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Abstract—Sampling random values from a discrete Gaussian
distribution with high precision is a major and computationally-
intensive operation of emerging and existing cryptographic
standards. FALCON is one such algorithm that the National
Institute of Standards and Technology chose to standardize as a
next-generation, quantum-secure digital signature algorithm. The
discrete Gaussian sampling of FALCON has both flexibility and
efficiency needs—it constitutes 72% of total signature generation
in reference software and requires sampling from a variable mean
and standard deviation. Unfortunately, there are no prior works
on accelerating this complete sampling procedure.

In this paper, we propose a hardware-software co-design
for accelerating FALCON’s discrete Gaussian sampling sub-
routine. The proposed solution handles the flexible computations
for setting the variable parameters in software and executes
core operations with low latency, parameterized, and custom
hardware. The hardware parameterization allows trading off
area vs. performance. On a Xilinx SoC FPGA Architecture,
the results show that compared to the reference software, our
solution can accelerate the sampling up to 56.05× and the full
signature scheme by 1.67×. Moreover, we quantified that our
optimized multiplier circuits can improve the throughput over a
straightforward implementation by 2.87×.

Index Terms—discrete Gaussian sampling, hardware-software
co-design, post-quantum cryptography, digital signatures, FPGA.

I. INTRODUCTION

The security of the current large-scale encryption infras-

tructure is based on the difficulty of solving mathematical

problems such as integer factorization [1] and discrete log-

arithms [2]. Although these problems are conjectured to be

hard for classical computers, quantum algorithms are proven

to solve them exponentially faster [3], [4]. This poses a

serious risk at the core of existing security systems and

creates a critical need to design, implement, and deploy new

cryptographic solutions that can survive the quantum threat.

Such systems base their security on other classical problems

like the ones in lattice-based cryptography [5]. The National

Institute of Standards and Technology (NIST) has been leading

this “post-quantum cryptography” effort by evaluating and

standardizing promising algorithms. Recently, NIST has an-

nounced algorithms to be standardized for the new, quantum-

safe, public-key encryption/establishment and digital signature

applications [6].

Following the NIST standardization, a major push has

just started for transitioning to post-quantum cryptography

led by NIST, the Department of Homeland Security (DHS),

Microsoft, Cisco, and Amazon Web Services, among others.

A major roadblock to transitioning to practice is efficient

implementation, which is especially important for real-time,

embedded/edge, and battery-operated devices.

FALCON is one of the algorithms that NIST chose

for the post-quantum standards. FALCON uses lattice-based

cryptography—a (relatively) new family of cryptographic sys-

tems that are based on the short integer solution (SIS) over

NTRU lattices [7]. Lattice cryptography includes new types of

computations that are absent in earlier cryptographic standards

such as RSA and ECDSA. One of these building blocks is the

discrete Gaussian sampling needed to create the construction

of the trapdoors. Having such high-precision Gaussian distri-

butions reduces the signature size and, indeed, FALCON was

explicitly chosen for its small signature sizes.

Unfortunately, the signature size savings of discrete Gaus-

sian sampling comes at the expense of computing overhead.

This is especially true for FALCON: for the reference soft-

ware [7] provided in the NIST submission package, sampling

can account for 72% of the total signing execution time1.

Moreover, the sampling in FALCON is different from other

lattice-based cryptographic schemes: it requires sampling from

variable means and variances. Therefore, a practical imple-

mentation of FALCON’s sampling procedure requires both

efficiency and flexibility. Although there are plentiful works

on FALCON’s cryptanalysis, its efficient implementations, and

especially custom hardware acceleration, are unknown.

In this work, we propose the first accelerated implementa-

tion of FALCON’s discrete Gaussian sampling. Specifically,

we designed and implemented a hardware-software co-design

that can address both the flexibility and efficiency needs.

We partition the sampling in such a way that the hardware

executes the core operations of sampling (i.e., sampling over

the cumulative distribution table, exponent calculation, and

rejection sampling) in a configurable manner, while the soft-

ware performs floating-point divisions. The custom hardware

consists of fully-pipelined, high-throughput, and low-latency

datapath to carry out the floating-point-based sampling oper-

ations. Moreover, the custom hardware includes design-time

1This obviously changes with respect to the architecture. For implementa-
tion result details, please check Section V.
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parameters that change the multiplication pipeline stage, al-

lowing a trade-off between area vs. performance. The software

runs on an ARM Cortex-A9 within the Xilinx Zynq SoC

FPGA architecture and communicates with the hardware over

the AXI bus. The results show that, compared to the NIST

reference software [7] compiled on the same platform, our

solution can accelerate the sampling up to 11.09×.

The rest of the paper is organized as follows. Section II

provides the background on the discrete Gaussian sampling

and its special use in FALCON digital signature algorithm.

Section III describes the target system’s architecture and

the rationale behind our hardware-software partitioning. Sec-

tion IV discusses our custom hardware design on the FPGA.

Section V presents the implementation results. Section VI

explains related aspects and future extensions, and Section VII

concludes the paper.

II. BACKGROUND

This section provides the background information about the

core concepts and methods for our work. We explain the

specifics of discrete Gaussian Sampling and FALCON post-

quantum digital signature scheme, then discuss the sampling

procedures within FALCON.

A. Discrete Gaussian Sampling

Gaussian distribution (Dσ,µ) is determined with a standard

deviation σ and a mean (center) μ parameters. The statisti-

cal distance from the ideal distribution is determined by a

precision parameter λ in the discrete Gaussian distribution.

FALCON signature scheme samples its secret coefficients over

a discrete Gaussian distribution [7]. Coefficient values range

between −τσ and τσ where τ is
√
λ× 2× ln 2. The prob-

ability of coefficient value x is defined over the distribution

and this probability is calculated with 1
σ
√
2π

e(x−µ)2/2σ2

.

