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et al. (2024). This indexing has been used to probe pho-
ton ring signatures in general relativistic magnetohydro-

dynamic (GRMHD) simulations, (Ricarte et al. 2021;

Palumbo & Wong 2022; Palumbo et al. 2023), EHT

observations (Broderick et al. 2022) and for analytic
modelling of photon ring structures (Tiede et al. 2022;

Cárdenas-Avendaño et al. 2023; Cárdenas-Avendaño &
Lupsasca 2023).

Through both analytic work and GRMHD simula-

tions, there have been several studies of linear (LP)

(Himwich et al. 2020; Jiménez-Rosales et al. 2021;

Palumbo & Wong 2022; Palumbo et al. 2023) and circu-
lar polarization (CP)(Ricarte et al. 2021; Mościbrodzka

et al. 2021) features as proxies for inferring the presence

of the photon ring, also leading to a rich interplay with

polarimetric features in jets (Mościbrodzka et al. 2017;

Davelaar et al. 2019; Kawashima et al. 2021; Tsunetoe

et al. 2022; Ogihara et al. 2024).
Now, the EHT observations are performed using

only Earth-based stations and therefore the nominal
diffraction-limited angular resolution for a given wave-
length λ is limited by the Earth’s diameterD. For obser-

vations at 230 GHz, this is approximately λ/D ≈ 21µas

and the maximum possible baseline length in units of
wavelength, is D/λ ≈ 9.6Gλ. In order to improve the
limitations on dynamical range and temporal resolution

arising due to EHT’s sparse (u, v) coverage (Event Hori-
zon Telescope Collaboration et al. 2019c), as well to

increase the achievable baseline lengths, there are sev-

eral next-generation black hole imaging missions poten-

tially offering sensitivity to the photon ring signals. The

next-generation Event Horizon Telescope (ngEHT) is a

ground-based extension to the EHT that aims to install

new telescope sites, expand the observing bandwidth to
16 GHz and perform simultaneous multi-frequency ob-
servations at 86-230-345 GHz, all of which can lead to

high-fidelity, real-time movies of black holes and their

associated jets (Doeleman et al. 2023). The Black Hole

Explorer (BHEX) mission (Johnson et al. 2024), aims
to perform Earth-space VLBI with a single space-based

orbiter, providing long baselines (⪆ 20Gλ) enabling pho-
ton ring science while also obtaining a dense coverage of

the (u,v) plane on short baselines as well, with the aid of

simultaneous dual-band observations by leveraging the

expansions on the ground.

To study the efficacy of these missions to probe the

photon ring, this paper studies its polarimetric features

through both, geometric modelling and time-averaged

GRMHD simulations. Indeed, while geometric mod-

elling allows to probe lensing structures that are largely

agnostic to astrophysical source profiles (Gralla et al.

2020a), simulations help identify features of the accre-

tion flow that are strongly sensitive to the presence of the
photon ring (Ricarte et al. 2021; Jiménez-Rosales et al.

2021). The geometric modelling of photon ring signa-

tures of M87* has been studied by several authors in

total intensity (Johnson et al. 2020; Gralla et al. 2020a;

Lockhart & Gralla 2022a; Paugnat et al. 2022; Cárdenas-
Avendaño & Lupsasca 2023; Jia et al. 2024), and in LP

(Himwich et al. 2020). Gralla (2020) has also studied

signatures on long baselines of general narrow features

of arbitrary shape and intensity. The polarimetric sig-

nature of M87*’s photon ring in GRMHD simulations

has also been studied by several authors (Ricarte et al.
2021; Mościbrodzka et al. 2021; Jiménez-Rosales et al.

2021; Palumbo et al. 2023).
The paper is organised as follows. Section 2 introduces

the geometric model of the ring. Section 3 explores the

photon ring transition signatures of the geometric model

in all polarizations. Section 4 analyses transition behav-

ior in a large library of GRMHD simulations in light of
the geometric analysis. Section 5 describes detection

requirements for ngEHT and BHEX in terms of per-
missible thermal noise and antenna diameter. Section

6 presents the conclusions and discusses the outlook for

future work. Extended derivations of formulae used in

the paper, as well as tabulated numerical results from

GRMHD, can be found in the appendices.

2. INTERFEROMETRIC SIGNATURES OF

ANALYTIC RING MODELS

Let the image plane be spanned by some two dimen-

sional co-ordinate system r⃗ = (x, y) and the baseline

between the two stations spanned by a dimensionless

vector b⃗ = (b1, b2) drawn perpendicular to the line of

sight. Then, the visibility response V (⃗b) of an interfer-
ometer formed by this baseline, for an image signature

I(r⃗), is given by a two-dimensional Fourier transform:

Ṽ (⃗b) =

∫

I(r⃗)e−2πi⃗b.r⃗d2r⃗. (1)

Here the “tilde” (Ṽ ) denotes a quantity in the
Fourier/visibility domain. Note that this relation ap-

plies for all Stokes parameters (I,Q, U, V ) where I,
P = Q + iU and V represent total intensity, LP and

CP respectively.

We consider the visibility domain to be spanned by

polar co-ordinates (ρ, θ). These co-ordinates are related

to the Cartesian (u, v) co-ordinates via the relation:

ρ =
√

u2 + v2, θ = tan−1

(

u

v

)

. (2)

2.1. The Model: Concentric, Gaussian Rings
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the image domain (Johnson et al. 2020; Palumbo
et al. 2020) with scaling described by factors β2,0
and β2,1 for the n = 0 and n = 1 rings respec-

tively, along with the exponential ei2θ to produce

rotationally symmetric electric vector position an-
gle. That is, for a given sub-image n,

Pn(ρ, θ) = β2,ne
i2θIn(ρ, θ). (6)

The total signature in the Fourier domain is a sum of
the n = 0 and n = 1 visibility responses:

Ĩ01 = F0J0(2πr0ρ)e
−2π2σ2

0
ρ2

+ F1J0(2πr1ρ)e
−2π2σ2

1
ρ2

, (7)

P̃01 = −β2,0F0e
2iθJ2(2πr0ρ)e

−2π2σ2

0
ρ2

− β2,1F1e
2iθJ2(2πr1ρ)e

−2π2σ2

1
ρ2

, (8)

Ṽ01 = v0F0J0(2πr0ρ)e
−2π2σ2

0
ρ2

+ v1F1J0(2πr1ρ)e
−2π2σ2

1
ρ2

. (9)

Here Jm is Bessel function of the first kind of order m.

