The VLDB Journal (2025) 34:41
https://doi.org/10.1007/s00778-025-00920-0

REGULAR PAPER

®

Check for
updates

Model reusability in Reinforcement Learning

Sepideh Nikookar'2 . Sohrab Namazi Nia' - Senjuti Basu Roy'

Received: 5 May 2024 / Revised: 27 January 2025 / Accepted: 4 April 2025
© The Author(s) 2025

Abstract

. Sihem Amer-Yahia3 - Behrooz Omidvar-Tehrani*

The ability to reuse trained models in Reinforcement Learning (RL) holds substantial practical value in particular for complex
tasks. While model reusability is widely studied for supervised models in data management, to the best of our knowledge,
this is the first ever principled study that is proposed for RL. To capture trained policies, we develop a framework based
on an expressive and lossless graph data model that accommodates Temporal Difference Learning and Deep-RL based
RL algorithms. Our framework is able to capture arbitrary reward functions that can be composed at inference time. The
framework comes with theoretical guarantees and shows that it yields the same result as policies trained from scratch. We design
a parameterized algorithm that strikes a balance between efficiency and quality w.r.t cumulative reward. Our experiments
with two common RL tasks (query refinement and robot movement) corroborate our theory and show the effectiveness and

efficiency of our algorithms.

Keywords Reinforcement Learning - Reusability of ML models - Optimization algorithms

1 Introduction

The field of Reinforcement Learning (RL) has experienced
significant advancements, making it a powerful tool for solv-
ing complex sequential decision-making problems across
various domains [1, 15, 18, 21, 22, 29, 34, 40]. The database
community has leveraged Q-learning and Deep-RL frame-
works heavily in data exploration (e.g. [5, 28, 49]), course

Sepideh Nikookar: work done while at NJIT.

The order of authors is based on their respective contributions.

B Senjuti Basu Roy
senjutib@njit.edu

Sepideh Nikookar
sepideh.nikookar @emory.edu

Sohrab Namazi Nia
sn773 @njit.edu

Sihem Amer-Yahia
sihem.amer-yahia@univ-grenoble-alpes.fr

Behrooz Omidvar-Tehrani

omidvart@amazon.com

New Jersey Institute of Technology, Newark, USA

2 Emory University, Atlanta, USA

3 CNRS, University Grenoble Alpes, Grenoble, France
4 Amazon AWS AL Ohio, USA

Published online: 12 May 2025

design [25], path planning [26], and in query optimization
(e.g., [32]). This work focuses on how to reuse pretrained
RL models to solve a new complex task optimally with-
out involving any new training. Optimality is studied from
the standpoint of quality wrt finding policy with the highest
cumulative reward. While reusability of supervised mod-
els [20, 24, 52] have been studied in the data management
community, to the best of our knowledge, ours is the first that
initiates this study for RL.

RL training is costly not only because a single training
session explores a large state-action space but also because
fine-tuning an RL model is a trial-and-error process. It is
common that reward signals need to be incorporated into
already-deployed RL models (e.g., adding a penalty in click-
through rate maximization [7]), requiring retraining from
scratch. Although many efforts have been deployed to reduce
training time [27], a medium-size RL model takes a few days
to train [30, 38, 45]. This motivates RL reusability [31, 50,
51].

Example 1 Consider a user exploring a large set of online
reviews to purchase a camera. The goal is to design an auto-
mated algorithm that guides the user to a particular target
camera (and a representative review for that camera), while
also showing other informative reviews in the process. Such
processes are addressed as data exploration tasks [5, 28, 49]
using RL. The trained model refines the original query “Cam-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-025-00920-0&domain=pdf
http://orcid.org/0000-0003-3475-8138

41 Page2of22

S. Nikookar et al.

era“ by choosing keywords, a.k.a. actions in RL, from the
following list: X = {Camera, Wide Lens, Shutter, Digital,
ISO (Sensitivity to Light), Lightweight, Affordable}.

RL is commonly modeled as a Deterministic Markov
Decision Process (MDP) [5, 28, 49]. RL offers the benefit to
perform decision-making tasks while adapting to the envi-
ronment autonomously through continuous interaction. An
MDP is defined over states, actions, and reward (formally
defined in Sect.2.1) and a deterministic MDP implies that
executing the same action at a particular state consistently
leads to the same subsequent state. This deterministic nature
is commonly assumed in practice as it implies a high degree
of predictability.

States and actions. Continuing with the same example, given
7 keywords, there are 27 non-empty queries that could be
formed using them. Given any of these queries, there is one
review that is most relevant to it and is returned. Each state
therefore represents the most relevant review given a query.
Thus there exists a total of 127 states, each of which has
a review (one additional state has no keywords hence no
reviews). The action space contains “adding” and “changing”
keywords from the aforementioned list.

Pre-trained Models. For simplicity of exposition, let us
assume that there exists two previously trained RL models in
our environment for two different tasks. The first model was
trained for task #1, to navigate the review set as quickly as
possible by selecting actions that enhance the similarity of
the current query to a representative review of a target cam-
era. The second trained model was for task #, to cover and
satisfy as many features from the keyword lists as possible
while converging to the representative review (the specific
reward functions are defined in Example 2.

New task. We are given a new task 7. with the goal of
exploring a sequence of reviews that maximize coverage of
desirable features while minimizing steps to reach the rep-
resentative review. In this case, the reward function of 7. is
simply a sum of the reward functions of #; and #,. Linear
combination of reward components is quite common in the
literature [5, 25, 26, 28, 49].

Our goal and approach. We intend to solve 7. optimally
without any new training. We do not propose a new RL algo-
rithm for that. Rather, we would like to use the pretrained
models of 7; and #;. And more generally, we would like
to leverage models that are pretrained with arbitrary reward
functions.

Reusability of supervised models [20, 24, 52] has been stud-
ied in data management for entity resolution, or deep transfer
learning. In the Machine Learning literature, meta-learning
and transfer learning [25, 26, 31, 35, 36, 38, 39, 50, 51] study
similar challenges for model reusability but without any opti-
mality guarantees. Typical meta-RL algorithms assume the
ability to sample from a pre-specified task distribution, and

@ Springer

learn to efficiently solve new tasks drawn from this distri-
bution. However, meta-RL is designed to only accelerate
training time of a new task, but it cannot fully eliminate the
need for any new training. Transfer learning is another widely
used technique [25, 26, 35, 36, 38, 39] to reuse previously
acquired knowledge. However, it does not enjoy theoretical
guarantees [44].

We take a data management lens to understand what type
of metadata of pretrained models need to be captured, how
to store them effectively, and design efficient algorithms to
reuse them for producing optimal policy for a new task.
Challenges. We are interested in designing an optimal policy
(one that has the highest cumulative reward) with prov-
able guarantees for a new task without any training. Our
approach must be generic, i.e., itis applicable to both Tempo-
ral Difference Learning (TDL) such as Q-learning [46] and
SARSA [38] as well as to Deep-RL[3] considering any num-
ber of arbitrary reward functions. Our first challenge is the
design of an expressive and lossless model to represent and
store the Q-values of pre-trained policies.

The next obstacle emanates from the update equations of
TDL that heavily rely on the discount factor y to capture the
future reward of a (state, action) pair. As we shall demon-
strate, the presence of a non-zero y makes it impossible to
exactly calculate the Q-values of the new task without train-
ing. At the same time, a non-zero y also makes the future
reward component of the Q-value update formulae recursive,
meaning, the future reward of a (state, action) has recursive
dependency on all future (state, action) pairs, until the end
state is reached. This last challenge makes it hard to provide
provable guarantees without training from scratch.
Formalism (Sect. 2). Our overarching contribution is to
present acomputational framework that captures fine-grained
metadata of pre-trained RL models to obtain an equivalent
policy for a new task. Equivalence is enforced by ensuring
that the cumulative reward of the obtained solution is no
smaller than the highest cumulative reward of the policy when
it is trained from scratch. Our first contribution is to identify
the generality and expressiveness of the proposed framework,
i.e., under what assumptions the MDP (state, action, deter-
ministic vs probabilistic transition, reward function structure,
finite vs infinite horizon, discount factor) and for which RL
approaches this is applicable. We design an expressive graph-
based model augmented with lean data structures that capture
fine-grained training information.

Algorithmic and theoretical contributions (Sects. 3 and 4).
We first develop an exact linear time algorithm ExZeroDis-
count for generating an optimal policy for a new task when
the discount factor y = 0. This algorithm produces a policy
whose cumulative reward is no smaller than the cumulative
reward of applying a policy trained from scratch. For y # 0,
the Q-value of a (state, action) has a component related to
future reward, i.e., the next state that (state, action) leads

Model reusability in Reinforcement Learning

Page3of22 41

to. This dependence is recursive: in a nutshell the future
reward component of Q-value of a (state, action) depends
on the Q-values of all future state-action until the goal state
is reached. This reward depends on how many times state-
action pairs are visited during training, a critical piece in
Q-value calculation, which cannot be computed exactly for
the new task without training. We show that it is possible
to provide lower and upper bounds of future rewards. We
also demonstrate that this limitation poses a serious com-
putational bottleneck. We prove that in the worst case one
may have to sift through an exponential number of paths
to find the optimal policy for a new task. The recursion
involved in the Q-update formulae requires us to design
solutions that start from the goal state and backtrack, while
producing bounds of Q-values for each (state, action) pair.
These bounds are used to prune unnecessary computation and
design the exact solution ExXNonZeroDiscount. In Sect. 4.1,
we develop principled algorithms that further tighten these
bounds. We show that both ExZeroDiscount and ExNonZe-
roDiscount admit theoretical guarantees that they produce
optimal policy with the highest cumulative reward without
any new training. For applications that benefit from balancing
quality and efficiency, we develop a parameterized algorithm
Greedy-k in Sect.4.2. Its behavior depends on the value of
an input parameter k where higher values result in a slow-
down but improved cumulative reward for the new task and
vice versa. In Sect. 3.3, we analytically study the generality
of the proposed framework in handling reward functions of
the new tasks which are composed by scaling reward function
of pre-trained tasks by arbitrary positive weights. We prove
that our solutions remain valid and unaffected by the intro-
duction of arbitrary yet constant weight factors. The intuition
towards that is that the adjustment involves multiplying the
corresponding part of the reward function by a weight fac-
tor only scales the reward component but does not alter the
fundamental structure of the optimal policy. As a result, the
computed optimal policy remains unchanged. The theoretical
guarantee of the framework only applies to TDL approaches
(that have Q-tables) and linear functions and works well in
practice for the other cases. Adaptation to Deep-RL works
well in practice, yet it does not provide theoretical guarantee,
because these algorithms usually learn a neural network for
estimating Q-values that are opaque, arbitrary, and could not
be expressed in a closed form.

Experiments (Sect. 5). Our evaluation tackles four goals: (i)
analyze the quality of the designed solutions, (ii) examine the
generality of the designed solutions by scaling different com-
ponents of the reward functions by arbitrary positive weights
and study quality and speed up, (iii) analyze speed up, and
(iv) investigate memory requirements and processing time
of our graph-based data structure. Several essential metrics
are considered, including recall, pruning percentage, speed
up, memory usage. We vary RL-pertinent parameters (dis-

count factor, state and action space size, number of reward
functions), study them for two different use cases: query
refinement and robot movement, and investigate Q-learning,
SARSA, and Deep RL. We use an Amazon reviews dataset
for data exploration and synthetic dataset for robot move-
ment. The former relies on large language models (LLMs),
namely gpt-3.5-turbo, in an innovative fashion to generate
refined queries. We design appropriate baseline solutions,
including transfer learning based ones.

‘We find that our solutions enable up to a 50x speedup com-
pared to training from scratch. Even in cases where training
is very fast, our speedup is 3x. Experimental analyses on
the generalized version of the reward function demonstrate
speed up between 5 to 25 times compared to training from
scratch. We also observe that our proposed exact solutions
achieve 100% recall confirming our theoretical guarantees,
and Greedy-k has the ability to strike a balance between qual-
ity and efficiency. Our experimental analyses demonstrate
transfer learning techniques do not yield effective results in
our settings. These empirical findings are consistent with the
theoretical understanding of transfer learning. The primary
motivation behind our work was to minimize unnecessary
training, and, therefore, the transfer learning approaches
implemented here do not involve any additional training
phases. Consistently, these methods fail to perform effec-
tively, which aligns with the general consensus that transfer
learning typically requires extra training to achieve mean-
ingful improvements. Consistent to our theoretical analysis,
we finally demonstrate that our proposed solution always
achieves 100% recall when the different components of the
reward functions of the new task is scaled with arbitrary pos-
itive weights.

Section 6 presents the related work, we outline some open
research problems and related discussions in Sect. 7, and we
conclude in Sect. 8.

