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Abstract—Sampling random values from a discrete Gaussian
distribution with high precision is a major and computationally-
intensive operation of emerging and existing cryptographic
standards. FALCON is one such algorithm that the National
Institute of Standards and Technology chose to standardize as a
next-generation, quantum-secure digital signature algorithm. The
discrete Gaussian sampling of FALCON has both flexibility and
efficiency needs—it constitutes 72% of total signature generation
in reference software and requires sampling from a variable mean
and standard deviation. Unfortunately, there are no prior works
on accelerating this complete sampling procedure.

In this paper, we propose a hardware-software co-design
for accelerating FALCON’s discrete Gaussian sampling sub-
routine. The proposed solution handles the flexible computations
for setting the variable parameters in software and executes
core operations with low latency, parameterized, and custom
hardware. The hardware parameterization allows trading off
area vs. performance. On a Xilinx SoC FPGA Architecture,
the results show that compared to the reference software, our
solution can accelerate the sampling up to 56.05x and the full
signature scheme by 1.67x. Moreover, we quantified that our
optimized multiplier circuits can improve the throughput over a
straightforward implementation by 2.87 x.

Index Terms—discrete Gaussian sampling, hardware-software
co-design, post-quantum cryptography, digital signatures, FPGA.

I. INTRODUCTION

The security of the current large-scale encryption infras-
tructure is based on the difficulty of solving mathematical
problems such as integer factorization [1] and discrete log-
arithms [2]. Although these problems are conjectured to be
hard for classical computers, quantum algorithms are proven
to solve them exponentially faster [3], [4]. This poses a
serious risk at the core of existing security systems and
creates a critical need to design, implement, and deploy new
cryptographic solutions that can survive the quantum threat.
Such systems base their security on other classical problems
like the ones in lattice-based cryptography [5]. The National
Institute of Standards and Technology (NIST) has been leading
this “post-quantum cryptography” effort by evaluating and
standardizing promising algorithms. Recently, NIST has an-
nounced algorithms to be standardized for the new, quantum-
safe, public-key encryption/establishment and digital signature
applications [6].

Following the NIST standardization, a major push has
just started for transitioning to post-quantum cryptography
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led by NIST, the Department of Homeland Security (DHS),
Microsoft, Cisco, and Amazon Web Services, among others.
A major roadblock to transitioning to practice is efficient
implementation, which is especially important for real-time,
embedded/edge, and battery-operated devices.

FALCON is one of the algorithms that NIST chose
for the post-quantum standards. FALCON uses lattice-based
cryptography—a (relatively) new family of cryptographic sys-
tems that are based on the short integer solution (SIS) over
NTRU lattices [7]. Lattice cryptography includes new types of
computations that are absent in earlier cryptographic standards
such as RSA and ECDSA. One of these building blocks is the
discrete Gaussian sampling needed to create the construction
of the trapdoors. Having such high-precision Gaussian distri-
butions reduces the signature size and, indeed, FALCON was
explicitly chosen for its small signature sizes.

Unfortunately, the signature size savings of discrete Gaus-
sian sampling comes at the expense of computing overhead.
This is especially true for FALCON: for the reference soft-
ware [7] provided in the NIST submission package, sampling
can account for 72% of the total signing execution time'.
Moreover, the sampling in FALCON is different from other
lattice-based cryptographic schemes: it requires sampling from
variable means and variances. Therefore, a practical imple-
mentation of FALCON’s sampling procedure requires both
efficiency and flexibility. Although there are plentiful works
on FALCON’s cryptanalysis, its efficient implementations, and
especially custom hardware acceleration, are unknown.

In this work, we propose the first accelerated implementa-
tion of FALCON’s discrete Gaussian sampling. Specifically,
we designed and implemented a hardware-software co-design
that can address both the flexibility and efficiency needs.
We partition the sampling in such a way that the hardware
executes the core operations of sampling (i.e., sampling over
the cumulative distribution table, exponent calculation, and
rejection sampling) in a configurable manner, while the soft-
ware performs floating-point divisions. The custom hardware
consists of fully-pipelined, high-throughput, and low-latency
datapath to carry out the floating-point-based sampling oper-
ations. Moreover, the custom hardware includes design-time

I'This obviously changes with respect to the architecture. For implementa-
tion result details, please check Section V.
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parameters that change the multiplication pipeline stage, al-
lowing a trade-off between area vs. performance. The software
runs on an ARM Cortex-A9 within the Xilinx Zynq SoC
FPGA architecture and communicates with the hardware over
the AXI bus. The results show that, compared to the NIST
reference software [7] compiled on the same platform, our
solution can accelerate the sampling up to 11.09x.

The rest of the paper is organized as follows. Section II
provides the background on the discrete Gaussian sampling
and its special use in FALCON digital signature algorithm.
Section III describes the target system’s architecture and
the rationale behind our hardware-software partitioning. Sec-
tion IV discusses our custom hardware design on the FPGA.
Section V presents the implementation results. Section VI
explains related aspects and future extensions, and Section VII
concludes the paper.

II. BACKGROUND

This section provides the background information about the
core concepts and methods for our work. We explain the
specifics of discrete Gaussian Sampling and FALCON post-
quantum digital signature scheme, then discuss the sampling
procedures within FALCON.