For the subsequent analysis, we introduce the notation
for the image domain ratios flux and polarimetric ratios,

F =
F0

F1
, βr =

β2,0
β2,1

, vr =
v0
v1
, (10)

the Fourier domain polarimetric ratios,

m̆01 =
P̃01

Ĩ01
, v̆01 =

Ṽ01

Ĩ01
, (11)

and the LP quantity,

m̄01 = m̆01(e
−2iθ). (12)

Further details of the model can be found in Appendix

A. Figure 1 demonstrates how this model approximates
the polarized photon ring features of the image domain

and the corresponding interferometric transition struc-

tures that manifest more subtly in GRMHD simulations.

We further restrict the model by fixing several param-

eter ranges relative to each other to simplify the model
specification and mimic properties of the photon ring of-

ten seen in simulations of the M87* and SgrA* accretion
flows:

1. We fix F0 = 1 and consider the flux ratio F to be

a free parameter.

2. Based on insights from Palumbo & Wong (2022),

the β2 quantities are assumed to satisfy the com-
plex conjugacy relation

β2,1 = β⋆
2,0 ⇒ arg(β2,1) = −arg(β2,0), (13)

and so β2,0 and the ratio βr are free parameters.

3. We assume the fractional circular polarizations v0
and v1 have opposite sign, and take v0 and the

ratio vr to be free parameters.

4. We assume that the two rings have equal radius.

This is physically motivated from studies of thin

ring models in GRMHD simulations (Tiede et al.

2022) as well as from the analytical work by Özel

et al. (2022) which arrived at similar results using
a covariant model of the accretion flow.

Thus the specifiable parameters of the model (excluding

the ring radii which are discussed in the next section)
are: F , β2,0, βr, σ0, σ0/σ1, v0, and vr.

3. POLARIMETRIC PHOTON RING SIGNATURES:
CONCENTRIC GAUSSIAN RINGS

We now study the transition in ρ at which the n = 1

signature overtakes the n = 0 signature in each polar-

ization. Though we consider rings of equal radii for
the sake of completeness, an analytic description of such

transitions without using this assumption is provided in

the Appendix B. The calculation for CP is given below,

while for total intensity and LP is given in Appendix B.

For CP, using Equations 7 and 9, we get:

v̆01 =
v0F0J0(2πr0ρ)e

−2π2σ2

0
ρ2

+ v1F1J0(2πr1ρ)e
−2π2σ2

1
ρ2

F0J0(2πr0ρ)e−2π2σ2

0
ρ2

+ F1J0(2πr1ρ)e−2π2σ2

1
ρ2

.

(14)

Imposing the condition of equal radii cancels out J0(...)
terms, and taking v0F0e

−2π2σ2

0
ρ2

and F0e
−2π2σ2

0
ρ2

com-
mon from the numerator and denominator respectively

gives:

v̆01 = v0

(

1 + v1F1

v0F0

e2π
2(σ2

0
−σ2

1
)ρ2

1 + F1

F0

e2π
2(σ2

0
−σ2

1
)ρ2

)

. (15)

The condition for v̆01 to have a negative sign is,

∣

∣

∣

∣

v1
v0

∣

∣

∣

∣

(

F1

F0

)

e2π
2(σ2

0
−σ2

1
)ρ2

> 1. (16)

Solving Equation 16 for ρ and using the notation from

Equation 10 gives the transition value ρ → (ρT )V at

which the sign changes as,

(ρT )V =

√

ln
(

|vr|F
)

2π2(σ2
0 − σ2

1)
. (17)

A key insight that arises from Equation 16 is that the
physical condition of the n = 1 signal dominating over

n = 0, is exactly equivalent to the mathematical condi-

tion for v̆01 to change its sign. This further motivates
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the subsequent analysis of the GRMHD simulations to
probe the photon ring signatures in these quantities.

Moreover, noting the fact that in Equation 17 the

quantities inside the square root are all ratios and hence

dimensionless, it can be inferred that the strongest de-

terminant of ρT is the “resolving out” of the direct image

by exceeding ρ = 1/σ0. This is evident from rewriting
Equation 17 as:

(ρT )V =
1

σ0

√

√

√

√

ln
(

|vr|F
)

2π2
(

1−
σ2

1

σ2

0

) . (18)

The thickness of the ring is is a crucial factor in com-

paring simulations with observations (Lockhart & Gralla

2022b,a) and so Equation 18 and can be a useful tool
for geometric modelling of polarimetric signatures of the

photon ring. Moreover, the ensuing geometric features

can be explored solely by fixing the one parameter of

the n = 0 ring, namely σ0, and then defining the ratios

of quantities relating the n = 0 and n = 1 ring.