2 Preliminaries, data model, and problem
2.1 Preliminaries

Definition 1 (Deterministic Markov Decision Process (MDP)
with Multiple Reward Functions) Our problem setting assumes
a fully observable Deterministic Discrete Markov Decision
Process (MDP) with a finite horizon and a collection of /
reward functions, defined by a triplet {S, A, R;}: State space
S is a set of states of the environment; Action space A is a set
of actions from which the agent selects an action at each step;
A set of [reward functions R; where the i-th reward function
(represents task #;) R; denotes the reward of an action a; from
state s; to s/, R; = r(s;, a;, s}).

@ Springer

41 Page4of22

S. Nikookar et al.

Camera

Lightweight,

g3
s %
AR

<sua] DI

&
\)

%,
%,

=
C

.
)
;
‘*w
&
R

Wide Lens,
Shutter,

Fig. 1 A subset of environment for Example 1, that contains a start
state Ssare (Rog) a target state Syqrger (R115). The dotted path shows an
optimal policy for task 7; and the dashed path shows the one for #,. The
optimal policy of the new task 7. is shown in solid

Using Example 1 (refer to Fig. 1), S has size 27, and pos-
sible actions are A = {Change Word, Add Word}.

Example 2 (Reward Functions) There are two tasks #; and
t> in Example 1. 7] explores reviews to find the one that is
most similar to the target review (representative review for a
target item) Ssarger.

R,(1)(s,a,s") = Cosine(s, Siarger)—Cosine(s’, Siarger),
where the reward captures how a “chosen review” at s’ is
more similar to Sy than s. f aims to cover as many key-
words (features) as possible during review exploration to
reach target review Srgger.

v(s,a,s',x) = 1,if sim(s"*, x) > 0.5

= 0, otherwise
R/(2)(s,a,s") =) v(s,a,s',x),x € X
If similarity between features in s and each x € X is
larger than 0.5 it is assumed that the review associated with

s" contains x” and v(s, a, s’, x) = 1, 0 otherwise. The reward
function of the new task 7. is simply R;(1) + R;(2).

2.1.1 Reinforcement Learning (RL) approaches
RL [38] is a popular approach for solving MDPs, where an

agent acts on its environment and receives a reward for each
action it takes, and optimizes the total cumulative reward.

@ Springer

There are four main elements of an RL process: a policy,
a reward signal, a value function, and, optionally, a model
of the environment. Our technical report [2] contains further
details on each.

A policy is a mapping from perceived states of the environ-
ment to actions to be taken when in those states. In some cases
the policy may be a simple function or lookup table, whereas
in others it may involve search process. A reward function
defines the goal of an RL problem. On each time step, the
environment sends the RL agent a reward value incurred from
the action performed at that time step. The agent’s sole objec-
tive is to maximize the total reward it receives over the long
run. The reward signal is the primary basis for altering the
policy. While the reward signal conveys immediate goodness,
a value function delineates long-term desirability. The fourth
element of RL is a model of the environment, enabling the
system to draw conclusions about its behavior. For instance,
when presented with a state and an action, this model has the
capability to anticipate the subsequent state and the associ-
ated reward. In contrast, our focus are on simpler model-free
approaches that rely explicitly on trial-and-error methods.
Below, you will find a formal definition of ’policy’ and ’opti-
mal policy’.

Definition 2 (Policy) A policy m : S x A — [0, 1] of an
RL agent maps the probability of taking actiona € A in state
s € S, thatis, (s, a) = Pr(a; = a|s; = s).

Definition 3 (Optimal Policy w*) A policy 7* is optimal iff
its expected cumulative reward is greater than or equal to
the expected cumulative reward of all other policies 7. The
optimal policy has an associated optimal state-value function,
as well as an optimal action-value function, or optimal Q-
function, as defined below:

0*(s,a) < max; Oz (s, a)

In other words, Q* gives the largest expected return achiev-
able by any policy for each possible state-action pair.

We consider the following RL approaches.

Q-Learning [38]. It is a popular RL method that finds the
optimal action selection policy in an MDP. It utilizes a
Q-table to store the expected cumulative rewards for each
(state, action) pair. By means of an iterative process that
balances exploration and exploitation, Q-Learning continu-
ally updates Q-values by considering observed rewards. This
enables it to make informed decisions and maximize long-
term rewards.

0(s,a,s") < Q(s,a) +a[R + y max 0(s',d") — Q(s,)]
(1)

where o € [0, 1] is the learning rate that determines how
much the agent adjusts Q-values based on new experiences

Model reusability in Reinforcement Learning

Page50f22 41

and y € [0, 1] is the discount factor which holds signifi-
cant importance in shaping the agent’s learning process and
decision-making strategy.

Discount factor y . This factor represents the relative weight
attributed to future rewards compared to immediate rewards.
This parameter is incorporated into the Q-value update rule,
where it determines the extent to which the agent values
long-term consequences when selecting actions. A higher
y value encourages the agent to prioritize distant rewards,
promoting strategic decision-making over extended time
horizons. Conversely, a lower y value leads to more myopic
decision-making, prioritizing immediate gains over long-
term benefits. Properly choosing y is crucial for achieving
optimal learning outcomes, as it influences the trade-off
between exploration and exploitation, the convergence and
stability of the algorithm, and the agent’s risk sensitivity.
Thus, y plays a pivotal role in shaping the behavior, adapt-
ability, and performance of Q-learning agents across various
environments.

SARSA [38]. Another RL algorithm, SARSA operates sim-
ilarly to Q-Learning but follows an on-policy approach. It
considers the current policy when determining the next action
and updates Q-values based on the subsequent state and
action pair as follows:

Q0(s,a,s) < Q(s,a) +a[R+yQ(s',a") — Q(s,)] (2)

Deep RL [19, 38]. Deep RL combines RL with deep neural
networks to handle complex tasks and large state or action
spaces, enabling learning directly from raw sensory data
without manual feature engineering. Various techniques exist
to train policies to solve tasks with Deep RL algorithms (i.e.,
model-based vs model-free), each having their own bene-
fits. To be consistent with approaches based on Q-tables, we
study model-free Deep RL, where a policy 7 is learned using
aneural network Q-function Q (s, a) that estimates the future
returns taking action a from state s.

2.2 Data model and problem definition

Tasks and Reward Functions. We consider a set of [tasks,
each of which is defined over the same Deterministic Markov
Decision Process, and each having its own reward function.
Reward function of task # has a closed form described as
R;(i).In Example 1, there are two tasks part of the same MDP
and each with its own reward function given in Example 2 in
Sect.2.1.

Pre-Trained Models M, of Task ¢#;. Each task is trained
for € episodes using TDL approaches such as Q-learning
and SARSA resulting in a pre-trained models M) and a
task #;. M, represents the collection of policies obtained
in training. As an example, the model of task #; in Example 1
determines actions to reach the target review while minimiz-

ing the number of explored reviews. The pre-trained model
My = {n(ltl), ”(2”)’ ...} for task #; encompasses all possi-
ble strategies or rules that one could follow to explore reviews
and reach the most similar review to the target review.

It is to be noted that TDL approaches such as Q-learning
and SARSA train an agent in the environment, and the Q-
table (lookup table) captures the maximum expected future
rewards for each action at each state. The Q-function then
represents the expected return for taking an action in a state
following the model.

Q Table Q;, of Task ¢;. The representation of a pre-trained
model is in the form of its Q-table. The Q; represents
the expected future rewards associated with taking specific
actions in different states within the environment specific to
task #;. By exploring Q,, through different traversal methods,
such as selecting actions based on the highest Q-value or fol-
lowing a stochastic policy, multiple policies can be derived
tailored to task #;. These policies reflect varied strategies or
decision-making approaches that enable the agent to effec-
tively pursue its objectives within the context of task ;.
Pre-Trained Models M. The set M = { My, M), - - -,
My} represents all pre-trained models for all / tasks. As an
illustration, the pre-trained models M = {M,), M)}
in Example 1 represent the learned strategies and actions
acquired through training. Specifically, M) consists of
policies tailored for finding the review that is most simi-
lar to the target review. M ;,) encompasses policies focused
on selecting reviews that cover as many features as possible
while exploring the review set.

Definition 4 (Cumulative Reward R (r;)) of a policy m())
Given a policy 7(;), its cumulative reward is the sum of
rewards the agent receives from the actions it chooses to
perform.

In Example 1, the cumulative reward associated with policy
7;, 18 defined as the total sum of rewards obtained when
looking for the reviews that are most similar to the target
review. In essence, this cumulative reward quantifies how
effectively the agent performs ¢ by evaluating the success of
its actions in achieving the goal of reaching the target review.
Optimal Policy n(";l_) and Cumulative Reward of Task 7;.
A policy n(’z) for task #; is optimal, if its expected return is
greater than or equal to that of all other policies ;) € M
for all states. The optimal policy has an associated optimal
state-value function and an optimal action-value function
(i.e., Q-function). According to the Bellman equation [38],
an optimal policy rr(";l_) maximizes its cumulative reward. In
Example 1, n(’jl) is the ideal strategy for finding reviews sim-
ilar to the target review. It is selected based on its expected
return, ensuring it outperforms all alternative policies ()
for all possible states. The cumulative reward of #; repre-
sents the total expected reward that can be achieved when
following the optimal policy 71(’;1). This cumulative reward is

@ Springer

41 Page6of22

S. Nikookar et al.

essential for evaluating the effectiveness of the chosen strat-
egy and quantifying the agent’s performance in successfully
completing the task.

Definition 5 (New Reward Function/Task) A new reward
function R;(c) associated with a new task ¢., is added to
the MDP, and is represented by a linear function of m exist-
ing functions R;(c) = f(R;(i{) £ R;(j) ... £ R;(m)). From
this point on, we will use new task and combined task inter-
changeably to refer to 7.

Linearity Assumption. The reward for the new task must
be a linear function of m < [existing reward functions.
This assumption is key to providing theoretical guarantees. In
Example 1, the reward for task ¢, is the sum of the rewards of
t1 and tr, denoted as R;(¢) = R;(1)+ R;(2), where R;(1) and
R;(2) represent the rewards for tasks #; and #,, respectively.

Problem 1 (Optimal policy for 7. without training.) Given t,
with reward function R;(c) and given all pre-trained models
of | tasks, M= {M,), ..., M)}, the objective is to find
an optimal policy for task t. that maximizes its cumulative
reward without the need for additional training for t.. The
reward function oft. is R;(c) = f(R;(i)XR:(j) ... £R;(m))

In Example 1, we have two different sets of pre-trained
models, M, for reaching the target review, and M)
for maximizing feature coverage. Our goal is to discover
the optimal policy for the new task 7. with reward function
R:(c) = R:(1) + R;(2) by leveraging what has already been
learned through the pre-trained models M) and M). To
solve our problem, we need to address the following cases:

— As shown and proved in Lemma 1, to compute a path
for 7, with the highest cumulative reward without any
training, where R;(c) = f(R;(@) = R¢(j) ... £ R;(m)),
it is not sufficient to only consider the optimal policies of
those tasks. This yields to the question of capturing M
(Sect.3.1).

— Solve Problem 1 when y = 0 (Sect.3.2.1)

— Solve Problem 1 when y # 0 (Sects.3.2.2 and 4).

3 Proposed solution framework

Similarly to classical TDL algorithms, to solve a new task 7.,
we need to quantify the maximum expected future rewards
for each (s, a). The challenge however is that since 7. has not
been trained yet, the Q-table of 7. is simply not available. We
therefore need to reproduce the Q-table of ¢, using M.

@ Springer

3.1 Capturing M

We first demonstrate why storing M is not trivial. We then
explain how to store M, such that the Q-table of #. could be
reproduced in a lossless manner.

Lemma 1 Given t. and R;(c) = R;(i) + R;(j), the optimal
policy 71(”;0) for t. cannot be obtained only from the paths of
71(’;[) and 71(“:,,).

Proof (sketch.) The lemma states that even when the reward
of a new task 7. can be expressed by simply adding up the
rewards of two pre-trained tasks #; and #;, the optimal policy
of . cannot always be constructed solely from the paths pro-
duced by the optimal policies of #; and ¢;. The proof relies on a
counterexample. In Fig. 1 the cumulative reward of 7T<*r.) =38
(resp. 71(“;2) = 20 and n(”;c) = 26) is denoted by the dotted
(resp., dashed and solid) path. It is easy to notice that the the
solid path contains a state that is neither present in the dotted
nor in the dashed.

We refer to Eqgs. 1, 2 and note that the Q-value of every
(state, action) contains immediate reward and marginal
increase in the Q-values between (s’, a’) and (s, a) (where
s’ is the next state). The second component has a recursive
dependence on the number of times s’ is visited during train-
ing. Hence, either the Q-table of 7. is obtained by training ¢,
from scratch or from the Q-tables of other pre-trained tasks.
The key observation is that there does not exist a formal rela-
tionship between the number of times a state is visited in both
cases. This potentially incurs different marginal increases in
Q-values between (s', a’) and (s, a). In fact, it is easy to
construct a counter-example to that end (refer to Table 2 for
details).