There are several algorithmic options to implement the

discrete Gaussian sampling. We outline the major approaches

as follows.
• Rejection sampling post-processes a uniform distribution

to match the desired Gaussian distribution, by drawing

random numbers from a uniform distribution and then

accepting/rejecting the sampled integers, probabilistically,

based on their likelihood of occurring on the Gaussian

distribution [8]. Calculating the probability requires the

support of complex floating point operations.

• Ziggurat sampling optimizes the rejection sampling [9]

by decreasing the rejection rate. It divides the probability

density function into equal regions and pre-defines the

acceptance criteria for a subset of those regions. When

those conditions are met, the floating point arithmetic is

eliminated because the sampled integer will be accepted

with 100% probability.

• Bernoulli sampling is another optimization on top of the

rejection sampling that aims to reduce the rejection rate.

This is achieved by approximating the original Gaussian

distribution in two steps: (i) constructing an intermediate

Gaussian distribution with a standard deviation smaller

Algorithm 1 FALCON Key Generation Algorithm [7]

Input: A monic polynomial φ ∈ Z[x], a modulus q
Output: A secret key sk and a public key h

1: f, g ← Gaussian CDT Sampling()

2: F,G ← NTRUSolve(f, g, φ, q)

3: B ←
[

g −f
G F

]

4: B̂ ← FFT (B)
5: G ← B̂ × B̂∗ � × represents matrix multiplication

6: T ← ffLDL∗(G)
7: for each leaf of T do

8: leaf.value ← σ/
√
leaf.value

9: sk ← (B̂, T )
10: h ← gf−1mod(q)
11: return sk, h

than the target and (ii) rejecting/accepting based on a

carefully chosen Bernoulli distribution. Both Bernoulli

and Ziggurat still require support for floating-point arith-

metic.

• Knuth-Yao sampling pre-calculates a discrete distribution

generating tree from the probability matrix of possible

values for each random variable where the leaves repre-

sent the sampled value [10]. Then, it performs a random

walk on this tree’s branches (using uniform random

values) to sample from non-uniform distributions. Knuth-

Yao, therefore, effectively removes the run-time support

requirement of floating-point arithmetic.

• Cumulative Distribution Table (CDT)-based sampling

(a.k.a., inversion sampling), pre-computes the discrete

cumulative distribution value for all possible samples

and creates a CDT table that stores them in descending

order [11]. The CDT table determines the likelihood of

sampling each value and shapes a uniform distribution

into a Gaussian distribution. This is achieved by sampling

a uniform random value, comparing it against the pre-

computed table entries, and returning the table index of

the closest and smaller to the sampled value.

The core sampling procedure in FALCON follows a com-

bination of CDT-based and Bernoulli sampling over two

distributions due to their implementation efficiency.

B. FALCON Post-Quantum Digital Signature Scheme

FALCON is a post-quantum, lattice-based, hash-and-sign

signature scheme [7]. FALCON signature scheme has three

main steps: key generation, signature generation, and signature

verification. FALCON requires sampling during key genera-

tion and signature generation to obtain its secret coefficients;

hence, we omit the discussion about the verification procedure

in this work. Unlike other NIST PQC finalists [12], [13],

FALCON samples its secret coefficients over discrete Gaussian

distributions instead of uniform distributions.

Algorithm 1 shows FALCON’s key generation that com-

putes the secret key sk and the public key h. The key

generation algorithm first samples f and g polynomials over
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Algorithm 2 FALCON Signature Generation Algorithm [7]

Input: a message m, a secret key sk, a bound β2

Output: a signature sig of m
1: r ← {0, 1}320 uniformly

2: c ← HashToPoint (r||m)
3: t ← (−1

q FFT (c)� FFT (F ), 1
qFFT (c)� FFT (f))

4: do � � represents FFT multiplication

5: do

6: z ← ffSampling (t, T )

7: s ← (t− z)

[

FFT (g) −FFT (f)
FFT (G) −FFT (F )

]

8: while s2 > [β2]
9: (s1, s2) ← invFFT (s)

10: s ← Compress(s2, 8 · sbytelen− 328)
11: while s =⊥
12: return sig = (r, s)

a Gaussian distribution and then generates the secret key

by using these two polynomials. Since the key generation

algorithm works with constant standard deviation σ and the

center μ, implementation is relatively straightforward. The

prior work [14] that presents a hardware Gaussian sampler

implementation for FALCON’s key generation procedures can

be used to this end.

Algorithm 2 illustrates FALCON’s signing procedure, which

takes in a message m, the secret key sk, and then returns

a signature (r and s). This signing algorithm predominantly

relies on three main subroutines: HashToPoint, ffSampling,

and Compress. In the HashToPoint subroutine, the algorithm

first concatenates the message with a uniformly generated

polynomial and then hashes it to the polynomial c. Compress

subroutine reduces the signature size with a simple encoding

mechanism. ffSampling is referred to as the “heart of the sig-

nature generation” in FALCON’s specification document [7].

This subroutine is responsible for generating vector z, which

is the core polynomial in the signature generation process. The

coefficients of z are sampled over a Gaussian distribution. The

parameters of this distribution, σ and μ, are variable and based

on the coefficients of a polynomial t.
The polynomial t itself is derived from the product of the

message and the secret key. As FALCON signature generation

accommodates different messages, both the t polynomial and

its associated σ, and μ parameters inherently vary. Since

ffSampling works with dynamic σ and μ parameters, each

coefficient of the signature is likely to be sampled over

different Gaussian distributions. Although the software’s flex-

ibility allows for the implementation of a discrete Gaussian

sampler with varying σ and μ parameters, efficient hardware

acceleration of this sampler is significantly challenging—there

was no such hardware to date at the time of this paper.