The formulae for total intensity and LP, reproduced

from Equations B13 and B18 with the notation of Equa-
tion 10, are given by:

(ρT )I =

√

ln(F)

2π2(σ2
0 − σ2

1)
, (19)

(ρT )LP =

√

ln(|βr|F)

2π2(σ2
0 − σ2

1)
. (20)

Using Equations 17, 19 and 20, Figure 2 shows ex-

ample interferometric quantities as a function of ρ for

combinations of model parameters that vary the rel-

ative contribution of the photon ring. We investigate

the visibility domain signatures in Ĩ01, arg(m̆01e
−2iθ) ≡

arg(m̄01) and v̆01. We include the ratio F ≈ eπ to
mimic the “universal regime” prediction for isotropic

emitters (Johnson et al. 2020) and to make contact with

the results of Tiede et al. (2022) for M87*. The Fig-

ure demonstrates the advantages of the geometric mod-
elling scheme since after fixing geometric parameters of

the rings (i.e σ0 and σ0/σ1), the onset of the photon
ring transition is primarily governed by the relative po-

larization ratios (F , |βr| and |vr|) of the n = 0 to the

n = 1 image. We find that the the photon ring signal

starts to dominate at longer baselines (⪆ 10Gλ), tuned

by model parameters. Specifically for LP, as the n = 1

ring becomes more linearly depolarised with respect to

the n = 0 ring (i.e as |βr| increases), the transition ra-
dius ρT at which the photon ring begins to dominate

occurs at longer baselines. For CP, similar trends are

observed for the values of the ratio |vr|.

4. COMPARISON WITH GRMHD SIMULATIONS

We now investigate the range of values of ρT for

GRMHD simulations of M87*, focusing on LP and CP

signatures. We consider a library of time-averaged ray-

traced GRMHD n = 0 and n = 1 images produced in

Palumbo & Wong (2022), which hold fixed the mass at

6.5 × 109M⊙, the distance at 16.8 Mpc, and the incli-

nation at 17◦. The library contains five values of di-

mensionless spin a∗: -0.94, -0.5, 0, +0.5, and +0.94,

where a minus/plus sign indicates retrograde/prograde

spin with respect to the large-scale accretion disk. In

all cases, the black hole spin is directed away from the

observer. The fluid models themselves were produced

by iharm3D (Gammie et al. 2003; Prather et al. 2021)

and ray-traced using IPOLE (Mościbrodzka & Gammie

2018) with six values of the electron heating parameter

Rh (Mościbrodzka et al. 2016): 1, 10, 20, 40, 80, and
160. This parameter tunes the relative temperatures of

ions and electrons as a function of the magnetization of

the plasma.

4.1. Methodology: Coherent Annular Averaging

In order to obtain the transition radii directly from

the time-averaged images, we utilise a coherent annu-

lar averaging (CAA) scheme. Herein, for each image, a

polarimetric quantity is studied by making annular aver-

ages using a bin width of the order of few Gλ. Through-
out this analysis, a bin width of 4Gλ is chosen. Physi-

cally, this corresponds to smoothing the small-scale fluc-

tuations in the Fourier domain signal to investigate at

which transition radii the photon ring signal first begins

to dominate over the direct image. To specify this in the
signal, we utilise the change in sign from the n = 0 to

the n = 1 image-domain polarimetric quantities. For
LP and CP, we track the sign change from β2,0 to β2,1
and v0 to v1 respectively. In practice, the CAA-based

inference scheme is implemented as follows:

1. For a fixed value of the bin width b, specify the

inner (ρ−) and outer (ρ+) radii of the annulus in

the Fourier domain:

ρ± = ρ±
b

2
. (21)

Then, for each value of ρ in an equally-spaced
array from 0 to (say) 30Gλ, extract the points

ρannulus in the corresponding annuli by perform-

ing a boolean & operation as,

ρannulus = (ρ < ρ+)&(ρ > ρ−). (22)

2. Mask the interferometric quantity using the
ρannulus values.
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We now focus on the tabulated values obtained by ap-
plying CAA to the GRMHD simulations suite. For the

favoured MAD state of M87* (Event Horizon Telescope

Collaboration et al. 2021b), the values given in column

ρSL and ρSC allows us to observe several spin-sensitive
trends for the LP and CP transition radii respectively.

In LP, for retrograde spins, increasing the spin value
from a∗ = −0.5 to -0.94 while keeping Rh fixed pushes

all the photon ring transitions beyond maximum Earth

baselines at 230 GHz. The two outliers here are mod-

els with spin a∗ = −0.5, with Rh = 1 not having a

transition and Rh = 160 being already beyond the max-
imal Earth baseline. Next, for a∗ = |0.5|, the transition

radii values are quite sensitive to whether the spin is

prograde/retrograde. All negative spin values are below

the maximum Earth baselines (except Rh = 160) while

positive spin values are beyond Earth baselines. Once

again a∗ = −0.5 and Rh = 1 is an outlier. The models
with spins a∗ = |0.94| do not have this sensitivity to

the direction of the spin. However, while all a∗ = |0.94|
models have transition radii in LP that are beyond the

maximal Earth baselines at 230 GHz, the model with

a∗ = +0.94 and Rh = 160 has a transition radius that

is just on the edge of this maximal length. We have

checked that this result holds even when the bin size is

2Gλ and so there is some confidence that the transition

value is not an artefact of “over-smoothing” of the data.
For the values in CP, most MAD models have transi-

tion radii that are accessible from Earth baselines. Fur-

thermore, MAD models with a∗ = +0.94 and Rh > 1 all

produce the majority of their CP flux in the photon ring

with a sign flip, causing the photon ring to dominate on

all baselines. The mathematical equivalent of this re-

sult from the geometric formula is that with the excep-
tion of the model with Rh = 1, all MAD models with

a∗ = +0.94 have F × vr < 1 and so the logarithm inside

the square root in Equation 17 is undefined. Besides

this spin, the value ρSC = 0.0 in all other cases can be

explained by the absence of a sign change S(v0) → S(v1)

thereby implying the non-existence of a transition from

the n = 0 to the n = 1 regime.
Lastly, we note the particularly interesting case of

MADs with a∗ = 0. Here, for all values of Rh, there

is no transition in the signs of v0 and v1 (i.e both

S(v0) = S(v1) = −1) and so no transition radii in CP

are obtained from the simulations. The absence of such

a trend in any other spin values for MAD models indi-
cates the potential utility of CP photon ring signatures
to assert a non-zero spin value for M87*. This can com-
plement the recent LP-based analysis by Chael et al.