To estimate the Q-table of 7. in a lossless manner, one
has to store the updated Q-value of every (state, action) pair
of every task #;. We represent this as a triplet (#;, a, g5 4.5'),
where the first element denotes the task id, the second element
represents the action, and the third element is the Q-value
associated with the (state, action) pair (s, a), consistently
leading to s” in deterministic MDPs.

Graph Creation to Store M. M is stored as a directed
attributed graph G (S, &), where edges are labeled. Each state
in S is a node in G. For each (s, a,s’), an edge between
(s,s") is created with (t;, a, g.4.¢). Clearly, multiple edges
may exist between (s, s’), because the same (s, a, s’) could
be obtained with different #; with different Q-values, and
multiple actions are possible. This generates the edge set £
of G(S, £). Algorithm 1 contains the pseudocode.

Space and Running time. G(S, £) incurs negligible pro-
cessing time as it is created during training itself. The space
required to store G(S, £) is (|€1+|S|). In Examples 1 and 2,
this process produces the graph illustrated in Fig. 2.

Model reusability in Reinforcement Learning

Page70f22 41

Table 1 Table summarizing our

key notations Symbol Description
€ # Episodes
l # Pre-trained tasks
R;(.) Reward function of task ¢
L Optimal policy of ¢
M All policies of ¢
I All policies of all / tasks

fe
Ri(c) = f(R (i) £ ... & R, (m))

New task

t.’s reward is a linear function of m < [pre-trained tasks

Algorithm 1 Creating G (S, £) to Store IT

Algorithm 2 Algorithm ExZeroDiscount

Require: S, Action Set A, R, €
Initialize G(S, &) = {S, 9}
for each task ¢t do
fori < 1toedo
while s # 5504/ do

Observe the current state s
a < argmaxyaecAR(s,a,s),r < R(s,a,s)
update Q(s, a) based on Equations 1, 2
e <<1,a,q4s5a,s >
E «—{EJe}

s <~

3.2 Algorithms for solving t,

Given a new task 7. whose reward is a linear combination
of m different reward functions for which policies are pre-
trained in M and stored in G(S, &), we are now ready to
describe our algorithms for solving 7.. The primary challenge
is to take the original scaffolding of TDL algorithms in an
effort to construct the Q-table of 7. from G (S, £) in alossless
manner.

To that end, we study two distinct cases: Algorithm ExZe-
roDiscount is designed when the discount factor y = 0,
whereas, Algorithm ExNonZeroDiscount handles the more
complex scenario of non-zero discount factor y. Our algo-
rithms exhibit different mathematical properties, requiring
significantly different logic with a zero discount factor (y =
0), the update rule of Q-values are simple, they only depend
on the immediate reward of each (s, a). We note that a zero
discount factor scenario is not superficial: when the end goal
of the agent is unknown at the beginning (e.g., discovering an
unknown destination in a mission-critical application where
the agent only knows it reached the end goal when it sees
it), the Q function must rely on the immediate reward only,
making y = 0.

Both algorithms are designed using two primary steps (A)
and (B): (A) Q-table reconstruction. The goal is to recon-
struct the Q-table of 7. from G (S, £). (B) Optimal policy
computation for 7. Given a start and end state for 7., do for-
ward look-up and find the optimal policy with the maximum

Require: 7., R;(c), G(S,), Ssiarr and sgoar Of t¢

§ < Sstart; Wy) = D

for each (s,a, s’) do
0. (s,a,s") < ZR,(i)eR,(c) 01 (s,a,s")

§ < Sstart

while s # 5404 do
{s',a} < argmaxyyc(s—s) vaea Q1. (s, a,s")
n(’;L_) <~ {n(’;L_) — (s,a)}

s <« s;
return
(te)

cumulative reward. We shall demonstrate in the next section
that while achieving both of these steps is computationally
easy in ExZeroDiscount, it becomes highly expensive for
ExNonZeroDiscount.

3.2.1 Algorithm ExZeroDiscount.

We first provide the insights behind the design of ExZeroDis-
count. The main intuition is the following - (A) Q-table
reconstruction. With a zero discount factor, the Q update
rules are purely greedy and depend only on the immediate
reward of a state-action. (B) Compute optimal policy for 7.
Given the re-constructed Q-table, it is computationally easy
to exactly compute the aggregated cumulative Q-values of
every (s, a) of t. using the formula expressed in Eq. 6, when
y = 0. Therefore, the optimal policy of 7. is guaranteed to
follow the path that has the highest aggregated Q-value for
every state-action pair starting at sgq+ Of 7, and ending at
Sgoal of t..

Consequently, given G (S, £), ExZeroDiscount com-
putes the aggregated Q-value of each (s, a) considering the
Q-values of the m reward functions that 7.’s reward is defined
with. After that, the algorithm identifies the path with the
highest cumulative Q-value greedily. This path then emerges
as the optimal policy for #.. The first loop in Algorithm 2 does
Q-table reconstruction and the while loop in the algorithm
produces the optimal policy with a single greedy pass.

@ Springer

41 Page8of22

S. Nikookar et al.

Table 2 Q-tables of 71, 7 and 7. of Examples 1 and 2 after 4 episodes, « = 0.1,y = 0.9

State/action t 153 te

Change Word Add Word Change Word Add Word Change Word Add Word
Roe 0.199 0.199 0.788 - 1.18 -
Rg 0.199 - 0.823 - 1.185 -
Rie - 0.199 - 1.15 - 1.23
Rog - 0.199 - - - -
Rug 0.1 0.1 - 0.958 - 1.54
Ry7 - 0.1 - - - -
Rz 0.2 - - - - -
Rg> 0.109 0.1 - - - -
Riis - 0.199 0.597 0.588 0.4 1.16
Rios 0.1 - 0.588 - 0.4 -
Roo - 0.1 - 0.398 - 0.3
Ri16 - 0.199 - 0.398 - 0.891
Ri13 - 0.1 - 0.38 - 0.3
Rin 0.188 - - - - -
Ri24 0.296 - 0.398 - 0.889 -
Ri19 0.271 - 0.38 - 0.813 -
Ryis - - - - - -

The first (resp., second and last) two columns represent Q-table of 71 (resp., > and #.). It is easy to notice that the Q-values of (s, a) of 7. are not
easily relatable to those of #| and >

Digital Shutter
(t1,€,0.199) (t1,€,0.199)
Camera ;. ¢ 0.788) (t3,C,0.823)
Ros E— Rg I Rie
(1,1,0,0,0,0,0) - | (0,0,0,1,0,0,0) ! (0,0,1,0,0,0,0)
. - L4
g si g_ T 1(t1,A4,0.199)
H g H
= £1(t1,4,0.199) = £ i1 (tA1.15)
=g =K H
=V z @ \ 4 * Wide Lens
Rog Rug . Gamera Rg7
(1,1,0,0,0,1,0) 01,1,0000) | (¢,,¢,0.1) (1,1,0,0,0,0,1)
Z T & HIL H =z
g nom ! .] I0g=
£5¢ i®Aa0199) kR | €401 (t1,4,0.1)} 55 S
- 2 E i . .) 2 5 E (t2,4,0.958) PEE S
Ead e Lightweight, Wide Lens, = & 3 | D5 E S con
S \ 4 Shutter Shuter 2 VYV VW \ 4 RS
Camera .
Ri1z | Rgz Camera Ri14 |(¢2,€.0.597) Rio4 [—— Rog
(1,1,1,0,0,00) | (¢,,¢,0.2) (1010010 | (¢, ¢,0.109) | (1110010 | WideLens (1,1,0,1,0,0,0) | Wide Lens, (1,1,0,00,1,1)
E’ l:;gn s : £, = HE | Digital Camera Affordable I ; gé
= g E g :(t1,4,0.1) =& 8 g ; '(tl,A,0A199) Camera 1 § E_ z8
ﬁ.:gs H §_§_G H *(tz,A,O.SBS) (t1,4,0.1) = * e 3—'35
gr20 y @ \ 4 (240398 V¥ = 25 5
Ri1g Ri16 Riq
(1,1,1,0,1,1,0) (1,1,1,0,1,0,0) (1,1,1,0,0,0,1)
»
-} H -] (t1,4,0.T) = 1 »L g
£8 . _ - §x= £ (t1,4,0.199) LN .
SEEES5 imaoy TEE9E Itz 4,0.398) 4038 ;| CESEE
%EE%"E: Eéa"s HI (t0,€,0.271) HEE-E-E R3S
SRCIZESHSR - - t,,C,0.296 1.C,0. - Sgws 3
S \ 4 {' Vvy fti,c,o.39sg (t2,€,0.38) VvV _s=" 7
R (t1,€,0.118) [7 7 il eeeeaeand Roo e R
£ T Riz4 == 119 [o 115
(A111010) | WideLens, | (1111100) —p| (1L,1,1,0,111) »| (11,10011)
Shutter, ‘Wide Lens, Wide Lens,
Digital, Shutter, Shutter,
ISO Camera Lightweight Lightweight,
ISO Camera Affordable
Camera

stored information obtained during training for #; and #,, respectively.
The optimal policy of 7. is shown in solid. The Q-values are obtained
using a learning rate @ = 0.1, a discount factor y = 0.9

Fig. 2 The sub-graph G'(S’, &) € G(S, &) representing Example 1.
The graph stores labeled information on each directed edge of the form
(ti, a, qs.q.s) and the updated query. The dotted and dashed paths show

@ Springer

Model reusability in Reinforcement Learning

Page9of22 41

On Examples 1 and 2, Algorithm ExZeroDiscount pro-
duces the solid pathin Fig. 1 as the optimal policy with reward
26.

Running Time of Algorithm ExZeroDiscount. Algorithm
ExZeroDiscount requires O(m x |£|) times to process the
for loop and O(|S|) times to compute the while loop. The
running time is thus dominated by O(m x |£]).
Theoretical Claims. When y = 0, the update equation
(Egs. 1 and 2) for Q-values for all (state, action) pairs sim-
plifies to:

O(s,a) < (1 —a)Q(s,a) + R 3)

Training has to run for € episodes for each task. When, y = 0,
the Q-value of a state-action (s, a) of a task that has been
visited n < € times, could be captured in a closed form, as
Lemma 2 describes.

Lemma 2

0"(s,a) < (=)' 'R[(e — D"+ (=D 1;
V(s,a) e S x A @)

Proof Let us consider Q-Learning as our chosen approach
with the following Q-function (SARSA could be proved anal-
ogously):

O(s,a) < Q(s, a)+a[R+y maxy Q(s',a’) — O(s, a)]
)

When y = 0, the Q-function simplifies to Q(s,a) <« (1 —
a)Q(s, a)+a R. We proceed with a proof by induction. When
(s, a) is visited for the first time, the Q-value is updated as
Q'(s,a) < «R, since all Q-values are initially set to 0.
Now, with n = 1 in Equation (4):

0'(s,a) = (D" "R[(@ = D'+ (=D' N
=Rle —1+1]=aR

Assuming (s, a) has been visited (n — 1) times, its Q-value
is:
Q" !(s,a) < (=)' R[(@ =)"+ (=1)"?]

Now, we can calculate the Q-value when (s, a) is visited n
times (the same steps apply to SARSA):

0"(s,a) = (1 —a)0" ! (s,a) + aR
=1 - a)[(=)"*R[(e — D" + (=D 2]]
+ aR
= (=D(@ — D[(=D)"*R(a — D""!

+ (=D R] + aR
= (D" 'R@ D"+ (1 —-a+a)R
= (D" ' R[(a@ — D" + (=1)""]

Theorem 1 If the discount factor y is set to zero in both
Q-Learning and SARSA algorithms, the Q-value of the new
task t. for all (state, action) (s, a) pairs will be obtained as
follows:

Q1. (s,a) = Qi (s,a) £ Qp;(s,a) £ -+ £ Oy, (s, a); V(s,a) (6)

Proof Using Lemma 2, the Q-value for eachindividual policy
after n visits can be expressed as follows:

07 (s,a) = (=D 'R, (D[(e — D" + (=D
Q7 (s,a) = (=) "Ry(Ple = D" + (=" "]

0! (s.a) = (=)' Ry(m)[(@ —)" + (=)]

For the combined task, the Q-value after seeing (s, @) n times
is:

0] (s,a) = (D" " (R,() £ R,(j) £...
+ Ry (m)[(@ — D" + (=1)"7"]

Now, combining Q-values of all m policies gives the fol-
lowing:

Qi(s,a) £ Q] (s,a) £ -+ Q] (s, a)
= (=" 'R (D — DT+ (=1
+ (D" 'R (D@ — DT+ (=17

£ (DR (m)[(e — DT+ (=)
= (D" (R G) £ R (j) £+

£ R(m)[(a — 1)+ (="

= Q] (s,a)

Theorem 2 Algorithm ExZeroDiscount returns an optimal
policy JT(*;C) with the highest cumulative reward for t..

Proof (sketch.) We omit the details due to lack of space. We
note that when y = 0, the Q-values of every (s, @) depends
on the immediate reward which ExZeroDiscount could cal-
culate exactly. Then the forward pass on the Q-table will
produce the policy with the highest cumulative reward.

