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Spectral Classification of Targets Below
a Random Rough Air–Soil Interface

Arnold D. Kim and Chrysoula Tsogka

Abstract— Motivated by the use of unmanned aerial vehicles
(UAVs) for buried landmine detection, we consider the spectral
classification of dispersive point targets below a rough air–soil
interface. The target location can be estimated using a previously
developed method for ground-penetrating synthetic aperture
radar involving principal component analysis for ground bounce
removal and Kirchhoff migration. For the classification problem,
we use the approximate location determined from this imaging
method to recover the spectral characteristics of the target
over the system bandwidth. For the dispersive point target we
use here, this spectrum corresponds to its radar cross section
(RCS). For a more general target, this recovered spectrum is
a proxy for the frequency dependence of the RCS averaged
over angles spanning the synthetic aperture. The recovered
spectrum is noisy and exhibits an overall scaling error due to
modeling errors. Nonetheless, by smoothing and normalizing this
recovered spectrum, we compare it with a library of precomputed
normalized spectra in a simple multiclass classification scheme.
Numerical simulations in two dimensions validate this method
and show that this spectral estimation method is effective for
target classification.

Index Terms— Classification, dispersive targets, ground-
penetrating synthetic aperture radar, Kirchhoff migration (KM),
radar cross section (RCS) spectrum.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) equipped with
ground-penetrating radar provide a means for imaging

subsurface targets, such as buried landmines, while keeping a
safe distance from the inspected area [1], [2]. A key feature of
UAV-based ground-penetrating synthetic aperture radar is that
the flight paths can be relatively low in elevation and short in
distance, thereby allowing for site-specific imaging. Several
challenges need to be addressed, such as limited apertures,
soil heterogeneity, soil surface roughness, and measurement
noise. The occurrence of false positives, where benign objects
appear as targets in images, is especially challenging since
addressing this problem requires some sort of quantitative
imaging method to distinguish true targets from false positives.
We present here a proof-of-concept study that 1) recovers
spectral information about the target located beneath a rough
air–soil interface and 2) uses that spectral information to
classify it.
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For a general target, its far-field scattering behavior is given
by the scattering amplitude [3]. This scattering amplitude
depends on the target size, shape, and material properties.
In general, it is a function of the incident direction ı̂, the scat-
tered direction ô, and frequency f . For monostatic synthetic
aperture imaging systems, we measure only backscattering,
so measurements are limited to ô = −ı̂. Moreover, the
synthetic aperture effectively subtends only a relatively small
range of directions. Therefore, synthetic aperture imaging
measurements are extremely limited with respect to the direc-
tional dependence of the scattering amplitude. In contrast, the
frequency dependence which is limited only by the system
bandwidth may be more useful.

We have recently introduced a dispersive point target model
that explicitly incorporates a frequency-dependent scattering
amplitude with an isotropic angular dependence [4]. This
simplified model may be related to the average of the scat-
tering amplitude over the directions sampled over a synthetic
aperture. This averaged interpretation applies to a sphere or a
nearly spherical target, but may not be correct for a general
target. We expect the proposed dispersive point target model
to work when the size of the target is of the same order or
smaller than the resolution of the imaging system that can
be analyzed using an approach as in [5]. We use this model
here to investigate the potential for spectral classification of
subsurface targets.

The remainder of this letter is as follows. In Section II,
we describe the problem and specify the set of measurements.
We briefly review the imaging method we have developed that
identifies and locates targets below an unknown rough air–soil
interface in Section III. In Section IV, we give the method
we use for recovering the radar cross section (RCS) spectrum
of a dispersive point target. We then show simulation results
in Section V that demonstrate the potential for multiclass
classification using this recovered RCS spectrum. We give our
conclusions in Section VI.

II. PROBLEM DESCRIPTION

A sketch of the physical problem is illustrated in Fig. 1. As a
UAV travels along its flight path, it emits a multifrequency
signal at frequencies fm for m = 1, . . . , M , that propagates
downward. Part of this signal is reflected by the air–soil
interface (ground bounce) and the other part penetrates the
soil and scatters off of the subsurface target. The receiver
on the UAV measures both the ground bounce and scattered
signals. This procedure is repeated at various points xn for
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Fig. 1. Sketch of the physical problem.

n = 1, . . . , N along the flight path making up the syn-
thetic aperture. The measurements are collected as the matrix
D ∈ CM×N whose entry dmn is the signal measured at
frequency fm and spatial location xn . An integral equation
expression for dmn is given in [6, Sec. 4].

