade-off between large-scale noise
due to cosmic variance and the ability to capture the full
shape of the correlation function. We also note that this
binning scheme is still finer that the one chosen for the
WST, in order to ensure a fair comparison between the
performance of the two statistics.

This evaluation can be straightforwardly performed us-
ing the sky positions of the CMASS galaxy sample (or
the simulated mocks), as well as the ones of the accom-
panied random catalogues, as input to Corrfunc. For
the conversion of the sky coordinates into comoving ones,
we adopted the same fiducial cosmology as discussed in
§IVD1 for the WST, in connection to the AP effect. The
choice of smin matches the minimum scale accessed by
the WST, for which we used a cell of grid size 8 Mpc/h
as explained above, in order to ensure a fair compari-
son. (Further discussion on the minimum scale cut can
be found in Appendix §E ).

E. Emulator

After explaining the steps to go from the original Aba-
cusSummit simulations to realistic galaxy mocks resem-

9 https://github.com/cosmodesi/pycorr.
10 https://corrfunc.readthedocs.io/en/master/index.html

https://github.com/cosmodesi/pycorr
https://corrfunc.readthedocs.io/en/master/index.html
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Parameter Bounds
ωb [0.0207, 0.0243]
ωc [0.1032, 0.14]
σ8 [0.687, 0.938]
ns [0.901, 1.025]
arun [-0.038, 0.038]
Neff [2.1902, 3.9022]
w0 [-1.27, -0.70]
wa [-0.628, 0.621]
log10 Mcut [12.4, 13.3]
log10 M1 [13.0, 15.0]
σ [0.001, 1.0]
α [0.5, 1.5]
κ [0.0, 8]
αc [0.0, 0.8]
αs [0.0, 1.5]

TABLE I. Priors bounds used to generate the cosmology +
HOD training set of our emulator. Units of mass are in
h−1M⊙. The HOD values are roughly centered on results
from Ref. [103].

bling the properties of the CMASS sample, we now lay
out the details of our emulation scheme for the cosmo-
logical dependence of the target summary statistics.

Emulators refer to parametrized surrogate models for
the cosmological dependence of a summary statistic used
to interpolate sparse likelihood evaluations. The em-
ulator replaces the expensive likelihood calls with the
much cheaper emulator model calls, thus enabling a much
faster sampling at the cost of introducing additional er-
rors in the model training. Such schemes have become in-
creasingly popular in simulation-based cosmological anal-
yses with the advent of fast yet flexible machine learn-
ing models such as neural nets and Gaussian processes,
with a series of successful cosmology applications in re-
cent years (see e.g. Refs. [103, 127–135]).

To generate the training and test set, we forward model
the final summary statistics (WST coefficients and 2-
point correlation function) across 85 cosmologies and
2700 HOD variations at each cosmology, creating an ini-
tial set of 229500 mocks. The cosmology grid is de-
scribed in §IVA1 and spans the wCDM+Neff+running
space around Planck 2018 values [102]. We leave out
the four secondary cosmologies c001-004 as out-sample
tests. The HODs are sampled in a Latin Hypercube with
flat bounded priors along each HOD parameter direction.
The bounds for all parameters are summarized in Table I.
For each cosmology and HOD, we generate the periodic
galaxy mocks according to the steps described in §IVA
and §IVB, discard the mocks that have number density
lower than 2.9 × 10−4 h3/Mpc3, and randomly down-
sample the galaxies of the other mocks in order to ex-
actly match the target density n̄g = 2.9×10−4 h3/Mpc3.
The value of this density cut-off allows us to retain a
significant portion of the original collection of 229500
mocks, while discarding HOD configurations resulting in
very low number densities, as shown in Fig. 2. We end
up retaining 151474 cubic mocks with number density

FIG. 2. A histogram of the distribution of galaxy number
densities of the galaxy mocks forming our original emulator
parameter grid. Mocks with number densities lower than the
cut-off n̄g = 2.9 × 10−4 h3/Mpc3 (red vertical line) are dis-
carded, while the rest are downsampled to exactly match this
value, in order to ensure a robust modeling of the density-
dependent WST estimator since this is the constant density
value used in the AbacusSummit mocks. The outcome of
this procedure forms the final emulator training set consist-
ing of 151474 mocks, i.e. those lying on the right of the red
vertical line in the histogram.

n̄g = 2.9 × 10−4 h3/Mpc3, each one of which is cut to
give two independent cut sky galaxy samples for NGC
and SGC, respectively, as explained in §IVC. We extract
the summary statistics (WST and 2-point function) out
of each one of them, as explained in §IVD, and finally ob-
tain the corresponding sky-averaged quantities according
to Eq. (10), which form our final emulator training+test
set.

For the emulator, we adopt a fully connected neural
network as our surrogate model. For the emulation of
WST, we adopt a network of 3 layers as our fiducial
model, with 300 nodes in each layer and a Gaussian Error
Linear Unit (GELU) activation function. We train the
network with the Adam optimizer and a mean squared
loss function taking the diagonal terms of the CMASS
WST covariance matrix (the evaluation of which is ex-
plained in §VA) as weights. We follow a mini-batch
procedure and conduct cross-validation throughout the
training process.

We visualize the final WST emulator performance in
Figs. 3 and 4. Specifically, Fig. 3 summarizes the emu-
lator error relative to the CMASS uncertainty, δemu, as
a function of WST bin indices. The errors are computed
on 1000 HODs (sampled from the prior) at the four out-
sample test cosmologies. The bins with the largest rela-
tive errors are the ones probing the largest spatial scales,
which are more susceptible to cosmic variance and thus
exhibit a larger dispersion in their values. We report a
mean |δemu| of 0.51, suggesting that the emulator error is
overall sub-dominant relative to the measurement uncer-
tainties. Fig. 4 compares the true WST values and the
emulator predicted values across all test cases for a few
selected WST coefficients of the data vector (i.e. bins).
The orange points show the emulator predictions for the
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FIG. 3. The median WST emulator error tested on the four
leave-out cosmologies as a function of bin index of the WST
coefficients vector. The y-axis denotes the emulator error nor-
malized by the CMASS 1σ uncertainty.

respective coefficients for each one of the 4000 leave-out
test cases, whereas the blue band shows the measurement
uncertainties. The dashed line shows the Ypred = Ytrue
line. We see no sign of bias in the emulator prediction.
Lastly, we repeat the above steps for the WST in order to
create the corresponding emulator for the multipoles of
the 2-point correlation function using the same training
set.

V. ANALYSIS

In this section, we lay out the details of how we will
use our forward model for the galaxy clustering in or-
der to perform a likelihood analysis of the BOSS data.
We start with a description of the adopted likelihood we
sample from and then explain our steps to validate the
robustness of our pipeline.