@ Springer

41 Page 100f 22

S. Nikookar et al.

3.2.2 Algorithm ExNonZeroDiscount

When y # 0, the problem becomes more intricate due to the
fact that Q-values of any (s, a) of #. is no longer solely reliant
on immediate rewards. They now depend on the Q-value of
the next state s’, which in turn depends on the how many
times s’ has been visited during training and how much of
Q-values it calculated. In fact, this dependency propagates
recursively and there is no easy way to calculate any (s, a)
of #.. (A) Q-table reconstruction. It is impossible to derive
the exact Q-value of (s, a) for z.. What remains still possible
is to provide two boundary values for each Q-value of (s, a)
(the lower- and the upper-bounds), within which the actual Q-
value of (s, a) resides. Subroutine BackTrackDAG (Line
1 of Algorithm 3) is designed to enable that. (B) Com-
pute optimal policy for 7.. Subroutine ForwardLookUp
first computes all candidate policies that could potentially
be an optimal policy for z.. Unfortunately, this step is also
computationally intensive for ExXNonZeroDiscount, since in
the worst case there could an exponential number of paths
to evaluate to determine the optimal policy of 7. with the
highest cumulative reward. ExXNonZeroDiscount (Line 2 of
Algorithm 3) then computes cumulative rewards for each of
those policies and selects the one with the highest cumulative
reward.

Algorithm 3 Algorithm ExNonZeroDiscount
Require: 7., R;(c), G(S, £), Sstarr and Sgoal of 70
{LB,UB} < BackTrackDAG(G, t¢, Re(c))
”(*rc) < argmaxvyy eCandForwardLookUp(Ssare, Sgoal» LB, UB)

Algorithm 4 Subroutine BackTrackDAG
Require: 7., R;(c), G(S, &)
s’ < end; s < backtrack(s’,a)
while s # g4+ do
for each (s, a) do > Iterate over each (s, a) pair leading to s’
LBg(s,a) < ComputeLB(G, tc,Re(c))
UBg(s,a) < ComputeUB(G, te, Re(c))
LB < LB|JLBg(s,a)
UB < LB JUBg(s,a)
s/ <5
return LB, UB

Subroutine BackTrackDAG. Algorithm 4 admits ¢, R;(¢),
G (S, &) and produces the Q-values of every (s, a) for ¢..
That, however, is not immediately possible. We refer to the
Q-value update (Egs. 1 and 2) of SARS A and Q-learning [38],
and note that, except for the end state, the Q-value of every
(state, action) has a recursive dependency on the Q-values
of future ones. This indeed is a key observation as it allows
us to reason on the values of the Q-table of t. from G (S, £).

@ Springer

Algorithm 5 Subroutine ForwardLookUp
Require: 7., LB, UB, G(S, &), Ssiarr and sgoq; of 1.
s <= Sgiart; Cand < ;3 Policy m < @
for cach (s,a) do
while s # 5¢04 do
if UBp(s,a) < LBo(s,d’),a’ € {A— a} then
prune edge (s, a)
else
T <« {mr — (s,a)}

s <5
Cand < {Cand\J 7}
Policy m < @
S <= Sstart

return Cand

Thus, BackTrackDAG involves a backtracking mechanism
that starts at the node of G that does not have any out degree
(meaning this node is the end state during training), calcu-
lates its Q-value, and then uses that to estimate the lower-
and upper-bounds of Q-values of every (s, @) that immedi-
ately precede the goal state (that means, these latter states
are reached before the goal state during training). The back-
tracking continues, until the start state is reached. However,
to estimate the bounds of Q(s, a) accurately, it is important
that (s, a) and any successor of (s, a) do not have any cyclic
dependency. That is, the subgraph of G (S, £) that is used to
solve ¢, is a DAG and does not contain cycles.

We refer to Fig.2 and note that for the running exam-
ple, this process starts at the end node Rjis, and calculates
the lower and upper bounds of Q-value of (state, action)
[R113, Add Word], then it calculates Q-value of (state, action)
[Rog, Add Word], and so on. If an (s, @) has a successor state
s” with multiple out-degrees (such as [Rag, Add Word] leads
to Ri14 which has two successor nodes Rjo4 and Rji¢), the
Q-values of all the successors need to be computed before.

Lemma 3 BackTrackDAG produces correct lower and
upper bound of Q-values for every (s, a) only when the sub-
graph of G(S, &) that is involved in computing Q-values of
tc is a DAG and does not contain any cycle.

Proof Here we discuss why the subgraph of G(S, &) that
is involved in computing Q-values of 7. must be a DAG
(directed acyclic graph) to produce correct lower and upper
bound of Q-values. Refer to Fig.3 below and notice that
because of an extra action Drop Word allowed in the envi-
ronment, now there exist a cycle between the states Rs4g and
Ri14.

The subgraph of G(S, &) that is involved in computing
Q-values of f. must be a DAG (Directed Acyclic Graph)
to produce correct lower and upper bound of Q-values.
Without that being satisfied, the framework still extends
but the solution does not withstand any optimality guaran-
tee anymore. Refer to Fig.3 below and notice that because
of an extra action Drop Word allowed in the environment,

Model reusability in Reinforcement Learning

Page110f22 41

Digital Shutter
............. » ...-.-.....-...»
Ros R — Rg e — - = Ryg
(1,1,0,0,0,0,0) (0,0,0,1,0,0,0) (0,0,1,0,0,0,0)
g g H
35 CERE
g § :] g Wide L
28 e 25 ide Lens
z hd A 4 z v * Camera
R98 R48 | R97
(1,1,0,0,0,1,0) (0,1,1,0,0,0,0) = == == =— ¥ (1,1,0,0,0,0,1)
&5 H & A1l LI
£gg S5 gl i 1iggE
Qg8 g3 1 H-Ro
« 3 E . . . w3 B & | i85
2554 Lightweight, Wide Lens, 3 Z & | Hl
Z A\ 4 Shutter Shutter 5 IVy A A 4 L]
Camera | p | Camera | p | | p. hasssssssssssss
Ryp LI > R, el Rue L Rios [I7I°C Rgo
(1,1,1,0,0,0,0) (1,0,1,0,0,1,0) (1,1,1,0,0,1,0) Wide Lens (1,1,0,1,0,0,0) | Wide Lens, (1,1,0,0,0,1,1)
g . %} < b 2 L Digital Camera Affordable HL AZw k.
CR - R = H Camera H g o
SEEE i SEos i B4 -4
PR £ g & H 223~
R $2L23 g '*-:g_g»
$43C y £4-0 \ 4 vvY =22
Ri1g Ri16 Rii3
ALL011,0) (1,1,1,0,1,0,0) (1,1,1,0,0,0,1)
4= H 2o = : HIL PE o, S
§¥5g5E ¢ SEEos P EEEgE
=2E£ 8 o5 B® E : E33E2
S ESBE ! SE228 s : 22z
S==R S 25870 il SELEe
;.zMQUv 22 v vy EEETE
3 5 K
Rizz | Riza Lireeeeeiiannd > Rito |veeeessenend »| Rus
(1111010 [“WideLens, | (1111100) [Tl ALL0LLY) [\igepens, | (110011
Sh.u.tter, Shutter, Shutter,
Digital, Lightweight Lightweight,
ISO Camera 1SO Camera Affordable

Fig. 3 The graph G(S, &) representing Example 1 in the paper
with one additional change. Just for the purpose of this example,
let us assume that the agent is allowed to take 3 different actions:
A = {Change Word, Add Word, Drop Word}, and two tasks with their
own reward functions are defined and described in Example 2. The

now there exist a cycle between the states Rag and Rji4.
Refer to Fig.3 again and note based on the procedure
BackTrackDAG, the algorithm starts at the end node Rj5,
and use that to calculate the lower and upper bound of Q-value
of (state, action) [R113, Add Word], use that to calculate Q-
value of (state, action) [Rgg, Add Word], and so on. If an
(s, @) has a successor state s’ with multiple out-degrees (such
as [Rug, Add Word] leads to Rj14 which has two successor
nodes Rjgs and Ry, in order to calculate the Q-value of
that (s, a) the Q-values of all the successors need to be com-
puted before. Following this process above, [R1¢, Add Word]
leads to R4g which has two successor nodes Rg7 and R4
whose Q-values are to be used to calculate the Q-value of
R43. Now Rj14 depends on R4g, Rips and Ry - however,
R4g (which is [R16, Add Word]) depends on R4 and Ry7,
leading to a cyclic dependency. It is to be noted that until
the order of resolution is determined between R4g and Rj4,
BackTrackDAG can not proceed accurately. It is also easy
to notice that the subgraph of G(S, £) that is involved in
computing Q-values of ¢, must be a DAG in order to have
an unique order of resolution for every (state, action) in the
environment.

Lower and Upper bounds of Q-values. There are non-
trivial challenges involved in BackTrackDAG. As men-
tioned before, the exact Q-value of (s, a) cannot be calculated

Camera

graph stores labeled information on each directed edge of the form
(ti,a,qs.a;s). The dotted and dashed paths show stored information
obtained during training for #; and #,, respectively, which are removed
from this figure for the ease of exposition

for t.. What is possible is to calculate a lower and upper
bound of Q-values for each (s, @) and use that to produce z.
efficiently. There are trivial ways of computing these bounds
for every (s, a). For example, L Bg (s, a) could be calculated
considering the worst case, i.e., the next state s’ is visited only
once - whereas, U B (s, a) could be estimated by consider-
ing the best case, that is, the next state s” has been visited
all € times. In Sect.4, we describe further opportunities on
how to estimate these bounds in a tighter manner. Subrou-
tine BackTrackDAG returns these L B, U B values for each
(s, a) for t..

Subroutine ForwardLookUp. This subroutine (refer to
Algorithm 5) takes the lower and upper bounds (LB, UB)
of Q-values returned by BackTrackDAG and given Sy
and sgo4 Of 1., it returns all possible candidate policies Cand
based on Q-values (refer to Algorithm 5). It starts at S
and makes a forward traversal to find every path that starts
at Sgqe and ends at s.,q on G (S, £). Each path corresponds
to a policy & (refer to Algorithm 5). To make the process
further efficient, it prunes out some unnecessary (s, a). If the
U By (s, a) of a(state, action) is smaller than the lower bound
of Q-values of all other actions a’ that could be made at state
s, it deems (state, action) to be unnecessary and prunes that
(s, a) (basically it decides there are alternative better ways
to transit from state s than taking action a). The algorithm

@ Springer

41 Page120f22

S. Nikookar et al.

-—— -
Sstart sgaal

Fig. 4 # possible policies ForwardLookUp returns could be expo-
nential to the number of diamonds ©(2!5!) at the worst case even when
there are only two actions

ends when all possible policies are computed between sg¢
and Seng-

Lemma4 ForwardLookUp can return an exponential
number of policies in the worst case, even when only two
actions are involved.

Proof (sketch). Refer to Fig.4 where policies in Cand may
form a diamond graph and the number of policies could be

O2!51), precisely 2‘31%1.

Theorem 3 Algorithm ExNonZeroDiscount returns an opti-
mal policy n(”;c) with the highest cumulative reward for t..

Proof (sketch). The proof could be done by construction.
It can be shown that BackTrackDAG indeed returns the
bounds of Q-values of every (s, a) of ., where the Q-value
of (s, a) of ¢, is within those bounds (if 7. is trained from
scratch). It can also be shown that ForwardLookUp returns
all possible policies in the Q-table of #. when training from
scratch. It is hence easy to infer that one of those policies that
ForwardLookUp returns will have the highest cumulative
reward and hence be the optimal.

Running time of ExNonZeroDiscount. As proved in
Lemma 4, ForwardLookUp may return an exponential
number of policies in the worst case, even when there are
only two actions. Therefore, when there are | A| possible
actions and |S| possible states, in the worst case it could
take O(|.A|'®!) time to run.

3.3 More general case of combining linear reward
functions

In this subsection, we consider a more general case of the
reward function defined earlier (Definition 5).

Definition 6 (New Reward function: Weighted linear func-
tion of existing functions) A new reward function R;(c)
associated with a new task ¢., is added to the MDP, and is
represented by a weighted linear function of m existing func-
tions R, (¢) = f(w; X Ry ({)E£w; X R (j) - - L wy X Ry (m)),
where {w1, w2, w3, ..., wy,} are positive constant weights.

Please note that Sect. 3 studies a special case of the prob-

lem where wi = wy) = w3, =... = w,; = 1.

@ Springer

In the general case, the solutions presented in Sect.3 for
both y = 0 and y # 0 remain valid and unaffected by the
introduction of arbitrary yet constant weight factors. Specifi-
cally, the adjustment involves multiplying the corresponding
part of the reward function, R;(i), by this weight factor w;.
This modification scales the reward component but does not
alter the fundamental structure of the optimal policy. As a
result, the computed optimal policy remains unchanged, irre-
spective of the value of y, as long as the reward terms are
consistently weighted.