(2023) of M87*’s jet using the Blandford-Znajek mech-

anism, which crucially requires the black hole to have a
non-zero spin.

5. INSTRUMENTATION CONSIDERATIONS FOR

POLARIMETRIC BEST-BET MODELS

In order to address whether ngEHT and BHEX can

indeed observe the LP and CP photon ring signatures
discussed above, we focus on the four polarimetric best-
bet models and consider two main quantities of interest,

namely the maximum thermal noise and the antenna

size. The thermal noise is a proxy for sensitivity re-

quirements of a baseline while greater antenna diameter

implies better performance of the given station.

5.1. Maximum Permissible Thermal Noise

To introduce the notion of maximum permissible ther-

mal noise, we first consider the case for CP. Under the

assumption that the thermal noise for Ṽ and Ĩ is equal,

the thermal noise σv̆ for their quotient v̆ is given by,

σv̆
|v̆|

= σ

√

1

|Ṽ |2
+

1

|Ĩ|2
. (23)

Since we require the left hand side to be less than 1, the
maximum value σmax,v̆ would be obtained by equating

the right hand side to 1 and solving for σ → σmax,v̆.

This gives,

σmax,v̆ =
1

√

1
|Ṽ |2

+ 1
|Ĩ|2

. (24)

For LP, since θ in Equation 12 is a function of u and v

co-ordinates which can be defined very accurately, the

error in it will be only due to the m̆01 term. Once again,

assuming that thermal noise in Q̃ and Ũ is equal, in the
high signal-to-noise limit (Chael et al. 2016), the expres-

sion for the maximum thermal noise can be obtained
analogous to the case for CP, and is given by

σmax,m̆ =
1

√

2
|P̃ |2

+ 1
|Ĩ|2

. (25)

An extended derivation of Equations 24 and 25 is given

in Appendix D.
For the four best-bet models observed at a fixed in-

clination of θ0 = 17◦, the maximum thermal noise re-

quirements are plotted in Figure 6. Here we consider

baselines between a new antenna and ALMA, since the

latter is the most sensitive site in the existing EHT ar-

ray (Event Horizon Telescope Collaboration et al. 2019c)

and has played a crucial role in studying the polarimetric
properties of M87* (Goddi et al. 2021). The reference in-

strumentation specifications for a potential ngEHT site

and the BHEX orbiter are tabulated in Table 1.
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clear advantages for choosing a 13 m antenna diameter
over 9 m.

6. CONCLUSIONS AND OUTLOOK

In this paper, we have introduced two approaches to

obtain the transition radii in the Fourier domain beyond
which the photon ring signal begins to dominate over the

direct image. Firstly, by geometrical modelling of the

n = 0 and n = 1 signals as symmetric, concentric Gaus-
sian rings of equal radii, exact analytical expressions for

the transition radii have been found for total intensity,

LP and CP. The corresponding formulae are functions

solely of tunable model parameters and have a similar

mathematical structure. Secondly, a general diagnostic

tool, namely CAA, is introduced to systematically ob-
tain the transition radii from the suite of time-averaged
GRMHD images. This is applied to the simulation li-

brary of M87* at 230 GHz and its polarimetric best-bet

models are treated in detail. Lastly, by studying the

reference sensitivity and antenna diameter specifications

for the ngEHT and BHEX missions, we’ve explored the

extent to which these missions can observe the LP and
CP photon ring signatures for these best-bet models.

In the context of the M87* model space probed in

this paper, we find that Earth-based photon ring de-
tection may have its strongest prospects in sensitivity-
limited, astrophysics-forward CP signatures rather than
high-resolution imaging. These signatures are relatively

insensitive to morphology but may sense the presence
of the photon ring in the near future. For BHEX, the
prospects for probing the CP signal are sub-optimal, but

an overwhelming majority of the signatures in LP are

accessible and the nominal sensitivity of BHEX is suf-

ficiently high that Stokes I and P signatures will likely

provide strong morphological sensitivity to the photon

ring. However, in the case of morphology that disobeys

the trends exploited in this work (for example, if Stokes

V flips sign across the direct image, as has been seen

in some simulations (Tsunetoe et al. 2021)), large dis-

crepancies from rotational symmetry should be apparent

even in the Fourier domain. In such cases, there is no

substitute for polarimetric imaging.

A natural extension of this work is to performing a
similar analysis of M87* at 345 GHz, possibly with the

inclusion of more sophisticated geometric models for the
image that are currently being used by the EHT (Event

Horizon Telescope Collaboration et al. 2019d). It is also

timely to perform broad GRMHD library analyses for

photon ring detection prospects for Sgr A* as well. Due

to its smaller mass, the dynamical timescales of Sgr A*

are much shorted than M87* (Event Horizon Telescope

Collaboration et al. 2022b) and so it would be instruc-

tive to apply the CAA scheme developed in this paper

to quantify the range of transition radii as the source

evolves. While there has been recent encouraging re-

sults in studies of LP detections of the SgrA* photon
ring with the ngEHT (Shavelle & Palumbo 2024), BHEX

may face challenges in detecting SgrA* due to the di-

minishment of long-baseline signals caused by diffractive

scattering (Johnson & Narayan 2016). Appropriate or-
bit selection and observation strategies for the Galactic

Center are the object of ongoing work; however, inter-

ferometric quotients such as those studied in this paper

are innately robust to convolutional corruptions to the

image, but will be sensitivity-limited in applications to

SgrA*.

7. ACKNOWLEDGEMENTS

We thank Paul Tiede for his assistance in the appli-

cation of VIDA, as well as Michael Johnson and Sheperd

Doeleman for many helpful conversations. A.T. grate-

fully acknowledges the Center for Astrophysics | Har-

vard and Smithsonian, and the Black Hole Initiative for
several fruitful discussions and providing a welcoming

environment during an extended research visit during

May-July 2024. We acknowledge financial support from

the National Science Foundation (AST-2307887). This

project was funded in part by generous support fromMr.