For the simulation results presented here, we have used
M = 41 frequencies uniformly sampling the band from
3.1 to 5.1 GHz. In addition, we have used N = 35 spatial
measurements uniformly sampling a linear synthetic aperture
of length a = 102 cm. The elevation of the platform is set
to 75 cm above the mean height of the air–soil interface.
Following Daniels [7], we use ϵr = 9 as relative dielectric
constant for the soil.

We model a rough air–soil interface using a mean-zero
Gaussian correlated random function parameterized by its
correlation length, l, and its root-mean-square (rms) height,
hrms [8]. In the simulations, we set l = 8 cm and hrms =

0.2 cm. We have shown previously that a rough air–soil inter-
face with these parameters over this frequency band exhibits
enhanced backscattering [6]. The occurrence of enhanced
backscattering indicates that the rough air–soil interface causes
significant multiple scattering. We have recently applied the
method of fundamental solutions (MFS) to solve boundary
value problems with rough air–soil interfaces [9]. This method
is closely related to boundary integral equation formulations
of the problem [6], [8] that are typically used, but is easier
to implement and accurately accounts for multiple scattering.
We have used this MFS implementation for the simulation
results that follow.

III. IMAGING

We have recently developed a method to identify and
locate targets below an unknown rough air–soil interface [6].
We briefly summarize this method and show some results that
characterize its effectiveness.

The main challenge with subsurface imaging is that ground
bounce signals dominate and obscure signals scattered by
the targets. To remove those ground bounce signals from
measurements, we apply PCA as follows. First, we compute
the singular value decomposition, D = U6V H, where [·]

H

denotes the Hermitian or conjugate transpose. We then set
a truncation level, denoted by j∗, and compute D̃ = D −

σ1u1vH
1 − · · · − σ j∗u j∗vH

j∗ .

Fig. 2. KM imaging results for different shaped targets plotted as solid orange
curves. All targets are situated below a random rough air–soil interface with
correlation length l = 8 cm and rms height hrms = 0.2 cm. PCA was used to
remove ground bounce signals using j∗ = 2. The relative dielectric constant
for all targets was set to ϵr = 2.3. The red “+” symbols in each of the plots
indicate where the imaging function attains its maximum absolute value.

Using D̃, we evaluate the Kirchhoff migration (KM) imag-
ing function

I KM( y) =
M∑

m=1

N∑
n=1

d̃mna∗

mn( y) (1)

on position y in the imaging region. Here, d̃mn is the (m, n)th
entry of D̃ and a∗

mn( y) is the complex conjugate of the signal
at frequency fm measured at spatial location xn scattered
by a nondispersive point target located at y below the flat
air–soil interface z = 0. An expression for amn( y) is given
in [6, Sec. 6.1].

The appropriate truncation j∗ is not theoretically known.
Empirically, we find that when j∗ is too small, the resulting
image produces large artifacts near the interface, but at some
truncation, those artifacts are gone and the resulting image
concentrates on the actual target. For the simulations shown
here, we have used j∗ = 2.

Fig. 2 shows plots of the absolute value of I KM given
in (1) for several different target shapes whose boundaries are
plotted as solid orange curves in each of the figures. All of
these targets have a characteristic size that is approximately
7 cm, which is comparable to the central wavelength. The
relative dielectric constant for all targets is ϵr = 2.3. Even
though the different targets have significantly different shapes,
the resulting KM images only exhibit a single peak at a
representative point. The imaging method is unable to do more
because of the limited spatial resolution of the imaging setup.