To elaborate, the inclusion of the weight factor w; influ-
ences the magnitude of the rewards but does not impact
the underlying decision-making process that determines the
optimal policy. In reinforcement learning and decision the-
ory, policies are derived based on the relative comparison of
different actions and states, typically maximizing the cumu-
lative expected reward. Since the weight factor merely scales
the reward terms by a constant factor, the ranking of actions
and the resulting optimal policy remain the same.

Thus, whether y = 0 (which corresponds to a myopic pol-
icy focusing on immediate rewards) or y # 0 (which reflects
a long-term perspective by considering future rewards), the
optimal policy remains unchanged when the reward function
is weighted appropriately. This robustness demonstrates that
the optimal policy is primarily determined by the structure of
the reward function and the decision-making model, rather
than the absolute scale of the rewards themselves.

Theorem 4 Algorithms ExZeroDiscount and ExNonZeroDis-
count return an optimal policy n(*tc) with the highest cumula-
tive reward for t., even when R;(c) = f(w; x R,(i) £w; x
R:(j) -+ £ wy X Ry(m)), where {w1, wy, w3, ..., Wy} are
positive constant weights.

Proof (sketch): The graph structure G(S,E) (described
in Sect.3.1) still stores the updated Q-value of every
(state, action) pair of every task #; as a triplet (#;, a, g5 4.5')>
where the first element denotes the task id, the second element
represents the action, and the third element is the Q-value
associated with the (state, action) pair (s, a), consistently
leading to s’ in deterministic MDP

With a zero discount factor (y = 0), ExZeroDiscount
takes G (S, &) as is - since Q-values of every (s, a) depends
on the immediate reward, ExZeroDiscount simply now
scales the i-th component of the reward function by weight
w;. After that, to compute optimal policy n(’;c), ExZeroDis-
count performs a forward look-up and finds the optimal
policy with the maximum cumulative reward. The rest of
the proof is the same as that of Theorem 2.

With a non-zero discount factor (y # 0), given G(S, &)
ExNonZeroDiscount scales Q-values of task 7 (i) by its cor-
responding weight w;. The rest of the proof is same as that
of Theorem 3. It can be shown that BackTrackDAG in
ExNonZeroDiscount returns the correct bounds of the Q

Model reusability in Reinforcement Learning

Page130f22 41

start —p itr
starttr = 4 sr=1

|

51 2 S3
s itr=4

53"'= B

(b) Calculating upper bound of iterations

(a) Calculating lower bound of iterations

Fig.5 Producing tighter LB 4) and U B(s 4) for e =4

values of every (s, a) of f., where the Q value of (s, a)
of 1. is within those bounds (if ¢, is trained from scratch).
Since ForwardLookUp returns all possible policies in the
Q-table of 7, when training from scratch. It is therefore easy
to infer that one of those policies that ForwardLookUp
returns will have the highest cumulative reward and hence
be the optimal.

4 Efficiency opportunities

In Sect.4.1, we explore efficiency opportunities in Algo-
rithm ExNonZeroDiscount. We refer to our discussion in
Sect.3.2.2 and describe how to produce tighter bounds of Q-
values of (s, a) for t. (as exact Q-values cannot be obtained
without training). In Sect.4.2, we present a parameterized
algorithm Greedy-k that, depending on &, strikes a trade-off
between running time and quality of the produced solution.

4.1 Tighter Q-value bounds estimation

With a non-zero discount factor y # 0, we have presented
ExNonZeroDiscount in Sect. 3.2.2 that leverages lower and
upper bounds of Q-values of (s,a) for f. in its design.
By investigating the Q-function update formula in Egs. 1
and 2, the following could be proved: lower bound and
upper bound of Q-value only varies in one aspect, which
is the number of times a state is visited during training (we
call that itr). A pessimistic estimate gives a lower bound
of Q-values of each (s, a), whereas, an optimistic estimate
gives an upper bound. Section3.2.2 presents a preliminary
discussion on this, where the lower bound (upper bound)
is designed considering the minimum (maximum €) num-
ber of iterations Minltr (MaxlItr). In this section, we
leverage the structure of G (S, £) to further make these num-
bers tighter, i.e., Minltr (MaxlItr) of each (s, a) bigger
(smaller). Tighter bounds enable pruning more edges during
ForwardLookUp.

4.1.1 Calculating tighter Minitr

Algorithm 6 calculates Minltr of each edge and requires
backtracking, just like BackTrackDAG. It admits G (S, &),

t. and its reward function, and then it assigns number of
iterations (itr) to each s through backtracking. The reason
is that to find Minltr of (s, a) one has to first rely on the
itr of 5. Once each state has an iteration number assigned, it
produces Minltr of each edge (s, a) through backtracking,
starting at the end state and finishing at the start state. During
this process, it keeps track of the number of times s and its
next state s’ are visited by considering in-degrees and out-
degrees of nodes in G (S,).

Algorithm 6 Algorithms MinItr
Require: 7., R;(c), G(S, &), €

for s € Sdo
if s = Sgoa1 OF 5 = Syars then
Sltr «— €

else if 5,4, cannot be reached by removing s then
sitr <€
else
ST max(InDeg(s), OutDeg(s))
s\« Sgoal
while 5" # 54, do
s < backtrack(s’, a)
for each (s, a, s’) do
if OutDeg(s) =1 & InDeg(s) > 1 then
Minltr(s,a) < s''"
elseif InDeg(s’) =1 & OutDeg(s") > 1 then
Minltr(s,a) < s"'"
else
Minltr(s,a) < 1
s/ < s

return Minltr(s, a)

Using the example in Fig. 5a, this process assigns si” =2,
because that is the maximum of in-degree and out-degree
of s4, whereas, si" = € = 4, as removing s; will make the
process not reach end state. Similarly, edge s4 — end is
assigned value 2, as s4 has two incoming edges, but only one
outgoing edge, therefore the aforementioned edge gets the
same Minltr as sy'".

Running time. Minltr is computed in BackTrackDAG

without incurring any additional time.
4.1.2 Calculating tighter Maxitr

The default of adding Max Itr istoadd € toevery (s, a). Like
Minltr, MaxItr also backtracks from the end state and
follows the same traversal over G(S, £). However, unlike
Minltr, it does not need to compute the iteration number
for states. This is because we assume that the maximum
number of iterations per state is €. If a (s, a) leads to sgoas,
then MaxItr of that (s, a) becomes € — [InDeg(sgoar) — 1].
If that is not the case, algorithm finds the sum of MaxItr
of each of the outgoing edges from s’ (next state of what
(s, a) leads to), it then differentiates between two cases. If
the sum is smaller than e, it assigns MaxItr of that (s, a)

@ Springer

41 Page 14 0f 22

S. Nikookar et al.

HEH Greedy-k (k=1)

100

80
: 5 60
] <
40
=\ 20
B\ o M. .

128 256 512

2048

un ‘ I ExNonZeroDiscount

Average Recall

\ c
‘ BN TL
100
80
60
i+
40
20
0 . L
128 256

512
State Size [S]

5 1024
State Size |S|

(a) Q-Learning on Query (b) SARSA on Query

Fig.6 Recall results demonstrate that our exact solutions generalize to
different applications with 100% recall, where transfer learning base-
lines perform poorly (in many cases, recall stays at 0), with Greedy-k

to be Y MaxItr — [InDeg(s") — 1]. If the sum is greater
than €, then the algorithm intends to differentiate between
two more cases: if in-degree of s’ is 1, then it sets MaxItr of
(s, a) to €. However, if in-degree of 5" is > 1, it sets MaxItr
of (s, a) toe —[InDeg(s") — 1]. The rationale lies in how the
number of visitations of a state-action pair (s, @) is tied to the
maximum number of iterations, €, and to the in-degree of the
next state s’ (InDeg(s")). However, when a state s’ has mul-
tiple incoming edges, it implies that s” has been reached at
least once through those alternative edges. This is the reason
we subtract InDeg(s’) from €.

Using the example in Fig. 5b, this process sets MaxItr of
s4 — end and s3 — end both to 3, whereas, the sum of
MaxItr of s3 and s1 is found to be 5 and 6, respectively.
However, in-degree of s3 = 1, whereas, that of 51 = 2.
Therefore,it sets MaxItr of sy — s3 and s3 — s4 to be 4
and 2 respectively.

Running time. Max/Itr could be calculated inside
BackTrackDAG without incurring any additional time.

4.2 Parameterized algorithm Greedy-k

In scenarios where the state and action space are exponen-
tially large, getting an exact solution becomes impractical.
To address that, we introduce a parameterized algorithm
Greedy-k that is designed to strike a balance between
efficiency and quality. The algorithm is designed with a
parameter k, where a small value of k£ does a greedy (shal-
low) look up over G allowing faster running time, and vice
versa. When k = | A|, the algorithm yields an exact solution.
It takes G that stores Q-values of different reward functions
used to express R(c), and performs the classical inference
steps of the RL algorithms for a given input k. It starts at
Sstare and retains the top-k actions (based on the Q-values of
each (s, a)) as k transitions from s at each state s. The pro-
cess ends when it leads to sg04. Once this process is over,

@ Springer

ExNonZeroDiscount
Greedy-k (k= 1)
TLran

& Tl

ExNonZeroDiscount

Average Recall
Average Recall

T R

-
i
&
i
i
I
E
i
3

64 100 144
State Size [S|

State Size [S]

(d) SARSA on Grid

(¢) Q-Learning on Grid

(k = 1) having lower recall as expected. Greedy-k (k = 2) has the
same recall as ExNonZeroDiscount, and omitted for lack of space

it computes the cumulative rewards for each of the unique
paths and outputs that as the optimal policy which has the
highest cumulative reward.

Using the Q-tables of the example in Table 2, when k = 1,
Greedy-k will leverage the Q-tables of #; and t, indepen-
dently and greedily select the top-1 transition from each state
to reach the goal. As an example, if it starts at Rg, it will
change one of the word in the current query based on the
highest Q value of #, and go to Rj¢. From there, it will fol-
low Q-value of #; and add a new word to the current query
to reach R4g. This process will continue until the goal state
is reached.

Running time. Greedy-k could take, in the worst case,
O(k'S) time to run. When k = 1, it takes linear time in
the size of the state space.

5 Experimental evaluation

We formulate four to empirically validate the effectiveness
of our approach: (RQ1) Quality of our solution compared
to the ground truth (ie, training policies from scratch) in
terms of cumulative reward and recall. We implement sev-
eral baselines, including transfer learning based solutions and
compare them against our proposed solutions.(RQ2) Gener-
ality of our proposed solution, where we change the original
reward functions by scaling them by arbitrary and constant
positive weights. We also implement DQN, a deep RL based
solution to demonstrate that our proposed framework remains
effective. (RQ3) Scalability considering speed up and prun-
ing effectiveness. (RQ4) Time taken to build the graph data
model and the memory usage of our graph data model com-
pared to training from scratch. We focus on two applications
(interactive query refinement and robot movement on a grid)
to demonstrate generality of our framework. We keep the
default number of reward functions to 2, and vary the num-

Model reusability in Reinforcement Learning

Page150f22 41

Hl DOQN Greedy-k (k = 1) Query
120 7772 DQN Greedy-k=1 (k = 1) Grid

100 %
T 80
P
~
"]
on
S 60 %
>
-
40
20
Il l 1 L A I /\

256 36 512 64 1024 100 2048 144

State Size |S|

128 16

Fig. 7 Recall of DQN Greedy (k = 1). It does not achieve 100%
recall as expected

ber of reward functions whenever appropriate. We dive deep
on the above RQs in the subsequent subsections. We also
refer the reader to our technical report [2] for more details.

5.1 Experimental setup

Experiment Settings. All algorithms are implemented in
Python 3.11.1 on a MacOS Monterey 12.16.3 with 2.7 GHz
Quad-Core Intel Core i5 Processor and 8 GB RAM. Our code
and data are publicly available.! All numbers are presented
as an average over 10 runs.

5.1.1 Evaluated applications.

We design two applications: Data exploration through Query
Refinement (Query) and Grid World (Grid).

Query Refinement. The process takes a keyword query, a
large set of Amazon Reviews (Electronics category),” and a
set of X categorical features (e.g., battery life, fitness capa-
bilities) as inputs. The goal is to guide the user in the review
exploration process, while interactively refining the query,
such that additional “similar” reviews could also be explored.
During training, a representative review for a target item is
selected to measure the quality of explored reviews. In order
to obtain the refined query or to produce similarity between

! https://github.com/PolicyReusablityInRL/Policy-
Reusablityhttps://github.com/PolicyReusablityInRL/Policy-
Reusablity.

2 http://jmcauley.ucsd.edu/data/amazon/.

a current review and the “target” review, a Large Language
Model (LLM) is prompted.? Both query and all reviews in the
dataset are embedded into a vector space using the Hugging
Face Transformers Library [48].

