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Caring assessments: challenges
and opportunities

Jesse R. Sparks*, Blair Lehman and Diego Zapata-Rivera

ETS, Princeton, NJ, United States

Caring assessments is an assessment design framework that considers the
learner as a whole and can be used to design assessment opportunities that
learners find engaging and appropriate for demonstrating what they know and
can do. This framework considers learners’ cognitive, meta-cognitive, intra-
and inter-personal skills, aspects of the learning context, and cultural and
linguistic backgrounds as ways to adapt assessments. Extending previous work
on intelligent tutoring systems that “care” from the field of artificial intelligence
in education (AlEd), this framework can inform research and development of
personalized and socioculturally responsive assessments that support students’
needs. In this article, we (a) describe the caring assessment framework and its
unique contributions to the field, (b) summarize current and emerging research
on caring assessments related to students’ emotions, individual differences,
and cultural contexts, and (c) discuss challenges and opportunities for future
research on caring assessments in the service of developing and implementing
personalized and socioculturally responsive interactive digital assessments.
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1 Introduction

Personalization in the assessment context is an umbrella term that can include many
different approaches. Most prior research and development has focused on adaptations based
on students’ prior knowledge or performance during the assessment (e.g., Shemshack et al.,
2021). However, personalization may sometimes consider other intra-or interpersonal aspects
of students’ experience (Du Boulay, 2018). For example, student engagement has been utilized
in effort-monitoring computer-based tests (Wise et al., 2006, 2019) and a wider range of
student emotions have been used to enhance performance-based adaptation in several
personalized learning systems (D’Mello et al., 2011; Forbes-Riley and Litman, 2011). Research
in the field of artificial intelligence in education (AIEd) has increasingly emphasized a more
holistic picture of learners which takes into account cognitive, metacognitive, and affective
aspects of the learner to explain their behavior in learning environments (Grafsgaard et al.,
2012; Kizilcec et al.,, 2017; Yadegaridehkordi et al., 2019), reflecting growing interest in
integrating positive psychology into research within the AIEd community (Bittencourt
etal., 2023).

The caring assessments (CA) framework provides an approach for designing adaptive
assessments that learners find engaging and appropriate for demonstrating their knowledge,
skills, and abilities (KSAs; Zapata-Rivera, 2017). This conceptual framework considers
cognitive aspects of the learner as well as metacognitive, intra-and interpersonal skills, aspects
of the learning context, cultural and linguistic backgrounds, and interaction behaviors within
an integrated learner model and uses this model to personalize assessment to students’ needs
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(Zapata-Rivera et al., 2023). Multiple lines of research must
be conducted to bring this vision for caring assessment to fruition.
This Perspective article describes the CA framework and its unique
contributions to the field (Section 2) and summarizes current and
emerging research on the CA framework emphasizing students’
emotions (Section 3), individual differences (Section 4), and cultural
contexts (Section 5). Challenges and opportunities emerging from this
literature are also discussed (Section 6), highlighting gaps and future
directions for AIEd research that is most promising to advance the
vision of CA.

2 The caring assessments framework

The CA framework (see Figure 1) is a conceptual framework for
adaptive assessment design which proposes that assessments can
provide a more engaging student experience while collecting more
precise information about their KSAs by better understanding who
students are and how they interact with the assessment (Zapata-
Rivera, 2017). This better understanding of students can be leveraged
to provide “caring” in terms of adaptations before, caring support
during, and feedback after the assessment (Lehman et al., 2018).

Caring support before the assessment involves the development
of student profiles that include a variety of information about the
student, from their personal characteristics (e.g., interests, beliefs,
linguistic background) to contextual information such as prior
learning opportunities (Zapata-Rivera et al., 2020). These profiles can
then be leveraged to provide students with an adapted version of the
assessment that affords them the best opportunity to engage with the
assessment and demonstrate what they know and can do. Alternative
versions of the assessment could vary from the assessment format
(e.g., multiple-choice items or game-based) to the language (e.g.,
toggle between English/Spanish) to the context of the assessment
(e.g., using different texts while measuring the same underlying
reading skills).

The student profiles that enable caring support before the
assessment also serve as the start for providing caring support during
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Caring assessment framework.
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the assessment. Caring support during the assessment will require an
integrated learner model (ILM) that considers both student and
contextual characteristics (from the student profile) and the interaction
behaviors students demonstrate during the assessment. This ILM is a
more complex learner model than is typically employed in
personalized learning and assessment tasks but draws on prior
research on various types of learner models (Zapata-Rivera and
Arslan, 2021; Bellarhmouch et al., 2023). This ILM can leverage
information from the student profile and interactions to provide
on-demand support. For example, a student might become disengaged
during the assessment and the ILM could deploy a motivational
message that has been personalized based on the student’s interests or
prior opportunity to learn within the domain (Kay et al., 2022).