A. Discrete Gaussian Sampling

Gaussian distribution (D, ) is determined with a standard
deviation o and a mean (center) p parameters. The statisti-
cal distance from the ideal distribution is determined by a
precision parameter A\ in the discrete Gaussian distribution.
FALCON signature scheme samples its secret coefficients over
a discrete Gaussian distribution [7]. Coefficient values range
between —7o and 7o where 7 is VA X 2 x In2. The prob-
ability of coefficient value w is defined over the distribution
and this probability is calculated with - 1% elz=n)?/20%

There are several algorithmic options to implement the
discrete Gaussian sampling. We outline the major approaches

as follows.
e Rejection sampling post-processes a uniform distribution

to match the desired Gaussian distribution, by drawing
random numbers from a uniform distribution and then
accepting/rejecting the sampled integers, probabilistically,
based on their likelihood of occurring on the Gaussian
distribution [8]. Calculating the probability requires the
support of complex floating point operations.

o Ziggurat sampling optimizes the rejection sampling [9]
by decreasing the rejection rate. It divides the probability
density function into equal regions and pre-defines the
acceptance criteria for a subset of those regions. When
those conditions are met, the floating point arithmetic is
eliminated because the sampled integer will be accepted
with 100% probability.

e Bernoulli sampling is another optimization on top of the
rejection sampling that aims to reduce the rejection rate.
This is achieved by approximating the original Gaussian
distribution in two steps: (i) constructing an intermediate
Gaussian distribution with a standard deviation smaller

Algorithm 1 FALCON Key Generation Algorithm [7]
Input: A monic polynomial ¢ € Z[z]|, a modulus ¢
Output: A secret key sk and a public key h

: f, g < Gaussian_CDT_Sampling()

2: F,G <~ NTRUSolve(f, g, ¢, q)

3:B<—{g -

—

G F
4 B+« FFT(B)
5: G+ B x B* > X represents matrix multiplication
6: T < ffLDL*(G)

7: for each leaf of T do

8: leaf.value + o/+/leaf.value

9: sk« (B,T)

10: h < gf~tmod(q)

11: return sk, h

than the target and (ii) rejecting/accepting based on a
carefully chosen Bernoulli distribution. Both Bernoulli
and Ziggurat still require support for floating-point arith-
metic.

o Knuth-Yao sampling pre-calculates a discrete distribution
generating tree from the probability matrix of possible
values for each random variable where the leaves repre-
sent the sampled value [10]. Then, it performs a random
walk on this tree’s branches (using uniform random
values) to sample from non-uniform distributions. Knuth-
Yao, therefore, effectively removes the run-time support
requirement of floating-point arithmetic.

o Cumulative Distribution Table (CDT)-based sampling
(a.k.a., inversion sampling), pre-computes the discrete
cumulative distribution value for all possible samples
and creates a CDT table that stores them in descending
order [11]. The CDT table determines the likelihood of
sampling each value and shapes a uniform distribution
into a Gaussian distribution. This is achieved by sampling
a uniform random value, comparing it against the pre-
computed table entries, and returning the table index of
the closest and smaller to the sampled value.

The core sampling procedure in FALCON follows a com-

bination of CDT-based and Bernoulli sampling over two
distributions due to their implementation efficiency.

B. FALCON Post-Quantum Digital Signature Scheme

FALCON is a post-quantum, lattice-based, hash-and-sign
signature scheme [7]. FALCON signature scheme has three
main steps: key generation, signature generation, and signature
verification. FALCON requires sampling during key genera-
tion and signature generation to obtain its secret coefficients;
hence, we omit the discussion about the verification procedure
in this work. Unlike other NIST PQC finalists [12], [13],
FALCON samples its secret coefficients over discrete Gaussian
distributions instead of uniform distributions.

Algorithm 1 shows FALCON’s key generation that com-
putes the secret key sk and the public key h. The key
generation algorithm first samples f and g polynomials over
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Algorithm 2 FALCON Signature Generation Algorithm [7]

Algorithm 3 SamplerZ [7]

Input: a message m, a secret key sk, a bound /32
Output: a signature sig of m
7 < {0,1}%2° uniformly

1
2: ¢ < HashToPoint (7||m)
3t (GLFFT(c) © FFT(F), (FFT(c) © FFT(f))
4: do > © represents FFT multiplication
5 do
6 z « ffSampling (¢,7)
FFT(g) —FFT(f
K s (t=2) FFT((G)) —FFT((F))

8 while s* > [3?]

(81,82) «+ invFFT(s)

10: s + Compress(sa, 8 - sbytelen — 328)
11: while s =1

2: return sig = (r,s)

b

—

Input: Floating point values j, 0" and o,
Input: Constant oy, = 1/(202,,.)
Output: a sampled coefficient

1: s + ceil(w)

2 T4 p—s

3: CCS 4 Opmin /0’
4 dss + 1/(2-0"%)

5: while (1) do
6 2o < BaseSampler(u)
number

b <— OneBitUniformRnd()

8: 2 b4+(2-0—1)z

: x4+ ((z—=7)?%) -dss — 22 - i
10: if (BerExp(z,ccs)) then
11: return z + s

> u is uniformly random

el

a Gaussian distribution and then generates the secret key
by using these two polynomials. Since the key generation
algorithm works with constant standard deviation ¢ and the
center u, implementation is relatively straightforward. The
prior work [14] that presents a hardware Gaussian sampler
implementation for FALCON’s key generation procedures can
be used to this end.

Algorithm 2 illustrates FALCON’s signing procedure, which
takes in a message m, the secret key sk, and then returns
a signature (r and s). This signing algorithm predominantly
relies on three main subroutines: HashToPoint, ffSampling,
and Compress. In the HashToPoint subroutine, the algorithm
first concatenates the message with a uniformly generated
polynomial and then hashes it to the polynomial c. Compress
subroutine reduces the signature size with a simple encoding
mechanism. ffSampling is referred to as the “heart of the sig-
nature generation” in FALCON’s specification document [7].
This subroutine is responsible for generating vector z, which
is the core polynomial in the signature generation process. The
coefficients of z are sampled over a Gaussian distribution. The
parameters of this distribution, o and p, are variable and based
on the coefficients of a polynomial ¢.

The polynomial ¢ itself is derived from the product of the
message and the secret key. As FALCON signature generation
accommodates different messages, both the ¢ polynomial and
its associated o, and p parameters inherently vary. Since
ffSampling works with dynamic o and p parameters, each
coefficient of the signature is likely to be sampled over
different Gaussian distributions. Although the software’s flex-
ibility allows for the implementation of a discrete Gaussian
sampler with varying o and p parameters, efficient hardware
acceleration of this sampler is significantly challenging—there
was no such hardware to date at the time of this paper.