C. Sampling in FALCON

FALCON has two sampling routines, one for the key

generation and the other for the signature generation. The

key generation requires a sampling operation over Gaussian

Algorithm 3 SamplerZ [7]

Input: Floating point values μ, σ′ and σmin

Input: Constant σinv = 1/(2σ2
max)

Output: a sampled coefficient

1: s ← ceil(μ)

2: r ← μ− s
3: ccs ← σmin/σ

′

4: dss ← 1/(2 · σ′2)
5: while (1) do

6: z0 ← BaseSampler(u) � u is uniformly random

number

7: b ← OneBitUniformRnd()

8: z ← b+ (2 · b− 1)z0
9: x ← ((z − r)2) · dss− z20 · σinv

10: if (BerExp(x, ccs)) then

11: return z + s

Algorithm 4 BaseSampler [7]

Input: a 72-bit uniformly sampled random number u
Output: a sampled z0 ← Dσbase,0

1: z0 ← 0
2: for i from 0 to 17 do

3: if u < RCDT[i] then

4: z0 ← z0 + 1

5: return z0 =0

distribution with constant σ and μ parameters. By contrast,

signature generation requires a Gaussian distribution structure

that needs varying σ and μ parameters. Therefore, FALCON

employs a sampling strategy that comprises two levels of sam-

pling. The first layer samples a value from the base distribution

that has constant σ and μ parameters. This base distribution is

common to both key and signature generation processes. The

second layer rejects or accepts the value sampled from the first

layer based on the second distribution that satisfies varying σ
and μ. While the key generation employs the first layer for its

sampling, the signature generation uses the both layers.

Algorithm 3 presents the SamplerZ method that includes

two layers of samplings and provides a discrete distribution for

the varying σ and μ. This algorithm first calls BaseSampler
at step 6 to sample a non-uniform value over the described

Gaussian distribution that has constant σ and μ parameters.

Then, it rejects or accepts the sampled value based on the

second sampling that is performed by the BerExp algorithm

at step 10. Note that the SamplerZ function is called many

times during FALCON’s signature generation with varying

inputs (μ and σ′). Therefore, the variables s, r, ccs, and dss
are calculated at run-time. These calculations require floating

point arithmetic.

Algorithm 4 shows the first layer of the sampling algorithm

used in FALCON, where the input is a 72-bit uniform random

number (u) and the output (z0) is a 5-bit integer from the

distribution Dσbase,0. This algorithm requires a table that stores

pre-computed reverse cumulative distribution values (stored
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Algorithm 5 BerExp [7]

Input: Floating point values x, ccs f 0
Output: 1-bit sampling result

1: s ← x · ln(2)−1

2: r ← x− s · ln(2)
3: if s > 63 then

4: s ← 63

5: z ←(2·ApproxExp(r, ccs) - 1) >> s
6: i ← 64

7: do

8: i ← (i−8)
9: urnd ← OneByteUniformRnd()

10: w ← urnd− ((z >> i)&0xFF)
11: while (w == 0 && i > 0)
12: if w < 0 then

13: return True

14: else

15: return False

in the RCDT array, line 3). The algorithm first compares a

uniform random number against the table and then returns the

index of the first entry that is larger. Since all distribution

values are pre-calculated and then stored in a table, this

algorithm does not need to perform the exp() calculation.

Algorithm 5 shows the BerExp algorithm which is the

second layer of the sampling procedure. Since the algorithm

input x is a varying value, this algorithm needs to work with

dynamic floating-point operations, and it also requires the

exp() calculation. FALCON reduces the computation demand

by introducing ApproxExp implementation (see step 5 in

Algorithm 5). Within this context, ApproxExp leverages a

precomputed table to approximate the exp() function. After

processing the arithmetic and logical operations shown in

the algorithm and using one byte of uniform randomness

(via OneByteUniformRnd), the BerExp algorithm returns

a one-bit sampling result. This bit serves as a decision

bit-—determining whether to accept or reject the output

from BaseSampler. If BaseSampler’s output is rejected,

SamplerZ repeats the operations from steps 6 through 10

until a sampled value is accepted by BerExp.

III. SYSTEM ARCHITECTURE AND HARDWARE-SOFTWARE

PARTITIONING

FALCON’s sampling consists of floating-point addition,

multiplication, and division. These operations are expensive to

implement in hardware because of the large operands. Thus,

FALCON’s C reference implementation (software) approxi-

mates these floating-point operations with large integer values.

Listing 1 shows FALCON’s SamplerZ reference implementa-

tion and our partitioning into hardware and software in our

system. The sampling requires floating point-based division

operations (lines 12 and 13). The reference implementation

approximates the operations over large integers r, dss, ccs,

and x using fpr which is defined with a 64-bit int data type.

The algorithm has also varying input that increases hardware

Listing 1: FALCON SamplerZ reference implementation [7]. This
also shows the partitioning of the reference implementation for
hardware(HW) and software (SW).

1 int Zf(sampler)

2 (void *ctx, fpr mu, fpr isigma)

3 {

4
5 //===================SW=====================
6 sampler_context *spc;

7 int s;

8 fpr r, dss, ccs;

9 spc = ctx;

10 s = (int)fpr_floor(mu);
11 r = fpr_sub(mu, fpr_of(s));

12 dss = fpr_half(fpr_sqr(isigma));

13 ccs = fpr_mul(isigma, spc->sigma_min);

14 //==========================================
15
16 //===================HW=====================
17 for (;;) {

18 int z0, z, b;

19 fpr x;

20 z0 = Zf(gaussian0_sampler)(&spc->p);
21 b = (int)prng_get_u8(&spc->p) & 1;

22 z = b + ((b << 1) - 1) * z0;

23 x = fpr_mul(

24 fpr_sqr(fpr_sub(fpr_of(z), r)),

25 dss);

26
27 x = fpr_sub(x,

28 fpr_mul(fpr_of(z0 * z0),

29 fpr_inv_2sqrsigma0));

30
31 if (BerExp(&spc->p, x, ccs))

32 return s + z;

33 }

34 //==========================================
35
36 }

implementation complexity and that requires flexibility in the

implementation. In addition to the division, the sampling

operation needs floating point multiplications in samplerZ
(lines 23 and 28) as well as in BerExp. There are also memory

read operations in gaussian0 sampler. Unlike divisions, they

are relatively easier to implement on the hardware but these

are time-consuming operations in software since the operands

are large numbers.