Process of Query Refinement. At each step, it first calculates
the review (denoted as the “chosen review”) that is most
similar to the current query based on the cosine similarity
between the query vector and the review vectors. Then, given
the feature space, the LLM is prompted to produce a simi-
larity score between each feature and the “chosen review”.
If the produced similarity score exceeds 0.5, the feature is
considered to be present in the “chosen review”; else it is
considered absent. Now the LLM is prompted to either add a
new word to the current query, generalize the existing query
word, or change the current word order to come up with a
new query ¢’, and the aforementioned process repeats. The
process ends when the “chosen review” is similar enough to
the “target review”.

State Space of Query Refinement. The state space is designed
by considering all possible 2X feature combinations. A
review belongs to one of these 2X states, given the feature
set. Possible interactions are the set of actions (add word,
generalize, change word order) to refine an initial query.
Tasks in Query Refinement. Two tasks are pre-trained:
1 to find closeness between the “chosen review” at s’
and the “target” R,(1)(s,a,s’) = Cosine(s, Siarger) —
Cosine(s’, Starget)); t2 to satisfy as many features as pos-
sible: R;(2)(s,a,s") = > {Lyylsim(s™,x) > 05,x € X
}. The LLM tries to get to the next state s’ represented by
a “chosen review” which satisfies as many of given X fea-
tures as possible. The reward function of the new task 7. is
R:(1) + R,(2).

Grid World. It is a synthetic environment where the states
are grid cells and the actions are moving directions. Two
tasks are pre-trained: #1: find the shortest path to a grid
cell marked as “target”, f;: collect as many gold as possi-
ble in the grid. The reward function of ¢ is R;(1)(s, a, s') =
dis(s, Starget) — dis(s’, Siarger) Which captures the marginal
gain the move (s, a) leads to in terms of being close to $;q/ge;.
We use the Manhattan distance. The reward function of 7, is
Ri2)(s.a.5") = Y{ls,,|dis(s', sgoa) < 2 & Sgoia & 8)
where g is a set of already visited golds. R;(2) aims to finds
the number of new golds the transition could give rise to con-
sidering the immediate neighborhood of s” up to 2 hops. The
reward function of the new task ¢, is simply R;(1) + R;(2).

5.1.2 Evaluated algorithms

We evaluate the following algorithms.

3 We leverage gpt-3 . 5—turbo in this experiment.

@ Springer

https://github.com/PolicyReusablityInRL/Policy-Reusablity
https://github.com/PolicyReusablityInRL/Policy-Reusablity
http://jmcauley.ucsd.edu/data/amazon/

41 Page 16 of 22

S. Nikookar et al.

250 250

BN ExNonZeroDiscount
EEH Originallmpl
(T Greedy-k (k= 1)

BN ExNonZeroDiscount
EE Originallmpl
(0 Greedy-k (k= 1)

200 200

g

2

3

B
B

]
£
\A
B\
]
3

3
5
5
S

H

Average Cumulative Reward
Average Cumulative Reward

ﬁ
i)
i
123

.
18
it
i
&
§
i
I

@
2
@
2

B\
024

=
0

E

&

i

i)
=N
\«
\
i

i

i

)

i

0

\\| W AR
256 512 2048 128

State Size [S|

5

512
State Size [S|

(a) Q-Learning on Query (b) SARSA on Query

Average Cumulative Reward

2048

w
g
H
w
H
3

B ExNonZeroDiscount
EHH Originallmpl
250 I Greedy-k (k= 1)

Bl ExNonZeroDiscount
I Originalimpl
0 Greedy-k (k= 1)

9 »
2 by
H 2

Average Cumulative Reward
o
2

&
il
&
g
i
&
i
i
1
i

;
E
:
o
|
i
5%
it
fit
:
1

i
il
e
i
2
i
g
£
il
i
i
i
BH .
0

100 144 64
State Size [S|

(d) SARSA on Grid

64
State Size [S)|

(c) Q-Learning on Grid

Fig.8 Cumulative rewards increase with increasing environment size and ExNonZeroDiscount ’s reward is never lower than implementation from
scratch. Greedy-k (k = 1) works well at times, but gives 0 reward when it gets stuck and can not reach the goal

— Transfer Learning [25, 26]. The reward function of
the new task is applied on the optimal policy obtained
from a pre-trained task, integrating it as part of the new
task’s reward structure. This allows the algorithm to uti-
lize knowledge from the pre-trained task while adapting
it to the new environment. As an example, T L4 refers
to the optimal policy obtained for the gold collection task
in the Grid. While this policy maximizes rewards in the
original task, its cuamulative reward is recalculated based
on the new task’s objectives, ensuring that transferred
knowledge remains relevant and contributes effectively
to the learning process.

— Training from Scratch (Originallmpl). Using a par-
ticular RL approach, perform training then inferencing.

— ExZeroDiscount, ExNonZeroDiscount, and Greedy-k.

The aforementioned algorithms are implemented with Q-
learning [46], SARSA [38], and DQN [3], a Deep-RL
algorithm that approximates the Q-table using a neural net-
work. Therefore, training from scratch for DQN involves
obtaining the optimal policy given the reward function. Con-
trarily, our approach DQON Greedy for DQN, outputs one
optimal policy based on each reward function, then enumer-
ates all possible paths based on combining them, and outputs
the one with the highest cumulative reward. Consequently,
DON Greedy is a heuristic that works reasonably well in
practice.

Varied parameters and defaults. We vary the size of state
space |S| (default=128 for Query and default = 64 for
Grid), size of action space |.A| (default=2), discount factor y
(default=0.99), number of reward functions [(default=2,
R:;(¢) = R;(1)+ R;(2)), k in Greedy-k(default=1). When m
is varied, the different reward functions are created through
linear transformation of R;(1) and R;(2) and R,(¢) =
R:/(1) £ R;(2) = R;(m) (chosen randomly). Learning rate
is set to o« = 0.1 and number of episodes is set to € = 1000.

@ Springer

5.1.3 Measures

We report several measures. Cumulative reward is the sum
of reward the RL agent accumulates over a specific trajec-
tory. Recall of an algorithm A is computed by calculating
the cumulative reward of the optimal policy produced by
A and comparing it with the optimal policy when trained
from scratch. If the cumulative reward of the policy obtained
from A is not smaller than that of the latter, a recall of 1 is
assigned, a 0 is assigned otherwise. Speed up of an algorithm
A is calculated as follows: (training + inference time) if done
from scratch, divided by the running time of A. Pruning
percentage is studied only for our designed exact solutions
ExZeroDiscount and ExNonZeroDiscount, and is:

1 #paths processed by the algorithm < 100
#paths processed by the baseline

Memory usage is calculated in MB. Preprocessing time is
presented in seconds.

5.2 Experimental results
5.2.1 Results on RQ1—AQuality

We explore the quality of our solution compared with the
ground-truth, i.e., learning RL policies from scratch. Fig-
ure 6 shows the recall results for the Grid and Query
applications across the following algorithms: ExNonZe-
roDiscount, TL, Greedy-k. Each algorithm is reported for
Q-Learning, SARSA. Figure7 displays the recall results for
Deep-RL for Greedy-k algorithm. Our first and foremost
observation is, consistent with our theoretical analysis, our
designed exact solutions ExZeroDiscount, ExNonZeroDis-
count always achieve 100% recall. The baselines perform
poorly in general except in a few cases, and Greedy-k
achieves lower recall consistent to our theoretical analysis.
Regarding the average cumulative reward, Fig. 8 presents a

Model reusability in Reinforcement Learning

Page170f22 41

140 140

M ExNonZeroDiscount

B Greedy-k (k=1)
TLrus

3 TLoos

WM ExNonZeroDiscount
B Greedy-k (k=1)
S TLow

120 120
100

3 80

2 6
40

20

128 256 512 1024 2048 128 256 512 1024 2048
State Size [S] State Size [S|

(a) Q-Learning on Query (b) SARSA on Query

ExNonZeroDiscount [BN ExNonZeroDiscount
T Greedy-k (k= 1) EE Greedyk (k= 1)
TLews S TLow

23 TLooa

B TLlow

Average Recall

State Size [S| State Size S|

(¢) Q-Learning on Grid (d) SARSA on Grid

Fig. 9 Recall results demonstrate that ExNonZeroDiscount generalize for linear reward combinations of individual reward functions with any
weights («, B = (2, 3)) with 100% recall, where transfer learning baselines perform poorly, with Greedy-k (k = 1) having lower recall as expected

1401 1401

M ExNonZeroDiscount
Greedy-k (k=1)

120

Average R

60

40

20

3

1024 2048 128 256 sz 1024 2048
State Size [S|

(b) SARSA on Query

128 256 sz
State Size S|

(a) Q-Learning on Query

Average Recall

6 00 144
State Size S|

(d) SARSA on Grid

State Size |S|

(¢) Q-Learning on Grid

Fig. 10 Recall results demonstrate that ExXNonZeroDiscount generalize for linear reward combinations of individual reward functions with any
weights (o, 8 = (0.5, 1)) with 100% recall, where transfer learning baselines perform poorly, with Greedy-k (k = 1) having lower recall as

expected

subset of results that are representative. We generally observe
an increase in cumulative reward when we increase the size
of the environment, which is intuitive. We also observe that
ExNonZeroDiscount never has a smaller cumulative reward
than Originallmpl, i.e., training from scratch. For Greedy-
k, the cumulative reward is generally lower for k = 1 and
becomes identical to ExNonZeroDiscount when k = 2.
This last observation is again consistent with our theoreti-
cal analysis, when all 2 actions are considered in Greedy-k,
it becomes identical to the optimal solution.

5.2.2 Results on RQ2—Generality

In this section, we present the generality of the proposed
solution framework. As two key representatives, we consider
the Grid and Query refinement applications and change the
reward function by considering arbitrary positive weights.
We also have demonstrated how the proposed solution
behaves when the underlying RL framework is DQN based
RL. The proposed framework is designed to generalize to
any arbitrary reward function or reinforcement learning (RL)
architecture. However, the optimality guarantee is specifi-
cally examined for Q-table-based RL methods, focusing on

140 140

B DON Greedy-k (k= 1) Query

BN DON Greedy-k (k = 1) Query
~~71 DQN Greedy-k (k = 1) Grid

DOQN Greedy-k (k = 1) Grid

ecall

Average R

0
128 16 256 36 512 64 1024 100 2048 144 12816 25636 512 64
State Size |S| State Size |S|

(a) a,8=(2,3) (b) a,8=(05,1)

1024100 2048 144

Fig. 11 Recall for DON Greedy-k (k = 1) under different reward
weights. As expected, it does not achieve 100% recall

new tasks with reward functions that are linear functions of
the reward functions from tasks for which training data is
available.

For demonstrating generalization, we extend the com-
bined reward function from R, = R; + Ry to R, =
o X Ry + B x R,. Figures9 and 10 shows the results for
a=2,8=3and ¢ = 0.5, 8 = 1 respectively. As it is
shown, ExNonZeroDiscount remains as the only algorithm
achieving 100% recall in all the cases, showing the fact that

@ Springer

41 Page 18 of 22 S. Nikookar et al.
0
- N
—e— ExNonZeroDiscount - Query 60 —e— ExNonZeroDiscount - Query wl Y —e— ExNonZeroDiscount - QLeaning so0f ® —e— ExNonZeroDiscount - QLeaming
B Greedy-k (k =2) - Query -®- Greedy-k (k =2) - Query y B Greedy-k (k =2) - QLearning -m Greedyk (k = 2) - QLearning
50 A ExNonZeroDiscount - Grid - ExNonZeroDiscount - Grid - ExNonZeroDiscount - SARSA '\ - ExNonZeroDiscount - SARSA
~%- Greedy-k (k =2) - Grid ol Al -%- Groedy-k (k=2) - Grid -%- Greedy-k (k =2) - SARSA Y -%- Groedy-k (k =2) - SARSA
e s0- 400 - Y
A
4
A A . N " A
N
s 5 SR 5 300 '
T % 3 = = \
g g 30 3 g 3
& & & & F
40 200 X
2 TN
20
./w’ [N S—-—
10 10 20 100
[e e . L N — ol
of *oo- g *ooo ok I e P - P . At S 0
4 6 8 10 12 4 6 8 10 12 128 256 512 1024 2048 16 36 64 100 144
Number of Synthetic Rewards Number of Synthetic Rewards State Size [S| State Size S|
(Q-Learning b SARSA Query d Grid
a) (b) (c) (d)

(Varying #Rewards)

(Varying #Rewards)

(Varying #State)

Fig.12 Speed up. Proposed solutions are typically 6 to 50 times faster than training from scratch

(Varying #State)