C. Sampling in FALCON

FALCON has two sampling routines, one for the key
generation and the other for the signature generation. The
key generation requires a sampling operation over Gaussian

Algorithm 4 BaseSampler [7]
Input: a 72-bit uniformly sampled random number u
Output: a sampled zg < Do, .. 0
1: 20«0
2: for i from 0 to 17 do
3: if v < RCDTJ?] then
4
5

20— 20+ 1
. return zg =0

distribution with constant ¢ and p parameters. By contrast,
signature generation requires a Gaussian distribution structure
that needs varying o and p parameters. Therefore, FALCON
employs a sampling strategy that comprises two levels of sam-
pling. The first layer samples a value from the base distribution
that has constant o and p parameters. This base distribution is
common to both key and signature generation processes. The
second layer rejects or accepts the value sampled from the first
layer based on the second distribution that satisfies varying o
and p. While the key generation employs the first layer for its
sampling, the signature generation uses the both layers.

Algorithm 3 presents the SamplerZ method that includes
two layers of samplings and provides a discrete distribution for
the varying o and p. This algorithm first calls BaseSampler
at step 6 to sample a non-uniform value over the described
Gaussian distribution that has constant o and p parameters.
Then, it rejects or accepts the sampled value based on the
second sampling that is performed by the Ber Exp algorithm
at step 10. Note that the SamplerZ function is called many
times during FALCON’s signature generation with varying
inputs (1 and o’). Therefore, the variables s, 7, ccs, and dss
are calculated at run-time. These calculations require floating
point arithmetic.

Algorithm 4 shows the first layer of the sampling algorithm
used in FALCON, where the input is a 72-bit uniform random
number (u) and the output (zp) is a 5-bit integer from the
distribution Dy, .. 0. This algorithm requires a table that stores
pre-computed reverse cumulative distribution values (stored
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Algorithm 5 BerExp [7]

Input: Floating point values z, ccs < 0
Output: 1-bit sampling result

I: s+ x - In(2)7!

2 r4—x—5-In(2)

3: if s > 63 then
4: 54 63
5. z <—(2-ApproxExp(r,ccs) - 1) >> s
6: 1+ 64
7
8
9

. do
i+ (i—8)

: urnd <— OneByteUniformRnd()
10: w < urnd — ((z >> i)&0xFF)
11: while (w ==0&& i > 0)

12: if w < O then

13: return True
14: else
15: return False

in the RCDT array, line 3). The algorithm first compares a
uniform random number against the table and then returns the
index of the first entry that is larger. Since all distribution
values are pre-calculated and then stored in a table, this
algorithm does not need to perform the exp() calculation.

Algorithm 5 shows the BerFExp algorithm which is the
second layer of the sampling procedure. Since the algorithm
input x is a varying value, this algorithm needs to work with
dynamic floating-point operations, and it also requires the
exp() calculation. FALCON reduces the computation demand
by introducing ApprorExp implementation (see step 5 in
Algorithm 5). Within this context, ApproxExp leverages a
precomputed table to approximate the exp() function. After
processing the arithmetic and logical operations shown in
the algorithm and using one byte of uniform randomness
(via OneByteUniformRnd), the BerFExzp algorithm returns
a one-bit sampling result. This bit serves as a decision
bit-—determining whether to accept or reject the output
from BaseSampler. If BaseSampler’s output is rejected,
SamplerZ repeats the operations from steps 6 through 10
until a sampled value is accepted by BerExp.

III. SYSTEM ARCHITECTURE AND HARDWARE-SOFTWARE
PARTITIONING

FALCON’s sampling consists of floating-point addition,
multiplication, and division. These operations are expensive to
implement in hardware because of the large operands. Thus,
FALCON’s C reference implementation (software) approxi-
mates these floating-point operations with large integer values.
Listing 1 shows FALCON’s SamplerZ reference implementa-
tion and our partitioning into hardware and software in our
system. The sampling requires floating point-based division
operations (lines 12 and 13). The reference implementation
approximates the operations over large integers r, dss, ccs,
and x using fpr which is defined with a 64-bit int data type.
The algorithm has also varying input that increases hardware

Listing 1: FALCON SamplerZ reference implementation [7]. This
also shows the partitioning of the reference implementation for
hardware(HW) and software (SW).

1 |int Zf (sampler)

2 (void *ctx, fpr mu, fpr isigma)
301

4

S |// SW:

6 sampler_context =xspc;

7 int s;

8 fpr r, dss, ccs;

9 spc = ctx;

10 s = (int) fpr_floor (mu);

11 r = fpr_sub(mu, fpr_of(s));

12 dss = fpr_half (fpr_sqgr(isigma));

13 ccs = fpr_mul (isigma, spc->sigma_min);
14 |//

15

16 (// HW:

17 for (;;) |

18 int z0, z, b;

19 fpr x;

20 z0 = 7f (gaussianO_sampler) (&spc—>p);
21 b = (int)prng_get_u8 (&spc->p) & 1;
22 z =Db + ((b << 1) - 1) % z0;

23 x = fpr_mul (

24 fpr_sqr (fpr_sub (fpr_of (z), r)),
25 dss) ;

26

27 x = fpr_sub(x,

28 fpr_mul (fpr_of (z0 * z0),

29 fpr_inv_2sqgrsigma0));

30

31 if (BerExp (&spc->p, x, ccs))

32 return s + z;

33 }

34 1//

35

36 |}

implementation complexity and that requires flexibility in the
implementation. In addition to the division, the sampling
operation needs floating point multiplications in samplerZ
(lines 23 and 28) as well as in BerExp. There are also memory
read operations in gaussian(_sampler. Unlike divisions, they
are relatively easier to implement on the hardware but these
are time-consuming operations in software since the operands
are large numbers.