To enhance throughput without compromising flexibility,

we strategically partition the sampling operations between

hardware and software workloads. Our partitioning aims to

increase parallelism in the sampling operation. The key decider

in our hardware-software partitioning is the separation of

floating point divisions from multiplications and table read

operations. The crux of our partitioning approach lies in

offloading floating-point divisions to software, benefiting from

a highly efficient and flexible ALU datapath in the processor.

Other computational units are accelerated in custom-designed

hardware. The software part consists of floating point-based

division and parameter initializations and covers steps between

10 and 13 in Listing 1. The hardware partitioning covers the

remaining steps (17 to 32).
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Fig. 1: The proposed architecture for FALCON’s sampling operation.
The architecture has two partitions that provide a flexible environment
where the software and hardware can collaborate and run parallel.

Intermediate dependencies might act as bottlenecks in unop-

timized systems, slowing down performance as one component

waits for another to complete. It is noteworthy that while there

are input and output data dependencies between our software

and hardware partitions, no intermediate dependencies are

present in our partitioning. Our approach avoids this potential

bottleneck by isolating the software and hardware in terms of

intermediate dependencies. To illustrate, consider the scenario

wherein the hardware works on the first call’s while loop, the

software can execute s, r, css, and dss for the next call. This

design choice enables the simultaneous execution of software

and hardware tasks. This structure brings about a marked

improvement in the efficiency of the sampling processes.

We use a Xilinx SoC FPGA that enables running both

software and hardware implementations in a single SoC.

Figure 1 presents the SoC FPGA architecture and the proposed

design’s block diagram. Our design utilizes the Processing

System (PS) part for performing the operations that require a

flexible architecture such as the floating point-based division,

whereas the Programmable Logic (PL) part has dedicated

hardware designs to accelerate the operations. Our design has

two independent FIFOs that synchronize the software and

hardware executions and also enable running in parallel. The

software implementation generates the inputs of the hardware

accelerator and sends them via RX FIFO. The hardware design

sends the output of the SamplerZ algorithm to the software

with TX FIFO.

IV. HARDWARE DESIGN

The proposed hardware design has one accelerator core

for SamplerZ and FIFO data paths. SamplerZ’s acceler-

ator has three sub-modules: BaseSampler, BerExp, and

ApproxExp. Figure 2 illustrates the SamplerZ algorithm’s

major building blocks and their hardware-software partitions.

The software performs initial floating point-based divisions

for ccs and dss and parameter initializations for r and s. The

hardware accelerator executes BerExp, BaseSampler, and

ApproxExp that require heavy multiplications and memory

Fig. 2: Software and hardware building blocks of SamplerZ sub-
routine. The software (blue) executes floating-point divisions, while
the hardware part (green) performs BerExp and BaseSampler.

read operations. For example, the software would sequen-

tially read table entries in the reference BaseSampler, and

ApproxExp algorithms, while the hardware can read the

entire table and perform all comparisons in one clock cycle.

The figure also shows SamplerZ’s four data paths where the

hardware parallelizes the operations2.

A. A Half Gaussian Sampling with BaseSampler

We implement the BaseSampler algorithm with a pre-

computed reverse cumulative distribution (RCDT) table in

hardware, which is carried out in software in FALCON’s ref-

erence implementation. The BaseSampler algorithm samples

a value over a Gaussian distribution centered at 0. Figure 1

outlines the BaseSampler implementation in samplerZ
module. It has one register file to store RCDT and one

comparison circuit. The input of the design is a 72-bit uniform

random number and the output is an unsigned integer ranging

from 0 to 17.

The design first receives the 72-bit number and then per-

forms a parallel comparison between the input and each entry

of RCDT. The last step of the design is to count and return

the number of entries that are larger than the given input.

The software implementation may require multiple cycles

to execute a comparison between the input and one entry

of RCDT. By contrast, our hardware implementation can

complete the entire table comparison in one cycle.

B. Rejection Sampling with BerExp

The BerExp algorithm returns a single bit and the prob-

ability of returning 1 is css · exp(−x). The css value is

a floating-point number and defines the scaling factor for

each σ′ value. The variable x is also a floating-point input

that is calculated with the BaseSampler’s sampled value.

2The figure also depicts a PRNG (pseudo-random number generator).
In FALCON’s reference implementation, an external randomness source is
assumed, hence an additional C function for PRNG is not implemented. For
testing purposes in our system’s functionality, we introduced a PRNG that
deterministically produces uniformly random numbers. This ensures that both
the reference implementation and our hardware utilize the same source of
randomness, facilitating direct comparison of their final outputs.
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Fig. 3: The block diagram of BerExp sub-routine. It is fully
implemented on the hardware.

Although the BerExp does not have a floating-point division,

it requires floating-point addition and multiplication. FALCON

documentation provides the minimum and maximum ranges

of the SamplerZ inputs. Therefore, we can simply extend

the floating-point numbers with 272 and can work over their

integer values with 72-bit precision.

Figure 3 illustrates the BerExp algorithm’s computations.

Algorithm 5 shows that the input x first goes through a

floating-point division at the first step with ln(2) to obtain

s. Since ln(2) is a constant value, we calculate its inverse

(ln(2)−1) and then extend it with 272 at the compile time.