30 30 400
*
7 - : b : . 200 |
ExNonZeroDiscount - QLearning ExNonZeroDiscount - QLearing \ —e— ExNonZeroDiscount - QLearning. 4 —e— ExNonZeroDiscount - QLeaming
25 2 Greedy-k (k = 2) - QLeaming \ -® Greedyk (k= 2) - QLeamning } -® Greedy-k (k= 2) - QLeaming
[EzNonZeroDiscount - Sarsa A EzNonZeroDiscount - Sarsa \ A lor Discor Sarsa
- Greedy-k (k=2) - Sarsa. 250 # - Greedy-k (k= 2) - Sarsa A -~ Greedy-k (k=2) - Sarsa
% 150 |
20 20 % !
3 35 30f k 3 ‘
& & & s & 100
10 10
100 50
5 5
- D
Lol L L L Ll L L L -4 1 y
12825 s1z 1024 2048 1825 sz 1024 2048 144 16 32 6 100 144
State Size S| State Size S| State Size S| State Size |S|
Query Query Grid Grid

(&) (@6 = (2,3))

(b)

(a,8=(0.5,1))

(a,8=1(2,3))

(d)

(a,8=(0.5,1)))

Fig. 13 Speed up when the reward components are scaled up by arbitrary positive weights for both Query and Grid applications. The results
demonstrate that our proposed solutions are 5 to 25 times faster compared to training from scratch

7 85 14 16
- %~ ExNonZeroDiscount * - %~ ExNonZeroDiscount * - %~ ExNonZeroDiscount * ‘ - %~ ExNonZeroDiscount
o . 14
681 ¥ * 8 E 12 N
- . P - F . - _
[* *_ N 3 ' | / 33 S R
o v P N o) N . P o N
B N . . 2750 % v , ERU X g *
= ! * = . ‘ = | = N
El g * . g 3 .
H \ \ H) g . H
5 v \ 5 v * 2 | T .
s s . - 5 s
< w ' & \ R & * 2
£ o4 * : £ N g £ B 2
£ * B * g S s
& IS * & N & Y
*. *ooow
62 65 6 - T
* . 6 »*
T
6 . 6 . 4 4
0 0.2 0.4 0.6 08 1 0 02 0.4 0.6 08 1 16 36 64 100 144 16 36 64 100 144
Discount Factor Discount Factor State Size [S| State Size [S|

Q-Learning on Grid
(Discount Factor)

(a)

(b)

SARSA on Grid
(Discount Factor)

Q-Learning on Grid
(State Size)

(c)

Fig. 14 Pruning Percentage (%). We observe a pruning percentage around 8%

our proposed algorithm is generalizable for any arbitrary pos-

itive weights of « and 8.

Figure 11 shows that Greedy-k algorithm using Deep neu-
ral network (DQN architecture) is still unable to achieve
100% recall as we extend the reward function to the param-
eterized form with positive weights of « and 8.

@ Springer

SARSA on Grid
(State Size)

5.2.3 Results on RQ3—Speed up

We explore speed up of the proposed solutions. We vary the
number of reward functions, # states, and report speed-up.
Figure 12 shows the results of speed up in Query and Grid
applications. We observe that while the speed-up is variant,
our solutions are in general 6 to 50 times faster in Grid
than training from scratch. Because of the sparsity of the
Q-table, the speed up is less in Query but is always more
than 3X. Figure 13 shows the results of speedup when the

Model reusability in Reinforcement Learning

Page190f22 41

2001
-m- Greedyk

120 -m- Greedyk

100 - i 150

175
.

80| / 125+

Time
3
g

60

Cumulative Reward

40

20+

of # .-

1 2 3 4 5 1 2 3 4 5
k k

(a) Cumulative Reward

Fig. 15 Quality scalability trade off of Greedy-k in Grid application

weights are scaled up by different positive weights for both
Query and Grid applications. The results demonstrate that
our proposed solutions are 5 to 25 times faster on an average
compared to training from scratch.
Pruning Effectiveness. We explore the effectiveness of our
pruning strategy in ExXNonZeroDiscount. We vary the envi-
ronment size and discount factor y and report the pruning
percentage (Fig. 14). We observe a percentage around 8%. In
case y = 0, itis 100%, which is consistent with our theoret-
ical analysis.
Quality scalability trade-off of Greedy-k. In this section,
we demonstrate how Greedy-k behaves with increasing k in
terms of running time and the average cumulative reward.
Figure 15 illustrates the relationship between time and
cumulative reward for the Grid application when employ-
ing the Greedy-k approach with varying values of k. It is
evident that as k increases, the running time also increases
somewhat non-linearly, which is consistent with our theo-
retical analysis. What is interesting from the Fig. 15a is that
the cumulative reward does not increase beyond k = 2. This
demonstrates that a small k value may still be quite suitable to
achieve the best trade-off between quality and running time
in Greedy-k.

5.2.4 Results on RQ4—Preprocessing overhead

In these set of experiments we evaluate the pre-processing
overhead of the proposed framework—we measure the time
taken to produce the graph structure described in Sect.3.1,
and the memory it consumes.

Preprocessing Time. We vary the number of tasks (# of
reward functions) and present the time that our graph model
(G in Sect.3.1) requires. Figure 16 demonstrates that the
preprocessing or indexing time of ExNonZeroDiscount
minimally changes with increasing number of tasks and
scales very well.

Memory. We vary the number of reward functions and
present memory usage that our graph model (G in Sect.3.1)
requires, and compare that with two alternatives, (i) where

0.1 01

- %~ ExNonZeroDiscount - %~ ExNonZeroDiscount

s
2
S
s
2
H

Time (Scconds)

o

2

2
*

o
H
*
*
Time (Seconds)

. P L L L L - L
4 6 8 10 12 4 6 8 10 12
Number of Synthetic Rewards

Preprocessing time on
(2) Grid (b)

Number of Synthetic Rewards
Preprocessing time on
Query

Fig. 16 The preprocessing time of the graph data structure is linear
with increasing number of tasks (#rewards) and scales very well

10 -%*- G(S,E)
-®- Originallm

-%- G(S,E
pl -
- Storing Individual Q-Tables of the Tasks

)
= Originallmpl
@ Storing Individual Q-Tables of the Tasks

Memory Usage (Mega Byte)
Memory Usage (Mega Byte)

* IR EES Sl el

4 6 8 10 12 4 6 8 10 12

Number of Synthetic Rewards Number of Synthetic Rewards

(a) Memory Usage on Grid (b) Memory Usage on Query

Fig. 17 Proposed graph model is lean in storage

all / individual Q-tables of the pre-trained tasks are stored,
(i1) when training a policy from scratch. Figure 17 shows that
consistent with our theoretical analysis, it is evident that our
graph data structure is lean and does not require more storage
than training from scratch.

6 Related work

Policy Reusability in RL. RL is used in a range of
scenarios within dynamic and uncertain environments, as
highlighted in various studies [29] [16] [12]. These applica-
tions span from controlling and monitoring traffic lights [47],
automating exploratory data analysis [5], discovering user
groups [33], to tackling complex task planning [25]. To make
RL policies reusable, several training-based approaches are
proposed, including Multi-Task RL (MTRL) [43], Option-
Critic Architecture [4], and Meta RL [14]. MTRL aims to
simultaneously learn policies for multiple related tasks, so
that knowledge gained in one task can inform and acceler-
ate learning in others. The option-critic architecture learns
both policies over primitive actions as well as policies over
temporally-extended actions called “options” to enable more
efficient transfer between related tasks. Meta RL learns
policies that can quickly adapt to new tasks by leveraging

@ Springer

41 Page 20 of 22

S. Nikookar et al.

prior experience on a distribution of related tasks, enabling
faster learning on new tasks compared to learning each task
independently from scratch. Contrarily, our approach is an
inference-only approach that reuses pre-trained models with-
out the need for any re-training and comes with guarantees.
Machine Learning Reusability. The concept of ML reusabil-
ity has garnered significant attention from researchers. This
focus encompasses a wide range of areas, including the reuse
of pre-trained models like BERT for various NL under-
standing tasks [9], the development of federated learning
to maintain data privacy while reusing models [23, 28], the
automation of ML pipelines with AutoML to enhance model
reusability [42], the integration of ML models with databases
for efficient data retrieval [17], and the challenge of reusing
data for different ML tasks in DatomIQ [37] and MAPLE
[51]. Additionally, researchers [44, 50] have addressed the
sample efficiency problem in RL and explored knowledge
transfer through Case-Based Reasoning, particularly through
the abstraction of reusable cases from RL. In contrast to these
generic ML approaches, ours specifically delves into MDP
structures, and enables the reusability of pre-trained models.
Transfer Learning. Transfer learning (TL) is a vital concept
in ML and RL, allowing models to apply knowledge acquired
from one task or domain to related ones [6, 25, 26, 35, 36,
38, 39, 41]. While there does not exist a single definition
of (TL), in [39], a comprehensive framework for classify-
ing and analyzing transfer learning methods in the context of
RL is presented, emphasizing the improvement of learning
performance in related tasks. [36] introduces the “replac-
ing trace” concept within the eligibility traces framework,
demonstrating its superiority in facilitating faster and more
reliable learning compared to conventional traces. In [35], the
authors focus on enabling RL agents to handle multiple tasks,
specifically composite sequential decision tasks, by intro-
ducing a novel learning algorithm and modular architecture
that facilitate the transfer of knowledge from elemental tasks
to efficiently solve complex, systematically composed tasks.
We implement TL in Sect.5 motivated by prior works [25,
26]. Contrarily, ours is the first policy reusability approach
with theoretical guarantees for any TDL based RL techniques
with an adaptation to Deep-RL.

7 Discussion and open problems

7.1 Removing cycles in G(S, &) inside
BackTrackDAG

We have demonstrated that for BackTrackDAG to work
accurately, G(S, £) needs to be cycle free. However, when
the action space allows the agent move freely in the envi-
ronment, the resultant graph is more likely to have cycles
than not. If the problem of making G (S, £) free of cycles

@ Springer

were related to removing the minimum number of edges
((state, action)) from G(S, &) - that would relate to the
minimum feedback arc set problem [8] or its weighted ver-
sion [11]. Minimum feedback arc set problem is a classical
combinatorial optimization problem and is known to be
NP-hard [13]. There does exist efficient heuristics [10] as
well that solve the problem in polynomial time. Contrary to
removing minimum number of edges in G(S, &), our goal
however is to remove those edges that have the least contribu-
tion in Q-values. An open problem is thus to investigate how
Q-values of (state, action) accumulates recursively to decide
an appropriate order of elimination of edges ((state, action))
to make G (S, &) free of cycles.

7.2 Theoretical guarantees for linear approximation
of Q-function

In the paper, we proved that the proposed framework returns
optimal policies for Q-learning and SARSA. We noted that
the framework extends to Deep-RL but it does not provide
any optimality guarantee. Deep-RL uses neural network to
approximate the Q-values of (state, action). Neural networks
are highly complex non-linear models that do not exhibit
many mathematical properties (e.g., convexity). However,
if m Q-tables of the pre-trained tasks (1;, ¢, ...1,) were
approximated using m linear functions (e.g., linear regres-
sion) over a fixed set of features, if the same feature set is
also assumed for 7., an interesting open problem is to theoreti-
cally investigate the relationship between the feature weights
of t;, tj, ...ty and that of 7.. With such relationship being
established, our framework would be extended to solve the
problem under Q-function approximation using linear mod-
els.

7.3 Theoretical guarantees for deep RL

We begin by extending our analysis to single-layer neural
networks, where the weights approximate the state-action
Q-values, effectively serving as a compact representation
of a Q-table. When the network is sufficiently expressive,
i.e., it has at least as many weights as there are state-action
pairs in the Q-table, the approximation error can be negligi-
ble, and the total error is bounded by the training error and
generalization error. If the network is under-parameterized,
an additional approximation error arises due to its limited
capacity to represent the full Q-table. The total error in such
cases is the sum of the training error, generalization error,
and approximation error.

For multi-layer neural networks, the analysis extends by
leveraging their enhanced representational capacity through
non-linear transformations. These networks maintain the
foundational principles of TD learning, where the training
process minimizes a loss function (e.g., temporal difference

Model reusability in Reinforcement Learning

Page210f22 41

loss) to approximate the Q-value function. Recursive depen-
dencies introduced by the Bellman equation are handled
through backpropagation, propagating updates across layers
to refine Q-value approximations. The theoretical guarantees
established for single-layer networks extend to multi-layer
networks under three conditions: (i) the network architec-
ture must have sufficient capacity to approximate the Q-value
function, (ii) training must converge to a fixed point satisfy-
ing the Bellman equation, and (iii) the approximation error,
including generalization error, must remain bounded. These
conditions ensure that the theoretical results for single-layer
networks generalize directly to multi-layer networks, allow-
ing for more complex Q-value functions to be approximated.

However, these guarantees apply specifically to RL
methods based on TD learning and assume finite state-
action spaces and deterministic environments. Extending this
framework to continuous spaces, non-deterministic MDPs,
or other DRL methods, such as policy gradient approaches,
remains an open challenge for future work.