To enhance throughput without compromising flexibility,
we strategically partition the sampling operations between
hardware and software workloads. Our partitioning aims to
increase parallelism in the sampling operation. The key decider
in our hardware-software partitioning is the separation of
floating point divisions from multiplications and table read
operations. The crux of our partitioning approach lies in
offloading floating-point divisions to software, benefiting from
a highly efficient and flexible ALU datapath in the processor.
Other computational units are accelerated in custom-designed
hardware. The software part consists of floating point-based
division and parameter initializations and covers steps between
10 and 13 in Listing 1. The hardware partitioning covers the
remaining steps (17 to 32).
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Fig. 1: The proposed architecture for FALCON’s sampling operation.
The architecture has two partitions that provide a flexible environment
where the software and hardware can collaborate and run parallel.

Intermediate dependencies might act as bottlenecks in unop-
timized systems, slowing down performance as one component
waits for another to complete. It is noteworthy that while there
are input and output data dependencies between our software
and hardware partitions, no intermediate dependencies are
present in our partitioning. Our approach avoids this potential
bottleneck by isolating the software and hardware in terms of
intermediate dependencies. To illustrate, consider the scenario
wherein the hardware works on the first call’s while loop, the
software can execute s, r, ¢ss, and dss for the next call. This
design choice enables the simultaneous execution of software
and hardware tasks. This structure brings about a marked
improvement in the efficiency of the sampling processes.

We use a Xilinx SoC FPGA that enables running both
software and hardware implementations in a single SoC.
Figure 1 presents the SoC FPGA architecture and the proposed
design’s block diagram. Our design utilizes the Processing
System (PS) part for performing the operations that require a
flexible architecture such as the floating point-based division,
whereas the Programmable Logic (PL) part has dedicated
hardware designs to accelerate the operations. Our design has
two independent FIFOs that synchronize the software and
hardware executions and also enable running in parallel. The
software implementation generates the inputs of the hardware
accelerator and sends them via RX FIFO. The hardware design
sends the output of the SamplerZ algorithm to the software
with TX FIFO.

IV. HARDWARE DESIGN

The proposed hardware design has one accelerator core
for SamplerZ and FIFO data paths. SamplerZ’s acceler-
ator has three sub-modules: BaseSampler, BerExp, and
ApprozExp. Figure 2 illustrates the SamplerZ algorithm’s
major building blocks and their hardware-software partitions.
The software performs initial floating point-based divisions
for ccs and dss and parameter initializations for r and s. The
hardware accelerator executes Ber Exp, BaseSampler, and
ApprozExp that require heavy multiplications and memory

Software (PS) | Hardware (PL) ainv
o0
][ P ‘i X “X‘
initial - -
> r | lp
P v
Base 0, Z 5 ;
{ —L (——
R\ 'sampler _>+_> X Ber
N l ——— Exp
G ”
X |

Fig. 2: Software and hardware building blocks of SamplerZ sub-
routine. The software (blue) executes floating-point divisions, while
the hardware part (green) performs BerExp and BaseSampler.

read operations. For example, the software would sequen-
tially read table entries in the reference BaseSampler, and
ApprozExp algorithms, while the hardware can read the
entire table and perform all comparisons in one clock cycle.
The figure also shows SamplerZ’s four data paths where the
hardware parallelizes the operations?.

A. A Half Gaussian Sampling with BaseSampler

We implement the BaseSampler algorithm with a pre-
computed reverse cumulative distribution (RCDT) table in
hardware, which is carried out in software in FALCON’s ref-
erence implementation. The BaseSampler algorithm samples
a value over a Gaussian distribution centered at 0. Figure 1
outlines the BaseSampler implementation in samplerZ
module. It has one register file to store RCDT and one
comparison circuit. The input of the design is a 72-bit uniform
random number and the output is an unsigned integer ranging
from O to 17.

The design first receives the 72-bit number and then per-
forms a parallel comparison between the input and each entry
of RCDT. The last step of the design is to count and return
the number of entries that are larger than the given input.
The software implementation may require multiple cycles
to execute a comparison between the input and one entry
of RCDT. By contrast, our hardware implementation can
complete the entire table comparison in one cycle.

B. Rejection Sampling with BerExp

The BerEzp algorithm returns a single bit and the prob-
ability of returning 1 is css - exp(—z). The css value is
a floating-point number and defines the scaling factor for
each ¢’ value. The variable x is also a floating-point input
that is calculated with the BaseSampler’s sampled value.

2The figure also depicts a PRNG (pseudo-random number generator).
In FALCON’s reference implementation, an external randomness source is
assumed, hence an additional C function for PRNG is not implemented. For
testing purposes in our system’s functionality, we introduced a PRNG that
deterministically produces uniformly random numbers. This ensures that both
the reference implementation and our hardware utilize the same source of
randomness, facilitating direct comparison of their final outputs.
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Fig. 3: The block diagram of BerFExp sub-routine. It is fully
implemented on the hardware.

Although the Ber Exzp does not have a floating-point division,
it requires floating-point addition and multiplication. FALCON
documentation provides the minimum and maximum ranges
of the SamplerZ inputs. Therefore, we can simply extend
the floating-point numbers with 272 and can work over their
integer values with 72-bit precision.

Figure 3 illustrates the BerExp algorithm’s computations.
Algorithm 5 shows that the input x first goes through a
floating-point division at the first step with [n(2) to obtain
s. Since In(2) is a constant value, we calculate its inverse
(In(2)~%) and then extend it with 272 at the compile time.
After this pre-calculation, the first floating-point division op-
eration simply becomes a 72-bit unsigned multiplication. The
first multiplication result is 144 bits. However, we do not
reduce this multiplication result to 72 bits before the next
multiplication to preserve the precision.