A. Likelihood modeling

Having laid out our methodology on how to forward
model the cosmological dependence of the WST coeffi-
cients, as well as on how to extract the corresponding
prediction from the data, we now explain our strategy
for combining these necessary ingredients to perform a
likelihood analysis of the BOSS dataset. Consider X to
be the summary statistic of interest, which in our analysis
denotes either the vector of WST coefficients or the mul-
tipoles of the correlation function (or their combination).
Assuming X is Gaussian-distributed, as we confirm in
Appendix §A, its likelihood, L(θ|d), will then follow the

familiar form:

logL(θ|d) = −1

2
[Xd −Xt(θ)]

T
C−1 [Xd −Xt(θ)]+const.,

(19)
with Xd being the value of the estimator evaluated from
the BOSS CMASS dataset d, that we will analyze in
order to infer the set of parameters θ. Furthermore, C in
Eq. (19) denotes the covariance matrix of X, which can
be decomposed as in Ref. [103]:

C = Cd + Cemu + Cphase. (20)

The first term in Eq. (20), Cd, represents the usual con-
tribution from the sample variance of the CMASS dataset
d, given by:

Cd =
1

Nmocks − 1

Nmocks∑
k=1

(
Xk

P − X̄P

) (
Xk

P − X̄P

)T
,

(21)
which we evaluate using Nmocks = 2048 realizations of
the Patchy mocks (to be described in §VA1), and with
X̄P being the mean prediction over the Nmocks. Further-
more, we follow Ref. [103] and consider two extra con-
tributions to the overall error budget, which reflect ad-
ditional sources of uncertainty arising from our forward
model and are essential for a reliable interpretation of our
analysis. In particular, Cemu quantifies the residual emu-
lator error evaluated (at fixed phase ph000) by averaging
over the 4× 1000 = 4000 hold-out test errors, generated
from c001-c004 (as intoduced in §IVA). These hold-out
tests and their results will be described in detail in §VB.
Furthermore, Cphase is meant to capture the effect of

training using mocks at a fixed phase, rather than the
average over many random realizations. To mitigate this
effect, we make use of 24 additional simulations initialized
at phases ph001-ph024, for the fiducial c000 cosmology
and a fixed HOD (corresponding to the best-fit values
from [103]). We then apply the following phase correction
to the data vector:

Xsmooth = Xph000

[
X̄

Xph000

]
, (22)

where Xph000 is the original emulator prediction, trained
at fixed phase, and the term inside the brackets denotes
the fractional correction evaluated over the 25 random re-
alizations for the cosmology c000. Even though Eq. (22)
assumes that this phase effect is cosmology-independent,
it was found in Ref. [103] to be sufficient for the mitiga-
tion of cosmic variance to the emulator predictions, and
we adopt it here as well. Equivalently, one could explic-
itly evaluate an error term, Cphase, using the 25 random
phase realizations, as in Eq. (21). We have tried both
approaches and have found minimal differences between
the results of the corresponding likelihood analyses. It is
straightforward to see that in the limit of perfect emu-
lator accuracy, these two additional terms would vanish,
and Eq. (20) would reduce to its usual expression captur-
ing only the cosmic variance (21), but we will find that
these effects are not negligible.
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FIG. 4. The bias of the WST emulator tested on the four leave-out cosmologies for six randomly selected coefficients (bins)
of the WST data vector. The legend shows the WST bin indices. The orange scatter points showcase the true and predicted
values of the WST coefficients for each one of the 4000 leave-out tests, whereas the blue band corresponds to the 1σ uncertainty
of the CMASS WST measurement.

Furthermore, upon inversion of the covariance matrix
in Eq. (19), we apply the standard de-biasing Hartlap
correction factor [136]:

Ĉ−1 =
Nmocks −Nd − 2

Nmocks − 1
C−1, (23)

where Nd is the dimensionality of Xd, which will be
Nd = 76 for the WST coefficients, Nd = 24 when work-
ing with the l = 0, 2 multipoles of the correlation function
(down to rmin = 10.5 Mpc/h), and Nd = 100 for the joint
analysis. Before inverting, we make sure that the covari-
ance matrices for both estimators are well-conditioned
and can thus be safely inverted in order to be used in
the likelihood in Eq. (19), and also that the number of
realizations is sufficient for them to be well-converged (a
very similar test for this can be found in Appendix B
of Ref. [80]). The correlation matrix, Cij/(CiiCjj), of
the joint statistic consisting of the 2-point function mul-
tipoles and the WST coefficients is shown in Fig. 5, eval-
uated at the fiducial cosmology. Focusing on the WST
coefficients on the upper right subplot, and starting with
the 1st order group of wavelets (that is, until index 25),
we notice the existence of strong correlations between
nearby scales and angles (close to the diagonal), which
progressively decrease and turn into anti-correlations be-
tween the smallest and the largest wavelet scales. Similar

patterns permeate into the 2nd order group of wavelets
and their correlations with the corresponding 1st order
scales. The correlation matrix of the 2-point correlation
function multipoles, corresponding to the lower left cor-
ner, exhibits the familiar structure known in the liter-
ature [137]. Lastly, when looking into the joint covari-
ance between the two statistics in Fig. 5, we observe the
existence of positive correlations between the wavelets
and the 2-point function monopole, which are most pro-
nounced with the wavelets probing the largest scales.
There are no significant correlations with the quadrupole
of the correlation function, on the other hand.
The final missing piece needed to evaluate the likeli-

hood (19) for a given point in the target parameter space
is the theoretical dependence of the summary statistic
as a function of the 8 + 7 = 15 cosmological+HOD pa-
rameters, Xt(θ), which we model using the emulator we
trained (as explained in §IVE), which allows us to obtain
accurate predictions in a fraction of a second.
Combining all of the above ingredients into our model,

we sample the likelihood from Eq. (19) using the
Markov Chain Monte Carlo (MCMC) sampler emcee
[138]11, so as to perform the posterior analysis of the

11 Publicly available at https://emcee.readthedocs.io/en/

https://emcee.readthedocs.io/en/stable/
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FIG. 5. Correlation matrix of the joint data vector consisting of the multipoles of the 2-point correlation function, l = {0, 2},
and the 76 WST coefficients used in our analysis, evaluated from the 2048 realizations of the Patchy mocks for the fiducial
cosmology. The lower left and upper right subplots coincide with the individual correlation matrices of the two statistics,
respectively, while the rest corresponds to the cross-correlations between them. The WST coefficients populate the data vector
in order of increasing values of the j1 and l1 indices, with the l1 index varied faster. The 2 × 2 blocks on the lower left corner
correspond to the auto- and cross- correlations of ξ0 and ξ2, from bottom to top and from left to right, respectively.

CMASS dataset. Even though our original forward
model spans a 15-dimensional parameter space, as ex-
plained in §IVA and §IVB, our main focus is to ob-
tain constraints on ΛCDM, so we fix w0 = −1, wa =
0, arun = 0, Neff = 3.046 (i.e. to their ΛCDM values)
and define our baseline analysis to constrain the fol-
lowing 4 + 7 = 11 cosmological+HOD ΛCDM parame-
ters: θ = {ωb, ωc, σ8, ns, logMcut, logM1, σ, κ, α, αc, αs}.
We also obtain constraints on extensions to ΛCDM,
for which our analysis will constrain the full 15-d pa-
rameter space consisting of 8 cosmological parameters,
θ = {ωb, ωc, σ8, ns, w0, wa, arun, Neff} + the same 7 HOD
nuissance parameters as above. We use flat priors
bounded by the limits of theAbacusSummit simulations
and the HOD training set, both of which are showed in
Table I. For parameter ωb, our baseline run is actually
performed with a Gaussian prior:

ωb = 0.02268± 0.00038, (24)

stable/.

as determined from Big Bang Nucleosynthesis (BBN)
measurements, which is a choice commonly adopted in
analyses of BOSS data [119–122]. Finally, to confirm the
sufficient convergence of our chains, we make sure that
the mean value of the acceptance fraction falls within the
reasonable range of values, 0.2− 0.5, and that the mean
integrated auto-correlation time is at least 2 orders of
magnitude lower than the total number of steps used, as
suggested in Ref. [138]. Lastly, we make use of 8000
walkers, which are initialized in a tight ball around the
Planck 2018 values.