Caring support after the assessment is primarily provided in the
feedback report. The goal is to provide feedback to the student that
will be easy to understand and motivate them to continue their
learning journey. This necessitates feedback reports that utilize asset-
based language (Gay, 2013; Ramasubramanian et al., 2021) and
provide context for performance on the assessment by leveraging the
information in the ILM (e.g., identifying learners’ relevant prior
knowledge and lived experiences and the strengths they demonstrated
on the assessment along with areas for improvement). This
contextualized reporting could, for example, identify if student
responses were connected to specific behavioral patterns or could
connect current performance to students’ prior experiences or
opportunities to learn to highlight progress. This contextualized
reporting can also be utilized when providing feedback to teachers,
which can then support teacher decision-making on the next
appropriate steps to support student learning and continue caring
support outside of the assessment.

The CA framework builds on several areas of prior research. The
notion of an adaptive “caring” assessment system (Zapata-Rivera,
2017) builds on AIED research on adaptive intelligent tutoring
systems that “care” as they support learning (Self, 1999; Kay and
McCalla, 2003; Du Boulay et al., 2010; Weitekamp and Koedinger,
2023). Attending to a broader set of student characteristics, contexts,
and behaviors also allows the CA framework to leverage findings from
multiple learning theories when developing “caring” supports.
Emphasis on using intra-and interpersonal characteristics and other
contextual information to drive assessment adaptation is consistent
with and can leverage models of self-regulated learning (e.g., Winne
and Hadwin, 1998; Pintrich, 2000; Kay et al., 2022). The inclusion of
a broader set of characteristics, contexts, and behaviors also extends
the idea of “conditional fairness” in assessments that use contextual
information about students’ backgrounds to adapt assessment designs
and scoring rules (Mislevy, 2018) and extends typical research on
computer adaptive assessments driven by performance and item
difficulty (van der Linden and Glas, 2010; Shemshack et al., 2021).

While the CA framework has relevance to both large-scale
summative and classroom formative assessment contexts, there is
greater potential flexibility in applying this framework to the design of
tools to be used in formative contexts, due to the emphasis on
providing on-demand “caring” support to help learners maximize their
learning and engagement during assessment tasks (Zapata-Rivera,
2017). Efforts toward realizing this framework have investigated how
students’ emotions, individual differences, and cultural contexts can
best be leveraged to provide personalized assessment experiences.
Next, we summarize this current and emerging research.
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3 Student emotions

As anyone who has completed an assessment knows, it can be an
emotional experience. However, very few assessments support
students to remain in a productive emotional state (see Wise et al.,
2006, 2019 for exceptions) or consider students’ emotions when
determining assessment outcomes (see Wise and DeMars, 2006 for
an exception). Most research on student emotions during test taking
has focused on documenting those experiences after test completion
- and have shown that the experience of different emotions are
differentially related to assessment outcomes (Spangler et al., 2002;
Pekrun et al., 2004, 2011; Pekrun, 2006). Research on the impact of
student emotions during learning activities has received far greater
attention (see D’Mello, 2013 for a review) and there are multiple
examples of personalized learning systems that leverage both student
cognition and emotions to provide feedback and guide instructional
decisions (e.g., D’Mello et al., 2011; Forbes-Riley and Litman, 2011).

In our own research on the emotional experiences of students
during interactions with conversation-based assessments we build on
prior work in both assessment and learning contexts by focusing on the
intensity of discrete emotions (Lehman and Zapata-Rivera, 2018).
When intensity was considered, we found the same pattern across
boredom, frustration, and confusion: low intensity was positively
correlated, medium intensity was not correlated, and high intensity was
negatively correlated with performance, despite no overall relationship
with performance. While it has been found that confusion has a more
positive relationship with learning than boredom and frustration (e.g.,
Craig et al.,, 2004; D’Mello and Graesser, 2011, 2012, 2014; D’Mello
etal,, 2014) and frustration a more positive relationship than boredom
(Baker et al., 2010), in assessment context it appears that the three
emotions have a similar relationship with outcomes. However, the
intensity findings for confusion, specifically, may relate to prior
findings that the partial (Lee et al., 2011; Liu et al., 2013) or complete
resolution of confusion (D’Mello and Graesser, 2014; Lehman and
Graesser, 2015) is necessary for learning. Real-time tracking of
students’ emotional experiences (states and intensity) can be leveraged
to provide caring support during the assessment as has been
successfully implemented in personalized digital learning systems.
However, integration of emotion detectors into the ILM will require
going beyond prior research as both the experience of emotions and
the ways in which those experiences are supported to promote learning
will need to consider more factors (e.g., student interest, cultural
background). In the assessment context, the use of student emotions
can be expanded to provide caring support after the assessment by
providing context for a student’s performance to both the teacher and
the student (e.g., student was confused while responding to items 2, 5,
and 7), which can allow for more informed instructional decisions. In
the CA framework, the ways in which student emotions are leveraged
to support student learning will build upon prior learning research and
will require new research efforts to ensure that emotions are
productively integrated with other individual differences.