BerExp sampling design also has the ApprozFExp mod-
ule to compute an approximation of 2% . css - exp(—x).
FALCON’s NIST submission package already provides a C
implementation of the ApprorFExp module. This module
computes the approximation over a pre-calculated table (C),
like BaseSampler. The implementation iteratively performs
64-bit multiplications between table entries and the output of
the previous multiplication. The first multiplication happens
between the input  and the first table entry. Table C' has 13
entries and therefore ApproxrExzp module initially requires
13 multiplications and then obtains 293 - exp(—x). The final
step of ApproxFExp is a multiplication between ccs and
263 . exp(—z).

BerExp algorithm, at its last step, compares the output
of ApprorFExp module with a uniformly sampled number
(urnd). This comparison is performed byte by byte and
continues until the Ber Exp algorithm accepts the comparison
output. Since hardware, unlike most software platforms, allows
performing the comparison in parallel for each byte, our design
completes the rejection operation in one cycle.

C. Optimizations in Large Multiplications

Gaussian sampling over the integers is one of the unique
features of the FALCON digital signature algorithm. Al-
though FALCON works with varying standard deviations

| A[71:48] | A47:24] | A[23:0]
B67:51] | B[50:34] | B[33:17] | B[16:0]

Stage 1

Stage 2 X
Stage 3

B[16:0] x A[71:0]

Stage 4 l [ B[33:17] x A[71:0]

| B[50:34] x A[71:0]

=

. 34-bit

4 | B[67:51] x A[71:0] [ S1-bit

| C[139:0] |
(a) A schoolbook multiplication with four stages.

DSP48E1 DSP48E1 DSP48E1

| A[47:24] | A[47:24] | A[23:0]
X Bl60] | Y BlI6:0) | B[16:0]

L[ susoxAzsol |

, —_—
& | Bis0IxAR30] | 24bit

+ BI16:0] xA[23:0] K T8B >
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(b) One stage multiplication with 3 DSP48E multipliers.

Fig. 4: A multiplication representation for 72-bit and 68-bit unsigned
operands. The multiplication is constructed with 17-bit and 24-bit
multiplication steps due to the input size constraint of the Xilinx
DSP48E1 block.

and arbitrary centers that are ideally floating-point numbers,
FALCON approximates these numbers with large integers
by maintaining the required precision. Therefore, FALCON’s
Gaussian sampling algorithm requires large integer multi-
plications. The ApproxExp function, for instance, requires
64-bit integer multiplications (14 times) to approximate the
exponent operation in FALCON’s reference implementation.
In addition, FALCON’s Gaussian sampling algorithm might
call this function more than once to sample a single coefficient
based on the number of rejected samples. BerFExzp and
SamplerZ are other steps that require large integer (> 72-
bit) multiplications, and they may also call several iterations
of these multiplications based on the rejection rate.

If FALCON’s Gaussian sampling is designed without op-
timization, dedicated multipliers are separately allocated for
each multiplication®. This implementation approach results in
116 DSP48E1 utilization because a single DSP48E1 block
can multiply at most signed 18-bit with 25-bit variables (or
unsigned 17-bit with 24-bit variables) [15]. Hence, large inte-
ger multiplication mandates the cascade of several DSP48E1
blocks. Moreover, this unoptimized design operates with low
frequencies due to long critical paths caused by the cascaded
DSP48E1 blocks. Our proposed design offers a pipelined mul-
tiplier structure and optimizes DSP utilization. Therefore, the
proposed design operates with a significantly higher frequency.

We first exemplify large integer multiplication with multi-
stage 24-bit and 17-bit multiplications using DSPs with maxi-
mum utilization. Figure 4a illustrates the product operation of
72-bit and 68-bit operands with the schoolbook multiplication
method. The first operand (A) is 72-bit and split into 3 parts

3Simply, the product of A and B is implemented as A * B in HDL.
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Fig. 5: The proposed multiplier design. This design has multi-stage pipelining that multiplies 73-bit and 69-bit signed operands only with
3 DSP48E]1 instead of 16 DSP48El blocks. The latency is 8 cycles and throughput is 1 multiplication per 4 cycles.

with an equal length of 24-bit, while the second operand (B3)
is split into 17-bit vectors. First, the operand A is multiplied
by each 17-bit vector of the second operand (B); hence, each
stage consists of a 72-bit by 17-bit multiplication. Second,
each block multiplication result is shifted left accordingly. The
final result is the sum of each stage output.

Figure 4b presents a multiplication block for the first stage
of the aforementioned schoolbook multiplication method using
three DSP48Els. Each DSP48E1 shares the operand A with
24-bit fractions, while their other operands are identical, the
LSB 17-bit of operand B. Similar to the previous instance,
the final result is obtained by first shifting and then summing
each multiplication output. The complete hardware, therefore,
requires 12 DSP48E1 multiplications, 11 shift operations, and
5 additions to multiply A by B.

Figure 5 shows the proposed pipelined large integer multi-
plier design. This hardware multiplies two signed operands,
one of which can have a maximum size of 73 bits while
the other can have a maximum size of 69 bits. The design
has a fully-pipelined architecture with 8 stages and thus its
latency is 8 cycles but its throughput is one multiplication
per 4 cycles. The presented multiplier first converts the two
signed operands to unsigned operands before the multiplica-
tion operation. Second, it splits the first operand (72-bit) into
3 24-bit groups and the second operand (68-bit) into 4 17-bit
groups to fully utilize the DSP48E1 block. Figure 4a shows
each stage of the multiplication is executed between the single
but different 17-bit vector of B and the second operand A. To
sort B’s vectors in a cyclic order, the design pipelines each
vector with a different number of registers and also selects the
corresponding B’s vector with a cycle count. For example,
the LSB 17-bit of operand B arrives at the DSP48EI units
after the first cycle, while the next 17-bit arrives at the next
clock cycle. However, A’s vectors are pipelined with the same
number of registers since A should remain stable every 4
cycles. Our design utilizes enabled registers and therefore the
implementation requires fewer registers for the pipelining. For
example, A’s vectors are pipelined with one stage of register
rather than 4 stages and the register enable signal is activated

after every 4 cycles.