1. Patchy mocks

The covariance matrix of an estimator can be usu-
ally evaluated either using an analytical model under the
Gaussian approximation or using simulations performed
for multiple realizations at a given cosmology, through
Eq. (21). Simulation-based analyses typically take ad-
vantage of covariance mocks, such as the 2048 realizations
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of the publicly available Multidark-Patchy mocks12

[137, 139], hereafter referred to as Patchy mocks. We
will use this collection for our BOSS analysis.

The main reference simulation for this run [140]
evolved 38403 dark matter particles on a cubic volume of
side 2.5 Gpc/h, using the code GADGET-2 [141], and for
a baseline cosmology described by {Ωb,Ωm, ns, σ8, h} =
{0.0482, , 0.307, 0.961, 0.829, 0.6778}. It was subse-
quently combined with an approximate perturbation
theory-based gravity solver in order to produce mocks
for the gravitationally bound halos, which were identi-
fied using the Bound Density Maximum halo finder [142].
Finally, the galaxy mocks were created by populating
the halos, using the Halo Abundance Matching technique
[143] in order to model the galaxy-halo connection. The
Patchy mocks were also cut into the realistic survey ge-
ometry of BOSS CMASS, for both the NGC and SGC
observed parts of the sky, while the systematic effects
can be captured through a set of accompanied weights
(in analogy to Eq. (14) for the data):

wc(r) = wfc(r)wveto(r). (25)

Similar to Eq. (13), the above weighting scheme cap-
tures fiber collisions, wfc, and the rest of the associated
shortcomings of the dataset through a veto mask, wveto,
while the FKP weights are also assigned through the
usual Eq. (15). To evaluate the summary statistics from
this set of mocks, we repeat the procedure detailed in
§IVD for Eq. (13), but with the weighting scheme in
Eq. (25), as opposed to the one of Eq. (14) that we used
for the data. For this purpose, the Patchy mocks are
also accompanied by their own set of randoms containing
∼ 50× the number of objects in the corresponding actual
galaxy mock.

Furthermore, we follow the standard procedure of
assuming a cosmology-independent covariance matrix
[144, 145], and convert the galaxy coordinates of the
mocks, RA, DEC, and z, into comoving Cartesian ones
using the fiducial cosmology of our forward model, which
is the c000 defined in §IVA. As we also noted in Ref.
[80], mixing different ways of modeling the cosmological
dependence of the estimator and its covariance matrix
is common practice in BOSS analyses (as in, e.g., Refs.
[23, 94, 95, 119–121]). We combine two different sets of
mocks (AbacusSummit & Patchy) in order to build
our final model for the likelihood.

It should be pointed out that, even though the Patchy
mocks were also partly tested for their accuracy in
capturing the 3-point correlation function of CMASS
[137, 139], in addition to the 2-point function, they have
not been tuned for novel summary statistics such as
the WST. This fact, combined also with their approxi-
mate gravity solver and the assumption of the cosmology-
independent covariance matrix may be sources of error in

12 Available at https://data.sdss.org/sas/dr12/boss/lss/dr12_
multidark_patchy_mocks/.

our analysis, that we are working to overcome with the
next generation of galaxy mocks designed to match the
requirements for DESI analysis (see such an example in
Ref. [146]).

B. Validation

In the previous section we described the detailed steps
to perform a likelihood analysis using our emulator for
the cosmological dependence of the WST coefficients. Be-
fore proceeding to analyze the actual CMASS dataset,
we first test our pipeline to ensure its accuracy in in-
ferring (known) cosmological parameters from simulated
data vectors.

1. Abacus hold-out mock tests

In order to test the accuracy of our inference pipeline,
we begin by randomly selecting 10 HOD configurations
centered around the best-fit values from Ref. [103],
for each one of the hold-out c001-004 AbacusSummit
cosmologies. We repeat all previously explained steps
to produce synthetic WST data vectors from each test
mock, which are then fed into our likelihood analysis
pipeline to constrain the cosmological parameters of our
ΛCDM baseline case. The corresponding marginalized
posterior distributions obtained on the 4 ΛCDM cosmo-
logical parameters of the baseline analysis are then shown
in Fig. 6, in which we see that we are able to recover the
true values within 1-σ levels of accuracy, for all cases. We
note that we do not show the contours for the wCDM test
cosmology c002 in Fig. 6, for brevity, but the recovery
is successful in this case as well.

The hold-out cosmologies used for the above tests cor-
respond to the same initial fixed phase, ph000, of the
AbacusSummit simulations as the mocks of our train-
ing set, and as a result do not allow us to detect poten-
tial biases introduced by this approximation. To check
for this, we also attempt to perform parameter inference
from the data vector obtained by averaging over the 24
additional phases, ph001-024, that are available for the
fiducial c000 cosmology. As we also show in Fig. 6, our
phase correction scheme (22) is found sufficient to recover
an accurate cosmology from a different phase. We add
that we confirmed the recovery was also successful when
we used these 24 phases individually, as the mock data
vector.

Overall, the above tests confirm that our WST emu-
lator, in combination with the error correction strategies
(20) & (22), is successful in inferring the parameters of
the AbacusSummit simulations within 1-σ levels of ac-
curacy, over a wide range of cosmologies. We should also
note, at this point, that we confirmed the same to be true
for the corresponding emulator for the multipoles of the
galaxy correlation function.

https://data.sdss.org/sas/dr12/boss/lss/dr12_multidark_patchy_mocks/
https://data.sdss.org/sas/dr12/boss/lss/dr12_multidark_patchy_mocks/
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FIG. 6. ΛCDM recovery tests using our WST emulator to analyze 10 HOD configurations of the c001 (upper left), c003
(upper right) and c004 (lower left) hold-out cosmologies of our test set. We also show the marginalized 1-σ and 2-σ posteriors
obtained by analyzing the mean data vector of the 24 additional realizations available for the fiducial c000 cosmology (lower
right). The horizontal and vertical black dashed lines indicate the true values of the cosmological parameters in each case.

2. Uchuu mock tests

Even though our simulation-based model was found to
be successful at recovering the true cosmological parame-
ters over a broad range of tests, as reported in the previ-
ous section §VB, the corresponding hold-out mocks that

we used were produced from the same set of the Abacus-
Summit simulations, using, more importantly, the same
assumptions for the galaxy-halo connection through the
specific HOD model we adopted (described in §IVB). As
a result, before our pipeline can be trusted for a reli-
able interpretation of the actual observations, it should
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be first tested against an independent simulation with
different gravity and halo codes, with a different strategy
for the population of dark matter halos with galaxies.