4 Individual differences

Students enter into test-taking experiences with a wide variety of
interests, prior knowledge, experiences, attitudes, motivations,
dispositions, or other intra-or interpersonal qualities that can affect
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their engagement with and performance on educational assessments
and other academic outcomes (Braun et al., 2009; Lipnevich et al.,
2013; Duckworth and Yaeger, 2015; West et al., 2016; Abrahams et al.,
2019). For example, self-efficacy beliefs are strongly linked to academic
achievement across domains (Guthrie and Wigfield, 2000; Richardson
et al, 2012; Schneider and Preckel, 2017). Understanding how
individual differences influence performance in interactive learning
environments suggests directions for interventions or dynamic
supports (Self, 1999) based on cognitive or motivational variables (Du
Boulay et al.,, 2010) or prior knowledge (Khayi and Rus, 2019) that can
be applied in assessments.

In previous work, we investigated student characteristics that
predict performance on innovative conversation-based assessments of
science inquiry and mathematical argumentation (Sparks et al., 2019,
2022). Students’ science self-efficacy, growth mindset, cognitive
flexibility, and test anxiety (with a negative coefficient) predicted
performance on a science assessment (Sparks et al., 2019), while
cognitive flexibility and perseverance (with a negative coefficient)
predicted performance on mathematical argumentation (Sparks et al.,
2022), controlling for student demographics and domain skills.
Cluster analyses resulted in interpretable profiles with distinct
relationships to student characteristics and performance, suggesting
distinct paths for caring support within the CA framework (Sparks
et al., 2020). For example, one profile represented students with
average domain ability but relatively low cognitive flexibility, while
another reflected motivated but test-anxious students. We hypothesize
that these profiles would benefit from different supports (i.e.,
motivational messages vs. anxiety-reduction strategies; Arslan and
Finn, 2023). However, the profiles and associated supports must
be developed and validated in future research with students and
teachers to ensure that the profiles reflect, and the adaptations address,
the aspects most meaningful for instruction.

5 Cultural contexts

The prominence of social justice and anti-racist movements has
resulted in increasing or renewed interest in (socio-)culturally
responsive assessment (SCRA) practices (Hood, 1998; Lee, 1998;
Qualls, 1998; Sireci, 2020; Bennett, 2022, 2023; Randall, 2021) which
are themselves grounded in culturally relevant, responsive, and
sustaining pedagogies (Paris, 2012; Gay, 2013; Ladson-Billings, 2014).
Recent research reflects increasing attention to students’ cultural
characteristics when designing and evaluating Al-enabled instructional
systems (Blanchard and Frasson, 2005; Mohammed and Watson, 2019;
Talandron-Felipe, 2021); we can apply lessons from this work toward
digital assessment design. As the K-12 student population becomes
increasingly demographically, culturally, and linguistically diverse
(National Center for Education Statistics, 2022), educational
assessments must account for such variation, enabling test-takers to
demonstrate their knowledge, skills, and abilities in ways that are most
appropriate considering their cultural, linguistic, and social contexts
(Mislevy, 2018; Sireci and Randall, 2021). Test items can include content
reflective of situations, contexts, and practices students encounter in
their lives (Randall, 2021), which can tap into students’ home and
community funds of knowledge (Moll et al., 1992; Gonzalez et al., 2005)
in ways that foster deeper student learning through meaningful
connections to familiar, interesting contexts (Walkington and Bernacki,
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2018). Math problems assessing knowledge of fractions within a recipe
context could vary the context to align with students’ cultural
background (e.g., beans and cornbread vs. peanut butter sandwich).
Positive effects have been shown for African American students
interacting with pedagogical agents that employ dialects similar to their
own in personalized learning systems (Finkelstein et al., 2013).