After this pre-calculation, the first floating-point division op-

eration simply becomes a 72-bit unsigned multiplication. The

first multiplication result is 144 bits. However, we do not

reduce this multiplication result to 72 bits before the next

multiplication to preserve the precision.

BerExp sampling design also has the ApproxExp mod-

ule to compute an approximation of 263 · css · exp(−x).
FALCON’s NIST submission package already provides a C

implementation of the ApproxExp module. This module

computes the approximation over a pre-calculated table (C),

like BaseSampler. The implementation iteratively performs

64-bit multiplications between table entries and the output of

the previous multiplication. The first multiplication happens

between the input x and the first table entry. Table C has 13

entries and therefore ApproxExp module initially requires

13 multiplications and then obtains 263 · exp(−x). The final

step of ApproxExp is a multiplication between ccs and

263 · exp(−x).
BerExp algorithm, at its last step, compares the output

of ApproxExp module with a uniformly sampled number

(urnd). This comparison is performed byte by byte and

continues until the BerExp algorithm accepts the comparison

output. Since hardware, unlike most software platforms, allows

performing the comparison in parallel for each byte, our design

completes the rejection operation in one cycle.

C. Optimizations in Large Multiplications

Gaussian sampling over the integers is one of the unique

features of the FALCON digital signature algorithm. Al-

though FALCON works with varying standard deviations

(a) A schoolbook multiplication with four stages.

(b) One stage multiplication with 3 DSP48E multipliers.

Fig. 4: A multiplication representation for 72-bit and 68-bit unsigned
operands. The multiplication is constructed with 17-bit and 24-bit
multiplication steps due to the input size constraint of the Xilinx
DSP48E1 block.

and arbitrary centers that are ideally floating-point numbers,

FALCON approximates these numbers with large integers

by maintaining the required precision. Therefore, FALCON’s

Gaussian sampling algorithm requires large integer multi-

plications. The ApproxExp function, for instance, requires

64-bit integer multiplications (14 times) to approximate the

exponent operation in FALCON’s reference implementation.

In addition, FALCON’s Gaussian sampling algorithm might

call this function more than once to sample a single coefficient

based on the number of rejected samples. BerExp and

SamplerZ are other steps that require large integer (g 72-

bit) multiplications, and they may also call several iterations

of these multiplications based on the rejection rate.

If FALCON’s Gaussian sampling is designed without op-

timization, dedicated multipliers are separately allocated for

each multiplication3. This implementation approach results in

116 DSP48E1 utilization because a single DSP48E1 block

can multiply at most signed 18-bit with 25-bit variables (or

unsigned 17-bit with 24-bit variables) [15]. Hence, large inte-

ger multiplication mandates the cascade of several DSP48E1

blocks. Moreover, this unoptimized design operates with low

frequencies due to long critical paths caused by the cascaded

DSP48E1 blocks. Our proposed design offers a pipelined mul-

tiplier structure and optimizes DSP utilization. Therefore, the

proposed design operates with a significantly higher frequency.

We first exemplify large integer multiplication with multi-

stage 24-bit and 17-bit multiplications using DSPs with maxi-

mum utilization. Figure 4a illustrates the product operation of

72-bit and 68-bit operands with the schoolbook multiplication

method. The first operand (A) is 72-bit and split into 3 parts

3Simply, the product of A and B is implemented as A ∗B in HDL.
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Fig. 5: The proposed multiplier design. This design has multi-stage pipelining that multiplies 73-bit and 69-bit signed operands only with
3 DSP48E1 instead of 16 DSP48E1 blocks. The latency is 8 cycles and throughput is 1 multiplication per 4 cycles.

with an equal length of 24-bit, while the second operand (B)

is split into 17-bit vectors. First, the operand A is multiplied

by each 17-bit vector of the second operand (B); hence, each

stage consists of a 72-bit by 17-bit multiplication. Second,

each block multiplication result is shifted left accordingly. The

final result is the sum of each stage output.

Figure 4b presents a multiplication block for the first stage

of the aforementioned schoolbook multiplication method using

three DSP48E1s. Each DSP48E1 shares the operand A with

24-bit fractions, while their other operands are identical, the

LSB 17-bit of operand B. Similar to the previous instance,

the final result is obtained by first shifting and then summing

each multiplication output. The complete hardware, therefore,

requires 12 DSP48E1 multiplications, 11 shift operations, and

5 additions to multiply A by B.

Figure 5 shows the proposed pipelined large integer multi-

plier design. This hardware multiplies two signed operands,

one of which can have a maximum size of 73 bits while

the other can have a maximum size of 69 bits. The design

has a fully-pipelined architecture with 8 stages and thus its

latency is 8 cycles but its throughput is one multiplication

per 4 cycles. The presented multiplier first converts the two

signed operands to unsigned operands before the multiplica-

tion operation. Second, it splits the first operand (72-bit) into

3 24-bit groups and the second operand (68-bit) into 4 17-bit

groups to fully utilize the DSP48E1 block. Figure 4a shows

each stage of the multiplication is executed between the single

but different 17-bit vector of B and the second operand A. To

sort B’s vectors in a cyclic order, the design pipelines each

vector with a different number of registers and also selects the

corresponding B’s vector with a cycle count. For example,

the LSB 17-bit of operand B arrives at the DSP48E1 units

after the first cycle, while the next 17-bit arrives at the next

clock cycle. However, A’s vectors are pipelined with the same

number of registers since A should remain stable every 4

cycles. Our design utilizes enabled registers and therefore the

implementation requires fewer registers for the pipelining. For

example, A’s vectors are pipelined with one stage of register

rather than 4 stages and the register enable signal is activated

after every 4 cycles.

The DSP48E1 blocks generate the output of one of the

stages in schoolbook multiplication as shown in Figure 4a.