To achieve this goal, we additionally make use of the
Uchuu simulations [147–151], which were run using the
GreeM N-body code [152]. It evolved 2.1×1012 dark mat-
ter particles, in a simulation volume (2 Gpc/h)3, which
matches the one of Abacus, and it is large enough to fit
the entire footprint of BOSS. Their underlying cosmol-
ogy corresponds to the following values: Ωm = 0.3089,
Ωb = 0.0486, h = 0.6774, σ8 = 0.8159, and ns = 0.9667,
while dark matter halos were identified with the Rock-
star halo finder [153], in contrast to Abacus’s Com-
paSO.

More crucially, the corresponding galaxy mocks were
produced with UniverseMachine [UM; 154], a model
that is considerably more sophisticated than the HOD.
UM is an empirical galaxy–halo connection model that
predicts galaxy star formation rates from halo mass and
halo assembly histories. It is a flexible framework that
models the full evolution histories of galaxies anchored on
dark matter halo merger trees from cosmological simula-
tions, and it is simultaneously constrained by observed
galaxy stellar mass functions, UV luminosity functions,
quenched fractions, cosmic star formation history, and
galaxy clustering over a wide range of galaxy mass and
redshifts (up to z ∼ 8). We refer the readers to [150] for
detailed descriptions of the mock. It is also worth high-
lighting that UM naturally includes a motivated yet flex-
ible prescription of galaxy assembly bias, as the galaxy
properties are directly computed from the halo merger
trees. Thus, this test also checks against potential sys-
tematic biases due to galaxy assembly bias.

For the covariance matrix needed for the Uchuu like-
lihood analysis we use the same suite of Patchy mocks
described in §VA1, since both types of simulations are
tuned to match the clustering properties of the BOSS
CMASS sample, with a same volume and number den-
sity and a similar Planck-like cosmology.

In Fig. 7, we plot the marginalized constraints obtained
on the 4 ΛCDM parameters after analyzing the Uchuu
mock using the multipoles of the galaxy correlation func-
tion, the WST coefficients and a joint combination of
both. As in the previous case of the Abacus hold-out
tests, we find that the true values always lie within 1-σ
away from the mean, for all 3 cases. We note that ns
is prior-dominated in the case of the 2-point correlation
function, as the contour hits the upper prior bound of
the AbacusSummit grid13. This is not the case, how-
ever, for the WST and the joint combination, which are
the main focus of this analysis, despite the significantly
tighter 1-σ errors they predict. These results confirm our
ability to trust that our forward model can recover un-
biased cosmological constraints which are robust against

13 A similar finding was recently reported by Ref. [52].

the various assumptions made by the simulations used
for its training.

FIG. 7. Recovery test using the Uchuu galaxy mock for the
ΛCDM cosmological parameters obtained using the monopole
and quadrupole of the galaxy correlation function (red), the
WST coefficients (blue) and their joint combination (black).
The horizontal and vertical black dashed lines indicate the
true values of the cosmological parameters.

VI. RESULTS

Having validated our pipeline against a series of inter-
nal and external mock recovery tests, described in §VB,
we now proceed to use it in order to analyze the BOSS
CMASS dataset. Specifically, in Fig. 8 we plot the 2-
dimensional marginalized posterior probability distribu-
tions of the 4 ΛCDM parameters of our baseline CMASS
analysis, as they were obtained using the multipoles of
the galaxy 2-point correlation function, the WST coef-
ficients and their joint combination. We also show the
constraints on the dimensionless Hubble constant, h, that
we obtain by treating it as a derived parameter from our
MCMC chains, resulting from the fixed value of the co-
moving angular size of the sound horizon at last scatter-
ing, 100θ⋆ = 1.041533, imposed in the AbacusSummit
simulations. We note that, even though this parame-
ter is very well-constrained by the Planck satellite [102],
this choice implies that h is not varied independently
in our inference, so the corresponding result should be
interpreted with caution. In addition, the mean and
1σ error values obtained on the cosmological parameters
(marginalized over HOD) are listed in Table II, while the
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2-point c.f. WST Joint 2-point c.f.+WST

Best-fit Mean±σ Best-fit Mean±σ Best-fit Mean±σ

ωb 0.02261 0.02270+0.00037
−0.00037 0.02274 0.02277+0.00038

−0.00038 0.0225 0.02262+0.00029
−0.00029

ωc 0.1201 0.1222+0.0040
−0.0063 0.1239 0.1244+0.0015

−0.0015 0.1238 0.1241+0.0011
−0.0011

ns 0.925 0.922+0.037
−0.037 0.961 0.951+0.023

−0.023 0.927 0.924+0.01
−0.01

σ8 0.742 0.746+0.051
−0.051 0.860 0.834+0.058

−0.039 0.793 0.795+0.019
−0.019

h 0.677 0.677+0.022
−0.015 0.67 0.669+0.0059

−0.0059 0.668 0.669+0.0049
−0.0049

TABLE II. Best-fit values, mean values and 68% confidence intervals for all cosmological parameters resulting from the likelihood
analysis of the 2-point correlation function multipoles (left), the WST coefficients (middle) and a joint analysis of the two (right).
The mean values are presented in the format ‘mean+1σ

−1σ’, after marginalization over all HOD parameters.

FIG. 8. Marginalized constraints on the ΛCDM cosmological parameters obtained using the monopole and quadrupole of
the galaxy correlation function (red), the WST coefficients (blue) and their joint combination (black) in order to analyze the
BOSS CMASS observations. The results shown above were obtained after imposing a BBN Gaussian prior on the value of
ωb = 0.02268± 0.00038.

corresponding constraints on the HOD nuisance param- eters are presented in Appendix §B.
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We begin with the standard analysis using the galaxy
correlation function, the results of which are broadly con-
sistent with Planck 2018 [102]. Even though the mean
values obtained for ns and σ8 are somewhat lower than
the ones of Planck, the magnitude of these differences is
not statistically significant (∼ 1σ), unlike the results of
some previous BOSS analyses (Eg. [23, 103, 122]).

Moving on to discuss the results of the WST re-
analysis, we first notice the relative consistency between
the corresponding mean values for the parameters ex-
tracted from the two estimators, the differences of which
never exceed the respective 1−σ values obtained from the
correlation function. We do, however, notice different de-
generacy directions exhibited by the WST contours pro-
jected on the various individual 2-d parameter planes, the
importance of which will become apparent below. More
importantly, the 1-σ errors obtained on parameters ωc

and ns are found to be 4.2 and 1.6× tighter than the
corresponding predictions from the correlation function,
as seen in Table II. The dimensionless Hubble constant is
consistent with Planck in this case as well, with an error
that is 3.7× tighter than from the correlation function,
tracing the respective results for ωc, on which it depends
through the fixed θ⋆. We note again that this finding
should be interpreted with caution. if it were not for the
strong prior on θ⋆ in our model, the coarse logarithmic
binning used by our wavelets would likely not be able
to fully capture the BAO information, resulting in a less
accurate determination of h. Last but not least, we do
not find any noticeable improvement (with respect to the
2-point function) in our ability to constrain σ8, while the
mean value predicted by the WST analysis is also con-
sistent with Planck. Even though counter-intuitive, at
face value, this result is attributed to the inclusion of the
residual emulator error, Cemu, in Eq. (20), a fact that
we have tested and confirmed, as shown in Appendix §C.
In particular, we find that, even though the intrinsic er-
rors predicted by the WST in the limit of zero emulation
error are substantially tighter for all parameters, our ac-
tual error budget is also much larger for the WST, such
that the addition of Cemu in Eq. (20) partially or com-
pletely (in the case of σ8) masks the net improvements.
We nevertheless choose to include this term, in order to
ensure a reliable and robust analysis.