IV. RECOVERING THE RCS SPECTRUM

The imaging method provides an approximate spatial loca-
tion for subsurface targets, but no other information. Hence,
it cannot be used to characterize differences between any
two targets, thereby creating opportunities for false positives.
Moreover, measurements over the limited aperture do not
capture much variation in the directional dependence of the
scattering amplitude. For these reasons, we consider the dis-
persive point target model [4] to recover characterizing spectral
information about subsurface targets that can mitigate false
positives. A dispersive point target scatters isotropically from
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Fig. 3. Results for dispersive point targets situated below a random rough
air–soil interface with l = 8 cm and hrms = 0.2 cm. Reflectivities computed
from two circular disk targets with relative dielectric constant, ϵr = 2.3, and
radius 1.5 cm (left column) and 2.0 cm (right column) are considered. (Top
row) KM images with the true target location plotted as a black “×” and the
estimated location as a red “+”. (Bottom row) Recovered RCS spectrum after
smoothing and normalization (solid curve) compared to the exact normalized
RCS spectrum (dashed curve).

the location y0 and has an explicit frequency dependence
which we denote by ϱ( f ) and call the reflectivity. The RCS of
a dispersive point target is given by RCS( f ) = 4π |ϱ( f )|2. For
a more general target shape, this frequency-dependent quantity
may be interpreted as the average over the angles spanned by
the aperture of the frequency and angular-dependent RCS.

We seek to recover the RCS spectrum of a dispersive point
target from the measurements D̃. In the results shown in Fig. 2,
we see that we can easily recover an estimate for the target
location, which we denote here by ŷ0, by determining where
the absolute value of the KM image attains its maximum
(plotted as a red “+” symbol in each of the images). With
ŷ0 determined, we estimate the RCS spectrum through the
evaluation of

RCS( fm) = 4π

(
1
N

N∑
n=1

|d̃mna∗
mn

(
ŷ0
)
|

|amn
(

ŷ0
)
|2

)2

. (2)

For a flat air–soil interface, d̃mn ≈ ϱ( fm)amn( y0) + ηmn
with ηmn denoting the error from measurement noise, mod-
eling error, and so on. The ordinary least-squares solution to
this problem is ϱ̂( fm) = dmna∗

mn( y0)/|amn( y0)|
2. We further

reduce the effect due to noise by averaging these results over
n = 1, . . . , N . By multiplying 4π to the absolute value
squared of that average, we obtain (2).

For a nearly flat air–soil interface, (2) gives a very accurate
estimate. It is less accurate for rough air–soil interface due to
modeling error manifested as a random phase perturbations.
Those phase perturbations produce spurious oscillations in the
recovered RCS spectrum. Moreover, its magnitude will not be
accurate because this estimation does not accurately account
for the total power of the scattered signals. After applying
a smoothing algorithm to help reduce the noisy estimate,
we introduce the M-vector, v = (RCS( f1), . . . , RCS( fM)),
and consider the normalization v̂ = v/∥v∥.

Results for two dispersive point targets situated below
a random rough air–soil interface with l = 8 cm and
hrms = 0.2 cm are shown in Fig. 3. We have used the scattering

Fig. 4. Set of normalized RCS spectra used as classifiers, ŵi for i = 1, . . . , 6.

amplitude for circular disk targets with relative dielectric
constant ϵr = 2.3 to compute ϱ( f ). The left column of Fig. 3
show results for radius 1.5 cm and the right column shows
results for radius 2.0 cm. The resulting KM images are shown
in the top row of Fig. 3 for the two cases look quite different
and we note that for the bigger disk, two peaks are obtained.
In each image, the true target location is indicated with a
black “×” and the estimated one with a red “+.” The bot-
tom row in Fig. 3 shows the comparison of the estimated,
smoothed, and normalized RCS spectrum with the exact one
that has also been normalized. These results exhibit an overall
qualitative agreement with the exact RCS spectra but also
exhibit spurious oscillations. We remark, however, that the two
RCS spectra look very different from one another suggesting
the estimated RCS spectrum may be used for classification.

V. SPECTRAL CLASSIFICATION

For multiclass classification of a recovered RCS spectrum,
we consider the matrix W whose columns ŵ j for j =

1, . . . , 6 are M-vectors that are the exact RCS spectra for
six different reflectivities computed from circular disk targets.
Columns 1–3 are computed from circular disks all with radius
1.5 cm and with relative dielectric constants, ϵr = 2, 3.5,
and 5, respectively. Columns 4–6 are computed from circular
disks all with radius 2.5 cm, and with ϵr = 2, 3.5, and 5,
respectively. All of these RCS spectra are normalized by their
respective norms. We show plots of these six normalized RCS
spectra in Fig. 4.