Michael Tuteur and Amy Tuteur, MD. This work was

supported by the Black Hole Initiative, which is funded

by grants from the John Templeton Foundation (Grant

62286) and the Gordon and Betty Moore Foundation

(Grant GBMF-8273) - although the opinions expressed

in this work are those of the author(s) and do not nec-

essarily reflect the views of these Foundations.



12

APPENDIX

A. IMAGE AND VISIBILITY DOMAIN FORMULATION OF THE MODEL

A.1. The Image Domain

Consider that the sky image of the black hole is constructed as a convolution between an infinitesimally thin ring of

diameter d convolved with a Gaussian of width σ. Suppose the image plane is spanned by polar co-ordinates (ρi, ϕ) of

a thin ring of radius r0, having peak intensity I0 is given by a delta function (Johnson et al. 2020)

Iδ(ρi, ϕ) ≡ I(ρi) =
I0

2πr0
δ
(

ρi − r0
)

. (A1)

Here I0 is constructed such that 2πr0I0 is the total flux density of the image. The Gaussian function having width σ
can be modelled as:

IG(ρi, σ) =
1

2πσ2
exp

(

−
ρ2i
2σ2

)

. (A2)

Several ring modelling papers model the Gaussian in terms of the FWHM (Event Horizon Telescope Collaboration

et al. 2019b; Tiede et al. 2022).

Note that due to the absence of any ϕ dependence in the equations above, the model is axisymmetric. Now, to
construct the geometric model for the image, we require a convolution of the signals given in Equations A1 and A2.

The formulation in the image plane is given by (Cárdenas-Avendaño & Lupsasca 2023):

I(ρi;σ) =

∫ 2π

0

∫ ∞

0

Iδ(ρ
′)IG(ρ

2
i + ρ′2 − 2ρρ′ cosϕ, σ)ρ′dρ′dϕ. (A3)

Substituting Equation A1 and Equation A2 into Equation A3, we get

I(ρi;σ) =
I0

(2πr0)(2πσ2)

∫ 2π

0

∫ ∞

0

δ(ρ′ − r0)exp

(

−
[ρ2i + ρ′2 − 2ρρ′ cosϕ]

2σ2

)

ρ′dρ′dϕ. (A4)

Separating the integral over ϕ gives

I(ρi;σ) =
I0

(2π)2r0σ2

∫ 2π

0

exp

(

ρρ′ cosϕ

σ2

)

dϕ

∫ ∞

0

δ(ρ′ − r0)exp

(

−
[ρ2i + ρ′2]

2σ2

)

ρ′dρ′. (A5)

Now, the ϕ integral can be written in terms of the modified Bessel function of the zeroth order

I0(x) =
1

π

∫ π

0

exp(x cos θ)dθ =
1

2π

∫ 2π

0

exp(x cos θ)dθ, (A6)

with the factor of two 2 arising from the fact that the integrand is even. Thus, the Equation A5 now becomes

I(ρi;σ) =
I0

(2π)2r0σ2

∫ ∞

0

(

2πI0

(

ρiρ
′

σ2

)

)

δ(ρ′ − r0)exp

(

−
[ρ2i + ρ′2]

2σ2

)

ρ′dρ′,

=
I0

2πr0σ2

(

I0

(

ρir0
σ2

)

exp

(

−
[ρ2i + r20]

2σ2

)

r0

)

,

=
I0

2πσ2
I0

(

ρir0
σ2

)

exp

(

−
[ρ2i + r20]

2σ2

)

. (A7)

This is the image-domain formulation of a thin ring of radius r0 having a Gaussian width σ.
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A.2. The Visibility Domain

Now for the delta function in Equation A5, it is known that the two-dimensional Fourier transform is given by the

Bessel function of the first kind of zeroth order J0(z) (upto a scale factor I0)),

Ṽδ(ρ, ψ) = I0J0(2πr0ρ). (A8)

This can be inferred from the fact that for axisymmetric image models, the two dimensional Fourier transform is

simply a Hankel transform and the latter for a delta function is simply the Bessel function of zeroth order of the first

kind (Thompson et al. 2017).
Furthermore, it is known that the Fourier transform of a Gaussian is also a Gaussian and so for a function of kind

in Equation A2, the visibility domain signature is:

ṼG(ρ, ψ) = exp(−2π2σ2ρ2). (A9)

Therefore, since the Fourier transforms of a convolution of two functions is simply the product of the Fourier transform

of each of the functions, the signature of our ring model in the visibility domain is:

Ṽ (ρ, ψ) ≡ Ṽ (ρ, σ, r0) = ṼδVG = I0J0(2πr0ρ)exp(−2π2σ2ρ2). (A10)

This form is common to both n = 0 and n = 1 features in our model and by using appropriate scale factors can be

mapped to LP and CP models as done in Equations 8 and 9 respectively.

B. ANALYTIC EXPRESSIONS FOR PHOTON RING TRANSITION SIGNATURES IN POLARIMETRIC
QUANTITIES

Using the expressions for the Stokes parameters in the Fourier domain for the geometric model given in 7 and 8, we

now derive the transition radii in total intensity and LP. The derivation for CP is given in the main text in Section 3.