We have already seen that, despite the fact that the
WST and correlation function contours are consistent
with each other at the 1σ level, they exhibit different
degeneracy orientations. This is not as surprising if we
consider that the two statistics do not capture the ex-
act same information. Indeed, we remind that, even
at the lowest (1st) order, the WST raises the modulus
of the input galaxy density field to the power q = 0.8,
closer to the properties of other higher-order statistics
such as the marked power spectrum, as we also found in
Ref. [79]. The localized solid harmonic wavelet (4) is
also different than the Fourier kernel of the power spec-
trum/correlation function, with all the additional known
benefits associated with this choice [70–73]. As a con-

sequence, analyzing the data with the joint combination
of the two statistics allows us to break degeneracies and
further improve upon the results obtained from each in-
dividual analysis, as we can see in Fig. 8 and Table II. In
particular, the 1σ error obtained on σ8, which previously
did not improve by a WST application alone, now shrinks
by a factor of 2.5, while the corresponding constraints on
the rest of the parameters are further tightened by a fac-
tor of 3− 6 compared to the 2-point correlation function
and by a factor of 1.4 − 2.5 compared to the WST-only
results. Overall, the joint analysis allows us to constrain
the parameters ωc, σ8, ns, and h with 0.9%, 2.3%, 1%
and 0.7% levels of accuracy, respectively. This result,
which can be considered to be the main one of our work,
highlights the value held in a complementary analysis
employing both the WST coefficients and the standard
correlation function.
In addition to the above parameters, and in order to

align our analysis with a standard practice adopted by
many RSD studies in the literature, we further quote

results on the product f(z)σ8(z), with f(z) = d lnD(a)
da

and D(a) being the linear growth rate and growth factor,
respectively. This is also a derived parameter that we
obtain from the samples in our chains. In particular, at
the effective redshift, zeff = 0.515, of our sample, the
joint analysis gives:

fσ8(zeff = 0.515) = 0.469± 0.012, (26)

which corresponds to a determination at a 2.5% level
of accuracy. Furthermore, in Fig. 9 we plot our result
together with the corresponding one from Planck 2018
[102] and from a selected sample of other recent BOSS
re-analyses in the literature (which we will further dis-
cuss shortly). Our prediction is consistent with Planck
well within the 1σ levels, driven by the corresponding
consistency in our inferred value of σ8, and despite our
relatively higher value of ωc. In the context of lensing
studies, this can be alternatively examined in terms of the
parameter combination S8 =

√
(Ωm/0.30)σ8, for which

we get

S8 = 0.833± 0.023, (27)

in almost perfect agreement with the fiducial Planck re-
sult, S8 = 0.832± 0.013.
As far as the values of ωc and ns are concerned, they

are found to be statistically higher and lower, respec-
tively, relative to the Planck result, driven by the very
tight constraints of our joint analysis. It is interesting to
notice that a similar trend has been found in some recent
large-scale BOSS analyses, when ns is left free [23]. The
magnitude of the tension was smaller in these studies,
however, due to the larger error bars produced by such
perturbation theory-based models. Ref. [103] also found
a preference for a lower ns at the 1.5σ level.
We also note that, even though all above results were

produced assuming a tight BBN prior (24) on ωb, we
found that our joint analysis is actually able to constrain
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FIG. 9. Marginalized constraints on the structure growth rate, f(z)σ8(z), of our joint analysis in blue alongside other clustering
constraints in the literature. We show the Planck 2018 [102] CMB constraints in black, with the corresponding 68% and 95%
limits in shaded bands, together with the results from two other recent Abacus-based CMASS re-analyses using the small-scale
2-point correlation function [103] and the density split clustering statistic [51, 52]. Additionally, we show clustering constraints
from BOSS LOWZ small-scale RSD [97], BOSS full-shape power spectrum [134], BOSS large-scale RSD+BAO [155], BOSS
small-scale RSD [156] eBOSS small-scale RSD [157], eBOSS large-scale RSD+BAO [158, 159], BOSS DR12 large-scale power
spectrum [160] and the 6dF Galaxy Survey [161].
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this value reasonably well even with a flat, uninformative
prior, as shown in Appendix §D.

FIG. 10. All 76 WST coefficients evaluated from the BOSS
CMASS dataset (black circles) plotted together with the best-
fit prediction obtained from our likelihood analysis (solid blue
line). The WST coefficients populate the data vector in order
of increasing values of the j1 and l1 indices, with the l1 index
varied faster.

Furthermore, in the left sub-panels of Table II we
list the best-fit values obtained for each one of the 3
types of analyses considered in this work, which are
always found to lie within a standard deviation away
from the corresponding means. To assess the goodness-
of-fit, we also evaluate the χ2 per degrees of freedom
(d.o.f.), χ2

ν ≡ χ2/d.o.f., which is found to be equal to
1.11, 1.36 and 1.37 for the correlation function, the WST
and the joint analysis, respectively. The result for the 2-
point function is very similar to the one reported by the
Abacus-based small-scale CMASS analysis of [103]. Even
though the value for the WST is a bit higher, it is still
reasonable and within the same range and/or lower than
the corresponding results reported by recent analyses us-
ing other higher-order statistics, such as k-nearest neigh-
bors [162] and density-split statistics [51]. The goodness
of the fit is also visually evident in Fig. 10, in which we
plot the best-fit prediction for the WST together with
the corresponding CMASS measurement.

We should comment, at this point, on how our new re-
sults compare with the ones of our previous WST BOSS
analysis [80], which relied on a simple Taylor expansion
approximation to model the cosmological dependence of
the WST coefficients. Starting with the 1-σ errors, the
main difference for parameters σ8 and ns is caused by the
inclusion of the WST emulator error, Cemu, in Eq. (20),
as we also pointed out above and show in Appendix §C.
In fact, we note that, if we omit this contribution, the
WST errors on σ8 and ns become 0.027 and 0.02, respec-
tively, which are not that far off from what we previously

reported, as seen in Table II of Ref. [80]. Even after ne-
glecting the emulator error, the constraint on ωc was still
found to be ∼ 2.5× tighter in Ref. [80], a fact that is
most likely attributed to the simplified Taylor expansion
approximation. This fact is also most likely responsible
for the relatively low value of σ8 that we reported in that
work.