The DSP48E1 blocks generate the output of one of the
stages in schoolbook multiplication as shown in Figure 4a.
Then, the outputs are shifted accordingly before going through
the adder circuits. Adder 1 executes the addition operation to
execute the model described in Figure 4b, while the second
adder is used to perform the addition shown in Figure 4a. The
final step of design is the sign extension operation that assigns
the corresponding sign to the multiplication product. If these
two signed operands’ multiplication is implemented with a
single asterisk (x), the implementation requires 16 DSP48E1
blocks, and that increases DSP48E1 usage by 5.33x.

Our multiplier design also provides design-time flexibility
with different area-performance settings. The default con-
figuration uses our performance-optimized design which is
described in detail above. If the area-optimization flag is
set, the multiplier design works with a single DSP48E1 but,
it reduces the throughput and performs one multiplication
per 15-cycle. In addition, one multiplication operation in the
samplerZ algorithm requires two operands larger than 69-
bit but smaller than 73-bit. Therefore, we implemented an
additional multiplier that has a 10-stage pipelined design with
3 DSP48Els.

It is pertinent to note that the critical path in our design
is not primarily determined by the DSPs’ multiplication pro-
cess. Instead, it’s the operations associated with the second
adder (Adder 2). Since Adder 2 has 140-bit operands along
with shifting operations, it creates the longest path. Although
pipelining Adder 2 with additional registers increases the
operating frequency, it negatively impacts the areaxdelay
product, a crucial efficiency metric in hardware design. Given
this trade-off, the multiplier design does not utilize additional
registers for the Adder 2, aligning with our design objectives
and setting our latency goal.

V. IMPLEMENTATION RESULTS

We used Xilinx Zedboard XC7Z020 from the Zynq-7000
SoC family as our platform. This board has an SoC FPGA,
which includes an ARM Cortex-A9 processor for software
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TABLE I: Hardware area utilization of the proposed solution. A
straightforward implementation of the large multipliers would require
116 DSPs.

TABLE II: Performance comparison with AXI communication
overhead. Our hardware-software co-design solution improves the
throughput by up to 11.09x.

\ Task [ Module | LUT [ FF [ DSP | BRAM | . Latency | Throughput | Throughput
Design Frequency
Base Design 3,456 732 116 0 (#Cycle) | (sample/sec) | Improvement
Perf. Opt. Design SamplerZ 2,523 | 2,028 9 0 Reference
Area. Opt. Design 2,328 | 1,030 3 0 SW [7] 666 MHz 96,747 6,890 )

Sync + Base Design 45 MHz 1,691 26,611 3.86x
Communication AXI_FIFO 592 632 0 2 Perf. Opt. 132 MHz 1,726 76,447 11.09x
Communication AXI_Periph 405 587 0 0 Area Opt. 134 MHz 1,807 74,156 10.76 x

Reseting rst_sys 16 23 0 0

execution and a programmable logic part for hardware ac-
celeration. We first designed and functionally verified the
proposed SamplerZ and created an AXI-Stream wrapper on
it. Second, we hooked the wrapped SamplerZ to FIFOs and
Zynq processor as described in Section III. Then, we tested
the proposed implementation and measured its performance
with FALCON’s implementation’s test vectors [16].

The summary of our results is as follows. Compared to
FALCON’s reference implementation running on the same
platform, our solution accelerates the sampling by up to
11.09x. The bottleneck becomes the slow AXI communi-
cation, and our improvement can theoretically increase to
90.36x with better AXI. Our optimized multipliers improve
area efficiency by 12.88-38.66x. The proposed hardware core
is even faster than a high-end Intel processor by 38.34x.
Accelerating the sampling process with our solution leads
to a 1.67x improvement on the entire FALCON signature
performance. Compared to the earlier hardware designs that
uses fixed parameters, our hardware with varying o and p is
obviously more costly as expected—this is the first accelerated
implementation of FALCON’s discrete Gaussian sampling that
can be used during signature generation.

A. Comparison of Hardware Design Choices

Table I shows a breakdown of area utilizations for each
IP block as well as their tasks in our design. We present
a baseline design, along with two optimization settings: the
Perf. Opt. design (performance-optimized) and the Area Opt.
design (area-optimized). The baseline design is with the
straightforward implementation of the multiplier without our
proposed optimizations. Both the Perf. Opt. and Area Opt.
designs require three multiplier circuits, but their multiplier
structures differ. The Perf. Opt. design employs three DSP-
based multipliers, using a total of 9 DSP48E1s, while the Area
Opt. design uses a single DSP-based multiplier, consuming 3
DSP48Els. As shown in Table I, the baseline design, devoid
of multiplier-specific optimizations, unsurprisingly demands a
significantly higher number of DSP48E1 units. Since Perf.
Opt. design has a larger data path due to its parallel multipliers,
it requires more registers than the design with area-optimized
configuration.

B. Performance Evaluation and Throughput Improvement of
SamplerZ

Table II presents a performance comparison between FAL-
CON’’s reference implementation [7] and the proposed designs

TABLE III: Peak performance comparison of cores. Our hardware-
software co-design solution can theoretically outperform software
implementation by up to 90.36 x with maximum AXI performance.

. Latency | Throughput Throughput
’ Design ‘ Frequency ‘ (#Cycle) | (sample/sec) | Improvement
Reference
SW [7] 666 MHz 96,747 6,890 -
Base Design 45 MHz 124 362,903 52.67 x
Perf. Opt. 132 MHz 212 622,641 90.36 x
Area Opt. 134 MHz 406 330,049 47.90 x

with different optimization settings. We calculated the im-
provement result based on the designs’ throughputs. The base
design has a lower cycle count than other designs as expected.
However, its frequency is the lowest (45 MHz) among other
designs since it does not have a pipelined architecture. In
contrast, both the Perf. Opt. and Area Opt. designs operate
at much higher frequencies, 132 MHz and 134 MHz re-
spectively, resulting in a substantial throughput improvement.
Specifically, Perf. Opt. design improves throughput by 11.09x,
whereas the Area Opt. design improves it by 10.76x. Despite
their different multiplier units, the performance difference
between the Area Opt. and Perf. Opt. designs is marginal. This
is caused by the AXI components and we later explain the
AXI components’ impact on the performance with Table III.
Also, the achieved frequencies of 132 MHz and 134 MHz
are especially noteworthy since our platform has a relatively
low-end FPGA. Even with a mid-level FPGA, the achievable
frequency exceeds 200 MHz, as detailed in Section V-F.