B.1. Total Intensity (I)

For Stokes I in the visibility domain, the dominance of the n = 1 signature can be intuitively understood with the

ratio of the n = 1 to the n = 0 term being greater than one. From Equation 7, this implies,

F1J0(2πr1ρ)e
−2π2σ2

1
ρ2

F0J0(2πr0ρ)e−2π2σ2

0
ρ2

=

(

F1

F0

)(

J0(2πr1ρ)

J0(2πr0ρ)

)

e2π
2(σ2

0
−σ2

1
)ρ2

> 1. (B11)

Physically, this relative dominance is expected to occur at longer baselines (Johnson et al. 2020). Now, assuming equal

radii, the J0(..) terms cancel. Then, making the right equal to 1 to obtain the critical/transition value of ρ, ρT , we get

e2π
2(σ2

0
−σ2

1
)ρ2

T =
F0

F1
. (B12)

Taking the natural logarithm of both sides, after some straightforward algebra, one obtains the expression for the

transition radius in total intensity:

ρT → (ρT )I =

√

√

√

√

ln
(

F0

F1

)

2π2(σ2
0 − σ2

1)
. (B13)

B.2. Linear polarization

For LP, the expression for m̆ for our ring model, using Equations 8 and 7, is given by:

m̆01 =
P̃01

Ĩ01
=

−β2,0F0e
2iθJ2(2πr0ρ)e

−2π2σ2

0
ρ2

− β2,1F1e
2iθJ2(2πr1ρ)e

−2π2σ2

1
ρ2

F0J0(2πr0ρ)e−2π2σ2

0
ρ2

+ F1J0(2πr1ρ)e−2π2σ2

1
ρ2

. (B14)

Now, we make two approximations. Firstly, we assume equal radii of the n = 0 and n = 1 rings, i.e r0 = r1. Secondly,

we assume,

J2(2πr0ρ) ≈ −J0(2πr0ρ); ρ ⪆ 15Gλ, (B15)
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which is valid in the range of Earth-space baselines of interest to future observations (Palumbo et al. 2023). Now, as a
consequence of this, the Bessel function terms cancel out of the numerator and the denominator, and after cancelling

out F0e
−2π2σ2

0
ρ2

we are left with,

m̄ ≡ m̆01e
−2iθ =

β2,0F0e
−2π2σ2

0
ρ2

+ β2,1F1e
−2π2σ2

1
ρ2

F0e−2π2σ2

0
ρ2

+ F1e−2π2σ2

1
ρ2

. (B16)

Now, asserting the requirement of criticality as in total intensity, the mathematical condition to be solved for the
transition radii ρT is,

|β2,1F1e
−2π2σ2

1
ρ2

T |

|β2,0F0e−2π2σ2

0
ρ2

T |
=

(

∣

∣

∣

∣

β2,0
β2,1

∣

∣

∣

∣

F0

F1

)

e2π
2(σ2

0
−σ2

1
)ρ2

T = 1. (B17)

Here since only β2,0 and β2,1 are complex quantities, using the magnitude corresponded to using their absolute values.

Taking β2,1F1/β2,0F0 to the right side, performing a natural logarithm on both sides, and solving for ρT , gives:

ρT → (ρT )LP =

√

√

√

√

√

√

ln

(

∣

∣

∣

∣

β2,0

β2,1

∣

∣

∣

∣

F0

F1

)

2π2(σ2
0 − σ2

1)
. (B18)

C. TRANSITION RADII FOR M87* AT 230 GHZ

The Table lists the transition radii in LP and CP obtained using the Equations 20 and 17 as well as from time-

averaged GRMHD simulations of M87* at 230 GHz. The rows in bold are the best-bet models for M87* hedged by

the recent polarimetric results of the EHT for M87* (Event Horizon Telescope Collaboration et al. 2023).
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Table 2. The transition radii ρ in LP and CP for M87* at 230 GHz,
denoted by the subscripts L and C respectively. The superscripts G and
S denote values obtained from geometric formulae and directly from
time-averaged images respectively. The symbol S(..) denotes the sign of
the corresponding quantity.