Finally, we briefly discuss how our work compares
against other analyses of BOSS clustering in the liter-
ature, starting with the two other recent applications
of the AbacusSummit. Ref. [103] built an Abacus-
based emulator of the anisotropic 2-d correlation func-
tion to analyze the CMASS dataset, while Refs. [51, 52]
worked with the density-split clustering statistic. Given
that they relied on the same suite of simulations for their
forward model, these applications share the same cosmol-
ogy grid and priors as our analysis (including the fixed
value of sound horizon θ∗). All three analyses also used
the same HOD framework. However, there are several
key differences between the above works and ours, that
need to be pointed out: given the unique sensitivity of
the WST to the survey geometry, through the successive
wavelet convolutions in Eq. (2), we trained our emula-
tor using the cut-sky mocks matching the exact CMASS
footprint, rather than the original cubic boxes used by
[51, 52, 103]. For similar reasons, we worked with a flat-
tened density profile, n(z), and in a slightly narrower red-
shift cut, as we showed in Fig. 1. Furthermore, both of
the other works included smaller scales down to 1 Mpc/h
and thus accounted for the necessary effects of assembly
bias in their HOD parametrization, which we neglected
given that our analysis stopped at a minimum scale of
∼ 10 Mpc/h. Ref. [103] also used Jackknife re-sampling
in order to compute the covariance matrix (as opposed
to our Patchy mocks) and included only small scales, ¡
30 Mpc/h, in their analysis, while Ref. [51] only analyzed
the NGC part of the BOSS survey. Due to all the above
differences, a direct “apples to apples” comparison is still
hard. Nevertheless, we notice the relative 1σ consistency
between our results for σ8 and fσ8 and those of [51] (and
Planck), as also seen in Fig. 9. The analysis of Ref. [103],
on the other hand, found a relatively lower value of the
clustering amplitude, which, combined with their tighter
errors, leads to a disagreement at the level of 1.5σ. In
addition to the previously mentioned differences, other
analysis choices that might be driving this difference are
the use of Gaussian priors by Ref. [103] and the fact that
their emulator error was evaluated drawing from from the
posterior, rather than the prior. In preparation for the
analysis of the next stage of spectroscopic observations,
we plan to revisit these comparisons through a commonly
adopted set of uniform analysis choices.

A plethora of other studies in the literature have ana-
lyzed the BOSS and extended BOSS (eBOSS) [163] ob-
servations, including, but not limited to, the ones plotted
in Fig. 9 alongside our result. All of them used the stan-
dard 2-point correlation function or the power spectrum,
and can be grouped into large-scale [155, 158–161] and
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Joint 2-point c.f.+WST

Best-fit Mean±σ

ωb 0.02280 0.02273+0.00036
−0.00036

ωc 0.1227 0.1239+0.0056
−0.0056

σ8 0.748 0.751+0.034
−0.040

ns 0.928 0.953+0.022
−0.030

h 0.675 0.671+0.021
−0.021

arun 0.002 0.004+0.019
−0.012

Neff 3.048 3.23+0.26
−0.26

w0 −1.039 −0.995+0.061
−0.073

wa 0.29 0.17+0.24
−0.21

TABLE III. Best-fit values, mean values and 68% confidence
intervals for all cosmological parameters resulting from the
joint WST + correlation function likelihood analysis in the
case of the extended cosmological scenario. The mean values
are presented in the format ‘mean+1σ

−1σ’, after marginalization
over all HOD parameters.

small-scale studies [97, 134, 156, 157]. Despite the large
variance in the modeling and analysis choices among the
members of this list, we notice that our analysis joins
the ones that are statistically consistent with the Planck
curve, including the official BOSS result [155]. On the
other hand, a number of studies is found to systemati-
cally underpredict the growth rate, related to the known
LSS tension that has emerged in the last few years. Given
that the true origin of this discrepancy is not yet known,
we hope that novel techniques such as the WST will help
shed light on this issue. We highlight that our constraint
is found to be the tightest reported among all these stud-
ies. Similar considerations apply for the comparison to
other BOSS analyses, e.g., [23, 119–123, 164].

A. Constraints on ΛCDM extensions

Our main focus for the present analysis has been to
obtain constraints on ΛCDM. However, as we explained
in §IVA, our emulator was originally trained on the
AbacusSummit cosmology grid, which also includes 4
additional parameters describing extensions to ΛCDM:
{arun, Neff , w0, wa}. As a result, and in order to fur-
ther explore the constraining capabilities of the WST,
here we briefly present constraints from the base joint
WST + correlation function likelihood analysis on all 8
cosmological parameters (marginalized over the 7 HOD
parameters), shown in Fig. 11 and Table III. We find
that our analysis is able to clearly constrain all param-
eters simultaneously, without any signs of statistically
significant deviations away from the known ΛCDM lim-
its, w0 = −1, wa = 0, arun = 0, Neff = 3.046. Given the
increased number of parameters in this case, it is not sur-
prising that the constraints on the ΛCDM parameters are
looser compared to the corresponding values found in the

base analysis. As a consequence of the same fact, the pre-
viously reported tensions for ωc and ns are alleviated in
this case, and all ΛCDM parameters are found to be con-
sistent with the Planck 2018 results [102] (and also with
the ones of the base analysis). The reduced χ2/d.o.f is
found to be χ2

ν = 1.31, confirming that the fit is equally
good as the one of the joint base analysis.
We note that our pipeline has been more thoroughly

tested for ΛCDM applications, and these results are ex-
ploratory in nature, while we reserve a more detailed
WST application to extended scenarios for future work.
Nevertheless, they serve as an additional example that
showcases the promise held in the use of the WST in the
context of parameter inference applications.

VII. CONCLUSIONS

In this work, we perform a thorough re-analysis of the
BOSS CMASS DR12 dataset, using a simulation-based
emulator for the Wavelet Scattering Transform, a novel
statistic that promises to capture non-Gaussian informa-
tion in a clustered field by subjecting it to a series of
successive wavelet-convolutions.
In our series of previous works [79, 80], we laid the

foundation for a WST application to spectroscopic galaxy
data, including the methodology to capture all necessary
associated layers of realism to achieve this task, such as
the effects of non-trivial survey geometry, the shortcom-
ings of the dataset through a set of systematic weights or
the Alcock-Paczynski effect. However, in order to reduce
the related computational cost, in Ref. [80] we used a
linear Taylor expansion to approximate the cosmological
dependence of the WST estimator.
Having the full suite of the state-of-the-art Abacus-

Summit simulations at our disposal, we now revisit our
previous analysis after constructing an accurate neural
net-based emulator for the cosmological dependence of
the WST coefficients. Our forward model is trained us-
ing a total of 151,474 mocks that span a 15-dimensional
parameter space, capturing variations in 8 cosmological
parameters and 7 Halo Occupation Distribution (HOD)
nuissance parameters to model the galaxy-halo connec-
tion. We repeat these steps to create a corresponding em-
ulator for the standard multipoles of the galaxy 2-point
correlation function, which serves as our benchmark to
evaluate the performance of the WST.
In order to ensure that our likelihood analysis pipeline

achieves the necessary levels of accuracy for a reliable
and robust cosmological analysis, we subject it to a se-
ries of internal and external parameter recovery tests. For
the internal tests, we use 40 hold-out mocks that span a
broad range of cosmological parameters within our train-
ing set. We then test and confirm that we can accurately
infer the parameters of an external simulation, that used
different assumptions to capture the complicated physics
of galaxy formation.
After confirming the accuracy of our forward model,
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FIG. 11. Marginalized constraints on extensions to ΛCDM obtained using the joint WST + correlation function combination
in order to analyze the BOSS CMASS observations. The results shown above were obtained after imposing a BBN Gaussian
prior on the value of ωb = 0.02268± 0.00038.
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we use it to re-analyze the BOSS CMASS DR12 dataset
in the redshift range 0.4613 < z < 0.5692, in order to
constrain the ΛCDM parameters using the WST coeffi-
cients and the multipoles of the galaxy correlation func-
tion. We find that a joint analysis using the WST and
the correlation function allows us to constrain the ΛCDM
parameters with 1σ errors that are tighter by a factor of
2.5−6, compared to the 2-point correlation function, and
by a factor of 1.4 − 2.5 compared to the WST-only re-
sults. This corresponds to a competitive 0.9%, 2.3%, 1%
and 0.7% level of determination for parameters ωc, σ8,
ns, and h, respectively. Furthermore, the joint analysis
allows us to obtain a tight 2.5% constraint on the param-
eter combination f(z)σ8(z), in agreement with the 2018
results of the Planck satellite. We discuss how our new
results compare against our previous analysis and prior
ones in the literature, reaffirming the constraining power
of the WST.