Emerging work is exploring cultural responsiveness in the
context of scenario-based assessments (SBAs). SBAs are a useful
context for exploring cultural factors in assessment performance and
potential for implementing personalization within the CA framework
(Sparks et al., 2023a,b). SBAs intentionally situate students in
meaningful contexts for problem solving, providing a purpose and
goal for responding to items (Sabatini et al., 2019). SBA developers
have emphasized how scenarios can be made relevant to students
from diverse racial, ethnic, and cultural backgrounds by intentionally
incorporating contexts and content that celebrate students’ cultural
identities and integrate funds of knowledge from an asset-based
perspective (O'Dwyer et al.,, 2023). Similar work has been conducted
in designing robots for educational purposes in which students serve
as co-creators to enable cultural relevance and responsiveness (Li
etal., 2023). For example, SBA topics with greater cultural relevance
to Black students (i.e., the Harlem Renaissance) show comparable
reliability and validity but smaller group differences in performance
versus more general topics (Ecosystems, Immigration), potentially
due to Black students’ greater engagement (Wang et al., 2023). Our
current research (Sparks et al., 2023a,b) involves measuring students’
self-identified cultural characteristics to examine relationships
among their engagement and performance on SBAs, their racial,
ethnic, and cultural identities, as well as their emotions, interests,
motivations, prior knowledge, and experiences (i.e., home and
community experiences, values, and practices related to assessment
topics; Lave and Wenger, 1991; Gutiérrez and Rogoff, 2003; Gonzalez
et al, 2005). In future research, we aim to incorporate these
characteristics into student profiles and evaluate how the profiles can
be leveraged to provide a personalized assessment experience. This
combination of cultural responsiveness and personalization has been
explored in the learning context (Blanchard, 2010); however,
additional research is needed to understand these dynamics to
provide caring support within assessments.

6 Challenges and opportunities for
caring assessment

Personalization within a CA framework introduces several
challenges as well as opportunities when considering implementation
of this framework within a digital learning system. The holistic view
of students reflected in the ILM - going beyond measures of cognitive
skill or performance to incorporate emotions, motivations,
knowledge, interest, and other characteristics — requires access to
data that is not typically collected during educational assessments
(Zapata-Rivera, 2017). Contextual variables are often collected via
survey methods (e.g., Braun et al., 2009; Abrahams et al., 2019) but
could increasingly be collected by other means such as embedded
assessment (Zapata-Rivera and Bauer, 2012; Zapata-Rivera, 2012;
Rausch et al., 2019), and stealth assessment (Shute et al., 2009, 2015;
Shute and Ventura, 2013) approaches which use logfile data from the
assessment interaction and are less intrusive. For example, student
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interest could be measured by utilizing time-on-task and clickstream
behaviors, versus a survey. Such approaches may collect multimodal
interaction data (e.g., audio, or visual data) and leverage this
information in an ILM. Collection of such multimodal data
introduces the potential for privacy concerns regarding what is being
collected, where data is stored, and who has access, especially to the
extent that Personally Identifiable Information (PII) may be collected.
Policy prohibitions may prevent collection and storage of certain data
types (Council of the European Union, 2023). The importance of
ethical and secure data handling and transparency with users about
what and how data will be collected, retained, and used, is paramount,
especially for K-12 students. Thus, implementation of the CA
framework will require innovative measurement and modeling
methodologies as well as close collaboration with students and
teachers to build trust. Much like the ILM, it will be critical to
integrate these independent lines of work in new research efforts that
apply the CA framework in practice. Such integrated research is being
actively explored in the INVITE institute' toward development of
“caring” STEM learning environments for K-12 students.

A further challenge relates to the inherent tradeoffs in selecting
the key student characteristics and behaviors that should be used to
implement personalization. Variable selection requires care to ensure
that measures are reliable and appropriate, so that personalization can
be implemented along the dimensions that are most pertinent to
students’ needs. However, this challenge also inspires new research
opportunities — particularly ones that focus on students that have been
historically underrepresented in both research and educational
technology to determine what characteristics and behaviors are most
relevant for different student groups. Research that is more inclusive
and aware of the diverse experiences that students bring to
personalized digital assessment and learning experiences can support
effective variable selection. Open learner modeling approaches (Bull
and Kay, 2016; Bull, 2020; Zapata-Rivera, 2020) introduce an
opportunity to further refine CAs while building user trust by giving
teachers and students the chance to inspect and reflect on the ILM,
highlighting where the model and its interpretations should be revised
or qualified. Development of the infrastructure needed to collect
variables, classify behaviors, deploy adaptations, and continually
update a caring system requires computational modeling, machine
learning, and artificial intelligence expertise to help develop, test, and
iterate on the learner models. ILMs can be leveraged toward effective
decision cycles within the caring system that, for example, provide
necessary supports, route students to appropriate versions of
subsequent tasks, and provide tailored, asset-based feedback.