7.4 Non-linear functions and non-deterministic
MDPs

An interesting open problem is to investigate how to extend
the proposed approach to reward functions that non-linearly
combine m different reward functions coming from the pre-
trained tasks. To that end, we are investigating both necessary
and sufficient conditions of the individual reward functions,
as well as that of the operators hat combine them. In the case,
where the m reward functions are combined using a linear
function, We are still interested to extend our approach to
non-deterministic MDPs where a ((state, action)) leads to
multiple possible transitions, each with its associated prob-
ability. We believe that perhaps a randomized algorithmic
approach would be more suitable to tackle this latter situa-
tion.

8 Conclusion

We explore the reusability of pre-trained models in RL and
propose solutions that generalize to both TDL, Deep-RL and
to any number of arbitrary reward functions. We introduce
an expressive and lossless graph data model and develop
efficient policy combination algorithms with rigorous the-
oretical guarantees. Our experimental results validate the
generality of the framework in two high fidelity applications
and corroborate all theoretical results. These findings under-
line the potential to yield results on par with policies trained
from scratch, highlighting its significance in advancing the
applicability of pre-trained RL models in practice. This work
paves the way for more resource-efficient and effective RL
applications in real-world contexts.

Acknowledgements The work of Sepideh Nikookar, Sohrab Namazi
Nia, and Senjuti Basu Roy are supported by the following funding
agencies: (1) National Science Foundation award number(s): 1942913,
2007935, 1814595 (2) Office of Naval Research award number(s):
N000141812838, N000142112966, N000142412466.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abbeel, P, Coates, A., Quigley, M., Ng, A.: An application of
reinforcement learning to aerobatic helicopter flight. In: Advances
in Neural Information Processing Systems 19 (2006)

2. Anonymous Technical report.
dropbox.com/scl/fo/ikd6w88mv2jsal 1bdlj7v/h?
rlkey=Irpsox76rhyvvmosu4m7ckruf&dl=0 (2024)

3. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.:
Deep reinforcement learning: a brief survey. IEEE Signal Process.
Mag. 34(6), 26-38 (2017)

4. Bacon, PL., Harb, J., Precup, D.: The option-critic architecture.
In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol 31 (2017)

5. Bar El, O., Milo, T., Somech, A.: Automatically generating data
exploration sessions using deep reinforcement learning. In: Pro-
ceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (2020)

6. Barrett, S., Taylor, M.E., Stone, P.: Transfer learning for rein-
forcement learning on a physical robot. In: Ninth International
Conference on Autonomous Agents and Multiagent Systems-
Adaptive Learning Agents Workshop (AAMAS-ALA), vol. 1
(2010)

7. Cai, H.,Ren, K., Zhang, W., Malialis, K., Wang, J., Yu, Y., Guo, D.:
Real-time bidding by reinforcement learning in display advertising.
WSDM 17, pp. 661-670 (2017)

8. Charbit, P, Thomassé, S., Yeo, A.: The minimum feedback arc
set problem is np-hard for tournaments. Comb. Probab. Comput.
16(1), 1-4 (2007)

9. Devlin, J., Chang, M.W.,, Lee, K., Toutanova, K.: Bert: Pre-training
of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018)

10. Eades, P., Lin, X., Smyth, W.F.: A fast and effective heuristic for
the feedback arc set problem. Inf. Process. Lett. 47(6), 319-323
(1993)

11. Fomin, F., Lokshtanov, D., Raman, V., Saurabh, S.: Fastlocal search
algorithm for weighted feedback arc set in tournaments. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 24,
pp. 65-70 (2010)

12. Garcia, J., Ferndndez, F.: A comprehensive survey on safe rein-
forcement learning. J. Mach. Learn. Res. 16(1), 1437-1480 (2015)

13. Garey, M.R., Johnson, D.S.: Computers and intractability. A Guide
to the (1979)

https://www.

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.dropbox.com/scl/fo/ikd6w88mv2jsa11bdlj7v/h?rlkey=lrpsox76rhyvvmosu4m7ckruf&dl=0
https://www.dropbox.com/scl/fo/ikd6w88mv2jsa11bdlj7v/h?rlkey=lrpsox76rhyvvmosu4m7ckruf&dl=0
https://www.dropbox.com/scl/fo/ikd6w88mv2jsa11bdlj7v/h?rlkey=lrpsox76rhyvvmosu4m7ckruf&dl=0
http://arxiv.org/abs/1810.04805

41

Page 22 of 22

S. Nikookar et al.

14.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Gupta, A., Mendonca, R., Liu, Y., Abbeel, P, Levine, S.:
Meta-reinforcement learning of structured exploration strategies.
In: Advances in Neural Information Processing Systems 31
(2018)

. Jiang, C., Li, X., Lin, J., Liu, M., Ma, Z.: Adaptive control of

resource flow to optimize construction work and cash flow via
online deep reinforcement learning. Autom. Constr. 150, 104817
(2023)

Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learn-
ing: a survey. J. Artif. Intell. Res. 4, 237-285 (1996)

Kraska, T., Beutel, A., Chi, EH., Dean, J., Polyzotis, N.: The case
for learned index structures. In: Proceedings of the 2018 Interna-
tional Conference on Management of Data, pp. 489-504 (2018)
Lezzar, F., Zidani, A., Atef, C.: A collaborative web-based appli-
cation for health care tasks planning. In: Proceedings of the 4th
International Conference on Web and Information Technologies,
Citeseer, pp. 30-39 (2012)

Li, Y.: Deep reinforcement learning: an overview. arXiv preprint
arXiv:1701.07274 (2017)

Lu, Y., Kandula, S., Konig, A.C., Chaudhuri, S.: Pre-training sum-
marization models of structured datasets for cardinality estimation.
Proc. VLDB Endow. 15(3), 414-426 (2021)

Mahadevan, S., Theocharous, G.: Optimizing production man-
ufacturing using reinforcement learning. In: Proceedings of the
Eleventh International Florida Artificial Intelligence Research
Society Conference, Citeseer, vol. 372, p. 377 (1998)

Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource man-
agement with deep reinforcement learning. In: Proceedings of the
15th ACM Workshop on Hot Topics in Networks, pp. 50-56 (2016)
McMabhan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, BA.:
Communication-efficient learning of deep networks from decen-
tralized data. In: Artificial intelligence and statistics, PMLR, pp
1273-1282 (2017)

Nakandala, S., Kumar, A.: Nautilus: An optimized system for deep
transfer learning over evolving training datasets. In: Proceedings
of the 2022 International Conference on Management of Data, pp.
506-520 (2022)

Nikookar, S., Sakharkar, P., Smagh, B., Amer-Yahia, S., Roy, S.B.:
Guided task planning under complex constraints. In: 2022 IEEE
38th International Conference on Data Engineering (ICDE), pp.
833-845 , IEEE (2022)

Nikookar, S., Sakharkar, P, Somasunder, S., Basu Roy, S.,
Bienkowski, A., Macesker, M, Pattipati, KR., Sidoti, D.: Coop-
erative route planning framework for multiple distributed assets in
maritime applications. In: Proceedings of the 2022 International
Conference on Management of Data, pp. 1518-1527 (2022b)
Obando-Ceron, J.S., Castro, P.S.: Revisiting rainbow: Promoting
more insightful and inclusive deep reinforcement learning research.
CoRR arXiv:2011.14826 (2020)

Omidvar-Tehrani, B., Personnaz, A., Amer-Yahia, S.: Guided
text-based item exploration. In: Hasan M.A., Xiong, L. (eds.) Pro-
ceedings of the 31st ACM International Conference on Information
& Knowledge Management, Atlanta, GA, USA, October 17-21,
2022, pp. 3410-3420. ACM (2022)

Pednault, E., Abe, N., Zadrozny, B.: Sequential cost-sensitive deci-
sion making with reinforcement learning. In: Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 259-268 (2002)

Pertsch, K., Lee, Y., Lim, J.: Accelerating reinforcement learning
with learned skill priors. In: Conference on Robot Learning, PMLR,
pp. 188-204 (2021)

Pineau, J.: Reproducible, reusable, and robust reinforcement learn-
ing. In: Advances in Neural Information Processing Systems
(2018)

@ Springer

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

Rosset, C., Jose, D., Ghosh, G., Mitra, B., Tiwary, S.: Optimizing
query evaluations using reinforcement learning for web search. In:
The 41st International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 1193-1196 (2018)
Seleznova, M., Omidvar-Tehrani, B., Amer-Yahia, S., Simon, E.:
Guided exploration of user groups. Proc. VLDB Endow. (PVLDB)
13(9), 1469-1482 (2020)

Shortreed, S.M., Laber, E., Lizotte, D.J., Stroup, T.S., Pineau,
J., Murphy, S.A.: Informing sequential clinical decision-making
through reinforcement learning: an empirical study. Mach. Learn.
84, 109-136 (2011)

Singh, S.P.: Transfer of learning by composing solutions of ele-
mental sequential tasks. Mach. Learn. 8, 323-339 (1992)

Singh, S.P., Sutton, R.S.: Reinforcement learning with replacing
eligibility traces. Mach. Learn. 22, 123-158 (1996)

Stonebraker, M., Cetintemel, U., Zdonik, S.: The 8 requirements
of real-time stream processing. ACM SIGMOD Rec. 34(4), 42-47
(2005)

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduc-
tion. MIT Press, Cambridge (2018)

Taylor, M.E., Stone, P.: Transfer learning for reinforcement learn-
ing domains: a survey. J. Mach. Learn. Res. 10(7), 1633-1685
(2009)

Tlili, A., Chikhi, S.: Risks analyzing and management in software
project management using fuzzy cognitive maps with reinforce-
ment learning. Informatica 45(1), 1-24 (2021)

Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research
on Machine Learning Applications and Trends: Algorithms, Meth-
ods, and Techniques, IGI global, pp. 242-264 (2010)
Vanschoren, J., Van Rijn, J.N., Bischl, B., Torgo, L.: Openml:
networked science in machine learning. ACM SIGKDD Explor.
Newsl. 15(2), 49-60 (2014)

Vithayathil, Varghese N., Mahmoud, Q.H.: A survey of multi-task
deep reinforcement learning. Electronics 9(9), 1363 (2020)

Von Hessling, A., Goel, A.K.: Abstracting reusable cases from rein-
forcement learning. In: ICCBR Workshops, pp. 227-236 (2005)
Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., Freitas,
N.: Dueling network architectures for deep reinforcement learn-
ing. In: International Conference on Machine Learning, PMLR,
pp- 1995-2003 (2016)

Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8, 279-292
(1992)

Wei, H., et al.: Intellilight: a reinforcement learning approach for
intelligent traffic light control. In: SIGKDD (2018)

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A.,
Cistac, P, Rault, T., Louf, R., Funtowicz, M., et al.: Huggingface’s
transformers: state-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771 (2019)

Youngmann, B., Amer-Yahia, S., Personnaz, A.: Guided explo-
ration of data summaries. Proc. VLDB Endow. 15(9), 1798-1807
(2022)

Yu, Y.: Towards sample efficient reinforcement learning. In: IJCAI,
pp- 5739-5743 (2018)

Yu, Y., Chen, S.Y., Da, Q., Zhou, Z.H.: Reusable reinforcement
learning via shallow trails. IEEE Trans. Neural Netw. Learn. Syst.
29(6), 2204-2215 (2018)

Zhao, C., He, Y.: Auto-em: End-to-end fuzzy entity-matching using
pre-trained deep models and transfer learning. In: The World Wide
Web Conference, pp. 2413-2424 (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/2011.14826
http://arxiv.org/abs/1910.03771

	Model reusability in Reinforcement Learning
	Abstract
	1 Introduction
	2 Preliminaries, data model, and problem
	2.1 Preliminaries
	2.1.1 Reinforcement Learning (RL) approaches

	2.2 Data model and problem definition

	3 Proposed solution framework
	3.1 Capturing mathcalM
	3.2 Algorithms for solving tc
	3.2.1 Algorithm ExZeroDiscount.
	3.2.2 Algorithm ExNonZeroDiscount

	3.3 More general case of combining linear reward functions

	4 Efficiency opportunities
	4.1 Tighter Q-value bounds estimation
	4.1.1 Calculating tighter MinItr
	4.1.2 Calculating tighter MaxItr

	4.2 Parameterized algorithm Greedy-k

	5 Experimental evaluation
	5.1 Experimental setup
	5.1.1 Evaluated applications.
	5.1.2 Evaluated algorithms
	5.1.3 Measures

	5.2 Experimental results
	5.2.1 Results on RQ1—Quality
	5.2.2 Results on RQ2—Generality
	5.2.3 Results on RQ3—Speed up
	5.2.4 Results on RQ4—Preprocessing overhead

	6 Related work
	7 Discussion and open problems
	7.1 Removing cycles in G(mathcalS,mathcalE) inside BackTrackDAG
	7.2 Theoretical guarantees for linear approximation of Q-function
	7.3 Theoretical guarantees for deep RL
	7.4 Non-linear functions and non-deterministic MDPs

	8 Conclusion
	Acknowledgements
	References