We also obtained constraints on extended cosmological
scenarios, parametrized through 4 additional parameters,
{arun, Neff , w0, wa}, finding no statistically significant de-
viations from the ΛCDM limit.

Our emulator for the cosmological dependence of the
WST coefficients (and the correlation function) has al-
lowed us to overcome the main limitation behind our
previous application [80]. There is, however, room for
further improvement in certain components of our for-
ward model, which we plan to achieve in future work.
First of all, and as we already pointed out above, the
AbacusSummit simulations impose a fixed value of the
angular scale θ⋆. Even though this quantity is very well
constrained by CMB observations [102], such a prior im-
plies that the Hubble constant is not independently var-
ied in our chains, but can only be obtained as a derived
parameter. Given, however, that our framework is flexi-
ble enough to be applied to any set of simulated mocks,
this limitation can be easily overcome using a different
training set. In a similar manner, our use of simulations
produced at a fixed redshift, z = 0.5, implies that clus-
tering evolution along the CMASS lightcone is currently
neglected. With the capability to produce Abacus light-
cones already in place [135, 165], we plan to incorporate
this effect in future revisions of our pipeline. Further-
more, our current HOD parametrization for the galaxy-
halo connection neglected assembly bias, given the more
conservative scale-cut we adopted. It would be very in-
teresting, in future work, to explore the full small-scale
constraining power of the WST, for which a more general
HOD model including assembly bias would be necessary.
Such an endeavor will also require a more careful treat-
ment of systematic effects, such as fiber collisions, which
we currently corrected using the recipe designed for the
standard correlation function analysis (for an example,
see Ref. [135]).

The culmination of this series of works opens up an
avenue of potentially exciting cosmological applications
of the WST, with the advent of the first Stage-IV spec-
troscopic observations by DESI. As we had also pointed

out in Ref. [80], the basis of solid harmonic wavelets that
we have been using is not optimized for a spectroscopic
dataset, as it was designed in the context of isotropic 3-d
applications of molecular chemistry. A suitably tailored
new basis of wavelets could potentially fully leverage the
anisotropic RSD information in the observed galaxy field,
by treating a given direction as special [166]. Higher-
order statistics, as we have discussed before [45, 79], also
exhibit tremendous potential for constraining fundamen-
tal physics such as massive neutrinos, theories of gravity
or primordial non-Gaussianity, through their unique abil-
ity to break degeneracies that are present at the power
spectrum level. All of these are very interesting avenues
that we would like to explore, alongside the first WST
application to the first year of DESI data.
Our application serves as a prime example of how novel

estimators, such as the Wavelet Scattering Transform,
can hopefully allow us to fully exploit the vast amount of
information that will be accessed by the next generation
of cosmological surveys, giving us the opportunity to po-
tentially revolutionize our fundamental understanding of
the universe.
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Appendix A: Gaussianity of the WST likelihood

Our posterior analysis in §V has been performed by
sampling from a likelihood that we assumed to follow a
Gaussian form, as given by Eq. (19). In the standard
power spectrum case, and despite the non-Gaussianity of
the cosmic density field at late times, this is known to be
an accurate approximation thanks to the Central Limit
Theorem, when a sufficiently large number of modes con-
tribute to the value evaluated at a given spatial bin.
For the WST, in our previous applications [79, 80] we
also adopted this approximation, motivated by support-
ive findings in the 2D weak-lensing (WL) applications of
Ref. [78]. We now proceed to explicitly test and confirm
the validity of this assumption for the present WST ap-
plication to 3D clustering, using the 2048 realizations of
the Patchy mocks for the fiducial cosmology. Follow-
ing Refs. [49, 167], the 2048 realizations will have a χ2

distribution, given by:

χ2
i =

[
Xdi

− X̄d

]T
C−1

[
Xdi

− X̄d

]
, (A1)

where Xdi
is the prediction for the ith Patchy mock

realization, X̄d the mean value over the distribution, and
C the covariance matrix from Eq. (21).

FIG. 12. Probability density function of the χ2 distribution of
the WST coefficients as measured from the 2048 realizations
of the Patchy mocks (blue) plotted together with a theoret-
ical χ2 distribution with Nd = 76 degrees of freedom (black
line) and a Gaussian distribution with the same mean and co-
variance (orange). The WST estimator does not exhibit any
significant deviations from a Gaussian distribution.

If the likelihood of a summary statistic is indeed Gaus-
sian, then the probability density function (pdf) from Eq.
(A1) should closely track the theoretical χ2 distribution
with degrees of freedom equal to the dimensionality of
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FIG. 13. The same χ2 analysis as in Fig. 12 is repeated for
the multipoles of the 2-point correlation function that we use
as the benchmark in our analysis.

the data vector (ie. Nd = 76 for our WST implemen-
tation). It should also closely match the pdf of samples
randomly drawn from a Gaussian distribution with the
same mean and covariance as the sample of realizations.
This comparison is demonstrated in Fig. 12 for the WST,
which is observed to satisfy a high level of consistency
between the 3 curves, confirming thus a high degree of
Gaussianity for the likelihood of the WST estimator. The
equivalent comparison for the 2-point correlation func-
tion multipoles is shown in Fig. 13 for reference, which
reproduces the known result of Gaussianity of the cor-
relation function. This result for the Gaussianity of the
WST is aligned with the one of Ref. [78] in the con-
text of weak lensing and also with the results of Refs.
[49, 135, 167] for other higher-order statistics explored in
the literature.

We also note that a quantification of the Gaussian-
ity of various summary statistics was performed in Ref.
[168], in which the probability distribution of the WST
coefficients evaluated from the simulated 3D matter den-
sity field was found to exhibit a certain degree of non-
Gaussianity. However, this work used a different basis
of wavelets, that performed a much finer sampling of the
spatial domain, which can lead to a breakdown of the
Central Limit Theorem. As a result, their findings are
not inconsistent with ours.