Then, the outputs are shifted accordingly before going through

the adder circuits. Adder 1 executes the addition operation to

execute the model described in Figure 4b, while the second

adder is used to perform the addition shown in Figure 4a. The

final step of design is the sign extension operation that assigns

the corresponding sign to the multiplication product. If these

two signed operands’ multiplication is implemented with a

single asterisk (∗), the implementation requires 16 DSP48E1

blocks, and that increases DSP48E1 usage by 5.33×.

Our multiplier design also provides design-time flexibility

with different area-performance settings. The default con-

figuration uses our performance-optimized design which is

described in detail above. If the area-optimization flag is

set, the multiplier design works with a single DSP48E1 but,

it reduces the throughput and performs one multiplication

per 15-cycle. In addition, one multiplication operation in the

samplerZ algorithm requires two operands larger than 69-

bit but smaller than 73-bit. Therefore, we implemented an

additional multiplier that has a 10-stage pipelined design with

3 DSP48E1s.

It is pertinent to note that the critical path in our design

is not primarily determined by the DSPs’ multiplication pro-

cess. Instead, it’s the operations associated with the second

adder (Adder 2). Since Adder 2 has 140-bit operands along

with shifting operations, it creates the longest path. Although

pipelining Adder 2 with additional registers increases the

operating frequency, it negatively impacts the area×delay

product, a crucial efficiency metric in hardware design. Given

this trade-off, the multiplier design does not utilize additional

registers for the Adder 2, aligning with our design objectives

and setting our latency goal.

V. IMPLEMENTATION RESULTS

We used Xilinx Zedboard XC7Z020 from the Zynq-7000

SoC family as our platform. This board has an SoC FPGA,

which includes an ARM Cortex-A9 processor for software

96
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on May 20,2025 at 14:52:43 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Hardware area utilization of the proposed solution. A
straightforward implementation of the large multipliers would require
116 DSPs.

Task Module LUT FF DSP BRAM

Base Design
SamplerZ

3,456 732 116 0
Perf. Opt. Design 2,523 2,028 9 0
Area. Opt. Design 2,328 1,030 3 0

Sync +
AXI FIFO 592 632 0 2

Communication

Communication AXI Periph 405 587 0 0

Reseting rst sys 16 23 0 0

execution and a programmable logic part for hardware ac-

celeration. We first designed and functionally verified the

proposed SamplerZ and created an AXI-Stream wrapper on

it. Second, we hooked the wrapped SamplerZ to FIFOs and

Zynq processor as described in Section III. Then, we tested

the proposed implementation and measured its performance

with FALCON’s implementation’s test vectors [16].

The summary of our results is as follows. Compared to

FALCON’s reference implementation running on the same

platform, our solution accelerates the sampling by up to

11.09×. The bottleneck becomes the slow AXI communi-

cation, and our improvement can theoretically increase to

90.36× with better AXI. Our optimized multipliers improve

area efficiency by 12.88–38.66×. The proposed hardware core

is even faster than a high-end Intel processor by 38.34×.

Accelerating the sampling process with our solution leads

to a 1.67× improvement on the entire FALCON signature

performance. Compared to the earlier hardware designs that

uses fixed parameters, our hardware with varying σ and μ is

obviously more costly as expected—this is the first accelerated

implementation of FALCON’s discrete Gaussian sampling that

can be used during signature generation.

A. Comparison of Hardware Design Choices

Table I shows a breakdown of area utilizations for each

IP block as well as their tasks in our design. We present

a baseline design, along with two optimization settings: the

Perf. Opt. design (performance-optimized) and the Area Opt.

design (area-optimized). The baseline design is with the

straightforward implementation of the multiplier without our

proposed optimizations. Both the Perf. Opt. and Area Opt.

designs require three multiplier circuits, but their multiplier

structures differ. The Perf. Opt. design employs three DSP-

based multipliers, using a total of 9 DSP48E1s, while the Area

Opt. design uses a single DSP-based multiplier, consuming 3

DSP48E1s. As shown in Table I, the baseline design, devoid

of multiplier-specific optimizations, unsurprisingly demands a

significantly higher number of DSP48E1 units. Since Perf.

Opt. design has a larger data path due to its parallel multipliers,

it requires more registers than the design with area-optimized

configuration.

B. Performance Evaluation and Throughput Improvement of

SamplerZ

Table II presents a performance comparison between FAL-

CON’s reference implementation [7] and the proposed designs

TABLE II: Performance comparison with AXI communication
overhead. Our hardware-software co-design solution improves the
throughput by up to 11.09×.

Design Frequency
Latency Throughput Throughput
(#Cycle) (sample/sec) Improvement

Reference
666 MHz 96,747 6,890 -

SW [7]

Base Design 45 MHz 1,691 26,611 3.86×
Perf. Opt. 132 MHz 1,726 76,447 11.09×
Area Opt. 134 MHz 1,807 74,156 10.76×

TABLE III: Peak performance comparison of cores. Our hardware-
software co-design solution can theoretically outperform software
implementation by up to 90.36× with maximum AXI performance.

Design Frequency
Latency Throughput Throughput
(#Cycle) (sample/sec) Improvement

Reference
666 MHz 96,747 6,890 -

SW [7]

Base Design 45 MHz 124 362,903 52.67×
Perf. Opt. 132 MHz 212 622,641 90.36×
Area Opt. 134 MHz 406 330,049 47.90×

with different optimization settings. We calculated the im-

provement result based on the designs’ throughputs. The base

design has a lower cycle count than other designs as expected.

However, its frequency is the lowest (45 MHz) among other

designs since it does not have a pipelined architecture. In

contrast, both the Perf. Opt. and Area Opt. designs operate

at much higher frequencies, 132 MHz and 134 MHz re-

spectively, resulting in a substantial throughput improvement.