A related issue concerns teachers’ perceptions of personalization and
whether they prioritize mastery of content or embrace a more holistic
view and a need to personalize based on a broader set of emotional,
motivational, or cultural aspects. The effectiveness of CAs will rest on
their ability to effectively integrate with teacher practice by supporting
students with different constellations of strengths and challenges,
detecting for teachers the students who are most in need of their
additional attention and support. Again, this challenge offers an
opportunity for new research that incorporates teachers into the research
and development process to bring CAs into practice that are reflective of

1 https://invite.illinois.edu
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current best practices and work with teachers in achieving the shared
goal of student learning in a caring and supportive environment.

Integrating cultural responsiveness into the CA framework
introduces additional challenges. While personalization implies
treating students as individuals, culturally situated perspectives
emphasize how individual students are positioned as members of
socially-and historically-defined racial, ethnic, and cultural groups
(Gutiérrez and Rogoff, 2003). Such views acknowledge that groups
are not monolithic and that identification with the racial, ethnic, and
cultural contexts individual students experience also varies (Tatum,
2017). Adapting at the group level necessitates acknowledgment of
this individual variation as well as the potential for individuals to
identify in ways that may (not) be congruent with demographic
group membership. Demographics may intersect in meaningful ways
that impact students’ lived experiences (Crenshaw, 1989). However,
culture is embodied in participation in practices with shared meaning
and significance (Lave and Wenger, 1991; Gutiérrez and Rogoff, 2003;
Nasir et al., 2014). This implies that CA should enable student self-
identification of demographic characteristics, cultural group
memberships, and engagement in home and community practices
(i-e., in terms of their funds of knowledge). Further research is needed
to best understand how the complexity of student identities interact
and impact their learning experiences.

Intersections among students’ cultural backgrounds, knowledge,
and experiences might be leveraged to increase the relevance and
responsiveness of assessments (Walkington and Bernacki, 2018).
Meaningful co-design activities in which the knowledge, interests,
values, and experiences of students and teachers from historically
marginalized groups can be centered, celebrated, and prioritized has
the potential to result in more engaging, relevant, and valid
assessments and would support more responsive personalized designs
(O'Dwyer et al., 2023; Ober et al., 2023). Open learner models that can
be interrogated and critiqued by students and teachers will be essential
for a culturally responsive CA framework, so that student profiles and
ILMs do not reflect biases or stereotypes, that misclassifications are
appropriately corrected, and that contextual factors are considered
when interpreting students’ performance. Continued partnerships
with teachers and students are needed to maximize the benefits for
learning through connections to students’ funds of knowledge while
also minimizing unintended consequences.

7 Discussion

The CA framework can be leveraged toward personalized and
culturally responsive assessments designed to support K-12 teaching
and learning. This article outlines the current state of CA research on
student emotions, individual differences, and cultural contexts, and
highlights key challenges and opportunities for future research.
Critical issues for future research include collection and handling of
student data (characteristics, behavioral, multimodal) and associated
privacy and security concerns, selection of characteristics for learner
modeling, teacher perceptions of personalization, individual variation
and self-identification of students’ cultural identities and contexts, and
engaging students and teachers in co-design of personalized ILMs and
responsive adaptations. Research that integrates these independent
areas is needed to bring the CA conceptual framework into practice
in personalized digital assessments.
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Whether the primary aim is individual personalization or
responsiveness to students’ cultural contexts, it is imperative that
researchers engage in deep, sustained co-design partnerships with
teachers and students to ensure validity and utility for those most in
need of support (Penuel, 2019). It is also important to consider the
assessment context (e.g., formative vs. summative, group-vs.
individual-level reporting) and implications for measurement (e.g.,
comparability, scoring, interpretation) when determining how best to
apply CA in practice. CA introduces opportunities to enhance
students’ assessment experiences and to advance use of assessment
outcomes to further individuals’ educational opportunities and
wellbeing (Bittencourt et al., 2023). However, effective design and
implementation of personalized assessments is a complex endeavor,
which may necessitate new processes for designing assessments
(O’Dwyer et al., 2023). We invite other scholars to conduct research
addressing these challenges, advancing the field’s ability to provide
personalized, culturally responsive assessments.
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