Appendix B: Constraints on HOD parameters

In this section, we present the constraints obtained on
the full set of HOD parameters of our WST and joint

WST Joint 2-point c.f.+WST

Best-fit Mean±σ Best-fit Mean±σ

logMcut 12.681 12.668+0.068
−0.068 12.608 12.613+0.045

−0.060

logM1 13.34 13.33+0.13
−0.13 13.252 13.25+0.11

−0.11

log σ −0.783 −0.823+0.11
−0.097 −0.829 −0.87+0.25

−0.25

α 0.921 0.934+0.064
−0.054 0.943 0.944+0.077

−0.049

κ 1.336 1.36+0.32
−0.32 1.236 1.22+0.28

−0.28

αc 0.322 0.34+0.17
−0.20 0.367 0.32+0.16

−0.22

αs 0.306 0.32+0.12
−0.11 0.411 0.408+0.099

−0.049

TABLE IV. Best-fit values, mean values and 68% confidence
intervals for the 7 nuissance HOD parameters of our base like-
lihood analysis using the WST coefficients (left) and the joint
analysis of the 2-point correlation function + WST (right).
The mean values are presented in the format ‘mean+1σ

−1σ’.

WST + correlation function analyses, shown in Fig. 14
and Table IV. We find that the WST alone is capable
of constraining all HOD parameters of our model, with
only modest additional improvements delivered after the
inclusion of the 2-point correlation function. Our analy-
sis hints at a preference for non-zero velocity biases both
for the central and also for the satellite galaxies, through
the corresponding inferred values for parameters αc and
αs. Even though the former result is in agreement with
the small-scale CMASS reanalysis of Ref. [103], it is in-
teresting that the same work did not find a preference
for a satellite bias. We defer a more detailed investiga-
tion of this matter to future work, which will extend our
analysis to equally small scales.

Appendix C: WST constraints without emulator
error

In Section §VA, we explained how the residual emula-
tor error, Cemu, was treated as an additional covariance
contribution that we added to the overall error budget,
through Eq. (20). In order to illustrate the impact of this
factor to the WST constraints, and also to better facili-
tate the comparison with our previous work [80] (which
did not account for the emulator error), we repeat the
WST analysis using the contribution from the Patchy
mocks only (that is, the first term in Eq. (20)) and con-
trast it against the full result, in Fig. 15. We notice that
the inclusion of the emulator error Cemu leads to a sub-
stantial increase in the 1σ errors for parameters σ8 and
ns, in particular, with the corresponding impact being
much less significant for ωc. When we neglect this term,
on the other hand, and as we also pointed out in the main
text, the constraints become much tighter and compara-
ble to the ones of our previous analysis [80] in the case
of σ8 and ns. We stress that this result should be inter-
preted with caution, given that the emulator error has
not been accounted for. It does serve, nevertheless, as
an indication of the intrinsic constraining power of the
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FIG. 14. Marginalized constraints on the full set of cosmological+HOD parameters obtained using the WST coefficients (blue)
and the joint combination of WST+correlation function multipoles (black) in order to analyze the BOSS CMASS observations.
The results shown above were obtained after imposing a BBN Gaussian prior on the value of ωb = 0.02268± 0.00038.

WST in the limit of zero emulation error. In order for
this potential to actually be exploited by the next stage of
precise spectroscopic observations, however, higher accu-
racy emulators and more precise characterization of the
emulator error will be necessary. Whether and how these
goals can be achieved is a matter of intense study.

Appendix D: Impact of priors on ωb

Our main analysis used a tight BBN prior on the value
of ωb, from Eq. (24). In this appendix we repeat our
joint WST + correlation function analysis using a flat ωb

prior, instead, and demonstrate the comparison between
the two results in Fig. 16. Remarkably, we find that
the joint analysis is also able to accurately constrain ωb,
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FIG. 15. Marginalized constraints on the ΛCDM cosmological
parameters obtained using the WST coefficients without the
inclusion of the emulator error, Cemu, in Eq. (20), shown in
the blue contours. The result of the main WST analysis using
the full covariance (originally shown in Fig. 8) is also plotted
in red, for comparison.

as well as the rest of the parameters, using completely
uninformative priors. The corresponding increase in the
1σ errors is 90% for ωb and no more than 10% for the
rest of the 3 parameters.

Appendix E: Sensitivity to small scales

In principle, the solid harmonic wavelets that we use
in this analysis do not have a finite support neither in
real or Fourier space. The Fourier transform of the ra-
dial part of Eq. (4) is a Gaussian for ℓ = 0, that can
extend to higher k for ℓ > 0 values. Even though in
practice this can be controlled through a sufficiently con-
servative combination of the Gaussian width and grid
size, as we did in this application, we need to explicitly
make sure that our WST analysis does not extract in-
formation from smaller scales than originally intended.
We confirm this fact through the following test: we first
apply a sharp top-hat filter in k-space to our galaxy field
and, after going to real space, use this filtered field in-
stead as the input into the WST scattering network (6).
This addition imposes a sharp k-space cut off, which
would remove any potential undesired contributions from
higher frequencies (smaller scales). In Fig. 17, we plot
the fractional change to the WST data vector obtained
from the BOSS NGC data when this filtering is applied
for various cut-offs, compared to the original prediction

FIG. 16. Marginalized constraints on the ΛCDM cosmolog-
ical parameters obtained from the joint WST + correlation
function analysis using a flat prior on the value of ωb (red),
as opposed to the main analysis that used a Gaussian prior
(24), in blue (and originally presented in Fig. 8).

using just the Gaussian-like smoothing from Eq. (4),
with σ = 0.80 and Ngrid = 270. Our 2-point correla-
tion function benchmark analysis includes scales down
to 8 Mpc/h, corresponding to a kmax = 0.8 h/Mpc in
the Fourier space. As we see in Fig. 17, imposing this
sharp cut-off leads to no measurable changes in the WST
data vector compared to the original one, indicating no
sensitivity to k > 0.8 h/Mpc. Imposing progressively
stricter cutoff values leads to growing differences in the
data vector, as we remove scales that our wavelets were
originally sensitive to. If we restrict our focus on wave-
modes k ≤ 0.25 h/Mpc, the changes in the data vector
are the most pronounced, as expected, since that would
discard the majority of the nonlinear information con-
tained in the galaxy field. Different combinations of the
Gaussian width and/or grid size lead to a different spatial
support, which can similarly be further contained with
the sharp k-space filter. We also confirmed that the be-
havior in Fig. 17 holds not just for the BOSS data, but
also for our simulation-based model predictions across
the prior space. These findings confirm that our specific
choices of Gaussian width, grid size and harmonic order
for the wavelet analysis were conservative enough and did
not access scales smaller than the ones of the correlation
function benchmark analysis.

We also note that wavelets which are explicitly de-
signed to have a finite support in Fourier space, such
as e.g. the ones used in [83, 84], are a natural next im-
provement to the above approach, that we are actively
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working on implementing in advance of the application
to the next generation of spectroscopic data.

FIG. 17. Fractional changes to the WST data vector when a
sharp top-hat filter with various kmax cut-off values is applied
to the galaxy field before the evaluation in Eq. (6), with
respect to the original evaluation of our main analysis. This
example evaluation corresponds to the NGC part of the BOSS
dataset.
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P. Zarrouk, J. López Cacheiro, and J. Ruedas, The
Uchuu-SDSS galaxy lightcones: a clustering, RSD and
BAO study, arXiv e-prints , arXiv:2208.00540 (2022),
arXiv:2208.00540 [astro-ph.CO].

[149] T. Oogi, T. Ishiyama, F. Prada, M. Sinha, D. Croton,
S. A. Cora, E. Jullo, A. A. Klypin, M. Nagashima,
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