Specifically, Perf. Opt. design improves throughput by 11.09×,

whereas the Area Opt. design improves it by 10.76×. Despite

their different multiplier units, the performance difference

between the Area Opt. and Perf. Opt. designs is marginal. This

is caused by the AXI components and we later explain the

AXI components’ impact on the performance with Table III.

Also, the achieved frequencies of 132 MHz and 134 MHz

are especially noteworthy since our platform has a relatively

low-end FPGA. Even with a mid-level FPGA, the achievable

frequency exceeds 200 MHz, as detailed in Section V-F.

Our hardware design consists of two main parts: SamplerZ
accelerator core and AXI components. Table II presents a

performance result for the entire architecture including the

AXI interconnect and AXI FIFO overheads. Accelerating the

AXI communication bandwidth is beyond the scope of this

study. Therefore, we also present Table III that illustrates only

SamplerZ accelerator theoretical performance results with

maximum AXI performance The results show that a peak

throughput improvement of 90.36× is theoretically possible.

Since the base design does not have pipelined multipliers, its

latency is the best one compared to the other two. However, the

Perf. Opt. design’s theoretical throughput is 1.71× and 1.88×
more than base designs and Area Opt. designs, respectively.

Although the base design’s throughput is 1.09× better than the

Area Opt. design, its DSP requirement overhead is 38.66×
more than the Area Opt. design. The key takeaway from

Table III is that further acceleration may be possible by

improving the I/O communication overhead or by porting the
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TABLE IV: Improvement from hardware acceleration. The tasks
allocated to hardware take 35 cycles with our design, but it takes
several hundred to thousands of cycles on ARM and Intel CPU.

Platform Optimization
Latency Latency
(#Cycle) Improvement

ARM Cortex M7 [17]
FPU 664 18.97 ×
EMU 3820 109.14×

ARM Cortex M4 [17]
FPU 5418 154.14×
EMU 31,744 906.97×

Intel® Core® i7-8700 [18]
Reference

1,342 38.34 ×
SW

Proposed Hardware Perf Opt 35 -

design to a more capable FPGA that can execute at a higher

operating frequency.

C. Comparison with Software on Other Platforms

Next, we compare the impact of our hardware acceleration

by comparing it with its corresponding software running on

other platforms. This corresponding software of workload is

shown in Listing 1, between lines 17 and 32. Table IV presents

this comparison. This table categorizes the software versions

into two primary optimized implementations: one that utilizes

emulated floating-point (EMU) operations and the other that

harnesses dedicated floating-point instructions (FPU)—both

are included in the FALCON NIST submission package.

Table IV also presents Intel® Core® i7-8700 performance

results for FALCON’s reference implementation. Since FPU

employs ARM’s dedicated floating-point instructions, Intel®

Core® i7-8700 does not have performance results for FPU. To

provide a fairer comparison, we compared implementations’

performance using cycle count rather than throughput and

frequency, taking into account that they are different platforms.

The cycle count we provide for our performance-optimized de-

sign specifically omits considerations for software partitioning

and I/O overheads.

Table IV depicts that our novel and efficient hardware

implementation significantly improves the performance (up

to 906.97×) in terms of cycle count. FALCON’s sampling

procedure requires operations with large operands so ARM

Cortex M4 performs the poorest due to its basic structure.

Although ARM Cortex M7 is able to benefit from 64-bit

floating-point instructions, our hardware implementation ex-

ecutes the same operation 18.97× and 109.14× faster. Our

hardware even outperforms the high-end CPU, Intel® Core®

i7-8700, by showing 38.34× better performance. We also note

that FALCON’s Gaussian sampler execution is not constant

for its software implementations. Therefore, the cycle count

numbers of the software execution might slightly vary for

different runs.

D. Impact of Gaussian Sampling Optimization on Signature

Generation Performance

We next quantify the impact of the improvement on the

whole digital signature scheme, not just on the discrete Gaus-

sian distribution. Table V compares the performance between

FALCON’s reference implementation vs. our performance-

optimized design for discrete Gaussian sampling. We first

TABLE V: Performance comparison on the full FALCON-512
signature generation and its sub-routines. Due to our accelerated
sampling, the full signature generation is accelerated by 2.7×.

Operation
Reference SW [7] Our Design #Cycle

#Cycle #Cycle Improvement

SamplerZ 96,747 1,726 56.05×
Gaussian

99,068,928 1,767,424 56.05×
Sampling

ffSampling 172,559,792 75,258,288 2.29×
FALCON

245,706,666 148,405,162 1.67×Signature
Generation

TABLE VI: Comparison with prior works. We propose the first
sampler that can support FALCON signature generation scheme. As
expected, the sampler requires more resources compared to fixed µ
and σ samplers.

Work
FALCON

σ/λ Platform
LUT/FF/ FMax #Cycle

Support BRAM (MHz)

This Work Full
varying XC7Z020 3341/2272/2 134 1807

Area Opt. Support

[14]
KeyGen 2/53

Virtex-7
151/7/0 322 1

only
√
5/200 455/8/0 317 1

[19]
No

8.5/64 Artix-7 907/812/3 115 111

[20] 8.5/64 Artix-7 511/343/0 353 1

[21]

No

3.33/64 Virtex-6 112/19/0 297 5

[22] 3.33/90 Virtex-5 43/33/1 259 3

[23] 3.33/80 Virtex-6 863/6/0 61 1

[24] No 215/128 Spartan-6 928/1121/0 129 8

[25]

No

4.41/112 Spartan-6 426/123/1 102 8

[26] 4.41/112 Spartan-6 463/45/0 80 30

profiled the SamplerZ function by running reference imple-

mentation and then ran the same function by enabling our

accelerator. The result shows that our accelerator improves

the SamplerZ execution time by 56.05×. Since the Gaussian

sampler is called 2n times during the ffSampling, our design

decreased the Gaussian sampler’s execution cycle count from

99M to 1.7M cycles. FALCON’s signature generation heavily

depends on the performance of the Gaussian sampler. There-

fore, our design improves the entire signature generation by

1.67×, from 245M cycles down to 148M.