Suppose we recover an estimated RCS spectrum, smooth it,
and normalize it using the method described above to obtain
the vector v̂. To perform a multiclass classification for this
RCS spectrum, we compute c = W T v̂. Since all vectors
involved are normalized, the entries of c satisfy 0 ≤ c j ≤ 1
for j = 1, . . . , 6. Classification is done by determining
which element of the 6-D vector c is largest. That element
corresponds to the column of W to which the recovered RCS
spectrum is classified.

To test the effectiveness of this classification method,
we simulate measurements for dispersive point targets whose
reflectivities are computed from 36 different circular disk
targets whose radii are either 1.5 or 2.5 cm and whose
values of ϵr are a random perturbation of ϵr = 2, 3.5, or 5.
To those simulated measurements, we have added noise so that
SNR ≈ 25 dB. In [4], we have shown that the estimated target
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Fig. 5. Confusion matrix for the classification of 36 different dispersive point
targets computed from circular disks whose radii are either 1.5 or 2.5 cm and
the values of ϵr are random perturbation from either ϵr = 2, 3.5, or 5.

Fig. 6. Examples of recovered RCS spectra (solid black curves) compared
with classifiers. The left plot shows a case that is classified with ŵ1, and the
right plot shows a case that is classified to ŵ4.

location using (1) is shifted slightly from the exact location,
but the recovered RCS spectrum is accurate. We assume
that the estimated target location is exact so that ŷ0 = y0
and evaluate (2). We smooth and normalize that result to
compute v̂ and then perform the classification method
described above.

We show the confusion matrix in Fig. 5 resulting from these
simulations. These results show that targets are classified into
the class corresponding to the correct value of the radius. With
respect to ϵr , all targets are correctly classified except for those
in class 6 which are classified as belonging to class 5.

In Fig. 6, we show individual examples of recovered RCS
spectra that have been smoothed and normalized (solid black
curves) compared with the classifiers (dashed curves). Even
though those recovered RCS spectra are quite noisy, they
exhibit enough behavioral characteristics to allow for success-
ful classification. The classification we have used here only
involves inner products of the recovered RCS spectrum with
the classifiers. There are much more sophisticated multiclass
classification methods available. Nonetheless, the results from
this simple classification method suggest that the RCS spectra
recovered using (2) may be potentially useful in practice.

As the number of classes increases, the vectors ŵi may
become more and more aligned with each other in which
case classification will most likely fail. We begin to see this
happening in Fig. 5 (right) where targets from class 6 were
classified as class 5. For this reason, it is important to carefully
select a few number of distinct targets (e.g., types of mines) to
use for classifiers. As long as these classifiers are sufficiently
incoherent (i.e., |ŵH

i ŵ j | ≪ 1 for i ̸= j), classification should

be possible. Then, given data corresponding to a target in
the field one could check if these data belong to one of the
classified targets or not. This approach has limitations and
classification errors may happen. Increasing the bandwidth or
using lower frequencies may help.

VI. CONCLUSION

We have developed a method for spectrally classifying
dispersive point targets below an unknown rough air–soil
interface from ground-penetrating synthetic aperture radar
measurements. The method requires three steps. The first step
relies on PCA to approximately remove ground bounce signals
from measurements. The second step employs KM using a
model with a flat air–soil interface, that is, evaluation of (1)
to locate targets in some prescribed imaging region. Because
of inherent limitations in synthetic aperture measurements, the
images produced only identify a single point for a target. Upon
using that point as an approximate location for a target, the
third step involves the evaluation of (2) to recover an estimate
of the RCS spectrum. This RCS spectrum will have inherent
errors in its magnitude because power is not accurately taken
into account when applying PCA or when using the flat
air–soil interface model. Nonetheless, we have shown here
that this recovered RCS spectrum can be successfully used
in a multiclass classification method.

Although the simulation results we present here are limited
to 2-D problems with a single dispersive point target, nothing
in the methods we have introduced is limited by these assump-
tions. PCA for ground bounce removal, KM for imaging, and
the evaluation of (2) to estimate the RCS spectrum can all
be easily extended to 3-D problems for more general targets.
For these reasons, we believe that the results shown here
serve as a proof-of-concept and indicate a strong potential
for subsurface target classification useful for dealing with
false positives in buried landmine detection problems. Future
work will focus on extending this work beyond these limiting
assumptions.
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