Flux a∗ Rh σ0 σ1 F S(∠β2,0) S(∠β2,1) S(v0) S(v1) |βr| |vr| ρGL ρSL ρGC ρSC

MAD -0.94 1 7.17 0.67 5.6 -1.0 1.0 1.0 -1.0 1.03 1.55 8.61 12.44 9.56 1.06

MAD -0.94 10 6.92 0.66 5.15 -1.0 1.0 1.0 -1.0 1.23 0.62 9.17 13.18 7.29 1.16

MAD -0.94 20 6.91 0.66 4.96 -1.0 1.0 1.0 -1.0 1.37 0.49 9.35 13.69 6.33 1.04

MAD -0.94 40 6.75 0.66 4.75 -1.0 1.0 1.0 -1.0 1.8 0.45 10.12 13.83 6.07 1.22

MAD -0.94 80 6.39 0.64 4.52 -1.0 1.0 1.0 -1.0 2.58 0.52 11.44 13.37 6.71 4.89

MAD -0.94 160 5.9 0.61 4.25 -1.0 1.0 1.0 -1.0 4.05 0.68 13.35 13.06 8.13 5.94

MAD -0.5 1 6.44 0.46 5.58 -1.0 -1.0 1.0 1.0 0.81 2.88 8.88 0.0 12.05 0.0

MAD -0.5 10 6.76 0.47 4.88 -1.0 1.0 1.0 -1.0 0.99 2.14 8.63 5.81 10.53 6.04

MAD -0.5 20 6.98 0.48 4.65 -1.0 1.0 1.0 -1.0 1.12 0.84 8.55 5.38 7.76 5.77

MAD -0.5 40 6.97 0.48 4.4 -1.0 1.0 1.0 -1.0 1.57 0.5 9.29 5.41 5.95 5.08

MAD -0.5 80 6.69 0.47 4.13 -1.0 1.0 1.0 -1.0 2.65 0.41 10.76 5.95 5.05 4.79

MAD -0.5 160 6.26 0.46 3.86 -1.0 1.0. 1.0 -1.0 6.36 0.4 13.3 11.01 4.91 4.87

MAD 0 1 5.73 0.47 5.8 -1.0 1.0 -1.0 -1.0 0.98 1.37 10.72 15.02 11.71 0.0

MAD 0 10 5.83 0.45 4.98 -1.0 1.0 -1.0 -1.0 1.0 0.74 10.12 14.41 9.11 0.0

MAD 0 20 6.22 0.46 4.82 -1.0 1.0 -1.0 -1.0 1.0 0.73 9.38 15.72 8.37 0.0

MAD 0 40 6.63 0.46 4.68 -1.0 1.0 -1.0 -1.0 1.19 0.8 9.21 0.0 8.06 0.0

MAD 0 80 7.0 0.46 4.52 -1.0 1.0 -1.0 -1.0 2.18 1.19 10.06 0.0 8.63 0.0

MAD 0 160 7.29 0.46 4.34 -1.0 1.0 -1.0 -1.0 4.06 1.49 10.81 0.0 8.72 0.0

MAD +0.5 1 5.17 0.48 5.6 -1.0 1.0 -1.0 1.0 0.99 0.34 11.81 15.98 7.19 5.22

MAD +0.5 10 4.96 0.47 4.85 -1.0 1.0 -1.0 1.0 1.02 0.35 11.91 13.71 6.8 5.63

MAD +0.5 20 5.12 0.47 4.77 -1.0 1.0 -1.0 1.0 1.08 0.41 11.65 13.43 7.51 6.83

MAD +0.5 40 5.24 0.48 4.73 -1.0 1.0 -1.0 1.0 1.47 0.62 12.38 12.73 9.25 7.45

MAD +0.5 80 5.32 0.48 4.7 -1.0 1.0 -1.0 1.0 2.74 6.51 14.02 12.75 16.22 4.92

MAD +0.5 160 5.38 0.48 4.66 -1.0 1.0 1.0 -1.0 4.67 0.43 15.21 10.34 7.18 20.69

MAD +0.94 1 5.73 0.7 5.54 -1.0 1.0 -1.0 1.0 1.01 0.28 10.71 15.02 5.38 0.0

MAD +0.94 10 5.35 0.67 5.01 -1.0 1.0 -1.0 1.0 1.02 0.12 11.18 14.43 nan 0.0

MAD +0.94 20 5.42 0.68 4.99 -1.0 1.0 -1.0 1.0 1.04 0.1 11.09 14.45 nan 0.0

MAD +0.94 40 5.52 0.68 5.04 -1.0 1.0 -1.0 1.0 1.19 0.09 11.36 13.17 nan 0.0

MAD +0.94 80 5.57 0.67 5.12 -1.0 1.0 -1.0 1.0 1.72 0.07 12.39 9.6 nan 0.0

MAD +0.94 160 5.58 0.66 5.21 -1.0 1.0 -1.0 1.0 3.17 0.02 14.02 9.6 nan 0.0

SANE -0.94 1 11.52 0.94 13.96 -1.0 1.0 1.0 1.0 5.46 0.72 8.42 16.03 6.14 0.0

SANE -0.94 10 6.95 0.61 5.86 -1.0 1.0 1.0 -1.0 32.14 1.33 15.36 6.03 9.62 11.03

SANE -0.94 20 6.57 0.58 5.67 -1.0 1.0 1.0 -1.0 38.0 0.71 16.45 6.17 8.37 6.0

SANE -0.94 40 6.28 0.56 5.47 -1.0 1.0 1.0 -1.0 36.26 0.56 17.08 6.8 7.87 6.07

SANE -0.94 80 6.03 0.54 5.28 -1.0 1.0 1.0 -1.0 32.35 0.52 17.52 12.41 7.73 6.67

SANE -0.94 160 5.85 0.53 5.11 -1.0 1.0 1.0 -1.0 29.82 0.54 17.87 12.65 8.05 11.12

SANE -0.5 1 10.29 0.58 17.88 -1.0 1.0 1.0 1.0 0.93 0.7 7.57 4.31 7.19 0.0

SANE -0.5 10 7.11 0.58 5.3 -1.0 1.0 1.0 1.0 9.25 1.26 12.92 8.39 9.03 0.0

SANE -0.5 20 6.91 0.42 5.05 -1.0 1.0 1.0 1.0 9.67 3.43 13.28 9.6 11.37 0.0

SANE -0.5 40 6.69 0.4 4.84 -1.0 1.0 1.0 -1.0 9.16 9.22 13.53 9.3 13.54 10.55

SANE -0.5 80 6.45 0.39 4.56 -1.0 1.0 1.0 -1.0 9.51 2.26 13.99 6.4 11.01 10.53

SANE -0.5 160 6.25 0.37 4.24 -1.0 1.0 1.0 -1.0 8.22 1.25 14.03 5.93 9.61 10.55

SANE 0 1 8.24 0.49 18.48 1.0 -1.0 -1.0 -1.0 0.56 1.1 8.62 6.59 9.8 0.0

SANE 0 10 9.38 0.68 10.09 -1.0 -1.0 -1.0 -1.0 2.02 1.25 8.62 0.0 7.9 0.0
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Flux a Rh σ0 σ1 F S(∠β2,0) S(∠β2,1) S(v0) S(v1) |βr| |vr| ρGL ρSL ρGC ρSC