Our hardware design consists of two main parts: SamplerZ
accelerator core and AXI components. Table II presents a
performance result for the entire architecture including the
AXI interconnect and AXI FIFO overheads. Accelerating the
AXI communication bandwidth is beyond the scope of this
study. Therefore, we also present Table III that illustrates only
SamplerZ accelerator theoretical performance results with
maximum AXI performance The results show that a peak
throughput improvement of 90.36x is theoretically possible.
Since the base design does not have pipelined multipliers, its
latency is the best one compared to the other two. However, the
Perf. Opt. design’s theoretical throughput is 1.71x and 1.88x
more than base designs and Area Opt. designs, respectively.
Although the base design’s throughput is 1.09x better than the
Area Opt. design, its DSP requirement overhead is 38.66x
more than the Area Opt. design. The key takeaway from
Table III is that further acceleration may be possible by
improving the I/O communication overhead or by porting the
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TABLE 1IV: Improvement from hardware acceleration. The tasks
allocated to hardware take 35 cycles with our design, but it takes
several hundred to thousands of cycles on ARM and Intel CPU.

TABLE V: Performance comparison on the full FALCON-512
signature generation and its sub-routines. Due to our accelerated
sampling, the full signature generation is accelerated by 2.7x.

s Latency Latency . Reference SW [7] | Our Design #Cycle
Platform Optimization (#Cycle) | Improvement ‘ ’ Operation #Cycle ‘ #Cycle Improvement

ARM Cortex M7 [17] FPU 664 18.97 x SamplfarZ 96,747 1,726 56.05x
EMU 3820 109.14 x Gaussian

114 S 99,068,928 1,767,424 56.05x
ARM Cortex M4 [17] FPU 5418 154.14x Sampling

EMU 31,744 906.97 x ffSampling 172,559,792 75,258,288 2.29x
. Reference FALCON

Intel® Core® i7-8700 [18] SW 1,342 38.34 x Signature 245,706,666 148,405,162 1.67x
Proposed Hardware Perf Opt 35 - Generation

design to a more capable FPGA that can execute at a higher
operating frequency.

C. Comparison with Software on Other Platforms

Next, we compare the impact of our hardware acceleration
by comparing it with its corresponding software running on
other platforms. This corresponding software of workload is
shown in Listing 1, between lines 17 and 32. Table IV presents
this comparison. This table categorizes the software versions
into two primary optimized implementations: one that utilizes
emulated floating-point (EMU) operations and the other that
harnesses dedicated floating-point instructions (FPU)—both
are included in the FALCON NIST submission package.
Table IV also presents Intel® Core® i7-8700 performance
results for FALCON’s reference implementation. Since FPU
employs ARM’s dedicated floating-point instructions, Intel®
Core® 17-8700 does not have performance results for FPU. To
provide a fairer comparison, we compared implementations’
performance using cycle count rather than throughput and
frequency, taking into account that they are different platforms.
The cycle count we provide for our performance-optimized de-
sign specifically omits considerations for software partitioning
and I/O overheads.

Table IV depicts that our novel and efficient hardware
implementation significantly improves the performance (up
to 906.97x) in terms of cycle count. FALCON’s sampling
procedure requires operations with large operands so ARM
Cortex M4 performs the poorest due to its basic structure.
Although ARM Cortex M7 is able to benefit from 64-bit
floating-point instructions, our hardware implementation ex-
ecutes the same operation 18.97x and 109.14x faster. Our
hardware even outperforms the high-end CPU, Intel® Core®
i7-8700, by showing 38.34x better performance. We also note
that FALCON’s Gaussian sampler execution is not constant
for its software implementations. Therefore, the cycle count
numbers of the software execution might slightly vary for
different runs.

D. Impact of Gaussian Sampling Optimization on Signature
Generation Performance

We next quantify the impact of the improvement on the
whole digital signature scheme, not just on the discrete Gaus-
sian distribution. Table V compares the performance between
FALCON’s reference implementation vs. our performance-
optimized design for discrete Gaussian sampling. We first
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TABLE VI: Comparison with prior works. We propose the first
sampler that can support FALCON signature generation scheme. As
expected, the sampler requires more resources compared to fixed g
and o samplers.

Work FALCON o/ | Platform LUT/FF/ |\ Faraq #Cycle
Support BRAM |(MHz)
This Work | Full | L ving | XC72020(3341/227272| 134 | 1807
Area Opt. | Support
[14] KeyGen 2/53 Virtex-7 151/7/0 322 1
only V/5/200 455/8/0 317 1
[19] No 8.5/64 | Artix-7 | 907/812/3 115 111
[20] 8.5/64 | Artix-7 | 511/343/0 353 1
[21] 3.33/64 | Virtex-6 112/19/0 297 5
[22] No 3.33/90 | Virtex-5 43/33/1 259 3
[23] 3.33/80 | Virtex-6 863/6/0 61 1
[24] No 215/128 | Spartan-6 | 928/1121/0 | 129 8
[25] 4.41/112 | Spartan-6 | 426/123/1 102 8
[26] No 4.41/112| Spartan-6 | 463/45/0 80 30

profiled the SamplerZ function by running reference imple-
mentation and then ran the same function by enabling our
accelerator. The result shows that our accelerator improves
the SamplerZ execution time by 56.05x. Since the Gaussian
sampler is called 2n times during the ffSampling, our design
decreased the Gaussian sampler’s execution cycle count from
99M to 1.7M cycles. FALCON’s signature generation heavily
depends on the performance of the Gaussian sampler. There-
fore, our design improves the entire signature generation by
1.67x, from 245M cycles down to 148M.