E. Comparison to Previous Works on Gaussian Sampling

Table VI presents a comparison between the proposed

design and prior Gaussian samplers. There are earlier sampler

designs for BLISS [21], [27], LP [21]–[23], FrodoKEM [28]

and qTESLA [19]. These hardware implementations are fixed

for a single σ, μ parameter setting; hence, they cannot support

FALCON. An earlier FALCON implementation [14] proposed

a ‘design-time’ flexible hardware for σ, μ parameters—this

hardware cannot support run-time flexibility and thus is limited

to FALCON key generation (i.e., cannot support FALCON sig-

nature generation). Other FALCON implementations include

FALCON’s verification steps [29], which excludes Gaussian

sampling, and SIMD acceleration on software [30] 4. Likewise,

another prior work passes FALCON software implementation

4Unfortunately, the discrete Gaussian sampling sub-routine latency is not
provided in this work; hence, a comparison is infeasible
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through an HLS tool but does not provide a performance

or area profiling for the Gaussian sampler sub-routine [31].

These results show that, despite our hardware optimizations,

FALCON’s sampling needs still incur more time and area

overheads compared to other lattice-based cryptosystems.

FALCON has also a GPU implementation [32]. However, this

work does not provide a performance result for FALCON’s

Gaussian sampler. As a result, we cannot provide a discussion

about comparing our work with GPU platforms.

F. Platform Choices and Comparative Performance.

Our design inherently requires a close integration of soft-

ware and hardware components. This necessitates a platform

that can adeptly accommodate both. The Xilinx Zedboard

XC7Z020, an SoC FPGA, emerged as our primary choice for

its ability to support our hardware-software co-design. With

the PS side of the Zedboard managing the software partition

and the PL side tailored for the hardware task. Furthermore,

this platform enabled testing its functionality and measuring

its performance in real-time.

Building upon our experiments, we identified two main

objectives for further exploration. First, evaluating the perfor-

mance of our multiplier architecture across different FPGAs

might provide a fresh perspective on our overall contributions.

Second, it is essential to synthesize our design on a mid-

level FPGA board, Virtex 7 FPGA VC709, for a more aligned

comparison given that a majority of prior research gravitates

towards the use of Virtex series FPGAs, we considered. As a

result, our performance-optimized design attained a frequency

of 213 MHz on the Virtex 7 FPGA VC709 board, which is

significantly higher than the Zedboard’s 132 MHz. This vari-

ation emphasizes the crucial significance of the chosen FPGA

board and its inherent properties on the timing performance

of a design.

VI. DISCUSSIONS

This section explains related considerations and perspec-

tives surrounding our solution. We clarify our standpoint on

implementation security, explore potential design adaptations

for lower-end FPGA devices, and highlight the significance of

FPGA choice in enhancing Gaussian sampling efficiency.

A. Implementation Security

We do not cover implementation attacks and associated

defenses in this work. There are various attack vectors in-

cluding fault injection attacks, power/EM side-channel attacks,

microarchitectural attacks, acoustic/photonic side-channel at-

tacks, and cold-boot attacks, among others [33]. These attacks

have to be evaluated and related defenses could be added

on top of our solution. Note that we propose the first-ever

hardware acceleration of the FALCON sampling procedure.

The natural steps in this line of work are to first develop

hardware/software solutions for algorithms and then to con-

sider such attacks in follow-on studies. This is exemplified

in many previous HOST papers, including the hardware de-

sign of discrete Gaussian samplers without implementation

security [34], hardware design of lightweight cryptography

algorithms without implementation security [35], and software

design for fully homomorphic encryption without implemen-

tation security [36], among others.

B. Performance Comparison on Lower-End FPGA Devices

If the design is implemented on even lower-end devices

that contain an embedded microcontroller without floating-

point hardware support, the software side can take longer.

In such cases, the floating point arithmetic (i.e., the entire

sampling process) can be moved to FPGA for acceleration,

provided that the FPGA contains sufficient space. This work

demonstrates a novel hardware-software co-design method

for accelerating FALCON’s discrete Gaussian sampling sub-

routine. This work does not aim to optimize and accelerate the

AXI components because we argue that this optimization effort

does not contribute to the novelty of the proposed method.

C. Significance of FPGA Acceleration for FALCON

Our work demonstrates that FPGA significantly enhances

FALCON’s performance by accelerating its Gaussian sampling

sub-routine. Although the application of discrete Gaussian

sampling with varying means and variances may seem narrow,

it is a fundamental and computationally intensive sub-routine

of FALCON. Therefore, a specialized FPGA acceleration is

justified because it allows significant performance savings of

this important algorithm chosen by NIST, as we quantified

in this work. Such crypto-unique subroutine acceleration via

FPGA is a common practice in cryptographic engineering as

well as in real-world applications with many relevant publi-

cations including those at previous HOST conferences [34],

[37].

VII. CONCLUSIONS

A massive effort has recently started to transition NIST’s

next-generation post-quantum encryption standards into prac-

tice. One important aspect of deploying these standards is

designing efficient implementations. FALCON is one of the

algorithms that NIST chose yet its implementation has been

omitted in prior work. Implementing FALCON efficiently

requires accelerating its discrete Gaussian sampling algorithm,

which is non-trivial because it includes different components

compared to other Gaussian samplers used in lattice cryp-

tography. This paper demonstrates that a hardware-software

co-design method is suitable for addressing both the effi-

ciency and flexibility needs used in FALCON. Our solution

accelerates the reference sampling software by 56.05×, which

corresponds to a total improvement of 1.67× for the signature

generation. Further acceleration may be possible by improving

the I/O communication overhead or by porting the design to

a more capable FPGA that can execute at a higher operating

frequency.
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