SANE 0 20 6.87 0.37 5.26 -1.0 1.0 -1.0 -1.0 10.76 1.8 13.6 5.98 10.15 0.0

SANE 0 40 6.55 0.32 4.49 -1.0 1.0 -1.0 -1.0 11.68 2.22 14.11 5.99 10.76 0.0

SANE 0 80 6.38 0.3 4.31 -1.0 1.0 -1.0 -1.0 8.42 2.83 13.8 5.98 11.52 0.0

SANE 0 160 6.2 0.29 4.18 -1.0 1.0 -1.0 -1.0 7.49 2.89 13.91 6.03 11.83 0.0

SANE +0.5 1 7.39 0.65 10.21 -1.0 1.0 -1.0 1.0 0.92 0.23 9.45 5.78 5.81 4.65

SANE +0.5 10 6.56 0.66 7.53 1.0 -1.0 -1.0 -1.0 0.7 1.48 9.18 20.95 11.04 0.0

SANE +0.5 20 5.86 0.67 6.74 -1.0 -1.0 -1.0 -1.0 0.41 1.7 8.07 0.0 12.46 0.0

SANE +0.5 40 5.71 0.71 5.56 -1.0 -1.0 -1.0 -1.0 1.35 1.91 11.64 0.0 12.6 0.0

SANE +0.5 80 5.82 0.87 4.42 -1.0 -1.0 -1.0 -1.0 3.56 0.68 13.4 0.0 8.47 0.0

SANE +0.5 160 5.6 1.23 3.82 -1.0 1.0 -1.0 -1.0 5.47 0.41 14.83 4.81 5.63 0.0

SANE +0.94 1 6.12 0.77 6.91 -1.0 1.0 1.0 1.0 1.06 0.01 10.79 13.8 nan 0.0

SANE +0.94 10 4.89 0.71 5.85 -1.0 1.0 -1.0 1.0 2.4 0.55 15.6 8.58 10.37 10.23

SANE +0.94 20 5.04 0.74 5.56 -1.0 1.0 -1.0 1.0 5.69 1.95 17.29 9.35 14.37 11.6

SANE +0.94 40 12.06 0.79 4.51 -1.0 1.0 -1.0 1.0 15.37 0.73 7.94 10.15 4.2 4.07

SANE +0.94 80 6.56 0.84 3.84 -1.0 1.0 -1.0 1.0 14.93 0.03 14.36 9.7 nan 2.57

SANE +0.94 160 7.08 0.95 3.54 -1.0 1.0 1.0 1.0 17.11 0.27 13.4 9.13 nan 0.0

D. SENSITIVITY AND ANTENNA DIAMETER CONSIDERATIONS

D.1. Maximum Permissible Thermal Noise

Here we derive the expression for the maximum thermal noise in the CP (σmax,v̆) and LP (σmax,m̆) signal respectively.
Starting with CP, since v̆ = Ṽ /Ĩ, the error σV̆ is given by,

σ2
v̆

|v̆|2
=

σ2
Ṽ

|Ṽ |2
+

σ2
Ĩ

|Ĩ|2
. (D19)

Assuming σṼ = σĨ ≡ σ, and taking the square root of both sides, we get,

σv̆
|v̆|

= σ

√

1

|Ṽ |2
+

1

|Ĩ|2
. (D20)

Since the left-hand-side is required to be less than 1, to find its maximum value, the right hand-hand-side has to be

equated to 1, such that the maximum thermal noise, σ → σmax,v̆, in v̆ is:

σmax,v̆ =
1

√

1
|Ṽ |2

+ 1
|Ĩ|2

. (D21)

For LP, note that P̃ can be written in terms of Stokes Q̃ and Ũ as

P̃ = Q̃+ iŨ , (D22)

and so assuming σQ̃ ≈ σŨ = σ′, we get:

σ2
P̃
= σ2

Q̃
+ σ2

Ũ
= 2σ′2. (D23)

Now, for m̆ = P̃ /Ĩ, in the high signal-to-noise limit, the error can be approximated in a manner similar to Equation

D19 (Chael et al. 2016), giving:

σ2
m̆

|m̆|2
=

σ2
P̃

|P̃ |2
+

σ2
Ĩ

|Ĩ|2
. (D24)
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Assuming σ′ = σ, taking the square root of both sides, using Equation D23 and once again imposing the condition of
the right-hand-side to be equal to 1, we get the expression for the maximum thermal noise σmax,m̆ in m̆ as:

σmax,m̆ =
1

√

2
|P̃ |2

+ 1
|Ĩ|2

. (D25)

The Equations D24 and D25 are used to generate the plots in Figure 6 in the main text.

D.2. Quantifying Antenna Diameter Requirements

Consider the baseline formed by two stations 1 and 2 with the baseline thermal noise given by σ1,2. This can

be written in terms of the station parameters, namely the System Equivalent Flux Densities (SEFD1 and SEFD2)
measured in Jansky (Jy), bandwidth ∆v measured in Hertz (Hz) and coherence time ∆t measured in seconds (s),

σ1,2(Jy) =

√

SEFD1(Jy)× SEFD2(Jy)

2∆v(Hz)∆t(s)
. (D26)

For any given station, hereafter Station 2, the SEFD is given in terms of the effective system temperature TS,2, antenna

area A and aperture efficiency ηA,2, by the formula,

SEFD2(Jy) =
2kB(J/K)× TS,2(K)

ηA,2 ×A(m2)
, (D27)

where kB = 1.380 × 10−23J/K is the Boltzmann constant. Now, since Jansky is not a standard (SI) unit while all

other quantities are specified in terms of their SI units, it is important to note the following unit conversion:

1Jy = 10−26(J/m2). (D28)

Keeping this conversion in mind, and approximating for station 2 the area of the single-dish antenna with diameter D2

by πD2
2/4, substituting Equation D27 into Equation D26, making the unit conversion from Equation D28 and solving

for diameter D2, we get:

D2 =
1

σ1,2(Jy)ηQ

√

4× SEFD1(Jy)× kB(J/K)× TS,2(K)× 1026

∆v(Hz)×∆t(s)× ηA × π
(m). (D29)

This formula is used to compute the plots given in Figure 7.

For the ground-based ngEHT site, a reasonable value of TS,2, can be obtained from standard values of the receiver
temperature Trx at 230 GHz, forward efficiency of the antenna ηeff , atmospheric temperature Tatm and opacity τ as

(Doeleman et al. 2023),

TS,2 ≈ Trx + ηffTatm(1− e−τ ) = 50K + 1(270K)(1− e−0.25) ≈ 110K. (D30)

For BHEX, the diameter plot is given in Figure 8. A summary of the parameters used to make the plots is given in

Table 1.
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