E. Comparison to Previous Works on Gaussian Sampling

Table VI presents a comparison between the proposed
design and prior Gaussian samplers. There are earlier sampler
designs for BLISS [21], [27], LP [21]-[23], FrodoKEM [28]
and qTESLA [19]. These hardware implementations are fixed
for a single o, ;1 parameter setting; hence, they cannot support
FALCON. An earlier FALCON implementation [14] proposed
a ‘design-time’ flexible hardware for o, p parameters—this
hardware cannot support run-time flexibility and thus is limited
to FALCON key generation (i.e., cannot support FALCON sig-
nature generation). Other FALCON implementations include
FALCON'’s verification steps [29], which excludes Gaussian
sampling, and SIMD acceleration on software [30] 4. Likewise,
another prior work passes FALCON software implementation

4Unfortunately, the discrete Gaussian sampling sub-routine latency is not
provided in this work; hence, a comparison is infeasible



through an HLS tool but does not provide a performance
or area profiling for the Gaussian sampler sub-routine [31].
These results show that, despite our hardware optimizations,
FALCON’s sampling needs still incur more time and area
overheads compared to other lattice-based cryptosystems.
FALCON has also a GPU implementation [32]. However, this
work does not provide a performance result for FALCON'’s
Gaussian sampler. As a result, we cannot provide a discussion
about comparing our work with GPU platforms.

F. Platform Choices and Comparative Performance.

Our design inherently requires a close integration of soft-
ware and hardware components. This necessitates a platform
that can adeptly accommodate both. The Xilinx Zedboard
XC772020, an SoC FPGA, emerged as our primary choice for
its ability to support our hardware-software co-design. With
the PS side of the Zedboard managing the software partition
and the PL side tailored for the hardware task. Furthermore,
this platform enabled testing its functionality and measuring
its performance in real-time.

Building upon our experiments, we identified two main
objectives for further exploration. First, evaluating the perfor-
mance of our multiplier architecture across different FPGAs
might provide a fresh perspective on our overall contributions.
Second, it is essential to synthesize our design on a mid-
level FPGA board, Virtex 7 FPGA VC709, for a more aligned
comparison given that a majority of prior research gravitates
towards the use of Virtex series FPGAs, we considered. As a
result, our performance-optimized design attained a frequency
of 213 MHz on the Virtex 7 FPGA VC709 board, which is
significantly higher than the Zedboard’s 132 MHz. This vari-
ation emphasizes the crucial significance of the chosen FPGA
board and its inherent properties on the timing performance
of a design.

VI. DISCUSSIONS

This section explains related considerations and perspec-
tives surrounding our solution. We clarify our standpoint on
implementation security, explore potential design adaptations
for lower-end FPGA devices, and highlight the significance of
FPGA choice in enhancing Gaussian sampling efficiency.

A. Implementation Security

We do not cover implementation attacks and associated
defenses in this work. There are various attack vectors in-
cluding fault injection attacks, power/EM side-channel attacks,
microarchitectural attacks, acoustic/photonic side-channel at-
tacks, and cold-boot attacks, among others [33]. These attacks
have to be evaluated and related defenses could be added
on top of our solution. Note that we propose the first-ever
hardware acceleration of the FALCON sampling procedure.
The natural steps in this line of work are to first develop
hardware/software solutions for algorithms and then to con-
sider such attacks in follow-on studies. This is exemplified
in many previous HOST papers, including the hardware de-
sign of discrete Gaussian samplers without implementation

security [34], hardware design of lightweight cryptography
algorithms without implementation security [35], and software
design for fully homomorphic encryption without implemen-
tation security [36], among others.

B. Performance Comparison on Lower-End FPGA Devices

If the design is implemented on even lower-end devices
that contain an embedded microcontroller without floating-
point hardware support, the software side can take longer.
In such cases, the floating point arithmetic (i.e., the entire
sampling process) can be moved to FPGA for acceleration,
provided that the FPGA contains sufficient space. This work
demonstrates a novel hardware-software co-design method
for accelerating FALCON’s discrete Gaussian sampling sub-
routine. This work does not aim to optimize and accelerate the
AXI components because we argue that this optimization effort
does not contribute to the novelty of the proposed method.

C. Significance of FPGA Acceleration for FALCON

Our work demonstrates that FPGA significantly enhances
FALCON’s performance by accelerating its Gaussian sampling
sub-routine. Although the application of discrete Gaussian
sampling with varying means and variances may seem narrow,
it is a fundamental and computationally intensive sub-routine
of FALCON. Therefore, a specialized FPGA acceleration is
justified because it allows significant performance savings of
this important algorithm chosen by NIST, as we quantified
in this work. Such crypto-unique subroutine acceleration via
FPGA is a common practice in cryptographic engineering as
well as in real-world applications with many relevant publi-
cations including those at previous HOST conferences [34],
[37].

VII. CONCLUSIONS

A massive effort has recently started to transition NIST’s
next-generation post-quantum encryption standards into prac-
tice. One important aspect of deploying these standards is
designing efficient implementations. FALCON is one of the
algorithms that NIST chose yet its implementation has been
omitted in prior work. Implementing FALCON efficiently
requires accelerating its discrete Gaussian sampling algorithm,
which is non-trivial because it includes different components
compared to other Gaussian samplers used in lattice cryp-
tography. This paper demonstrates that a hardware-software
co-design method is suitable for addressing both the effi-
ciency and flexibility needs used in FALCON. Our solution
accelerates the reference sampling software by 56.05x, which
corresponds to a total improvement of 1.67x for the signature
generation. Further acceleration may be possible by improving
the I/O communication overhead or by porting the design to
a more capable FPGA that can execute at a higher operating
frequency.
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